The dissociation energies of the intermetallic molecules AuSr and AuBa were for the first time determined by the Knudsen effusion mass spectrometry method. The two species were produced in the vapor phase equilibrated with apt mixtures of the constituent elements, and the dissociation equilibria were monitored mass-spectrometrically in the temperature range 1406-1971 K (AuSr) and 1505-1971 K (AuBa). The third-law analysis of the equilibrium data gives the following dissociation energies (D-0 degrees, in kJ/mol): 244.4 +/- 4.8 (AuSr) and 273.3 +/- 6.3 (AuBa), so completing the series of D-0 degrees s for the AuAE (AE = group 2 element) diatomics. The AuAE species were also studied computationally at the coupled cluster including single, double and perturbative triple excitation [CCSD(T)] level with basis sets of increasing zeta quality, and various complete basis set limit extrapolations were performed to calculate the dissociation energies. Furthermore, the entire series of the heteronuclear diatomic species formed from one group 11 (Cu, Ag) and one group 2 (Be, Mg, Ca, Sr, Ba) metal was studied by DFT with the hybrid meta-GGA TPSSh functional and the def2-QZVPP basis set, selected after screening a number of functional-basis set combinations using the AuAE species as benchmark. Dissociation energies, internuclear distances, vibrational frequencies, and anharmonic constants were determined for the CuAE and AgAE species and their thermal functions evaluated therefrom. On this basis, a thermodynamic evaluation of the formation of these species was carried out under various conditions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711085]

Experimental and computational investigation of the group 11-group 2 diatomic molecules: First determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species / Ciccioli, Andrea; Gigli, Guido; M., Lauricella. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 136:18(2012), pp. 184306-184306-12. [10.1063/1.4711085]

Experimental and computational investigation of the group 11-group 2 diatomic molecules: First determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species

CICCIOLI, Andrea;GIGLI, Guido;
2012

Abstract

The dissociation energies of the intermetallic molecules AuSr and AuBa were for the first time determined by the Knudsen effusion mass spectrometry method. The two species were produced in the vapor phase equilibrated with apt mixtures of the constituent elements, and the dissociation equilibria were monitored mass-spectrometrically in the temperature range 1406-1971 K (AuSr) and 1505-1971 K (AuBa). The third-law analysis of the equilibrium data gives the following dissociation energies (D-0 degrees, in kJ/mol): 244.4 +/- 4.8 (AuSr) and 273.3 +/- 6.3 (AuBa), so completing the series of D-0 degrees s for the AuAE (AE = group 2 element) diatomics. The AuAE species were also studied computationally at the coupled cluster including single, double and perturbative triple excitation [CCSD(T)] level with basis sets of increasing zeta quality, and various complete basis set limit extrapolations were performed to calculate the dissociation energies. Furthermore, the entire series of the heteronuclear diatomic species formed from one group 11 (Cu, Ag) and one group 2 (Be, Mg, Ca, Sr, Ba) metal was studied by DFT with the hybrid meta-GGA TPSSh functional and the def2-QZVPP basis set, selected after screening a number of functional-basis set combinations using the AuAE species as benchmark. Dissociation energies, internuclear distances, vibrational frequencies, and anharmonic constants were determined for the CuAE and AgAE species and their thermal functions evaluated therefrom. On this basis, a thermodynamic evaluation of the formation of these species was carried out under various conditions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711085]
2012
dissociation energy; auba; ausr; gold alkaline earth; chemical bond; silver alkaline earth; diatomic molecules; coupled cluster; high temperature; copper alkaline earth
01 Pubblicazione su rivista::01a Articolo in rivista
Experimental and computational investigation of the group 11-group 2 diatomic molecules: First determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species / Ciccioli, Andrea; Gigli, Guido; M., Lauricella. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 136:18(2012), pp. 184306-184306-12. [10.1063/1.4711085]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/458208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact