The experimental/analytical study presented herewith arrived at developing a mechanics-based (as opposed to regression-based) model of the shear capacity of reinforced concrete beams, strengthened with externally bonded fibre reinforced polymers (FRP). The model is obtained through the following steps, with due consideration of the underlying physical mechanisms: (a) the generalised constitutive law of an FRP layer bonded to concrete is defined first, then, (b) the compatibility imposed by the shear crack opening and the appropriate boundary conditions – which depend on the strengthening configuration (either side bonding, U-jacketing or wrapping) – are included in the formulation, and, finally, (c) analytical expressions of the stress field in the FRP strip/sheet crossing a shear crack are obtained. Through these expressions, closed-form equations for the effective debonding strength of FRP strips/sheets are defined as function of, both, the adopted strengthening configuration, and of some basic geometric and mechanical parameters. The so-obtained FRP contribution is then added to those of concrete and steel, which, for the sake of comparison, have been considered as given by different codes. The equations accuracy has been verified by predicting – a priori, with the developed equations – the shear strength of experimentally tested r.c. beams, both collected from the literature and obtained from purposely carried out tests on under-designed real-scale beam specimens, strengthened with different FRP schemes. No a posteriori calibration of the model was performed. The prediction capability of the developed equations has been finally compared to other approaches available in the literature.

Tests and design equations for FRP-strengthening in shear / Monti, Giorgio; Liotta, Marc'Antonio. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 21:4(2007), pp. 799-809. [10.1016/j.conbuildmat.2006.06.023]

Tests and design equations for FRP-strengthening in shear

MONTI, Giorgio;LIOTTA, MARC'ANTONIO
2007

Abstract

The experimental/analytical study presented herewith arrived at developing a mechanics-based (as opposed to regression-based) model of the shear capacity of reinforced concrete beams, strengthened with externally bonded fibre reinforced polymers (FRP). The model is obtained through the following steps, with due consideration of the underlying physical mechanisms: (a) the generalised constitutive law of an FRP layer bonded to concrete is defined first, then, (b) the compatibility imposed by the shear crack opening and the appropriate boundary conditions – which depend on the strengthening configuration (either side bonding, U-jacketing or wrapping) – are included in the formulation, and, finally, (c) analytical expressions of the stress field in the FRP strip/sheet crossing a shear crack are obtained. Through these expressions, closed-form equations for the effective debonding strength of FRP strips/sheets are defined as function of, both, the adopted strengthening configuration, and of some basic geometric and mechanical parameters. The so-obtained FRP contribution is then added to those of concrete and steel, which, for the sake of comparison, have been considered as given by different codes. The equations accuracy has been verified by predicting – a priori, with the developed equations – the shear strength of experimentally tested r.c. beams, both collected from the literature and obtained from purposely carried out tests on under-designed real-scale beam specimens, strengthened with different FRP schemes. No a posteriori calibration of the model was performed. The prediction capability of the developed equations has been finally compared to other approaches available in the literature.
2007
FRP strengthening, Shear strengthening, Experimental tests, Design equations
01 Pubblicazione su rivista::01a Articolo in rivista
Tests and design equations for FRP-strengthening in shear / Monti, Giorgio; Liotta, Marc'Antonio. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 21:4(2007), pp. 799-809. [10.1016/j.conbuildmat.2006.06.023]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/45248
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 167
  • ???jsp.display-item.citation.isi??? 147
social impact