Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl] xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH center dot scavengers but reaction time with DPPH center dot and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH center dot were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-alpha-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TON were determined from the kinetic curves of lipid autoxidation at 80 degrees C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) >= TOH (7.0) >= CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) >> TOH (18.7) >> CA (9.3) >> 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction mechanism is proposed. Higher oxidation stability of the lipid substrate was found in the presence of equimolar binary mixtures 2 + TOH, 3 + TOH and 4 + TOH. However, an actual synergism was only obtained for the binary mixtures with compounds 3 and 4. The geometries of compounds and all possible phenoxyl radicals were optimized using density functional theory. For description of the scavenging activity bond dissociation enthalpies (BDE), HOMO energies and spin densities were employed. The best correlation between theoretical and experimental data was obtained for compound 2, with the highest activity, and for compound 4 with the lowest activity. The BDE is the most important theoretical descriptor, which correlates with the experimentally obtained antioxidant activity of the studied benzo[kl]xanthene lignans and dihydrobenzofuran neolignans. (C) 2011 Elsevier Masson SAS. All rights reserved.

Antiradical and antioxidant activities of new bio-antioxidants / V. D., Kancheva; Saso, Luciano; S. E., Angelova; M. C., Foti; A., Slavova Kasakova; C., Daquino; V., Enchev; O., Firuzi; J., Nechev. - In: BIOCHIMIE. - ISSN 0300-9084. - STAMPA. - 94:2(2012), pp. 403-415. [10.1016/j.biochi.2011.08.008]

Antiradical and antioxidant activities of new bio-antioxidants

SASO, Luciano;
2012

Abstract

Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl] xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH center dot scavengers but reaction time with DPPH center dot and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH center dot were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-alpha-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TON were determined from the kinetic curves of lipid autoxidation at 80 degrees C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) >= TOH (7.0) >= CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) >> TOH (18.7) >> CA (9.3) >> 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction mechanism is proposed. Higher oxidation stability of the lipid substrate was found in the presence of equimolar binary mixtures 2 + TOH, 3 + TOH and 4 + TOH. However, an actual synergism was only obtained for the binary mixtures with compounds 3 and 4. The geometries of compounds and all possible phenoxyl radicals were optimized using density functional theory. For description of the scavenging activity bond dissociation enthalpies (BDE), HOMO energies and spin densities were employed. The best correlation between theoretical and experimental data was obtained for compound 2, with the highest activity, and for compound 4 with the lowest activity. The BDE is the most important theoretical descriptor, which correlates with the experimentally obtained antioxidant activity of the studied benzo[kl]xanthene lignans and dihydrobenzofuran neolignans. (C) 2011 Elsevier Masson SAS. All rights reserved.
2012
antioxidant activity; antiradical activity; bio-antioxidants; quantum-chemical calculations
01 Pubblicazione su rivista::01a Articolo in rivista
Antiradical and antioxidant activities of new bio-antioxidants / V. D., Kancheva; Saso, Luciano; S. E., Angelova; M. C., Foti; A., Slavova Kasakova; C., Daquino; V., Enchev; O., Firuzi; J., Nechev. - In: BIOCHIMIE. - ISSN 0300-9084. - STAMPA. - 94:2(2012), pp. 403-415. [10.1016/j.biochi.2011.08.008]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/444244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact