The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [3H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.

Subpopulation of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter / Tata, Ada Maria; DE STEFANO, Maria Egle; G., SRUBEK TOMASSY; M. T., Villaro'; A. I., Levey; Biagioni, Stefano. - In: JOURNAL OF NEUROSCIENCE RESEARCH. - ISSN 0360-4012. - STAMPA. - 75:(2004), pp. 194-202. [10.1002/jnr.10855]

Subpopulation of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter

TATA, Ada Maria;DE STEFANO, Maria Egle;BIAGIONI, Stefano
2004

Abstract

The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [3H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.
2004
acetylcholine release, cholinergic vesicles, neuronal differentiation, sensory neurons
01 Pubblicazione su rivista::01a Articolo in rivista
Subpopulation of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter / Tata, Ada Maria; DE STEFANO, Maria Egle; G., SRUBEK TOMASSY; M. T., Villaro'; A. I., Levey; Biagioni, Stefano. - In: JOURNAL OF NEUROSCIENCE RESEARCH. - ISSN 0360-4012. - STAMPA. - 75:(2004), pp. 194-202. [10.1002/jnr.10855]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/434516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact