The ventral striatum (VS) is characterized by a distinctive neural architecture in which multiple corticolimbic glutamatergic (GLUergic) and mesolimbic dopaminergic (DAergic) afferents converge on the same output cell type (the medium-sized spiny neuron, MSN). However, despite the gateway function attributed to VS and its involvement in action selection and spatial navigation, as well as the evidence of physical and functional receptor-receptor interaction between different members of ionotropic GLUergic and DAergic receptors, there is no available knowledge that such reciprocal interaction may be critical in shaping the ability to learn novel spatial and non-spatial arrangement of stimuli. In this study, it was evaluated whether intra-VS bilateral infusion of either N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-selective antagonists may suppress the ability to detect spatial or non-spatial novelty in a non-associative behavioral task. In a second set of experiments, we further examined the hypothesis that VS-mediated spatial information processing may be subserved by some preferential receptor-receptor interactions among specific GLUergic and DAergic receptor subtypes. This was assessed by concomitant intra-VS infusion of the combination between subthreshold doses of either NMDA or AMPA receptor antagonists with individual D1 or D2 receptor blockade. The results of this study highlighted the fact that NMDA or AMPA receptors are differentially involved in processing of spatial and non-spatial novelty, and showed for the first time that preferential NMDA/D1 and AMPA/D2 receptor-receptor functional communication, but not NMDA/D2 and AMPA/D1, is required for enabling learning of novel spatial information in the VS. Neuropsychopharmacology (2012) 37, 1122-1133; doi:10.1038/npp.2011.296; published online 4 January 2012

Dopamine-Glutamate Interplay in the Ventral Striatum Modulates Spatial Learning in a Receptor Subtype-Dependent Manner / Roberto, Coccurello; Oliverio, Alberto; Mele, Andrea. - In: NEUROPSYCHOPHARMACOLOGY. - ISSN 0893-133X. - STAMPA. - 37:5(2012), pp. 1122-1133. [10.1038/npp.2011.296]

Dopamine-Glutamate Interplay in the Ventral Striatum Modulates Spatial Learning in a Receptor Subtype-Dependent Manner

OLIVERIO, Alberto;MELE, Andrea
2012

Abstract

The ventral striatum (VS) is characterized by a distinctive neural architecture in which multiple corticolimbic glutamatergic (GLUergic) and mesolimbic dopaminergic (DAergic) afferents converge on the same output cell type (the medium-sized spiny neuron, MSN). However, despite the gateway function attributed to VS and its involvement in action selection and spatial navigation, as well as the evidence of physical and functional receptor-receptor interaction between different members of ionotropic GLUergic and DAergic receptors, there is no available knowledge that such reciprocal interaction may be critical in shaping the ability to learn novel spatial and non-spatial arrangement of stimuli. In this study, it was evaluated whether intra-VS bilateral infusion of either N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-selective antagonists may suppress the ability to detect spatial or non-spatial novelty in a non-associative behavioral task. In a second set of experiments, we further examined the hypothesis that VS-mediated spatial information processing may be subserved by some preferential receptor-receptor interactions among specific GLUergic and DAergic receptor subtypes. This was assessed by concomitant intra-VS infusion of the combination between subthreshold doses of either NMDA or AMPA receptor antagonists with individual D1 or D2 receptor blockade. The results of this study highlighted the fact that NMDA or AMPA receptors are differentially involved in processing of spatial and non-spatial novelty, and showed for the first time that preferential NMDA/D1 and AMPA/D2 receptor-receptor functional communication, but not NMDA/D2 and AMPA/D1, is required for enabling learning of novel spatial information in the VS. Neuropsychopharmacology (2012) 37, 1122-1133; doi:10.1038/npp.2011.296; published online 4 January 2012
2012
nucleus accumbens; d2 receptors; d1 receptors; ampa receptors; object displacement; nmda receptors
01 Pubblicazione su rivista::01a Articolo in rivista
Dopamine-Glutamate Interplay in the Ventral Striatum Modulates Spatial Learning in a Receptor Subtype-Dependent Manner / Roberto, Coccurello; Oliverio, Alberto; Mele, Andrea. - In: NEUROPSYCHOPHARMACOLOGY. - ISSN 0893-133X. - STAMPA. - 37:5(2012), pp. 1122-1133. [10.1038/npp.2011.296]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/434156
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact