Scavengers of hypochlorite, a highly reactive oxidant produced by activated phagocytes, could have potential therapeutic effects in diseases in which this oxidant plays a pathogenic role. Flavonoids are polyphenolic substances present in food plants and have been extensively studied for their antioxidant properties against various free radicals. Less is known about their reactivity with hypochlorite. In this study, the hypochlorite scavenging activity of flavonoids was investigated using a microplate assay recently developed in our laboratory. This method evaluates the ability of a substance to inhibit the formation of chloramines in human serum albumin upon oxidation by hypochlorite. Thirteen flavonoids were tested. Most of them inhibited human serum albumin oxidation at micromolar concentrations and appeared more active than Trolox, a water-soluble equivalent of vitamin E. It was observed that the greater the number of hydroxyl substitutions, the greater the scavenging activity. The 3-hydroxy substitution seemed to be particularly important for scavenging activity, whereas be presence of a 2,3-double bond in the C ring did not. Flavonoids were found to be good hypochlorite scavengers in-vitro and further information is provided about the chemical aspects important for scavenging activity. Thus, flavonoids could have beneficial effects in diseases such as atherosclerosis in which hypochlorite plays a pathogenic role. © 2004 The Authors.

Hypochlorite scavenging activity of flavonoids / Firuzi, O.; Mladenka, P.; Petrucci, Rita; Marrosu, Giancarlo; Saso, Luciano. - In: JOURNAL OF PHARMACY AND PHARMACOLOGY. - ISSN 0022-3573. - STAMPA. - 56:6(2004), pp. 801-807. [10.1211/0022357023556]

Hypochlorite scavenging activity of flavonoids

PETRUCCI, Rita;MARROSU, Giancarlo;SASO, Luciano
2004

Abstract

Scavengers of hypochlorite, a highly reactive oxidant produced by activated phagocytes, could have potential therapeutic effects in diseases in which this oxidant plays a pathogenic role. Flavonoids are polyphenolic substances present in food plants and have been extensively studied for their antioxidant properties against various free radicals. Less is known about their reactivity with hypochlorite. In this study, the hypochlorite scavenging activity of flavonoids was investigated using a microplate assay recently developed in our laboratory. This method evaluates the ability of a substance to inhibit the formation of chloramines in human serum albumin upon oxidation by hypochlorite. Thirteen flavonoids were tested. Most of them inhibited human serum albumin oxidation at micromolar concentrations and appeared more active than Trolox, a water-soluble equivalent of vitamin E. It was observed that the greater the number of hydroxyl substitutions, the greater the scavenging activity. The 3-hydroxy substitution seemed to be particularly important for scavenging activity, whereas be presence of a 2,3-double bond in the C ring did not. Flavonoids were found to be good hypochlorite scavengers in-vitro and further information is provided about the chemical aspects important for scavenging activity. Thus, flavonoids could have beneficial effects in diseases such as atherosclerosis in which hypochlorite plays a pathogenic role. © 2004 The Authors.
2004
antioxidant activity-structure; flavonoids; ros scavenger.
01 Pubblicazione su rivista::01a Articolo in rivista
Hypochlorite scavenging activity of flavonoids / Firuzi, O.; Mladenka, P.; Petrucci, Rita; Marrosu, Giancarlo; Saso, Luciano. - In: JOURNAL OF PHARMACY AND PHARMACOLOGY. - ISSN 0022-3573. - STAMPA. - 56:6(2004), pp. 801-807. [10.1211/0022357023556]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/43327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 45
social impact