Inversion algorithms for ground-based microwave radiometric retrieval of surface rain-rate, integrated cloud parameters, and slant-path attenuation are proposed and tested. The estimation methods are trained by numerical simulations of a radiative transfer model applied to microphysically-consistent precipitating cloud structures, representative of stratiform and convective rainy clouds. The discrete-ordinate method is used to solve the radiative transfer equation for plane-parallel seven-layer structures, including liquid, melted, and ice spherical hydrometeors. Besides ordinary multiple regression, a variance-constrained regression algorithm is developed and applied to synthetic data in order to evaluate its robustness to noise and its potentiality. Selection of optimal frequency sets and polynomial retrieval algorithms for rainfall parameters is carried out and discussed. Ground-based radiometric measurements at 13.0, 23.8, and 31.7 GHz are used for experimentally testing the retrieval algorithms. Comparison with rain-gauge data and rain path-attenuation measurements, derived from the three ITALSAT satellite beacons at 18.7, 39.6, and 49.5 GHz acquired at Pomezia (Rome, Italy), are performed for two selected cases of moderate and intense rainfall during 1998. Results show a fairly good agreement between retrieved and measured rainfall parameters, pointing out possible effects of nonhomogeneous beam filling at low frequencies when observing small convective cells.

Ground-based multi-frequency microwave radiometry for rainfall remote sensing / Marzano, FRANK SILVIO; E., Fionda; P. CIOTTI AND A., Martellucci. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 40:(2002), pp. 742-759.

Ground-based multi-frequency microwave radiometry for rainfall remote sensing

MARZANO, FRANK SILVIO;
2002

Abstract

Inversion algorithms for ground-based microwave radiometric retrieval of surface rain-rate, integrated cloud parameters, and slant-path attenuation are proposed and tested. The estimation methods are trained by numerical simulations of a radiative transfer model applied to microphysically-consistent precipitating cloud structures, representative of stratiform and convective rainy clouds. The discrete-ordinate method is used to solve the radiative transfer equation for plane-parallel seven-layer structures, including liquid, melted, and ice spherical hydrometeors. Besides ordinary multiple regression, a variance-constrained regression algorithm is developed and applied to synthetic data in order to evaluate its robustness to noise and its potentiality. Selection of optimal frequency sets and polynomial retrieval algorithms for rainfall parameters is carried out and discussed. Ground-based radiometric measurements at 13.0, 23.8, and 31.7 GHz are used for experimentally testing the retrieval algorithms. Comparison with rain-gauge data and rain path-attenuation measurements, derived from the three ITALSAT satellite beacons at 18.7, 39.6, and 49.5 GHz acquired at Pomezia (Rome, Italy), are performed for two selected cases of moderate and intense rainfall during 1998. Results show a fairly good agreement between retrieved and measured rainfall parameters, pointing out possible effects of nonhomogeneous beam filling at low frequencies when observing small convective cells.
2002
01 Pubblicazione su rivista::01a Articolo in rivista
Ground-based multi-frequency microwave radiometry for rainfall remote sensing / Marzano, FRANK SILVIO; E., Fionda; P. CIOTTI AND A., Martellucci. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 40:(2002), pp. 742-759.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/43025
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact