In this study the synthesis of cholesterol sulfate is examined in relation to the process of squamous differentiation in normal human epidermal keratinocytes (NHEK) in culture. During the exponential growth phase, NHEK cells exhibit a relatively high colony-forming efficiency and appear undifferentiated on the basis of their morphology and expression of biochemical characteristics. At confluence, the cells undergo terminal differentiation that is characterized by the commitment to terminal cell division (reduction in colony-forming ability) and expression of the differentiated phenotype. An accumulation of cholesterol sulfate accompanies this program of differentiation. This accumulation of cholesterol sulfate parallels the increase in transglutaminase type I activity and the competence to form cross-linked envelopes, whereas it precedes the "spontaneous" formation of cross-linked envelopes. Increased cholesterol sulfotransferase activity appears to account for the increase in cholesterol sulfate. The cholesterol sulfate accumulation, as well as the increase in cholesterol sulfotransferase and transglutaminase activity, are inhibited by retinoids. However, the presence of retinoids does not prevent NHEK cells from undergoing terminal cell division at confluence. Two NHEK cell lines expressing SV40-large T antigen also undergo terminal differentiation at confluence and start to accumulate cholesterol sulfate. Two other, differentiation-defective cell lines do not exhibit an increase in cholesterol sulfate at confluence. These results show that epidermal keratinocytes in culture, like cells in the epidermis, accumulate cholesterol sulfate when undergoing squamous differentiation. This program appears to consist of a retinoid-insensitive step (commitment to terminal cell division) and a retinoid-sensitive step (expression of the squamous differentiated phenotype).

Increased cholesterol sulfate and cholesterol sulfontransferase activity in relation to the multi-step process of differentiation in human epidermal keratinocites / Jetten A., M; George, Ma; Nervi, Clara; Boone, Ld; Rearick, Ji. - In: JOURNAL OF INVESTIGATIVE DERMATOLOGY. - ISSN 0022-202X. - STAMPA. - 92:(1989), pp. 203-209. [10.1111/1523-1747.ep12276731]

Increased cholesterol sulfate and cholesterol sulfontransferase activity in relation to the multi-step process of differentiation in human epidermal keratinocites

NERVI, Clara;
1989

Abstract

In this study the synthesis of cholesterol sulfate is examined in relation to the process of squamous differentiation in normal human epidermal keratinocytes (NHEK) in culture. During the exponential growth phase, NHEK cells exhibit a relatively high colony-forming efficiency and appear undifferentiated on the basis of their morphology and expression of biochemical characteristics. At confluence, the cells undergo terminal differentiation that is characterized by the commitment to terminal cell division (reduction in colony-forming ability) and expression of the differentiated phenotype. An accumulation of cholesterol sulfate accompanies this program of differentiation. This accumulation of cholesterol sulfate parallels the increase in transglutaminase type I activity and the competence to form cross-linked envelopes, whereas it precedes the "spontaneous" formation of cross-linked envelopes. Increased cholesterol sulfotransferase activity appears to account for the increase in cholesterol sulfate. The cholesterol sulfate accumulation, as well as the increase in cholesterol sulfotransferase and transglutaminase activity, are inhibited by retinoids. However, the presence of retinoids does not prevent NHEK cells from undergoing terminal cell division at confluence. Two NHEK cell lines expressing SV40-large T antigen also undergo terminal differentiation at confluence and start to accumulate cholesterol sulfate. Two other, differentiation-defective cell lines do not exhibit an increase in cholesterol sulfate at confluence. These results show that epidermal keratinocytes in culture, like cells in the epidermis, accumulate cholesterol sulfate when undergoing squamous differentiation. This program appears to consist of a retinoid-insensitive step (commitment to terminal cell division) and a retinoid-sensitive step (expression of the squamous differentiated phenotype).
1989
01 Pubblicazione su rivista::01a Articolo in rivista
Increased cholesterol sulfate and cholesterol sulfontransferase activity in relation to the multi-step process of differentiation in human epidermal keratinocites / Jetten A., M; George, Ma; Nervi, Clara; Boone, Ld; Rearick, Ji. - In: JOURNAL OF INVESTIGATIVE DERMATOLOGY. - ISSN 0022-202X. - STAMPA. - 92:(1989), pp. 203-209. [10.1111/1523-1747.ep12276731]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/408908
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 85
social impact