Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization. (C) 2010 Elsevier Ltd. All rights reserved.

Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization / Mauro, Cataldi; Gabriella, Panuccio; Anna, Cavaccini; Margherita, D'Antuono; Maurizio, Taglialatela; Avoli, Massimo. - In: NEUROPHARMACOLOGY. - ISSN 0028-3908. - STAMPA. - 60:4(2011), pp. 653-661. [10.1016/j.neuropharm.2010.11.023]

Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization

AVOLI, Massimo
2011

Abstract

Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization. (C) 2010 Elsevier Ltd. All rights reserved.
2011
entorhinal cortex; gaba(b) receptors; gabab receptors; inward rectifiers; m-current; muscarinic receptors; retigabine; temporal lobe epilepsy
01 Pubblicazione su rivista::01a Articolo in rivista
Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization / Mauro, Cataldi; Gabriella, Panuccio; Anna, Cavaccini; Margherita, D'Antuono; Maurizio, Taglialatela; Avoli, Massimo. - In: NEUROPHARMACOLOGY. - ISSN 0028-3908. - STAMPA. - 60:4(2011), pp. 653-661. [10.1016/j.neuropharm.2010.11.023]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/385177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact