The identification of suitable stem cell cultures and differentiating conditions that are free of xenogenic growth supplements is an important step in finding the clinical applicability of cell therapy in two important fields of human medicine: heart failure and bone remodeling, growth and repair. We recently demonstrated the possibility of obtaining cardiac stem cells (CSCs) from human endomyocardial biopsy specimens. CSCs self-assemble into multi-cellular clusters known as cardiospheres (CSps) that engraft and partially regenerate infarcted myocardium. CSps and cardiosphere-derived-cells (CDCs) were exposed for five days in an incubator regulated for temperature, humidity, and CO2 inside a solenoid system. This system was placed in a magnetically shielded room. The cells were exposed simultaneously to a static magnetic field (MF) and a parallel low-alternating frequency MF, close to the cyclotron frequency corresponding to the charge/mass ratio of the Ca++ ion. In this exposure condition, CSps and CDCs modulate their differentiation turning on cardiogenesis and turning off vasculogenesis. Cardiac markers such as troponin I (TnI) and myosin heavy chain (MHC) were up-regulated. Conversely, angiogenic markers such as vascular endothelial growth factor (VEGF) and kinase domain receptor (KDR) were down-regulated as evidenced by immunocytochemistry. Exposure to the 7Hz calcium ion cyclotron resonance (ICR) frequency can modulate the cardiogenic vs. angiogenic differentiation process of ex vivo expanded CSCs. This may pave the way for novel approaches in tissue engineering and cell therapy. With regard to bone remodeling, it has been suggested that bone marrow-derived mesenchymal stem cells (MSC) may be considered as a potential therapeutic tool. Using the Ca++-dependent specific differentiation potential of the ELF-MF 7Hz ICR, we show here that exposure of human MSC to these same MF conditions enhanced the expression of osteoblast differentiation markers such as alkaline phosphatase, osteocalcin, and osteopontin, as analyzed by real-time quantitative PCR, without affecting cell proliferation. As expected, while the differentiation marker factors were up regulated, the ICR electromagnetic field down regulated osteoprotegerin gene expression, a critical regulator of postnatal skeletal development and homeostasis in humans as well as mice.

Ion cyclotron resonance as a tool in regenerative medicine / Antonella, Lisi; Mario, Ledda; Flavia De, Carlo; Pozzi, Deleana; Messina, Elisa; Gaetani, Roberto; Chimenti, Isotta; Barile, Lucio; Giacomello, Alessandro; Enrico, D'Emilia; Livio, Giuliani; Alberto, Foletti; PATTI NOTARRIGO, ANNA MARIA; Antonella, Vulcano; Settimio, Grimaldi. - In: ELECTROMAGNETIC BIOLOGY AND MEDICINE. - ISSN 1536-8378. - STAMPA. - 27:2(2008), pp. 127-133. [10.1080/15368370802072117]

Ion cyclotron resonance as a tool in regenerative medicine

POZZI, Deleana;MESSINA, ELISA;GAETANI, ROBERTO;CHIMENTI, ISOTTA;BARILE, Lucio;GIACOMELLO, Alessandro;PATTI NOTARRIGO, ANNA MARIA;
2008

Abstract

The identification of suitable stem cell cultures and differentiating conditions that are free of xenogenic growth supplements is an important step in finding the clinical applicability of cell therapy in two important fields of human medicine: heart failure and bone remodeling, growth and repair. We recently demonstrated the possibility of obtaining cardiac stem cells (CSCs) from human endomyocardial biopsy specimens. CSCs self-assemble into multi-cellular clusters known as cardiospheres (CSps) that engraft and partially regenerate infarcted myocardium. CSps and cardiosphere-derived-cells (CDCs) were exposed for five days in an incubator regulated for temperature, humidity, and CO2 inside a solenoid system. This system was placed in a magnetically shielded room. The cells were exposed simultaneously to a static magnetic field (MF) and a parallel low-alternating frequency MF, close to the cyclotron frequency corresponding to the charge/mass ratio of the Ca++ ion. In this exposure condition, CSps and CDCs modulate their differentiation turning on cardiogenesis and turning off vasculogenesis. Cardiac markers such as troponin I (TnI) and myosin heavy chain (MHC) were up-regulated. Conversely, angiogenic markers such as vascular endothelial growth factor (VEGF) and kinase domain receptor (KDR) were down-regulated as evidenced by immunocytochemistry. Exposure to the 7Hz calcium ion cyclotron resonance (ICR) frequency can modulate the cardiogenic vs. angiogenic differentiation process of ex vivo expanded CSCs. This may pave the way for novel approaches in tissue engineering and cell therapy. With regard to bone remodeling, it has been suggested that bone marrow-derived mesenchymal stem cells (MSC) may be considered as a potential therapeutic tool. Using the Ca++-dependent specific differentiation potential of the ELF-MF 7Hz ICR, we show here that exposure of human MSC to these same MF conditions enhanced the expression of osteoblast differentiation markers such as alkaline phosphatase, osteocalcin, and osteopontin, as analyzed by real-time quantitative PCR, without affecting cell proliferation. As expected, while the differentiation marker factors were up regulated, the ICR electromagnetic field down regulated osteoprotegerin gene expression, a critical regulator of postnatal skeletal development and homeostasis in humans as well as mice.
2008
cyclotron resonance; differentiation; emf; stem cell
01 Pubblicazione su rivista::01a Articolo in rivista
Ion cyclotron resonance as a tool in regenerative medicine / Antonella, Lisi; Mario, Ledda; Flavia De, Carlo; Pozzi, Deleana; Messina, Elisa; Gaetani, Roberto; Chimenti, Isotta; Barile, Lucio; Giacomello, Alessandro; Enrico, D'Emilia; Livio, Giuliani; Alberto, Foletti; PATTI NOTARRIGO, ANNA MARIA; Antonella, Vulcano; Settimio, Grimaldi. - In: ELECTROMAGNETIC BIOLOGY AND MEDICINE. - ISSN 1536-8378. - STAMPA. - 27:2(2008), pp. 127-133. [10.1080/15368370802072117]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/358934
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact