Vector clocks are the appropriate mechanism used to track causality among the events produced by a distributed computation. Traditional implementations of vector clocks require application messages to piggyback a vector of n integers (where n is the number of processes). This paper investigates the tracking of the causality relation on a subset of events (namely, the events that are defined as "relevant" from the application point of view) in a context where communication channels are not required to be FIFO, and where there is no a priori information on the connectivity of the communication.graph or the communication pattern. More specifically, the paper proposes a suite of simple and efficient implementations of vector clocks that address the reduction of the size of message timestamps, i.e., they do their best to have message timestamps whose size is less than n. The relevance of such a suite of protocols is twofold. From a practical side, it constitutes the core of an adaptive timestamping software layer that can used by underlying applications. From a theoretical side, it provides a comprehensive view that helps better understand distributed causality-tracking mechanisms.

Efficient causality-tracking timestamping / J. M., Helary; M., Raynal; G., Melideo; Baldoni, Roberto. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 15:5(2003), pp. 1239-1250. [10.1109/tkde.2003.1232275]

Efficient causality-tracking timestamping

BALDONI, Roberto
2003

Abstract

Vector clocks are the appropriate mechanism used to track causality among the events produced by a distributed computation. Traditional implementations of vector clocks require application messages to piggyback a vector of n integers (where n is the number of processes). This paper investigates the tracking of the causality relation on a subset of events (namely, the events that are defined as "relevant" from the application point of view) in a context where communication channels are not required to be FIFO, and where there is no a priori information on the connectivity of the communication.graph or the communication pattern. More specifically, the paper proposes a suite of simple and efficient implementations of vector clocks that address the reduction of the size of message timestamps, i.e., they do their best to have message timestamps whose size is less than n. The relevance of such a suite of protocols is twofold. From a practical side, it constitutes the core of an adaptive timestamping software layer that can used by underlying applications. From a theoretical side, it provides a comprehensive view that helps better understand distributed causality-tracking mechanisms.
2003
asynchronous distributed computation; causality; message-passing; timestamp; vector clock
01 Pubblicazione su rivista::01a Articolo in rivista
Efficient causality-tracking timestamping / J. M., Helary; M., Raynal; G., Melideo; Baldoni, Roberto. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 15:5(2003), pp. 1239-1250. [10.1109/tkde.2003.1232275]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/251949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact