A recent survey conducted on Vanuatu Island suggests that resistance to Plasmodium falciparum in alpha-thalassemic individuals may have an immunological basis. This study is important since it seems to undermine the current idea that red-cell genetic defects give protection against falciparum malaria by reducing intraerythrocytic growth and development of the parasite. However, the mechanisms underlying these clinical and genetic observations are not yet fully understood. Based on a review of the relevant literature, we first show that the model based on the interaction between hemoglobin (Hb) and membrane components may provide a molecular basis for the involvement of the immune response in genetic adaptation to malaria. Second, we discuss the main evolutionary implications of the model. Finally, we suggest two approaches by which anthropological studies could provide a useful way of testing the model: 1) analysis of the interactions of malaria-resistance genes with genetic polymorphisms which affect the erythrocyte redox status and 2) study of the antimalarial effects of natural products (introduced as a part of a diet or for traditional antimalarial therapy) capable of interfering with the Hb/membrane interaction.

Brief communication: Resistance to Falciparum malaria in alpha-thalassemia, oxidative stress, and hemoglobin oxidation / DESTRO-BISOL, Giovanni; E., D'Aloja; Spedini, Gabriella; R., Scatena; B., Giardina; V. l., Pascali. - In: AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY. - ISSN 0002-9483. - STAMPA. - 109:2(1999), pp. 269-273. [10.1002/(sici)1096-8644(199906)109:2<269::aid-ajpa11>3.0.co;2-#]

Brief communication: Resistance to Falciparum malaria in alpha-thalassemia, oxidative stress, and hemoglobin oxidation.

DESTRO-BISOL, Giovanni;SPEDINI, Gabriella;
1999

Abstract

A recent survey conducted on Vanuatu Island suggests that resistance to Plasmodium falciparum in alpha-thalassemic individuals may have an immunological basis. This study is important since it seems to undermine the current idea that red-cell genetic defects give protection against falciparum malaria by reducing intraerythrocytic growth and development of the parasite. However, the mechanisms underlying these clinical and genetic observations are not yet fully understood. Based on a review of the relevant literature, we first show that the model based on the interaction between hemoglobin (Hb) and membrane components may provide a molecular basis for the involvement of the immune response in genetic adaptation to malaria. Second, we discuss the main evolutionary implications of the model. Finally, we suggest two approaches by which anthropological studies could provide a useful way of testing the model: 1) analysis of the interactions of malaria-resistance genes with genetic polymorphisms which affect the erythrocyte redox status and 2) study of the antimalarial effects of natural products (introduced as a part of a diet or for traditional antimalarial therapy) capable of interfering with the Hb/membrane interaction.
1999
a1-thalassemia; erythrocyte membrane; plasmodium falciparum malaria; hemoglobin oxidation
01 Pubblicazione su rivista::01a Articolo in rivista
Brief communication: Resistance to Falciparum malaria in alpha-thalassemia, oxidative stress, and hemoglobin oxidation / DESTRO-BISOL, Giovanni; E., D'Aloja; Spedini, Gabriella; R., Scatena; B., Giardina; V. l., Pascali. - In: AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY. - ISSN 0002-9483. - STAMPA. - 109:2(1999), pp. 269-273. [10.1002/(sici)1096-8644(199906)109:2<269::aid-ajpa11>3.0.co;2-#]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/243718
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact