It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.

It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.

Topological phases in two-dimensional arrays of parafermionic zero modes / Burrello, M.; van Heck, B.; Cobanera, and E.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 87:19(2013). [10.1103/PhysRevB.87.195422]

Topological phases in two-dimensional arrays of parafermionic zero modes

B. van Heck
Secondo
;
2013

Abstract

It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.
2013
It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.
parafermions; topology; anyons
01 Pubblicazione su rivista::01a Articolo in rivista
Topological phases in two-dimensional arrays of parafermionic zero modes / Burrello, M.; van Heck, B.; Cobanera, and E.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 87:19(2013). [10.1103/PhysRevB.87.195422]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact