Although several observations have been reported in the literature before a strong earthquake, their relation with the forthcoming event is often controversial. Since many physical processes and parameters govern the dynamics of preparation, initiation, and occurrence of earthquakes, their understanding is essential for explaining anomalous seismological, geophysical, hydrological and geodetic signals before a strong earthquake that may be considered for seismic monitoring and hazard assessment. In this work, the interseismic and coseismic stress and strain fields associated with the 6 April 2009, Mw 6.3 L’Aquila earthquake are calculated via a 3D numerical model designed to simulate the crustal interseismic loading and the coseismic brittle episodic dislocation along the fault. The model adopts a framework of gravitational and tectonic forces that are compatible with the geodynamics of the Central Apennines region of the Italian territory. The model assumes a brittle upper crust, where the fault has stick-slip behaviour, and a plastic deeper crust, where the fault is in stationary creep. The results indicate that the concurrent action of gravitational and tectonic forces determines steep inter- seismic stress gradients at the transition between the creeping and locked fault planes that promote the coseismic subsidence of the hanging wall. The interseismic strain above the transition between that locked upper fault and its unlocked lower shear zone develops a dilated volume in the hanging wall and a contracted volume in the footwall. These stress and strain variations are compatible with seismological, geophysical and geodetic anomalies observed before the earthquake, i.e., Vp/Vs anomalies and location of foreshocks. Interseismic stress and strain patterns invert during the coseismic stage. The dilated volume, formed during the interseismic phase, will be contracted at the coseismic stage and, conversely, the footwall volume previously contracted will be expanded.

Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy) / Albano, Matteo; Barba, Salvatore; Bignami, Christian; Carminati, Eugenio; Doglioni, Carlo; Moro, Marco; Stramondo, Salvatore; Saroli, Michele. - In: TECTONOPHYSICS. - ISSN 0040-1951. - 798:798(2021). [10.1016/j.tecto.2020.228685]

Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy)

Albano, Matteo
Primo
;
Bignami, Christian;Carminati, Eugenio;Doglioni, Carlo;Moro, Marco;Saroli, Michele
2021

Abstract

Although several observations have been reported in the literature before a strong earthquake, their relation with the forthcoming event is often controversial. Since many physical processes and parameters govern the dynamics of preparation, initiation, and occurrence of earthquakes, their understanding is essential for explaining anomalous seismological, geophysical, hydrological and geodetic signals before a strong earthquake that may be considered for seismic monitoring and hazard assessment. In this work, the interseismic and coseismic stress and strain fields associated with the 6 April 2009, Mw 6.3 L’Aquila earthquake are calculated via a 3D numerical model designed to simulate the crustal interseismic loading and the coseismic brittle episodic dislocation along the fault. The model adopts a framework of gravitational and tectonic forces that are compatible with the geodynamics of the Central Apennines region of the Italian territory. The model assumes a brittle upper crust, where the fault has stick-slip behaviour, and a plastic deeper crust, where the fault is in stationary creep. The results indicate that the concurrent action of gravitational and tectonic forces determines steep inter- seismic stress gradients at the transition between the creeping and locked fault planes that promote the coseismic subsidence of the hanging wall. The interseismic strain above the transition between that locked upper fault and its unlocked lower shear zone develops a dilated volume in the hanging wall and a contracted volume in the footwall. These stress and strain variations are compatible with seismological, geophysical and geodetic anomalies observed before the earthquake, i.e., Vp/Vs anomalies and location of foreshocks. Interseismic stress and strain patterns invert during the coseismic stage. The dilated volume, formed during the interseismic phase, will be contracted at the coseismic stage and, conversely, the footwall volume previously contracted will be expanded.
2021
earthquakes; normal faults; coseismic subsidence
01 Pubblicazione su rivista::01a Articolo in rivista
Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy) / Albano, Matteo; Barba, Salvatore; Bignami, Christian; Carminati, Eugenio; Doglioni, Carlo; Moro, Marco; Stramondo, Salvatore; Saroli, Michele. - In: TECTONOPHYSICS. - ISSN 0040-1951. - 798:798(2021). [10.1016/j.tecto.2020.228685]
File allegati a questo prodotto
File Dimensione Formato  
Albano_Three-dimensional_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 898.95 kB
Formato Adobe PDF
898.95 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1462986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact