The aim of this work was to investigate how sprouting process may affect the indigenous lactic acid bacteria (LAB) and yeasts of wheat, barley, quinoa, lentil and chickpea flours. LAB and yeasts inhabiting the raw and sprouted flours were described by culture-dependent and -independent approach. Based on community-level catabolic profiles, the sprouting process led to a strong increase of the Shannon's diversity and substrate richness indices. Compared to raw flours, the highest ability to consume carbohydrates, polymers, amines, carboxylic acid and amino acids sources was found for the microbial communities of wheat, chickpea and lentil sprouted flours. Except for LAB detected in quinoa, sprouting process caused significant (P < 0.05) changes in the cell density of LAB and yeasts. Compared to raw flours, all sprouted flours harboured a different microbiome and a higher number of LAB strains. Positive correlations (r > 0.70; FDR < 0.05) were found between cell density of LAB and yeasts with the time of sprouting process and the concentrations of free sugars content in flours. This study demonstrated that the sprouting process of wheat, barley, quinoa, lentil and chickpea grains modifies the microbial metabolic activities and composition of the lactic acid bacteria and yeasts of the resulting flours.

Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours / Perri, G.; Calabrese, F. M.; Rizzello, C. G.; De, Angelis; M., Gobbetti; M., Calasso. - In: LEBENSMITTEL-WISSENSCHAFT + TECHNOLOGIE. - ISSN 0023-6438. - 126:(2020), pp. 1-11. [10.1016/j.lwt.2020.109314]

Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours

Rizzello C. G.;
2020

Abstract

The aim of this work was to investigate how sprouting process may affect the indigenous lactic acid bacteria (LAB) and yeasts of wheat, barley, quinoa, lentil and chickpea flours. LAB and yeasts inhabiting the raw and sprouted flours were described by culture-dependent and -independent approach. Based on community-level catabolic profiles, the sprouting process led to a strong increase of the Shannon's diversity and substrate richness indices. Compared to raw flours, the highest ability to consume carbohydrates, polymers, amines, carboxylic acid and amino acids sources was found for the microbial communities of wheat, chickpea and lentil sprouted flours. Except for LAB detected in quinoa, sprouting process caused significant (P < 0.05) changes in the cell density of LAB and yeasts. Compared to raw flours, all sprouted flours harboured a different microbiome and a higher number of LAB strains. Positive correlations (r > 0.70; FDR < 0.05) were found between cell density of LAB and yeasts with the time of sprouting process and the concentrations of free sugars content in flours. This study demonstrated that the sprouting process of wheat, barley, quinoa, lentil and chickpea grains modifies the microbial metabolic activities and composition of the lactic acid bacteria and yeasts of the resulting flours.
2020
Sprouting process; wheat; barley; quino; lentil; and chickpea flours; lactic acid bacteria; yeasts
01 Pubblicazione su rivista::01a Articolo in rivista
Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours / Perri, G.; Calabrese, F. M.; Rizzello, C. G.; De, Angelis; M., Gobbetti; M., Calasso. - In: LEBENSMITTEL-WISSENSCHAFT + TECHNOLOGIE. - ISSN 0023-6438. - 126:(2020), pp. 1-11. [10.1016/j.lwt.2020.109314]
File allegati a questo prodotto
File Dimensione Formato  
Perri_Sprouting-and-microbiota_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1459880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact