The increasing number of persons following a gluten-free (GF) diet and the need for healthy and natural products are forcing researchers and industries to provide gluten-free products with high nutritional value. Here, a biotechnological approach combining the use of teff flour and type-I sourdough has been proposed to produce GF muffins with nutritional benefits. Teff-sourdough was prepared and propagated following the traditional daily refreshment procedure until the biochemical stability was achieved. The sourdough, dominated by Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Saccharomyces cerevisiae strains, was used to produce muffins at three different levels (up to 15%, wt/wt) of fortification, achieving several positive effects on the nutritional properties of the products. The use of teff flour led to high content of fiber (>3 g/100 g) and proteins (>6 g/100 g) in muffins achieving the nutritional requirements for the healthy claims “source of fiber” and “rich in protein”. Thanks to their metabolic traits, sourdough lactic acid bacteria caused the increase of the total free amino acids (TFAA, up to 1000 mg/kg, final concentration) and phytic acid decrease (50% lower than control), which positively affect the nutritional properties of the products. Besides, high in vitro protein digestibility (IVPD, 79%) and low starch hydrolysis rate (HI, 52%) characterized the fortified muffins. Muffins also presented high in vitro antioxidant (56%) and mold-inhibitory activities, potentially contributing to an extended shelf-life of the products.

Teff type-I sourdough to produce gluten-free muffin / Dingeo, Cinzia; Difonzo, Graziana; Paradiso, Vito Michele; Rizzello, Carlo Giuseppe; Pontonio, Erica. - In: MICROORGANISMS. - ISSN 2076-2607. - 8:8(2020). [10.3390/microorganisms8081149]

Teff type-I sourdough to produce gluten-free muffin

Rizzello, Carlo Giuseppe;
2020

Abstract

The increasing number of persons following a gluten-free (GF) diet and the need for healthy and natural products are forcing researchers and industries to provide gluten-free products with high nutritional value. Here, a biotechnological approach combining the use of teff flour and type-I sourdough has been proposed to produce GF muffins with nutritional benefits. Teff-sourdough was prepared and propagated following the traditional daily refreshment procedure until the biochemical stability was achieved. The sourdough, dominated by Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Saccharomyces cerevisiae strains, was used to produce muffins at three different levels (up to 15%, wt/wt) of fortification, achieving several positive effects on the nutritional properties of the products. The use of teff flour led to high content of fiber (>3 g/100 g) and proteins (>6 g/100 g) in muffins achieving the nutritional requirements for the healthy claims “source of fiber” and “rich in protein”. Thanks to their metabolic traits, sourdough lactic acid bacteria caused the increase of the total free amino acids (TFAA, up to 1000 mg/kg, final concentration) and phytic acid decrease (50% lower than control), which positively affect the nutritional properties of the products. Besides, high in vitro protein digestibility (IVPD, 79%) and low starch hydrolysis rate (HI, 52%) characterized the fortified muffins. Muffins also presented high in vitro antioxidant (56%) and mold-inhibitory activities, potentially contributing to an extended shelf-life of the products.
2020
type-I sourdough; teff; gluten-free; nutritional profile; celiac disease
01 Pubblicazione su rivista::01a Articolo in rivista
Teff type-I sourdough to produce gluten-free muffin / Dingeo, Cinzia; Difonzo, Graziana; Paradiso, Vito Michele; Rizzello, Carlo Giuseppe; Pontonio, Erica. - In: MICROORGANISMS. - ISSN 2076-2607. - 8:8(2020). [10.3390/microorganisms8081149]
File allegati a questo prodotto
File Dimensione Formato  
Dingeo_Teff_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1459151
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact