In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supersymmetric enhancement of exceptional M-geometry. By combining techniques from homotopy theory and from supergeometry to what we call super-exceptional geometry within super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals D’Auria-Fré’s “hidden supergroup” of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) N = (1, 0) M5-branes emerges as the super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the “half ” M5-brane locus, super-exceptionally compactified on the Hořava-Witten circle fiber. From inspection of the resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.

Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5 / Fiorenza, D.; Sati, H.; Schreiber, U.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2020:2(2020). [10.1007/JHEP02(2020)107]

Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5

Fiorenza D.;
2020

Abstract

In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supersymmetric enhancement of exceptional M-geometry. By combining techniques from homotopy theory and from supergeometry to what we call super-exceptional geometry within super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals D’Auria-Fré’s “hidden supergroup” of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) N = (1, 0) M5-branes emerges as the super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the “half ” M5-brane locus, super-exceptionally compactified on the Hořava-Witten circle fiber. From inspection of the resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.
2020
M-Theory; p-branes; superspaces
01 Pubblicazione su rivista::01a Articolo in rivista
Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5 / Fiorenza, D.; Sati, H.; Schreiber, U.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2020:2(2020). [10.1007/JHEP02(2020)107]
File allegati a questo prodotto
File Dimensione Formato  
Fiorenza_Super-exceptional-geometry_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 939.16 kB
Formato Adobe PDF
939.16 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1452099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 11
social impact