Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.

A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions / Clarelli, Fabrizio; Natalini, Roberto. - In: MATHEMATICAL BIOSCIENCES AND ENGINEERING. - ISSN 1547-1063. - 7:2(2010), pp. 277-300. [10.3934/mbe.2010.7.277]

A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions

CLARELLI, FABRIZIO;NATALINI, Roberto
2010

Abstract

Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.
2010
chemotaxis; internal velocity; multidimensional model; mycobacterium tuberculosis; reaction-diffusion-advection
01 Pubblicazione su rivista::01a Articolo in rivista
A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions / Clarelli, Fabrizio; Natalini, Roberto. - In: MATHEMATICAL BIOSCIENCES AND ENGINEERING. - ISSN 1547-1063. - 7:2(2010), pp. 277-300. [10.3934/mbe.2010.7.277]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/14372
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact