The feasibility and design of the CultCube 12U CubeSat hosting a small Environmental Control and Life Support Systems (ECLSS) for the autonomous cultivation of a small plant in orbit is described. The satellite is aimed at running experiments in fruit plants growing for applications in crewed vehicles for long-term missions in space. CultCube is mainly composed of a pressurized vessel, constituting the outer shell of the ECLSS, and by various environmental controls (water, nutrients, air composition and pressure, light, etc.) aimed at maintaining a survivable habitat for the fruit plants to grow. The plant health status and growth performances is monitored using hyperspectral cameras installed within the vessel, able to sense leaves’ chlorophyll content and temperature, and allowing the estimation of plant volume in all its life cycle phases. The paper study case is addressed to the in-orbit experimental cultivation of a dwarf tomato plant (MicroTom), which was modified for enhancing the anti-oxidants production and for growing in stressful environments. While simulated microgravity tests have been passed by the MicroTom plant, the organism behaviour in a real microgravity environment for a full seed-to-seed cycle needs to be tested. The CultCube 12U CubeSat mission presents no particular requirements on the kind of orbit, whereas its minimum significative duration corresponds to one seed-to-seed cycle for the plant, which is 90 days for the paper study case. In the paper, after an introduction on the importance of an autonomous testbed for plant cultivation, in the perspective of the implementation of bioregenerative systems on-board future manned long-term missions, the satellite design and the MicroTom engineered plant for in-orbit growth are described. In addition to the description of the whole set of subsystems, with focus on the payload and its controllers and instrumentation, the system budgets are presented. Finally, the first tests conducted by the authors are briefly reported.

CultCube. Experiments in autonomous in-orbit cultivation on-board a 12-Units CubeSat platform / Marzioli, P.; Gugliermetti, L.; Santoni, F.; Delfini, A.; Piergentili, F.; Nardi, L.; Metelli, G.; Benvenuto, E.; Massa, S.; Bennici, E.. - In: LIFE SCIENCES IN SPACE RESEARCH. - ISSN 2214-5532. - 25:(2020), pp. 42-52. [10.1016/j.lssr.2020.02.005]

CultCube. Experiments in autonomous in-orbit cultivation on-board a 12-Units CubeSat platform

Marzioli P.;Gugliermetti L.;Santoni F.;Delfini A.;Piergentili F.;Benvenuto E.;
2020

Abstract

The feasibility and design of the CultCube 12U CubeSat hosting a small Environmental Control and Life Support Systems (ECLSS) for the autonomous cultivation of a small plant in orbit is described. The satellite is aimed at running experiments in fruit plants growing for applications in crewed vehicles for long-term missions in space. CultCube is mainly composed of a pressurized vessel, constituting the outer shell of the ECLSS, and by various environmental controls (water, nutrients, air composition and pressure, light, etc.) aimed at maintaining a survivable habitat for the fruit plants to grow. The plant health status and growth performances is monitored using hyperspectral cameras installed within the vessel, able to sense leaves’ chlorophyll content and temperature, and allowing the estimation of plant volume in all its life cycle phases. The paper study case is addressed to the in-orbit experimental cultivation of a dwarf tomato plant (MicroTom), which was modified for enhancing the anti-oxidants production and for growing in stressful environments. While simulated microgravity tests have been passed by the MicroTom plant, the organism behaviour in a real microgravity environment for a full seed-to-seed cycle needs to be tested. The CultCube 12U CubeSat mission presents no particular requirements on the kind of orbit, whereas its minimum significative duration corresponds to one seed-to-seed cycle for the plant, which is 90 days for the paper study case. In the paper, after an introduction on the importance of an autonomous testbed for plant cultivation, in the perspective of the implementation of bioregenerative systems on-board future manned long-term missions, the satellite design and the MicroTom engineered plant for in-orbit growth are described. In addition to the description of the whole set of subsystems, with focus on the payload and its controllers and instrumentation, the system budgets are presented. Finally, the first tests conducted by the authors are briefly reported.
2020
bioregenerative systems; CubeSat; environmental control and life support system; in-orbit cultivation; micro-tom
01 Pubblicazione su rivista::01a Articolo in rivista
CultCube. Experiments in autonomous in-orbit cultivation on-board a 12-Units CubeSat platform / Marzioli, P.; Gugliermetti, L.; Santoni, F.; Delfini, A.; Piergentili, F.; Nardi, L.; Metelli, G.; Benvenuto, E.; Massa, S.; Bennici, E.. - In: LIFE SCIENCES IN SPACE RESEARCH. - ISSN 2214-5532. - 25:(2020), pp. 42-52. [10.1016/j.lssr.2020.02.005]
File allegati a questo prodotto
File Dimensione Formato  
Marzioli_CultCube_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1417263
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 8
social impact