Debarre--Voisin HK fourfolds are built from alternating 3-forms on a 10-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville--Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre--Voisin variety is degenerate, in the sense that it is either reducible or has excessive dimension. We show that the Debarre--Voisin varieties specialize, along general 1-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface.
Hilbert squares of K3 surfaces and Debarre-Voisin varieties / Debarre, Olivier; Han, Frédéric; O’Grady, Kieran; Voisin, Claire. - In: JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES. - ISSN 2270-518X. - 7(2020), pp. 653-710. [10.5802/jep.125]
Titolo: | Hilbert squares of K3 surfaces and Debarre-Voisin varieties | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Hilbert squares of K3 surfaces and Debarre-Voisin varieties / Debarre, Olivier; Han, Frédéric; O’Grady, Kieran; Voisin, Claire. - In: JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES. - ISSN 2270-518X. - 7(2020), pp. 653-710. [10.5802/jep.125] | |
Handle: | http://hdl.handle.net/11573/1405393 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Debarre_Hilbert-squares_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Open Access Visualizza/Apri |