We consider a multivariate model with independent marginals as a benchmark for a generic multivariate model where the marginals are not independent. The Penalised Complexity (PC) prior takes natural place in such a context, as we can include in the simpler model an extra-component taking into account for dependence. In this paper, the additional component is represented by the parameter of the Gaussian copula density function. We show that the PC prior for a generic copula parameter can be derived regardless of the parameters of the marginal densities. Then, we propose a hierarchical PC prior for the Gaussian copula model. We also derive the PC prior for the shape parameter of the skew-normal distribution and we use it for Bayesian hypothesis test for skewness. In the last chapter, we propose two ways to extend the univariate PC prior to the multivariate case.
Penalising model complexity / BATTAGLIESE, DIEGO. - (2020 Feb 28).
Titolo: | Penalising model complexity | |
Autore: | ||
Corso di dottorato: | Modelli per l'economia e la finanza | |
Ciclo: | 32 | |
Data di discussione: | 28-feb-2020 | |
Tutor afferenti all'Ateneo: | ||
Coordinatore del corso di dottorato: | ||
Certificato Doctor Europaeus: | No | |
Tesi di Dottorato in Cotutela: | No | |
Nazionalità autore: | ITALIA | |
Settore Scientifico Disciplinare: | Settore SECS-S/01 - Statistica | |
Abstract: | We consider a multivariate model with independent marginals as a benchmark for a generic multivar...iate model where the marginals are not independent. The Penalised Complexity (PC) prior takes natural place in such a context, as we can include in the simpler model an extra-component taking into account for dependence. In this paper, the additional component is represented by the parameter of the Gaussian copula density function. We show that the PC prior for a generic copula parameter can be derived regardless of the parameters of the marginal densities. Then, we propose a hierarchical PC prior for the Gaussian copula model. We also derive the PC prior for the shape parameter of the skew-normal distribution and we use it for Bayesian hypothesis test for skewness. In the last chapter, we propose two ways to extend the univariate PC prior to the multivariate case. | |
Lingua: | Inglese | |
Parole Chiave: | PC prior; copulae; hierarchical PC prior; skew-normal distribution; multivariate PC prior | |
Appartiene alla tipologia: | 07a Tesi di Dottorato |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Tesi_dottorato_Battagliese.pdf | Tesi di dottorato | ![]() | Open Access Visualizza/Apri |