In this paper we address the challenge of land cover classification for satellite images via Deep Learning (DL). Land Cover aims to detect the physical characteristics of the territory and estimate the percentage of land occupied by a certain category of entities: vegetation, residential buildings, industrial areas, forest areas, rivers, lakes, etc. DL is a new paradigm for Big Data analytics and in particular for Computer Vision. The application of DL in images classification for land cover purposes has a great potential owing to the high degree of automation and computing performance. In particular, the invention of Convolution Neural Networks (CNNs) was a fundament for the advancements in this field. In [1], the Satellite Task Team of the UN Global Working Group describes the results achieved so far with respect to the use of earth observation for Official Statistics. However, in that study, CNNs have not yet been explored for automatic classification of imagery. This work investigates the usage of CNNs for the estimation of land cover indicators, providing evidence of the first promising results. In particular, the paper proposes a customized model, called Satellite-Net, able to reach an accuracy level up to 98% on test sets.

Satellite-Net: Automatic Extraction of Land Cover Indicators from Satellite Imagery by Deep Learning / Bernasconi, Eleonora; Pugliese, Francesco; Zardetto, Diego; Scannapieco, Monica. - (2019). (Intervento presentato al convegno New Techniques and Technologies for Statistics 2019 tenutosi a Bruxelles).

Satellite-Net: Automatic Extraction of Land Cover Indicators from Satellite Imagery by Deep Learning

Eleonora Bernasconi
Primo
;
2019

Abstract

In this paper we address the challenge of land cover classification for satellite images via Deep Learning (DL). Land Cover aims to detect the physical characteristics of the territory and estimate the percentage of land occupied by a certain category of entities: vegetation, residential buildings, industrial areas, forest areas, rivers, lakes, etc. DL is a new paradigm for Big Data analytics and in particular for Computer Vision. The application of DL in images classification for land cover purposes has a great potential owing to the high degree of automation and computing performance. In particular, the invention of Convolution Neural Networks (CNNs) was a fundament for the advancements in this field. In [1], the Satellite Task Team of the UN Global Working Group describes the results achieved so far with respect to the use of earth observation for Official Statistics. However, in that study, CNNs have not yet been explored for automatic classification of imagery. This work investigates the usage of CNNs for the estimation of land cover indicators, providing evidence of the first promising results. In particular, the paper proposes a customized model, called Satellite-Net, able to reach an accuracy level up to 98% on test sets.
2019
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1354596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact