In contrast to genetic aberrations, epigenetic aberrations can be reversed by the use of histone acetyltransferase (HAT), histone deacetylase (HDAC), SIRT, or histone methyltransferase (HMT) inhibitors. A well-known HDACi, suberoylanilide hydroxamic acid, has been recently approved for the treatment of cutaneous T cell lymphoma, and a number of HDACi are in clinical trials as anticancer drugs. in addition, HDACi could be useful in antimalarial and antifungal therapies and can reactivate the HIV-1 expression in latent cellular reservoirs, thus suggesting the use in a combination therapy with highly active antiretroviral therapy. HDACi have also been reported to have anti-inflammatory effects through inhibition of cytokines and key transcription factors, and to ameliorate the phenotypes in animal models of neurological disorders. HDACi can also reactivate the gamma-globin gene for the treatment of beta-thalassaemia, and recently were shown to relieve morphological and functional effects of muscular dystrophia. Dysfunction of HAT enzymes is also often associated with several diseases, including cancer; thus, the HATi can represent new chemical entities for the development of new drugs. Only a few HMTi have been described to date, but these small molecules could be a useful scaffold to discovering new highly active and enzyme-selective compounds to develop as therapeutics.

The therapeutic uses of chromatin-modifying agents / Mai, Antonello. - In: EXPERT OPINION ON THERAPEUTIC TARGETS. - ISSN 1472-8222. - 11:6(2007), pp. 835-851. [10.1517/14728222.11.6.835]

The therapeutic uses of chromatin-modifying agents

MAI, Antonello
2007

Abstract

In contrast to genetic aberrations, epigenetic aberrations can be reversed by the use of histone acetyltransferase (HAT), histone deacetylase (HDAC), SIRT, or histone methyltransferase (HMT) inhibitors. A well-known HDACi, suberoylanilide hydroxamic acid, has been recently approved for the treatment of cutaneous T cell lymphoma, and a number of HDACi are in clinical trials as anticancer drugs. in addition, HDACi could be useful in antimalarial and antifungal therapies and can reactivate the HIV-1 expression in latent cellular reservoirs, thus suggesting the use in a combination therapy with highly active antiretroviral therapy. HDACi have also been reported to have anti-inflammatory effects through inhibition of cytokines and key transcription factors, and to ameliorate the phenotypes in animal models of neurological disorders. HDACi can also reactivate the gamma-globin gene for the treatment of beta-thalassaemia, and recently were shown to relieve morphological and functional effects of muscular dystrophia. Dysfunction of HAT enzymes is also often associated with several diseases, including cancer; thus, the HATi can represent new chemical entities for the development of new drugs. Only a few HMTi have been described to date, but these small molecules could be a useful scaffold to discovering new highly active and enzyme-selective compounds to develop as therapeutics.
2007
cancer; chromatin remodelling; epigenetics; histone acetyltransferase; histone deacetylase; histone methyltransferase
01 Pubblicazione su rivista::01a Articolo in rivista
The therapeutic uses of chromatin-modifying agents / Mai, Antonello. - In: EXPERT OPINION ON THERAPEUTIC TARGETS. - ISSN 1472-8222. - 11:6(2007), pp. 835-851. [10.1517/14728222.11.6.835]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/13081
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 50
social impact