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We prove the uniqueness of a solution for a problem whose simplest model is

−∆u +
k

u
|Du|2 = f(x) in Ω,

u = 0 on ∂Ω,

⎫⎬
⎭ (∗)

with k � 1, 0 � f ∈ L∞(Ω) and Ω is a bounded domain of RN , N � 2. So far,
uniqueness results are known for k < 1, while existence holds for any k � 1 and f
positive in open sets compactly embedded in a neighbourhood of the boundary. We
extend the uniqueness results to the k � 1 case and show, with an example, that
existence does not hold if f is zero near the boundary. We even deal with the
uniqueness result when f is replaced by a nonlinear term λuq with 0 < q < 1 and
λ > 0.
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1. Introduction

Let Ω be a smooth bounded domain of RN and 0 � f ∈ Lq(Ω), with q > 1
2N ,

N � 2. We consider the boundary-value problem

−∆u + g(u)|Du|2 = f(x) in Ω,

u = 0 on ∂Ω,

}
(1.1)

where the function g : (0, +∞) → [0, +∞) is unbounded at zero. Actually, this kind
of singular elliptic equations with gradient terms is a classical problem. For the
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984 J. Carmona and T. Leonori

existence of a solution 0 < u ∈ H1
0 (Ω) ∩ L∞(Ω) two thresholds appear naturally:

the first one relies on an integrability condition on exp(−
∫ s

1 g(t) dt) as s ∼ 0,
i.e. whether or not

exp
(

−
∫ s

1
g(t) dt

)
∈ L1(0, 1) (1.2)

is satisfied. Under this first threshold, a solution u ∈ H1
0 (Ω) for (1.1) exists even

in a more general context (say, with a nonlinear differential operator instead of the
Laplacian) and with a non-negative non-trivial datum f ∈ L2N/(N+2)(Ω) on the
right-hand side (see, for example, [4]).

To prove the existence of a solution relaxing the growth condition on g at 0 and
overcoming the first threshold, i.e. when condition (1.2) is not satisfied, the datum
f(x) cannot degenerate to 0 inside Ω. More precisely, f has to satisfy

f(x) � cω > 0, ∀ω ⊂⊂ Ω. (1.3)

Then, a second natural threshold arises:∫ 1

0

√
g(s) ds < +∞. (1.4)

In [2] it is proved that the existence of a solution holds if (1.3) and (1.4) are satisfied.
Otherwise (see [2, 9]) non-existence of H1

0 (Ω) solutions occurs. In fact, as shown
in [5], condition (1.3) is only needed in a neighbourhood of the boundary, i.e. it can
be replaced by

f(x) � cω > 0 for any ω ⊂ Ωδ, (1.5)

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} for some δ > 0.
In [6] lower-order terms of the form g(u)|Du|χ{u>0} were considered, and solu-

tions that can be zero on a closed ‘large’ set were obtained, even for g negative.
Solutions that change sign in the interior of Ω if g is negative and f changes sign
were also obtained in [7].

As far as the uniqueness of solutions for (1.1) is concerned, the only known
results about singular gradient terms that cover the case in which (1.2) is satisfied
rely on [1,3]. To the best of our knowledge, it is unknown whether it is possible to
go beyond the first threshold by proving the uniqueness of the solution.

The aim of this paper is to give a method of comparing a subsolution and a
supersolution for (1.1) when we are beyond the threshold (1.2). The main difficulty
with such a problem is the lack of a Hopf lemma due to the presence of the singular
gradient term. Here we prove (via a suitable comparison with sub- and supersolu-
tions) that solutions behave at the boundary as a suitable power of the distance
to the boundary. This forces us to give a more accurate estimate of solutions near
∂Ω, which removes the singularity of the lower-order term.

The paper is organized as follows. Section 2 is devoted to proving a uniqueness
result for smooth solutions of (1.1) in the case where condition (1.2) is not satisfied.
We also assume (1.5), which, as mentioned above, is needed to prove existence
results if (1.2) fails. In § 3, we prove with a counterexample that this condition is
in some sense necessary for the existence.
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A uniqueness result for a singular elliptic equation with gradient term 985

2. Comparison principle and uniqueness

In this section we prove a comparison principle for problem (1.1) in the case in
which g : (0, +∞) → [0, +∞) is a continuous function, singular at 0, such that
g(s) � k/s, k � 1. More precisely, we assume that the function g satisfies the
following hypothesis:

∃a0 > 0 and κ � 1: max{κ − 1, 1} � g(s)s � κ, s ∈ (0, a0). (2.1)

Observe that, without loss of generality, we may assume that κ > 1. Moreover, the
above hypothesis implies that

e−G(s) 
∈ L1(0, a0), where G(s) =
∫ s

a0

g(t) dt.

As far as the right-hand side of (1.1) is concerned, we assume that f : Ω → [0, +∞)
verifies f ∈ L1

loc(Ω) and

∃δ > 0, ∃0 < α � β, r � 0: αϕr
1(x) � f(x) � βϕr

1(x) in Ωδ, (2.2)

where ϕ1 is a positive eigenfunction corresponding to the first eigenvalue associated
with −∆ in Ω with homogeneous Dirichlet boundary conditions. We point out that
(2.2) implies, at least in the neighbourhood of the boundary of the form

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ},

for some δ > 0, the function f satisfies (1.5).
In the following, given Ω, a bounded open set of RN with N � 2, we denote by

H1
c (Ω) the space of functions that belong to H1

0 (Ω) with compact support in Ω.
First, we recall the meaning that we give to a subsolution and a supersolution of
the singular equation

−∆u + g(u)|Du|2 = f(x) in Ω. (2.3)

Definition 2.1. Assume that f ∈ L1
loc(Ω). Then, we say that

(i) u ∈ H1(Ω) ∩ C0(Ω̄) is a subsolution to (2.3) if u > 0 and∫
Ω

Du · Dφ +
∫

Ω

g(u)|Du|2φ �
∫

Ω

f(x)φ, ∀φ ∈ H1
c (Ω) ∩ L∞(Ω), φ � 0,

(2.4)

(ii) v ∈ H1(Ω) ∩ C0(Ω̄) is a supersolution to (2.3) if v > 0 and∫
Ω

Dv · Dφ +
∫

Ω

g(v)|Dv|2φ �
∫

Ω

f(x)φ, ∀φ ∈ H1
c (Ω) ∩ L∞(Ω), φ � 0,

(2.5)

(iii) z ∈ H1
0 (Ω) ∩ C0(Ω̄) is a solution to (1.1) if it is both a subsolution and a

supersolution to (2.3).

Remark 2.2. We stress that the definition of the solution (as well as those of
the sub- and supersolution) requires that it belongs to C0(Ω̄), which seems to be a
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986 J. Carmona and T. Leonori

restrictive assumption. As explained in [2, remark 2.6], because solutions of (1.1) are
subsolutions of the Dirichlet problem associated with −∆u = f in Ω, following [8],
we deduce that if f ∈ Lm(Ω) with m > 1

2N , then u is also continuous in Ω̄.

The main result we want to prove is the following.

Theorem 2.3. Under the assumptions (2.1) and (2.2), there exists a unique posi-
tive H1

0 (Ω) ∩ C0(Ω̄) solution to (1.1).

This is the direct consequence of a comparison result between super- and subso-
lutions to (2.3) with suitable boundary behaviour. In fact, our main effort will be
to prove that any sub- or supersolution has the same behaviour at ∂Ω.

Thus, we begin by defining some auxiliary functions and collecting together their
main properties. We have already defined the function G(s) =

∫ s

a0
g(t) dt for some

a0 > 0. Let us also consider the function ψ(s) defined by

ψ(s) =
∫ s

a0

e−G(t) dt, s > 0. (2.6)

Observe that ψ(s) is an increasing function and, assuming (2.1),

ψ0 ≡ lim
s→0+

ψ(s) = −
∫ a0

0
e−G(t) dt = −∞

and

ψ∞ ≡ lim
s→+∞

ψ(s) =
∫ +∞

a0

e−G(t) dt > 0,

with ψ∞ possibly being infinite.
We next define a third function, with two parameters: for any a, b > 0 we define

ϕa,b(s) (or ϕ for brevity) as the solution of the following Cauchy problem:

ϕ′′(s) = [g(ϕ(s))ϕ′(s) − g(s)]ϕ′(s), s ∈ (0, a0),
ϕ(a0) = a, ϕ′(a0) = b.

}
(2.7)

Observe that ϕ solves

ϕ′(s) = beG(ϕ(s))−G(s)−G(a) in (0, a0).

Thus, we have that

ϕ′(s)e−G(ϕ(s)) = be−G(s)−G(a) in (0, a0),

and so, integrating the above identity between a0 and s, we deduce that

ψ(ϕ(s)) − ψ(ϕ(a0)) =
∫ ϕ(s)

ϕ(a0)
e−G(t) dt = be−G(a)

∫ s

a0

e−G(t) dt = be−G(a)ψ(s),

i.e.
ψ(ϕ(s)) = ψ(a) + be−G(a)ψ(s). (2.8)

In the following lemma we list some useful properties of function ϕ when condition
(2.1) is satisfied.
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A uniqueness result for a singular elliptic equation with gradient term 987

Lemma 2.4. Under the hypothesis (2.1), the function ϕ defined in (2.7) satisfies
the following:

(i) ϕ(s) is well defined for every s ∈ (0, a0);

(ii) lims→0+ ϕ(s) = 0;

(iii) ϕ ∈ C2(0, a0) and ϕ′′(s) = (g(ϕ(s))ϕ′(s) − g(s))ϕ′(s) for every s ∈ (0, a0);

(iv) if a < a0 and be−G(a) � 1, then 0 < ϕ(s) � s for every s ∈ (0, a0) and ϕ′ is
positive and bounded;

(v) if be−G(a) � (1 + ε)κ−1 and a � a0/(1 + ε) for some ε > 0, then 0 < (1 +
ε)ϕ(s) � s for every s ∈ (0, a0);

(vi) if be−G(a) = (1 + ε)κ−1 and a = a0/(1 + ε), then ϕ′(s) � 1 for every s ∈
(0, a0).

Proof. Items (i)–(iii) are straightforward. In order to prove item (iv) we observe
that

ψ(a) + be−G(a)ψ(s) � ψ(s), s ∈ (0, a0).

Thus, since ψ−1 is increasing, we deduce that ϕ(s) � s. Taking into account that
ϕ′(s) = be−G(a)eG(ϕ(s))−G(s), we deduce also that ϕ′ is positive and bounded.

Now we prove item (v). This is deduced from the inequality

ψ(a) + be−G(a)ψ(s) � ψ

(
1

1 + ε
s

)
, s ∈ (0, a0).

Indeed, the function

h(s) = ψ(a) + be−G(a)ψ(s) − ψ

(
1

1 + ε
s

)
is increasing since

eG(s)h′(s) = be−G(a) − 1
1 + ε

exp
(

G(s) − G

(
s

1 + ε

))
.

Observe that if g(s)s � κ, then

G(s) − G

(
s

1 + ε

)
=

∫ s

s/(1+ε)
g(t) dt � ln(1 + ε)κ.

In particular,
eG(s)h′(s) � be−G(a) − (1 + ε)κ−1 � 0.

Thus,

h(s) � h(a0) = ψ(a) − ψ

(
a0

1 + ε

)
� 0, s ∈ (0, a0).
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Finally, item (vi) is deduced since g(s)s � κ − 1 implies that

ϕ′(s) = (1 + ε)κ−1eG(ϕ(s))−G(s)

� (1 + ε)κ−1 exp
(

G

(
s

1 + ε

)
− G(s)

)
� (1 + ε)κ−1e−(κ−1) ln(1+ε)

= 1.

Remark 2.5. Let us explicitly compute the functions introduced in (2.6) and (2.7)
when g(s) = k/s, with k � 1: our model case (see (∗)). We have that

ψ(s) =
ak
0

k − 1
(a1−k

0 − s1−k)

and

ϕ(s) =
(

b

(
a0

a

)k

(s1−k − a1−k
0 ) + a1−k

)−1/(k−1)

if k > 1, while

ψ(s) = a0 log
(

s

a0

)
and ϕ(s) = a

(
s

a0

)ba0/a

if k = 1.

Now we are ready to prove the following comparison result between sub- and
supersolutions of (2.3) that have a comparable behaviour on ∂Ω. We define d(x) =
dist(x, ∂Ω).

Theorem 2.6. Let u and v respectively be a subsolution and a supersolution of (2.3)
with g satisfying (2.1) and f ∈ L1(Ω), f � 0. Suppose that

lim inf
d(x)→0

v(x)
u(x)

� 1. (2.9)

Then u � v in Ω.

Remark 2.7. Although the main interest of the previous theorem, due to the sin-
gularity, is when u = v = 0 on ∂Ω, we observe that the above result does not
depend on the fact that u and v vanish on ∂Ω.

Proof. First, we fix a0 > ‖u‖L∞(Ω) and for any ε > 0 we denote by ϕε the function
ϕa,b with a = a0/(1 + ε) and be−G(a) = (1 + ε)κ−1. Recall that, under assumption
(2.1) we have that

ϕε(a0) =
a0

1 + ε
, ϕ′

ε(a0)e−G(ϕε(a0)) = (1 + ε)κ−1

and

ϕε(s) = ψ−1
(

ψ

(
a0

1 + ε

)
+ (1 + ε)κ−1ψ(s)

)
. (2.10)
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We claim that the function uε = ϕε(u) is still a subsolution of (2.3) satisfying

lim inf
d(x)→0

u

uε
� (1 + ε). (2.11)

Indeed, using lemma 2.4, we have that uε = ϕε(u) ∈ H1(Ω) ∩ C0(Ω̄), uε > 0.
This verifies

− ∆uε + g(uε)|Duε|2 − f(x)

� −f(x)[1 − ϕ′
ε(u)] + |Du|2[−g(u)ϕ′

ε(u) − ϕ′′
ε (u) + g(ϕε(u))ϕ′2

ε(u)]
= −f(x)[1 − ϕ′

ε(u)]. (2.12)

Using the fact that ϕ′
ε(u) � 1 we deduce that the right-hand side in (2.12) is

nonpositive, and consequently uε is a subsolution.
The second part of the statement is deduced from lemma 2.4(v). Indeed, since

(1 + ε)ϕε(u) � u, we have

lim inf
d(x)→0

u

ϕε(u)
� (1 + ε), (2.13)

and the claim is proved.
Combining (2.9) with (2.11) we deduce that

lim inf
d→0

v

uε
= lim inf

d→0

v

u

u

uε
� (1 + ε) lim inf

d→0

v

u
> 1,

and consequently there exists Ωε ⊂ Ω such that uε − v � 0 in Ωε.
Thus, with ψ defined in (2.6), we have that [ψ(uε) − ψ(v)]+ is supported in Ω \

Ωε. This implies that the function φ = e−G(uε)[ψ(uε) − ψ(v)]+ belongs to H1
c (Ω)∩

L∞(Ω) and it can be taken as test function in the formulation of uε, so that∫
Ω

Dψ(uε) · D[ψ(uε) − ψ(v)]+ �
∫

Ω

f(x)e−G(uε)[ψ(uε) − ψ(v)]+. (2.14)

Analogously, for the supersolution, we take e−G(v)[ψ(uε) − ψ(v)]+ as test function,
and we have that∫

Ω

Dψ(v) · D[ψ(uε) − ψ(v)]+ �
∫

Ω

f(x)e−G(v)[ψ(uε) − ψ(v)]+. (2.15)

Thus, subtracting the two inequalities, we deduce that∫
Ω

|D[ψ(uε) − ψ(v)]+|2 �
∫

Ω

f(x)[ψ′(uε) − ψ′(v)][ψ(uε) − ψ(v)]+ � 0,

and consequently uε � v also in Ω \Ωε for all ε > 0. Letting ε vanish, we have that
u � v in Ω.

Remark 2.8. Let us stress that we are left with the case k = 1 in (∗). In this case
it is not so hard to prove that ϕε(s) is replaced by s1+ε, i.e. if u is a subsolution,
then uε = u1+ε is still a subsolution.
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Indeed, assume that ‖u‖L∞(Ω) � a < 1 (otherwise we can reduce to this case after
a rescaling of the equation), and define uε = u1+ε for ε > 0. Hence,

−∆uε +
1
uε

|Duε|2 − f(x) � −f(x)[1 − (1 + ε)uε] � 0,

i.e. uε is a subsolution. Moreover, if u = 0 on ∂Ω, we observe that

lim inf
d(x)→0

u

uε
= +∞. (2.16)

The next step in order to prove the uniqueness of the solution of (1.1) is to
prove that if f satisfies (2.2), all the solutions have a boundary behaviour compa-
rable with ϕ2+r

1 , where, as mentioned in § 1, ϕ1 denotes a positive eigenfunction
corresponding to the first eigenvalue associated with −∆ in Ω with homogeneous
Dirichlet boundary conditions. We recall the following result concerning ϕ1.

Lemma 2.9. Let γ > 0. Then there exists 0 < γ1 � γ2 < +∞ such that

γ1 � ϕ2
1 + γ|Dϕ1|2 � γ2 in Ω.

Proof. The second inequality is trivial, since we can choose

γ2 = ‖ϕ1‖2
L∞(Ω) + γ‖Dϕ1‖2

L∞(Ω).

For the other one, we argue by contradiction. Assume that infΩ ϕ2
1 + γ|Dϕ1|2 = 0.

As ϕ2
1 + γ|Dϕ1|2 is smooth in Ω̄, its minimum is equal to zero. In addition, the

minimum point cannot lie in the interior of Ω, since ϕ1 > 0 there. On the other
hand, on ∂Ω we have (via the Hopf lemma) that ∂ϕ1/∂ν|∂Ω < 0, and consequently
|Dϕ1|2 > 0 on ∂Ω.

Let us now state our boundary behaviour result.

Theorem 2.10. Let u be any solution to (1.1) with g and f satisfying (2.1) and
(2.2), respectively. Then there exist M, η > 0 depending only on Ω and r � 0, such
that

η � u

ϕr+2
1

� M in Ωδ.

Proof. The idea is to exploit the comparison principle in theorem 2.6.
First, consider the following supersolution of (2.3) in Ωδ: v̄ε = M(ε + ϕ1)r+2 for

some M > 0 and ε > 0. Using the fact that f satisfies (2.2), direct computations
show that it turns out to be a supersolution when M is chosen sufficiently large,
uniformly with respect to ε. Moreover, since, for any ε > 0, v̄ε = Mεr+2 on ∂Ω, we
have, for any solution u of (1.1),

lim inf
d(x)→0

vε

u
= +∞, lim inf

d(x)→δ

vε

u
� M max

d(x)=δ

(ϕ1(x))r+2

u(x)
> 1.

Thus, thanks to theorem 2.6, v̄ε � u in Ωδ. Letting ε go to 0, we deduce that
u � Mϕr+2

1 in Ωδ.
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Now, we consider Ωρ
δ = {x ∈ Ω : ρ < d(x) < δ} for any 0 < ρ < δ, and observe

that u is a supersolution of the problem

−∆z + g(z)|Dz|2 = f(x) in Ωρ
δ ,

z = 0 on d(x) = ρ,

z = u on d(x) = δ,

⎫⎪⎬
⎪⎭ (2.17)

We denote by ϕ1,ρ the first positive eigenfunction, with ‖ϕ1,ρ‖L∞(Ω) = 1, associated
with −∆ in Ωρ = {x ∈ Ω : ρ < d(x)} with zero Dirichlet boundary conditions,
extended to 0 in Ω \ Ωρ, and denote by λ1,ρ its corresponding eigenvalue. Observe
that ϕ1,ρ → ϕ1 in C0(Ω̄) ∩ C1

loc(Ω), due to the linearity of the problem and since
both ϕ1 and ϕ1,ρ are normalized in L∞ to 1. Moreover, λ1,ρ → λ1 as ρ → 0.

We can choose η > 0 independent on ρ such that the function uρ = ηϕr+2
1,ρ is a

subsolution of (2.17) for every ρ ∈ [0, δ0] for some δ0 ∈ (ρ, δ). Indeed, note that

−∆uρ + g(uρ)|Duρ|2 − f(x) � 2ηλ1,ρϕ
q
1,ρ

[
ϕ2

1,ρ +
2κ − 1
λ1,ρ

|Dϕ1,ρ|2
]

− αϕr
1,ρ in Ωρ

δ ,

so that uρ is a subsolution of (2.17) if

0 < η � min
{

α

2λ1,ρc1
, inf
d(x)=δ

u(x)
}

where

c1 = max
ρ∈[0,δ]

max
x∈Ωρ

[
ϕ2

1,ρ +
2κ − 1
λ1,ρ

|Dϕ1,ρ|2
]

(see lemma 2.9).
Observe that 0 < c1 < ∞, since ϕ1,ρ → ϕ1 in C0(Ω̄) ∩ C1

loc(Ω).
Now, applying theorem 2.6, we deduce that uρ � u in Ωρ

δ , as in this case
lim infdρ→0(u/uρ) = +∞.

Thus, letting ρ vanish, we obtain

ηϕr+2
1 = u0 = lim

ρ→0
ηϕr+2

1,ρ � u in Ωδ.

Now we are ready to prove a uniqueness result for solutions of (1.1).

Proof of theorem 2.3. Assume problem (1.1) has two solutions, u and v. According
to theorem 2.10,

0 <
η

M
� u

v
� M

η
in Ωδ.

Fix any ε > 0, and consider the function

ϕε(s) = ψ−1
(

ψ

(
a0

1 + ε

)
+ (1 + ε)κ−1ψ(s)

)
for some a0 > ‖u‖L∞(Ω), ‖v‖L∞(Ω) and with ψ as in (2.6). Also, define, for any
m ∈ N,

uε = ϕ[m]
ε (u), where ϕ[m]

ε (s) = ϕε ◦ ϕε ◦ · · · ◦ ϕε︸ ︷︷ ︸
m times

(u).
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First, observe that, given any subsolution u ∈ H1
0 (Ω)∩C0(Ω̄) of (1.1), by induction

any ϕ
[m]
ε (u), with m ∈ N is still an H1

0 (Ω) ∩ C0(Ω̄) subsolution. Moreover, ϕ
[m]
ε (u)

also satisfies
lim inf

d(x)→0+

v

uε
� (1 + ε)m lim inf

d(x)→0+

v

u
� η

M
(1 + ε)m;

note that m can be chosen (depending only on η and M) such that the right-hand
side above is strictly bigger than 1. We can now apply theorem 2.6 and we have
that uε � v; letting ε vanish, we deduce that u � v. By exchanging the roles of u
and v, we get the reverse inequality.

In particular, we have the following corollary.

Corollary 2.11. There exists a unique positive H1(Ω) ∩ C0(Ω̄) solution to

−∆u +
k

u
|Du|2 = f in Ω,

u = 0 on ∂Ω,

with k � 1 and f as in (2.2).

With the same technique we can prove uniqueness if we replace the right-hand
side by a power nonlinearity. More specifically, we want to prove the following result.

Theorem 2.12. Assume that u, v ∈ H1
0 (Ω) ∩ C0(Ω̄) are two solutions of

−∆z + g(z)|Dz|2 = a(x)zq in Ω,

z = 0 on ∂Ω,

}
(2.18)

with q ∈ (0, 1) and 0 < a1 � a(x) � a2 and g as in (2.1). Then u ≡ v in Ω.

Proof. We reproduce the proofs of theorems 2.3 and 2.10.
We first want to argue as in theorem 2.6 in order to deduce that any pair of

sub- and supersolutions (in the sense of definition 2.1 with f(x) replaced by a(x)uq

in (2.4) and by a(x)vq in (2.5)), which are comparable on ∂Ω (i.e. such that (2.9)
holds), are ordered in Ω. Hence, it is not difficult to see that, given any subsolution
u, using lemma 2.4(iv)–(vi), ϕε(u) is still a subsolution for every ε > 0, where (2.13)
holds. Hence, we deduce the comparison near ∂Ω.

Moreover, once again by lemma 2.4(vi), we can argue as in (2.14) and (2.15) that
the comparison still holds in the interior.

Thus, given any sub- and supersolutions, we want to prove that necessarily (2.9)
holds. To do this, we just find a suitable couple of sub- and supersolutions that
behave in a comparable way on ∂Ω. Observe that, using the regularity properties
of ϕ1, one can prove that

∃0 < α � β : 0 < α � 2λ1

1 − q
ϕ2

1 +
2

1 − q
|Dϕ1|2 � β. (2.19)

We set ū = M(ε + ϕ1)2/(1−q) with M > 0 (to be chosen) and ε > 0, so that

−∆ū +
1
ū

|Dū|2 − a(x)ūq � Mϕ
2q/(1−q)
1

[
2λ1

1 − q
ϕ2

1 +
2

1 − q
|Dϕ1|2 − a2M

q−1
]

in Ω.
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Since q − 1 < 0, it is sufficient to choose M � (α/a2)1/(q−1) and ū turns out to be
a supersolution to (2.18). Moreover, ū = Mε2/(1−q) > 0 on ∂Ω.

Arguing as in theorem 2.10, we can also construct, in a neighbourhood of the
boundary, a subsolution that behaves like u = ηϕ

2/(1−q)
1 , with η > 0 and η �

(α/a1)1/(q−1).
We can now repeat the same proof for theorem 2.3 to prove uniqueness.

3. A counterexample

In order to obtain the existence of the solution, we prove here that condition (1.5)
cannot be relaxed, at least in dimension 1, if e−G(s) is not integrable at zero. This
is a consequence of the following result.

Theorem 3.1. Assume that f ∈ C(0, 1), f(x) � 0, f 
≡ 0 and f(x) ≡ 0 if x ∈ (0, ε)
for some ε ∈ (0, 1). There is no positive solution u ∈ H1

0 (0, 1) of the problem

−u′′(x) +
k

u(x)
u′2(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

Proof. We argue by contradiction, assuming that such a solution exists. Then

−u′′(x) +
k

u(x)
u′(x)2 = 0, x ∈ (0, ε) for some ε > 0.

We recall first that a solution has to be positive in (0, 1), and moreover that H1(0, 1)
is embedded in AC(0, 1). Consequently, we deduce that u(x) ∈ W 2,1(0, 1), which
implies that u′ ∈ AC and thus, by using the above equation once again, that
u ∈ C2(0, 1).

In particular, u is a convex function in (0, ε). Then u′ is non-decreasing in this
interval, which ensures the existence of u′(0). Moreover, u′(0) � 0, since otherwise
u would be negative in a (right) neighbourhood of 0 (since u(0) = 0). If u′(t) = 0
for some t ∈ (0, ε), then u′(x) ≡ 0 for every x ∈ (0, t), which implies that u(x) =
u(0) = 0 for every x ∈ (0, t), contradicting the condition that u > 0. Thus, we may
assume that u′(x) > 0 for every x ∈ [0, ε).

Multiplying the equation by 1/u′(x) we have

k(lnu(x))′ = k
u′(x)
u(x)

=
u′′(x)
u′(x)

= (lnu′(x))′, x ∈ (0, ε),

or, equivalently, for some positive constant c > 0, u′(x)/uk(x) = c for every x ∈
(0, ε).

If k = 1, this implies that there exists a positive constant A > 0 such that
u(x) = Aecx for every x ∈ (0, ε). Thus, the claim follows since the condition u(0) = 0
is violated.

Otherwise, if k > 1, we integrate the differential identity u′(x)/uk(x) = c, and
we deduce that

1
1 − k

u1−k(x) = cx + c1 c > 0, c1 ∈ R,

which is not compatible with the initial condition u(0) = 0.
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