
Preemptive Software Transactional Memory

Emiliano Silvestri, Simone Economo, Pierangelo Di Sanzo, Alessandro Pellegrini, Francesco Quaglia
DIAG–Sapienza Università di Roma, Italy

Abstract—In state-of-the-art Software Transactional Mem-
ory (STM) systems, threads carry out the execution of trans-
actions as non-interruptible tasks. Hence, a thread can react
to the injection of a higher priority transactional task and
take care of its processing only at the end of the currently
executed transaction. In this article we pursue a paradigm
shift where the execution of an in-memory transaction is
carried out as a preemptable task, so that a thread can start
processing a higher priority transactional task before finalizing
its current transaction. We achieve this goal in an application-
transparent manner, by only relying on Operating System
facilities we include in our preemptive STM architecture. With
our approach we are able to re-evaluate CPU assignment
across transactions along a same thread every few tens of
microseconds. This is mandatory for an effective priority-aware
architecture given the typically finer-grain nature of in-memory
transactions compared to their counterpart in database sys-
tems. We integrated our preemptive STM architecture with
the TinySTM package, and released it as open source. We
also provide the results of an experimental assessment of our
proposal based on running a port of the TPC-C benchmark to
the STM environment.

I. INTRODUCTION

Transactional Memory (TM) is the raising paradigm for
the management of shared-data accesses on multi-core ma-
chines. It allows programmers to mark code blocks as
transactions, which are then handled, in terms of actual
memory operations, by some underlying TM layer. The latter
is in charge of guaranteeing isolation and atomicity while
executing those code blocks, i.e., all or nothing execution
semantic. This allows achieving similar or better level of
performance than fine-grain hand-made locking. Anyhow,
TM jointly guarantees much higher transparency to the
programmer since she is fully relieved from the burden of
hand-coding the synchronization logic.

Nowadays various TM implementations exist, including
the ones natively embedded in modern processors via spe-
cific hardware support, the so-called Hardware-TM (HTM)
[1]. However, the most diffused implementations are still
based on software support, known as Software-TM (STM)
[18]. These provide the advantages of not requiring any
specific hardware technology. Further they bypass several
important limitations of current HTM implementations, such
as the impossibility to commit a transaction that undergoes a
user/kernel mode switch or whose write set exceeds the size

of the L1 cache1. However, despite the offered advantages,
STM environments are still doomed to improvements, par-
ticularly for what concerns the management of differentiated
transaction priority levels.

The difficulty in handling multiple priority levels in STM
systems comes out since it is generally not convenient to
run TM applications with a number of threads exceeding
the number of available CPU-cores, mostly because they
show a CPU-bound execution profile. In fact, in-memory
transactions make scarce usage of blocking Operating Sys-
tem services, like I/O system calls. Therefore, the dynamic
spawning of a new thread as a reaction to the arrival of some
high priority request to run an in-memory transaction might
be inviable, both because of the overhead for the spawn
operation and because it would lead to the scenario where
multiple threads compete for CPU-usage, which has been
shown to be likely adverse to TM applications [10] (2). On
the other hand, resorting to a static pool of threads for pro-
cessing higher priority requests, each one bound to a given
CPU-core, might give rise to CPU under-utilization along
execution phases not showing the presence of higher priority
requests. Consequently, in their common implementations,
TM systems simply delay the processing of an incoming
high priority request up to the point in time where some
thread ends its last started transaction and runs the routine
in charge of verifying the presence of the new request.

We note that, even if a signaling mechanism were used
to notify the materialization of a new request, such as
Posix user-defined signals, the timeliness of the signal
delivery to the destination thread would be still bound to
the conventional Operating System timer-interrupt interval,
thus resulting not fully adequate for promptly dispatching
high priority transactional requests. This aspect is also linked
to the finer-grain nature of TM transactions (compared to
their counterpart in database systems), which is originated,
among other, from the absence of I/O interactions along the

1Off-the-shelf HTM implementations keep the write set of the transaction
temporarily buffered at the cache level, and flush it to lower levels in
the memory hierarchy only upon a successful commit. On the other hand,
transactional updates are squashed if an interrupt is received by the CPU-
core running the transactional code block, which gives rise to the abort of
the transaction.

2Assigning higher CPU scheduling priority at the Operating System
level to threads running higher priority transactions would be a means
to alleviate such a problem, but not a definitive solution for managing
thread competition for CPU usage. Also, it might lead to starvation of
lower priority transactions uncontrollable by the STM layer.

in-memory transaction lifetime. In more detail, a conven-
tional timer-interrupt interval (typically ranging from 1 to 4
milliseconds on most Operating System configurations, such
as Linux ones) would still delay too much the activation of
the signal handler able to detect the presence of the standing
high priority transactional request.

In this article we cope with the above problem by
presenting the design and implementation of a preemptive
STM environment to be run on top of Linux/x86 systems.
In our software architecture we exploit an ad-hoc timer
management Linux module, originally presented in [14],
which allows for fine-grain periodical control flow varia-
tions along any running thread with no intervention by the
chain of kernel-level mechanisms used for supporting Posix
signals, hence leading to minimal run-time overhead. In our
architecture, this module is exploited to make a thread that
has already dispatched a low priority in-memory transaction
promptly switch to the execution of some standing higher
priority one.

Our solution is also based on a fully new management
scheme of differentiated execution contexts within the STM
layer so that the transaction context-switched off the CPU
is not aborted. Rather it will be eventually resumed so
that its outcome will be only determined by possible data
conflicts, as typical of the STM paradigm. Overall, in our
approach we promptly nest the execution of the higher
priority transaction along an already active thread, with
no need for additional threads, thus preventing at all the
aforementioned problems related to CPU competition by
multiple threads in TM systems. Additionally, we avoid CPU
under-utilization that would be caused by statically destining
specific threads to process higher priority requests, given
that in our architecture each threads can be in charge of
processing whichever in-memory transaction at any time
instant (either a new standing one with higher priority or
a previously context-switched one).

Great attention in our design is put on the data structures
and logic for carrying out the preemption mechanism. This
enables us to provide a preemptive STM architecture with
minimal overhead at the side of both kernel (via the afore-
mentioned lightweight timer-interrupt handling) and user
space software.

Our proposal does not create any bias in terms of CPU
assignment across threads (including kernel-level threads)
running on top of the Linux system. In fact, the fine-grain
timer-interrupt mechanism we adopt for threads running
the STM application does not alter the original Operating
System planning in terms of overall CPU time to be assigned
to the different threads. It only allows an original tick
destined to those threads to be partitioned into subintervals,
at whose end a control flow variation leading control to a
higher priority transaction, if any, may occur. This prevents
impairing fairness when running our preemptive STM sys-
tem on top of a multi-user conventional platform.

We have integrated our implementation with the open
source TinySTM package [11] and released it as open source
as well. In this article we also report the results of an
experimental assessment of our proposal based on a port
of the TPC-C benchmark to STM.

The remainder of this article is structured as follows. In
Section II we discuss related work. The preemptive STM
architecture is presented in Section III. Experimental data
are provided in Section IV.

II. RELATED WORK

One major research trend in TM systems is the one of
reducing as much as possible the incidence of transaction
aborts. Along this path, several approaches have been based
on so called transaction scheduling policies [3], [7], [22],
which control whether some standing transaction can be
admitted to the processing stage or needs to be delayed for a
while because of a high likelihood of conflicts with already
running transactions. A few of these techniques [8] rely
on migrating transactions to queues managed by different
threads, so as to increase the likelihood that transactions
accessing overlapping data sets are serialized, thus not
interfering with each other. An alternative approach to the
reduction of the incidence of rollback has been the one
of adopting thread scheduling policies [6], [9], [15]–[17].
Unlike transaction scheduling, thread scheduling policies do
not delay the processing of standing transactions. Rather,
they aim at (dynamically) determining the well-suited level
of parallelism, which is the one that avoids thrashing due to
excessive transaction aborts caused by oversized thread-level
concurrency. Other techniques have been oriented to the
optimization of the strategy for managing contention across
concurrent transactions [5], [21]. Some of these approaches
also enable the run-time adaptation of the contention strategy
to the workload profile [5]. The orthogonal issue of mapping
threads to CPU-cores in TM applications for performance
optimization has been addressed in [2].

Our work is orthogonal to all these approaches since
none of them copes with transaction priorities, and with
the possibility to timely pass control to higher priority
transactions via interrupt mechanisms.

The only solution we are aware of which discriminates be-
tween transaction priorities in TM systems is the one in [13].
In this work the authors cope with quality of service in STM
applications and propose an approach where transactions that
are subject to deadlines, and experience abort retries due
to conflicts, tend to execute more conservatively (e.g., by
eager locking data) while getting closer to their deadlines.
Implicitly this proposal enables the dynamic increase of the
priority of transactions running closer to their deadlines,
since eager locks will lead these transactions not to be
aborted because of data conflicts. In any case, this work does
not make systematic use of preemption in order to enable
the timely processing of higher priority transactions along

the threads running the TM application, which is instead the
fulcrum of our proposal.

User Level Threads (ULT) [19] is the historical technol-
ogy enabling time interleaved execution of different code
blocks along a same thread, just like we do in our pre-
emptive STM architecture. However, ULT is not application
transparent since the programmer needs to inject calls to
ULT API functions at specific points of the application
code. Our approach is instead fully transparent, so that the
programmer of the STM application does not need to care
about the management of transaction priorities and control
flow variations. She only needs to code the data access
logic, while the actual passage of control to higher priority
transactional requests is achieved in our architecture via
actions performed by the run-time environment. Also, given
that preemption of lower priority transactions takes place
on the basis of fine-grain hardware timer-interrupts, we also
avoid at all context switch delays that would be potentially
experienced in some hypothetical architecture based on ULT
in scenarios where the lower priority transaction currently
running along a thread does not timely reach the point of
the call to the ULT API functions.

Finally, we remark again that our work copes with the
need for managing differentiated transaction priority levels
in a scenario where dynamically spawning (or resuming)
higher priority threads for processing these transactions is
not viable. This is because of both the overhead/latency for
the spawn (or resume) operation and CPU competition that
adversely affects performance when running TM systems
with more threads than CPU-cores [10]. Also, as already
stated, reserving CPU-cores for running threads bound to
higher priority requests does not pay off in execution phases
where no high priority request is issued. With our approach
we can run with a number of threads not exceeding the
available CPU-cores, being still able to timely pass control
to standing higher priority requests along these threads, thus
avoiding at all the above mentioned problems.

III. THE PREEEMPTIVE STM ARCHITECTURE

A. Overview

In Figure 1 we show a high level schematization of our
preemptive STM architecture, which is targeted at back-end
STM environments. A classical socket pool is handled in
order to receive requests for executing data manipulations
transactionally, which come in from some front-end system.
Upon its receipt, a request is placed into a priority queue, by
associating it with the corresponding priority level. With no
loss of generality we assume the priority level is explicitly
marked within the transactional request, together with the
function to be run by the STM environment for serving the
request, and its input parameters.

Given that a dispatched transactional request could be
preempted and paused in favor of a higher priority request to
be timely processed along a same thread, we need to manage

CPU

snapshot

Request

data/state

Stack area

stack

pointer

Socket pool

Pool of contexts

Priority queue

transaction_context

Figure 1. Basic architectural organization.

an individual CPU/stack context for each transaction. A
default initial context needs therefore to be associated with
each incoming transactional request that is inserted into the
priority queue. To set up a pool of contexts to be used for
this association, we exploit Posix user-defined signals, with
the SA_ONSTACK option for the handler. In more detail,
we issue NUM_CONTEXTS signal instances at startup of the
STM environment in order to activate the handler the same
number of times. At each activation, the handler makes a
snapshot the CPU/stack context into a proper data structure,
which we name transaction_context. All the set up
instances of this data structure go into the pool of contexts
to be associated with incoming transactional requests.

When associating a transaction context to an incoming
request, the transaction_context data structure is
also used to keep track of the priority information for the
transaction, the function to be run and its parameters, as
well as information on what happened along the transaction
lifetime (such as the number of times it has been preempted
and context-switched off the CPU in favor of a higher
priority transactional request). We exploit this information
in order to dynamically change the actual priority of a
request according to a feedback scheme aimed at improving
performance. When a transaction ends its processing phase,
the context it is using is released to the pool in order for a
subsequent incoming transactional request to reuse the same
stack area, in a fresh incarnation of its content.

The value of NUM_CONTEXTS is a configurable param-
eter and determines the maximum number of transactions
that are admitted to the processing stage. When no context is
available from the pool, incoming transactional requests are
not migrated to the priority queue. This migration is resumed
as soon as the termination of already active transactions will
lead to releasing contexts to the pool. Our architecture is
intentionally devised in order to manage more contexts than
worker threads, since transactions can be preempted (hence
paused) and then resumed. Therefore NUM_CONTEXTS
should be set to a value significantly greater than the number
of worker threads selected for running the STM application.

T0 T1 T2 T1

wall clock time

operating system time quantum

partitioned into fine-grain interrupts

each fine-grain interrupt brings control to a

module that checks the state of the priority queue

for possible preemption and context switch

between transactions

preemption_check()

transaction T1 is

preempted

in favor of T2
transaction T1 is

resumed

thread

execution

Figure 2. Fine-grain interrupts timeline.

The job of receiving requests from sockets and inserting
them into the priority queue is done via dedicated threads,
whose execution profile is clearly I/O bound. Hence, request
insertion into the priority queue takes place off the critical
path of the worker threads running the STM based applica-
tion logic. This enables to find the most up-to-date state of
the priority queue every time a fine-grain periodical control
flow variation occurs along any worker thread to verify the
need to pass control to some standing higher priority request.

As we show in Figure 2, such periodical control flow
variation is based on fine-grain timer-interrupts—with period
of the order of tens of microseconds. These are supported
at low cost by the ad-hoc Linux module presented in [14]
which we exploit as baseline component in our architecture,
whose relevant details are provided in Section III-B.

Fine-grain timer-interrupts are issued exclusively towards
worker threads and lead to the activation of a user space
function—called preemption_check()—which imple-
ments the preemption management policies at the core of our
STM environment. If preemption_check() determines
that a different transaction needs to take control of the CPU-
core, the currently processed transaction is preempted, and
its context is enqueued again within the priority queue, while
the context of the higher priority transactional request is
installed so that the worker thread can start processing it.
As soon as a worker thread ends the processing phase of its
current transaction, it releases the no-more-in-use context to
the pool, and then queries the queueing data structure in
order to take care of activating, or resuming in case of a
previous preemption, the transaction that currently stands at
the highest level of priority, if any. This is what happens to
T1 in the example in Figure 2, which is preempted in favor
of T2 along a worker thread, and then resumed (in this case
along the same thread) after T2 ends.

B. Kernel Support for Fine-grain Timer-interrupts

x86 processors are equipped with a per CPU-core pro-
grammable timer device known as LAPIC-timer. Linux
configures the LAPIC-timer to generate periodic interrupts
according to the frequency established by the CONFIG_HZ
parameter defined at kernel compile time. Classical interrupt

periods range from 1 to 4 milliseconds. To achieve the
possibility to deliver finer-grain timer-interrupts to running
threads, the Linux module presented in [14] offers the
support for a special device file called dev_extra_tick.
A worker thread can register itself as one to be hit by
fine-grain timer-interrupts—also referred to as extra-ticks—
issuing an ioctl call towards the device file.

The portions of the whole Linux kernel which need
to know whether a thread is registered and needs to
be hit by extra-ticks are: (i) the kernel scheduler, and
(ii) the top-half (the very early handling logic) of the
timer-interrupt. The Linux module implementing the driver
of the dev_extra_tick device file is also in charge
of redefining the actual behavior of these kernel com-
ponents, which is achieved via dynamic patching. More
in detail, an execution flow variation is injected into
the kernel schedule() function such that control goes
to a schedule_hook() routine offered by the exter-
nal module right before schedule() would execute
its finalization part (e.g., stack realignment and return).
The schedule_hook() function will simply execute
the same return actions originally planned by the kernel
schedule() function. However, patching the original
scheduler in this way allows the hook to take control
when the decision about what thread needs to take control
of the CPU-core3 is already finalized. As a consequence,
the hook is able to check whether the thread is a reg-
istered one and needs to be extra-ticked. In the positive
case, schedule_hook() executes the following addi-
tional steps:
A) It changes the LAPIC-timer period by scaling it on the

basis of a configuration parameter. The scaling factor
is what determines the length of the extra-tick interval.

B) It records in a per CPU-core entry of a control table that
the current CPU-core is working in extra-tick mode.

C) It records in a per registered-thread entry of a control
table a counter of extra-ticks not yet consumed by such
a thread within the current time quantum assigned by
the Operating System.

The information recorded in step B is exploited for
reverting the LAPIC-timer configuration to the original one.
This happens when the scheduler passes control to a thread
that is not registered into dev_extra_tick, while the
last running thread was a registered one. In this case, the
control record associated with the CPU-core is reset in order
to reflect that the CPU-core is no longer operating in extra-
tick mode. Note that this approach works also in scenarios
where the thread registered within the dev_extra_tick
device file looses control of the CPU-core because of a
passage into a sleep state (e.g., for an I/O interaction).
Overall, the above scheme allows restoring the LAPIC-timer

3It has actually already taken control of the CPU-core, since we are
returning from the scheduling process.

configuration to the original one each time a non-registered
thread is (re)scheduled, and independently of any state-
transition of registered (hence extra-ticked) threads in the
Operating System state diagram.

As for the dynamic patching of the LAPIC-timer interrupt
management logic, the Linux module locates the launcher
code block of the top-half handler in the kernel memory
image and replaces the call to the original top-half with one
to a top-half hook function. This top-half hook is in charge of
executing the same identical basic actions as those executed
by the original top-half procedure—such as acknowledging
the accepted interrupt. However, it discriminates if the
interrupted thread is a dev_extra_tick registered one
(i.e., if the thread is subject to extra-tick management) and
in the positive case it executes the following actions:

(i) It decreases the extra-tick counter associated with the
thread.

(ii) If the counter reaches the value zero, then it means
that a whole time quantum has expired. In this case,
the top-half hook calls the actual kernel function used
to update kernel-level timing information. This mimics
the behavior of the original top-half execution path,
given that it would trigger the timing information
update function exactly at the end of each planned time
quantum.

(iii) The top-half hook changes the Instruction Pointer (IP)
kept by the processor image registered into the system
stack upon interrupt acceptance, so that the interrupted
thread will gain control in a proper machine code block
upon the restore of that image onto the CPU-core—
namely, when returning from the LAPIC-timer inter-
rupt. Consequently, the top-half hook also changes the
application-level stack layout of the thread by adding
a program-counter return value that will allow that
code block to exactly return control to the instruction
interrupted by the extra-tick—namely, the original IP
value logged into the CPU-context snapshot on the
system stack. This is done by exploiting the Stack
Pointer (SP) value from the logged CPU-context, which
then is also modified in order to reflect the insertion of
a new element at the top of the user-level stack.

(iv) Finally, if the extra-tick counter of the thread registered
within the dev_extra_tick device file reached the
value zero—see point (ii)—the thread is again filled
with the number of extra-ticks (say N) it is allowed to
receive in the next time quantum.

In our preemptive STM environment, the address of the
code block that will take control thanks to the instruction
pointer variation in point (iii) represents the aforementioned
preemption_check() function implementing the logic
for managing transaction priorities and triggering preemp-
tion and context switches (see Section III-C). This address
is posted to the kernel when calling the same ioctl

system call that is used for registering the thread in the
dev_extra_tick device file as one to be extra-ticked.

C. Data Structures and Policies for Priority Management

The priority queue we use in our preemptive STM envi-
ronment includes a couple of lists 〈active, standing〉 for
each of the managed priority levels. The standing list
keeps all the contexts associated with transactions having
a given priority, whose execution has not yet been started—
these transactional requests have been delivered but have
not yet been admitted to the processing stage along any
worker thread. Conversely, the active list keeps track of all
the contexts associated with transactional requests at that
priority level, which have already been started by some
worker threads, and have then been context-switched off the
CPU (i.e., they have been preempted).

Within the same priority level, the CPU assignment favors
transactions within the active list, so that elements within
the standing list, if any, are considered for CPU-dispatch
only if the active list is currently empty. The policy for
managing each of the two lists is First-In-First-Out (FIFO),
so that the oldest transaction in the list is always selected for
CPU-dispatch before the others. Overall, the priority level is
logically seen as the concatenation of the two corresponding
lists, which are managed according to a CPU assignment
scheme where a transactional request T ∈ active is seen as
preceding any transactional request T ′ ∈ standing.

Figure 3 provides a graphical representation of such an
organization, where the requests kept by the active list are
those to be considered hot. In fact they are resumed for
processing by the worker threads prior to considering any
other request kept by the standing list—namely, the cold
requests.

A compact bitmap is used to determine whether any given
priority level has at least one element within the correspond-
ing 〈active, standing〉 lists. Hence, as soon as one worker
thread accesses the priority queue for determining what is
the highest priority level that currently keeps some request
to be started (a cold one) or resumed (a hot one), such
determination takes place via fast bit-wise instructions.

The separation between hot and cold requests within a
given priority level, with hot requests favored over cold
ones, has been exploited precisely to keep into account the
peculiarities of in-memory transactions handled by common
STM layers. More in detail, after the start of a transaction,
the longer the length of the time interval for reaching
the commit phase, the higher the likelihood of observing
a conflict with some concurrent transaction. Specifically,
delaying the finalization of an already started transaction—
because of a context switch off the CPU—leads to a stretch
of the so-called transaction vulnerability window [13]. This,
in turn, may lead to an increased likelihood of abort, a
phenomenon adverse to performance. In the end, keeping the
already started transactions as hot records within the active

0

1

0

.

.

.

1

0

0

0

Bit-map indicating the status (empty or not)

of each priority level

<active, standing>

Head extraction

for CPU-dispatch

from this priority level

Tail insertion

upon preemption

Tail insertion

upon request

delivery

Figure 3. The priority queue.

list, and favoring them over the cold transactions kept by
the standing list, contrasts the stretch of the vulnerability
window. Recall that any transaction within the standing
list has not yet been started by any worker thread, so that
delaying its activation in favor of hot ones has no effect in
terms of stretch of its vulnerability window.

On the other hand, the stretch of the vulnerability win-
dow of an already started transaction can also be caused
by repeated context switches off the CPU caused by the
presence of higher priority requests within the priority queue
upon running the preemption_check() module along
the thread. To cope with such an orthogonal problem, we
have devised a feedback mechanism such that the actual
priority level of an already started transaction is dynamically
modified at run-time. In particular, for each already started
transaction we keep track of the number of times it has
been context-switched off the CPU (preempted) in favor
of a higher priority transaction. We denote the counter
of context switches off the CPU involving transaction T
as CT . As soon as the value of CT reaches a threshold
that we denote as Cmax, the transaction is migrated to
the highest priority level, so that no further delays caused
by preemptions will be induced on it. The responsiveness
of such a feedback mechanism depends on the value of
Cmax, since greater values of this parameter will tend not
to promote the priority of the transaction along its lifetime.
As an extreme, Cmax → ∞ leads transaction T to always
reside at its original priority level, independently of the
number of incurred preemptions. Conversely, setting Cmax
to the minimum value 1 would lead any transaction to reach
the maximum priority level right after its first preemption.
This, in turn, would lead to flatten the actual priorities of
already started (say hot) transactions to the same value,
with consequent scarce possibility to discriminate what
transaction should actually be processed before the others
according to the original priority the transactional requests
had upon their delivery.

To keep dynamic priorities more aligned to the original
transaction priorities along time, larger values of Cmax
should be selected. On the other hand, we also devised
and implemented a variant of the aforementioned dynamic

priority assignment mechanism where at each increment of
CT leading the value of this counter to still comply with
the inequality CT < Cmax, we promote anyhow the priority
of transaction T by one level. This lazy priority promoting
scheme has the potential to tackle the stretch of the vulner-
ability window of an already started transaction, while still
not favoring the flattening of the dynamic priorities of active
transactions to the maximum priority level admitted in the
system. Indicating with PT the current priority of transaction
T , which initially corresponds to the priority level originally
assigned to the transactional request, the variation of the
priority PT upon preempting transaction T , with consequent
increment of the counter CT , takes place according to the
following scheme:

PT =

{
min(PT + 1, Pmax) if CT < Cmax
Pmax otherwise (1)

where we denote with Pmax the maximum admitted priority
level within the priority management scheme.

D. Safe Execution within the STM Layer

One important final aspect to consider relates to how
the extra-ticks delivered to threads need to be handled in
case they are received while the target thread is currently
executing some functions offered by the STM environment
or the standard library, rather than native application code.
This might be the case when the thread runs the commit
statement for the transaction it is currently processing, as
well as classical TM_read and TM_write services, which
map read/write operations on shared data by the application
code to transactional (all or nothing) operations.

Given that these functions might execute critical actions,
such as locking data (for instance, several STM implemen-
tations rely on the commit-time-locking algorithm [4] which
locks, e.g., data in the transaction write set for atomically
installing all the newer versions upon a successful final-
ization), preempting the transaction execution while one of
these functions is in progress may hamper both performance
and correctness. In other words, we need to leave these
functions execute as non-preemptable tasks.

In order to achieve this objective, we have adopted the fol-
lowing strategy. Each worker thread keeps a PREEMPTABLE
flag on Thread Local Storage (TLS), indicating the state
of execution of the thread itself. The flag is set to false
each time one of the above functions is invoked by the
applications code and is reset to the value true upon re-
turning from the function. This is achieved transparently in
our implementation via the reliance on wrappers that are
interposed between the application and the STM/standard-
library at compile/link time. If the extra-tick is deliv-
ered to a thread when the flag is set to false, then the
preemption_check() function whose activation is trig-
gered by the dev_extra_tick device file logic simply

returns. This allows running all the aforementioned functions
without any risk of preempting them.

The drawback of this approach is that the delivery
of an extra-tick to the worker thread is somehow lost,
in terms of its potential for promptly passing control to
some higher priority transaction. To cope with this as-
pect, we added a second per-thread flag, still kept on
TLS, named STANDING_TICK, which is set to true by
preemption_check() exactly when an extra-tick is
delivered to a thread having PREEMPTABLE set to false.
STANDING_TICK is checked by the wrapper of any non-
preemptable function right upon the function return. If it is
found to be set to true, then the wrapper resets it and invokes
the preemption_check() function, which this time will
actually run the preemption policy we presented in Section
III-C. In other words, if needed we shift the management
of preemptions (ideally triggered periodically by the extra-
ticks) along the time axis at the earliest point in time such
that no critical action is still in place along the worker thread.

A schematization of this behavior is provided in Figure 4.
The arrival of the extra-tick at wall-clock-time t1 trig-
gers the execution of preemption_check(). However,
given that the PREEMPTABLE flag is found set to false
because the worker thread previously entered the execution
of TM_write(), preemption_check() simply sets
STANDING_TICK to true and then returns. Later, upon
returning from TM_write(), the wrapper resets the flag
and calls preemption_check() for actual checks on the
need for preempting the current transaction.

A minor variation has been put in place to comply with
external libraries (e.g., lib.SO.xx libraries) that may rely
on the usage of the stack red-zone, which could not be
allowed to be recompiled with the no-red-zone directive
upon the installation of our preemptive STM environment4.
In such a case, the variation of the execution flow of worker
threads via the modification of the user space stack of the
thread just above the current stack pointer address—in order
to activate preemption_check()—might damage the
stack content. Given that when the extra-tick is received the
timer-interrupt hook knows the address of the instruction
to be processed upon resuming user space execution, if
this address falls outside the memory boundary associated
with code portions that do not make use of the red-zone
we do not activate preemption_check(). Rather, we
raise the STANDING_TICK directly by the kernel level code
embedded within the hook.

4The red-zone is the stack region above the current stack frame. It is
typically exploited by conventional compilation tool-chains so as to allow
a leaf function to use the stack without explicitly reserving storage for the
current stack frame.

wall-clock-time

On going

transaction

processing

Execution of pure

application code

TM_write()

Extra-tick

delivery

Execution of pure

application code

t1

The wrapper sets

NONPREEMPTABLE

to true

preemption_check()

simply sets STANDNG_TICK

to true
The wrapper sets

NONPREEMPTABLE

and STANDING_TICK

to false and calls

preemption_check()

Figure 4. Standing ticks and time shift of preemptions.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

We run our preemptive STM environment on top of
a 64-bit NUMA HP ProLiant server, equipped with four
2GHz AMD Opteron 6128 processors and 64 GB of RAM.
Each processor has 8 cores, for a total of 32 CPU-cores,
which share a 12MB L3 cache (6 MB per each 4-cores
set), and each CPU-core has a 512KB private L2 cache.
The Operating System is OpenSuse 13.2, with Linux kernel
3.16.7.

As stated before, our STM environment has been imple-
mented by using TinySTM [11] as the baseline TM layer and
the whole package we developed is available for free down-
load5. We note that TinySTM has the possibility to be con-
figured with either encounter-time-locking or commit-time-
locking of the data accessed by a transaction. Since we have
introduced within TinySTM a fully innovative preemption
facility, we decided to experiment with the commit-time-
locking configuration, since encounter-time-locking would
require the preemptive approach to be complemented with a
suitable scheme for managing and resolving priority inver-
sions. This topic is somehow aside of the main contribution
provided by our preemptive STM approach, and we plan to
study the relation of the two as future work.

In our experiments, we used 16 worker threads in charge
of processing transactions, and 5 threads in charge of manag-
ing I/O operations on the socket pool and inserting incoming
transactional requests into the priority queue. This scenario
leads the STM environment to use no more than 65% of the
overall available CPU capacity. This choice allows leaving
CPU resources for the Operating System—e.g., for kernel
level threads in charge of carrying out classical housekeeping
operations, such as Linux kswapd demons. Hence it allows
assessing our proposal in scenarios avoiding interference on
the measurements of performance parameters, which could
be caused by CPU competition depending on the choices

5https://github.com/HPDCS/PRESTO

transaction profile CPU demand priority level (the higher the better)
delivery ≈ 5 msec 1
stock level ≈ 650 µsec 2
new order ≈ 350 µsec 3
order status ≈ 10 µsec 4
payment < 10 µsec 5

Table I
TRANSACTION PROFILES AND ASSOCIATED PRIORITY LEVELS.

by the Operating System scheduler. The workload generator
issuing transactional requests has been run on another multi-
core machine with the same technical specifications of the
one hosting the STM environment, which we described
above. The two machines are connected via a switched
100Mb ethernet.

Finally, the extra-tick interval in our preemptive STM
system has been configured to 100 microseconds, a value
definitely lower than the timer-interrupt period originally
adopted in the configuration of the Linux kernel we used,
which was set to 1 millisec. This choice tends to avoid
excessive interference by the extra-tick management logic
on the operations of the STM system, while still guaranteing
that a lower priority transaction will not monopolize a CPU-
core while a higher priority one is standing. In fact in this
scenario the lower priority transaction will not be allowed
to use the CPU-core for more than the very reduced wall-
clock-time of 100 microseconds. In any case, results related
to the overhead by the extra-tick management logic under
these settings are reported in the next section. The size of the
pool of contexts has been set to 1024, a value that enables
keeping active a number of transactions definitely larger than
the number of worker threads processing them.

B. Performance Data with the TPC-C Benchmark

To test our proposal we used a port of the TPC-C
benchmark [20] to STM. TPC-C is representative of OLTP
workloads and includes 5 different transaction profiles that
simulate a whole-sale supplying items from a set of ware-
houses to customers within sales districts. In our experiments
we instantiated one district, and generated a workload made
up by requests equally spanning the whole set of the 5
different transaction profiles specified by the benchmark.

It must be noted that transactions belonging to the dif-
ferent profiles exhibit very different CPU demands. In our
port to the target STM environment, CPU demands range
from tens of microseconds to milliseconds. This peculiarity
has been exploited in our experiments in order to determine
a transaction priority scheme where shorter-running trans-
actions are given higher priority. We recall that shortest-
job-first, with preemption in our case, is a classical way
of managing priorities in computer systems, which typically
allows the optimization of server side run-time dynamics. As
an example, it has been exploited in [12] in order to give
higher server-side priority to the transfer of shorter static

HTML files in the context of Web-server operations—this
is achieved via proper scheduling of socket level operations
within the Operating System kernel. Overall, in Table I we
report the list of transactional profiles we have exploited
from TPC-C in association with the order of magnitude of
the CPU demand for processing them and the corresponding
priority level we assigned while testing our preemptive STM
environment.

We setup the workload generator to inject 25000 transac-
tional requests per second, issuing a total number of 6 mil-
lions of transactional requests along the experiment lifetime.
This peak-load phase is suitable for assessing the potential
of an optimized preemptive CPU-dispatching scheme, and
its actual advantages in the management of differentiated
transaction priorities. The indication of peak-load has been
evidenced by having the pool of contexts highly busy (above
the 90%) for most of the experiments’ duration. The reported
performance results have been computed as the average over
three repetitions of the experiment.

In Figure 5 we show the average turnaround time for
transactions born at the 5 different priority levels. The
turnaround time is computed as the sum of all the times
spent by a transaction either for actual processing activities
or while being kept within the priority queue—either as a
cold or a hot transaction. Also, if a transaction is aborted and
then retried, any aborted transaction run contributes to the
turnaround time of the transaction. The baseline plot refers
to a scenario where the STM does not use extra-ticks and,
consequently, does not use preemption. Therefore, in the
baseline configuration, a thread passes control to a standing
higher priority transactional request only at the end of the
processing phase of the currently executed transaction. For
completeness of the analysis we also considered a setting
where the extra-tick logic is active, but no-preemption is ever
actuated. This configuration is useful for the assessment of
the overhead caused by the extra-tick logic compared to the
baseline case. Also, the preemptive STM architecture we
have presented has been assessed by considering different
settings for the value of Cmax, and by either including
or excluding the lazy priority promoting scheme for the
management of the dynamic priority of the transactions (see
Section III-C). By the results we see how, compared to
the baseline, the preemptive approach reduces the average
turnaround time of transactions born at higher priority levels
(say levels 4 and 5) by around 60%-65%. Also, transactions
at middle priority levels (e.g., level 3) exhibit an average
turnaround latency essentially not penalized by preemption,
or even slightly favored, while transactions born at lower
priority levels (i.e., 1 and 2) show a penalization of their
average turnaround which is mostly limited to less than 5%,
and no more than 15% in the worst case. As expected,
the higher advantages for higher priority transactions are
achieved with larger values of Cmax, which lead to delaying
the dynamic increment of the priority of transactions born

10 µsec

100 µsec

1000 µsec

10000 µsec

100000 µsec

1000000 µsec

1 2 3 4 5

A
vg

. t
ur

na
ro

un
d

tim
e

(lo
gs

ca
le

)

Priority levels

Baseline
Extra-tick - No Preemption

Preemption No Lazy Promoting Cmax=1
Preemption No Lazy Promoting Cmax=2
Preemption No Lazy Promoting Cmax=4
Preemption No Lazy Promoting Cmax=8

Preemption Lazy Promoting Cmax=2
Preemption Lazy Promoting Cmax=4

Figure 5. Average turnaround time for transactions born at different
priority levels (log-scale on the y-axis).

at low priority levels (e.g., level 1). The configuration where
the extra-tick is active, but no preemption is ever actuated,
shows performance essentially aligned with the one of the
baseline, indicating negligible overhead of the extra-tick
management logic.

In order to better outline the effects by the preemptive
approach, we report in Figure 6 the ratio between the average
turnaround latency provided by the baseline and the one
provided by the preemptive approach, namely the speedup
on the turnaround provided by the preemptive solution. For
this plot we show the most promising configurations of the
preemptive solution, selected on the basis of the results
shown in Figure 5. The best configurations are still the
ones with lager values of Cmax (namely 4 or 8) and the
plots show the effectiveness of our preemptive approach
in both lazy promoting and no-lazy promoting scenarios.
The configuration based on lazy promoting and Cmax set
to the value 4 is able to provide higher speedup (vs the
baseline) compared to the one not employing lazy promoting
for transactions born at priority level 5, at the expense of a
reduction of the speedup for transactions born at priority
level 2. This phenomenon is clearly due to the fact that,
with lazy promoting, transactions born at priority level 1
dynamically acquire higher priority (e.g., 2) right after the
first preemption, thus interfering more with transactions
originally born at priority level 2. This phenomenon does
not appear when lazy promoting is excluded.

Finally, in Figure 7 we report data indicating how the
probability of abort varies in the different configurations.
As stated before (see Section III-C), this variation can be
caused by the effects of preemptions on the length of the
vulnerability window of the transactions. By the results we
see that transactions born at priority level 2 are those more
impacted by this phenomenon. In particular, they show an
increase of the abort probability—with consequent need
for retries that lead to stretch the turnaround latency—
for lower values of Cmax and/or when lazy promoting is
employed. As discussed before, this is caused by the higher
interference caused by transactions born at priority level

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 1 2 3 4 5

A
vg

. t
ur

na
ro

un
d

sp
ee

du
p

Priority levels

Preemption No Lazy Promoting Cmax=4
Preemption No Lazy Promoting Cmax=8
Preemption Lazy Promoting Cmax=4

Figure 6. Speedup - Ratio between the turnaround time of the baseline
configuration and the turnaround time of the preemptive configuration.

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5

A
bo

rt
pr

ob
ab

ili
ty

Priority levels

Baseline
Extra-tick - No Preemption

Preemption No Lazy Promoting Cmax=1
Preemption No Lazy Promoting Cmax=2
Preemption No Lazy Promoting Cmax=4
Preemption No Lazy Promoting Cmax=8

Preemption Lazy Promoting Cmax=2
Preemption Lazy Promoting Cmax=4

Figure 7. Variation of the transaction abort probability.

1, which dynamically acquire higher priority leading to
increased concurrency between shorter transactions born at
priority level 2 and the definitely longer ones born at priority
level 1. The opposite behavior, with a reduction of the abort
probability of transactions born at priority level 2, is instead
noted when running with larger values of Cmax or when
excluding lazy promotion.

Overall, the experimental data support the effectiveness
of our preemptive approach in favoring the turnaround time
of higher priority transactions, compared to a baseline sce-
nario that manages priorities according to a non-preemptive
scheme. Also, the system/kernel level support we have em-
ployed for handling preemptions has been shown to induce
negligible overhead, which further favors our solution.

V. CONCLUSIONS

In this article we have presented a preemptive Software
Transactional Memory (STM) environment, where fine grain
timer-interrupts—of the order of tens of microseconds—
are delivered to the STM layer in order to enable a thread
running some in-memory transaction to be promptly inter-
rupted and to pass control to some standing higher priority
transactional task. To the best of our knowledge this is the
first attempt to provide such preemptive capabilities within

an STM environment, since state-of-the-art STM implemen-
tations CPU-dispatch a higher priority transactional task only
after the finalization of the current one, thus not reacting to
the injection of higher priority tasks with the same level of
promptness. We have also presented a policy for dynami-
cally changing the priority of transactions—depending on
the behavior they show along their lifetime—in order to
optimize the final performance delivered by the preemptive
STM environment. Finally, we have reported the results of an
experimental study based on a port of the TPC-C benchmark
to STM, demonstrating the ability of our proposal to reduce
the turnaround time of higher priority transactions, while not
significantly un-favoring lower priority ones. In this study
the priorities are determined on the basis of the CPU demand
by the different transaction profiles, with lower demanding
ones having higher priorities, a classical approach aimed at
favoring shortest jobs.

REFERENCES

[1] http://www.intel.com/content/www/us/en/processors/core/5th-
gen-core-processor-family.html.

[2] M. Castro, L. F. W. Goes, C. P. Ribeiro, M. Cole, M. Cintra,
and J.-F. Mehaut. A machine learning-based approach for
thread mapping on transactional memory applications. In
Proceedings of the 18th International Conference on High
Performance Computing, pages 1–10, 2011.

[3] P. di Sanzo, M. Sannicandro, B. Ciciani, and F. Quaglia.
Markov chain-based adaptive scheduling in software transac-
tional memory. In Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium, pages 373–
382, 2016.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking
II. In Proceedings of the 20th International Symposium on
Distributed Computing, pages 194–208, 2006.

[5] D. Didona, N. Diegues, A. Kermarrec, R. Guerraoui,
R. Neves, and P. Romano. Proteustm: Abstraction meets
performance in transactional memory. In Proceedings of the
21st International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 757–
771, 2016.

[6] D. Didona, P. Felber, D. Harmanci, P. Romano, and
J. Schenker. Identifying the optimal level of parallelism in
transactional memory applications. Computing, 97(9):939–
959, 2015.

[7] N. Diegues, P. Romano, and S. Garbatov. Seer: Proba-
bilistic scheduling for hardware transactional memory. In
Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, pages 224–233, 2015.

[8] S. Dolev, D. Hendler, and A. Suissa. Car-STM: scheduling-
based collision avoidance and resolution for software
transactional memory. In Proceedings of the 27th ACM
symposium on Principles of Distributed Computing, pages
125–134, 2008.

[9] A. Dragojević and R. Guerraoui. Predicting the scalability of
an stm: A pragmatic approach. In Proceedings of the 5th ACM
SIGPLAN Workshop on Transactional Computing, 2010.

[10] R. Ennals. Software transactional memory should not be
obstruction-free. Technical report, Intel Research Cambridge
Tech Report, Jan 2006.

[11] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
Proceedings of the 13th ACM Symposium on Principles and
Practice of Parallel Programming, pages 237–246, 2008.

[12] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.
Size-based scheduling to improve web performance. ACM
Trans. Comput. Syst., 21(2):207–233, May 2003.

[13] W. Maldonado, P. Marlier, P. Felber, J. Lawall, G. Muller,
and E. Rivière. Supporting time-based QoS requirements
in software transactional memory. ACM Trans. Parallel
Comput., 2(2):10:1–10:30, July 2015.

[14] A. Pellegrini and F. Quaglia. Time-sharing time warp via
lightweight operating system support. In Proceedings of
the 3rd ACM-SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 47–58, 2015.

[15] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia. Ma-
chine learning-based self-adjusting concurrency in software
transactional memory systems. In Proceedings of the 20th
IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
pages 278–285, 2012.

[16] D. Rughetti, P. di Sanzo, B. Ciciani, and F. Quaglia. An-
alytical/ML mixed approach for concurrency regulation in
software transactional memory. In Proceedings of the 14th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 81–91, 2014.

[17] D. Rughetti, Paolo, F. Quaglia, and B. Ciciani. Automatic
tuning of the parallelism degree in hardware transactional
memory. In Proceedings of the 20th International Conference
Parallel Processing, pages 475–486, 2014.

[18] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, pages 204–213, 1995.

[19] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts. Wiley Publishing, 8th edition, 2008.

[20] TPC Council. TPC-C Benchmark, Revision 5.11. Feb. 2010.

[21] Q. Wang, S. Kulkarni, J. V. Cavazos, and M. Spear. Towards
applying machine learning to adaptive transactional memory.
In Proceedings of the 6th ACM SIGPLAN Workshop on
Transactional Computing, 2011.

[22] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling
for transactional memory systems. In Proceedings of the
20th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 169–178, 2008.

