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Abstract We study connections between optimistic bilevel programming prob-

lems and Generalized Nash Equilibrium Problems (GNEP)s. We remark that,

with respect to bilevel problems, we consider the general case in which the

lower level program is not assumed to have a unique solution. Inspired by the

optimal value approach, we propose a new GNEP model that, in a level play-

ing field, incorporates some taste of hierarchy and turns out to be related to

the bilevel programming problem. We provide a complete theoretical analysis
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of the relationship between the vertical bilevel problem and our “uneven” hor-

izontal model: in particular, we define classes of problems for which solutions

of the bilevel program can be computed by finding equilibria of our GNEP.

Furthermore, from a modelistic standpoint, by referring to some applications

in economics, we show that our “uneven” horizontal model, in some sense, lies

between the vertical bilevel model and a “pure” horizontal game.

Keywords Bilevel programming · Generalized Nash Equilibrium Problem

(GNEP) · Hierarchical optimization problem · Stackelberg game
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1 Introduction

We aim at building a bridge between optimistic bilevel programming problems

and generalized Nash equilibrium problems. This kind of study, as far as we

are aware, has never been considered in the literature. In particular, we wish to

point out differences and similarities between two-level optimization and one-

level game models. Besides being of independent theoretical and modelistic

interest, this analysis gives a new perspective on bilevel problems.

Bilevel programming is a fruitful modeling framework that is widely used

in many fields, ranging from economy and engineering to natural sciences (see

[1], the fundamental [2], [3], the recent [4], the references therein, the seminal

paper [5], and [6,7] for recent applications). This problem has a hierarchical
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structure involving two decision, upper and lower , levels. We focus on the more

general and challenging case in which the lower level program is not assumed to

have a unique solution. We recall that, whenever lower level solutions are non-

uniquely determined, the definition itself of the bilevel program is ambiguous.

With this in mind, in this work we refer to the most common optimistic vision.

Roughly speaking, in optimistic bilevel problems a decision is taken, at the

upper level, by considering two blocks of variables, namely x and y; but, in

turn, y is implicitly constrained by the reaction of a subaltern (lower level)

part to the choice of x. Thus, bilevel programs can be viewed, in some sense,

as a special two-agents optimization. The two agents play here an asymmetric

role, in that the variable block x is controlled only by the upper level agent,

while the choice of the second block y is influenced by both the upper and

the lower level agents. It is precisely this asymmetrically shared influence on

the variable blocks that makes bilevel problems inherently hard to solve. It is

worth noting that, whenever there is not such a thorny relationship between

the agents, things become conceptually simpler. Indeed, on the one hand, if all

the variables are controlled by both the agents, we have a pure hierarchical

problem (in Section 3 we show that this problem has the same set of solutions

of a suitable one-level generalized Nash equilibrium problem); while, on the

other hand, with x being controlled by the upper level agent, if y is controlled

only by the lower level agent, we get a generalized Nash equilibrium problem,

in which the two agents act as players at the same level (see Section 2).
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Optimistic bilevel problems have been studied in two different versions (see

the next section and [8] for a rather complete discussion on this topic): the

Original optimistic Bilevel programming Problem (OBP) and the Standard

optimistic Bilevel programming Problem (SBP). As observed in [8,9], OBP

and SBP are equivalent in the global case but a local minimum of SBP may

not lead to a local solution of OBP. We underline that, besides [8], which deals

with OBPs, almost all other solution methods cope only with SBPs. The latter

problems are structurally nonconvex and nonsmooth (see [10]); furthermore,

it is hard to define suitable constraint qualification conditions for them, see,

e.g., [11,12]. In fact, the study of provably convergent and practically imple-

mentable algorithms for the solution of even just SBPs is still in its infancy

(see, for example, [3,8,13–21]), as also witnessed by the scarcity of results in

the literature. We remark that suitable reformulations of the SBP have been

proposed in order to investigate optimality conditions and constraint qualifi-

cations, as well as to devise suitable algorithmic approaches: to date, the most

studied and promising are optimal value and KKT one level reformulations

(see [4], the references therein and [22,23]). As far as the KKT reformulation

is concerned, it should be remarked that the SBP has often be considered as

a special case of Mathematical Program with Complementarity Constraints

(MPCC) (see, e.g., [24–26]). Actually, this is not the case, as shown in [27].

Indeed, in general, one can provably recast the SBP as an MPCC only when

the lower level problem is convex and Slater’s constraint qualification holds for

all x. Moreover, even in this case, a local solution of the MPCC, which is what
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one can expect to compute (since the MPCC is nonconvex), may happen not

to be a local optimal solution of the corresponding SBP and, even less, OBP.

Generalized Nash Equilibrium Problem (GNEP) is another important mod-

eling tool in multi-agent contexts. GNEPs, that, unlike SBPs, are problems in

which all agents act at the same level, have been extensively studied in the

literature and many methods have been proposed for their solutions in the last

decades, see, e.g., [28–33]. For further details, we refer the interested reader

to [34]. Finally, we would like to cite the interesting paper [35], which deals

with both bilevel problems and GNEPs but without establishing connections

between them, as we do.

In this work, building on the ideas set forth in [36], we propose a new

suitable GNEP model that is closely related to the SBP and proves to be

connected with the OBP also. Our GNEP model is, in some sense, inspired by

the optimal value approach, in that, when passing from the vertical structure

of bilevel problems to the horizontal format of GNEPs, we exploit the value

function idea to mimic the original relationship between the agents. Thus,

despite its one-level structure, the latter GNEP incorporates some taste of

hierarchy.

To be more specific, here we summarize the theoretical results about the

relationship between SBP/OBP and our GNEP model. In Theorem 3.1 we

show that an equilibrium of our GNEP gives a feasible and, at least, sub-

optimal (possibly global optimal under some suitable conditions) solution for

the corresponding SBP. With Proposition 3.1, we define a particular type of
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global solutions of the SBP that, in any case, can be computed by finding

an equilibrium of our GNEP. With Corollary 3.1 and with Theorem 3.2, we

identify classes of problems (including Stackelberg games and pure hierarchi-

cal optimization problems, see Remarks 3.1 and 3.2, respectively) for which

an equilibrium of our GNEP always leads to a global solution of the SBP.

We remind that global solutions of the SBP lead also to global solutions of

the OBP. Thus, the previous relations hold also between equilibria and global

optima of the OBP. In Subsection 3.2, we introduce the concept of strong lo-

cal minima of the SBP: unlike general local solutions of the SBP, strong local

minima enjoy the nice property to lead also to local solutions of the OBP

(see Proposition 3.2). With Theorem 3.3 we give sufficient conditions for an

equilibrium of our GNEP to lead to a strong local minimum of the SBP and,

thus, also to a local minimum of the OBP. Section 3 is equipped with several

examples: in particular, we wish to cite Example 3.4 in which we compare our

GNEP to the classical MPCC reformulation.

Relying on the previous theoretical results, in Section 4 we consider some

applications in economics to show that our “uneven” horizontal framework,

in some sense, lies between the vertical bilevel model and a “pure” horizon-

tal game. In a market with two firms producing some goods, we study the

system’s behavior in terms of outcomes values by employing three different

points of view: vertical (for which a firm is the leader and the other one is

the follower), horizontal (for which both firms act at the same level) and our

uneven horizontal.
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2 Preliminaries

We briefly recall some basic facts.

The Original optimistic Bilevel programming Problem (OBP) takes the

form

minimize
x

miny{F (x, y) : y ∈ S(x)}

s.t. x ∈ X,

(1)

while the Standard optimistic version (SBP) is the following:

minimize
x,y

F (x, y)

s.t. x ∈ X

y ∈ S(x),

(2)

where F : Rn1×R
n2 → R,X ⊆ R

n1 and the set-valued mapping S : Rn1 ⇉ R
n2

describes the solution set of the following lower level parametric optimization

problem:

minimize
w

f(x,w)

s.t. w ∈ U

g(x,w) ≤ 0,

(3)

where f : Rn1 × R
n2 → R and g : Rn1 × R

n2 → R
m and U ⊆ R

n2 .

When dealing with SBP/OBP (2)/(1) we rely on the following standard

assumptions: F, f : Rn1 × R
n2 → R and g : Rn1 × R

n2 → R
m are continuous,

and X ⊆ R
n1 and U ⊆ R

n2 are closed.

Let W := {(x, y) : x ∈ X, y ∈ S(x)} and U ∩ K(x), with K(x) :=

{v ∈ R
n2 : g(x, v) ≤ 0}, denote the feasible sets of SBP (2) and of lower level

problem (3), respectively.
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A point (x∗, y∗) is a global solution of SBP (2) if (x∗, y∗) ∈ W and

F (x∗, y∗) ≤ F (x, y), ∀ (x, y) ∈ W . More explicitly, feasibility and optimal-

ity of (x∗, y∗) can be equivalently rewritten in the following manner:

(x∗, y∗) ∈ X × U, f(x∗, y∗) ≤ f(x∗, y) ∀y ∈ U ∩K(x∗), g(x∗, y∗) ≤ 0 (4)

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W, (5)

where W =
{
(u, v) ∈ X ×U : f(u, v) ≤ f(u,w) ∀w ∈ U ∩K(u), g(u, v) ≤ 0

}
.

We would like to mention two particularly interesting and well-studied

classes of SBPs: (optimistic) Stackelberg games and pure hierarchical opti-

mization problems. Stackelberg games are SBPs in which function g does not

depend on the upper variables x. On the other hand, when, at the lower level,

the whole dependence on x is dropped, the SBP boils down to the following

pure hierarchical optimization problem:

minimize
x,y

F (x, y)

s.t. x ∈ X

y ∈ S,

(6)

where S denotes the solution set of the lower level problem

minimize
w

f(w)

w ∈ U

g(w) ≤ 0.

As we have pointed out in the introduction, the characteristic aspect of SBP

(2) is the hierarchical relationship between the leader and the follower: the two

agents play here an asymmetric role, in that the variable block x is controlled
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only by the upper level agent, while the second block y is controlled by both the

upper and the lower level agents. Question arises naturally on what happens

if the leader loses control on y. In the latter case, we get the following GNEP:

minimize
x

F (x, y) minimize
y

f(x, y)

s.t. x ∈ X s.t. y ∈ U

g(x, y) ≤ 0.

(7)

Note that in GNEP (7) the two agents are at the same level, unlike in SBP

(2).

One may think that in problem (7) the follower has been promoted at an

upper level, the same of the leader; but this is not the case: indeed, the follower

acts in the same manner in (2) and in (7). Is the leader who is downgraded at

the follower’s level: in fact, unlike problem (7), where the leader can no longer

directly control y, in SBP (2) the follower is like “a puppet in leader’s hands”.

Finally, we denote by N (x̄) the collection of open neighborhoods of x̄ and

by domM := {x |M(x) 6= ∅} the domain of M : Rn
⇉ R

m.

3 Taking Care of Hierarchy: a New GNEP Model

In the light of the observations in Section 2, we propose to address a GNEP

that better takes into account the original hierarchy between agents. With

the following GNEP, we aim at positioning the leader in an intermediate level
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between that in (7) and that in (2).

minimize
x,y

F (x, y) minimize
w

f(x,w)

s.t. (x, y) ∈ X × U s.t. w ∈ U

f(x, y) ≤ f(x,w) g(x,w) ≤ 0.

g(x, y) ≤ 0

(8)

We say that the player controlling x and y is the leader, while the other player

is the follower. Note that, in the leader’s problem, only the feasible set, in

particular constraint f(x, y) ≤ f(x,w), depends on the follower’s variables w;

on the other hand, as regards follower’s problem, the coupling with the leader’s

strategy may happen at both the objective and the feasible set levels.

GNEP (8) is related to the SBP/OBP, as the forthcoming considerations

clearly show (see Theorems 3.1, 3.2, 3.3, Proposition 3.1, Corollary 3.1 and Ex-

amples 3.1 and 3.2). We point out that, in order to devise GNEP (8), we draw

inspiration from the optimal value approach (see [4,22,23]). Indeed, the struc-

ture of leader’s feasible set in (8) (in particular, constraint f(x, y) ≤ f(x,w)) is

intended to mimic, in some sense, and to deal with the value function implicit

constraint f(x, y) ≤ ϕ(x), where

ϕ(x) := min
y

{f(x, y) : y ∈ K(x) ∩ U}

is the value function. In problem (8) the leader takes back control of variables

y: this fact and the presence of constraint f(x, y) ≤ f(x,w), introducing some

degree of hierarchy in a level playing field, keep memory of the original balance

of power between leader and follower.
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We note that, as one can expect, it is precisely the “difficult” constraint

f(x, y) ≤ f(x,w) that makes, in general, problem (8) not easily solvable:

because of the presence of such constraint, GNEP (8) may lack convexity

and suitable constraint qualifications are not readily at hand. However, as will

become evident in the subsequent sections, one can still define classes of bilevel

problems for which problem (8) is practically solvable.

Moreover, in view of the above considerations, GNEP (8) may also be con-

sidered as an alternative modeling tool, of independent interest, for describing

systems in which there is a hierarchical interaction between agents.

We denote by

T := {(x, y) ∈ X × U : g(x, y) ≤ 0} and U

the “private” constraints sets, and by

H(w) := {(x, y) ∈ R
n1 × R

n2 : f(x, y) ≤ f(x,w)} and K(x)

the “coupling” constraints sets of the leader and the follower, respectively.

Moreover, let V (w) := T ∩H(w) be the feasible set of the leader.

A solution, or an equilibrium, of GNEP (8) is a triple (x∗, y∗, w∗) such that

(x∗, y∗) ∈ X × U, f(x∗, y∗) ≤ f(x∗, w∗), g(x∗, y∗) ≤ 0, (9)

F (x∗, y∗) ≤ F (x, y), ∀ (x, y) ∈ V (w∗), (10)

w∗ ∈ U, g(x∗, w∗) ≤ 0, (11)

f(x∗, w∗) ≤ f(x∗, w), ∀w ∈ U ∩K(x∗), (12)
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where V (w∗) =
{
(u, v) ∈ X×U : f(u, v) ≤ f(u,w∗), g(u, v) ≤ 0

}
. Conditions

(9)-(10) and (11)-(12) state feasibility and optimality of (x∗, y∗, w∗) for leader’s

problem and for follower’s problem, respectively.

3.1 Global Solutions

The following Theorem 3.1 allows us to establish relations between equilibria

of GNEP (8) and global solutions of SBP (2) and, thus, of OBP (1). On the

one hand, Theorem 3.1 gives a sufficient condition for an equilibrium of GNEP

(8) to lead to a global solution of the SBP/OBP; on the other hand, as the

subsequent developments in this section clearly show, it provides a theoretical

base to define classes of bilevel problems that are tightly connected to the

GNEP (see Corollary 3.1, Theorem 3.2, and Remarks 3.1 and 3.2).

Theorem 3.1 Let (x∗, y∗, w∗) be an equilibrium of GNEP (8). Then

(i) (x∗, y∗) is a feasible point for SBP (2), that is (x∗, y∗) ∈ W ;

(ii) if g(x,w∗) ≤ 0 for all x such that there exists y with (x, y) ∈ W and

F (x, y) ≤ F (x∗, y∗), then (x∗, y∗) is a global solution of SBP (2).

Proof Under the assumptions of the theorem, (x∗, y∗, w∗) satisfy relations (9)-

(12).

(i) We observe that (9), (11) and (12) together imply that (x∗, y∗) satisfies

(4), that is (x∗, y∗) ∈ W .
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(ii) We need to show that (5) holds at (x∗, y∗). Let us denote by L∗ the

level set of F at (x∗, y∗), and by (L∗)c its complement:

L∗ := {(x, y) ∈ R
n1 × R

n2 : F (x, y) ≤ F (x∗, y∗)} , (13)

(L∗)c := {(x, y) ∈ R
n1 × R

n2 : F (x, y) > F (x∗, y∗)} . (14)

Let (x̄, ȳ) be any couple in W ∩ L∗: by assumptions, we have g(x̄, w∗) ≤ 0.

Therefore, w∗ ∈ U ∩K(x̄) and, since (x̄, ȳ) ∈ W , in turn (x̄, ȳ) ∈ V (w∗) and

W ∩ L∗ ⊆ V (w∗). (15)

Thanks to (10) and (15), and noting that for every (x, y) ∈ W ∩ (L∗)c we have

F (x, y) > F (x∗, y∗), (5) holds at (x∗, y∗). Hence, (x∗, y∗) is a global solution

of SBP (2). ⊓⊔

It is worth noticing that condition (ii) also suggests that (x∗, y∗) can be inter-

preted as a suboptimal point for SBP (2). Indeed, we have F (x∗, y∗) ≤ F (x, y)

for every (x, y) ∈ W with x such that g(x,w∗) ≤ 0.

The following example gives a picture of the relationship between GNEP

(8) and SBP (2), as stated in Theorem 3.1.

Example 3.1 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. x ≥ 1

y ∈ S(x),

(16)
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where S(x) denotes the solution set of the lower level problem

minimize
w

w

x+ w ≥ 1,

and the corresponding GNEP, that is,

minimize
x,y

x2 + y2 minimize
w

w

s.t. x ≥ 1 s.t. x+ w ≥ 1.

y ≤ w

x+ y ≥ 1

(17)

Point (1, 0) is the unique solution of problem (16), while all the infinitely many

points (1−λ, λ, λ), with λ ≤ 0, are equilibria of GNEP (17). In particular, we

remark that (1, 0, 0) is the only solution of GNEP (17) that satisfies assumption

(ii) of Theorem 3.1 (see Figure 1 and Figure 2). ⊓⊔

Fig. 1 The feasible set W and the unique

solution of SBP (16)

Fig. 2 A sketch of leader’s problem in

GNEP (17): the feasible set V (w) and the

corresponding solution are depicted for dif-

ferent values of w, namely w = 0 and w =

−1.
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It should be remarked (see Example 3.2) that the implications in Theorem 3.1

(ii) can not be reversed: indeed, in general, given a global solution (x∗, y∗) of

SBP (2), (x∗, y∗, y∗) may not be an equilibrium for GNEP (8).

Fig. 3 The feasible set W and the unique

solution of SBP (18)

Fig. 4 A sketch of leader’s problem in

GNEP (19): the feasible set V (w), which

turns out to be a superset of W , and the

corresponding solution are depicted for w =

1/2.

Example 3.2 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. y ∈ S(x),

(18)

where S(x) denotes the solution set of the lower level problem

minimize
w

(x+ w − 1)2

and the corresponding GNEP

minimize
x,y

x2 + y2 minimize
w

(x+ w − 1)2.

s.t. (x+ y − 1)2 ≤ (x+ w − 1)2

(19)
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The unique solution of problem (18) is (x∗, y∗) =
(
1

2
, 1

2

)
. However, the triple

(x∗, y∗, w∗) =
(
1

2
, 1

2
, 1

2

)
is not an equilibrium of GNEP (19), since point

(x̃, y∗, w∗) =
(
0, 1

2
, 1

2

)
is feasible for the first player and x̃2 + (y∗)2 < (x∗)2 +

(y∗)2 (see Figure 3 and Figure 4). ⊓⊔

On the other hand, as also observed in [37], strengthening conditions in The-

orem 3.1, one can define points for which the relation between SBP (2) and

GNEP (8) is stronger than that already established.

Proposition 3.1 Let (x∗, y∗) belong to W and be such that

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ T. (20)

Then

(i) (x∗, y∗) is a global solution of SBP (2);

(ii) for all w∗ ∈ U∩K(x∗) such that (x∗, w∗) ∈ H(y∗), (x∗, y∗, w∗) is a solution

of GNEP (8).

Proof (i) Condition (20) implies relation (5) since W ⊆ T .

(ii) Relations (9), (11) and (12) follow from (4) and the fact that w∗ ∈ U ,

g(x∗, w∗) ≤ 0 and f(x∗, w∗) = f(x∗, y∗). Moreover, (20) implies (10) since

V (w∗) ⊆ T . ⊓⊔

Points that satisfy conditions (20) can be considered as “easy” global solutions

of SBP (2) and, thus, lead also to global solutions of OBP (1): such points lie

in W but, as for optimality (see relation (5)), the lower level objective function

plays no role for these solutions to be computed. Clearly, if (x∗, y∗) is an “easy”
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solution of SBP (2), then, in view of (ii), (x∗, y∗, y∗) is an equilibrium of GNEP

(8).

In the following example, we present an SBP whose unique solution satisfies

the assumptions in Proposition 3.1.

Example 3.3 Let us consider the following SBP:

minimize
x,y1,y2

x2 + (y1 + y2)
2

s.t. x ≥ 1

2

(y1, y2) ∈ S(x),

(21)

where S(x) denotes the solution set of the lower level problem

minimize
w1,w2

w1

x+ w1 + w2 ≥ 1

w1, w2 ≥ 0.

The corresponding GNEP.

minimize
x,y1,y2

x2 + (y1 + y2)
2 minimize

w1,w2

w1

s.t. x ≥ 1

2
s.t. x+ w1 + w2 ≥ 1

y1 ≤ w1 w1, w2 ≥ 0,

x+ y1 + y2 ≥ 1

y1, y2 ≥ 0

(22)

Clearly,
(
1

2
, 0, 1

2

)
is the unique solution of problem (21), while

(
1

2
, 0, 1

2
, 0, 1

2

)
is

an equilibrium of GNEP (22); furthermore,
(
1

2
, 0, 1

2

)
satisfies the assumptions

in Proposition 3.1. It is worth pointing out that “easy” solution
(
1

2
, 0, 1

2

)
can

not be calculated by simply minimizing F (x, y) over set T : if we did this,
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indeed, we would obtain multiple solutions, namely any point
(
1

2
, y1, y2

)
such

that y1+y2 = 1

2
and y1, y2 ≥ 0. But, among these points, only

(
1

2
, 0, 1

2

)
belongs

to W . Thus, actually, the “easy” solutions are not so easy to be calculated!

Indeed, although, for optimality, the lower level objective function plays no

role for these points to be computed, nonetheless the “easy” solutions must

belong to the feasible set W . ⊓⊔

Clearly, as stated above, in general, solving GNEP (8) may happen not to

lead to a solution of SBP (2). However, Theorem 3.1, as well as Proposition

3.1, establish sufficient conditions for an equilibrium of GNEP (8) to provide

a global solution of SBP/OBP (2)/(1). Relying on these conditions, with the

following Corollary 3.1 and Theorem 3.2 we present two significant classes

of problems for which one can establish an even deeper connection between

global solutions of SBP/OBP (2)/(1) and those of GNEP (8).

For example, if the lower level feasible set does not depend on upper level

variables x, then the requirements of Theorem 3.1 (ii) are trivially satisfied

and the following result, whose proof is omitted, holds.

Corollary 3.1 Suppose that, at the lower level, the feasible set mapping U∩K

is fixed in X ∩ dom(U ∩ K). If (x∗, y∗, w∗) is an equilibrium of GNEP (8),

then (x∗, y∗) is a global solution of SBP (2).

Remark 3.1 The class of SBPs in which function g does not depend on the

upper variables x, in view of the previous corollary, can be solved by addressing

GNEP (8), whenever at least an equilibrium exists. Note that Stackelberg

games (see Section 2) belong to this category of problems.
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We point out that, as Example 3.2 shows, also the implications in Corollary

3.1 can not be reversed: given a global solution (x∗, y∗) of SBP (2), (x∗, y∗, y∗)

may not be an equilibrium for GNEP (8), even when the lower level feasible set

does not depend on upper level variables x. On the other hand, this is not the

case whenever, at the lower level, the solution set mapping S is fixed. Indeed,

for this class of problems, the implications in Theorem 3.1 (ii) can actually be

reversed.

Theorem 3.2 Suppose that, at the lower level, the solution set mapping S is

fixed in X ∩ dom(U ∩K). The following implications hold:

(i) if (x∗, y∗, w∗) is an equilibrium of GNEP (8), then (x∗, y∗) is a global

solution of SBP (2);

(ii) if (x∗, y∗) is a global solution of SBP (2), then, for all w∗ ∈ U such that

g(x∗, w∗) ≤ 0 and f(x∗, w∗) = f(x∗, y∗), (x∗, y∗, w∗) is a solution of GNEP

(8).

Proof In view of relations (4), (5) and (9)-(12), in both cases, it suffices to show

that, for every x ∈ X ∩dom(U ∩K), f(x,w∗) = miny{f(x, y) : y ∈ K(x)∩U}

and, thus, W = V (w∗).

(i) The claim follows easily observing that w∗ ∈ S(x∗).

(ii) Clearly, y∗ ∈ S(x∗) but, since w∗ ∈ U, g(x∗, w∗) ≤ 0 and f(x∗, y∗) =

f(x∗, w∗), we also have w∗ ∈ S(x∗). ⊓⊔

Remark 3.2 Whenever in SBP (2), at the lower level, the whole dependence

on x is dropped, the solution set mapping S is obviously fixed. Thus, pure
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hierarchical program (6) belonging to this category of problems, can equiva-

lently be reformulated as the following simple GNEP in which the coupling

between leader’s and follower’s problems occurs only at the leader’s feasible

set level:

minimize
x,y

F (x, y) minimize
w

f(w)

s.t. (x, y) ∈ X × U s.t. w ∈ U

f(y) ≤ f(w) g(w) ≤ 0.

g(y) ≤ 0

(23)

Here we consider a particularly interesting example of SBP with a fixed lower

level solution set mapping.

Example 3.4 (see [27]) Let us consider the following SBP:

minimize
x,y

(x− 1)2 + y2

s.t. y ∈ S(x),

(24)

where S(x) denotes the solution set of the lower level problem

minimize
w

x2 w

w2 ≤ 0.

Note that the unique solution of (24) is (1, 0).

Interestingly, as shown in [27], solving the MPCC reformulation of SBP

(24) invariably leads to point (0, 0), which is not the solution of the original

problem. In this case, the MPCC reformulation fails to identify the set of

solutions of the SBP, due to the lack of regularity (Slater’s condition) in the

lower level feasible set (see [27]). Our GNEP, instead, in view of the previous
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result, effectively provides the unique solution of SBP (24). Indeed, it is worth

remarking that, in order to address SBP/OBP (2)/(1) by means of GNEP (8),

we do not need any convexity or regularity preliminary assumption. ⊓⊔

3.2 Strong Local Solutions

SBPs are inherently nonconvex (see [10]), so that multiple local optimal solu-

tions may occur. We say that (x∗, y∗) is a strong local solution of SBP (2) if

(x∗, y∗) ∈ W and there exists a neighborhood N∗ ∈ N (x∗) of x∗ such that

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W ∩ (N∗ × R
n2). (25)

Of course, global solutions are strong local solutions of SBP (2). As the fol-

lowing example clearly shows, even if the lower level problem is linear and the

upper level objective function is strongly convex, the resulting SBP may be

nonconvex. Moreover, in this case, strong local solutions that are not global

occur.

Example 3.5 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. −1 ≤ x ≤ 1

y ∈ S(x),

(26)

where S(x) denotes the solution set of the lower level problem

minimize
w

−w

2x+ w ≤ 2

0 ≤ w ≤ 1.
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Point
(
4

5
, 2

5

)
is the global solution of problem (26), while (0, 1) is a strong local

solution of SBP (26) that is not global. ⊓⊔

We point out that strong local solutions are obviously local solutions for SBP

(2). The converse, in general, is not true, see the following example.

Example 3.6 (see [9]) Consider the following SBP

minimize
x,y

x

s.t. −1 ≤ x ≤ 1

y ∈ S(x),

(27)

where S(x) denotes the solution set of the lower level problem

minimize
w

xw

0 ≤ w ≤ 1.

Point (0, 0) is a local solution that is not strong. Moreover, notice that the

unique global minimum (−1, 1) is an “easy” global solution of SBP (27) (see

Proposition 3.1). ⊓⊔

Strong local solutions can be considered as “asymmetric” local solutions, since,

in some sense, variables x play there a more important role. Interestingly, any

strong local solution of SBP (2), which is precisely what we seek for, leads to

a local solution of OBP (1), unlike generic local solutions of SBP (2) (see [9]).

Proposition 3.2 Let (x∗, y∗) ∈ W be a strong local solution of SBP (2).

Then x∗ is a local solution of OBP (1).

Proof Since (x∗, y∗) ∈ W and there exists a neighborhood N∗ ∈ N (x∗)

of x∗ such that F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W ∩ (N∗ × R
n2), we have
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miny{F (x∗, y) : y ∈ S(x∗)} = F (x∗, y∗) ≤ miny{F (x, y) : y ∈ S(x)} ∀x ∈

X ∩N∗. Hence, x∗ is a local solution of (1). ⊓⊔

We are now in a position to restate Theorem 3.1 (ii) in a local sense. Prelimi-

narily, let I(x, y) := {i ∈ {1, . . . ,m} : gi(x, y) = 0} be the active index set for

constraints g at (x, y).

Theorem 3.3 Let (x∗, y∗, w∗) be an equilibrium of GNEP (8). If, for every

i ∈ I(x∗, w∗), there exists a neighborhood N∗ ∈ N (x∗) of x∗ with gi(x,w
∗) ≤ 0

for all x ∈ N∗ such that there exists y with (x, y) ∈ W and F (x, y) ≤ F (x∗, y∗),

then (x∗, y∗) is a strong local solution of SBP (2).

Proof Since (x∗, y∗, w∗) is an equilibrium of GNEP (8), it satisfies relations

(9)-(12). Our aim is to show that (4) and (25) hold at (x∗, y∗).

As done in the proof of Theorem 3.1, we observe that (9), (11) and (12)

together imply that (x∗, y∗) satisfies (4): thus, (x∗, y∗) is feasible for SBP (2).

We recall that, by (11), we have g(x∗, w∗) ≤ 0; let, without loss of general-

ity, N∗ be such that gj(x,w
∗) ≤ 0 for all x ∈ N∗ and for every j /∈ I(x∗, w∗).

For any couple (x̄, ȳ) in W ∩ (N∗ × R
n2) ∩ L∗ (for the definition of sets

L∗ and (L∗)c, see (13) and (14)) we have, by assumptions, gi(x̄, w
∗) ≤ 0 for

every i ∈ I(x∗, w∗). Therefore, since we have also gj(x̄, w
∗) ≤ 0 for every

j /∈ I(x∗, w∗), in view of (11), we get w∗ ∈ U ∩K(x̄). Inclusions (x̄, ȳ) ∈ W

and w∗ ∈ U ∩K(x̄) entail (x̄, ȳ) ∈ V (w∗) and, in turn,

W ∩ (N∗ × R
n2) ∩ L∗ ⊆ V (w∗). (28)
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Thanks to (10) and (28), and noting that for every (x, y) ∈ W ∩ (N∗ ×R
n2)∩

(L∗)c we have F (x, y) > F (x∗, y∗), (25) holds at (x∗, y∗). Hence, (x∗, y∗) is a

strong local solution of SBP (2). ⊓⊔

We remark that, while Example 3.2 shows that a strong (local) solution of

SBP may not lead to an equilibrium of the corresponding GNEP, if conditions

in Theorem 3.3 are satisfied, an equilibrium of GNEP (8) always provides us

with a strong (local) solution of SBP (2).

Example 3.7 Let us consider again the problem in Example 3.5; the corre-

sponding GNEP is the following:

minimize
x,y

x2 + y2 minimize
w

−w

s.t. −1 ≤ x ≤ 1 2x+ w ≤ 2

y ≥ w 0 ≤ w ≤ 1.

2x+ y ≤ 2

0 ≤ y ≤ 1

(29)

Point (0, 1, 1) is an equilibrium of the convex GNEP (29). Moreover, it trivially

satisfies assumptions of Theorem 3.3, since constraint 2x+w ≤ 2 is not active

at (0, 1). ⊓⊔

4 Applications in Economics

Let us consider a market with two firms, each acting as a player. Firm 1

produces quantities q1 ∈ R
n1 of some goods, while firm 2 produces quantities

q2 ∈ R
n2 of other goods. Given private technological constraints Xν on the
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production level, each player ν = 1, 2 sets qν in order to maximize its own

profit

Πν(q
1, q2) := pν(q1, q2)T qν − cν(q

1, q2),

where pν and cν are inverse demand and cost functions, respectively. We as-

sume sets X1 and X2 to be convex, compact and nonempty, and functions Π1

and Π2 to be continuously differentiable and concave with respect to (q1, q2)

and q2, respectively. In this setting, two different classical perspectives can be

considered.

Horizontal model: both players decide their strategies qν simultaneously; we

assume that the players act rationally and have complete information, and

there is no explicit collusion; we model this case as a “standard” GNEP;

Vertical model: player 1 can anticipate player 2 by setting its variables q1 for

first; we model this case as an SBP.

We illustrate that, in order to model this system, one can also rely on our new

GNEP (8), which in some sense lies in between the horizontal and the vertical

models. We call our GNEP uneven horizontal model.

In the following subsections, considering different instances of the described

framework, we highlight the connections between the three models.
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4.1 Π2 not Depending on q1

Assume that Π2 does not depend on q1. From an horizontal point of view, the

system can be modeled by resorting to the following “standard” GNEP:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2.

In a vertical framework, one can rely to the classical (hierarchical) optimization

problem

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S,

where S denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2.

Finally, a new intermediate perspective can be given by the uneven horizontal

GNEP model

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2.

Π2(q
2) ≥ Π2(w

2)

Let us introduce the following sets of values:

ΠHorizontal
1 is the range of values of Π1 with respect to the solution set of the

horizontal model: given an equilibrium (q̃1, q̃2) of the horizontal model, we

have Π1(q̃
1, q̃2) ∈ ΠHorizontal

1
;
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ΠUneven
1

is the range of values of Π1 with respect to the solution set of the

uneven horizontal model: given an equilibrium (q̄1, q̄2, w̄2) of the uneven

horizontal model, we have Π1(q̄
1, q̄2) ∈ ΠUneven

1
;

ΠV ertical
1

is the optimal value of the vertical model.

By assumptions,ΠHorizontal
1

(see [38]) is compact and nonempty, whileΠUneven
1

and ΠV ertical
1 are singletons. Then, the connections between the three mod-

elistic perspectives can be expressed by the following straightforward relations

(see also Theorem 3.2):

max{ΠHorizontal
1 } = ΠUneven

1 = ΠV ertical
1 .

Remark 4.1 It should be remarked that ΠUneven
1 can be computed by simply

finding the optimal value Π∗

2 of the follower’s problem and then addressing

the optimization problem

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1, q2 ∈ X2

Π2(q
2) ≥ Π∗

2
.

4.2 Π2 not Depending on q1 and Players Sharing a Budget Constraint

In the same setting of subsection 4.1, let players also share a common re-

source. Thus, for every player, we consider the additional budget constraint

a1(q
1) + a2(q

2) ≤ b, where convex function aν (ν = 1, 2) indicates the re-

source consumption to produce quantities qν and scalar b > 0 is the amount

of resource available in the market. We assume set {q1 ∈ X1, q2 ∈ X2 :
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a1(q
1) + a2(q

2) ≤ b} to be nonempty. In an horizontal framework we have:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(q

2) ≤ b,

as for the vertical model we get:

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S(q1),

where S(q1) denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2

a1(q
1) + a2(w

2) ≤ b.

In the uneven horizontal vision, we have:

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b.

Π2(q
2) ≥ Π2(w

2)

In order to point out the relations between the models, in this case it is useful to

resort to the resource-directed parameterization introduced (for jointly convex

GNEPs) in [39] and in [31]. Let b1 ∈ B :=
{
b1 ∈ R : 0 ≤ b1 ≤ b, {q1 ∈ X1 :

a1(q
1) ≤ b1} 6= ∅ and {q2 ∈ X2 : a2(q

2) ≤ b − b1} 6= ∅
}
be the amount of
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resource given to player 1; on the other hand, b − b1 ≥ 0 turns out to be the

amount of resource available to player 2. We get the following parameterized

version of the horizontal model:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) ≤ b1 a2(q

2) ≤ b− b1.

As parameterized vertical model we have

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

a1(q
1) ≤ b1

q2 ∈ Sb1 ,

where Sb1 denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2

a2(w
2) ≤ b − b1.

And the corresponding parameterized uneven horizontal version is

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) ≤ b1 a2(w

2) ≤ b − b1.

a2(q
2) ≤ b− b1

Π2(q
2) ≥ Π2(w

2)
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As done for sets ΠHorizontal
1

, ΠUneven
1

and ΠV ertical
1

(see subsection 4.1), let

us define the following sets of values:

ΠHorizontal
1 (b1) is the range of values of Π1 with respect to the solution set

of the parameterized horizontal model: given an equilibrium (q̃1, q̃2) of

the parameterized horizontal model with b1 ∈ B, we have Π1(q̃
1, q̃2) ∈

ΠHorizontal
1

(b1);

ΠUneven
1 (b1) is the range of values of Π1 with respect to the solution set of the

parameterized uneven horizontal model: given an equilibrium (q̄1, q̄2, w̄2) of

the parameterized uneven horizontal model with b1 ∈ B, we haveΠ1(q̄
1, q̄2) ∈

ΠUneven
1

(b1);

ΠV ertical
1 (b1) is the optimal value of the parameterized vertical model with

b1 ∈ B.

Similarly to what observed in subsection 4.1, by assumptions, ΠHorizontal
1 (b1)

is compact and nonempty, while ΠUneven
1

(b1) and ΠV ertical
1

(b1) are single-

tons for every b1 ∈ B. In this case ΠHorizontal
1

is nonempty since at least a

variational equilibrium exists, see [34]. As for ΠUneven
1 , let us assume that

an equilibrium of the uneven horizontal model exists, thus making ΠUneven
1

nonempty. We observe that, by relying for example on Ichiishi’s theorem, the

latter assumption holds under mild conditions, see, again, [34] (and also Re-

mark 4.2); we do not go into details, since this aspect is immaterial to our

analysis. Finally, as in the previous case, ΠV ertical
1 is a singleton.

For all b1 ∈ B, we have

max{ΠHorizontal
1

(b1)} = ΠUneven
1

(b1) = ΠV ertical
1

(b1). (30)
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Furthermore, by Theorem 3.1, we get

sup{ΠHorizontal
1

} ≤ sup{ΠUneven
1

} ≤ ΠV ertical
1

. (31)

Interestingly, relations (30) and (31) can be linked to each other according to

the following Propositions 4.1 and 4.2.

Proposition 4.1

⋃

b1∈B

ΠV ertical
1

(b1) ∋ ΠV ertical
1

.

Proof Let (q̂1, q̂2) be a solution of the vertical model. With b̂1 := a1(q̂
1) ∈ B,

we have S(q̂1) = S
b̂1
. Then, in turn, since (q̂1, q̂2) is optimal for the parame-

terized vertical model with b1 = b̂1, the thesis follows. ⊓⊔

In view of the previous result and since ΠUneven
1

(b1) = ΠV ertical
1

(b1), we also

have

⋃

b1∈B

ΠUneven
1

(b1) ∋ ΠV ertical
1

. (32)

Proposition 4.2 If, for every solution (q̂1, q̂2) of the parameterized horizontal

model for b1 = b̂1 ∈ B, a1(q̂
1) = b̂1 and a2(q̂

2) = b− b̂1, then

sup
b1∈B

ΠUneven
1 (b1) = ΠV ertical

1 .

Proof Thanks to [39, Theorem 3.6],
⋃

b1∈B ΠHorizontal
1

(b1) = ΠHorizontal
1

, and,

in turn,

sup
b1∈B

max{ΠHorizontal
1

(b1)} = sup

{
⋃

b1∈B

max{ΠHorizontal
1

(b1)}

}

≤ sup

{
⋃

b1∈B

ΠHorizontal
1

(b1)

}
= sup{ΠHorizontal

1
}.
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Therefore, in view of (30) and (31),

sup
b1∈B

ΠUneven
1 (b1) ≤ ΠV ertical

1 ,

and the thesis follows by (32). ⊓⊔

We remark that assumptions in Proposition 4.2 simply require that, for every

choice of b1 ∈ B, the common resource is entirely consumed by the players.

Remark 4.2 As for the parameterized uneven horizontal game, ΠUneven
1

(b1)

can be computed, for every fixed b1 ∈ B, by relying again on the very simple

approach described in Remark 4.1. Furthermore, one can also calculate a single

value belonging to ΠUneven
1 by resorting to a similar procedure as the one just

illustrated (but, in general, with more than one leader/follower optimization).

It can be proved that this alternating optimization approach converges to an

equilibrium of the uneven horizontal game under mild standard conditions.

For the sake of brevity and since this kind of study goes out of the scope of

this work, we do not go into details.

4.3 Π2 Depending on Both q1 and q2, and Players Sharing a Budget

Constraint

Let us consider the general case in which Π2 depends also on q1 and players

share a common budget constraint as in subsection 4.2. Both the horizontal

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

1, q2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(q

2) ≤ b,
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and the uneven horizontal

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(q
1, w2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b,

Π2(q
1, q2) ≥ Π2(q

1, w2)

models are GNEPs. Clearly, in order to establish connections between the

vertical

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S(q1),

where S(q1) denotes the solution set of the lower level problem

maximize
w2

Π2(q
1, w2)

s.t. w2 ∈ X2

a1(q
1) + a2(w

2) ≤ b,

and the uneven horizontal models, one can resort to Theorems 3.1 and 3.3, or,

if there is no budget (shared) constraint, to Corollary 3.1. In any case (see the

definitions introduced in subsection 4.1), we have

sup{ΠHorizontal
1 } ≤ sup{ΠUneven

1 } ≤ ΠV ertical
1 .

Let us consider now the interesting case in which one wants to design the

market in order to easily compute a solution of the vertical model. For this to

be done, one can exploit Proposition 3.1: letting (q̂1, q̂2, ŵ2) be a solution of
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the following (jointly convex) GNEP

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(q
1, w2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b,

such that Π2(q̂
1, q̂2) ≥ Π2(q̂

1, ŵ2), (q̂1, q̂2) is an easy solution (see Proposition

3.1) of the vertical model. In the same spirit, an alternative and easier way to

compute such solutions makes use of variational inequalities: indeed, (q̂1, q̂2) ∈

T = {(q1, q2) ∈ X1 ×X2 : a1(q
1) + a2(q

2) ≤ b} such that, ∀ (q1, q2) ∈ T ,

∇Π1(q̂
1, q̂2)T

(
(q1, q2)− (q̂1, q̂2)

)
≤ 0, ∇q2Π2(q̂

1, q̂2)T
(
q2 − q̂2

)
≤ 0,

is an easy solution of the vertical model.

5 Conclusions

We introduce a new “uneven” horizontal GNEP model that takes into account

a hierarchical relationship between the players. Our analysis allows, as fare as

we are aware for the first time in the literature, to state new fruitful connections

between bilevel programs and GNEPs. Furthermore, in order to highlight the

significance of the new model, considering some applications in economics,

we show that our “uneven” horizontal GNEP, from a modelistic standpoint,

lies between the vertical (bilevel problem) and the pure horizontal (GNEP)

perspectives.
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