
PHYSICAL REVIEW B 95, 184106 (2017)

Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping
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With the aim of manipulating the mechanical properties of the recently discussed two-dimensional material
MXene, we investigate the effect of alloying. We consider substitutional doping of B and V at Ti and C sites of
Ti2C. Calculations of quantities such as in-plane stiffness, Young’s modulus, and critical strain through rigorous
first-principles technique establish that B doping is highly effective in improving the elastic properties. Oxygen
passivation of B-doped Ti2C in addition to improved elastic properties also exhibits reasonably high critical
strains making them ideally suited for applications in flexible devices. Our study further reveals the presence of
strong spin-phonon coupling in unpassivated Ti2C compounds which influences the mechanical behavior. The
damage of Ti2C in its magnetic ground state of A-type antiferromagnetic structure is found to occur at much
higher strain than that of the nonmagnetic Ti2C.
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I. INTRODUCTION

Two-dimensional (2D) solids have generated significant
interest and excitement recently. The most prominent example
is graphene [1]. Following this excitement, single layers of
h-BN, MoS2, and WS2 have been prepared by micromechan-
ical exfoliation of their three-dimensional (3D) counterparts
having van der Waals bonded layered structures [2]. The
fascinating properties of these 2D solids have made the
research on the discovery and study of novel 2D materials
a field of intense activity. Continuing on this effort, a new
family of 2D materials has been synthesized very recently by
the exfoliation of the layered ternary transition metal carbides,
known as MAX phases [3]. The MAX phases represent a
large family (≈ 60 compounds) of layered materials of early
transition metal carbides and/or nitrides glued together by an
A element. The general formula of MAX phases is Mn+1AXn

(n = 1, 2, 3), where M is usually an early transition metal,
A is an A-group element (mostly groups IIIA and IVA), and
X denotes carbon or nitrogen. Weaker relative strength of the
M-A bonds compared to M-X bonds allows selective etching
of the A layer by chemical means without disrupting the M-X
bonds. As a consequence the solid is exfoliated into 2D layers.
This new 2D family of compounds is termed MXene to denote
the removal of A elements from MAX, and to emphasis the
structural similarity with graphene [4,5]. Today, the MXene
family includes compounds such as Ti3C2, Ti2C, Nb2C, V2C,
Ti3CN, and Ta4C3 [6]. Since the n values for the existing
Mn+1AXn phases can vary from 1 to 3, the corresponding
single MXene sheets consist of 3, 5, or 7 atomic layers
for M2X, M3X2, and M4X3, respectively. In all cases, the
individual MXene layer thicknesses are less than 1 nm, while
their lateral dimensions can reach tens of microns. MXenes
have been discussed as potential candidates for Li-ion battery
anodes and as a hydrogen storage medium [7,8].
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For practical application of 2D materials, flexibility is an
issue to be considered which is related to mechanical prop-
erties, i.e., deformability under strain. A few computational
studies have been carried out [9–14] focusing on properties
of MXene, some specifically focused on elastic properties of
Tin+1Cn [13,14]. These calculations showed 2D Ti2C to be
less stiff compared to graphene or 2D h-BN, but stiffer to
MoS2 [13]. It was further shown that surface passivation by
termination such as by O improves the mechanical properties
in terms of increase in the critical strain value [13]. In this
context, it is pertinent to ask, to what extent can the mechanical
properties be tailored by solid solutions? Solid solutions in
MAX phase have been processed and characterized with
substitution on M, A, and X sites, giving rise to compounds
such as (Nb,Zr)2AlC, (Ti,V)2AlC, (Ti,Cr)2AlC, (Ti,Hf)2InC,
(Ti,V)2Sc, Ti3(Si,Ge)C2, Ti3(Sn,Al)C2, Ti2Al(C,N), and
Ti3Al(C,N)2 [3]. Similarly solid solutions in MXene have been
carried out both at M and X sites, giving rise to (Ti0.5Nb0.5)2C,
(V0.5Cr0.5)3C2, Ti3CNx compounds [15], making the option of
solid solution compounds a viable one.

In the present study we considered the substitution at both
M and X sites of MXene. Considering the specific case of Ti2C
we studied manipulation of the mechanical properties through
substitutional doping of B and V at C and Ti sites, respectively.
We have considered substitutional doping of Ti2C with no
surface termination as well as oxygen-terminated Ti2C, i.e.,
Ti2CO2. We carried out calculations of elastic properties such
as in-plane stiffness, Young’s modulus, Poisson’s ratios, and
critical strains. B doping is found to significantly improve
the elastic properties by reducing the in-plane stiffness
and the Young’s moduli, as well as extending the yield strength.
The origin of the reduction in stiffness is found to be due
to weakening of the Ti-B bond compared to the Ti-C bond,
reflected in softening of phonon modes. V doping, on the
other hand, is found to be much less effective in terms of
changing the mechanical properties, causing only a marginal
enhancement of in-plane stiffness and Young’s modulus. This
trend is found to hold good even for B-doped and V-doped
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O-terminated systems. These O-passivated compounds how-
ever are found to be materials with relatively high critical strain
values compared to their pristine counterparts. Thus B-doped
Ti2CO2, Ti2(C0.5,B0.5)O2, appears to be the best candidate
among the studied systems both in terms of reduced stiffness
and enhanced critical strain, as compared to pure Ti2C, thereby
showing the promise for improved performance in flexible
devices.

While the surface termination leads to nonmagnetic solu-
tion of MXene phases, the unpassivated Ti2C is magnetic.
We determined the ground state magnetic structure of pristine
Ti2C which turned out to be antiferromagnetic. Our calculation
revealed that the magnetism strongly influences the electronic
structure as well as the mechanical properties, due to strong
magnetostructural coupling.

II. METHODOLOGY

All DFT calculations on pure and B or V doped Ti2C or
Ti2CO2 have been performed using projector augmented wave
(PAW) potentials and the plane-wave based Vienna Ab initio
Simulation Package (VASP) [16]. The exchange-correlation
functional was chosen to be that of the generalized gradient
approximation (GGA) as implemented in the Perdew-Burke-
Ernzerhof (PBE-GGA) formalism [17]. The calculations have
been also verified using the local density approximation
(LDA). For Ti and V we have used [Ar]3p3d4s configurations
as valence configurations while for C, B, and O [He]2s2p

configurations were used as valence.
The monolayer of Ti2C was obtained from the bulk structure

of the MAX phase Ti2AlC by removing the A layer and
adding a vacuum of 20 Å along the z direction. The generated
quasi-2D monolayer of MXene-structured Ti2C consists of
a hexagonal layer of C atoms sandwiched between top and
bottom monoatomic hexagonal Ti planes. 50% of the C (Ti)
atoms were replaced by B (V) in order to generate the B-doped
(V-doped) Ti2C compounds. For 50% doping by V and C,
a two-formula-unit orthorhombic supercell was considered
(shown in the middle panel of Fig. 1), with one out of two
Ti atoms belonging to the top layer in the cell being replaced
by V, and out of two Ti atoms belonging to the bottom layer

FIG. 1. Left panel: One formula unit, hexagonal primitive cell
with three atoms, marked with solid lines in the lattice. The large and
small sized balls denote Ti and C atoms, respectively. The Ti atoms
belonging to top and bottom layers are colored differently. Middle
panel: Two formula units, orthorhombic cell with six atoms, marked
with dashed lines in the lattice. Right panel: The primitive cell of the
reciprocal lattice corresponding to the hexagonal cell (marked with
solid lines) and the orthorhombic cell (marked with dashed lines).

in the cell being replaced by V for (Ti,V)C. Similarly for
Ti2(C0.5B0.5) one out of two C atoms belonging to the middle
layer in the cell is replaced by B. The primitive hexagonal
cell of Ti2C is shown in the left panel of Fig. 1, while the
two-formula-unit orthorhombic cell, which is the unit cell for
doped compounds, is shown in the middle panel of Fig. 1.
Note that the orthorhombic cell has the X direction as the
zigzag or nearest-neighbor metal-C(B) bond direction and
the Y direction as the armchair or second-nearest-neighbor
metal-C(B) bond direction. For our stress-strain calculations,
for undoped as well as doped compounds we have considered
the two-formula-unit orthorhombic supercell, which allows
one to apply the uniaxial strains along the zigzag and armchair
direction. The right panel of Fig. 1 shows the Brillouin zone
(BZ) of the hexagonal primitive as well as orthorhombic
supercell. The structures were fully relaxed to obtain the
in-plane lattice parameters and the atomic positions until the
Hellmann-Feynman forces became less than 0.001 eV/Å.
The structural relaxations were carried out within the non-
spin-polarized PAW PBE-GGA+D3 formulation taking into
account van der Waals corrections [18]. Subsequent self-
consistent electronic structure calculations were carried out
on the optimized structures within the spin-polarized GGA
approach. In order to check the influence of the missing
correlation effect beyond GGA, calculations have been also
carried out with supplemented Hubbard U calculations within
the GGA+U [19] method with the choice of U = 4 eV and
JH = 0.8 eV at Ti (V) sites.

A 12 × 24 × 1 Monkhorst-Pack k-point mesh [20] in the
orthorhombic BZ and with an 800 eV plane-wave cutoff
was found to provide good convergence of the total energy.
The convergence of the energies was ensured using the
self-consistency criteria of 10−8 eV. In order to cross-check the
magnetic ground states in terms of total energy calculations of
different chosen magnetic configurations, calculations have
been repeated in terms of the all-electron method of the
linearized augmented plane wave (LAPW) with no shape
approximation to the potential and charge density, as imple-
mented in the Wien2k code [21]. For LAPW calculations,
we chose the APW+lo as the basis set and the expansion in
spherical harmonics for the radial wave functions was taken
up to lmax = 10. The charge densities and potentials were
represented by spherical harmonics up to lmax = 6. For the
number of plane waves, the criterion used was the smallest
muffin-tin radius (RMT) multiplied by Kmax (for the plane
wave) yielding a value of 8.0. The RMTs of Ti, V, C, B were
chosen to be to 1.15, 1.11, 0.90, 0.95 Å, respectively.

The mechanical properties of 2D MXenes under discussion
were studied using the stress-strain relation of the materials
upon application of biaxial and uniaxial tensions along zigzag
and armchair directions. The strain was applied by increasing
both the in-plane lattice parameters for the biaxial case and the
lattice parameters along the X or Y axis for uniaxial cases. The
structural coordinations were allowed to relax within the PAW
PBE-GGA scheme of calculations until the component of the
stress tensor along the orthogonal direction due to Hellmann-
Feynman forces was below 0.1 GPa. To avoid the influence of
the vacuum present in the periodic setup of our calculation, the
stress value was scaled by the factor h/d0, where h is the cell
height along the Z axis and d0 is the thickness of the material.
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Phonon calculations have been carried out within the
formulation of density functional perturbation theory (DFPT)
[22] as implemented in the Quantum Espresso (QE) code
[23]. For this purpose, the ground state geometries obtained
from VASP were reoptimized within QE using ultrasoft
pseudopotentials of Garrity, Bennett, Rabe, and Vanderbilt
[24]. The exchange-correlation functional was chosen to be
PBE-GGA, as in VASP calculations. The energy cutoffs for
the wave function and charge density were set to about 680 eV
and 6802 eV, respectively, and the energies were converged
to 10−10 eV. The ground state geometries and the electronic
structure obtained within QE are found to be in good agreement
with those obtained with VASP. For phonon calculations, the
dynamical matrices were computed on a 4 × 8 × 1 k mesh
of the BZ of the orthorhombic cell (cf. Fig. 1), and the
phonon band structures, obtained by Fourier interpolation
of the real-space force constants, were plotted along the
high-symmetry k points of the BZ. In order to have an idea of
phonon softening, the frequencies of the phonon modes at the
� point were computed for 50% B and V doped structures as
well as for the pure Ti2C.

III. RESULTS AND DISCUSSION

In order to study the doping effect on mechanical properties
of 2D Ti2C, we first focus on the electronic and magnetic
structures of pristine Ti2C as well as that of Ti2(C0.5,B0.5)
and (Ti,V)C. After having an understanding of the underlying
electronic and magnetic structures, we present results for
elastic properties such as in-plane stiffness, Young’s modulus,
and Poisson’s ratio, followed by the estimate of critical strains.
Since the MXene structures synthesized to date [15] are
terminated by either O, OH, and/or F, in the final part we
consider the doping effect on properties of O-terminated 2D
Ti2C.

A. Electronic and magnetic structures of pristine
and doped Ti2C

The DFT computed non-spin-polarized density of states
of Ti2C shows highly peaked structures at Fermi energy (EF ),
with density of states at EF estimated to be about 4.6 states/eV
[25]. Within the Stoner criterion and with a Stoner parameter
(I ) of Ti as 0.615 [26], this indicates the instability towards
ferromagnetism. Indeed the magnetic solution with a parallel
alignment of all Ti spins turns out to be lower in energy
compared to the nonmagnetic solution by about 100 meV/f.u.
with a magnetic moment of ≈ 0.5 μB at each Ti atom. While
the magnetism of unpassivated Ti2C has been reported in the
literature [27], to the best of our knowledge, the underlying
magnetic structure has not yet been clarified.

In the Ti2C structure each Ti atom is covalently bonded
with three nearest C atoms, while each C atom is bonded with
six nearest Ti atoms, three of which belong to the top layer
and three belong to the bottom layer. Thus in addition to the
ferromagnetic (FM) structure with a parallel alignment of all
Ti spins, three different antiferromagnetic (AFM) structures
are possible: (i) A-AFM: ferro ordering between intralayer
Ti’s and antiferro ordering among interlayer Ti’s, (ii) C-AFM:
antiferro ordering between intralayer Ti’s and ferro ordering

FIG. 2. Left panel: Comparison of calculated density of states
corresponding to FM (shaded area) and A-AFM (solid lines)
magnetic states plotted as a function of energy. The energy value
is measured with respect to GGA Fermi energy, EF . The alignment
and magnitudes of Ti and C moments in FM and A-AFM magnetic
configurations are shown in middle and right panels, respectively.

among interlayer Ti’s, and (iii) G-AFM: antiferro ordering
between intralayer Ti’s and between interlayer Ti’s. Total
energy calculations for FM, A-AFM, C-AFM, and G-AFM
show the A-AFM structure to be lowest in energy, followed
by FM structure, while C-AFM and G-AFM structures are
found to be lying significantly higher in energy, by more than
100 meV/f.u. The energy difference between the A-AFM and
FM structures turned out to be 32 meV/f.u. This suggests the
intralyer Ti-Ti coupling to be strongly ferromagnetic, while the
interlayer Ti-Ti magnetic interaction to be weaker compared to
intralayer coupling and of antiferromagnetic nature. Figure 2
shows the calculated total density of states of Ti2C in the FM
and lowest energy A-AFM magnetic structure. We find that
the nearly half-metallic nature of Ti2C in the FM structure
gets destabilized in the A-AFM structure, which becomes
semiconducting with an estimated band gap of ≈ 0.2 eV. To
the best of our knowledge, the semiconducting nature of bare
Ti2C has not been reported in the literature so far. The inclusion
of the correlation effect beyond GGA, through the Hubbard
U corrected mean-field theory of GGA+U , is found to keep
the qualitative trend unchanged with the A-AFM structure as
the lowest energy, though the magnetic moment of individual
Ti atoms is found to be enhanced to ≈ 0.7 μB . The calculated
magnetic moments in GGA and GGA+U have been listed in
Table I for the ground state A-AFM structure. The magnetic
moments for other magnetic configurations turn out to be
rather similar. Since the qualitative trend is found to remain
unchanged between GGA and GGA+U calculations, in the
following we present results obtained within the GGA scheme
of calculation.

TABLE I. Magnetic moments (in μB ) at metal (Ti/V) sites in
A-AFM phase, calculated within GGA and GGA+U . The moments
on C or B are found to be negligibly small.

GGA GGA+U

TC TVC TBC TC TVC TBC

Ti 0.54 0.39 0.48 0.71 0.34 0.74
V 0.47 1.85
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FIG. 3. Total and partial DOS projected to Ti-d , V-d , C-p, and B-p states in Ti2C (TC), Ti2(C0.5,B0.5) (TBC), and (Ti,V)C (TVC) plotted
as a function of energy. The comparison of the total DOS of TC (solid lines), TBC (shaded area), and TVC (dashed lines) is shown in the
topmost, left column panel, while the plots in other panels show the partial DOS projected either to Ti-d or V-d or C-p or B-p states.

We next consider the effect of substitutional doping at the
C site by B, and that at the Ti site by V, by considering
Ti2(C0.5,B0.5) and (Ti,V)C compounds. We checked the
tendency towards segregation versus homogeneous mixing by
comparing the energies of the B-rich and C-rich configurations
(Ti-rich and V-rich configurations) to that of a uniform mixing
of B and C (Ti and V) with alternating arrangement of B and
C (Ti and V). The later is found to be energetically stable by
about 30–40 meV/f.u. compared to the segregated structure.
Introducing B in the structure causes local deformation, with
compression in the out-of-plane direction and an in-plane
expansion. The reverse is found to be true for substitution
of Ti by V. See Fig. S1 in the Supplemental Material [28]
for the structural details. Even for the doped compounds the
A-AFM magnetic structure is found to be the lowest energy
magnetic configuration followed by FM structure while the
energies for G-AFM and C-AFM magnetic structures turn out
much higher, following the same trend as the undoped Ti2C.
The energy difference between A-AFM and FM structure
turned out to be ≈ 10 meV/f.u. for Ti2(C0.5,B0.5), and ≈
100 meV/f.u. for (Ti,V)C. Thus while the B doping somewhat
weakens the interlayer magnetic coupling, V doping enhances
it substantially.

Figure 3 shows the plot of the density of states (DOS) for
Ti2C, Ti2(C0.5,B0.5), and (Ti,V)C compounds for the lowest
energy A-AFM magnetic structure. Note B substitution at
the C site causes hole doping, while V substitution at the Ti
site causes electron doping in the system. This together with
local deformation makes the system metallic as seen from
the plot in the left, topmost panel in Fig. 3. As is evident
from the plots of partial density of states, presented in the
remaining panels of Fig. 3, for Ti2C, the Ti-d-C-p hybridized
bonding states appear in the energy range about −5.0 eV
to about −2.5 eV, separated by a gap of ≈ 1.0 eV from the
nonbonding Ti-d dominated states spanning an energy range
of ≈ −1.5 eV to ≈ +4 eV, and arising out of metal-metal
bonding. The higher lying states from ≈ 4 eV to 6 eV are
contributed by Ti-d-C-p hybridized antibonding states. The

Ti-d-B-p hybridized bonding states for Ti2(C0.5,B0.5) appear
in the energy range ≈ −3 eV to ≈ −0.5 eV, shifted with
respect to Ti-d-C-p hybridized bonding states, signaling the
difference in the strength of hybridization between C-p and
B-p with Ti-d. This in turn closes the energy gap between
nonbonding and bonding states in the case of Ti2(C0.5,B0.5)
which was observed for Ti2C. In the case of (Ti,V)C, the
gap between the nonbonding and bonding states persist with
nonbonding V-d dominated states spanning almost the same
energy range as that of Ti-d dominated nonbonding states.

B. Mechanical properties of pristine and doped Ti2C

We have studied the mechanical response of the pristine
and doped Ti2C under three different loading conditions of the
tensile strain: biaxial tension and uniaxial tensions along the X
and Y directions of the orthorhombic cell. We applied a series
of incremental tensile strains in the cell, and, as mentioned
already, simultaneously relaxed the other stress components
to zero which takes into account Poisson contraction under
uniaxial tension. In the following we first discuss the elastic
properties, and then the critical strains.

1. Stress-strain relations: Elastic properties

The calculated stress-strain curves for pristine Ti2C are
shown in Fig. 4. The left panel of the figure shows the
result for nonmagnetic (NM) Ti2C, while the right panels
show the comparison of the stress-strain curves between the
nonmagnetic Ti2C and Ti2C in the lowest energy magnetic
state of A-AFM. The elastic constants can be extracted by
linear fit to the stress-strain curves for small strain values. We
note that unlike graphene or h-BN, Ti2C is a two-dimensional
multiplanar hexagonal structure, and therefore quasi-2D. As
discussed in Ref. [29] from a structural point of view the
general 2D materials can be classified into four different
classes. According to that general classification, the MXene
family of compounds such as Ti2C belongs to class D, where
the constituent atoms are not the same and they belong

184106-4



MANIPULATING THE MECHANICAL PROPERTIES OF Ti . . . PHYSICAL REVIEW B 95, 184106 (2017)

FIG. 4. The stress-strain curve of the pristine Ti2C under biaxial
and uniaxial tensile strains along the zigzag (uniaxial-X) and armchair
(uniaxial-Y) directions. The left panel shows the results for NM
state of Ti2C. The top, middle, and bottom right panels show the
comparison for NM (open symbols) and A-AFM (shaded symbols)
states under biaxial, uniaxial-X, and uniaxial-Y loading of strain.

to different planes. Even though these structures have a
hexagonal top view, different atoms are found to be placed in
different planes. The high-fidelity analytical model developed
in Ref. [29] starting from equivalent elastic properties of
atomic bonds shows that the elastic properties of quasi-2D
materials belonging to class D needs to be described by
two Young’s moduli (E1 and E2) and two Poisson’s ratios
(ν12 and ν21), 1 and 2 directions referring to zigzag and
armchair directions. Graphene or h-BN belonging to class
A or class B, on the other hand, can be described by a
single Young’s modulus and a single Poisson’s ratio with
E1 = E2, and ν12 = ν21. Our DFT calculations show that for
our studied systems E1 and E2 differ by 3%–4% with E1 > E2,
in agreement with findings of a previous DFT study [13]. This
suggests that the Ti2C family of compounds is nearly isotropic,
as opposed dichalcogenides such as MoS2 [29]. For the ease
of comparison between different 2D materials we have quoted
E = (E1 + E2/2). Similarly, our calculations show that for
our studied systems ν12 and ν21 differ by 3%–5%. As in the
case of Young’s modulus, we have quoted ν = (ν12 + ν21)/2.

In the case of 2D materials, because of the reduced
dimensionality of these materials, it makes more sense to
define the in-plane stiffness, C, which is nothing but E2D

instead of the classical 3D Youngs modulus, as extensively
used in literature for different 2D materials [13,30]. This can
be obtained by fitting the initial slope of the stress-strain curve
under the condition of biaxial strain. The calculated in-plane
stiffness, Young’s modulus (E), and Poisson’s ratio (ν) are
listed in Table II. Comparing the stress-strain curves between
the NM state and A-AFM state, as presented in the right
column of the figure, we find that while the effect of magnetism
is relatively small in the linear regime or the harmonic region
of the strain, it has significant influence in the nonlinear or the
anharmonic region. The damage of the A-AFM phase occurs
at higher strain than that of the NM phase. This indicates the
presence of rather strong magnetostructural coupling, which
we will come back to in the following.

Comparison of stress-strain curves between pristine and
B/V-doped Ti2C is presented in Fig. 5. Focusing on the linear

TABLE II. Elastic constants of pure Ti2C and B-doped and V-
doped compounds. For comparison, the previously calculated elastic
constants of pure Ti2C [13], MoS2 [31], graphene [31], h-BN [32],
and SiC [32] are also listed. The in-plane stiffness constant (C) and
Young moduli (E) are in GPa, while the biaxial and uniaxial critical
strain values are given in %. To compare with elastic constant values of
other 2D materials, as given in Refs. [31,32], our calculated in-plane
stiffness constants are also quoted in N/m in parentheses.

Critical Strain

C E εbi
c1 ε1

c1 ε2
c1 ν

TC NM 704 (142) 577 8 13 14 0.366
AFM 715 (152) 586 11 18 18 0.292

TVC NM 738 (152) 590 6 14 15 0.399
AFM 742 (157) 596 4 11 11 0.360

TBC NM 515 (120) 426 5 11 11 0.365
AFM 521 (124) 432 10 16 14 0.301

Pure Ti2C Ref. [13] 610 9.5 18 17
MoS2 Ref. [31] 120.1 0.254
Graphene Ref. [31] 340.8 0.178
h-BN Ref. [32] 275.8 0.220
SiC Ref. [32] 163.5 0.300

regime a significant difference is found between the elastic
properties of Ti2C and Ti2(C0.5,B0.5). Extracted values of in-
plane stiffness, Young’s modulus, and for Poisson’s ratio for
Ti2(C0.5,B0.5) and (Ti,V)C are listed in Table II for the NM
state as well as for the A-AFM state. There is about 25%–27%
decrease in in-plane stiffness as well as in Young’s modulus
of Ti2(C0.5,B0.5) compared to that of the Ti2C. Substitutional
doping of V at the Ti site, on the other hand, is found to keep
the stiffness similar to the undoped Ti2C. The computed elastic
properties of other 2D materials, as reported in literature, are
also listed in Table II. On comparison, we find that undoped
Ti2C is much less stiff compared to graphene or h-BN, though
somewhat stiffer compared to MoS2, as discussed before. B
doping helps in reducing the in-plane stiffness, bringing it
down to the level of MoS2.

The appreciable reduction in elastic properties under
substitutional B doping can be rationalized by the weakening
of the Ti-B bond as compared to the Ti-C bond. Figure 6
shows the plot of the charge density which highlights the
relatively stronger covalency between Ti and C compared to
that between Ti and B. This is further corroborated by the
calculated phonon frequencies at the � point (cf. Fig. 7). Upon
B doping, the low-frequency phonon modes are found to shift
to the lower frequencies to a large extent, while only marginal
shifts are observed for V doping. The modes associated with
such low-frequency modes, as shown in the insets, correspond
to atomic displacements related to movement of Ti-C, Ti-B,
or V-C bonds. Since the phonon frequency (ω) is related
to the bond stiffness (κ) as ω ∝ √

κ , the softening of these
modes confirms the weakening of Ti-B bonds compared to
Ti-C bonds, as concluded from charge-density plots.

2. Critical strains

As mentioned above, the stress-strain curve is characterized
by a linear or harmonic region at small strain values, followed
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FIG. 5. The stress-strain curve of Ti2C, Ti2(C0.5,B0.5), and (Ti,V)C under biaxial and uniaxial tensile strains along the X and Y directions.
The top panels show the results for NM states, while the bottom panels show the results for the minimum energy A-AFM magnetic state.

by an anharmonic region where higher-order terms in strain
energy start to become important. The nonlinear mechanical
property is anisotropic [33,34], thereby giving rise to different
critical strain values in biaxial and different uniaxial tensions,
applied along the zigzag and armchair directions of the
orthorhombic supercell. Following the stress-strain plots, the
critical strain value, εc1, is characterized by the strain value
at which the stress attains its maximum value after which
the stress starts to fall and instability sets in. This provides a
measure of the highest withstanding of the strain. Table II lists
the values of εc1 for Ti2C, Ti2(C0.5,B0.5), and (Ti,V)C under
biaxial and uniaxial strains in the X and Y directions, referred
to as εbi

c1, ε1
c1, and ε2

c1, respectively. As is seen, magnetism has
a strong influence in the values of εc1, increasing it from 8%,
13%, and 14% to 11%, 18%, and 18% for Ti2C under biaxial,
uniaxial-X, and uniaxial-Y tensile strains. A similar trend is
generally observed for Ti2(C0.5,B0.5), though a slight decrease
has been observed for (Ti,V)C under biaxial strain.

Figure 8 shows the phonon dispersion plotted along the
high-symmetry points of the orthorhombic BZ for Ti2C in
NM and A-AFM ordered phase. As is evident from the
plot, inclusion of magnetism changes the phonon frequencies

FIG. 6. The plot of calculated charge density for Ti2(C0.5,B0.5).

The isosurface value is chosen at 0.065 e−/Å
3
. Left panel shows the

plot in an extended region, while the right panel presents zoomed
view focused on central Ti atom bonded with B and C. The stronger
covalency of the Ti-C bond compared to the Ti-B bond is visible.

significantly hinting towards the presence of strong spin-
phonon coupling. We find, in general, dispersions to be stiffer
for AFM Ti2C compared to NM Ti2C, especially at the vicinity
of the � point. Given the fact that the slopes of the dispersion
curves close to � can be expressed as the square root of the
elastic constant (or combinations) over density, this amounts
to increased stiffness of the Ti2C in the AFM phase compared
to NM. This is supported by the calculated elastic constants
(cf. Table II). The three lowest energy branches designate
three acoustic (A) branches corresponding to long-wavelength
vibrations, classified as LA, TA, and ZA (cf. Fig. 8), where L
stands for longitudinal polarization, T for in-plane transverse
polarization, and Z for out-of-plane transverse polarization.
For NM Ti2C, the ZA branch close to � shows the quadratic
dispersion, which is a characteristic feature of other 2D
materials as well, such as graphene [35]. This very soft mode,
which propagates parallel to the layer, corresponds to the

FIG. 7. Calculated optical phonon (� point) frequencies for Ti2C
(top panel), Ti2(C0.5,B0.5) (middle panel), and (Ti,V)C (bottom panel).
The arrows highlight the infrared (IR) active modes. The insets in the
right column show the atomic displacements corresponding to lowest
frequency modes in each case.
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FIG. 8. Phonon dispersion of Ti2C in the NM and ground state
magnetic structure of A-AFM.

layer-bending or ripple mode [36]. In AFM Ti2C the dispersion
corresponding to ZA modes changes considerably compared
to NM Ti2C suggestive of hardening of such layer-bending or
ripple mode. This justifies the observation that AFM Ti2C can
withstand significantly higher strain as compared to NM Ti2C
(cf. Fig. 4 and discussions therein).

The anharmonic region is followed by a plastic region
where irreversible structural changes occur in the system and
it transforms into a different structure after the yielding point.
The second critical point, εc2, is the yielding point and marks
the boundary between elastic and plastic regions. Up to εc2, the
system preserves the hexagonal symmetry and upon release of
strain the system reverts back to the unstrained structure. We
have estimated εc2 for the biaxial strain. For this purpose,
we plotted the strain energy (Es) as a function of biaxial
strain (ε). The strain energy is calculated by subtracting the
total energy of the strained system from the equilibrium total
energy, and related to stress, as σ = dEs

dε
. The Es versus ε plot

for NM Ti2C is shown in the left panel of Fig. 9. εc2 is given
by the strain value at which the strain energy drops, which
in the present case is estimated to be 27%. The structure at
this strain value is shown in the right panel of Fig. 9, which
demonstrates the deviation of the structure from the hexagonal

FIG. 9. Left panel: The variation of strain energy as a function
of the biaxial strain for Ti2C. The strain value at which the drop in
the strain energy occurs denotes the second critical point, εc2. Right
panel: The structure of Ti2C at the strain value of εc2.

FIG. 10. The density of states for O-passivated Ti2C (TCO) (top
panel), B-doped Ti2C (TBCO) (middle panel), and V-doped Ti2C
(TVCO) (bottom panel) plotted as a function of energy. The dominant
orbital characters have been marked.

symmetry at the yield point. We note that the presence of
defects and the temperature effect can reduce our estimated εc2

value significantly. Repeating the same exercise for B-doped
Ti2C, the value of εc2 was estimated to be ≈ 33% indicating
effectiveness of B doping in also enhancing the yield strength.
V doping, on the other hand, is found to reduce the εc2

value slightly with an estimated value of 26%. Introduction
of magnetism does not appear to have significant influence on
εc2 values.

C. Effect of O termination on mechanical properties

Finally we consider the effect of termination by O.
Three possible configurations of termination exist [27]: (i)
configuration I: O’s are located above the hollow site of three
neighboring C/B atoms and point to the Ti/V atoms in the
second Ti/V layer on both sides of MXene, (ii) configuration
II: O’s are located above the C/B atoms for both sides of
MXene, (iii) configuration III: configuration I on one side
and configuration II on the opposite side. Our total energy
calculations show configuration I to be the minimum energy
configuration among the three in conformity with previous
findings [27]. In the following, we thus considered only
configuration I as far as termination is concerned. The created
local strain due to substitutional doping of B at the C site and V
at the Ti site makes the average thickness of the O-passivated
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TABLE III. Elastic properties for pure Ti2CO2 (TCO) and B-
doped (TBCO) and V-doped (TVCO) cases. The in-plane stiffness
constant (C) and Young’s modulus (E) are in GPa while the critical
strain value (εc1) is given in %. The DFT calculated elastic constants
for TCO as given in Ref. [13] are also listed.

Critical Strain

C E εbi
c1 ε1

c1 ε2
c1 ν

TCO 745 570 23 28 26 0.303
TCO [13] 567 20 28 26.5
TVCO 794 560 22 9 28 0.340
TBCO 587 431 16 15 25 0.360

MXene larger by about 2% in the doped cases compared to
the undoped Ti2CO2. For the details of the structures see the
Supplemental Material [28].

We find that O termination leads to complete quenching
of magnetism in Ti2C, as reported already [37], as well as
in Ti2(C0.5,B0.5) and (Ti,V)C. Figure 10 shows the calculated
density of states for Ti2CO2, Ti2(C0.5,B0.5)O2, and (Ti,V)CO2.
We find that O-passivated Ti2C is semiconducting, as reported
earlier [27]. Hole (electron) doping by B (V) makes the system
metallic. The states lying low far from EF are primarily
Ti-d-(V-d-)O-p, Ti-d-B-p, or Ti-d-(V-d-)C-p bonding states,
while the dominant states close to EF are Ti-d (V-d) non-
bonding states. The high lying states away from EF are the
antibonding states arising out of Ti-d-(V-d-)O-p, Ti-d-B-p, or
Ti-d-(V-d-)C-p hybridization.

The stress-strain curves for Ti2CO2, Ti2(C0.5,B0.5)O2, and
(Ti,V)CO2 under biaxial, uniaxial-X, and uniaxial-Y tensile
strains are plotted in Fig. 11. We find the change in slope of the
linear regime in the B-doped compounds compared to that of
the undoped or V-doped compounds, similar to that observed
for the unpassivated compounds. The computed in-plane
stiffness, Young’s modulus, critical strain, εc1, for undoped
and doped compounds are tabulated in Table III. There are a
few observations to be made. First of all, we observe a general
increase in the εc1 value in the O-passivated compounds
compared to unpassivated compounds. For undoped Ti2C, this
increase is 45% to 100% in agreement with previous literature
[13]. For B and V doped compounds, this trend is maintained
except for uniaxial X for which a decrease is observed. For
B-doped Ti2C the increase in εc1 for biaxial and uniaxial Y
for O-terminated compound is about 60%−80% compared to
unpassivated compounds, while for V-doped Ti2C this increase

is very large, being 1.5 to 4.5 times. The second important
observation is that the trend of suppression of stiffness as well
as that of Young’s modulus in B-doped compounds compared
to the undoped compound continues to be the case even for
passivated compounds. The suppression of in-plane stiffness
and Young’s modulus is found to be 21%−26%, rather similar
to that found for the unpassivated compounds.

IV. CONCLUSIONS

The newest addition to the list of 2D materials with
fascinating properties is MXene compounds, which are 2D
counterparts of 3D hexagonal MAX compounds. To make
these materials commercially useful, an important issue is
the improvement of properties. Among the various possible
routes to do so, one is alloying with other elements. In the
present study we focus on the mechanical properties and study
the effect of alloying at both X and M sites of MXene. In
particular, we take up the representative case of Ti2C and
consider the solid solutions Ti2(C0.5,B0.5) and (Ti,V)C. Since
the Ti2C compounds synthesized so far are all reported to be
passivated, we also consider the effect of O passivation. Our
study concludes that B doping of O-passivated Ti2C compound
makes it a system with improved mechanical properties both
in terms of reduced stiffness (by about 27%) and extended
critical strain (by about 100%) compared to the pristine
unpassivated Ti2C compound. The microscopic origin of the
improved elastic properties upon B doping has been traced to
the weakening in the covalency of the Ti-B bond compared
to that of the Ti-C bond, a fact also supported by phonon
calculations.

Our study additionally reports an interesting observation in
terms of magnetism of unpassivated Ti2C, which to the best of
our knowledge has remained unexplored so far. We clarify the
magnetic ground state to be of A-AFM type having the Ti spins
between the top and bottom layers aligned in an antiparallel
manner. The stabilization of A-AFM structure drives the
semiconducting behavior of Ti2C as compared to previously
reported metallic or half-metallic behavior of Ti2C [25,38].
Interestingly we find that AFM order hardens the phonon
frequencies having the significant influence on the out-of-plane
layer-bending or rippling mode. This makes unpassivated Ti2C
in its ground state A-AFM structure withstand larger strain
compared to that of NM Ti2C. This in turn highlights the
significant role of spin-phonon coupling in magnetic MXene
materials, a topic which needs to be explored in the future.

FIG. 11. The stress-strain curve of Ti2CO2, Ti2(C0.5,B0.5)O2, and (Ti,V)CO2 under biaxial and uniaxial tensile strains along the X and Y
directions.
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