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Abstract. Quiver Grassmannians are projective varieties para-
metrizing subrepresentations of given dimension in a quiver repre-
sentation. We define a class of quiver Grassmannians generalizing
those which realize degenerate flag varieties. We show that each
irreducible component of the quiver Grassmannians in question is
isomorphic to a Schubert variety. We give an explicit description
of the set of irreducible components, identify all the Schubert vari-
eties arising, and compute the Poincaré polynomials of these quiver
Grassmannians.

Introduction

Let R• = R1 ⊆ R2 ⊆ · · · ⊆ Rn ⊆ V and Q• = Q1 ⊆ Q2 ⊆ · · · ⊆
Qn ⊆ V be two flags in a complex vector space V ' CN , such that
Qi ⊆ Ri for all i = 1, 2, · · · , n and such that they are both fixed by a
Borel subgroup B of GLN . In this paper we study varieties consisting
of flags E• in a partial flag manifold Fl(f1,f2,··· ,fn)(V ) of V such that
Qi ⊆ Ei ⊆ Ri for all i = 1, 2, · · · , n. By assumption, these subvarieties
of Fl(f1,f2,··· ,fn)(V ) are B–stable, hence they are unions of finitely many
Schubert varieties. We show that such varieties arise as suitable quiver
Grassmannians of equioriented type An–quivers and we call them Schu-
bert quiver Grassmannians (SQG for short). This observation allows,
on one side, to study the geometry of SQGs via representation theory
of quivers, and on the other side to study the geometry of such quiver
Grassmannians using the theory of Schubert varieties.

Recall that, if Γ is a finite quiver with set of vertices Γ0, and M is
a finite–dimensional complex Γ–representation, then for a dimension
vector e ∈ ZΓ0

≥0, the quiver Grassmannian Gre(M) is the (complex)
variety of e–dimensional sub–representations of M . In [3], the case
when Γ is Dynkin (i.e. an orientation of a simply–laced Dynkin di-
agram) and M = P ⊕ I – the sum of a projective and an injective
representation of Γ – was studied. More precisely, it was shown that
the varieties GrdimP (P ⊕ I) enjoy many nice properties. In particu-
lar, they are irreducible varieties endowed with the action of a large
abelian unipotent group, acting with an open dense orbit. An example
of such varieties is provided by the type A degenerate flag varieties [5],
[6]. In this case, Γ is the equioriented type A quiver, P is the direct
sum of all indecomposable projective representations and I is the di-
rect sum of all indecomposable injective representations. It was shown
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in [1], [2] that the above mentioned abelian unipotent group can be
identified with a certain subgroup of a Borel subgroup of the group
SLN (note that N here is much larger than the number of vertices of
the initial quiver). Moreover, the quiver Grassmannian itself can be
identified with a Schubert variety for SLN . The main reason why the
Borel subgroup appears is that the indecomposable direct summands
of M = P ⊕ I form a chain (that is, a totally ordered subset) with
respect to the partial ordering induced by the Auslander-Reiten quiver
of Γ.

This observation motivates the following more general definition: Let
Γ be a Dynkin quiver and let M1, . . . ,Mr be a set of indecomposable
representations forming a chain with respect to the partial ordering
induced by the Auslander-Reiten quiver. We call a direct sum M =⊕r

i=1M
⊕ai
i catenoid.

From now on let Γ be a quiver of equioriented type An. In this case,
there is a natural way to embed every quiver Grassmannian Gre(M)
into a flag manifold: consider a minimal projective resolution

0 // Q
ι // R // M // 0

of a representation M . Then Gre(M) is isomorphic (as a scheme)
to the variety Grf (Q ι //R) consisting of sub–representations of R of
dimension vector f := e+dimQ containing ι(Q) (see Proposition 2.1).
Since all the maps defining Q and R are injective, they induce flags
inside the vector space Rn, and hence the quiver Grassmannian Gre(M)
embeds into a flag manifold of Rn. We refer to this construction as the
natural embedding of a quiver Grassmannian inside a flag manifold.
Notice that Rn ' CN where N = a1 + · · · + ar is the number of
indecomposable direct summands of M. Our first result is the following.

Theorem 0.1. The natural embedding of Gre(M) inside a flag man-
ifold is stable under the action of a Borel subgroup BN ⊂ GLN if and
only if M is catenoid. In this case, Gre(M) is a SQG and every SQG
arises in this way. The irreducible components of SQGs are Schubert
varieties and can be explicitly described. The Schubert cells – the BN -
orbits – provide a cellular decomposition of Gre(M) and they are stable
under the action of Aut(M); in particular the points of a given cell are
all isomorphic as representations of Γ.

It is a natural question to ask when a SQG is a Schubert variety,
or, in other words, when it is irreducible. In general, a SQG can be
factored into a product of several SQGs associated with representations
of smaller quivers of equioriented type A. If this is not the case we say
that the SQG is simple (see Definition 3.3). It is hence enough to
answer this question for a simple SQG.

Theorem 0.2. Let M be catenoid. A simple SQG Gre(M) is a Schu-
bert variety if and only if there exists a projective representation P and



SCHUBERT QUIVER GRASSMANNIANS 3

an injective representation I such that M fits into an exact sequence
0 //P //M //I //0 and e = dimP . In this case, every point of the open
BN -orbit corresponds to a subrepresentation of M isomorphic to P .

Given a catenoid representation M and a dimension vector e, we
give a combinatorial description of the set of irreducible components of
Gre(M). For each irreducible component, we identify the partial flag
variety containing the corresponding Schubert variety, and the corre-
sponding Weyl group element. We show that the natural action of
Aut(M) on Gre(M) becomes, after the natural embedding into a flag
manifold, the action of the parabolic subgroup of GLN consisting of
all automorphisms of R which fix ι(Q) ⊆ R. We also compute the
Poincaré polynomials of SQGs.

The paper is organized as follows. In Section 1 we fix the notation
and introduce the objects of study. In Section 2 we provide a link to
the theory of Schubert varieties. In Section 3 we describe the irre-
ducible components of SQGs. In Section 4 we compute their Poincaré
polynomials.

1. The setup

1.1. General definitions. Let Γ = Γn := 1 // 2 // · · · // n
be an equioriented quiver of type An, for some fixed integer n ≥ 1.
The indecomposable representations for this quiver are parametrized
by (integer) subintervals [i, j] of the interval [1, n] (1 ≤ i ≤ j ≤ n). We
denote the corresponding indecomposable representation by M [i, j],
and we say that the support of M [i, j] is the interval [i, j]. Any rep-
resentation M can be written in an essentially unique way as M =⊕

1≤i≤j≤nM [i, j]⊕mij for some non–negative integers mij. We denote

the dimension vector d = (d1, · · · , dn) of M by dim M . We note that,
for every vertex i, the projective cover of the simple representation
Si = M [i, i] is Pi := M [i, n], and its injective envelope is Ii := M [1, i].
The Euler form 〈·, ·〉 : Zn × Zn → Z of Γ is defined by

〈e,d〉 :=
n∑
i=1

eidi −
n−1∑
i=1

eidi+1

for any e,d ∈ Zn.
The Auslander–Reiten quiver of Γ is described as follows: its vertices

are parametrized by pairs (i, j) for 1 ≤ i ≤ j ≤ n, and the arrows are
(i, j)→ (i− 1, j) and (i, j)→ (i, j − 1) (whenever the targets are well
defined).

We are interested in the special class of Γ–representations defined as
follows.

Definition 1.1. We say that a Γ–representation M is catenoid if all the
distinct indecomposable direct summands of M belong to an oriented
connected path of the Auslander–Reiten quiver of Γ.
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Recall that a subset p ⊂ {(i, j) : 1 ≤ i ≤ j ≤ n} is a Dyck path on
[1, n] if we can order the elements of p as (p1, . . . , pr) in such a way that
p1 = (1, 1), pr = (n, n), and if pm = (im, jm), then pm+1 = (im, jm + 1)
or pm+1 = (im + 1, jm). We say that a representation M is supported
on p if (i, j) ∈ p for each indecomposable direct summand M [i, j] of
M . The oriented connected paths of the Auslander-Reiten quiver of Γ
are precisely the Dyck paths (on [1, n]). It follows that M is catenoid
if and only if it is supported on a single Dyck path.

Another way to view this definition is the following. Consider the set
P([1, n]) of all connected sub-intervals of the interval [1, n] (those are
precisely the vertices of the Auslander-Reiten quiver of Γ). We endow
P([1, n]) with the following partial ordering:

(1.1) [i, j] ≤ [k, `] ks
def +3 i ≤ k and j ≤ `

For example, for n = 4, we have:

[1, 4] ≥
$$

[2, 4] ≥
$$

≥ ::

[1, 3] ≥
$$

[3, 4] ≥
$$

≥ ::

[2, 3] ≥
$$

≥ ::

[1, 2] ≥
$$

[4, 4]

≥ ::

[3, 3]

≥ ::

[2, 2]

≥ ::

[1, 1]

We have an induced partial order on the set of (isoclasses of) indecom-
posable Γ–representations:

(1.2) M [i, j] ≤M [k, `] ks
def +3 [i, j] ≤ [k, `].

Lemma 1.2. M [i, j] ≤ M [k, `] if and only if there exists an oriented
(connected) path from M [k, `] to M [i, j] in the Auslander–Reiten quiver
of Γ. In particular, a representation M is catenoid if and only if the set
of its distinct direct summands form a totally ordered set with respect
to the partial order (1.2).

Proof. Recall that the arrows of the Auslander–Reiten quiver are either
of the form (x, y) → (x − 1, y) (pointing NE) or (x, y) → (x, y − 1)
(pointing SE). Let (k, `) and (i, j) be two vertices. It is hence clear
that there is an oriented connected path from (k, `) to (i, j) if and only
if i = k − s and j = `− t for some 0 ≤ s ≤ k and 0 ≤ t ≤ `. In other
words, there is such a path from (k, `) to (i, j) if and only if [i, j] ≤ [k, `]
as desired. The rest follows. �

Example 1.3. Examples of catenoid representations are P ⊕ I, where
P is projective and I is injective. In [3, 4], the quiver Grassmanni-
ans GrdimP (P ⊕ I) were studied (see Example 3.9). Another class of
examples is provided by those representations which are direct sums
of one and two-dimensional indecomposables. The composition of the
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linear maps forming such representations is zero and hence they are
complexes (see Example 3.11).

2. Quiver Grassmannians associated with catenoid
representations

We retain notation of the previous section. So, Γ is an equioriented
quiver of type An. Given a Γ–representation M and a dimension vector
e ∈ Zn≥0 we denote by Gre(M) the projective varieties consisting of all
subrepresentations of M of dimension vector e (see [3, Section 2] for
details).

There is a natural way to realize Gre(M) as a closed subvariety of a
partial flag manifold, generalizing the idea of [1]. Let us describe this
realization. A minimal projective resolution of M is given by

(2.1) 0 // Q
ι // R

π // M // 0

where R =
⊕

1≤i≤n P
[M,Si]
i and Q =

⊕
1≤i≤n P

[M,Si]
1

i , and we use the
standard notation

[M,N ] := dim HomΓ(M,N) and [M,N ]1 := dim Ext1
Γ(M,N).

We note that the arrows of Γ act as injective linear maps on every
projective CΓ–module (recall that the category of Γ–representations is
equivalent to the category of modules over the path algebra of Γ, which
is the C–vector space generated by paths of Γ with obvious multiplica-
tive structure), and hence R is a partial flag R = R• := R1 ⊆ R2 ⊆
· · · ⊆ Rn−1 ⊆ Rn. Here the Ri’s are finite dimensional vector spaces of
dimension dimRi =: ri =

∑
k≤i[M,Sk] (for all i = 1, · · · , n). In partic-

ular the dimension N of the vector space Rn is precisely the number of
indecomposable direct summands of M . Similarly, the representation
Q is a partial flag Q = Q• := Q1 ⊆ Q2 ⊆ · · · ⊆ Qn−1 ⊆ Qn, where Qi

is a vector subspace of Ri of dimension dimQi =: qi =
∑

k≤i[M,Sk]
1

(for all i = 1, · · · , n). Note that the vector space Q1 is zero: indeed,
[M,S1]1 = 0 since S1 is injective.

For a vector space V of dimension m, and an increasing sequence
f = (f1, f2, · · · , fn) of non–negative integers 0 ≤ f1 ≤ f2 ≤ · · · ≤ fn we
denote by Flf (V ) the variety of partial flags U• := (U1 ⊆ U2 ⊆ · · · ⊆
Un ⊆ V ) in V with dim Ui = fi.

We consider the dimension vector f := e + dimQ, and the variety
Grf (Q ι //R) ⊂ Flf (Rn) of partial flags U• in Rn such that

(2.2) ιj(Qj) ⊆ Uj ⊆ Rj (j = 1, · · · , n).

The variety Grf (Q ι //R) is a closed subvariety of Flf (Rn), and the
following result provides the required closed embedding Gre(M) ⊂
Flf (Rn).
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Proposition 2.1. The map ϕ : Gre(M)→ Fl e+dimQ(Rn) defined by

ϕ(N) = (π−1(N))1 ⊆ (π−1(N))2 ⊆ · · · ⊆ (π−1(N))n

is a closed embedding. The image is the variety Grf (Q ι //R).

Proof. Since π is surjective, the map N 7→ π−1(N) is an isomorphism of
Gre(M) with the variety of all sub–representations of R which contain
Ker π = ι(Q), and whose dimension vector is f = e + dim Kerπ. It
is straightforward to verify that it is a closed embedding (see e.g. [8,
Section 3.2]). �

In the special case when the subvariety Grf (Q ι //R) of Flf (Rn) is
closed under the action of a Borel subgroup of GL(Rn), we call it a
Schubert quiver Grassmannian (SQG for short). The following result
provides a characterization of SQGs.

Theorem 2.2. The subvariety Grf (Q ι //R) ⊆ Flf (Rn) is closed under
the action of a Borel subgroup of GL(Rn) if and only if M is catenoid.

Proof. We show that M is catenoid if and only if there exists a complete
flag F• which is a refinement of both R• and Q•. In other words, M
is catenoid if and only if there exists an ordered basis {v1, · · · , vN}
of the vector space Rn such that Ri = span{v1, · · · , vri} and Qi =
span{v1, · · · , vqi} for every i = 1, · · · , n. This is equivalent to the
fact that both R• and Q• are fixed by the Borel subgroup of upper
triangular matrices, and hence the claim holds true.

If there exists such a basis, then the CΓ–module structure on R
is given naturally as follows: the underlying vector space is ⊕ni=1Ri

generated by the induced basis

B = {v(1)
1 , · · · , v(1)

r1
} ∪ {v(2)

1 , · · · , v(2)
r2
} ∪ · · · ∪ {v(n)

1 , · · · , v(n)
N }

and the action of the path (i → i + 1 → · · · → j) ∈ CΓ is given by

the canonical embedding sending v
(i)
k 7→ v

(j)
k . For every k = 1, · · · , N ,

let R(k) be the submodule generated by all the basis vectors v
(i)
k for

i = i(k), · · · , n, where i(k) is the minimal vertex of Γ such that k ≤ ri(k)

so that v
(i(k))
k is defined. Clearly, R(k) is a projective direct summand of

R isomorphic to Pi(k). Similarly, the module Q admits, by hypothesis,
a sub-basis B′ ⊂ B, and we define the submodule Q(k) similarly to
R(k). Then Q(k) is isomorphic to the projective Pj(k), where j(k) is

the minimal vertex such that k ≤ qj(k) so that v
(j(k))
k belongs to Q. By

construction, Q(k) embeds into R(k), and the quotient is M [i(k), j(k)−
1]. Hence all the indecomposable direct summands of M are of the form
M [i(k), j(k)− 1], for k = 1, · · · , N . By construction, we have

i(k) ≤ i(s) ks +3 k ≤ s ks +3 j(k) ≤ j(s).

It follows that, given two distinct direct summands M [i(k), j(k) − 1]
and M [i(s), j(s) − 1] of M such that i(k) < i(s), we have k < s, and



SCHUBERT QUIVER GRASSMANNIANS 7

hence j(k) < j(s). This proves that all the direct summands of M are
comparable with respect to the ordering (1.2), and hence M is catenoid
by definition.

Now suppose that, conversely, M =
⊕r

l=1M(l)⊕al is catenoid with
indecomposable direct summands M(1),M(2), · · · ,M(r) ordered so
that M(l) < M(l+1) in the partial order (1.2). Their tops are the sim-
ples S(i1), S(i2), · · · , S(ir) for some indices 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n,
respectively, and their socles are S(j1), S(j2), · · · , S(jr) for some ver-
tices 1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n, respectively. A minimal projective
resolution of M is obtained as the direct sum of the minimal projective
resolutions of the M(l)’s, namely

0 // Q(l)
ιl // R(l)

πl // M(l) // 0

where R(l) = Pi(l), Ql = Pj(l)+1 and ιl and πl are the canonical homo-
morphisms. For every vertex i, the vector space Ri is the direct sum of
the one–dimensional vector spaces R(1)i, R(2)i, · · · , R(ri)i, and hence

it admits a basis Bi given by v
(i)
1 , v

(i)
2 , · · · , v(i)

ri , where v
(i)
l is the gener-

ator of R(l)i. By construction, the vector subspace of Ri generated by

v
(i)
1 , v

(i)
2 , · · · , v(i)

qi is Qi. �

2.1. Group action on SQGs. Let M be a Γ–representation with
minimal projective resolution (2.1). Let e be a dimension vector for
Γ and consider the quiver Grassmannian Gre(M). The group Aut(M)
(consisting of Γ–automorphisms of M) naturally acts on Gre(M). On
the other hand, the closed subvariety Grf (Q ι //R) of Flf (Rn) (where
f := e + dimQ) is acted upon by the following group:

PM := {f ∈ Aut(R)| f ◦ ι = ι}
which consists of those automorphisms of R which fix ι(Q) ⊆ R. Since
Gre(M) and Grf (Q ι //R) are isomorphic under the morphism ϕ of
Proposition 2.1, it is natural to ask how those two actions are related.
The next result says that they coincide.

Proposition 2.3. There is an exact sequence of groups

1 // K // PM
Ψ // Aut(M) // 1

where K = 1R+HomΓ(R,Q) and it acts trivially on Gre+dimQ(Q ι //R).
In particular the action of PM on Gre+dimQ(Q ι //R) coincides with the
action of Aut(M) on Gre(M) under the isomorphism ϕ.

Proof. We define the map Ψ as follows: let f ∈ PM . For m ∈ M we
define Ψ(f)(m) := π ◦ f(π−1(m)). First of all, we notice that Ψ is
well–defined: indeed if r, r′ ∈ π−1(m) we have r − r′ ∈ ι(Q) and hence
π(f(r− r′)) = π ◦ f ◦ ι(r− r′) = π ◦ ι(r− r′) = 0. Moreover Ψ is easily
seen to be a homomorphism of groups. Let us show that Ψ is onto: let
g ∈ Aut(M), then, since π : R→M is a minimal projective resolution
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of M , there exists f ∈ Aut(R) such that g◦π = π◦f and thus g = Ψ(f).
Now, suppose that Ψ(f) = 1M ; this means that π ◦ f − π = 0 or in
other words: π(f − 1R) = 0 which means that f − 1R ∈ HomΓ(R,Q).

Let T ∈ Gre+dimQ(Q ι //R) (so that π(T ) ∈ Gre(M)), and let f ∈ P .
We need to check that

π ◦ f(T ) = Ψ(f)(π(T )).

This follows immediately from the definition of Ψ and concludes the
proof. �

We now turn back our attention to catenoids. LetM =
⊕r

l=1 M(l)⊕al

be catenoid. Assume that each M(l) is indecomposable and M(l) <
M(l+ 1) in the partial order (1.2). Let us denote by N = a1 + · · ·+ ar
the number of indecomposable direct summands of M and we num-
ber them as M1 ≤ M2 ≤ · · · ≤ MN (each Mi is isomorphic to some
M(l)). We fix an element φi,j ∈ HomΓ(Mj,Mi), 1 ≤ i, j ≤ N in each
homomorphism space (which is at most one–dimensional); we assume
that φi,j 6= 0 if HomΓ(Mj,Mi) is non zero. It is worth noting that φij
can be zero even if i < j. The elements φi,j, considered as elements of
HomΓ(M,M), span the vector space HomΓ(M,M). In particular, every
element

∑
i,j aijφij of Aut(M) comes from an N×N matrix

∑
i,j aijEij

(where Eij is the elementary matrix with 1 in place (i, j) and zero else-
where); so the whole automorphism group of M can be seen as the
image of the standard parabolic subgroup P ⊂ GLN with blocks of
sizes a1, . . . , ar. We thus obtain the homomorphism P → Aut(M). In
Proposition 2.5 we identify P with PM of Proposition 2.3. We will need
the following lemma.

Lemma 2.4. The group Aut(M) is generated by its Levi part L(M) =∏r
l=1 Aut(M(l)al) and its unipotent part U(M), generated by the one-

parameter subgroups exp(zφi,j, z ∈ C) such that Mi and Mj are not
isomorphic.

Proof. An automorphism of M is completely determined by restrictions
to the indecomposable summands. This implies the lemma. �

We now provide another characterization of catenoids. Let M =⊕r
l=1M(l)⊕al be a Γ–representation (not necessarily catenoid) with

minimal projective resolution (2.1) and indecomposable direct sum-
mands M1,M2, · · · ,MN . The automorphism group of R can be natu-
rally embedded into GLN as follows: We denote the projective cover
of each Mi by P i so that R = P 1 ⊕ P 2 ⊕ · · · ⊕ PN . Without loss
of generality, we can assume that P 1 ≤ P 2 ≤ · · · ≤ PN in the par-
tial order (1.2). We denote by ρij a generator of the vector space
HomΓ(P j, P i) and by Ω = {(i, j)| ρij 6= 0}. Then an element f ∈
Aut(R) has the form

∑
(i,j)∈Ω bijρij and we send this element to the ma-

trix
∑

i,j bijEij ∈ GLN . Notice that HomΓ(P j, P i) is one-dimensional
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for every 1 ≤ i ≤ j ≤ N , and hence the set of all matrices
∑

(i,j)∈Ω bijEij
form a parabolic subgroup of GLN that we denote by R (R contains
the Borel subgroup of upper triangular matrices). Under the isomor-
phism Aut(R) → R, we denote by P the image of the subgroup PM
defined above.

Proposition 2.5. Let M be a Γ–representation. Then M is catenoid
if and only if P is a parabolic subgroup of GLN . In this case P is
the standard parabolic subgroup of GLN associated with the partition
N = a1 + · · ·+ ar with Levi decomposition P = LU . The restriction of
Ψ to L is an isomorphism to L(M) and Ψ(U) = U(M).

Proof. We know from the proof of Theorem 2.2 that M is catenoid if
and only if the two flags R• and Q• are both stable under the action of
a same Borel subgroup BN ⊆ GLN . In particular, BN ⊆ R stabilizes
Q• and hence BN ⊆ P .

In the following, we use the notation βk := a1 + · · ·+ ak. Let P ′ be
the standard parabolic subgroup of GLN associated with the partition
N = a1 + · · ·+ ar. We define the map ξ : P ′ → Aut(R) which sends an

element g =
∑N

i,j=1 gi,jEi,j ∈ P ′ to the element ξ(g) :=
∑N

i,j=1 gi,jρi,j ∈
Aut(R). First of all, ξ is well–defined: indeed every pair (i, j) of the
form βk ≤ j < i < βk+1 (for some k = 1, 2, · · · , r−1) belongs to Ω since
P i = P j is the projective cover of M(k) and hence ρij 6= 0. Clearly,
ξ is an injective homomorphism of groups. We claim that its image is
PM . Indeed, we notice that the Borel subgroup BN ⊂ R ' Aut(R) is
contained in such image. It remains to show the following:

1 + ρij /∈ PM whenever (i, j) ∈ Ω and j ≤ βk < i for some k,

and

1 + ρij ∈ PM whenever (i, j) ∈ Ω and βk ≤ j < i < βk+1 for some k.

To show the first statement, we take a pair (i, j) ∈ Ω such that βl−1 <
j ≤ βl ≤ βk−1 < i ≤ βk for some l and k. Then P j is the projective
cover of M(l) and P i is the projective cover of M(k) and P i = P j. So
we have M(l) < M(k) and they have the same top. This means that
M(l) = M [r, s] and M(k) = M [r, t] for some r ≤ s < t. But then
Q(l) = M [s+ 1, n] and Q(k) = M [t+ 1, n] and hence the morphism ρij
does not stabilize ι(Q) since [Q(k), Q(l)] = 0.

To show the second statement we take a pair (i, j) ∈ Ω such that
βk ≤ j < i < βk+1. In this case P i = P j and Qi = Qj and hence ρij
stabilizes ι(Q).

To conclude the proof we notice that the map Ψ of Proposition 2.3
sends 1 + ρij ∈ PM to 1 + φij ∈ Aut(M). �

Remark 2.6. From now on we will freely use Propositions 2.3 and 2.5
and we will not distinguish between the action of BN on Grf (Q ι //R)
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and the action of Aut(M) on a SQG Gre(M). We will freely say that
BN acts on Gre(M) and that Aut(M) acts on Grf (Q ι //R).

3. Irreducible components of SQGs

By definition, a SQG is, in paticular, a closed B–stable subvariety of
a partial flag variety, and hence its irreducible components are Schubert
varieties. In this section we describe these Schubert varieties.

Let V be an N -dimensional vector space with a basis v1, . . . , vN . We
consider the algebraic group SLN acting on V , the Borel subgroup BN

consisting of upper-triangular matrices, and the maximal torus TN of
diagonal matrices. To the vector space V we attach the representation
V of An such that Vi = V , and such that all the maps are identity
maps (in other words, V ' P⊕N1 ).

Recall the projective resolution (2.1) of M . We note that the pro-
jective representation R is a sub–representation of V. Let dimR =
(r1, . . . , rn) and dimQ = (q1, . . . , qn). Let W = SN be the Weyl group
of SLN . Given a dimension vector e, we set f = e + dimQ, so that
fa = ea + qa for all a = 1, 2, · · · , n.

Definition 3.1. An element w ∈ SN is called (M, e)–compatible if

{1, . . . , qa} ⊂ w({1, . . . , fa}) ⊂ {1, . . . , ra} for all 1 ≤ a ≤ n.

We denote by W (M, e) ⊂ SN the set of all (M, e)–compatible elements.

Recall that, to an element w ∈ SN , one attaches the TN -fixed point
p(w) ∈ Fle+dimQ(V ) which is the flag whose i–th vector space is
span {vw(1), · · · , vw(i)}. Two elements w1 and w2 induce the same TN -
fixed point (that is, p(w1) = p(w2)) if and only if

w1({1, . . . , fa}) = w2({1, . . . , fa}), for all a = 1, . . . , n.

In this case we say that w1 is equivalent to w2. Let us pick one element
of minimal length in each equivalence class and denote this set by
W 0(M, e).

We define a partial order on W 0(M, e). For 1 ≤ a ≤ n, let

w({1, . . . , fa}) = {ka1(w), . . . , kafa(w)} and ka1(w) < · · · < kafa(w).

Then we say that w1 ≤ w2 if kai (w1) ≤ kai (w2) for all 1 ≤ a ≤ n,
1 ≤ i ≤ fa. Note that this order depends on the equivalence classes of
w1 and w2, but not on the elements themselves.

Lemma 3.2. We have w1 ≤ w2 if and only if p(w1) ∈ BN p(w2).

Proof. The partial order put on W 0(M, e) is nothing but the Bruhat
order and the the claim is hence a well–known fact in the theory of
Schubert varieties (see e.g. [7, Section 10.5]). �
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Let S(M, e) ⊂ W 0(M, e) be the set of maximal elements in this
poset. Lemma 3.2 implies that the SQG Gre(M) is irreducible if and
only if the set S(M, e) consists of a single element. This case can be
described explicitly in the following way. First of all, we perform some
reductions: If ea > dimMa for some vertex 1 ≤ a ≤ n, then our quiver
Grassmannian Gre(M) is empty. If ea = dimMa or ra ≤ qa+1 (this
is equivalent to the fact that the map Ma → Ma+1 is zero), the SQG
factors into the product of two quiver Grassmannians (again SQGs) for
smaller equioriented type A quivers. Similarly, this is the case when
ea = 0 for some vertex a.

Definition 3.3. A SQG Gre(M) is called simple if 0 < ea < dimMa

and ra > qa+1 for all vertices a.

It is clear from the remark above that every irreducible SQG is a
product of simple irreducible SQGs (associated with quivers with a
smaller number of vertices).

Theorem 3.4. A simple SQG Gre(M) is irreducible if and only if
ra − ea ≥ ra+1 − ea+1 for all vertices a.

Proof. Gre(M) is irreducible if and only if S(M, e) consists of a single
element. We note that this happens if and only if there exists an
element w ∈ W (M, e) such that

w({1, . . . , fa}) = {1, . . . , qa} ∪ {ra, ra − 1, . . . , ra − ea + 1}

for every vertex a. This is equivalent to ra − ea ≥ ra+1 − ea+1 for all
a. Indeed, since ra+1 > fa+1, the inclusion w({1, . . . , fa}) ⊃ {ra, ra −
1, . . . , ra − ea + 1} implies ra − ea + 1 ≤ ra+1 − ea+1 + 1. �

Corollary 3.5. If a simple SQG Gre(M) is irreducible, the dimension
of Gre(M) is equal to the Euler form 〈e,dimM − e〉, and there exists
a short exact sequence

0 // P // M // I // 0

where P is projective, I is injective, and e = dimP .

Proof. Assume that ra − ea ≥ ra+1 − ea+1 for all a = 1, 2, · · · , n − 1,
so that S(M, e) consists of a single element w. We show that the
point p(w) of Flf (Rn) corresponds to a projective sub–representation
P of M (under the map Ψ of Proposition 2.1), such that the quotient
M/P is injective. By hypothesis, ea ≤ ea+1 for all a, and hence there
exists a projective representation P of dimension vector e. We have
ra−ea ≥ ra+1−ea+1 > fa+1−ea+1 = qa+1, and hence ea+qa+1 < ra; this
implies that P embeds into M . To show that the quotient is injective,
we note that ra − ea − qa ≥ ra+1 − ea+1 − qa+1.
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Finally, the dimension of Gre(M) is equal to the dimension of the
corresponding Schubert variety. This dimension is equal to

n∑
a=1

(ea − ea−1)(ra − fa) =
n∑
a=1

(ea − ea−1)(da − ea) = 〈e,dimM − e〉,

with the convention that e0 := 0. �

Corollary 3.6. If a simple SQG Gre(M) is irreducible, then ea ≤ ea+1

and da − ea ≥ da+1 − ea+1.

The following result provides a representation–theoretic interpreta-
tion of Theorem 3.4 and shows that the necessary condition for irre-
ducibility of a quiver Grassmannian given in [9, Theorem 5.1] is also
sufficient for simple SQGs.

Corollary 3.7. A simple SQG Gre(M) is irreducible if and only if
[M,U ] ≤ 〈e,dimU〉 for every non–injective indecomposable represen-
tation U.

Proof. In view of Theorem 3.4, Gre(M) is irreducible if and only if

(3.1) ra − ea ≥ ra+1 − ea+1 for all a = 1, 2, · · · , n− 1,

where (r1, · · · , rn) is the dimension vector of the projective cover R of
M . Since π : R → M is surjective, we have [M,U ] ≤ [R,U ] for all U
and it is hence enough to prove that the conditions (3.1) are satisfied
if and only if the conditions

(3.2) [R,U ] ≤ 〈e,dimU〉 for all indecomposable non–injective U

are satisfied. Let U = M [i, j] for some 2 ≤ i ≤ j ≤ n. We have
[R,U ] = rj − ri−1 and 〈e,dimU〉 = ej − ei−1. If (3.1) holds, then
ri−1− ei−1 ≥ ri− ei ≥ · · · ≥ rj − ej, and hence (3.2) holds. Conversely,
if (3.2) holds, then, by choosing U = Sa+1 (a = 1, 2, · · · , n− 1), we get
ra+1 − ra ≤ ea+1 − ea, and hence (3.1) holds. �

Assume that Gre(M) is irreducible and hence isomorphic to a Schu-
bert variety. We determine explicitly the (unique) Weyl group element
in S(M, e). Denote by si = (i, i + 1) for i = 1, . . . , N − 1 the sim-
ple reflections in the symmetric group SN . For 1 ≤ a ≤ n − 1 let
ma := (da − ea)− (da+1 − ea+1). We define a permutation πa as

(sqa+ma . . . sqa+1) . . . (sqa+ea+ma−2 . . . sqa+ea−1)(sqa+ea+ma−1 . . . sqa+ea).

For example, for a = n we have

πn = (srn−en . . . sqn+1) . . . (srn−2 . . . sqn+en−1)(srn−1 . . . sqn+en)

We note that the number of factors of πa is equal to eama (and equal
to en(dn − en) for πn).

Proposition 3.8. Whenever a simple SQG Gre(M) is irreducible, the
unique element of S(e,M) is equal to w = πnπn−1 · · · π2π1.
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Proof. We need to verify that

w({1, . . . , qa + ea}) = {1, . . . , qa} ∪ {ra − ea + 1, . . . , ra},

and that w is the element of minimal length with this property. The
first statement is proved by a direct computation (starting from a = n
and descending to a = 1), and the second statement follows from the
equality

n∑
a=1

eama = 〈e,d− e〉.

�

Example 3.9 (Degenerate flag varieties). Let us consider the catenoid
M which is the direct sum of all the indecomposable projective and the
indecomposable injective Γn–representations:

M := P1 ⊕ P2 ⊕ · · · ⊕ Pn ⊕ I1 ⊕ I2 ⊕ · · · ⊕ In.

Given the dimension vector e = (1, 2, · · · , n), the quiver Grassman-
nian Gre(M) is isomorphic to the sln+1–degenerate flag variety [6, 3]
and it is isomorphic to a Schubert variety Xσn [1] for a permutation
σn ∈ S2n. Let us show that σn coincides with the word w = wn of
Proposition 3.8 and hence the main result of [1] becomes a particular
case of Theorem 3.4 and Proposition 3.8. First of all, M is clearly
catenoid, R = P n+1

1 ⊕ P2 ⊕ · · · ⊕ Pn and Q = P2 ⊕ · · · ⊕ Pn so that
ra = n+a, qa = a−1 and ma = 1 for all a = 1, 2, · · · , n. In particular,
ra− ea = n for all a, and hence Gre(M) is an irreducible SQS (in view
of Theorem 3.4). We have πa = sasa+1 · · · s2a−1 ∈ S2n which is the
permutation given by

πa(k) =

 k if k /∈ {a, · · · , 2a}
a if k = 2a
k + 1 if k ∈ {a, · · · , 2a− 1.}

By definition,

w = wn = (snsn+1 · · · s2n−1)(sn−1sn · · · s2n−1) · · · (s3s4s5)(s2s3)s1.

We claim that

(3.3) wn(r) =

{
k if r = 2k
n+ 1 + k if r = 2k + 1.

To prove (3.3) one can proceed by induction on n ≥ 1, by noting
that wn = πnwn−1 (after identifying S2n−2 with the subgroup of S2n

generated by s1, s2, · · · , s2n−3). Formula (3.3) shows that wn is the
permutation σn found in [1].

Now we consider the general case of reducible SQGs.
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Theorem 3.10. The TN–fixed points of a SQG Gre(M) are labelled by
the elements of W 0(M, e); the quiver Grassmannian Gre(M) admits
a cellular decomposition, the cells being the BN–orbits of the TN–fixed
points. The irreducible components of Gre(M) are parametrized by the
elements of S(M, e).

Proof. Since Gre(M) is BN–stable, it is equal to a union of several
Schubert varieties. Therefore, a cellular decomposition is provided by
the BN–orbits of the TN -fixed points. Now it suffices to use Lemma
3.2. �

Example 3.11. Let M = M [1, 1] ⊕
⊕n−1

i=1 M [i, i + 1] ⊕ M [n, n]. In
particular, dimM = (2, . . . , 2). Let e = (1, . . . , 1). Then N = n + 1,
qa = a − 1, ra = a + 1, and the number of irreducible components
of Gre(M) (that is, the number of elements in S(e,M)) is the n-th
Fibonacci number. Indeed, assume that w ∈ S(e,M). Then, for all a,
there are two possibilities: either w({1, . . . , a}) = {1, . . . , a} with no
additional restrictions on w({1, . . . , a+ 1}), or

w({1, . . . , a}) = {1, . . . , a−1}∪{a+1}, w(1, . . . , a+1) = {1, . . . , a+1}.

To any such w we attach a length n sequence of units and zeroes, where
0 appears if w({1, . . . , a}) = {1, . . . , a}, and 0 appears otherwise. Now
the w ∈ S(e,M) are labelled by the length n sequences such that the
pair (1, 1) is forbidden. The number of such sequences is exactly the
Fibonacci number. We note that the irreducible component attached
to such a sequence is isomorphic to the product of several copies of P1,
and the number of copies is the number of 1’s in the sequence.

4. Poincaré polynomials of SQGs

Let p be a Dyck path on [1, n], and let M =
⊕r

l=1M(pl)
m(pl) be a

representation supported on p. The aim of this section is to compute
the Poincaré polynomial in singular homology of the quiver Grassman-
nian Gre(M).

Lemma 4.1. Assume that all the indecomposable direct summands of
M are isomorphic, that is, there exists a unique p = (a, b) ∈ p such that
m(p) > 0. Then Gre(M) is empty unless ei = 0 for i < a, i > b and
ea ≤ · · · ≤ eb. If Gre(M) is non-empty, then the Poincaré polynomial
of Gre(M) is given by the q-multinomial coefficient

PGre(M)(q) =

(
m(p)

ea, . . . , eb

)
q

Proof. If ei = 0 for i < a, i > b and ea ≤ · · · ≤ eb, then the quiver
Grassmannian is isomorphic to the partial flag variety Flea,...,eb(Cm(p)).
The cells for the standard cellular decomposition are labeled by collec-
tions of subsets K• = (Ka ⊂ · · · ⊂ Kb) of a set of cardinality m(p) such
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that #Ki = ei; each cell is the orbit of the Borel subgroup through the
T -fixed point defined by the sets K•. �

Now let us consider the general case. We want to stratify Gre(M)
in such a way that each stratum is a fibration over a product of partial
flag varieties, with fibers being affine spaces. Namely, we decompose e
as a sum e = e(1) + · · ·+ e(r) in such a way that

(i) e(l) is supported on pl, that is, if pl = (il, jl), then e(l)a = 0
unless il ≤ a ≤ jl,

(ii) e(l)a ≤ · · · ≤ e(l)b ≤ m(pl) for all vertices a ≤ b.

Then we obtain an embedding

(4.1)
r∏
l=1

Gre(l)(M(pl)
⊕m(pl)) ⊂ Gre(M).

We denote the image of this embedding by Π(e(1), . . . , e(r)).
Now we consider the subgroups U(M), L(M) ⊂ Aut(M) (see Lemma

2.4). We recall that the groups U(M) and L(M) generate Aut(M), and
that Π(e(1), . . . , e(r)) is L(M)-invariant.

Theorem 4.2. We have

Gre(M) =
⊔

U(M)Π(e(1), . . . , e(r)),

where the disjoint union is taken over all possible sequences e(1), . . . , e(r)
satisfying (i) and (ii). Moreover, the map

U(M)Π(e(1), . . . , e(r))→ Π(e(1), . . . , e(r)), gx 7→ x

is an affine space fibration.

Proof. We need to prove that the union
⊔
U(M)Π(e(1), . . . , e(r)) cov-

ers the whole quiver Grassmannian, and that the map above is indeed
a fibration.

To prove the first claim, consider the embedding ϕ : Gre(M) →
Fle+dimQ(Rn) of Proposition 2.1, its image being the BN–stable subva-
riety Gre+dimQ(Q ι //R). Any point of this image lies in the BN -orbit
of some TN -fixed point γ of Fle+dimQ(Rn). We note that γ belongs to
some Π(e(1), . . . , e(r)). Since Π(e(1), . . . , e(r)) is L(M)-invariant, and
BN is generated by L(M) and U(M), the first claim follows.

Now we consider the map

U(M) Π(e(1), . . . , e(r))→ Π(e(1), . . . , e(r)), gx 7→ x.

We fix a TN–fixed point γ ∈ Π(e(1), . . . , e(r)) and write γ =
∏r

l=1 γ(l)
according to the factors of (4.1). There exists an open cell C(l) in each
Gre(l)(M(pl)

⊕m(pl)), containing γ(l). Now it is easy to see that the orbit
U(M)C(l) is canonically isomorphic to the product

C(l)× HomΓ(γ(l),
⊕
s<l

M(ps)
⊕m(ps))),
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where γ(l) is considered as a representation of Γ. �

For 1 ≤ l ≤ r we define β(l)i =
∑

s<lm(ps) dimM(ps)i.

Lemma 4.3. The dimension D(e(1), . . . , e(r)) of the fiber of the map
U(M)Π(e(1), . . . , e(r))→ Π(e(1), . . . , e(r)) is equal to

r∑
l=1

n∑
i=1

(e(l)i − e(l)i−1)β(l)i.

Proof. We fix a vector u in the vector space (M(pl)
⊕m(pl))i. We note

that β(l)i is the dimension of the orbit U(M)u. This implies the claim
of the lemma. �

Corollary 4.4. We have the following formula for the Poincaré poly-
nomial of the SQG Gre(M):

PGre(M)(q) =
∑

e(1),...,e(r)

D(e(1), . . . , e(r))
r∏
l=1

(
m(pl)

e(1), . . . , e(l)

)
q
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