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 
Abstract—Goal: this mini-review aims to highlight recent 

important aspects to consider and evaluate when passive Brain-
Computer Interface (pBCI) systems would be developed and used 
in operational environments, and remarks future directions of 
their applications. Methods: Electroencephalography (EEG)-based 
pBCI has become an important tool for real-time analysis of brain 
activity, since it could potentially provide, covertly – without 
distracting the user from the main task - and objectively – not 
affected by the subjective judgement of an observer or the user 
itself - information about the operator cognitive state. Results: 
different examples of pBCI applications in operational 
environments and new adaptive interface solutions have been 
presented and described. In addition, a general overview 
regarding the correct use of machine learning techniques (e.g. 
which algorithm to use, common pitfalls to avoid, etc.) in the pBCI 
field has been provided.  Conclusion: despite recent innovations on 
algorithms and neuro-technology, pBCI systems are not 
completely ready to enter the market yet, mainly due to limitations 
of the EEG electrodes technology, and algorithms reliability and 
capability in real settings. Significance: high complexity and safety 
critical systems (e.g. airplanes, ATM interfaces) should adapt their 
behaviors and functionality accordingly to the user’ actual mental 
state. Thus, technologies (i.e. pBCIs) able to measure  in real-time 
the user’s mental states would result very useful in such “high 
risk” environments to enhance human machine interaction, and so  
increase the overall safety.  
 

Index Terms—Human-Machine Interaction (HMI), Adaptive 
Automation, Machine learning techniques, Mental states, 
operational environments, passive Brain-Computer Interface 
(pBCI). 

I. INTRODUCTION 

N several complex and safety-critical domains, such as 
aviation, health-care systems and self-driving cars, the role of 

humans has shifted from total manual control to passive 
monitoring of autonomous systems operating together, such as 
autopilots (in aircraft, cars, and other means of transport), 
automated collision avoidance systems (in air-traffic control 
and driving), automated production cycles (in industry and 
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energy plants), and so on. The increasing complexity of 
automation makes human monitoring and intervention a 
difficult task, especially when humans are overwhelmed with 
multiple sources of information on the same perceptual 
channels, e.g., two visual stimuli. In addition, new technology, 
when introduced poorly (i.e. inadequate training of the 
operator), could induce overload conditions in the operator, and 
consequently increase the risk of errors commission [1]. In the 
recent years, it has been explored the possibility to quantify in 
real-time the actual cognitive state (e.g. workload, attention) of 
the operator during his/her working activity by using passive 
Brain-Computer Interface (pBCI) technologies. Such 
information could be then used to change/adapt the behavior of 
the interface that the user is interacting with, in order to avoid, 
or at least mitigate error commission risk, and more in general 
to improve Human Machine Interaction (HMI).  

In this mini-review, we would point out some recent 
advancements regarding pBCI technologies and 
recommendations for their employment in operational 
environments. Firstly we introduced electrophysiological 
measures for the human psychophysiological state evaluation. 
Then, we focused on machine learning techniques to be 
employed in pBCIs and common pitfalls in using such 
techniques in operational environments. In conclusion, future 
directions and open issues to make pBCI systems usable in real 
contexts have been highlighted. 

II. MENTAL STATES EVALUATION BY USING NEUROMETRICS 

Many electrophysiological measures have been used for the 
human psychophysiological state evaluation, focusing on brain 
activity analysis, by means of Electroencephalography (EEG), 
functional Near-InfraRed spectroscopy (fNIRs), functional 
Magnetic Resonance Imaging (fMRI), 
Magnetoencephalography (MEG), and other types of 
biosignals, such as Electrocardiography (ECG), 
Electrooculography (EOG) and Galvanic Skin Response (GSR) 
(e.g. [2]). In the perspective of applying electrophysiological 
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measures during everyday-life activities, issues related to the 
size, weight, and power of equipment do not allow the use of 
MEG and fMRI [3]. In this regard, different 
electrophysiological indicators have been tested in ecological 
settings, within the aviation domain (both military and civil by 
using EEG, fNIRs, ECG, EOG and pupil dilation), surgery 
(EEG), sport (EEG), city traffic monitoring (EEG, fNIRS, 
ECG, Eye tracking), plants control centers (EEG, ECG) and 
other day-life activities (EEG, ECG, EOG, fNIRS, GSR, e.g. 
[4]). Summarizing the evidences, EOG, ECG, GSR and ocular 
activities measurements highlighted a correlation with some 
mental states (stress, mental fatigue, drowsiness), but they were 
demonstrated to be useful and robust only in combination with 
other neuroimaging techniques directly linked to the Central 
Nervous System (CNS), i.e. the brain [2]. Consequently, the 
EEG and fNIRs are the most likely candidates that can be 
straightforwardly employed to realize HMI applications usable 
in operational environments, although fNIRs seems to be 
characterized by a lower sensitivity toward brain activity 
variations with respect to EEG techniques [3]. 

III. PASSIVE BRAIN-COMPUTER INTERFACE TECHNOLOGIES 

Enhancing user experience is a constant goal for HMI 
research, and, as stated before, ways to reach this objective are 
several, from changing the interface properties, to adapt the task 
to the actual user’s ability level [5], which would define an 
implicit input modality, carrying information about the user 
state not sent intentionally by her/himself. By measuring 
different user’s covert mental states, such as attention, 
workload, frustration and stress, the user interface could be 
immediately adapted to keep operators optimally working. In 
this regard, in the past few years, Brain-Computer Interface 
(BCI) technology has gained popularity in the form of 
measurement devices, allowing to assess and track mental states 
in real-time, and to use them with the aim i) to provide a 
feedback to the user, and/or ii) to modify in a closed loop the 
behavior of the interface that the user is interacting with [4]. 
Such kind of BCI has been called passive BCI (pBCI). With 
respect to the classical definition of BCI, that aims at providing 
a communication channel for users based on the spontaneous 
(Sensory motor rhythms based BCIs) or induced (i.e. P300 or 
SSVEP based BCIs) modulation of the brain signals, so called 
pBCIs [6] make use of spontaneously generated brain signals 
modulated by the actual mental status, in order to allow for an 
online detection of the user’s mental state. In addition, such 
technology could be able to detect specific brain states even 

before they reach the user’s consciousness and before they 
trigger user’s behavioral actions. In other words, a potentially 
dangerous situation may be detected before the operator starts 
to perform an action, representing a critical aspect in several 
safety-critical applications, such as aviation, driving, industrial 
environments or security surveillance. With respect to driving 
assistance applications, different studies have investigated the 
use of pBCIs during driving simulations for assessing driving 
performance and inattentiveness, and for detecting needs of 
emergency brakes before the braking onset. For example, Haufe 
and colleagues [7] implemented and evaluated an online 
emergency braking detector in a simulation environment, and 
showed that electrophysiological signals coming from driver’s 
brain and muscles reached the predictive accuracy of behavioral 
channels at earlier stages of the emergency situation. Authors 
concluded that the time that can be saved by the system was 
around 130 (ms). At the speed of 100 (km/h), this result means 
a reduction of the braking distance of 3.66 (m). Their 
preliminary results performed in laboratory settings were then 
reproduced during real-driving contexts, demonstrating how 
well-designed simulator studies can be a useful proxy for real 
world studies. Also, pBCI systems can potentially be used for 
cognitive real-time monitoring of driver’s mental workload, 
and employing this information to alert the driver and/or to 
trigger the car behavior when the current level of workload 
reaches critical levels. In a different context, initial steps have 
been taken towards assistive technologies that use the current 
mental state of a user for avoiding accidents in industrial 
environments. For example, pBCI-related studies have been 
proposed in aviation field, in particular for air traffic controllers 
and aircraft pilots, in which mental states of the operators have 
been evaluated in real-time by using their brain activity, with 
the purpose i) to quantify the task demand along the workshift 
[4], ii) to evaluate the training level of the user [8], and iii) to 
adapt interfaces depending on the actual mental state of the 
operator (e.g. [5]). 

IV. ELECTROPHYSIOLOGICAL FEATURES IDENTIFICATION FOR 

MENTAL STATES ESTIMATION  

There are several studies that highlighted clear correlations 
between user mental states and several EEG features variation, 
both in time and in frequency domain. For example, the theta 
(θ: over the frontal) and alpha (α: over the parietal sites) 
rhythms of the EEG signal have been taken into account in 
several studies because of their strong correlation with mental 
workload variations [2], [9]. Regarding the attention 

 

Fig. 1. (Left side) Representation of 
how passive BCI concept is used to 
enhance human machine interaction. In 
particular, the pBCI is able to quantify 
the actual mental state (e.g. attention, 
workload) of the user, even in real-
time, without interfere with his/her 
work. Such information can then be 
used to change the behavior of the user 
interface accordingly (e.g. adaptive 
automation in Air Traffic Environment, 
right side, [5]). 
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assessment, the EEG-based event related potential P300 could 
be considered as a measure of the attentional resources of the 
subject. In particular, the amplitude of the P300 is proportional 
to the amount of attentional resources engaged in processing a 
given stimulus. Further, P300 latency is thought to reflect 
stimulus classification speed, such that it serves as a temporal 
measure of neural activity underlying attention allocation and 
immediate memory operations. Therefore, EEG α power 
decreases when individuals become engaged in the task and 
increase their attentional level, as compared to the simple 
retention of information (e.g. [10]). Another interesting feature 
that may be used to realize a pBCI is the error-related negativity 
(ERN), that is related to perceived accuracy, or the extent to 
which participants are aware of their errors [11]. The ERN 
allows identification, prediction and even prevention of 
operators’ errors in real-time. Theoretically, a system could be 
activated by an ERN detector in order to either take control of 
the situation (for example in those cases where time to act is 
very limited), or notifying the operator about the error he/she 
committed by providing an adaptive interface which selectively 
presents the critical sub-systems or function. In this regard, the 
space of the features is multidimensional (i.e. several channels 
and time/frequencies samples), and the signal-to-noise ratio 
(SNR) is often low, i.e. in P300 based BCIs [12]. Another 
promising technique to measure user’s mental states is related 
to the analysis of changes within brain networks connectivity, 
that allows to deeply investigate interactions across cerebral 
cortex areas during mental states variations [13]. For instance, 
Sun et al., [14] developed a functional connectivity-based 
mental fatigue monitoring method, demonstrating its potential 
application in operational environments. Another interesting 
approach regarding the mental workload evaluation has been 
explored by Dimitriadis and colleagues [15], who proposed a 
novel functional connectivity–based approach. In particular, 
they used a Tensor Subspace Analysis (TSA) to represent 
connectivity data, achieving a high correct-recognition-rate of 
difficulties in an arithmetic task. 
These studies are just some examples of possible EEG features 
that could be used to realize passive BCI applications with the 
aim to measure the actual user mental status.  
Although such features have been demonstrated to be 
reproducible across subjects, their estimations are often slow 
(e.g. more than five minutes in order to highlight differences 
between different mental workload levels by using EEG 
frequency bands variations [16]) and inaccurate at level of 
single subject, thus often not suitable for online applications in 
operational environments.  

V. MENTAL STATES MEASUREMENT BY USING MACHINE 

LEARNING  

Machine-learning approaches for mental states estimation 
based on the analysis of physiological data went through a rapid 
expansion in the last decades since such methodologies are able 
to provide the means to decode and characterize task relevant 
brain states (i.e. reducing from multidimensionality to one 
dimensionality problem) and to distinguish them from non-
informative brain signals (i.e. to enhance SNR). With regard to 

BCI applications, few novel data driven approaches specific to 
neuroscience have emerged in the last decades: (a) dimension 
reduction and projection methods, (b) classification methods, 
(c) spatio-temporal filtering algorithms, (d) measures for 
determining synchrony, coherence or causal relations in data 
and (e) algorithms for assessing and counteracting non-
stationarity in data. In this regard, several studies (e.g. [17]) 
provided a complete review focused on most widely used and 
high performing machine learning techniques, so a deep 
dissertation about their mathematical explanation is out of the 
scope of this review. On the contrary, it would be important to 
discuss some important aspects, regarding issues or possible 
pitfalls related to the use of machine learning approaches for 
mental states estimations applied in pBCI applications, in 
particular regarding i) linearity of the technique, ii) over/under 
– fitting issues. 

A. Linear or non-linear models: Which to choose? 

The first issue to face with in approaching machine learning 
techniques to implement pBCI applications is the choice of the 
algorithm (model). The first aspect to take into account is 
related to the linearity of the technique, that is the kind of 
function (i.e. linear or non-linear) that the specific algorithm 
uses to maximize the differences between classes. In particular, 
linear methods are appropriate when limited data and limited 
knowledge about the data itself are available [18]. However, in 
the presence of strong noise or outliers, or if the dimensionality 
of the features space is too high, linear methods can fail. A 
formal way to increase reliability of the method by 
manipulating available training data, is to use regularization 
methods [17]. Regularization allows to limit the influence of 
outliers or strong noise and the complexity of the discrimination 
function. However, despite the use of linear or non-linear 
methods, regularization should always be used. Note that 
whenever a certain linear classifier does not work well, there 
could be (at least) two potential causes: (a) either the 
regularization was not done well (e.g. non-robust estimators are 
used), or (b) the problem is intrinsically non-linear. If there are 
large amounts of data, non-linear methods are suitable to find 
potentially complex structure in the data (i.e. data points not 
linearly separable). In particular, it has been suggested that 
when the source of the data to be classified is not well 
understood, methods that are good at finding non-linear 
transformations of the features space are recommended. In 
particular, the suggestion is to use a linear classifier in the 
appropriate feature space after a proper transformation of the 
features space. The idea is to apply a linear algorithm in some 
appropriate non-linear feature spaces calculated by using 
specific transformation functions (named kernel functions). 
Despite this idea is simple, it is very powerful. In fact, all 
beneficial properties (e.g., optimality) of linear classification 
are maintained, but at the same time the overall classification is 
non-linear in input space, since feature- and input space are 
non-linearly related. Best known examples of kernel-based 
learning machines are Support Vector Machines - SVM 
techniques [19]. 
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B. Over(Under)-fitting 

The two biggest causes of poor performances in using 
machine learning approaches are overfitting and underfitting. In 
the former, the model becomes too specific on unique or 
spurious differences between classes of the training set. The 
direct consequence is that the model does not perform well over 
time, and needs repeated calibration sessions [17]. On the 
contrary, underfitting refers to a technique that can neither 
model the training data and generalize to new data. Intuitively, 
underfitting occurs when the model or the algorithm selects too 
little features to fit the data well enough [20]. One efficient way 
to detect and possibly avoid such situations is to use the “bias–
variance approach” [20]. In particular, the error due to bias is 
considered as the difference between the expected (or average) 
prediction of our model and the correct value which we are 
trying to predict. The error due to variance is taken as the 
variability of a model prediction for a given data point. Bias is 
reduced and variance is increased in relation to model 
complexity. As more and more parameters are added to a 
model, the complexity of the model rises and variance becomes 
our primary concern while bias steadily falls and vice versa. 
There are different techniques that can be used to quantify the 
model prediction error in order to reduce the under - and 
overfitting issues, such as i) Adjusted R2, ii) Information 
Theoretic Techniques, iii) Holdout Sample, iv) Cross-
Validation and v) Resampling Methods. Between the 
mentioned methods, in general cross-validation based 
approaches are preferred. In fact they provide good error 
estimation with minimal a priori assumptions (e.g. ref. [21]). In 
addition, linear classifiers are generally more robust and easier 
to optimize than nonlinear ones, since the latter have limited 
flexibility (less free parameters to tune) and are, thus, less prone 
to overfitting. For example, such behavior has been 
demonstrated for the LDA classifier in the work of Vapnik [22]. 
Another example has been provided by Aricò and colleagues, 
that proposed a linear regression algorithm, the automatic stop 
Stepwise Linear Discriminant Analysis (asSWLDA), a new 
implementation of the more popular SWLDA, that embed an 
automatic statistical criterion able to find the optimum number 
of features to include in the classification model, to mitigate 
both under and overfitting issues in applications for evaluating 
mental workload [3], [5]. Huang et al. [23] investigated the 
factors that can bring to overfitting conditions in Common 
Spatial Pattern – based applications. In particular, CSP 
algorithm is widely used to extract discriminative oscillatory 
features, by removing the signal’s strong correlation among the 
original axes, and the distributions are maximally dissimilar 
along the new axes. The authors demonstrated both in simulated 
and in real applications that channel numbers and the 
correlation between signals influence the generalization of CSP 
significantly. A larger number of calibrating trials and a longer 
time length of the trial would prevent overfitting. 

VI. PBCI SYSTEM CALIBRATION ISSUE 

Another important issue to mention in the use of pBCI 
applications in realistic settings is related to the task similarities 

of the calibration data. In particular, for many pBCI 
applications it could be difficult to create ecological scenarios 
to be used to calibrate the classification model. For example, a 
workload classifier calibrated with classes from a working 
memory task may not be able to discriminate workload levels 
in a driving task, where properties of the task and environment 
will be different. The ascribed issue generated a huge number 
of works, focusing on the generalization across calibrating and 
testing tasks, performed in laboratory settings. In this regard, 
Gerjets et al. [24] proposed a complete review about all the 
studies that faced with the cross-task classification issue. 
Anyhow, in real settings classification accuracy could 
dramatically decrease, depending on several factors not taken 
into account during the calibration phase (e.g. other mental 
states involved, noise, etc). The present issue also includes 
works on generalization across specific electrode montages and 
days. In this regard, a recent work demonstrated that it could be 
possible to replace electrodes over dual sessions (thus inducing 
changes in placement, electromechanical properties, and/or 
impedance between the electrode and skin surface) without 
inducing decrement on the accuracy of several machine 
learning approaches in a binary classification problem [25]. 
Furthermore, Aricò et al. [3] proposed a system able to evaluate 
the workload of the operator in a high realistic ATM 
environment without the need to recalibrate the system up to a 
month. In addition, loss in system accuracy could depend also 
by changes in psychophysical state of the user, induced by 
internal (e.g. individuals who are tired through lack of sleep or 
recent exercise) and/or external factors (e.g. alcohol, caffeine, 
[26]). Algorithms that can readapt online classification model 
could prevent problems due to generalization across time (e.g. 
[27]). In addition, there are few pBCI related works in which it 
has been used unsupervised learning i.e. data is unlabeled and 
the algorithms learn to inherent structure from the input data. 
The direct advantage of such techniques is to not require 
calibration data. However, supervised techniques are preferred 
to the unsupervised ones, since they allow to achieve a higher 
accuracy [4]. 

VII. FUTURE TRENDS AND OPEN ISSUES 

Combining results from cognitive neuroscience and systems 
allowing the detection of specific mental states in real-time, 
may lead to a new generation of devices (pBCI based) 
employing to enhance human performance or to fully adapt user 
interface and consequently improve Human-Machine 
Interaction to prevent errors risk in operational environments. 
pBCI systems may be employed to minimize distractions, 
which include secondary tasks or background noise. For 
example, a system evaluating a user getting cognitively 
overloaded, could present less information until the user has 
free brain cycles to better deal with the details. Another way by 
which interfaces might adapt themselves is to manage 
interruptions and triggers based on the user’s cognitive state. 
Real-time mental states estimation will be of high relevance 
even in Aviation field. For example, the Air Traffic 
Management interface could be fully automated depending on 
the actual mental state (e.g. workload, attention, stress) of the 
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controller, reducing or even avoiding error commissions [5]. 
Operating room as well, represents an important application 
field for pBCI systems, as in [28], demonstrating that the 
system was able to measure the stress level of a surgeon and 
alert according to the response type. Mental states measurement 
could also be employed to assess safety-critical aspects of 
infrastructure, such as harbors and bridges that require 
demanding maneuvers [4]. Another area of application is in 
training procedures, in which displaying learning - related 
neurophysiological variations to the trainer as well as to the 
trainee him/herself is expected to improve the training program 
[8]. This possibility has been explored for pilots [2], air traffic 
controllers [29], and surgeons [30]. Anyhow, to make such 
“futuristic” devices usable in operational environments, and 
more in general in everyday life situations, different steps 
forward and technological improvements have to be performed.  

Firstly, further enhancement in the BCI information transfer 
rate could be achieved by combining different 
electrophysiological features together and by moving from 
binary to multi-class classification [31], [32] in order to 
improve classification accuracy and enhance the resolution of 
the measured mental state (e.g. different levels of mental 
workload or attention). EEG-based neurotechnology for real-
world use should profit from further improvement of machine 
learning and signal processing algorithms, but it will require 
even a substantial advancement in sensors technology. 
Advances in wearable, more comfortable and even fashionable 
sensors technology boosted the field and are expected to 
contribute further even though there are still major challenges 
to overcome. To be accepted on the market they need to be well 
designed, not only in terms of comfort but also aesthetically, 
and gel-free. In the past few years, electrodes that could be 
placed so that they are barely visible around the ears have been 
developed [33]. In addition, different companies are working 
since few years on the development of increasingly trustworthy 
dry EEG systems. Currently, there are a number of dry electrode 
EEG systems available on the market or under further 
development. These systems do not require the application of 
gel and sometimes come with a fancy headset. While just few 
of them showed comparable performance of standard wet EEG 
systems, dry electrodes need some amount of pressure to 
maximize conductivity with the skin, which can be 
uncomfortable or even painful. In addition, such systems seem 
to be most prone to noise (i.e. electrical interferences, other 
people and subject’s movement artifacts, low-frequency 
voltage variations caused by the physical movement of the 
head) with respect to conventional wet systems [34]. On the 
contrary, for other physiological signals, wearable sensors 
development and commercialization grew exponentially in the 
last decade. For example, wristbands that record heart rate or 
skin conductance are already available offering a high 
reliability for real life applications [35]. Another important 
open-issue regarding the application of pBCIs in operational 
environments is related to the possible confounds induced by 
“factors unrelated to the variable of interest” (e.g. other 
involved mental states and/or noise and artifacts). In particular, 
in the most of the existing studies regarding passive BCIs, 

experiments are usually conducted in shielded-rooms, where 
users are shielded from environmental noise (i.e. electrical 
noise and distractions), and are very limited in talking and 
moving, as such activities could interfere with the recorded 
signals, therefore with the evaluation of the considered mental 
states. However, only the study of pBCI performed in realistic 
scenarios—that is within realistic settings and natural 
behaving—will reveal the actual potential, and also the real 
challenges of this promising young technology. In particular, in 
more complex situations (i.e. real settings) there might be other 
factors unrelated to the mental state of interest, that can cause 
either the same or even a reversed effect, potentially 
annihilating the usability of the pBCI-based measure that was 
previously found viable in a laboratory setting [4]. For example, 
in a driving scenario with a continuously changing visual 
background, the alpha rhythm might be completely already 
“saturated”, such that no further decrease due to additional 
workload can be detected. In other words the expected effect on 
parietal alpha is not present, such that this feature might be 
difficult to exploit in an ecological task context. To realize an 
effective pBCI application in real contexts, it is important to 
identify those physiological markers or patterns that are specific 
to the mental states of interest (e.g. independent from the 
method of elicitation), and at the same time sufficiently general 
over different contexts (e.g., laboratory versus real world). 
Another issue in employing pBCI applications in real contexts 
is related to the increasing number of artifacts recorded in the 
EEG data. In particular, artifacts can come from i) the subject 
physiological activity such as eye blinks or muscular behaviors 
(i.e. correlated with the actual user state) and ii) the 
environment (i.e. uncorrelated with user state). Artifacts from 
the first category may be isolated and included as discriminant 
features to improve the quality of the measure. In this context, 
the artifact becomes another signal, and can be used as an 
additional source of information. On the contrary, since the 
second type of artifacts always decreases the signal to noise 
ratio, they have to be filtered out from data used for the pBCI 
application. In this regard, it is critical for artifact removal 
methods to not introduce unacceptable time delays, to be used 
online in real-time pBCI applications. A variety of methods 
have been proposed for EEG artifact removal, such as 
regression-based (e.g. Gratton algorithm), blind source 
separation (Independent Component Analysis, ICA), wavelet-
based. However, many of such methods are not applicable in 
real-time applications due to their computational complexity, 
defined as the number of floating point operations (flops) 
required to execute the algorithm and/or the high number of 
EEG channels required. In this regard, despite their poorer 
performance with respect to other methods, regression-based 
algorithms are preferred for pBCI applications because their 
lower computational complexity and required EEG channels 
[36]. Last, but certainly not least issue to highlight, as described 
previously, is related to similarities between calibration and 
testing data (see IV.E paragraph), in terms of task (i.e. different 
calibration and operational tasks) and conditions (e.g. 
impedance values changing between the electrode and skin 
surface) over different days. In this regard, research has to take 
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several steps forward in developing and/or improving 
algorithms that i) do not require calibration data (i.e. 
unsupervised techniques that at the moment suffer of a lower 
performance with respect to supervised ones [4]) or ii) do not 
need frequent system recalibrations [3]. Lack of adequate 
calibration procedures means that pBCI systems could suffer of 
low performances as the recording situation or context related 
data changes from the system calibration ones. 

VIII. CONCLUSION 

This mini-review highlighted the most important issues and 
recommendations to consider for the effective implementation 
and use of pBCI systems in real contexts. Future trends and gaps 
to bridge in order to make such systems usable in real 
operational environments have been presented and described. 
Therefore, we just conclude that, despite the recent innovations 
in algorithms and technology, pBCI systems are not yet ready 
to enter the market, unless huge advances in research and 
technologies to mitigate such limitations. Anyhow, they will 
represent in the close future a key-tool to augment and burst the 
Human-Machine Interaction in everyday life, for example 
enhancing safety standards in operational environments, 
enhancing adaptive automation systems in assisting the 
operator in his/her work, or avoiding unsafe mental states, such 
as mental workload and stress.  
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