
Meccanica manuscript No.
(will be inserted by the editor)

Unexpected hardening effects in bilayered gel beams
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Abstract A classical problem in structural mechan-

ics is the evaluation of beam stretching and curvature

in slender bilayered beams, due to mechanical actions,

thermal distortions, differential growth, and more re-

cently, to swelling. We investigate the non–monotonic

changes in the curvature of swollen bilayer beams due

to mismatches in physical properties of the two layers

starting from a simple structural approach, and dis-

cuss the apparent contrast with the well–known Timo-

shenko’s formula through a scaling analysis. Due to the

large strains involved in the problem, we also discuss

the problem through a thermodynamics based on Gent

model for the elastic contribution to the free–energy of

the gels.

Keywords swelling · geometric composites · bilayer

beams

PACS 46.05.+b · 81.05.Qk

1 Introduction

A classical problem in structural mechanics is the eval-

uation of beam stretching and curvature in slender bi-

layer beams, due to mechanical actions, thermal distor-

tions, differential growth, and more recently, to swelling

(????). The design principle of bending actuation using
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Sapienza Università di Roma, via Eudossiana 18, 00184
ROMA
Tel.: +39-06-44585242
Fax: +123-45-678910
E-mail: paola.nardinocchi@uniroma1.it

E. Puntel
Dipartimento Politecnico di Ingegneria e Architettura, Uni-
versit di Udine, via del Cotonificio 114, Udine I-33100, Italy

a layered structure dates back to the pioneering work

of Timoshenko (?). Therein, the curvature of a bimetal

strip induced by thermoelastic deformations was de-

rived as proportional to the difference in elongation of

the two layers and inversely proportional to the thick-

ness of the strip. Following that formula, fixed the ratio

β of the thickness of the top layer with respect to the

total thickness of the beam and the ratio α of the two

elastic moduli, beam curvature depends on the differ-

ence in linear swelling ratios, which increases for pairs

of softer layers sharing the same elastic moduli’s ratio

α. It is worth noting that, recently, Timoshenko’s anal-

ysis was borrowed for a qualitative estimation of the

curvature of hydrogel systems under swelling (??).

However, in bilayer gel beams things are different

from bimetal strips, mainly due to the huge deforma-
tions involved. To the best of our knowledge, the first

class of environmentally responsive structures based on

the spatial modulation of the chemical nature of gels

was proposed in (?). Therein, the modulation was achieved

by limiting the interpenetration of part of one gel net-

work with another gel network. The gels so produced

had an internally modulated structure: the spatial mod-

ulation of the chemical nature of gels determined a spa-

tial modulation of the mechanical characteristics and

realized a bilayer gel beam. In particular, the bending

of the beam was obtained by varying both temperature

and acetone concentration of the bath, as each of the

two layers drastically shrank in response to only one

of the two stimuli. In (?), the extreme bending of a

bilayer hydrogel beam was proposed as a tool to con-

trol the direction and kinetics of molecular release. The

bilayer beam bent and self–folded forming a hydrogel

tube; this self–folding property was attained by form-

ing double–layered hydrogel patches with significantly

different swelling ratios (and elastic moduli). The diam-
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eter of the gel tubes could be predicted by an equation

used to estimate the curvature of the beam. The finite

bending of a bilayer gel in response to temperature un-

der plane strain condition was also studied in (?). They

predicted larger bending curvatures of bilayer beams

compared with the linear model based on the elemen-

tary beam theory, and showed as a high swelling ratio in

the bilayer enhances the differences between both mod-

els. Deformation modes in bilayered soft active struc-

tures have been recently studying through modern tech-

niques based on Gamma–convergence, with the aim to

show, also in the context of soft active mecanics, the

consistency of the structural reduced models for plates

(?).

We started to investigate swelling–induced bending

in bilayer gel beams in (?) through an approximated

uncoupled theory of stress–diffusion, which was also re-

formulated in (?) within the context of a finite and

exact bending theory. Here, we investigate both ana-

lytically and numerically the non–monotonic changes

in the curvature of swollen bilayer beams due to mis-

matches in physical properties of the two layers starting

from the approach proposed in (?). In particular these

changes occur if the stiffness of the two layers is de-

creased while keeping their ratio α fixed or, similarly, if

the free swelling of the layers in undisturbed conditions

is increased without modifying α. The apparent con-

trast with the well–known Timoshenko’s formula is ex-

plicitly discussed through a scaling analysis which high-

lights as, neglecting that non–monotonic trend, recently

also analyzed in (?), may lead to large overestimation

of beam curvature. Due to the large strains involved

in the problem, we also discuss the problem through

a thermodynamics based on Gent model for the elas-

tic contribution to the free–energy of the gels (??). As

expected, for any free–swelling stretches Gent’s model

provides a curvature which is always smaller than the

neo-Hookean model and, what is more important within

this context, decreases when the bilayer becomes softer

and softer.

2 Bilayer beams under growth–induced plane

bending

We consider a beam, made by the assembly of two dif-

ferent beam layers of rectangular cross section. We as-

sume that the top (t) beam has a Young’s modulus Yt
smaller than the Young’s modulus Yb of the bottom (b)

beam and set α = Yt/Yb ≤ 1. We also assume that the

beam has total thickness h = ht+hb, and set β = ht/h,

being ht and hb the thicknesses of the homogeneous top

and bottom beam–like parts, respectively: β = 0 when

h = hb and β = 1 when h = ht. The length and the

width of the beam are denoted as l and b, respectively;

we further postulate h/b > 1.

In (?), it has been shown that the deformative pro-

cess induced by a differential growth within the two

layers may be analysed within the context of beam–

under–bending theory. Therein, the longitudinal stretch

λ of the bilayer beam was characterised in the form

λ(x3) = Λ0(1 + x3Λ0κ) , (2.1)

in terms of the uniform, possibly large, longitudinal

stretch Λ0 and the uniform curvature κ of the beam

axis (κ > 0), −h/2 ≤ x3 ≤ h/2 being the thickness

coordinate in the dry configuration. Assuming that: (i)

the top and bottom homogeneous beam–like layers suf-

fer growth (longitudinal) deformations λot and λob and

that further elastic (longitudinal) deformations λet and

λeb arise to recover the structural integrity of the beam,

in such a way that the following decompositions hold

λet = λλ−1ot and λeb = λλ−1ob ; (2.2)

(ii) out–of–plane stresses are zero and the correspond-

ing longitudinal stresses σt and σb on the cross–sections

of the top and bottom layers, can be evaluated as

σt(x3) = Yt(λ(x3)λ−1ot − 1) , (h/2− β h) < x3 < h/2

(2.3)

σb(x3) = Yb(λ(x3)λ−1ob − 1) , −h/2 < x3 < (h/2− β h) ;

the resultant force F and torque M of the longitudinal

stresses are determined in terms of Λo and κ from the

following equations:

F

b
= λ2ob

∫ h/2−β h

−h/2
σb(x3)dx3 + λ2ot

∫ h/2

h/2−β h
σt(x3)dx3

(2.4)

M

b
= λ2ob

∫ h/2−β h

−h/2
x3 σb(x3)dx3 + λ2ot

∫ h/2

h/2−β h
x3 σt(x3)dx3 .

If no external forces are applied, under unconstrained

conditions,

F = F̂ (Λ0, κ) = 0 and M = M̂(Λ0, κ) = 0 . (2.5)

In order to discuss the dependence of beam stretch Λ0

and curvature κ on the growth deformations λob and

λot = λob/Γ , we introduce non-dimensional variables

X0 and X1 as follows:

Λ0 = X0λob and κh = X1X
−2
0 λ−1ob . (2.6)

With this (??) become:

λλ−1ot = Γ (X0+s3X1) and λλ−1ob = X0+s3X1 , (2.7)

where s3 is a non-dimensional coordinate equal to x3/h.

Substituting (??) into (??), equations (??) and (??) de-

liver a linear system of equations in X0 and X1 whose
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coefficients depend solely on α, β and Γ . Looking at

(??) this means that whenever the ratios α and β are

held constant while growth deformations λob and λot
are increased keeping their ratio Γ also constant, the

curvature of the beam decreases and is inversely pro-

portional to the growth deformation of the bottom layer

λob. This result is in contrast with Timoshenko’s result

at small strains (?). On the other hand, the fact that

curvature κ is inversely proportional to the thickness of

the beam keeps holding at finite strains. The solution

of the equations (??)-(??) yields a representation of X0

and X1 solely depending on α, β, and Γ :

X0 = 1 +
1

Γ

(
αβ(1− Γ )

(
αβ3 +

(
1− β3

)
Γ
))
·

·
(
α2β4 + 2αβ

((
1− β2

)
+ (1− β)3

)
Γ+

+ (1− β)4Γ 2
)−1

,

X1 = 6α(1− β)β(1− Γ )·
·
(
α2β4 + 2αβ

((
1− β2

)
+ (1− β)3

)
+

+ (1− β)4Γ 2
)−1

.

(2.8)

3 Swelling–induced growth

Swelling–induced growth in gel–based actuators depends

on the solvent distribution inside the gel and on the

rate of solvent uptake at the boundary. Unhampered

by either loads or restraints, swelling induced by a sol-

vent yields changes in size that manifest as isotropic

changes once a steady state is reached. Here, we re-

fer to the nonlinear three–dimensional stress–diffusion

model presented in (?), revised in (?), and already used

in (?) to discuss the role of equation (??) in swelling–

induced growth. Shortly, that model is based on a cou-

pled system of equations which describe: (i) the balance

of stress Sd ([Sd] =J/m3) and of solvent concentration

cd ([cd] =mol/m3)

divSd = 0 , ċd = −divh , (3.9)

h ([h] =mol/m2s) being the solvent flux and subscript d

denoting the dry configuration, holding at any time on

the three–dimensional region Bd of the Euclidean space

E which identifies the dry reference configuration of the

bilayer beam; (ii) the boundary conditions for traction

t or displacement ū

Sd m = t , and u = ū , (3.10)

and for solvent flux q or chemical potential µe

−h ·m = q and µ = µe , (3.11)

which may be posed on the appropriate parts of the

boundary at any time (depending on the problem un-

der study); (iii) the initial conditions (uo, cdo) for the

state variables u and cd of the model; (iv) the kinematic

constraint enforcing that change in volume is only due

to solvent uptake or release, that is, both the polymer

and the solvent are assumed to be incompressible and

the actual volume–element dv is the sum of the dry

volume–element dVd, plus the solvent volume–element

dVsol = Ω cd dVd:

dv = Jd dVd = dVd + dVsol = (1 +Ω cd)dVd , (3.12)

hence, Jd = det Fd = 1+Ω cd with Fd = I+∇u and Ω

the solvent molar volume; (v) the constitutive equations

for the stress Sd, the chemical potential µ ([µ]=J/mol)

and the flux h which yield a further coupling between

mechanics and chemistry of the gel:

S = Se(Fd)− pF∗d , µ = µ(cd) + pΩ , (3.13)

with Se(Fd) = ∂ψ/∂Fd, µ(cd) = ∂ψ/∂cd, and the inde-

terminate pressure field p, coupling stress and chemical

potential fields, interpreted as the reaction associated to

the volumetric constraint. The free–energy ψ describes

the thermodynamics of the gel body, and the constitu-

tive equation for the solvent flux h has to satisfy the

reduced dissipation inequality (?):

h · ∇µ≤ 0 . (3.14)

As in (?), we assume that swelling in each com-

ponent of the bilayer gel beam is realized by embed-

ding it into a solvent bath, that it is unhampered by

either loads or restraints, and only yields changes in

size that manifest as isotropic changes once a steady

state is reached. The steady state is characterised by

zero stress and a chemical potential which is homoge-

neous within the body and equal to µe: Sd = 0 and

µ = µe. When the free–energy of the gels is assumed

in the Flory–Rehner form (??) and λos measures the

isotropic swelling stretch induced by solvent uptake, the

dry–reference stress Sd and the chemical potential µ of

the gel, within each of the two gel layers (which we

imagine to swell independently from one another) can

be expressed as

Sd = σI , σ =
1

3
Ysλos − λ2os p (3.15)

µ = RT
(

log
(

1− 1

λ3os

)
+

1

λ3os
+

χ

λ6os

)
+ pΩ , (3.16)

s = t, b being a dummy indicator for the top or bottom

layer, Ys the Young’s modulus, R the gas constant and

T the temperature.1 With this, the free–swelling bath

1 Actually, the representation form of the stress σ depends
on the above cited incompressibility of the polymer as σ =
Gsλos − λ2

os p with Gs = Ys/(2(1 + ν)) and assuming that
for incompressible material ν = 1/2 we get Gs = Ys/3.
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conditions deliver the following thermodynamic equilib-

rium equation for each gel layer:

0 =
YsΩ

3λos
+RT

(
log
(

1− 1

λ3os

)
+

1

λ3os
+

χ

λ6os

)
. (3.17)

We consider the Flory–parameter χ as fixed and view

the equation (??) as a nonlinear relation between swel-

ling stretch λos and Young’s modulus Ys of each layer:

Ys = Ŷs(λos). Figure ?? shows the Ŷs relation, for

Ω = 6.023 · 10−5m3/mol, T = 293K, and χ = 0.2 (solid

blue line).
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0.20

0.25

λos

Y
s

Ω
3
R
T

neo-Hooke

Gent jm = 200

Gent jm = 100

Gent jm = 50

Figure 1 Young’s modulus Ys versus free–swelling ratio λos

dictated by equation (??) (solid blue line) and by equation
(??) for jm = 50, 100, 200 (solid red lines). The corresponding
solid lines are almost indistinguishable but the latter three
reach zero stiffness for a finite value of stretch

√
jm/3 + 1.

With this, we get

α =
Yt
Yb

=
(λob
λot

)5 f(λot)

f(λob)
= Γ 5 f(λot)

f(λob)
, (3.18)

with

f(λos) = χ+ λ3os + λ6os log
(

1− 1

λ3os

)
. (3.19)

In gels, parameters α and Γ are therefore not inde-

pendent and both the longitudinal stretch Λo and the

curvature κ of the beam axis may then be represented

as functions of only three parameters, such as e.g. α, β

and λob.

A simple solution is obtained when the chemical

equilibrium equation (??) is replaced by its asymptotic

version based on the assumption that the free swelling

stretch λos >> 1 (that is, 1/λos << 1). The expression

(??) can be approximated by estimating the leading or-

der term in the asymptotic expansion up to O(1/λ3s),

and we get:

f(λos) ' (χ− 1/2) , (3.20)
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κ
h
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α = 1/2

Figure 2 Curvature times thickness κh versus free–swelling
stretch λob of the bottom layer for β = 1/2 and α =
1/4, 1/3, 1/2 as follows from equations (??)2 and (??) (solid
lines) and from the computational model (coloured dots).

and

Γ =
λob
λot

=
(Yt
Yb

)1/5
= α1/5 . (3.21)

For large values of λob, a frequent occurrence for gels,

Γ is independent of λob. This has two consequences.

Firstly, by substituting (??) into (??), we obtain ex-

pressions for X0 and X1 that depend only on α and

β. Secondly and most importantly, equation (??) ex-

presses the linear dependence of the stretch Λ0 on λob
and of the curvature κ on 1/λob for fixed values of α

and β. Then, the softer the two layers at constant α, the

larger the swelling stretches λob and λot and the smaller

the curvature κ. In other words an unexpected harden-

ing is observed. Such counterintuitive result disagrees

with Timoshenko’s result at small strains (?).

The two regimes, namely κ ∝ 1/λob for λob >> 1

and κ growing with λob for λob ' 1, are reconciled if

the full expression (??) of f(λos) is used instead of its

asymptotic expansion (??) to obtain the parameter Γ

to be used in (??). The plot in figure ?? shows κh vs.

λob for α = 1/4, 1/3, 1/2 and β = 1/2 (blue, purple,

and red solid lines, respectively).

3.1 Curvature slope singularity

Figure ?? is suggesting that the slope of the non dimen-

sional curvature κh vs λob plot may be vertical for λob
close to 1. In the following, we show that it is indeed

so and explicitly determine the strength of the singu-

larity. The obtained relationship should not be taken

as a valid approximation of the κh vs λob relationship

at small strains because numerical validations we per-

formed showed only good asymptotic agreement that

is, roughly, when λob − 1 < 3.4 × 10−4. However, care



Hardening bilayers 5

should be taken in adopting Timoshenko’s linear κh vs

λob relationship for gels at small strains, see eq. (??) in

the following, as sometimes done in the literature.

We start from the nonlinear relationship (??) be-

tween Young’s modulus Ys and free–swelling expansion

λos, with the aim to express the latter as a function of

the former when λos is close to unity. Let us introduce

the free–swelling strain εos and the dimensionless shear

modulus gs as

λos = εos + 1 and gs =
1

3

Ys
RT/Ω

. (3.22)

After approximating λ−nos ' 1 − nεos, equation (??)

becomes

gs(1− εos) + log(3εos) + (1− 3εos) + χ(1− 6εos) = 0 ,

(3.23)

which yields the following crude approximation

λos ' λ̃os(gs) = 1 +
1

3
exp(gs + χ+ 1) . (3.24)

Using equation (??), we can evaluate Γ when λob is

close to 1. Given λob, gb(λob) is easily computed using

(??) and (??); then, from gt = αgb the approximation

λot ' λ̃o(gt) delivers:

Γ =
λob
λot
' λob

λ̃o(αgb)
=

λob

λ̃o(−α f(λob)λ
−5
ob )

.

Seeking a linear log-log relationship of the type log(1−
Γ ) ' a log(λob − 1) + b and skipping some lengthy pas-

sages one finds

1− Γ ' 3α

3
(λob − 1)α · e−(1−α)(1+χ) . (3.25)

In the last step, the closed form expression of κh in

terms of α, β, Γ , obtainable from equations (??) and

(??), is expanded to the first order around Γ equal to

1 and yields:

κh ' 6αβ(1− β)

(1− α)((1− β)4 − αβ4) + α
· (1− Γ ) . (3.26)

Substituting (??) into (??) we get the asymptotic de-

pendence of the curvature on λob and on the other

model parameters α, β, χ. In particular, κh ∝ (λob−1)α

which entails a vertical slope when λob is close to 1

since the ratio of Young’s moduli α = Yt/Yb is assumed

smaller than 1 in the present model.

3.2 A constitutive model for huge deformations

The local thermodynamic equilibrium equation (??) which

relates Young’s modulus and free–swelling stretch for

each layer of the gel beam, strongly depends on the free

energy chosen to describe the thermodynamics of swel-

ling processes. We assumed that the Flory–Rehner free

energy representation form holds, and split the free en-

ergy density ψ into a Flory–Huggins mixing component

ψm and a neo–Hookean elastic component ψe. However,

when the elastic stretches induced by swelling into the

gel are very large, stiffening effects need to be consid-

ered, and one of the constitutive elastic models which

accounts for the stiffening of polymer chains is the Gent

model (??). So, we assumed unchanged the mixing com-

ponent of the free–energy and represented the elastic

component ψe in the Gent form as:

ψe(Fd) = −1

6
Ys jm log(1− Fd · Fd − 3

jm
) , (3.27)

jm being a parameter which sets the ultimate deforma-

tion at which the network strands are fully stretched:

in the limit Fd · Fd − 3 → jm, the Gent energy tends

to ∞; for jm →∞, the Gent model reduces to the neo-

Hookean. Considering the isotropic swelling of the two

layers delivered by λos (s = b, t), we have Fd·Fd = 3λ2os,

and the ultimate deformation λo,m is given by

λo,m =
√
jm/3 + 1 . (3.28)

The constitutively determined component Se(Fd) of the

stress Sd corresponding to the Gent model is different

from the neo–Hookean’s and determines a change in the

local thermodynamic equilibrium equation. Therefore,

in Gent’s model, (??) is replaced by:

0 =
YsΩ

3λos

1

1− 3
jm

(λ2os − 1)
+RT f(λos)

λ6os
, (3.29)

being f(λos) defined as in (??) and s = t, b. We point

out that, for the sake of simplicity, we are here with

some loss of generality assuming that the value of jm
is the same for the top and bottom layers. Equation

(??) is still a nonlinear relation Ŷs(λos) between the

free swelling stretch λos and Young’s modulus Ys of

each layer, parametrized by jm. Once a value for jm
is fixed, we can compare the Gent and neo–Hookean

models in terms of the relation prescribed between Ys
and λos. In figure ??, we fixed jm = 50, 100, 200 and

plotted that relation. The corresponding solid lines are

almost indistinguishable from the one describing equa-

tion (??), though, differently from the neo-Hookean

case, they reach zero stiffness for a finite stretch value√
jm/3 + 1. It all depends on the choice of the parame-

ter jm which sets the ultimate deformation at which the
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Figure 3 Curvature times thickness κh versus free–swelling
stretch λob of the bottom layer for β = 1/2, α = 1/4, and
jm = 50, 100, 200. Dashed lines indicate the asymptotic trend
(??).

network strands are fully stretched, that is, reducing jm
the difference between the two constitutive description

is amplified at smaller stretches. We selected our values

from ?.

The block structure of our model allows us to eas-

ily evaluate the dimensionless curvature κh vs the free

swelling ratio λob of the bottom layer based on an elas-

tic Gent energy. Given α and λob, it suffices to use (??)

twice to first compute Yb(λob) and then, given Yt = αYb,

λot(Yt); and, at the end, evaluate Γ = λob/λot which

can be then directly plugged into (??) and (??)2. Fig-

ure ?? shows the trend for the already selected differ-

ent values of jm (50, 100, 200). As expected, when jm
takes the largest value, the difference between the Gent

and the neo–Hookean curve is smaller. In all cases, the

difference in curvature prediction is significative only

along the descending branch of the curve which even-

tually reaches zero curvature with a constant slope as

Gent model allows for the existence of an ultimate de-

formation defined by the equation (??) and depending

on jm.

3.2.1 Slope of the linear decaying branch close to the

ultimate deformation

Thanks to the availability of a closed form solution for

the curvature of the bilayer beam, we can quantify the

constant slope at which κh intersects the λob axis in

Figure ??. To this end (??) is rewritten as

0 =
gs
λos

λ2o,m − 1

λ2o,m − λ2os
+
f(λos)

λ6os
, (3.30)

where gs is, with the addition of subscript s = t, b, the

same non dimensional shear modulus defined in (??)2.

Expanding (??) in series for λos in the neighbourhood

of λo,m and keeping only the leading order term of each

addend one gets

0 =
gs

2λo,m

λ2o,m − 1

λo,m − λos
+
f(λo,m)

λ6o,m
, (3.31)

where a (λo,m − λos)0 order term in the first addend

of (??) was discarded after having seen that for λos
sufficiently close to λo,m, it was uninfluential as far as

the gs vs (λo,m − λos) relationship went. From (??) we

see that (λo,m − λos)/gs is a constant independent of

gs and λos. We notice again here that we have chosen

the value of λo,m to be the same in the top and bottom

layers. In this way, given that gt = αgb, we observe that

(λo,m − λot) = α(λo,m − λob) and we can approximate

Γ as

Γ =
λo,m − (λo,m − λob)
λo,m − α(λo,m − λob)

' 1− (1− α)(1− λob
λo,m

)

(3.32)

Now the asymptotic expression for Γ (??) is plugged

into the expression of the curvature obtained by sub-

stitution of (??) into (??)2. The leading order term

of the series expansion of the resulting expression for

λob → λo,m yields the asymptotic κh vs λob relation-

ship close to the ultimate deformation λo,m

κh ' 6α(1− α)β(1− β)

(1− α)((1− β)4 − αβ4) + α

λo,m − λob
λ2o,m

. (3.33)

Linear expression (??) is plotted in Figure ?? using

dashed lines in order to appraise the accuracy of the

approximation. In passing, we note that for fixed values

of α and β, as occurs in Figure ??, the asymptotic slope

in (??) is inversely proportional to λ2o,m which in turn

is, given (??), proportional to jm. In this way, when jm
is reduced by one half in Figure ?? from 100 to 50, the

value of the asymptotic slope approximately doubles as

can be schematically inferred from the plot.

4 Numerical experiments via the fully coupled

stress–diffusion model of bilayer gel beams

With the aim to verify the non-monotonic pattern of

the curvature vs free–swelling stretch curves shown in

figure ??, we planned a set of numerical tests, based on

the nonlinear three–dimensional stress–diffusion model

shortly summed up in Section ??. As the Flory–Rehner

free energy is not defined at dry state, we fixed as

reference configuration of the bilayer gel beam an al-

most dry straight configuration corresponding to swel-

ling ratios of the two components around 1.001, with a
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solvent bath chemical potential µo < 0, and compati-

ble with the Young’s moduli of the two homogeneous

beam–like parts according to the free–swelling equilib-

rium equation (??). Moreover, we selected a constitu-

tive prescription for the solvent flux (see ?) which sat-

isfies the reduced dissipation inequality (??), as h =

−M(Fd, cd)∇µ,

M(Fd, cd) = cdD/RT (FTd Fd)
−1 ([M] = mol2/s m J])

being the isotropic mobility tensor and D ([D]=m2/s)

the diffusivity.

The beam was constrained so as to allow the free–

swelling change in shape; hence, because of the sym-

metry of the problem, we hampered the longitudinal

displacement over the entire middle cross section, the

out–of–plane displacement along the middle line in the

middle cross section, and the transverse displacement at

the bottom point of this line. The remaining boundary

was assumed to be traction–free (t = 0). We allowed

the sample to freely swell in a solvent bath whose chem-

ical potential µe was controlled and set to 0.

We implemented and numerically solved the model

through the finite element software COMSOL Multi-

physics, recasting all the equations in a weak form.

We refer to (???) for details, and only discuss here the

boundary condition corresponding to bath conditions.

The boundary condition (??)2 that, through equation

(??)2, relates the solvent concentration cd to the chem-

ical potential µext allows to control the solvent concen-

tration cd at the boundary through the chemical po-

tential µext and is a highly nonlinear equation in cd.

It is enforced in weak form in terms of an additional

state variable cs, defined only on the boundary of the

bilayer gel beam, representing the solvent concentration

at boundary:
∫

∂Bd

(µc(cs) + pΩ − µext) · c̃s = 0 . (4.34)

Once (??) is solved for cs, with µext as an input, we set

the pointwise constraint cd = cs as boundary condition

for the balance of solvent at any time on ∂cB. To this

extent, the weak equation (??) may be viewed as re-

sembling the idea of a surface physics, that is, a physics

defined and solved only on the surface, and coupled to

the bulk physics through the pointwise constraint. How-

ever, consideration of a complete physical surface over

the boundary of the body would require the introduc-

tion of a surface concentration field (whose dimensions

are [mol/m2]) different from cs, which is just the re-

striction of the bulk concentration cd to the boundary

(see ? for more details).

Fixed β = 1/2, l = 10h, h/b = 2, and b = 10−3m,

the analyses were performed for α = 1/2, 1/3, 1/4, ac-

cording to the scheme shown in figure ??: given the
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being the isotropic mobility tensor and D ([D]=m2/s)
the di↵usivity.

The beam was constrained so as to allow the free–
swelling change in shape; hence, because of the sym-
metry of the problem, we hampered the longitudinal
displacement over the entire middle cross section, the

out–of–plane displacement along the middle line in the
middle cross section, and the transverse displacement at
the bottom point of this line. The remaining boundary

was assumed to be traction–free (t = 0). We allowed
the sample to freely swell in a solvent bath whose chem-
ical potential µe was controlled and set to 0.

We implemented and numerically solved the model
through the finite element software COMSOL Multi-
physics, recasting all the equations in a weak form.

We refer to (Lucantonio et al, 2013, 2014; Nardinoc-
chi et al, 2015) for details, and only discuss here the
boundary condition corresponding to bath conditions.

The boundary condition (3.11)2 that, through equa-
tion (3.13)2, relates the solvent concentration cd to the
chemical potential µext allows to control the solvent
concentration cd at the boundary through the chemical

potential µext and is a highly nonlinear equation in cd.
It is enforced in weak form in terms of an additional
state variable cs, defined only on the boundary of the

bilayer gel beam, representing the solvent concentration
at boundary:

Z

@Bd

(µc(cs) + p⌦ � µext) · c̃s = 0 . (4.34)

Once (4.34) is solved for cs, with µext as an input, we set

the pointwise constraint cd = cs as boundary condition
for the balance of solvent at any time on @cB. To this
extent, the weak equation (4.34) may be viewed as re-
sembling the idea of a surface physics, that is, a physics

defined and solved only on the surface, and coupled to
the bulk physics through the pointwise constraint. How-
ever, consideration of a complete physical surface over

the boundary of the body would require the introduc-
tion of a surface concentration field (whose dimensions
are [mol/m2]) di↵erent from cs, which is just the re-

striction of the bulk concentration cd to the boundary
(see Lucantonio et al (2016) for more details).

Fixed � = 1/2, l = 10 h, h/b = 2, and b = 10�3m,
the analyses were performed for ↵ = 1/2, 1/3, 1/4, ac-
cording to the scheme shown in figure 4: given the swel-
ling ratio �ob of the bottom layer, through the thermo-

dynamic equilibrium equation (3.17) the corresponding
Young’s modulus Yb was evaluated; being ↵ fixed, the
Young’s modulus of the top layer was easily obtained

and, again through equation (3.17), the corresponding
swelling ratio �ot was computed.

�ob

�ot Yt = ↵Yb

Yba

d c

b

thermodynamic equilibrium

thermodynamic equilibrium

Figure 1: Inference of the relation Gh/Gl ! (G, �). The path from (a) to (d) is the following:
given the ratio Gh/Gl, the Flory model for isotropic gels yields the ratio �h/�l; the experiment
in reference? yields the map �h/�l ! �p/�t; finally, the augmented Flory model for anisotropic
gels furnishes the final step �p/�t ! (G, �).

1

Figure 4 Fixed ↵ and the swelling ratio �ob of the bot-
tom layer, through the thermodynamic equilibrium equation
(3.17) the corresponding Young’s moduli Yb and Yt = ↵Yb

are evaluated; equation (3.17) also delivers the swelling ratio
�ot corresponding to Yt.

For any values of the parameters, a uniform bending
solution was obtained, corresponding to a plane bend-

ing; all solutions delivered a uniform beam axis curva-
ture  which was evaluated at a distance equal to l/4
from the end of the beam as

 =
w00(1 + u0) � w0u00

((1 + u0)2 + w02)3/2
, (4.35)

u and w being the longitudinal and transverse displace-
ment fields at the beam axis, and a prime denoting
derivative with respect to the axis coordinate. Numer-

ical results are shown in figure 2 as dots, with colour
code corresponding to the ratio ↵; they confirm the
hardening of the bilayer gel beam, as the layers are cho-
sen softer and softer and ↵ is held constant. Figure 2

also shows that the structural model here discussed in-
creasingly overestimates beam curvature as ↵ decreases.
However, the overall agreement between numerical and

analytical results, corresponding respectively to a fully
three–dimensional stress di↵usion model and to the ap-
proximated structural model, is very good. It is worth
noting that the agreement holds when h/b > 1, that is,

for aspect ratios of the bilayer strip which result in an
overall beam behaviour.

5 The linear regime

We now turn our attention away from gels and consider
�os to be known layer-wise homogenous distortions of
unspecified nature. To relate the present model to the
small strain setting assumed in (Timoshenko, 1925), we

introduce small distortions

"os = �os � 1 , "ob = � "ot , (5.36)

Figure 4 Fixed α and the swelling ratio λob of the bot-
tom layer, through the thermodynamic equilibrium equation
(??) the corresponding Young’s moduli Yb and Yt = αYb are
evaluated; equation (??) also delivers the swelling ratio λot

corresponding to Yt.

swelling ratio λob of the bottom layer, through the ther-

modynamic equilibrium equation (??) the correspond-

ing Young’s modulus Yb was evaluated; being α fixed,

the Young’s modulus of the top layer was easily ob-

tained and, again through equation (??), the corre-

sponding swelling ratio λot was computed. For any val-

ues of the parameters, a uniform bending solution was

obtained, corresponding to a plane bending; all solu-

tions delivered a uniform beam axis curvature κ which

was evaluated at a distance equal to l/4 from the end

of the beam as

κ =
w′′(1 + u′)− w′u′′
((1 + u′)2 + w′2)3/2

, (4.35)

u and w being the longitudinal and transverse displace-

ment fields at the beam axis, and a prime denoting

derivative with respect to the axis coordinate. Numer-

ical results are shown in figure ?? as dots, with colour

code corresponding to the ratio α; they confirm the

hardening of the bilayer gel beam, as the layers are cho-

sen softer and softer and α is held constant. Figure ??

also shows that the structural model here discussed in-

creasingly overestimates beam curvature as α decreases.

However, the overall agreement between numerical and

analytical results, corresponding respectively to a fully

three–dimensional stress diffusion model and to the ap-

proximated structural model, is very good. It is worth

noting that the agreement holds when h/b > 1, that is,

for aspect ratios of the bilayer strip which result in an

overall beam behaviour.

5 The linear regime

We now further generalize our model and consider λos
to be homogeneous, isotropic distortions, i.e. linear dila-

tions, which are not necessarily due to swelling as in gels
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εob = λob − 1

κ
h

γ = 1/4

γ = 1/3

γ = 1/2

Figure 5 Curvature times thickness κh versus the swelling
stretch of the bottom layer λob for α = 1/3 , β = 1/2 and
γ = 1/4, 1/3, 1/2.

but may have another, unspecified, nature, e.g. thermal.

To relate the present model to the small strain setting

assumed in (?), we introduce small distortions

εos = λos − 1 , εob = γ εot , (5.36)

and their ratio, 0 ≤ γ ≤ 1. The ratio Γ can be computed

as a function of εob and γ as

Γ =
λob
λot

=
1 + εob

1 + εob/γ
. (5.37)

Longitudinal stretch Λ0 and curvature κ are recovered

substituting (??) into equations (??)

Λ0 = X0(1 + εob) and κh = X1X
−2
0 (1 + εob)

−1 . (5.38)

Substitution of (??) into (??) and (??) provides a gen-

eralization of Timoshenko’s formula for finite strain ap-

plications. The resulting curvature vs. εob plot is shown

in Figure ?? for α = 1/3, β = 1/2 and γ = 1/4, 1/3, 1/2.

Two distinct curvature regimes are obtained expanding

κh in series in the neighborhood of specific values of

εob. For εob → 0, the curvature is linear in εob

κh =
6αβ(1− β)(1− γ)

γ((1− α)(1− β)4 + α− α(1− α)β4)
εob , (5.39)

and the expression coincides with Timoshenko’s once

his parameters m = β/(1 − β) and n = α are substi-

tuted. For εob →∞, the curvature is linear in 1/εob

κh = ε−1ob · 6αβ(1− β)γ2(1− γ)·
·
(
α2β4 + 2αβ(2− (1− β)β)(1− β)γ + (1− β)4γ2

)
·

· (α2β4 + (1− β)4γ2(γ − α)+

+ αβ
(
1− β3

)
γ + α(1− β)γ2)−2 .

At this stage, we can attempt a simpler geometric ex-

planation for the two regimes observed. Looking at equa-

tion (??), we can point out two main characteristics of

the proposed bilayer beam model: 1) bending is mul-

tiplicatively superimposed to an expansion Λ0 and 2)

stretch is linear in the thickness coordinate x3. Consis-

tently with the above assumptions, we can compute the

curvature as

κ =
λot − λob

Λ0
· 1

Λ0 h/2
(5.40)

where we schematically assign λ ' λot to the top beam

and λ ' λob to the bottom one and where Λ0 h/2 is the

distance between the mean lines of the two beams. At

this point we can distinguish between two regimes. For

very large λob, we have that Γ is almost constant and

therefore

λot =
λob
Γ
∝ λob and Λ0 '

βλot + (1− β)λob
2

∝ λob

whence one infers that κh in (??) is proportional to

1/λob for large values of λob. For small strains, (??)

holds with εos << 1 and Λ2
0 ' 1 from which we can

conclude that κh in (??) is proportional to εob.

6 Conclusions and future directions

We have used an existing model for the evaluation of

stretching and curvature of bilayer gel beams (?) to

investigate and explain in detail an apparent paradox

consisting in a decrease in curvature for softer layers

at large strains. The model is simplified in that it ne-

glects the chemo-mechanical coupling, but in this way

it is applicable to general distorsions such as thermal

ones etc. . . Though extensive tests have not been car-

ried out yet, the model seems to perform better for

aspect ratios closer to beams (h/b > 1) than to ribbons

(h/b < 1). However, in the given aspect ratio range

and for a fairly wide parameter set, results are accurate

when compared to fully-coupled three-dimensional nu-

merical analyses. In addition to the explanation of the

unexpected hardening, the paper provides (1) a vali-

dation with numerical analyses, (2) a confirmation of

the phenomenon also in the case of stiffening effects at

large strains accounted for by Gent’s model (??), (3) a

generalization at large strain for the well-known Timo-

shenko’s formula (?) for the thermally induced bending

of bilayer beams, (4) and several closed-form analyti-

cal results useful for prediction and design which can

be extended using the template recurrently used in the

paper.

We didn’t analyze extremal situations such as very

thin gel layers glued over stiffer elastomeric layers; as

it was noted in (?) through the fully three–dimensional

stress diffusion model, in these situations wrinkling ap-

pears on the top surface of the gel layer, in addition
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to overall bending. We plan to investigate the surface

wrinkling arising under these circumstances starting

from the model set in (?) and looking for solutions al-

lowing for creases and wrinkling of the top gel layer,

following the path described in (?).
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