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Abstract

In this paper we consider bound constrained global optimization problems where first-order
derivatives of the objective function can be neither computed nor approximated explicitly.
For the solution of such problems the DIRECT Algorithm has been proposed which has strong
convergence properties and a good ability to locate promising regions of the feasible domain.
However, the efficiency of DIRECT deteriorates as the dimension and the ill-conditioning of
the objective function increase. To overcome these limits, we propose DIRECT-type algorithms
enriched by the efficient use of derivative-free local searches combined with nonlinear transfor-
mations of the feasible domain and, possibly, of the objective function. We report extensive
numerical results both on test problems from the literature and on an application in structural
proteomics.
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1. Introduction

In the paper we refer to the following general problem

min
x∈D

f(x), (1)

where D = {x ∈ ℜn : 0 ≤ xi ≤ 1, i = 1, . . . , n}, to which every box-constrained problem can
be reduced.
When the objective function is Lipschitz-continuous, Problem (1) can be solved by means of
the DIRECT (DIvide Rectangles) algorithm [1]. It is based on a space-partitioning technique
which is designed to adaptively balance local and global search at each iteration. Convergence
of the DIRECT algorithm to the global minimum of Problem (1) is guaranteed by the so-called
everywhere dense property, that is DIRECT is able to generate a set of points which, in the
limit, becomes dense in the feasible set [1, 2, 3].

In [3] an algorithm named DIRMIN-TL has been proposed where some modifications of the
DIRECT Algorithm are introduced to enhance its performances. In particular, DIRECT behav-
ior can be considerably improved by taking advantage of local minimizations [4, 5, 3] and
nonlinear transformations of the variables [3]. We consider in detail Algorithm DIRMIN-TL

from reference [3] where both local minimizations and nonlinear transformations of the vari-
ables are introduced in DIRECT.

The main contribution of the paper is the proposal of three new deterministic algorithms
for black-box derivative-free global optimization. Drawing inspiration from [3], we present
new variants of the DIRMIN-TL algorithm for black-box optimization to try and enhance both
its efficiency (i.e. number of local searches to get convergence) and robustness (i.e. ability
to find the global optimum of problem (1) within a prescribed number of iterations). The
basic idea consists in exploiting as much as possible derivative-free local minimizations. This
can be done mainly in two ways. First, we can substitute the local minimization step of
algorithm DIRMIN-TL from reference [3] with derivative-free local minimization. This plain
modification results in a quite reliable algorithm. Then, in order to improve the efficiency of
the method, we propose to carry out the local minimization in a distributed way. Second,
drawing inspiration from [6, 7, 8], we can use the derivative-free local minimization routine
to modify the objective function.

In Section 2 we present a simple adaptation of Algorithm DIRMIN-TL, from reference [3], to
derivative-free optimization and present its numerical performances on a benchmark of diffi-
cult global optimization problems. In Section 3 we propose a distributed version of algorithm
DIRMIN-TL where the local minimization are carried out in a distributed fashion thus con-
siderably improving the efficiency of DIRMIN-TL. In Section 4 we propose a new DIRECT-type
algorithm based on the so-called “plateau” transformation of the objective function which
considerably improves the robustness of DIRMIN-TL. In Section 5 we present an application of
the the latter algorithm to a protein structural alignment problem [9]. Finally, in Section 6
we draw some conclusions.

1.1. The original DIRECT Algorithm

In this section we report a brief description of the original DIRECT Algorithm. At the first
step of DIRECT, f(x) is evaluated at the center of the search domain D; the hypercube is then
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H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, k = 1

repeat

identify the set of indices I∗k ⊆ Ik of the potentially optimal hyperrectangles in Hk

for each i ∈ I∗k , subdivide Di (generate the new partition Hk+1)

evaluate f in the centers of the new hyperrectangles

fmin = min{f(c) : c ∈ Ck}, Xmin = {c ∈ Ck : f(c) = fmin}, k = k + 1
(Ck = {centers of the hyperrectangles in Hk})

until (stopping criterion satisfied)

return fmin, Xmin

Figure 1: Sketch of the original DIRECT Algorithm.

partitioned into a set of smaller hyperrectangles and f(x) is evaluated at their centers. Let
the partition of D at iteration k be defined as

Hk = {Di : i ∈ Ik}, with Di = {x ∈ ℜn : li ≤ x ≤ ui}, ∀ i ∈ Ik,

where li, ui ∈ [0, 1], i ∈ Ik, and Ik is the set of indices identifying the subsets defining the
current partition. At the generic k-th iteration of the algorithm, starting from the current
partition Hk of D into hyperrectangles, a new partition, Hk+1, is built by subdividing a set
of potentially optimal hyperrectangles of the previous partition Hk. The identification of a
potentially optimal hyperectangle is based on some measure of the hyperrectangle itself and
on the value of f at its center. The refinement of the partition continues until a prescribed
number of function evaluations has been performed, or another stopping criterion is satisfied.
The minimum of f over all the centers of the final partition, and the corresponding centers,
provide an approximate solution to the problem. The structure of DIRECT is outlined in Figure
1.

Further details on the original DIRECT Algorithm can be found in [1, 3]. The convergence
of DIRECT is proved (see, e.g., [1, 3]) by showing that the set of sampled points becomes
everywhere dense in D as the number of iterations k goes to infinity. For a convergence
analysis of DIRECT-type or “divide-the-best” algorithms, we refere the interested reader to
[10, 11, 12].

1.2. Algorithm DIRMIN-TL

In order to describe Algorithm DIRMIN-TL from [3], we first need to introduce a sketch of
Algorithm DIRMIN (from reference [3]) where local minimizations starting from the cetroids
of potentially optimal hyperintervals are introduced in the DIRECT Algorithm.



5.

Algorithm DIRMIN

H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, tol, kmax, k = 1

Repeat

(S.1) identify the potentially optimal hyperrectangles Pk in Hk

(S.2) for all centroids ci of hyperrectangles in Pk perform a local minimization
and record the best function value fml

(S.3) subdivide the potentially optimal hyperrectangles to build a new partition Hk+1

(S.4) evaluate f in the centers of the new hyperrectangles

(S.5) fmin = min{f(c) : c ∈ Ck, fml}, Xmin = {x ∈ D : f(x) = fmin}, k = k + 1

Ck is the set of centroids c of the hyperrectangles in Hk

Until (stopping criterion satisfied)

Return fmin, Xmin

Algorithm DIRMIN-TL is obtained by repeatedly applying DIRMIN to the problem obtained
from Problem (1) by transforming the search space by means of the following piecewise linear
transformation of variables.
In particular, given a point x̃ ∈ (0, 1)n, let y = Tx̃(x) be defined by

yi = (Tx̃(x))i =















xi
2x̃i

if xi ≤ x̃i,

1− xi
2(x̃i − 1)

+ 1 if xi > x̃i,
i = 1, . . . , n.

As reported in [3], operator Tx̃ : ℜn → ℜn is invertible, maps [0, 1]n into [0, 1]n, maps the
point x̃ into the centroid of the transformed space (Tx̃(x̃) = (1/2 . . . 1/2)⊤) and reduces to
the identity if x̃ = (1/2 . . . 1/2)⊤.
Thus, given x̃ ∈ (0, 1)n and by using operator Tx̃, we can write

f(x) = f(T−1
x̃ (y)) = fx̃(y).

After a fixed maximum number of partitioning steps, DIRMIN stops producing an estimate
xmin ∈ (0, 1)n of the global minimum point. If the global minimum estimate value f(xmin) is
not sufficiently close to the optimal value f∗, we propose to use the above transformation Tx̃
with x̃ = xmin and apply again DIRMIN to the problem

min
y∈[0,1]n

fx̃(y). (2)

DIRMIN applied to Problem (2) will try to improve the current estimate of the global minimum
point by generating a different partition of the domain [0, 1]n. This process is reiterated if
DIRMIN improves on the initial point x̃. Otherwise, DIRMIN is restarted by choosing x̃ among
the set of promising stationary points produced in the previous iteration, which is updated
during the iterations of the new algorithm.
We report below the sketch of Algorithm DIRMIN-TL.
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Algorithm DIRMIN-TL

xmin = x̃ = (1/2 . . .1/2)⊤, fmin = f(xmin), N = ∅, O = ∅, maxint≫ 0, k = 1

Repeat

(S.1) Apply DIRMIN to Problem (2) until |Hk| ≤ maxint and let x̂ be the best point
produced and W be the set of “promising” stationary points.

(S.2) If ( fx̃(x̂) < fmin ) then set fmin = fx̃(x̂), xmin = x̃ = x̂, N = ∅, O = ∅ and cycle.

(S.3) Otherwise set
N = N ∪

{

y ∈ W : f(y)− fmin ≤ ǫf and minx∈N∪{xmin} d(y, x) > ǫd
}

.

(S.4) choose x̄ ∈ N \ O, set O = O ∪ {x̄}, x̃ = x̄.

Until (N \ O = ∅)

Return fmin, xmin

In the algorithm, N represents the set of candidate points to restart DIRMIN, O is the set of
already used points, and W is the set of stationary points produced at Step S.2 of Algorithm
DIRMIN. After DIRMIN has generated |Ik| = maxint hyperintervals, N and O are updated,
on the basis of the information gained up to that point. Any time fmin is updated, they are
initialized to the empty set. Otherwise, at step S.3 the set of candidate points N is updated
by setting N = N ∪{x ∈ W : x is “promising”} where a stationary point x is promising when
f(x) is “close to” f(xmin) and x is “sufficiently distant” from the points in N ∪{xmin}. Then,
the new point x̃ to restart DIRMIN is chosen in the set N \O and O = O ∪ {x̃}.

2. A plain modification of algorithm DIRMIN-TL

In principle, Algorithm DIRMIN-TL (from reference [3]) cannot be used in the present context
of derivative-free black-box global optimization since the local minimizations are carried out
by means of a gradient based algorithm.

However, it is worth noting that Algorithm DIRMIN-TL, like other DIRECT-type algorithms, is
able to guarantee the following convergence property.

Lemma 2.1. For every global minimum point x∗ of Problem (1) and for every ǫ > 0, there
exists an iteration k and a centroid x̄ ∈ Ck such that ‖x∗ − x̄‖ ≤ ǫ.

This property can be exploited to accelerate convergence of DIRECT-type algorithms by using
suitable local minimization algorithms (which is the fundamental consideration of [3]). In
particular, the local minimization algorithm should be able to converge to the global minimum
point once the global optimization scheme has generated a point sufficiently close to it. To
this aim, we recall from reference [3] the following proposition concerning some minimal
assumptions needed by an iterative algorithm to be attracted by a global minimum point.

Proposition 2.2 ([13]) Let f ∈ C2 and {xk} be a sequence of feasible points generated by
an iterative method xk+1 = xk + αkdk such that
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(i) f(xk+1) ≤ f(xk)− θ(αk)
2‖dk‖

2, for all k, where θ > 0;

(ii) any accumulation point of the sequence {xk} is stationary for Problem (1).

For every global minimum point x∗ of f(x) on D where ∇2f(x∗) is positive definite, there
exists an open set L containing x∗ such that, if xk̄ ∈ L for some k̄ ≥ 0, then xk ∈ L for all
k ≥ k̄ and {xk} → x∗.

By using a derivative-free local minimization algorithm satisfying the assumptions of above
Proposition 2.2, we can thus propose a straightforward modification of DIRMIN-TL for black-
box optimization that consists in substituting derivative-based with derivative-free local min-
imizations. Examples of such algorithms are present in the literature [14, 15].

Here we represent such an algorithm as

(x̂, α̂) = DF (x0, α0, tol, kmax),

where x0 is the starting point of the minimization, α0 represents an estimate of the stationarity
measure [16] of x0, tol is the target measure of stationarity and kmax is the maximum number
of allowed iterations. In output, the algorithm produces a feasible point x̂, and the current
stepsizes α̂ ∈ ℜn (a sketch of a possible algorithm DF is reported in appendix A for the
interested reader). We denote by α̂max = maxi=1,...,n α̂i the stationarity measure of x̂ [16].

2.1. Efficient partition management in DIRECT

The efficiency of Algorithm DIRECT heavily depends on the data structures that are used
to store information on the current feasible domain partition and on how the selection and
partition procedures are implemented. In [17] a partly dynamic data structure has been
proposed with the aim of combining an efficient management of the data structures with the
efficiency of the algorithm. In our implementation of DIRECT, we adopt a completely dynamic
data structure for box information storage (see Figure 2). We use two derived data types,
Box and Column. A Box structure contains information on an hyperinterval, that is, the
objective function value on the centroid, the centroid coordinates, the hyperbox dimensions
and pointers to previous and next Box structures. The Column derived type is used to define a
double-linked list of columns. Each element of the list contains the diameter of the column of
hyperboxes, a pointer to the corresponding list of Box structures and pointers to previous and
next Column structures. The list of columns is kept sorted by increasing diameter size, whereas
all the lists of boxes are kept sorted by increasing objective function value. It is worth noting
that, by exploiting the above dynamic data structure, computing the potentially optimal
hyperintervals, adding, removing and keeping columns and boxes ordered can be done very
efficiently. In particular, set Iwk is computed by applying the Jarvis’s march [18] just to the
top elements of the list of boxes of each column (see Figure 2), which is of limited cardinality.

2.2. Numerical results with DIRMIN-TL

We applied this simple modification of Algorithm DIRMIN-TL to a set of global optimization
problems from references [3, 19, 20] (see Table 5 in Appendix B for problem dimensions and
optimal values). More precisely, inside DIRMIN-TLwe allow the generation of at most 50000×n
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hyperrectangles by algorithm DIRMIN and we set the maximum number of restarts to 100.
Furthermore, we use the following stopping criterion

f(xmin)− f∗

max{1, |f∗|}
≤ 10−4,

where f∗ is the known optimal function value. The results are reported in the table below,
where:

- Problem is the name of the problem

- n is the dimension of the problem

- f(x̄) is the best function value produced by the algorithm, and it is in boldface whenever
the stopping criterion is not met

- n.f. is the number of computed function evaluations

- n.loc. is the number of performed local minimizations

- n.int. is the number of hyperrectangles.

Table 1: Results of DIRMIN-TL

Problem n f(x̄) n.f. n.loc. n.int.

Test problems from reference [3]

Schubert 2 -1.8673e+02 365 5 21

Schub. pen. 1 2 -1.8673e+02 2520 32 113

Schub. pen. 2 2 -1.8673e+02 881 11 45

S-H. Camel B. 2 -1.0316e+00 75 1 5

Goldstein-Price 2 3.0000e+00 107 1 5

Treccani mod. 2 7.1314e-09 78 1 5

Quartic 2 -3.5239e-01 499 6 27

Shekel m = 5 4 -1.0153e+01 142 1 9

Shekel m = 7 4 -1.0403e+01 500 3 21

Shekel m = 10 4 -1.0536e+01 1005 6 33

Espon. mod. 2 -1.0000e+00 76 1 5

Espon. mod. 4 -1.0000e+00 150 1 9

Cos-mix mod. 2 -2.0000e-01 70 1 5

Cos-mix mod. 4 -4.0000e-01 138 1 9

Hartman 3 -3.8628e+00 105 1 7

Hartman 6 -3.3224e+00 229 1 13

5n loc-min 2 2.3557e-31 62 1 5

5n loc-min 5 9.4226e-32 152 1 11

5n loc-min 10 4.7113e-32 302 1 21

5n loc-min 20 2.3557e-32 602 1 41

10n loc-min 2 2.3557e-31 62 1 5

10n loc-min 5 9.4226e-32 152 1 11

10n loc-min 10 4.7113e-32 302 1 21

10n loc-min 20 2.3557e-32 602 1 41

15n loc-min 2 1.3497e-32 62 1 5

continued on next page
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Table 1 – continued from previous page

Problem n f(x̄) n.f. n.loc. n.int.

15n loc-min 5 1.3497e-32 152 1 11

15n loc-min 10 1.3497e-32 302 1 21

15n loc-min 20 1.3497e-32 602 1 41

Griewank mod. 2 1.3472e-11 78663 858 3089

Griewank mod. 5 6.2154e-10 490515 1896 11553

Griewank mod. 10 9.2333e-10 411178 753 7359

Griewank mod. 20 9.4514e-10 942 1 41

Pinter 2 3.3940e-09 170 2 7

Pinter 5 1.5414e-06 25618 101 629

Pinter 10 6.0700e-05 444607 1048 10259

Pinter 20 7.1553e-05 42682351 55392 1000478

Griewrot2 2 -1.7999e+02 80 1 5

Griewrot2 10 -1.7999e+02 816 1 21

Griewrot2 30 -1.7999e+02 5063 1 61

Griewrot2 50 -1.7998e+02 10205 2 199

Ackley 2 3.9968e-15 3348 38 129

Ackley 10 4.4409e-16 412 1 21

Ackley 30 4.4409e-16 1232 1 61

Ackley 50 4.4409e-16 2052 1 101

Dixon Price 2 3.3621e-09 87 1 5

Dixon Price 10 5.7617e-08 178195 503 7531

Dixon Price 25 7.6712e-08 283077766 339219 12523913

Dixon Price 50 6.6667e-01 36182567 21107 1863678

Easom 2 -1.0000e+00 131165 2190 6579

Michalewics 2 -1.8013e+00 69 1 5

Michalewics 5 -4.6877e+00 130058 920 6137

Michalewics 10 -9.6601e+00 21699660 67701 662976

Rastrigin 2 1.9443e-07 336 4 13

Rastrigin 10 9.7216e-07 12751 30 383

Rastrigin 30 2.9165e-06 280683 221 8491

Rastrigin 50 4.8608e-06 1265672 601 37703

Test problems from reference [19]

Beale 2 0.0000e+00 137 1 5

Bohachevsky 1 2 2.5101e-08 96 1 5

Bohachevsky 2 2 2.0964e-08 96 1 5

Bohachevsky 3 2 1.0140e-07 122 1 5

Booth 2 0.0000e+00 75 1 5

Colville 4 6.1275e-05 225066 62 387

perm1 2 1.0801e-06 272 1 5

perm1 5 8.9149e-05 1568231384 582059 4009631

perm2 2 0.0000e+00 62 1 5

perm2 5 6.3056e-07 57766 29 195

powell 4 0.0000e+00 141 1 9

powell 8 0.0000e+00 286 1 17

powell 16 0.0000e+00 576 1 33

powell 24 0.0000e+00 866 1 49

powersum 4 0.0000e+00 127 1 9

schwefel 2 5.5892e-08 1624 15 57

schwefel 5 1.3973e-07 201763 743 6013

continued on next page
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Table 1 – continued from previous page

Problem n f(x̄) n.f. n.loc. n.int.

schwefel 10 2.7574e-07 24909898 45504 500094

schwefel 20 5.5133e-07 431426380 496122 10407001

Test problems form reference [20]

Sphere 10 -1.4000e+03 573 1 21

Rot. Elliptic 10 -1.2999e+03 5642213969 1261645 14213501

Rot. Discus 10 -1.2000e+03 47680 31 397

Rot. Bent Cigar 10 -4.1537e+02 10584086678 2109744 31004082

Different Powers 10 -1.0000e+03 589 1 21

Rot. Rosenbrock 10 -8.9997e+02 36686 9 145

Rot. Schaffers (F7) 10 -7.9996e+02 374242440 91928 1014337

Rot. Ackley 10 -6.8008e+02 943365696 2134932 27501329

Rot. Weierstrass 10 -5.9914e+02 359339196 871942 9000562

Rot. Griewank 10 -4.9999e+02 14487 16 237

Rastrigin 10 -4.0000e+02 52620517 116714 1213659

Rot. Rastrigin 10 -2.9801e+02 3208062726 4780133 50004016

Non-Continuous Rot. 10 -1.9801e+02 1939249826 4921080 50004772

Schwefel 10 -9.3295e+01 1597692027 4458022 50004906

Rot. Schwefel 10 1.1512e+02 189035848 491308 5000954

Rot. Katsuura 10 2.0004e+02 204960561 570002 7000330

Lunacek Bi-Rastrigin 10 3.0003e+02 87808133 205922 2009957

Rot. Lunacek Bi-Rast 10 4.0202e+02 5511932601 5700552 50003148

Expanded Griewank + 10 5.0005e+02 12087229 3048 28155

Expanded Schaffer (F 10 6.0154e+02 2396769984 3454923 50000962

Comp. Function 1 10 7.0000e+02 104003 157 1645

Comp. Function 2 10 9.0284e+02 1655305428 4450965 50006510

Comp. Function 3 10 1.0268e+03 265301785 645319 6500803

Comp. Function 4 10 1.0435e+03 363888151 704658 7500899

Comp. Function 5 10 1.2019e+03 2518222053 4926281 50003832

Comp. Function 6 10 1.2288e+03 1265561798 936028 10501167

Comp. Function 7 10 1.4717e+03 118906294 282856 3000676

Comp. Function 8 10 1.4000e+03 33824697 49859 412627

In the first part of the table, we report the same test problems used in [3], in the second part
of the table, we test the algorithm on a further set of problems from the literature that can
be found on the webpage [19]. Finally, the third part of the table contains the test problems
recently proposed in [20] for the special session and competition on Real Parameter Single
Objective Optimization at the Conference on Evolutionary Computation (CEC) 2013.
From Table 1 the following can be observed:

• the derivative-free version of Algrithm DIRMIN-TL fails only on one problem from ref-
erence [3] (as opposed to the derivative-based version which never fails). This confirms
the good behavior of the local minimization routine that, without using derivatives, is
attracted by any global minimum point (see, e.g., [13] for smooth problems and [21] for
nonsmooth optimization).

• DIRMIN-TL fails on 17 out of 103 test problems, which can be considered quite a good
result for a derivative-free algorithm;
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• 45 problems are solved by a single local minimization performed by Algorithm DF
starting from the centroid of the feasible domain. Hence, in our further experimentations
we will not consider these “easy” problems.

From now on, we focus on the subset of 58 difficult test problems: in particular we drop from
the test set the 45 “easy” problems.

In subsequent sections we shall propose new variants of DIRMIN-TL with the aim of improving
the above results and, in particular, its efficiency and reliability.

3. A new distributed derivative-free algorithm

Looking at the results in the previous section, it emerges the large number of function evalu-
ations needed in order to get convergence. Drawing inspiration from [13], we update during
the iterations a working set, of dimension nwks = 100n, of “open” local minimizations that
are carried out in a distributed fashion. The idea is to perform until the end only a limited
number of local minimizations, focusing on the most “promising” ones. In particular, starting
from each centroid of the potentially optimal hyperrectangles Algorithm DF is executed with
an adaptive tolerance that is updated during the iterations on the basis of the behaviour of
the active minimizations and becomes tighter and tighter as the algorithm proceeds. The
points produced by the DIRECT partitioning strategy are added to the working set if there
are positions available. Whenever a new partial minimization is performed and the working
set is full, the point is added only if its objective function value is better than the worst one
present in the current working set, that is replaced.

Furthermore, at the end of every iteration, all the points in the working set are updated by
means of a single iteration of Algorithm DF. Whenever the maximum stepsize of an active
minimization falls below the threshold tol, that minimization is removed from the working
set, leaving space for a new one.
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Algorithm DDF-DIRMIN

H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, tol > 0, αmax > tol,
kmax ≥ 1, W1 = ∅, α1 ∈ ℜn, nwks ≥ 1, k = 1

repeat

identify the potentially optimal hyperrectangles Pk in Hk

for all centroids ci of hyperrectangles in Pk compute (ĉi, α̂i) = DF (ci, di, αmax, kmax)

if (|Wk| < nwks)

set Wk = Wk ∪ (ĉi, α̂i),

elseif f(ĉi) < f(cj), cj = argmaxy∈Wk
{f(y)} set Wk = Wk ∪ (ĉi, α̂i) \ (cj , α̂j)

end if

subdivide the potentially optimal hyperrectangles to build a new partition Hk+1

evaluate f in the centers of the new hyperrectangles

For every pair (yi, αi) ∈ Wk set (ỹi, α̃i) = DF (yi, αi, tol, 1). Set Wk :=

|Wk|
⋃

i=1

(ỹi, α̃i)

compute f(ymin) = mini∈Wk
f(yi) and αmax = maxi∈Wk

{αi}.

Remove from Wk all the (y, α) such that maxj=1,...,n αj ≤ tol.

fmin = min{f(c) : c ∈ Ck, f(ymin)}, Xmin = {x ∈ D : f(x) = fmin}, k = k + 1
(Ck = {centers of the hyperrectangles in Hk})

until (stopping criterion satisfied)

return fmin, Xmin

In Table 2, we report the results of Algorithm DDF-DIRMIN on the 58 difficult problems.
Looking at the table it can be noted the smaller number of function evaluations used by
Algorithm DDF-DIRMIN as opposed to DIRMIN-TL.

Table 2: Results of DDF-DIRMIN

Problem n f(x̄) n.f. n.loc. n.int.

Test problems for reference [3]

Schubert 2 -1.8672e+02 109 10 47

Schub. pen. 1 2 -1.8673e+02 235 31 105

Schub. pen. 2 2 -1.8673e+02 193 24 75

Quartic 2 -3.5200e-01 96 11 55

Shekel m = 7 4 -1.0402e+01 126 12 51

Shekel m = 10 4 -1.0536e+01 142 15 57

Griewank mod. 2 1.9831e-05 8072 953 3421

Griewank mod. 5 2.3800e-05 274190 24104 133129

Griewank mod. 10 1.0188e-05 14724 963 9495

Pinter 2 1.6568e-05 197 25 105

Pinter 5 9.8179e-05 1843 214 1255

continued on next page
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Table 2 – continued from previous page

Problem n f(x̄) n.f. n.loc. n.int.

Pinter 10 9.5931e-05 16393 1310 12939

Pinter 20 9.9644e-05 107872 4667 97053

Griewrot2 50 -1.7998e+02 8468 71 6491

Ackley 2 3.9968e-15 407 42 145

Dixon Price 10 8.9499e-05 12464 679 9833

Dixon Price 25 6.6667e-01 5492616 134409 5001820

Dixon Price 50 6.6667e-01 1940253 21107 1863368

Easom 2 -1.0000e+00 11043 2198 6625

Michalewics 5 -4.6876e+00 9538 983 6523

Michalewics 10 -9.6595e+00 849039 67724 663164

Rastrigin 2 1.9443e-07 181 22 87

Rastrigin 10 9.7216e-07 1188 72 817

Rastrigin 30 2.9165e-06 13542 346 12217

Rastrigin 50 4.8608e-06 51820 834 49023

Test problems for reference [19]

Colville 4 7.3521e-05 1335 167 883

perm1 5 7.6076e-04 36624683 3647938 25003738

perm2 5 8.5173e-05 5275 597 3611

schwefel 2 7.4746e-05 515 47 165

schwefel 5 7.7473e-05 11670 768 6177

schwefel 10 2.5060e-05 822302 45537 500522

schwefel 20 4.4414e-05 12217489 496164 10408019

Test problems for reference [20]

Rot. Elliptic 10 -1.3000e+03 581930281 4448993 50013308

Rot. Discus 10 -1.2000e+03 18501 481 4751

Rot. Bent Cigar 10 -1.0907e+03 122143170 166257 2500131

Rot. Rosenbrock 10 -9.0000e+02 96883 144 1505

Rot. Schaffers (F7) 10 -7.9992e+02 12735661 61068 668590

Rot. Ackley 10 -6.8002e+02 15935575 350139 4500239

Rot. Weierstrass 10 -5.9919e+02 12565878 657155 6500311

Rot. Griewank 10 -4.9995e+02 16384 533 4865

Rastrigin 10 -4.0000e+02 22445131 146194 1531248

Rot. Rastrigin 10 -2.9801e+02 87462231 4774990 50003974

Non-Continuous Rot. 10 -1.9801e+02 83304804 4800436 50004334

Schwefel 10 -9.3233e+01 353592387 4433733 50004226

Rot. Schwefel 10 1.5011e+02 5107995 363772 3500411

Rot. Katsuura 10 2.0003e+02 21832018 490174 6000264

Lunacek Bi-Rastrigin 10 3.0003e+02 45057438 205910 2009909

Rot. Lunacek Bi-Rast 10 4.0222e+02 391928534 5702225 50003450

Expanded Griewank + 10 5.0005e+02 1149771 3995 36901

Expanded Schaffer (F 10 6.0185e+02 685417439 3499448 50001068

Comp. Function 1 10 7.0000e+02 29144 189 1933

Comp. Function 2 10 9.0284e+02 362203872 4455047 50006616

Comp. Function 3 10 1.0323e+03 4701450 293292 3000406

Comp. Function 4 10 1.0291e+03 6281748 389132 4500485

Comp. Function 5 10 1.2025e+03 85773668 4966625 50003834

Comp. Function 6 10 1.2344e+03 21781707 286120 3000222

Comp. Function 7 10 1.5882e+03 717640 45111 500041

Comp. Function 8 10 1.5000e+03 2231849 161795 1500363

In order to better evaluate the savings in terms of function evaluations, in Figure 3 we plot
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the cumulative distribution function ρ(τ) defined as:

ρ(τ) =
1

|P|

∣

∣

∣

∣

{

p ∈ P :
nfp,2
nfp,1

≤ τ

}∣

∣

∣

∣

,

where P is the set of test problems, and nfp,1 (nfp,2) is the number of function evaluations
required by DIRMIN-TL (DDF-DIRMIN) to stop when solving problem p ∈ P. Function ρ(τ)
helps comparing the performances of the two algorithms in terms of overall computational
burden. In particular, Figure 3 shows that DDF-DIRMIN stops in less than half the number of
function evaluations required by DIRMIN-TL on about 87% of the problems. Obviously, this
greater efficiency has a price: indeed, Algorithm DDF-DIRMIN fails on 20 problems (out of 58)
whereas Algorithm DIRMIN-TL only fails on 17 problems.

4. A new algorithm using the plateau modification function

Now, we try to improve the reliability of DIRMIN-TL, i.e. its ability to locate the global
optimum, without worrying to much about the efficiency. To this aim, we first define the
following “plateau” modification of the objective function [6]:

f̃(x) = f(x̂), where (x̂, α̂) = DF (x, α0, tol, kmax).

In particular, we substitute to the original objective function the function value of the sta-
tionary point obtained by algorithm DF starting from the point x. The resulting function
is a piecewise constant function (the so called “plateau” function, see e.g. [6, 7, 8]) which,
under the stated assumptions, is bounded from below. We define a new algorithm, that
we call DIRFOB, that, roughly speaking, consists in applying algorithm DIRECT to the global
minimization of the “plateau” function f̃ . In Algorithm DIRFOB we maintain the restarting
technique used in DIRMIN-TL, by means of the same nonlinear transformation applied on a
set of “promising” points.

Note that, even though the plateau modification function is not Lipschitz continuous, the
everywhere convergence property of DIRECT is still valid. Indeed, as showed in [12], this
property follows from

I∗k ∩ {i ∈ Ik : ‖u
i − li‖ = dmax

k } 6= ∅,

where dmax
k = maxi∈Ik ‖u

i− li‖, which is true independently from the continuity of the objec-
tive function.
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Algorithm DIRFOB

xmin = x̃ = (1/2 . . .1/2)⊤, fmin = f̃(xmin), N = ∅, O = ∅, maxint≫ 0, k = 1, ǫf , ǫd > 0.

Repeat

(S.1) Apply DIRECT to miny∈[0,1]n f̃x̃(y) until |Hk| ≤ maxint and let x̂ be the best point
produced and W be the set of “promising” stationary points.

(S.2) If ( f̃x̃(x̂) < fmin ) then set fmin = f̃x̃(x̂), xmin = x̃ = x̂, N = ∅, O = ∅ and cycle.

(S.3) Otherwise set

N = N ∪
{

y ∈ W : f̃(y)− fmin ≤ ǫf and minx∈N∪{xmin} d(y, x) > ǫd

}

.

(S.4) choose x̄ ∈ N \ O, set O = O ∪ {x̄}, x̃ = x̄.

Until (N \ O = ∅)

Return fmin, xmin

In Table 3 we report the results obtained by Algorithm DIRFOB on the set of 58 difficult test
problems.

Table 3: Results of DIRFOB

Problem n f(x̄) n.f. n.int.

Test problems for reference [3]

Schubert 2 -1.8673e+02 2315 205

Schub. pen. 1 2 -1.8673e+02 6316 207

Schub. pen. 2 2 -1.8673e+02 3868 203

Quartic 2 -3.5239e-01 84 19

Shekel m = 7 4 -1.0403e+01 164 23

Shekel m = 10 4 -1.0536e+01 160 23

Griewank mod. 2 1.7036e-09 14746 233

Griewank mod. 5 4.3145e-10 154689 845

Griewank mod. 10 1.4426e-09 182128 1009

Pinter 2 3.3940e-09 90 5

Pinter 5 1.5150e-06 10547 521

Pinter 10 1.5090e-06 24151879 89033

Pinter 20 1.2913e-05 822928421 1569822

Griewrot2 50 -1.7998e+02 5104 101

Ackley 2 5.6461e-05 466 151

Dixon Price 10 9.3893e-08 137441 1087

Dixon Price 25 1.3575e-08 5731881 5419

Dixon Price 50 4.8111e-08 1269313104 460873

Easom 2 -1.0000e+00 318161 8829

Michalewics 5 -4.6877e+00 23308 533

Michalewics 10 -9.6601e+00 30065636 178221

Rastrigin 2 7.4494e-07 1856 209

Rastrigin 10 4.9073e-08 12010 1103

Rastrigin 30 2.7650e-06 6145 3223

Rastrigin 50 4.4339e-06 10277 5355

continued on next page
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Table 3 – continued from previous page

Problem n f(x̄) n.f. n.int.

Test problems for reference [19]

Colville 4 2.8539e-06 13120363 60281

perm1 5 9.3933e-04 7279772213 25003136

perm2 5 3.6115e-05 168322925 560003

schwefel 2 5.5145e-08 525 121

schwefel 5 1.3907e-07 91223 527

schwefel 10 2.7814e-07 483319 1237

schwefel 20 5.5629e-07 4295690 5361

Test problems for reference [20]

Rot. Elliptic 10 -1.3000e+03 121196868750 34503835

Rot. Discus 10 -1.2000e+03 2611405 1925

Rot. Bent Cigar 10 -1.1000e+03 4059627002 1017617

Rot. Rosenbrock 10 -9.0000e+02 110939 1067

Rot. Schaffers (F7) 10 -7.9993e+02 425933887 527362

Rot. Ackley 10 -6.9997e+02 650470093 3501090

Rot. Weierstrass 10 -5.9997e+02 263655451 1018829

Rot. Griewank 10 -4.9998e+02 22073 1047

Rastrigin 10 -4.0000e+02 202714074 511630

Rot. Rastrigin 10 -3.0000e+02 8398182 20159

Non-Continuous Rot. 10 -2.0000e+02 3864394 13701

Schwefel 10 -1.0000e+02 186574187 522190

Rot. Schwefel 10 1.0000e+02 546425335 1501278

Rot. Katsuura 10 2.0003e+02 610000645 3000142

Lunacek Bi-Rastrigin 10 3.0000e+02 441877163 1291487

Rot. Lunacek Bi-Rast 10 4.0000e+02 11556220 28031

Expanded Griewank + 10 5.0004e+02 31844643 49393

Expanded Schaffer (F 10 6.0006e+02 54060331 138325

Comp. Function 1 10 7.0000e+02 196612 1041

Comp. Function 2 10 8.0000e+02 189617796 519686

Comp. Function 3 10 9.0000e+02 97308583 265987

Comp. Function 4 10 1.0000e+03 553844533 1501776

Comp. Function 5 10 1.2000e+03 2008600802 5500523

Comp. Function 6 10 1.2000e+03 1580140782 2017773

Comp. Function 7 10 1.4000e+03 3127930717 8000486

Comp. Function 8 10 1.4000e+03 1541217 3035

As it can be seen, the reliability of Algorithm DIRFOB is significantly improved with respect
to DIRMIN-TL. Indeed, DIRFOB only fails on 4 problems out of 58. Not surprisingly Algorithm
DIRFOB is generally more expensive than DIRMIN-TL (and hence of DDF-DIRMIN).

However, this is not always the case as it emerges from Figure 4 where we plot function ρ(τ)
for the comparison among DIRMIN-TL and DIRFOB. In particular, we plot ρ(τ) for τ ∈ [0, 1]
(left side of Figure 4) and for τ ∈ [1, 60] (right side of Figure 4). It can be seen that DIRFOB
requires a number of function evaluation not greater than that required by DIRMIN-TL on
approximately half of the test problems (see, e.g., left side of Figure 4).
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5. An application to a protein structural alignment problem

Given two protein structures P and Q, let us denote by P and Q the two finite sets of points
corresponding to the atoms of the active sites of the two structures P and Q, respectively.
We let n = |P | and m = |Q| and assume, without loss of generality, that n ≤ m. The set
P is conventionally representative of a query shape while Q defines a reference model shape.
An isometric transformation in three-dimensional space can be defined by a unit quaternion
ar = (a0, a1, a2, a3)

⊤ ∈ ℜ4 (‖ar‖ = 1) and by a translation vector at ∈ ℜ3. Let a⊤ = (a⊤r a⊤t )
be the transformation defining vector and denote by Ta the corresponding transformation, so
that

y = Ta(x) = R(ar)x+ at

for every x ∈ ℜ3, where R(ar) is the rotation matrix defined by the unit quaternion ar.
Let Θ ⊂ ℜ7 be the set of all vectors a ∈ ℜ7 defining an isometric transformation in ℜ3. Given
a transformation vector a ∈ Θ, let Ta(P ) = Pa denote the set of points obtained by applying
the transformation Ta to every point of P , that is

Ta(P ) = Pa = {y : y = R(ar)p+ at, ∀ p ∈ P}.

Let ψ : P → Q denote a point to point mapping that associates to every point of P a point of
Q. Since, as assumed above, P and Q are finite sets, the class Ψ of all mappings ψ has finite
cardinality given by |Ψ| = mn.
Let ψ ∈ Ψ be a given mapping and a be a vector defining an isometric transformation, then
the mean square error function between P and Q is the following

f(ψ, a) =
1

n

∑

p∈P

‖ψ(p) −R(ar)p− at‖
2.

Let us denote by ψ(a) = argminψ∈Ψ f(ψ, a) the closest point mapping [22] and g(a) =
f(ψ(a), a). Then, the surface alignment problem can be posed as

min
a∈Θ

g(a). (3)

Every global solution a∗ of (3) is, by definition, a solution such that f(ψ(a∗), a∗) ≤ f(ψ(a), a),
for all a ∈ Θ. Problem (3) is a global optimization problem with a black-box objective
function, a feasible set Θ described by box constraints and some “easy” constraints (i.e.
‖ar‖ = 1). Furthermore, numerical experiments show that the problem has many local
minima and a global minimum exists with reasonably large basin of attraction.

Since, among the proposed algorithms DIRFOB is the more robust one, this is the code that we
employ to find correct alignments on the set of 19 proteins used in [9]. The proteins all bind
ligand ATP and are from different families according to the structural classification SCOP
[23].
We performed pairwise comparisons of the active site of the catalytic subunit of cAMP-
dependent Protein-Kinase (pdb code 1atp, chain E) with each of the remaining proteins of
the input data set. Of the set of proteins only three belong to the same SCOP family as 1atp,
namely 1phk, 1csn and 1hck. In Table 4 for each comparison we report the number of aligned
atoms along with the Root Mean Square Distance (RMSD) obtained by DIRFOB and CO (i.e.
the algorithm proposed in [9]), respectively.
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Table 4: Results obtained by DIRFOB for the protein structural alignment
problem

DIRFOB CO
Protein Pair N. align. atoms RMSD N. corresp. atoms RMSD

1atpE-1phk 66 0.90 57 0.91

1atpE-1csn 64 0.99 50 1.18

1atpE-1hck 61 1.50 62 1.20

1atpE-1ayl 29 1.91 12 1.21

1atpE-1yag 28 2.05 20 1.92

1atpE-1nsf 28 2.15 34 2.11

1atpE-1j7k 25 2.09 25 1.81

1atpE-1a82 24 1.81 19 2.02

1atpE-1mjhA 23 2.22 16 2.28

1atpE-1kp2A 22 1.92 13 1.51

1atpE-1kay 21 2.15 20 1.90

1atpE-1jjv 19 2.02 18 1.76

1atpE-1e2q 18 2.07 15 1.39

1atpE-1gn8A 16 2.11 17 2.37

1atpE-1b8aA 12 2.08 16 2.05

1atpE-1f9aC 11 2.35 21 2.17

1atpE-1e8xA 9 1.92 24 1.74

1atpE-1g5t 8 1.77 7 2.26

We observe that both methods correctly rank at the top three positions (with respect to the
number of aligned atoms) proteins in the same family as 1atp, that is 1phk, 1hck and 1csn.
It can also be noted that DIRFOB better separates proteins in the same SCOP family as 1atp,
from the others. Indeed, DIRFOB aligns 29 atoms for the protein pair 1atp-1ayl, whereas CO
aligns 34 atoms for the protein pair 1atp-1nsf. Hence, the gaps obtained by DIRFOB and CO
between different SCOP families are 32 and 28 atoms, respectively.

6. Conclusions

In the paper we focused on the definition of new deterministic algorithms for the solution of
hard box-constrained global optimization problems when derivatives of the objective function
are unavailable. In particular, we proposed three different DIRECT-type algorithms which
makes efficient use of derivative-free local searches combined with nonlinear transformations of
the feasible domain and, possibly, of the objective function. Our starting point is algorithm
DIRMIN-TL, which has been recently proposed by exploiting an efficient Newton-type local
minimization routine. The first algorithm that we propose is indeed a simple adaptation of
DIRMIN-TL to the derivative-free context. The use of a derivative-free local search routine, in
place of the more efficient Newton-type one, still gives us a code with a fairly good reliability
(ability to locate the global minimum). This is most probably because both the local search
engines are attracted by any global minimum point. Then, we devised two more algorithms
trying to improve both the efficiency and reliability of DIRMIN-TL. More precisely, we showed
that algorithm DDF-DIRMIN is far more efficient than DIRMIN-TL in terms of required function
evaluations at the expense of a reduced reliability. Then, we tried to improve on the reliability
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and came up with algorithm DIRFOB which is indeed far more reliable than both DIRMIN-TL

and DDF-DIRMIN though it is generally more expensive than the first two codes.
Finally, we reported the results obtained by Algorithm DIRFOB on a difficult protein structural
alignment problem and show that it performs better than a method recently proposed in the
literature.

Appendix

A. The derivative-free local algorithm

In this section we report the sketch of a derivative-free procedure for unconstrained local
minimization [14].

Algorithm DF (x̂, α̂) = DF (x0, α0, tol, kmax)

Data d1, . . . , dn ∈ ℜn.

Set αmax = maxi=1,...,n α
i
0, k = 0

Repeat

For i = 1, . . . , n

starting from αk perform a derivative free linesearch along di producing αi
k+1

End For

Set xk+1 = xk +
n
∑

i=1

αi
k+1d

i

Set αmax = maxi=1,...,n α
i
k+1, k = k + 1.

Until ((αmax < tol) and (k = kmax))

Return (xk, αk, αmax)

In particular, the actual implementation of Algorithm DF that we use is based on the one
proposed in [14]. As for the parameters, the initial stepsizes α(ci), with ci center of Di, are
equal to the boxes of the hyperrectangles Di divided by two, the parameter tol is set to 10−4,
and kmax is equal to 5000.

B. Test set description

In the following table, for each problem of our test set, we report its name, the adopted
number of variables and the value of the known global minimum point.
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Table 5: Test problems

Problem n f∗

Problems from [3]

Schubert 2 -1.8673E+02

Schub. pen. 1 2 -1.8673E+02

Schub. pen. 2 2 -1.8673E+02

S-H. Camel B. 2 -1.0316E+00

Goldstein-Price 2 3.0000E+00

Treccani mod. 2 0.0000E+00

Quartic 2 -3.5200E-01

Shekel m = 5 4 -1.0153E+01

Shekel m = 7 4 -1.0403E+01

Shekel m = 10 4 -1.0536E+01

Espon. mod. 2 -1.0000E+00

Espon. mod. 4 -1.0000E+00

Cos-mix mod. 2 -2.0000E-01

Cos-mix mod. 4 -4.0000E-01

Hartman 3 -3.8627E+00

Hartman 6 -3.3223E+00

5n loc-min 2,5,10,20 0.0000E+00

10n loc-min 2,5,10,20 0.0000E+00

15n loc-min 2,5,10,20 0.0000E+00

Griewank mod. 2,5,10,20 0.0000E+00

Pinter 2,5,10,20 0.0000E+00

Griewrot2 2,10,30,50 -1.8000E+02

Ackley 2,10,30,50 0.0000E+00

Dixon Price 2,10,25,50 0.0000E+00

Easom 2 -1.0000E+00

Michalewics 2 -1.8013E+00

Michalewics 5 -4.6876E+00

Michalewics 10 -9.6602E+00

Rastrigin 2,10,30,50 0.0000E+00

Problems from [19]

Beale 2 0.0000E+00

Bohachevsky 1 2 0.0000E+00

Bohachevsky 2 2 0.0000E+00

Bohachevsky 3 2 0.0000E+00

Booth 2 0.0000E+00

Colville 4 0.0000E+00

Perm 1 2,5 0.0000E+00

Perm 2 2,5 0.0000E+00

powell 4,8,16,24 0.0000E+00

powersum 4 0.0000E+00

schwefel 2,5,10,20 0.0000E+00

Problems from [20]

Sphere 10 -1.4000E+03

Rot. Elliptic 10 -1.2999E+03

Rot. Discus 10 -1.2000E+03

Rot. Bent Cigar 10 -1.1000E+03

Different Powers 10 -1.0000E+03

Rot. Rosenbrock 10 -8.9997E+02

Rot. Schaffers (F7) 10 -8.0000E+02

continued on next page
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Table 5 – continued from previous page

Problem n f∗

Rot. Ackley 10 -7.0000E+02

Rot. Weierstrass 10 -6.0000E+02

Rot. Griewank 10 -4.9999E+02

Rastrigin 10 -4.0000E+02

Rot. Rastrigin 10 -3.0000E+02

Non-Continuous Rot. 10 -2.0000E+02

Schwefel 10 -1.0000E+02

Rot. Schwefel 10 1.0000E+02

Rot. Katsuura 10 2.0000E+02

Lunacek Bi-Rastrigin 10 3.0000E+02

Rot. Lunacek Bi-Rast 10 4.0000E+02

Expanded Griewank + 10 5.0000E+02

Expanded Schaffer (F 10 6.0000E+02

Comp. Function 1 10 7.0000E+02

Comp. Function 2 10 8.0000E+02

Comp. Function 3 10 9.0000E+02

Comp. Function 4 10 1.0000E+03

Comp. Function 5 10 1.1000E+03

Comp. Function 6 10 1.2000E+03

Comp. Function 7 10 1.3000E+03

Comp. Function 8 10 1.4000E+03
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Figure 2: Potentially optimal hyperintervals
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Figure 3: Comparison of DIRMIN-TL and DDF-DIRMIN by means of the cumulative distribution
function ρ(τ)
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Figure 4: Comparison of DIRMIN-TL and DIRFOB by means of the cumulative distribution
function ρ(τ)


