
Math. Struct. in Comp. Science: page 1 of 25. c© Cambridge University Press 2017

doi:10.1017/S0960129517000019

A doctrinal approach to modal/temporal Heyting

logic and non-determinism in processes

PAOLO BOTTONI†, DANIELE GORLA†, STEFANO KASANGIAN‡

and ANNA LABELLA†

†Dipartimento di Informatica, “Sapienza” Università di Roma, Rome, Italy

Email: bottoni@di.uniroma1.it, gorla@di.uniroma1.it, labella@di.uniroma1.it
‡Dipartimento di Matematica, Università di Milano, Milan, Italy

Email: stefano.kasangian@gmail.com

Received 17 May 2016; revised 30 November 2016

The study of algebraic modelling of labelled non-deterministic concurrent processes leads us

to consider a category LB , obtained from a complete meet-semilattice B and from B-valued

equivalence relations. We prove that, if B has enough properties, then LB presents a two-fold

internal logical structure, induced by two doctrines definable on it: one related to its families

of subobjects and one to its families of regular subobjects. The first doctrine is Heyting and

makes LB a Heyting category, the second one is Boolean. We will see that the difference

between these two logical structures, namely the different behaviour of the negation

operator, can be interpreted in terms of a distinction between non-deterministic and

deterministic behaviours of agents able to perform computations in the context of the same

process. Moreover, the sorted first-order logic naturally associated with LB can be extended

to a modal/temporal logic, again using the doctrinal setting. Relations are also drawn to

other computational models.

1. Introduction

For an agent A interacting with a system S , the latter appears to exhibit a non-deterministic

behaviour if A can propose two identical sequences of actions eliciting different responses

from S under identical circumstances. When reasoning on the possible behaviours of S ,

different logical inferences can then be drawn, depending on whether S is assumed to be

deterministic or non-deterministic. Within the framework of our long-term research on the

construction of a suitable categorical structure to model concepts from computer science,

such as concurrency, bisimulation, non-determinism, temporal operators (Bottoni et al.

2012; De Nicola et al. 2010; Kasangian and Labella 1999), we set ourselves here to analyse

the internal logics associated with the algebraic structures in which A’s observations can

be accounted for.

Starting from the temporal intuition underlying concurrent computational processes,

a categorical structure was obtained, studied in Kasangian and Labella (1999) under

the name SymcatB. Here, we study the algebraic and the internal logical structures of

the category LB , isomorphic to SymcatB, where B is the meet-semilattice of elementary

observers carrying the temporal structure that provides a system of generators for LB .

We shift from SymcatB (where B plays the role of a categorical structure on which to

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 2

enrich in order to get SymcatB (Walters 1981)) to LB , with the aim of obtaining the

same object in a language that is more immediate and more useful for comparisons. LB
is a generalization of the topos of presheaves (Ghezzi 2012) and it appears well suited

to highlight mathematical phenomena connected with the notion of non-determinism. In

particular, it captures, from the algebraic point of view, the specificity of Milner’s version

of observational non-determinism (Milner 1989).

The category LB , although not a topos, has enough good properties and is particularly

interesting with respect to the logic that can be canonically associated with it. Assuming

that the logic of a mathematical structure depends on the doctrines one can define on

it (Lawvere 1970), we find that LB is naturally equipped with two doctrines, suitably

related one to the other: a Heyting doctrine (called Sub), associated with the structure

of its subobjects, and a Boolean doctrine (called SSub), associated with the subclass of

regular subobjects. As expected, the particular structure of the Sub doctrine implies that

the logic naturally associated with LB is a Heyting one.

We will show that the difference between Sub and SSub in LB corresponds to the

presence of non-determinism, in the sense discussed above, i.e., in terms of the observed

behaviour of a process. Thus, the comparison between the two systems of doctrines gives

us a measure of how much one has to weaken the logical system associated with LB in

order to take into account the non-determinism connected with the notion of observation

in the subprocesses.

Following the doctrinal approach, we define other doctrines on LB strictly related to

the temporal doctrines introduced in Pisani (2010) (see Appendix B), according to the

‘temporal nature’ of B. Hence, the first-order logic naturally associated with LB can be

extended with modal/temporal operators in the style of Ghilardi and Meloni (1988) in a

natural way. In the same way, a temporal doctrine is associated with the Boolean doctrine

SSub of strict subobjects.

Paper organisation. In Section 2, the category LB is defined, and a sorted first-order logic

is associated with it. LB will be the Heyting category obtained from B, according to a

specific criterion, and SymcatB, the category of B-enriched categories, will turn out to be

isomorphic to it. In Section 3, the logic of LB is extended with intrinsic modal/temporal

operators introduced in terms of doctrines. Section 4 makes comparisons with some

research lines related to the present one and Section 5 draws some conclusions.

2. The category of categories on a meet-semilattice B

In this section, we first define the algebraic structure of the category LB and then the

logics associated with it.

2.1. The algebraic structure of LB

Let B = (B,�,
∧

) be a set B with a complete meet-semilattice structure, i.e., a poset with

all possible small non-empty meets
∧

. Under these hypotheses, we have also binary meets

(denoted by ∧) and a minimum element ⊥=
∧
B.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 3

Definition 2.1 (Categories on a complete meet-semilattice B). Let B = (B,�,
∧

) be a

complete meet-semilattice; we say that a category C is a category on B when

1. Each object X in C is a set X equipped with a B-valued relation αX : X ×X → B, such

that ∀x, y, z ∈ X:

— αX(x, y) ∧ αX(y, z) � αX(x, z) (transitivity)

— αX(x, y) = αX(y, x) (symmetry).

2. A morphism in C is a function f : X → Y (induced by the function f : X → Y on the

corresponding carrier sets) s.t. ∀x, y ∈ X:

— αX(x, x) = αY (f(x), f(x)).

— αX(x, y) � αY (f(x), f(y)).

3. Composition is function composition.

We say that a morphism f is strict if αX(x, y) = αY (f(x), f(y)).

Intuitively, an object X is a set of B-labelled elements, allowed to be equal up to

αX . In fact, from Definition 2.1, we can derive the existence of a labelling function

ιX(x) = αX(x, x); ιX can be seen as a special case of αX , as it expresses the level of equality

of an element with itself. In the following, we will explicitly mention ι to help intuition and

simplify the mathematical treatment. With this in mind, one can immediately see that our

definition is a special case of that of symmetric category on the bicategory associated with

B in Walters (1981) (see Proposition 2.1). There, a classical example of meet-semilattice

is considered, namely the one associated with the system of open sets in a topological

space. We call ιX the extent and αX the agreement in X and we shall omit the subscript

X when clear from the context or irrelevant. We call LB the category on B having all

the sets with a B-valued relation as objects and all the possible functions preserving the

B-valued relation as morphisms.

Monomorphisms are in this case injective morphisms. A subobject, i.e., an equivalence

class of monomorphisms, X ′ of X is a subset of B-labelled elements in X such that αX ′

is contained in αX as B-valued relation. It results from Definition 2.1 that LB is concrete

and has coproducts, while B is a system of generators for LB in the sense of Borceux

(1994).

We now point out some facts directly derivable Definition 2.1.

Proposition 2.1.

— αX(x, y) � ιX(x) ∧ ιX(y)

— The category SymcatB of symmetric categories on B (Kasangian and Labella 1999;

Walters 1981) is isomorphic to LB . Indeed, B is given with a bicategory structure

where objects are elements, 1-cells between two elements are elements contained in

their intersection and 2-cells are given by the order relation.

Having assumed that B has all small non-empty meets
∧

, then it has also bounded

joins, because we can define
∨
ai =

∧
bk , where ai � bk for every i and k. We require also

that the following distributivity property is satisfied, i.e., binary meets do distribute over

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 4

joins (when they exist):

b ∧
∨
i∈I
ai =

∨
i∈I

(b ∧ ai)

From now on, all generating semilattices will be distributive in the sense that finite meets

distribute with respect to all the existing joins. Notice that general joins do not exist,

not even in the finite case; so, our semilattice is not in general a lattice. Nonetheless, the

existence of bounded joins is sufficient to prove Theorem 2.1.

We recall that a cartesian category C is regular if it has images stable under pullbacks;

a regular category C is coherent if it has finite unions stable under pullbacks; a coherent,

well-powered† category C is geometric if it has small unions stable under pullbacks and

small intersections (Johnstone 2002). The main result of this section is Theorem 2.1, which

makes use of the following Lemma.

Lemma 2.1. LB is coherent.

Proof. We first need to define pullbacks, the terminal object, the image and the

coproduct:

—Pullback : given f : X → Z and g : Y → Z , we let X ×Z Y = 〈K, ι, α〉, where

K = {(x, y) | ιX(x) = ιY (y), f(x) = g(y)}, ι(x, y) = ιX(x) and α((x, y), (x′, y′)) =

αX(x, x′) ∧ αY (y, y′).

—Terminal object: B =〈B, id,∧〉.
—Image: given f : X → Y , we let Im(f) = 〈K, ι, α〉, where K = {y ∈ Y | ∃x ∈ X[y =

f(x)]}, ι(y) = ιY (y) and α(y, y′) =
∨
y′′∈Y [

∨
x∈f−1(y),x′′∈f−1(y′′) αX(x, x′′) ∧∨

x′′∈f−1(y′′),x′∈f−1(y′) αX(x′′, x′)].

—Coproduct: X + Y = 〈K, ι, α〉, where K = X � Y (� represents disjoint union),

ι(x) = ιX(x), ι(y) = ιY (y), α(x, x′) = αX(x, x′), α(y, y′) = αY (y, y′) and α(x, y) =⊥, for

x, x′ ∈ X and y, y′ ∈ Y . This construction can be extended to arbitrary (set-indexed)

coproducts.

Then, we should prove that what we have just defined is indeed the pullback, the terminal

object, the image and the coproduct. This can be easily verified because we took the set-

theoretical objects and imposed the correct equivalences in order to satisfy the universal

properties. Notice that joins used to define images do always exist because they are

bounded by αY (y, y′). We are left to prove that images and unions (i.e., images of sums

of monos) are stable under pullbacks. As usual, this is set-theoretically true. From the

definition of equivalence and the fact that ∧ preserves joins (the distributivity property),

the same holds in LB . The terminal object must be the sum of all generators with the

maximal equivalence relation.

Theorem 2.1. Let B be a complete meet-semilattice as above. Then, LB is a Heyting

category (Johnstone 2002) (originally called logos (Freyd and Scedrov 1990)); actually,

LB is a geometric category.

† A category is well powered whenever every object has a small poset of subobjects.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 5

Proof. Given an object X in LB , arbitrary ∪ and ∩ (the join and meet, resp.) can be

defined between its subobjects, as usual, via pullback and image of coproducts, endowing

them with the structure of a complete distributive lattice (Sub(X),�,∪,∩, 0). Given a

morphism f : X → Y , the image operator provides Σf : Sub(X) → Sub(Y), which is left

adjoint to the inverse image operator f∗. Unions are stable under meets (i.e., they are

preserved by pullbacks). As the union exists for every family of elements in Sub(X), Sub(X)

results into a complete Heyting algebra and f∗ has a right adjoint Πf as well (Freyd and

Scedrov 1990, p.117). Then, LB is a Heyting category and it is geometric.

Strict monomorphisms in LB coincide with regular monos in the sense that they are

equalizers. In fact, every regular mono X ′ → X is a maximal subobject that equalizes two

morphisms starting from its codomain; thus, it is necessarily strict. Vice versa, given a

strict subobject of X , we can construct Y as a set where all elements x ∈ X, except those

belonging to X ′, are replicated. The replicas have the same extent as the original elements

and are completely glued (maximal agreement) with them; hence, we can map X into Y
in two different ways, obtaining a pair of morphisms with X ′ → X as equalizer. Strictness

is preserved by identity, composition and pullbacks; images, though not necessarily strict,

are strict if the original morphisms are, because agreement, already maximal, cannot

change in the factorisation. In fact, in the case of strict morphisms, agreement in images

is the same as in the codomain object.

We now consider, for every object X , the structure SSub(X) of its strict subobjects, i.e.,

subobjects associated with strict monos.

Proposition 2.2. For every X in LB , the inclusion functor iX : SSub(X) → Sub(X) has a

left-inverse left-adjoint functor sX : Sub(X) → SSub(X), which, in turn, has also a left

adjoint jX s.t. jX � sX � iX .

Proof. sX is the functor which makes a subobject X ′ = 〈X ′, ι′, α′〉 of X = 〈X, ι, α〉 strict,

i.e., sXX ′ = 〈X ′, ι′, α′′〉, where α′′(x′, x′′) = α(x′, x′′). jX is the functor which transforms

a subobject X ′ = 〈X ′, ι′, α′〉 into jXX ′ = 〈X ′, ι′,⊥〉. By 〈X ′, ι′,⊥〉, we mean that in this

subobject α(x, x′) =⊥ whenever x �= x′. The proof of adjointness is routine.

Proposition 2.3. For every X , SSub(X) has the structure of a Boolean algebra. Given a

morphism f : X → Y , there exist two operators Σs
f ,Π

s
f : SSub(X) → SSub(Y), left and

right adjoint to the inverse image operator f∗s, respectively.

Proof. In this case α becomes irrelevant, so X , with its ι, is a B-labelled set and SSub(X)

is simply the powerset of X in Set/B, i.e., a Boolean algebra. We have that f∗ssY = sXf
∗.

By multiplying on the right by iY and exploiting Proposition 2.2, we obtain f∗s = sXf
∗iY

and, therefore, we can define Σs
f = sXΣfjX as the left adjoint to f∗s. On the other hand,

f∗s = sXf
∗jY also holds: in fact, applying sX to f∗jY and to f∗iY makes them equal,

because they are different only w.r.t. agreement and sX makes us forget about it. Hence,

we define Πs
f = sY ΠfiX obtaining a right adjoint to f∗s = sXf

∗jY (see Figure 1).

Summing up, every object X in LB is associated with two possible subobject structures,

Sub(X) and SSub(X): the first one, obtained via all possible monos, enjoys a Heyting

structure; the second one, obtained using only strict monos, enjoys a Boolean structure.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 6

Sub(X) sX ��

Πf

��

Σf

��

SSub(X)

iX��

jX

��

Πs
f

��

Σs
f

��
Sub(Y) sY ��

f∗

��

SSub(Y)

iY��

jY

��

f∗s

��

Fig. 1. The relationships between the two doctrines.

SSub(X) is related to Sub(X) via a pair of adjoint functors. The inclusion iX does not

preserve colimits, but its left adjoint sX does, so SSub(X) is a quotient algebra of Sub(X).

One could remark that sX actually corresponds to double negation, as expectable, because

the complement of a subobject always has the maximal possible agreement.

We now adapt a well-known definition that will play a crucial role. A posetal

hyperdoctrine (Streicher 2003) is a functor P : Cop → pHa, where pHa is the category

of pre-Heyting lattices, s.t. C has finite limits and, for every f : J → I in C, the functor

f∗ = P (f) : P (I) → P (J) has both left and right adjoint, ∃f and ∀f , satisfying the Beck-

Chevalley condition: for every pullback square gq = fp in C and every x ∈ P (J), the

canonical morphisms g∗∀f(x) → ∀qp∗(x) and ∃qp∗(x) → g∗∃f(x) are isomorphisms. This

condition is needed to guarantee that quantifiers preserve substitution.

Definition 2.2 (Doctrines). Let C be a regular category:

— A posetal hyperdoctrine D for C is a Heyting doctrine if it factorizes through H, the

category of Heyting algebras with their homomorphisms.

— A Heyting doctrine D for C is Boolean if it factorizes through Bool, the category of

Boolean algebras with their homomorphisms.

— A Heyting (resp. Boolean) doctrine morphism between two doctrines D and D′ for

C is a natural transformation from D to D′ whose components commute with the

operators that provide the Heyting (resp. Boolean) structure of the doctrines.

In the case of the functor Sub, the Beck–Chevalley condition is always satisfied because,

being C regular, the existential functors commute with pullbacks up to isomorphisms and

so do universal functors by the unicity of the adjoint (Johnstone 2002, Lemma A 1.4.11).

However, if we consider a subfunctor D of Sub s.t. the pullback and the existential functors

in D are simply the restriction of those in Sub (as it is the case for our SSub), the same

result holds and can be proved via the same proof.

In this way, LB comes naturally equipped with two doctrines: the first one, Sub, is

Heyting and the second one, SSub, is Boolean. The quotient of the first one via s gives a

Heyting morphism between them. A natural transformation i : SSub → Sub also exists,

whose components are the functors iX , but which fails to be a Heyting morphism.

Hence, the two doctrines are related as shown in Figure 1, where the diagram is

commutative in the sense specified in Proposition 2.3.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 7

�
�

�

�
�

�
a a

c b

x y

�
�
�

�
�

�

a

c b

x y

Fig. 2. Two trees with equal extents and different agreements.

2.2. Labelled trees and beyond

An example of our construction comes from the classical modelling of process semantics

via Labelled Transition Systems (LTSs) (Aceto et al. 2007). In our framework, LTSs

can be modelled by associating computations with paths (finite chains of moves) and by

stating which prefixes of two different computations can be considered equal; the resulting

structure has the shape of a tree.

Formally, given a set X and a meet-semilattice with all small non-empty meets B =

(B,�,
∧

), with B to be thought of as a set of labels, we use the extent ι to label

computations on B. Hence, X will result into a set of computations of an LTS. In order

to express up to which point two computations c1 and c2 are indistinguishable, we define

their agreement to be a label l ∈ B which is less than or equal to the meet of ι(c1)

and ι(c2). From this definition, a notion of generalised tree derives, whose paths are

labelled computations (Kasangian and Labella 1999) glued together as prescribed by the

agreement. We call these objects generalised trees because, differently from usual trees,

they also admit pathological situations, such as the empty tree, or trees where two paths

are completely glued together. In this way, we have an instance of our construction LB ,

often denoted TreeB .

To support intuition, we consider trees labelled by some monoid on which the

composition induces an order relation giving rise to a meet-semilattice structure with all

small non-empty meets, typically a free monoid. In particular, let A∗ be the free monoid

on some alphabet A. An A∗-tree is usually called an A-labelled tree in the context of

CCS (Milner 1989). A tree where all paths have different extent and pairwise have maximal

agreement (given by ∧) corresponds to the description of a deterministic behaviour of a

process; otherwise, we are in presence of a non-deterministic behaviour (Milner 1989).

Figure 2 shows an example of trees, each with two paths with equal extent (the words ac

and ab) but different agreements: the agreement between the paths is the empty word in

the leftmost tree and is the word a in the rightmost one.

In this case, morphisms are simulations between processes, in the sense that the

behaviour of the codomain can simulate the behaviour of the domain. Indeed, there exists

a morphism from the leftmost tree of Figure 2 to the rightmost one, but not vice versa:

after performing an a in the leftmost one, an agent is no longer able to freely perform b

or c, as would be possible in the rightmost one. An agent working under the assumption

that the computations labelled via ab and ac are both allowed would then be ‘surprised’

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 8

by the failure to perform the forbidden move on the path it is following. As usual (Milner

1989), the rightmost tree will be considered more deterministic than the leftmost one.

A strict monomorphism of codomain X represents a subobject (subprocess) with the

same degree of non-determinism as X , while a non-strict monomorphism of codomain

X represents a subobject with more non-determinism than X . This models the situation

of an agent that is dealing with computations which are present in X as paths, but that

cannot happen as in X .

This example can be extended to elementary actions with different duration (Kasangian

and Labella 1999). Given a (finite) alphabet A of atomic actions, a partial piecewise

constant function (pc-function, for short) f is a partial function from R+ (the non-negative

real numbers) to A, defined on a bounded interval [0, t) ⊆ R+ such that, for a ∈ A, f−1(a)

is the union of finitely many intervals of the form [r, s), with 0 � r < s. If CA denotes the

set of pc-functions, (CA,�,
∧

) can be viewed as a complete meet-semilattice, where

i. f � g iff dom(f) ⊆ dom(g) and, if x ∈ dom(f), then f(x) = g(x).

ii.
∧
i∈I fi w.r.t. the partial order above is defined as follows:

a. dom(
∧
i∈I fi) = [0, t), where t is s.t.

— for all x < t, fi(x) is defined for all i ∈ I and fi(x) = fj(x) for all i, j ∈ I;
— if fi(t) is defined for all i ∈ I , then there are i, j ∈ I s.t. fi(t) �= fj(t).

b. (
∧
i∈I fi)(x) = fi(x) for every x ∈ dom(

∧
i∈I fi).

CA is the labelling structure for interleaving semantics in the continuous time case (Car-

delli 1982). By replacing R+ by N , one recovers the discrete case.

In all these examples, distributivity is guaranteed by the fact that bounded families are

linearly ordered.

A different example is given by Mazurkiewicz traces (Kasangian and Labella 1999). A

monoid of traces on a concurrent alphabet (A, I), where A is a set of events and I is a

symmetric and irreflexive (independency) relation, is the monoid (A∗, ·, ε)/≡, where ≡ is

the following congruence relation (Kasangian and Labella 1999):

s ≡ t iff there is a sequence 〈s0, s1, . . . , sn〉 such that

i. s = s0,

ii. t = sn and

iii. for every 0 � i � n − 1, there are ui, vi ∈ A∗ such that si = uiabvi, si+1 = uibavi and

(a, b)∈I .

A trace [s] is an equivalence class w.r.t. ≡. (A∗/≡,�,
∧

) is a semilattice where, given the

traces [u] and [v], we put [u] � [v] iff for every ui in [u] there is vj in [v] such that ui is a

prefix of vj . The meet of a non-empty family of traces
∧

[u]k is the maximal common prefix

of all the [u]k . It is easy to see that, due to the discreteness of words, this is univocally

determined. The associated structure is called TA and is the (Mazurkiewicz) trace labelling

semilattice. Also, in this case distributivity can be proved because, in building the join of

two traces (if it exists), we cannot prolong any of them with a suffix whose elements do

not belong to a suffix of the other one.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 9

One could also think of a temporal generalisation as in the previous case. Let us remark

that TA-labelled trees, though trees in the abstract sense, are hardly depictable as such.

They can model some forms of event structures.

2.3. The logic of LB

A first-order logic can be easily associated with the category LB . Let us first recall some

well-known definitions from Johnstone (2002). Suppose we are given a suitable (w.r.t.LB)

first-order signature Σ (Johnstone 2002, Definition D 1.1.1) and we have recursively

defined from it terms (Johnstone 2002, Definition D 1.1.2) and formulæ (Johnstone

2002, Definition D 1.1.3). The types of the language will be mapped into objects of

the category; basic functional and predicate symbols are mapped to morphisms and

subobjects, respectively, according to their type. We can interpret terms and formulæ of

the language in LB (which is a category with finite limits) in the usual way (Johnstone

2002; Pitts 2000), by fixing a context Γ, i.e., a finite set of typed variables containing all

those that can appear free. Given a context, a term will be interpreted as a morphism

from the product of the objects corresponding to the types of the variables to the object

corresponding to the type of the term; a single variable is interpreted as the projection on

its type. The interpretation of a formula φ, denoted by [[φ]], is a subobject of the product

of the objects corresponding to the types of the variables in the context (see Appendix A

for a detailed definition). Given an interpretation and two formulae φ and ψ, a sequent

φ � ψ is satisfied iff [[φ]] is a subobject of [[ψ]].

Definition 2.3 (Logics).

— A Heyting logic is a sorted language containing all the first-order logic formulae,

equipped with a deductive system containing all the inference rules in Table 1 except

for rule 8. An infinitary Heyting logic is a Heyting logic satisfying the infinitary versions

of rules 3. and 4. in Table 1.

— A Boolean (classical) logic is a Heyting logic satisfying all the inference rules in

Table 1. It is infinitary if it satisfies the infinitary versions of rules 3. and 4. in Table 1.

Proposition 2.4. LB can interpret an infinitary first-order language with equality and its

monos satisfy all the rules of an infinitary Heyting logic.

Proof. Since LB is a geometric category with arbitrary intersections, it suffices to

consider (Johnstone 2002), D 1.2.

To conclude, we make the following considerations:

— If B is a trivial semilattice, LB is equivalent to Set/B; in particular, LB is equivalent

to Set, if B is a singleton; all these categories are Boolean toposes.

— LB contains a topos equivalent to B̂ (Ghezzi 2012), the topos of presheaves over B. An

object X of LB is a presheaf if, together with an element x, it contains all its prefixes

x′ (i.e., all x′ such that α(x, x′) = ι(x′)). In this way, X can be considered a presheaf

on B, because restrictions can be easily defined. If B is the algebra of the open sets

in a topological space, objects of LB are the presentation of objects in the category of

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 10

Table 1. Logical rules.

1. identity φ �Γ φ
substitution φ �Γ ψ

φ[s/y] �Γ ψ[s/y]
cut φ �Γ ψ ψ �Γ χ

φ �Γ χ

2. equality � �Γ x=x x=y ∧ φ �Γ φ[y/x]

3. conjunction φ �Γ � φ ∧ ψ �Γ φ φ ∧ ψ �Γ ψ
φ �Γ ψ φ �Γ χ
φ �Γ ψ ∧ χ

4. disjunction ⊥ �Γ φ φ �Γ φ ∨ ψ ψ �Γ φ ∨ ψ
φ �Γ χ ψ �Γ χ
φ ∨ ψ �Γ χ

5. implication ψ �Γ φ⇒ χ
φ ∧ ψ �Γ χ

φ ∧ ψ �Γ χ
ψ �Γ φ⇒ χ

6. existential quantifier
φ �Γ,y:A ψ

∃y:Aφ �Γ ψ
∃y:Aφ �Γ ψ
φ �Γ,y:A ψ

7. universal quantifier
φ �Γ,y:A ψ

φ �Γ ∀y:Aψ
φ �Γ ∀y:Aψ
φ �Γ,y:A ψ

8. double negation ¬¬φ �Γ φ

sheaves (Ghezzi 2012; Walters 1981). The inclusion functor from B̂ to LB has a left

adjoint, namely the functor which ‘closes’ an object of LB by adding the prefixes of all

its elements.

As to the expressiveness of the logic associated with LB , we can remark that if we assume

that the prefix relation above is the interpretation of a predicate � in the language, then

a first-order formula with both variables of type A such as

∀x : A ∃y : A[x � y]

expresses a liveness property in X , where X is the interpretation of A.

Concerning provability, we know that

∀x : A ∀y : A[¬¬(x � y)⇒ x � y]

is true for strict monos, which enjoy a Boolean logic, but not in general for monos, which

enjoy only a Heyting one. Of course negation and implication behave differently in the

two contexts.

Another example of formula which is valid only for strict subobjects in the case of

variables whose type is the terminal object B is

∀x : 1 ∀y : 1[ι(x) � ι(y)⇒ x � y]

where we identify ι with the unique morphism in LB from a given subobject to B. This is

a crucial formula which marks the difference between deterministic and non-deterministic

(in the sense of Milner (1989)) agents on LB .

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 11

3. Modal/temporal logic

The introduction of modal operators is a typical technique to increase the expressive

power of a language, e.g., in order to enable reasoning on bisimulation, fairness or liveness

properties, etc. We will show now that if B is a non-trivial partially ordered set, then we

can introduce into LB a non-trivial intrinsic modal/temporal logic, still using the doctrinal

approach. We define modal operators in LB as endofunctors of SubX (resp. SSubX).

In doing this, we will make use of the notion of temporal doctrine in the sense of Pisani

(2010) (see Appendix B) by simplifying it to cope with the special case when a general Heyt-

ing doctrine D is replaced by Sub or SSub (i.e., attributes are subobjects, as explained later).

Definition 3.1 (Modal/temporal Doctrine). Given a Heyting category H and a Heyting

doctrine D for H , a modal/temporal doctrine for D is a pair of Heyting doctrines uD and

dD with two indexed functors iu, id:

iu : uD → D ← dD : id

satisfying the following properties for every object c in H:

— Functors iuc and idc have both left and right adjoints

�u
c � iuc � �u

c

�d
c � idc � �d

c

such that

�u
c i
u
c � id; �u

c i
u
c � id

�d
c i
d
c � id; �d

c i
d
c � id.

— Left adjoints satisfy the mixed Frobenius law in a natural way in c, i.e., for c′ and c′′

subobjects of c:

�u
c(c
′ ×c idc(c′′)) � �u

c(i
u
c�

u
c(c
′)×c idc(c′′))

�d
c(c
′ ×c iuc(c′′)) � �d

c(i
d
c�

d
c(c
′)×c iuc(c′′)).

A modal operator like � (resp. �) is a closure (resp. interior) operator. In the example

of trees discussed in Section 2.2, where the labelling monoid A∗ could be thought of as

bearing a time structure, these operators would assume the modal/temporal connotation

well known in temporal logic. For a similar reason, with every object X in LB , we associate

the algebras uSubX and dSubX (resp. uSSubX and dSSubX), alongside with SubX (resp.

SSubX). These new algebras are obtained by closing the subobjects of X with respect to

the prefix (resp. prolongation) relation (see Definition 3.2), i.e., by adding to the elements

(paths) already existing in the subobject, the elements shorter (resp. longer) than them

existing in X . This amounts to adding the possibility of interrupting a path at a previous

instant of time w.r.t. its end or to prolong it to a further instant of time, according to

what is possible in X .

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 12

Definition 3.2 (Prefix/prolongation/closedness).

— Given two elements x and x′ in X , we say that x is a prefix of x′ (or x′ is a prolongation

of x), in symbols x � x′ (resp. x′ � x), iff ι(x) = α(x′, x).

— X ′ is an up-closed (resp. down-closed) subobject of X iff, for every x′ ∈ X ′ and x ∈ X
s.t. x � x′ (resp. x′ � x) in X , then x ∈ X ′ and x � x′ (resp. x′ � x) in X ′.

— uSubX (dSubX) is the family of up-closed (resp. down-closed) subobjects of X .

— uSSubX (dSSubX) is the family of up-closed (resp. down-closed) strict subobjects of

X .

Fact 3.1. � and � are pre-order relations. When X is the terminal object, � coincides

with the order relation in the semilattice.

We first consider the easier case of strict subobjects, i.e., SSubX . We can prove without

difficulty that uSSubX and dSSubX are modal/temporal doctrines for SSubX (this will

be proved in full detail later on for the more general – and difficult – non-strict case).

The modal/temporal operators are semantically defined as follows: given a subobject

X ′ of X (for the sake of simplicity, when defining strict subobjects, we will identify extent

and agreement in the subobject with those existing in the object, meaning that they

actually are restrictions), we have

—♠s
XX ′ = 〈X ′ ∪ {x ∈ X | ∃x′ ∈ X ′[x � x′]}, ι♠sX ′ = ιX , α♠sX ′ = αX 〉

—�s
XX ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[x � x′ ⇒ x ∈ X ′]}, ι�sX ′ = ιX , α�sX ′ = αX 〉

—♥s
XX ′ = 〈X ′ ∪ {x ∈ X | ∃x′ ∈ X ′[x′ � x]}, ι♥sX ′ = ιX , α♥sX ′ = αX 〉

—�s
XX ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[x′ � x⇒ x ∈ X ′]}, ι�sX ′ = ιX , α�sX ′ = αX 〉.

♠s
XX ′ is the closure of X ′ with all the prefixes of its elements existing in X ; �s

XX ′ is

the maximum subobject of X ′ which results closed w.r.t. prefixes of its elements existing

in X ; ♥s
XX ′ is the closure of X ′ with all the prolongations of its elements existing in X ;

�s
XX ′ is the maximum subobject of X ′ which results closed w.r.t. prolongations of its

elements existing in X .

Fact 3.2. uSubX and dSubX are posets w.r.t. the order of SubX ; injections iX : uSubX →
SubX are monotonic functions (functors).

In order to prove that from this situation a modal/temporal doctrine arises for SubX ,

one has to define suitable operators that can provide adjoints to injections, as required in

Definition 3.1.

Definition 3.3 (Modal/temporal operators in LB). We define in LB the following operators:

—♠XX ′ = 〈X ′′, ι♠X ′ , α♠X ′ 〉 where

– X ′′ = X ′ ∪ {x ∈ X | ∃x′ ∈ X ′[x � x′]}
– ι♠X ′ = ιX ,

– α♠X ′ (x
′, x′′) =

{
αX ′ (x

′, x′′) ∨
∨
x|x�x′ ,x�x′′ ι(x) if x′, x′′ ∈ X ′∨

x|x�x′ ,x�x′′ ι(x) otherwise

—�XX ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[x � x′ ⇒ (x ∈ X ′ ∧ αX ′ (x, x′) = ιX (x))]}, ιX ′ , αX ′ 〉
—♥XX ′ = 〈X ′′, ι♥X ′ ,α♥X ′ 〉 where

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 13

– X ′′ = X ′ ∪ {x ∈ X | ∃x′ ∈ X ′[x′ � x]}
– ι♥X ′ = ιX

– α♥X ′ (x
′, x′′) =

{
αX (x′, x′′) if x′, x′′ ∈ X ′ and ∃x ∈ X[x′ � x, x′′ � x]∨
y′ ,y′′∈X ′:y′�x′ ,y′′�x′′ αX ′ (y

′, y′′) otherwise

(The second part includes also the case in which x′, x′′ ∈ X ′ and they do not have

a common prolongation).

—�XX ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[x′ � x⇒ (x ∈ X ′ ∧ αX ′ (x, x′) = ιX (x))]}, ιX ′ , αX ′ 〉.

In this general case, the operators have a meaning similar to the strict case, but for ♠X
and ♥X one has to be careful in the definition of the agreement, as a naive definition

would not lead to subobjects, or it would fail to define a functor. In the definition of

agreement, one has to add the agreement due to the presence of new prefixes. The join

expressing this does exist because it is bounded.

Lemma 3.1. All the operators in Definition 3.3 are monotonic functions (functors):

iuX : uSubX → SubX ← dSubX : idX

Moreover, iuX and idX have both left and right adjoint, namely (forgetting the index X):

♠ � iu � � and ♥ � id � � such that

♠iu � id;�iu � id

♥id � id;�id � id.

Proof (Sketch). We have to prove that the definitions of♠X ′,�X ′,♥X ′ and�X ′ given

above can be extended to functors, and then prove the adjunctions. All the operators are

monotonic and adjunctions express the fact that they represent the minimal closure and

the maximal closed subobject respectively. These properties and the required isomorphisms

are obtained by verifying simple inequations between subobjects.

Lemma 3.2. uSub and dSub can be extended to Heyting doctrines in LB .

Proof. We first prove that uSub and dSub are Heyting algebras: due to the adjunctions

from Lemma 3.1, uSub and dSub inherit unions and intersections from Sub. In fact ♠X ′,
being a left adjoint, preserves unions and, being a left inverse, makes them the same as

in SubX . Dually, �X ′, being a right adjoint, preserves intersections and, being a left

inverse, makes them the same as in SubX . The same happens with dSub, using ♥X ′ and

�X ′. Distributivity holds because it holds in SubX . Note that in both uSub and dSub the

pseudo-complement is not the same as in Sub(X), because closedness must be preserved

in complementation, so that they are not Heyting subalgebras of SubX . We define: ¬uX ′
as �(¬X ′).

Now it is sufficient to show that, given a morphism f : X → Y , the inverse image

operator f∗ can be restricted to the appropriate family and it has left and right adjoints.

Actually, due to the definition of morphism, a non-prefix can be mapped into a prefix,

but not vice versa, while prefixes are preserved by f. Hence, f∗ preserves up- (down-)

closedness. f∗ restricted to uSubX (dSubX) has both adjoints, but they are not the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 14

uSub(X) iu ��

Σu
f

��
Πu
f

		

Sub(X)

Πf

		
Σf

��
Πf

		

dSub(X)id

Σd
f

��
Πd
f

		
uSub(Y) Sub(Y)

♠Y��

�Y
��

♥Y ��

�Y

dSub(Y)

Fig. 3. Definition of left and right adjoints.

immediate restrictions of those existing in SubX : we need to compose the general ones

with the suitable closure operators and restrict the result. Namely (see Figure 3),

Σuf = ♠ ◦ Σf ◦ iu
Πu
f = � ◦Πf ◦ iu

Σdf = ♥ ◦ Σf ◦ id
Πd
f = � ◦Πf ◦ id.

With these definitions, the adjointness result is routine.

Theorem 3.1.

iu : uSub→ Sub← dSub : id

is a modal/temporal doctrine for Sub.

Proof. The proof proceeds from Lemmas 3.1 and 3.2. We are left to prove the mixed

Frobenius laws. To this end, we notice that the left-hand subobject in their expression (see

Definition 3.1) is contained in the right-hand one, since in the latter we have operated

a double closure which could, possibly, increase elements and/or their agreement. Vice

versa, if some prefix (prolongation) is lost in making the intersection on the right-hand

side, it will be restored in making the external closure, so that also the other inclusion

holds.

Correspondingly, we can extend a first-order logic with four modal/temporal operators

to be interpreted in the LB operators above. Table 2 shows rules which hold in LB . In

other words, LB provides us with two sorted Kripke-like semantics, as every type X can

be thought of as a set of possible worlds, with � or � as the accessibility relation. Let p

be a path (world) in X , where we identify p with its terminal state. We define

— p |=X φ iff p ∈| φ | (i.e., its terminal state enjoys φ), where | φ | is the interpretation

of the formula φ.

— Future accessibility between paths is defined as the prefix relation above.

– p |=X �u φ iff ∃q(p � q ∧ q |=X φ). This is equivalent to saying that p ∈ ♠X | φ |.
In other words: ‘there is a future of p when φ becomes true’.

– p |=X �dφ iff ∀q(p � q ⇒ q |=X φ). This is equivalent to saying that p ∈ �X | φ |.
In other words: ‘in all the possible futures of p, φ is true’.

— Dually, we define the past accessibility relation as the prolongation relation, so that

– p |=X �d φ iff ∃q(q � p ∧ q |=X φ).

– p |=X �u φ iff ∀q(q � p⇒ q |=X φ).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 15

Table 2. Modal/temporal rules.

μ1) past possibility
φ �Γ �dφ

future possibility φ �Γ �uφ

μ2) past necessity �uφ �Γ φ
future necessity

�dφ �Γ φ

μ3) �d monotonicity φ �Γ ψ

�dφ �Γ �dψ
�u monotonicity φ �Γ ψ

�uφ �Γ �uψ

μ4) �u monotonicity φ �Γ ψ
�uφ �Γ �uψ �d monotonicity φ �Γ ψ

�dφ �Γ �dψ

μ5) �u S4 �uφ �Γ �u �uφ �d S4
�dφ �Γ �d �dφ

μ6) �d S4
�d �dφ �Γ �dφ

�u S4 �u �uφ �Γ �uφ

μ9) �
∨

preservation �u
∨
i φi �Γ

∨
i(�

uφi)
∨
i(�

uφi) �Γ �u
∨
i φi

�d
∨
i φi �Γ

∨
i(�

dφi)
∨
i(�

dφi) �Γ �d
∨
i φi

μ10) �
∧

preservation �u
∧
i φi �Γ

∧
i(�

uφi)
∧
i(�

uφi) �Γ �u
∧
i φi

�d
∧
i φi �Γ

∧
i(�

dφi)
∧
i(�

dφi) �Γ �d
∧
i φi

μ11) � 1st mixed Frobenius
�u(φ∧�dψ) �Γ �u(�uφ∧�dψ) �u(�uφ∧�dψ) �Γ �u(φ∧�dψ)

μ12) � 2nd mixed Frobenius
�d(φ∧�uψ) �Γ �d(�dφ∧�uψ) �d(�dφ∧�uψ) �Γ �d(φ∧�uψ)

We interpret these operators using ♥X and �X , respectively.

This satisfiability relation expresses different properties for p, depending on the fact that

the interpretation of φ is a strict subobject of X or not. In fact, prefixes and prolongations

of p are not the same in the two cases.

The rules presented in Table 2 reflect the given semantics: the inference rules labelled

with S4 correspond to those characterizing the homonymous system of modal logic

and to the fact that time relations are transitive in our model; rules μ1 and μ2 depend

on reflexivity; rules μ3 and μ4 depend on functoriality. These rules, as well as those

describing the interplay between modal operators and connectives, are directly established

according to the categorical properties of their semantical counterparts. In particular, �’s,

corresponding to right adjoints, preserve conjunction ∧, whereas �’s, corresponding to

left adjoints, preserve disjunction ∨. As for the quantifiers, we can say that existential

quantifiers combined with �’s are again left adjoints, whereas universal quantifiers

combined with �’s are again right adjoints.

The relationships between the strict and the non-strict case are illustrated via the

diagrams in Figure 4. There the commutativity of the squares in the middle, namely the

immediate validity of the equations sX ◦ iu = is ◦ suX and sX ◦ id = is ◦ sdX , makes the

external and the internal squares also commutative by the uniqueness of adjoints.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 16

Sub(X) sX ��

Δ

��

♠

��

SSub(X)

iX��

jX
��

Δs

��

♠s

��

Sub(X) sX ��

�

��

♥

��

SSub(X)

iX��

jX
��

�s

��

♥s

��
uSub(X) suX ��

iu

��

uSSub(X)

iuX��

juX
��

isu

��

dSub(X) sdX
��

id

��

dSSub(X)

idX��

jdX
��

isd

��

Fig. 4. The relationships between the modal doctrines.

4. Comparisons and applications

4.1. The hyperdoctrinal approach

Introduced by Lawvere (1969) and developed in Lawvere (1970), a hyperdoctrine is a

cartesian closed category T of types, whose morphisms are called terms. For each type

X, there is a cartesian closed category P(X) of attributes of type X, playing the role

of generalised subobjects (whose aim is to interpret formulae), and morphisms between

them (which are called deductions over X); for each term f : X → Y , there is a functor

f∗ : P(Y) → P(X), called substitution, and two functors Σf and Πf , respectively left

and right adjoint to substitution, called existential and universal quantification along f,

respectively. A hyperdoctrine is a kind of indexed or fibered category. There are several

variants of this concept, as it can be adapted to many logical frameworks (Pisani 2010;

Streicher 2003). It is also well known that doctrines are able to express the logic of a

categorical structure. Since we are only interested in studying different subobject structures

of a given category (and, consequently, different logical systems that can be canonically

associated with it), we have introduced a suitably simplified definition of doctrine. In

this way, we agree with the approach in Pisani (2010), except for our assumption that

all the objects in our doctrines are in the doctrine Sub of a category, which is at least

Heyting, given by the actual subobjects. Hence, other properties that are often required,

like Frobenius reciprocity and the comprehension scheme, are automatically satisfied.

It is also known that one can develop a reasonable modal/temporal logic using

relational presheaves (Ghilardi and Meloni 1988) or, almost equivalently, quantale-

enriched categories (Rosenthal 1993), instead of a topos. In fact, following Ghilardi

and Meloni (1988), Rosenthal (1993) uses a doctrinal approach by considering attributes

instead of subobjects to speak about properties. Here, we directly use a categorical

structure, which is generated by a suitable semilattice and that is also strictly related to

the enriched category theory, due to the isomorphism between LB and SymcatB. Our

approach confirms that a topos may be not the best structure from which to start to

obtain a good modal/temporal logic: indeed, we do not need to add external attributes,

but we can simply use subobjects already existing in the structure and subfamilies of

them. Thus, we are able to isolate two families of temporal/modal operators directly

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 17

corresponding to the strict and non-strict cases, one of them living in a classical logic, the

other one in a Heyting logic.

4.2. Relationships with toposes

The algebraic study of LB shows that LB fails to be a topos on its own (not every

mono is regular), but contains a Boolean topos and intrinsically bears a modal/temporal

structure. Actually, when we restrict to strict monos, we also have a subobject classifier.

Let Ω be the object of LB defined as follows: elements are all the pairs (b, b′) ∈ B ×
B, where b′ � b. The extent of such an element is b, while agreement is defined as

follows:

α((b, b′), (c, c′)) =

{
b ∧ c if b′ = c′

b′ ∧ c′ otherwise.

The true function is the obvious immersion of the terminal object B into Ω send-

ing b into (b, b). b′ will represent the ‘degree of membership’ w.r.t. b. We define the

characteristic function of a subobject X ′ of X , via a strict mono m, in

LB as

χm(x) =

{
(ιX(x), ιX(x)) if x ∈ X ′
(ιX(x),

∨
x′∈X ′ αX(x, x′)) otherwise,

where
∨
x′∈X ′ αX(x, x′) is well defined because it is bounded by ιX(x).

To be a quasitopos, LB should also be locally cartesian closed. The proof (or refutation)

of such a property does not seem to be immediate, neither does it appear to be crucial

for the present work; so, we leave it for future research.

4.3. Modal systems associated with algebraic models of computing processes

Temporal/modal logic is associated with algebraic models of process behaviours in

different ways. As an important example, Kripke models are used as a semantics

for Computational Tree Logic, CTL (and CTL*) (Huth and Ryan 2004), a very rich

propositional modal logic, whose formulae are divided into path and state formulae but

are interpreted only on states (the sets of states verifying them). Taking into account that

Kripke models can be modelled by our trees, we first try to define CTL operators in our

context. To this aim, we have to consider the case where the semilattice B corresponds to

a discrete time model, e.g., when B is a free monoid, and compare a model of CTL with

a model of our logic.

Let M = (S,→, L) be a model of CTL, where S is a set of states, → represents the

transition relation and L is the labelling function, assigning to every state the set of

atomic formulae holding in that state. If the initial state is s0, from M we can create

Unf(M), a tree whose paths are the initial paths in M starting from s0, labelled with the

sequences of states they go through and with maximal agreement, i.e., an object of the

category LB . One must be careful also with the notion of path: in our model, a path is

always finite (since it is an initial path) and so it can be identified with its final state, so

that we have a bijection between paths and states; the order between states is inherited

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 18

by the corresponding one on paths. An atomic formula will be interpreted as the subtree

consisting of paths enjoying the formula at their terminal state.

The tree Unf(M) is therefore deterministic and up-closed; thus, we will use the strict

form of our operators (viz, ♠s,♥s,�s,�s) without indicating the superscript s. It is

immediate to see that all usual operators of CTL, except for ‘next’, can be modelled

through our operators.

Proposition 4.1. The four base operators �u,�d,�u,�d can model CTL operators as

follows:

— AGφ(p) is equivalent to p |=X �d φ,

— EFφ(p) is equivalent to p |=X �u φ,

— AFφ(p) is equivalent to p |=♥({p}) �d(�dφ ∨ �uφ),

— E(φUψ)(p) is equivalent to p |=♥({p}) �u(ψ ∧�uφ),

where♥({p}) is the down closure, w.r.t. X , of the subobject identified by {p}, i.e., 〈{p}, p, p〉.

Proof. The result is obtained by comparing the satisfiability conditions.

The well-known duality between operators, i.e., �φ = ¬�¬φ and �φ = ¬�¬φ (Huth

and Ryan 2004) is still valid since we are in the strict case, where negation is Boolean.

We now introduce next operators in our context. We define the binary relation

Succ(x, x′) iff x′ � x and there is a ∈ A s.t. ι(x) = ι(x′)a

and from it we define, using the notation of Definition 3.3 and substituting Succ(x, x′) for

x′ � x, a subfunctor of ♠X and a subfunctor of �X .

Definition 4.1 (Next functors). We define the following next functors:

—♠succ
X : SubX → SSubX , where ♠succ

X X ′ = 〈X ′′, ι♠X ′ , α♠X ′ 〉 is the strict subobject of

♠XX ′ such that X ′′ = {x ∈ X | ∃x′ ∈ X ′[Succ(x′, x)]} and the other functions are

inherited from ♠XX ′.
—�succ

X : SubX → SSubX , where �succ
X X ′ = 〈X ′′, ι�X ′ , α�X ′ 〉 is the strict subobject of

�XX
′ such that X ′′ = {x ∈ X | ∀x′ ∈ X[Succ(x′, x) ⇒ x′ ∈ X ′]} and the other

functions are inherited from �XX ′.

Note that, if we restrict to trees which are CTL models, these two functors are left and

right adjoint to the functor that adds all the possible steps to a given subobject; as a

consequence, we have another doctrine. Using these functors, we can define next operators

in our logic in such a way that

— p |=X X�φ iff ∃q[Succ(q, p) ∧ q |=X φ], i.e. iff p ∈ ♠succ
X (|φ|);

— p |=X X�φ iff ∀q[Succ(q, p)⇒ q |=X φ], i.e. iff p ∈ �succ
X (|φ|).

Proposition 4.2.

— EXφ(p) is equivalent to p |=X X�φ,

— AXφ(p) is equivalent to p |=X X�φ.

Proof. The result is obtained by comparing the satisfiability conditions.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 19

Since the defined CTL operators are a base for all CTL operators, we have here that

they are definable from our four base operators �u,�d,�u,�d plus the next operators X�

and X�.

Due to the substantial identification of states with their corresponding paths, our

formulae are always concerned with paths/states. For this reason, while AG and EF can

be simply translated (in fact their interpretation uses the same kind of quantifier for

both paths and states), this is not the case with the other ones. Naturally, in order to

mimic CTL/CTL*, we have to consider only the Boolean subcategory of LB made up of

strict up-closed objects, because CTL/CTL* are based on a Boolean logic. More accurate

comparisons with CTL/CTL* and investigations about computational complexity of

algorithms to verify properties needed for model checking are left to future work.

4.4. Languages to model concurrency

As a first extension to a non-deterministic context, let us now consider LTS associated with

the Hennessy–Milner logic (HML) (Aceto et al. 2007; Hennessy and Milner 1985). This is

a very simple (positive, untyped) propositional Boolean modal logic, whose formulae are

interpreted on states thought of as their possible future behaviours. An LTS corresponds

to an up-closed tree, where B is the free monoid A∗ of elementary actions.

Note that formulae in HML are not interpreted as subobjects, so that a direct

comparison with our approach is not possible. Nevertheless, we show how to define,

in our context, the basic HML operators. Their introduction will be very similar to that

of next operators. We define the binary relation

Succa(x, x′) iff x′ � x and ι(x) = ι(x′) · a

and from it we define, using the notation of Definition 3.3 and substituting Succa(x, x′) to

x′ � x, a subfunctor of ♠X and a subfunctor of �X .

Definition 4.2 (HML functors). We define

—♠a
X : SubX → SSubX , where♠a

XX ′ = 〈X ′′, ι♠X ′ , α♠X ′ 〉 is the strict subobject of♠XX ′
such that X ′′ = {x ∈ X | ∃x′ ∈ X ′[Succa(x′, x)]} and the other functions are inherited

from ♠XX ′.
—�a

X : SubX → SSubX , where �a
XX ′ = 〈X ′′, ι�X ′ , α�XX ′ 〉 is the strict subobject of

�XX ′ such that X ′′ = {x ∈ X | ∀x′ ∈ X[Succa(x′, x) ⇒ x′ ∈ X ′]} and the other

functions are inherited from �XX ′.

Note that these two functors are left and right adjoint to the functor that adds all the

a-labelled possible steps to a given subobject; as a consequence, we have another doctrine.

Using these functors, we can define 〈a〉 and [a] operators in our logic in such a way that

— p |=X 〈a〉φ iff ∃q[Succa(q, p) ∧ q |=X φ], i.e. iff p ∈ ♠a
X (| φ |);

— p |=X [a]φ iff ∀q[Succa(q, p)⇒ q |=X φ], i.e. iff p ∈ �a
X (| φ |).

In the same line as HML, we find the coalgebraic approach to modal logic (see,

e.g., Klin (2007)). In this research line, the idea is to consider expressiveness as the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 20

capacity of defining subobjects (formulae), so that logically indistinguishable states are

behaviourally equivalent.

In the case of the doctrinal approach adopted here, formulae do coincide with subobjects

by definition, so it does not make sense to look for expressivity as the capacity of defining

subobjects as before, but as the capacity of defining new operators, maybe in different

situations; a representative sample is the continuous time case, hinted at in Section 2.2.

There, using the same technique of changing the accessibility relation and applying it

to the example of continuous trees, we can define other interesting modal operators.

For example, let x �t x
′ denote the relation which holds if and only if x � x′ and, if

dom(ι(x)) = [0, s), then dom(ι(x′)) = [0, s+ t′), with t � t′. Then, the algebraic operators:

— p ∈ ♠t
X (| φ |) iff ∃q[(p �t q) ∧ q ∈| φ |]

— p ∈ �t
X (| φ |) iff ∀q[(p �t q) ∧ q ∈| φ |]

— p ∈ ♥t
X (| φ |) iff ∃q[(q �t p) ∧ q ∈| φ |]

— p ∈ �t
X (| φ |) iff ∀q[(q �t p) ∧ q ∈| φ |]

have corresponding modal operators with the following meaning, respectively:

— After a time t, there will be a future when φ will be satisfied.

— After a time t, φ will be satisfied in all the futures.

— There was a time, past from at least t, when φ was satisfied.

— In all the times, past from at least t, φ was satisfied.

4.5. Playing the Pacman game

So far, we have not investigated the possible applications of the Heyting aspects of our

logic. Now, we intend to illustrate the adequacy of the proposed logical framework to

describe and reason about (possibly non-deterministic) processes, e.g., visual games.

Let us suppose we have a maze M. The system of all the paths (intended as sequences

of moves) that allow a player to successfully go from the entrance position to the exit

position, through a series of contiguous intermediate positions, can be modelled by a

tree, Tree(M), in our sense‡. In order to leave the maze, a player interacting with it has

to produce a path identical to one in Tree(M); in other words, the tree of the player’s

possible behaviours must synchronize with Tree(M) at least along one path. Tree(M) can

be up-closed to represent also those (partial) paths that can be prolonged by a path in

Tree(M), obtaining T (M).

Let us now suppose that the maze has an internal device that can non-deterministically

change the position of the walls or introduce another obstacle which can unpredictably

change an original successful path into an unsuccessful one. This is the case of the

well-known Pacman game, where the original deterministic maze can be altered by the

presence of a ghost which can interrupt some originally prolongable path. In our setting,

this means that the originally deterministic situation, e.g., for a path starting with an s

move (schematically illustrated on the right part of Figure 5 and already considered as

‡ A path might include subsequences of moves which bring the player back to already visited positions.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 21

�
�

�

�
�

�

a

s s

d

a

s

d

Fig. 5. A non-strict subobject and the corresponding strict subobject in the up-closure of Tree(M).

up-closed), is changed in its non-deterministic subobject (illustrated on the left part of

Figure 5) after the synchronization with the ghost.

The Pacman tries to synchronize with the maze as far as possible. Suppose it was

instructed in such a way that, if its first move was an a, then its strategy would be

successful, i.e., it will eventually perform the move d (eat a pellet) and stop (for the sake

of simplicity, we suppose there is just one pellet). Figure 5 represents two possibilities for

the interpretation of the formula φ stating that ‘the first move is an a’ in T (M): the left

side one is non-strict, the other one is strict. Then, the knowledge available to the Pacman

(its initial instructions) would be represented by φ ⇒ �δ, where δ formalizes ‘perform a

move d and stop’.

So the Pacman starts with an a and is defeated, because its behaviour synchronized

with the non-strict interpretation on the right-hand path. Then, it will complain: ‘The

instruction was incorrect; a correct one would have been ¬¬φ ⇒ �δ’. In fact, the right-

hand tree in Figure 5 is also the interpretation of ¬¬φ, while the left-hand tree is not,

since the first one is the double complement of the second one. The double negation

says that the success is guaranteed only under the extra hypothesis that things remain

as in the original tree. In fact, only interpretations of doubly negated formulas are strict

subobjects; here, we see our Heyting logic at work, since φ and ¬¬φ are not equivalent.

5. Conclusions

The identification of a system of doctrines associated with the category LB and of the

relationships between them, not only provided us with a very rich language to speak about

properties of a non-deterministic computation system, but also allowed us to analyse the

impact of non-determinism on the logical structure of the proposed algebraic model.

Some word is in order about our view of non-determinism. As a matter of fact, our

notion of non-determinism, which is related to the distinction between strict and non-strict

monomorphisms, is always relative to a given type (i.e., an object in LB), since a typed

logic essentially deals with families of subobjects. As a consequence, a subobject can be

more or less deterministic with respect to its type. Each type is of course deterministic

with respect to itself, but sometimes it can be considered non-deterministic w.r.t. another

type. An object in LB is intrinsically deterministic if it can never be non-deterministic;

this happens when its agreement w.r.t. to any other object, in particular the terminal one,

cannot be increased, i.e., it is maximal.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 22

In the case of strict subobjects of the terminal object, agreement is no longer relevant

and deterministic agents are simply ‘languages’. We could summarize the situation by

saying that the distinction between determinism and non-determinism in LB corresponds

to the possibility of using just strict monomorphisms versus the need to consider all

monomorphisms. This relates to the possibility of imposing a Boolean structure on the

resulting category of subobjects, or having to resort to a weaker Heyting structure,

where the relationship between Boolean and Heyting structure can be induced, as usual,

by the ¬¬ operator. Finally, depending on the structure imposed to the category, one

has available the inference figures of classical or intuitionistic logic to derive inferences

in the corresponding logics. In the context of LB , one could say that the distinctions

between inferences possible in the classical and intuitionistic logics, as derivable from the

Boolean and Heyting doctrines, characterise the possibility of distinguish deterministic

from non-deterministic processes.

Of course, the order (temporal) structure assumed for B, that allows the introduction

of LB , is strictly related with an assumption on non-determinism. In fact, when this

structure becomes trivial, LB collapses in more classical categories, such as Set or

Set/B. However, this prevents the possibility of defining objects in LB carrying a

meaningful non-deterministic structure. Conversely, also the possibility of introducing

several modal/temporal operators in a natural way is due, again, to the non-trivial,

though poor, order structure of B.

Two main advantages derive from the approach followed in this paper: (1) by giving

a definition of doctrine (temporal doctrine) relative to subobjects, the doctrinal approach

adopted here allowed us to easily translate the ‘conceptual’ logic associated with a

category in the sense of Lawvere (1970) into a ‘formal’ logic associated with the same

category; (2) by combining the first-order intuitionistic logic and the modal logic, we

obtained a potentially very flexible structure. As a price to pay, bisimulation is no longer

characterisable through our modal version of the HML operators, nor was it meant to

be, because our logic is essentially incomparable with HML.

We leave to future work a detailed analysis of the temporal logics we have obtained: in

particular, we can study the comparisons with other modal/temporal logics already used in

computer science, the computational complexity of its operators, or the possibilities arising

from the use of the produced language in applications where non-determinism is relevant.

To conclude, we want to remark that our approach purposely does not make use of

the fixed point technique to define modal operators; we leave for future work also the

development of fixed points in our framework.

The authors would like to thank the anonymous referees: their work was very useful

and stimulating.

Appendix A. Interpretation of a Sorted FirstOrder Language in a Category with Finite

Limits

We here present some material from Johnstone (2002) used in this paper.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 23

Definition A.1 (Σ-structure). Given a sorted first-order language L with signature Σ and

a category C with finite limits, we define a Σ-structure in C by giving a mapping | · |
satisfying the following:

— Each type A of L is mapped into an object |A| of C.

— Each function symbol f in Σ of type A1 . . . An → A in L (written f : A1 . . . An → A) is

mapped into an arrow |f| : |A1| × · · · × |An| → |A| of C.

— Each predicate symbol R in Σ of type A1 . . . An in L (written R : A1 . . . An) is mapped

into a subobject |R| of |A1| × . . .× |An|, requiring that the basic predicate symbol =A

of type AA should be mapped in the diagonal subobject of |A| × |A|.

Definition A.2 (Interpretation of terms in a context). Given L, C, Σ and a mapping | · |
defining a Σ-structure in C as in Definition A.1, we recursively define the interpretation

[[Γ.t]] of a term t in a context Γ= x1 : A1, . . . , xn : An as follows:

1. If t is a variable, with t = xi for a unique i, then [[Γ.t]] = πi, where πi : |A1|× · · ·× |An| →
|Ai|.

2. If t = f(t1, . . . , tm), then [[Γ.t]]=|f|〈[[Γ.t1]], . . . , [[Γ.tm]]〉.

Definition A.3 (Interpretation of formulae in a context). Given L, C, Σ and a mapping | · |
defining a Σ-structure in C as in Definition A.1, we recursively define the interpretation

[[Γ.φ]] of a formula φ in a context Γ= x1 : A1, . . . , xn : An (where {x1, . . . , xn} is the set of

variables that appear free in φ) as follows:

1. If φ is a relation R(t1, . . . , tm):A1 . . . Am, hence associated with a subobject of |A1|× · · ·×
|Am|, then [[Γ.φ]] is the pullback of this subobject along 〈[[Γ.t1]], . . . , [[Γ.tm]]〉.

2. If φ is �, then [[Γ.φ]] is the top element of Sub(|A1| × · · · × |An|).
3. If φ is ψ ∧ χ, then [[Γ.φ]] is the pullback (intersection) of [[Γ.ψ]] and [[Γ.χ]].

4. If φ is ⊥, then [[Γ.φ]] is the bottom element of Sub(|A1| × . . .× |An|).
5. If φ is ψ ∨ χ, then [[Γ.φ]] is the union of [[Γ.ψ]] and [[Γ.χ]].

6. If φ is ∃y : Aψ and C is a regular category, [[Γ.φ]] is the image of the composition of

[[Γ, y : A.φ]] with the projection π : |A1| × · · · × |An| × |A| → |A1| × · · · × |An|.
7. If φ is ψ ⇒ χ and C is a Heyting category, [[Γ.φ]] is the implication between [[Γ.ψ]] and

[[Γ.χ]] in Sub(|A1| × · · · × |An|).
8. If φ is ¬ψ and C is a Heyting category, [[Γ.φ]] is the negation of [[Γ.ψ]] in Sub(|A1| ×
· · · × |An|).

9. If φ is ∀y : Aψ and C is a Heyting category, [[Γ.φ]] is Ππ([[Γ, y : A.ψ]]), where π :

|A1| × · · · × |An| × |A| → |A1| × · · · × |An|.
10. If φ is

∨
i∈I ψi and C is a geometric category, [[Γ.φ]] is the union over I of all [[Γ.ψi]] in

Sub(|A1| × · · · × |An|).
11. If φ is

∧
i∈I ψi and C has arbitrary intersection of subobjects, [[Γ.φ]] is the intersection

over I of all [[Γ.ψi]] in Sub(|A1| × · · · × |An|).

Appendix B. Definition of Temporal Doctrine

We rephrase here the definition of temporal doctrine by Pisani (2010) according to our

notation.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

P. Bottoni, D. Gorla, S. Kasangian and A. Labella 24

Definition B.1 (Temporal doctrine). A temporal doctrine

iu : uD → D ← dD : id

consists of two c-indexed functors (where c is an object of C) with the same codomain,

viz. the hyperdoctrine (c-indexed category) D, satisfying the properties listed below.

1. The indexing category C has a terminal object.

2. The categories in D(c) are cartesian closed.

3. The substitution functors f∗ : D(e)→ D(c) have both left and right adjoints.

4. The functors iuc : uD(c)→ D(c) and idc : dD(c)→ D(c) have both left and right adjoints:

�u
c � iuc � �u

c �d
c � idc � �d

c .

5. The doctrine D satisfies the comprehension axiom (Lawvere 1970): the canonical

functors σc : C/c → D(c) (sending f : d → c to Σf1d) have right adjoints: σc � τc :

D(c)→ C/c.

6. The functors iuc and idc are fully faithful:

�u
c i
u
c � id; �u

c i
u
c � id �d

c i
d
c � id; �d

c i
d
c � id.

7. The doctrine D satisfies the Frobenius law: ΣfP ×e Q � Σf(P ×c f∗Q), for any f : c→ e

(naturally in P ∈ D(c) and Q ∈ D(e)).

8. Left adjoints satisfy the mixed Frobenius law, i.e., the units of adjunctions induce

isomorphisms:

�u
c(P ×c idcN) � �u

c(i
u
c�

u
cP ×c idcN)

�d
c(P ×c iucM) � �d

c(i
d
c�

d
cP ×c iucM)

natural in P ∈ D(c), M ∈ uD(c) and N ∈ dD(c).

9. The projections πu1 : uD1 ×D1 dD1 → uD1 and πd1 : uD1 ×D1 dD1 → dD1 are

isomorphisms.

10. The comprehension functors κc : D(c)→ C/c are fully faithful.

The first five axioms require the existence of some adjoint functors; the next five axioms

impose some exactness condition on these functors. In our case, where all the doctrines

involved are required to be subfunctors of Sub, some axioms are automatically satisfied

(namely 5, 7, 9 and 10) so that we can assume the simplified Definition 3.1.

References

Aceto, L., Ingólfsdóttir, A., Larsen, K.G. and Srba, J. (2007). Reactive Systems: Modelling,

Specification and Verification, Cambridge University Press.

Borceux, F. (1994). Handbook of Categorical Algebra: Volume 1, Basic Category Theory,

Encyclopedia of Mathematics and its Applications, Cambridge University Press. Available at

http://opac.inria.fr/record=b1126837

Bottoni, P., Labella, A. and Kasangian, S. (2012). Spatial and temporal aspects in

visual interaction. Journal of Visual Languages and Computing 23(2) 91–102. Special

issue dedicated to Prof. Piero Mussio. Available at http://www.sciencedirect.com/

science/article/pii/S1045926X11000772

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

Doctrinal approach 25

Braüner, T. and Ghilardi, S. (2007). First-order modal logic. In: Patrick Blackburn, J.V.B. and Wolter,

F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, Elsevier,

549–620. http://www.sciencedirect.com/science/article/pii/S1570246407800127

Cardelli, L. (1982). Real time agents. In: Proceedings of the 9th Colloquium on Automata, Languages

and Programming 94–106. Available at http://dl.acm.org/citation.cfm?id=646236.682864

De Nicola, R., Gorla, D. and Labella, A. (2010). Tree-functors, determinacy and

bisimulations, Mathematical Structures in Computer Science 20 319–358. Available at

http://journals.cambridge.org/article S0960129509990272

Freyd, P. and Scedrov, A. (1990). Categories, Allegories, Mathematical Library, vol. 39, North-

Holland.

Ghezzi, R. (2012). Enriched categories and presheaves: Their interconnections, generators and logics,

Master’s thesis, Università degli studi di Milano.

Ghilardi, S. and Meloni, G.C. (1988). Modal and tense predicate logic: Models in presheaves

and categorical conceptualization, In: Borceux, F. (ed.) Categorical Algebra and its Applications,

Springer, 130–142. Available at http://dx.doi.org/10.1007/BFb0081355

Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concurrency. Journal

of the ACM 32(1) 137–161. http://doi.acm.org/10.1145/2455.2460

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning About Systems,

Cambridge University Press.

Johnstone, P. T. (2002). Sketches of An Elephant: A Topos Theory Compendium, vol. 1, Oxford Logic

Guides, Clarendon Press. Available at http://opac.inria.fr/record=b1107183

Kasangian, S. and Labella, A. (1999). Observational trees as models for concurrency. Mathematical

Structures in Computer Science 9(6) 687–718. Available at http://dx.doi.org/10.1017/

S0960129599002935

Klin, B. (2007). Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Computer

Science 173 177–201.

Lawvere, B. (1970). Equality in hyperdoctrines and the comprehension schema as an adjoint

functor. In: Heller, A. (ed.) Applications of Categorical Algebra, Proceedings of Symposia in Pure

Mathematics, vol. 17, American Mathematical Society, 1–14.

Lawvere, F. W. (1969). Adjointness in foundations. Dialectica 23(3–4) 281–296. Available at

http://dx.doi.org/10.1111/j.1746-8361.1969.tb01194.x

Milner, R. (1989). Communication and Concurrency, Prentice-Hall.

Pisani, C. (2010). A logic for categories. Theory and Applications of Categories 24 394–417.

Pitts, A. M. (2000). Categorical logic. Handbook of Logic in Computer Science, Oxford University

Press, 39–123. Available at http://dl.acm.org/citation.cfm?id=373919.373928

Rosenthal, K. I. (1993). ‘A note on categories enriched in quantaloids and modal and temporal

logic, Cahiers de Topologie et Géométrie Différentielle Catégoriques 34(4) 267–277. Available at

http://eudml.org/doc/91529

Streicher, T. (2003). Categorical models of constructive logic. Available at http://www.mathematik.

tu-darmstadt.de/∼streicher/cmcl.pdf.

Walters, R. F. C. (1981). Sheaves and cauchy-complete categories. Cahiers de Topologie et Géométrie

Différentielle Catégoriques 22(3) 283–286. Available at http://eudml.org/doc/91273

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000019
Downloaded from https:/www.cambridge.org/core. Universita Studi La Sapienza, on 13 Mar 2017 at 10:08:17, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000019
https:/www.cambridge.org/core

