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Purpose: The quantitative assessment of Positron Emission Tomography (PET) scans using standardized
uptake value and derived parameters proved to be superior to traditional qualitative assessment in several
retrospective or mono-centric prospective reports. Since different scanners give different quantitative
readings, a program for clinical trial qualification (CTQ) is mandatory to guarantee a reliable and repro-
ducible use of quantitative PET in prospective multi-centre clinical trials and in every-day clinical life.
Methods: We set up, under the auspices of Italian Foundation on Lymphoma (FIL), a CTQ program consist-
ing of the PET/CT scan acquisition and analysis of 18F and 68Ge NEMA/IEC image quality phantoms for the
reduction of inter-scanner variability. Variability was estimated on background activity concentration
(BAC) and sphere to background ratio (SBR).
Results: The use of a 68Ge phantom allowed reducing the inter-scanner variability among different scan-
ners from 74.0% to 20.5% in BAC and from 63.3% to 17.4% in SBR compared to using the 18F phantom.
The CTQ criteriawere fulfilled at first round in 100% and 28% of PET scannerswith 68Ge and 18F respectively.
Conclusions: The 68Ge phantom proved a reliable tool for PET scanner qualification, able to significantly
reduce the potential sources of error while increasing the reproducibility of PET derived quantitative
parameter measurement.

� 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Positron Emission Tomography (PET), combined with
Computed Tomography (PET/CT), measures the changes in concen-
trations of tracer uptake in diseased tissue [1]. PET/CT-based
evaluation of response to cancer treatment has proved a reliable
outcome predictor in several tumours [2–4]. Quantitative metrics
for PET/CT scan (Q-PET) interpretation by Standardized Uptake
Value (SUV) have been recently shown to improve the prognostic
role of PET both at baseline and during treatment [3,5], but only
few prospective clinical trials are underway using these metrics
for PET/CT scan interpretation[6]. Besides more sophisticated
approaches [7] and taking in account its intrinsic limitations [8],
SUV is being universally used as a measure of tumour viability
by itself or mixed up with more complex indexes [9]. However,
typical SUV variability of 40–90% in SUV measurements were
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observed [10,11], and only major changes in SUV in response to
treatment (P30–40%) could be detected [12].

Despite the publication of guidelines for tumour PET/CT imag-
ing [13,14], the lack of standardization [15,16] has hampered in
the past the use of SUV as a biomarker in clinical trials. Now,
thanks to a better knowledge of the factors affecting SUV measure-
ments [17], guidelines for patient scanning and PET/CT image
acquisition [18] are recommended to improve data quality and
reproducibility [8,18].

Nonetheless, an inter-scanner variability of SUV measurement
up to 100% in a non-harmonized environment [19] and of 25% in
a multicenter clinical trial [20], just as consequence of the intrinsic
variability of the instrument, is still observed. Hence, a thorough
cross-calibration of PET/CT scanners and ancillary instrumentation
is the first condition to achieve an accuracy in tracer uptake mea-
surement below 10% [20–27].

Several programs for the cross-calibration of PET scanners have
been carried out in the recent years to reduce the variability among
PET/CT scanners using 18F phantoms: the European Association of
Nuclear Medicine (EANM) accreditation program for site of excel-
lence carried out by EARL Ltd (Wien, Austria) [21,22], the UK PET
Clinical Trial Network (CTN) [23], the American College of
Radiology Imaging Network (ACRIN) [24], the CTN of Society of
Nuclear Medicine and Molecular Imaging (SNMMI) [25,26] and
the JSCT NHL10 trial [27] in Japan.

The idea to measure the instrumentation factors affecting vari-
ance and bias of quantifying tracer uptake using a long half-life iso-
tope phantom has been recently addressed in several publications.
Fahey et al. [19] used the standard American College or Radiology
(ACR) phantom with the four smaller cylinders filled with a 68Ge
epoxy matrix in a 18F-filled background and achieve a coefficient
of variation among PET/CT scanners of 9.9–11.3%. Doot et al. [28]
used a modified NEMA/IEC Image Quality (IQ) phantom, without
lung insert, in which both the six spheres and the background were
filled with a 68Ge epoxy matrix and achieved a coefficient of vari-
ation among PET/CT scanners of 2.5–9.8%.

Moving from a previous experience in a PET/CT imaging-based
multicenter clinical trial [29] conducted on behalf of FIL (Italian
Lymphoma Foundation), since 2010 onward we designed and
adopted a framework for the PET/CT-based clinical trials, based
on three main assumptions. The first is a central PET/CT scan
review by a panel of Nuclear Medicine experts to reduce the image
interpretation variability [29–32], the second is the use of a stan-
dard protocol, shared among PET sites for patient preparation
and PET/CT acquisition according to European Association of
Nuclear Medicine (EANM) guidelines [14] and, the third, a program
for Clinical Trial Qualification (CTQ) of PET/CT scanners. We report
here the results of a study conducted on behalf of FIL aimed to
compare the results of an innovative method for PET sites CTQ with
a 68Ge pre-filled phantom with that obtained with traditional 18F
phantom prepared in the PET/CT sites.
2. Material and methods

CTQ was performed first with a 18F phantom on 83 scanners and
with a 68Ge pre-filled phantom on 17 scanners.
2.1. Core lab activities with 18F phantoms

All the PET/CT sites participating in PET/CT-based clinical trials
conducted on behalf of FIL had to undergo the CTQ coordinated by
a central imaging core lab in collaboration with the Italian
Associations of Nuclear Medicine (AIMN) and Medical Physics
(AIFM). The central core lab was located at the medical physics
department of Santa Croce Hospital in Cuneo, where all the CTQ
procedures were reviewed. The CTQ required the scanning of two
phantoms:

1) Uniformity phantom: a difference between calculated and
measured Background Activity Concentration (BAC) lower
than 10% was required to assure the correct calibration of
the PET/CT scanner in the uniform area of the cylindrical
phantom;

2) NEMA/IEC Image Quality (IQ) phantom: a smooth and regu-
lar recovery coefficient (RC) curve within the limit presented
in the EANM Guidelines [14] was required to assure a good
image quality on the six spheres filled with a nominal SBR
of 4.

Local personnel scanned the phantoms with the protocol for
acquisition and reconstruction used for routine patient imaging.
All DICOM images were uploaded to the WIDEN� (Dixit, Torino,
Italy) core lab WEB portal [29].

2.2. Core lab activities with 68Ge phantoms

The NEMA/IEC IQ phantom (manufactured by Data Spectrum,
Durham, NC) without the ‘‘lung” cylinder (see Fig. 1) was filled
with 68Ge in an epoxy matrix (Ecklert & Ziegler, Valencia,
California). The activity concentrations of the radioactive epoxy
added inside each sphere and in the phantom were measured with
a radionuclide calibrator tested against a NIST traceable source and
were respectively 40.67 kBq/ml and 10.58 kBq/ml at reference
time with an uncertainty of ±3%. Nominal Sphere to Background
Ratio (SBR) was 3.84. Total activity in the phantom was
108.4 MBq. The 68Ge phantom was imaged with a high resolution
CT to demonstrate the absence of air gaps, as previously described
[28]. It was then shipped via an authorized courier (Campoverde,
Milano, Italy) to the PET/CT sites.

2.3. Measurements and data analysis

BAC, measured in kBq/ml, was defined as the average on six
37 mm diameter circular Regions of Interest (ROI) placed in the
uniform area of uniformity and IQ phantoms, far away, at least
2 cm, from the spheres and the phantom’s edge. SBR was defined
as the ratio between maximum activity concentration of the larger
sphere and the BAC. RC was calculated as the ratio between mea-
sured maximum and actual activity concentration in each sphere.
RC curves were obtained plotting the single RC values as a function
of the sphere diameter. The inter-scanner variability (ISV) was
defined as the 95% confidence interval (CI) of BAC and SBR.
Student’s t-test was used to compare paired samples. The measure-
ments performed at different time points were scaled to the
activity at the reference time, accounting for 68Ge decays. 18F and
68Ge have a half-life of approximately 110 min and 271 days.

3. Results

3.1. Core lab activities with 18F phantoms

Seventy-four sites equipped with 83 PET/CT scanners partici-
pated in the 18F phantom CTQ program. Sixty-three out of 83
(76%) scanners fulfilled the CTQ requirements, 14 (17%) did not
because of a lack of phantoms or trained personnel, while CTQ is
still ongoing on 6 (7%) scanners. For qualified scanners the CTQ
was reached at the first round in 28% of the cases, while in 18%,
17% and 13%, two, three or more than three iterations, were
required, respectively. Iteration was defined as a dialogue/
discussion between a PET/CT site and the core lab requiring new
measurements or the re-acquisition of the phantom. The iterations
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were due to several reasons, the more frequent were: the NEMA/
IEC IQ and uniformity phantoms were not available at the PET/CT
site, the personnel performing the acquisition was not available
or not experienced in performing PET/CT quality control requiring
training from corelab to accomplish the task, the image data were
erroneously uploaded and/or the data were missing or incorrect,
the activity used to prepare the phantom was missing or incorrect,
the scanners need to be re-calibrated, and the standard source for
dose calibrators checking was absent.

For the PET/CT scanners fulfilling the CTQ the difference
(mean ± standard deviation) between measured and expected
BAC in the uniformity phantom was �1.1 ± 4.1% (CI 95%: �9.1%
+6.9%, ISV = 16.1%). The difference between measured and
expected BAC in the IQ phantom was 5.6 ± 20.9% (CI 95%:
�35.4% + 46.6%, ISV = 81.9%). The difference between measured
versus expected SBR in the IQ phantom was 6.2 ± 12.0% (CI 95%:
�17.3% to +29.7%, ISV = 47.0). In Fig. 3 the curves for average RC
of all the PET/CT scanners are shown.
3.2. Core lab activities with 68Ge phantom

Both phantoms underwent 1-h acquisition for ten times on the
same scanner at the core lab to ensure that they provide similar
quantitative results under controlled conditions of acquisition
and reconstruction. The preparation time for 18F phantom was
108 ± 23 min. No preparation is needed for the 68Ge phantom.
Differences in average BAC and SBR in the two phantoms were
0.5 ± 0.8% (p = 0.66) and 3.7 ± 0.8% (p = 0.49). No statistically signif-
icant differences were appreciable in RC curves as well as seen in
Fig. 2. Variability in 10 different acquisitions was 24.6% and 3.3%
for BAC and was 30.3% and 9.0% for SBR, for 18F and 68Ge phantoms
respectively.

The 68Ge phantom was then circulated across 17 scanners.
Differences between measured and expected BAC and SBR were
�2.8 ± 5.0% (CI 95%: �13.4% +7.8%; ISV = 21.2%) and 5.0 ± 3.9%
(CI 95%: �3.3% +13.3%; ISV = 16.5%), respectively. Three out of 17
scanners were re-calibrated after iteration with core lab because
difference between expected and measured BAC was higher than
what previewed by the CTQ, which is 10%. The box and whiskers
plot of the percentage difference between expected and measured
values of the BAC and SBR obtained with IQ 18F and 68Ge phantoms
is shown in Fig. 4.

In 11 PET/CT scanners it was possible to compare the results
obtained with the 18F and 68Ge IQ phantoms: the differences
between expected and measured BAC were significantly reduced
when using the 68Ge phantom: �2.6 ± 4.6% (CI 95%: �12.8%
+7.6%; ISV = 20.5%) in comparison to the same differences obtained
with the 18F phantom �7.8 ± 16.6% (CI 95%: �44.829.2%;
ISV = 74.0%) (p = 0.29). Similarly, the differences between expected
and measured SBR were significantly reduced when using the 68Ge
phantom 5.7 ± 3.9% (CI 95%: �3.0% + 14.4%; ISV = 17.4%) in com-
parison to the same differences obtained with the 18F phantom:
Figure 1. The 68Ge phantom used in this investigation (left) and a PET transaxial
image.
13.0 ± 14.2% (CI 95%: �18.6% + 44.6%; ISV = 63.3) (p = 0.52). The
differences between expected and measured BAC in the uniform
phantom used for CTQ were �0.68 ± 3.07% (CI 95%: �7.5%
+ 6.2%; ISV = 13.7%) for the 18F phantom. The box and whiskers plot
of the percentage difference between expected and measured val-
ues of the BAC and SBR obtained with IQ 18F and 68Ge phantoms in
these 11 PET/CT scanners is shown in Fig. 5.
4. Discussion

Q-PET is increasingly used in Oncology: with a number of peer-
reviewed publication peaking 28.000 in 2012 [33]. Q-PET, based on
SUV measurement, allows the proposal of new SUV-derived met-
rics for tumour burden assessment, not only in lymphoma [34],
but also in a number of solid tumours [35], such as lung cancer
[36], oesophageal cancer [37], head and neck squamous carcinoma
[38], breast cancer [39] and rectal cancer [40]. The proposed
indexes for quantitative measurement of viable tumour bulk
(Metabolic Tumour Volume, MTV) and active glycolytic tissue
(Total Lesion Glycolysis, TLG) prompted clinicians with repro-
ducible and reliable tools for tumour prognostication at baseline
in Hodgkin lymphoma [41] and in diffuse large B-cell lymphoma
[42], albeit with conflicting results [43]. Quantitative evaluation
proved superior to qualitative criteria for early tumour response
assessment in diffuse large B-cell lymphoma [44]. These data,
however, are of limited value since they were generated in
single-centre prospective or multicentre retrospective trials. Not
surprisingly, published results of prospective multicentre clinical
trials based on Q-PET are still lacking [34], as CTQ procedures are
complex and time-consuming. Several factors are known to be
responsible for the high variation in Q-PET among PET/CT sites
[22], and only a thorough and reproducible CTQ could reduce
and quantify this systematic bias [14].

The EANM program for site of excellence requires that the local
personnel of the PET/CT sites scans the 18F uniform and IQ phan-
toms and send the images to the EARL ltd core lab, which verifies
the calibration accuracy and analyses the RC curve results.
A ± 10% difference in the BAC and RC curves standing between
the minimum and maximum RC [14] was reached.

The UK program [23], ran among 15 PET/CT sites, requires that
the same medical physicist from the corelab scans a 18F IQ phan-
tom, and verifies the calibration accuracy and analyses the RC
curve. ±10% difference in BAC and ±0.25 SUV variation in RC was
reached.

The results obtained in these CTQ procedures are equivalent to
ours: the difference between expected and measured BAC was
lower than ±10% (range �6.9 to +9.1%) and ISV was 16.1%. But
when BAC was measured in the NEMA IQ phantom, which was
not used for qualification, we observed a much higher variability,
with ISV = 81.9%. RC curves were between the minimum and max-
imum RC limits [14] as seen in Fig. 3. The difference between
expected and measured SBR was 6.2 ± 12.0%. The relatively high
variability of SBR, ISV = 47.0, was accounted by the high probability
of error in the filling procedures and the objective difficulty in
phantom preparation. In particular the highest variability was
found in small-sized spheres.

The low PET/CT site compliance of the 18F phantom-based CTQ
program encouraged us to adopt the 68Ge phantom approach, so as
to simplify the process and further reduce the inter-scanner vari-
ability. The idea to measure the instrumentation factors using a
long half-life isotope phantom has been recently addressed in
several publications [19,28]. The variability of 10% is the minimum
achievable with the standard approach, while at least 5% should be
a requirement for using PET/CT in a quantitative way [45], as we
are planning in the FIL clinical trials. An optimal inter-scanner



Figure 3. RC curves on all PET scanners that underwent CTQ with 18F and 68Ge IQ phantom. Error bars are one standard deviation on all PET/CT scanners. Minimal and
maximal RC are taken from EANM guidelines [14].

Figure 2. RC curves of 18F and 68Ge IQ phantom. Error bars are one standard deviation on 10 measurements. Minimal and maximal recovery curve (RC) are taken from EANM
guidelines [14].

654 S. Chauvie et al. / Physica Medica 32 (2016) 651–656
variability of 3% has been already demonstrated comparing two
PET/CT scanners [46] with a NIST traceable source and an uncer-
tainty as low as 1.1% was also reported [47,48] using a new calibra-
tion methodology.

Besides the high variability, several PET sites (17% of scanners)
declared themselves unable to accomplish the CTQ, and up to 40%
of the scanners required repeated iterations with the core lab while
only 28% of themwere qualified in a single round. The more critical
aspects were the time needed for the CTQ procedure and the
absence of dedicated and trained personnel to perform the tests.
Some sites lacked the dedicated uniformity or IQ phantoms, some
could not cover the cost of the procedure for 18F phantom prepara-
tion, and some lacked time to dedicate to quality control of PET/CT
scanners. These problems were resolved with the 68Ge phantom. It
was shipped to the sites as a sealed source. Unpacking and posi-
tioning the phantoms required about 5 min as compared to the
nearly 2 h needed for 18F phantom preparation. Moreover, the radi-
ation exposure for the personnel was definitely lower and the risk
of contamination during phantom manipulation was eliminated.
The acquisition was performed exactly in the same way and with
the same time needed for a patient. At the end of CTQ the 68Ge
phantom was packed and shipped to the next PET/CT site. The



Figure 4. box and whiskers plot of the percentage difference between expected and
measured BAC, in 18F (a) and 68Ge (b), and SBR, in 18F (c) and 68Ge (d), measured in
IQ phantom for all PET/CT scanners.

Figure 5. box and whiskers plot of the percentage difference between expected and
measured BAC, in 18F (a) and 68Ge (b), and SBR, in 18F (c) and 68Ge (d), measured in
IQ phantom for the PET/CT scanners that acquired images of both phantoms.

S. Chauvie et al. / Physica Medica 32 (2016) 651–656 655
image analysis was performed remotely in the core lab with known
data and no additional information was required from the PET site.
Finally CTQ was fulfilled at first round in all cases. Notably, 6
PET/CT sites that were unable to comply with the 18F phantom
CTQ were qualified with the 68Ge phantom.

Using the 68Ge phantom we observed a variability in BAC
(ISV = 21.2%) 1/4 lower than in 18F phantom (ISV = 81.9%). The vari-
ability in SBR (ISV = 16.5%) was 1/3 of what was found with 18F
phantoms (ISV = 47.2%). The drastic drop in variability was only
due to phantom preparation. Indeed, the phantom variability is
high even if multiple 18F phantoms are prepared in a single institu-
tion by the same experienced personnel with a variability of 24.6%.
Initially, at the start of the CTQ program, a re-calibration of the
PET/CT scanners was required when BAC variability was higher
than 10%. The experience with the 68Ge phantom prompted us to
require a re-calibration in case of an observed BAC variability
higher than 3–5%. In this study we did not ship a radionuclide cal-
ibrator source along with 68Ge phantom differently from Bouchet
et al. [49], who, by combining a radionuclide activity calibration
check and a 18F-filled uniform phantom, demonstrated an inter-
scanner variability of the 11 PET/CT scanners lower than 10%.
Therefore, within our experimental framework it was not possible
to separate the bias coming from an inaccurate radionuclide
calibrator with respect to the bias due to the whole calibration
process. Noteworthy, the overall bias of PET/CT scanner does not
cancel out when considering radionuclide activity calibrator and
PET/CT scanner separately. Indeed, Doot et al.[50] showed that bias
in radionuclide calibrator measurements ranging from �50% to 9%
and in BAC ranging frm �27% to 13% lead a corresponding error in
SUV measurements from �20 to 47%. A CTQ program is on-going
for a clinical trial for follicular lymphoma of the Swiss Oncological
Society (SAKK) in which a standard source will be shipped along
with the 68Ge phantom. The large reduction in inter-scanner vari-
ability was confirmed also when comparing only the 11 PET/CT
scanners that performed the CTQ both with the traditional 18F
and with the 68Ge IQ phantoms. The ISV decreased from 74.0% to
20.5% in BAC and from 63.3% to 17.4% in SBR.

The results of this study must be interpreted in the light of one
limitation: most accreditation schemes require annual measure-
ments to give an idea of intra-scanner variability over time. This
was not done in the present study. Only short-time inter-scanner
variability was evaluated with 10 repeated measurements on the
same scanner in a day. Variability was below 3%. Measurements
were also carried out 10 times over a month in the first PET/CT site
and variability was still below 3%.
5. Conclusions

In conclusion, our work proved that a 68Ge phantom is a realistic
and valid alternative to 18F phantom for imagequality assessment in
a multicentre clinical trial environment. All the metrics used for
image quality assessment, such as BAC, SBR and RC, could be easily
measured with the 68Ge phantom with low noise scan. Moreover,
using the 68Ge phantom, a much lower radiation exposure is
expected for the personnel. The 68Ge phantom simplifies
dramatically the procedure of inter-scanner calibration and reduces
impressively the inter-scanner variability permitting to achieve a
higher accuracy for future Q-PET-based clinical trials.
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