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Abstract: A generalized electromagnetic model is presented in order to predict the response
of forward scatter radar (FSR) systems for air-target surveillance applications in both far-field
and near-field conditions. The relevant scattering problem is tackled by developing the
Helmholtz–Kirchhoff formula and Babinet’s principle to express the scattered and the total fields
in typical FSR configurations. To fix the distinctive features of this class of problems, our approach
is applied here to metallic targets with canonical rectangular shapes illuminated by a plane wave,
but the model can straightforwardly be used to account for more general scenarios. By exploiting
suitable approximations, a simple analytical formulation is derived allowing us to efficiently describe
the characteristics of the FSR response for a target transitioning with respect to the receiver from
far-field to near-field regions. The effects of different target electrical sizes and detection distances on
the received signal, as well as the impact of the trajectory of the moving object, are evaluated and
discussed. All of the results are shown in terms of quantities normalized to the wavelength and can
be generalized to different configurations once the carrier frequency of the FSR system is set. The
range of validity of the proposed closed-form approach has been checked by means of numerical
analyses, involving comparisons also with a customized implementation of a full-wave commercial
CAD tool. The outcomes of this study can pave the way for significant extensions on the applicability
of the FSR technique.

Keywords: forward scatter radar (FSR); low-signature air-target detection; radar cross-section (RCS);
electromagnetic scattering modeling; numerical techniques

1. Introduction

The detection of objects with reduced radar cross-section (RCS) is one of the most challenging
problems for air-target surveillance applications. Due to an ever-increasing diffusion of unmanned
aerial vehicles (UAVs), in particular drones, air-traffic systems capable of providing reliable surveillance
and avoiding violation of no-fly zones look highly desirable. Moreover, the traffic control of city
airspace is crucial for population safety. UAVs are typical examples of low-signature targets that may
result in being practically invisible to common monostatic or bistatic radar systems [1,2]. In general,
objects having a small size and made of particular materials exhibit a reduced cross-section; this also
happens to big-sized targets of special shapes having the capability of redirecting the electromagnetic
(EM) waves in different directions with respect to the illuminating antenna.
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Typical examples of UAVs showing a small size (about 1 m for the largest dimension) and
reduced RCS are represented by remote-controlled drones, whose spread is exponentially increasing,
particularly for remote video observation and for a wide class of security applications. On the other
hand, military UAVs having a size of about 15–20 m are often designed with stealth technology, which
typically consists of choosing appropriate shapes and covering layers with composite materials having
high absorption coefficients [2].

The detection of these targets by ground-based conventional radars, using monostatic or bistatic
configurations with bistatic angles significantly lower than 180◦, may be very challenging and is a
topic of increasing interest for the modern radar community [3]. Indeed, the signal scattered by the
illuminated target and collected by the receiving antenna may result in being particularly weak due
to the very low value of the RCS. In this context, radar systems based on the forward scatter (FS)
phenomenon may offer the clear advantage of stronger scattered returns with respect to monostatic
systems, as well as weaker dependence on the target material and composition [4].

The forward scatter radar (FSR) is a special class of radar systems characterized by a bistatic
angle that approaches or reaches 180◦, with targets crossing the transmitter-receiver baseline (BL) and
following an arbitrary trajectory, as shown in the example of Figure 1a. Under certain conditions, this
configuration has shown peculiar capabilities to enhance the detection of low-signature targets [5]. This
is related to the RCS enhancement exhibited by the illuminated object: from a physical viewpoint, such
an improvement is produced in the forward direction due to co-phase interference of the EM waves
arising from the illuminated side of the object, which produces a field focused on the opposite direction
with respect to the impinging wave [6,7]. Therefore, the FSR system is now considered a viable
alternative with respect to ‘conventional’ radars, being able to theoretically provide a forward-scatter
cross-section (FS-CS) several dB higher than the conventional backscatter RCS [5,8]. It is also noted that,
in the frame of civil applications, the possibility to apply FSR systems as passive radar configurations
with no power emission may result in being particularly effective [9–15].
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Figure 1. Typical forward scatter radar (FSR) scenario. (a) An air target crosses the baseline
(BL) between transmitting (Tx) and receiving (Rx) antennas; (b) the same target is replaced by a
two-dimensional (2D) rectangular metallic sheet approximating the illuminated object.

Different types of FSRs, both wide-band and narrow-band, have been analyzed so far, and simple
models assuming far-field (FF) conditions have recently been proposed [16–18]. Nevertheless, a wider
diffusion of the FSR technique especially for short-range applications would largely benefit from
the availability of a comprehensive EM model of the involved scattering phenomenon, also valid
in near-field (NF) conditions. In this frame, a straightforward approach has been proposed in [17]
and used in [19–22], where the received signal is decomposed into a chirp-like waveform, which is
the Doppler signature related to the motion, and an envelope pattern, which is in turn a function
of the target shape and size. In any case, a fundamental assumption involving FF conditions has
been considered so far to evaluate the signal collected by the receiver: this requires that the distance
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between the transmitting (Tx) antenna and the target, as well as the distance between the target and
the receiving (Rx) antenna are sufficiently large in terms of the involved wavelengths. In order to
test the significant effects of near-field conditions on the forward scattered field and on the relevant
chirp-like signature, a preliminary extension of this model has been proposed in [23,24].

Indeed, the signal collected in FSR configurations results in being particularly sensitive to the
geometry of the considered scenario. In fact, the characteristic dimensions and location of the involved
target with respect to the impinging wavelengths, along with the distance between the Tx-Rx antennas,
determine the main features of the FS phenomenon characterizing the overall system. For these
reasons, to accurately predict the received signal and allow for the design of optimal processing
techniques [25], a more general and accurate EM modeling of the forward scattering phenomenon is
extremely important and desirable.

In this context, the main goal of the present work consists of deriving and discussing a
comprehensive EM model of the received FSR signal in more general conditions, which involve
also important NF applications: the FS problem is formulated as a standard diffraction problem [26];
hence, the solution is developed by considering the Helmholtz–Kirchhoff formula [27] along with
Babinet’s principle [28,29]. An exact evaluation of the field in the ‘shadow’ region of the target is
thus achieved under the physical-optics approximation [7], valid when the target dimension is large
in terms of the operative wavelengths. In order to emphasize the essential features of the problem,
we will refer to a plane wave impinging on a metallic canonical shape [30], and the specific effects
of possible near-field conditions are considered on the collected signal, since in many applications,
the Rx antenna could be located at a few wavelengths from the moving target. In particular, an
efficient analytical formulation for the scattered and total fields is carried out, which is valid for Rx
both in FF and NF conditions, considering a rectangular silhouette (see Figure 1b) under first-order
approximation in the phase expansion. It is noted that a generalization to a complex object could
be obtained by using Glaser’s approach [5,31]. The solution of our scattering formulation is anyway
achievable by numerically evaluating the diffraction integrals both for simple rectangular geometries
and also for arbitrarily-shaped objects. The relevant analyses will consider here various scenarios for
changing distances between the target and Rx and for variously-shaped and -sized objects following
straight trajectories either perpendicular or at an angle with respect to the considered baseline [32].
Moreover, to further validate the proposed model, a full-wave solution has also been implemented
based on state-of-the-art commercial EM CAD (computer-aided design) tools. As said, the NF effects
are considered for the Rx antenna, and the approach is useful for many applications in which the Tx
antenna is in FF with respect to the target. Due to reciprocity [28], by the collected response for a
target-Rx configuration in NF, it is possible to derive the behavior in NF also for the target-Tx. It is
finally worth noting that the proposed approach can be further generalized to the monitoring of wide
ranges of airspace using a network of cooperating FSR sensors [33,34].

The paper is organized as follows. Methods are provided in Section 2, including a theoretical
background, the geometry of the FSR system and the proposed analytical model valid also in near-field
conditions. Results for both the NF and FF region are presented in Section 3 with full-wave validations
through an ad hoc implementation of an EM CAD tool. The discussion in Section 4 emphasizes the role
played by different geometrical parameters (distance, size and trajectory of the target) on the gathered
signal. Conclusions follow in Section 5.

2. Methods

In this section, methods are presented to recall the fundamentals of the electromagnetic theory
useful to frame our proposed model. After, the basic FSR geometry is described to insert the theory in
a real contest and to present the numerical and analytical model.
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2.1. Theoretical Background

The evaluation of the FSR signal collected by the Rx antenna can be modeled as a standard
diffraction problem. When an EM wave impinges on an obstacle, following the physical theory of
diffraction (PTD), the scattered (diffracted) field can be viewed as generated by surface sources induced
on the object by the incident wave [26,27,30]. In the forward direction, if the target dimensions are
larger than the operating wavelength λ (a time-harmonic regime is assumed with λ = c/ f , where f is
the carrier frequency and c the speed of light in vacuum), a shadow region is generated [7]. Beyond
this zone, directly opposite the object, there is a forward region in which the fields add up roughly in
phase, generally producing a strong radiation peak responsible for the enhanced RCS. The pattern of
this forward radiation can be related to the scattered pattern due to an aperture on a screen having the
same silhouette of the object. The physical explanation of the phenomenon can be derived through
the well-known Babinet’s principle (BP) [27–29]; by applying the equivalence theorem, if the target is
replaced with its silhouette, the induced currents on the target must be equal to the surface current
on an infinite plane [7,35]. Hence, thanks to the shadow-contour theorem [6,7,16], which states that
different objects with identical shadow boundaries generate identical shadow (forward) radiation, this
concept can be further generalized to three-dimensional (3D) targets. This assumption can significantly
facilitate the approximate estimation of the scattering generated by a wide class of objects. As a
reference case, we consider in the following two-dimensional (2D) rectangular metallic targets, and we
focus the attention on the characterization of the transition between far-field and near-field regions.

The total electric field due to a surface field distribution on the aperture A of a metallic screen
(PEC (perfect electric conductor) is assumed), whose normal direction is n′ (see, e.g., Figure 2a), can be
obtained through the well-known Helmholtz–Kirchhoff formula [27]:
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Figure 2. Formulation for the considered scattering problem: (a) Canonical example of planar aperture
A on a screen illuminated by an incident field, represented here as a uniform plane wave (UPW),
that is transverse electromagnetic (TEM). The PEC boundary conditions hold on the metallic screen.
(b) According to duality and Babinet’s principles, a complementary metal shape illuminated by the
field as in (a) is represented: this is the case of specific interest for typical FSR applications. The field
scattered by the metallic target is thus expressed in terms of the total field in the absence of any obstacle
and of the field generated by the equivalent aperture (see the related formulas with the quantities
defined in the text).

Eap(r) =
∫

A

(
E(r′)

∂G(r, r′)
∂n′

− G(r, r′)
∂E(r′)

∂n′

)
dA′ (1)

Eap(r) being the scalar electric field at any observation point r as a function of the total field E(r′) and
its normal derivative on the equivalent source points r′ of the aperture A (where the superscript ‘ap’
is the abbreviation of ‘aperture’); G(r, r′) represents the scalar Green’s function of the problem. As is
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well known, according to the uniqueness theorem, it is not necessary to specify both E(r′) and its
derivative with respect to the normal unit vector; thus, Equation (1) can be simplified [27]. The exact
evaluation of the field on an aperture requires the solution of a typical boundary value problem. As a
first approximation, the field at any point on the aperture can be assumed as the incident field on the
tangent plane to the aperture. This approximation is well known as tangent approximation in optics,
equivalent in electromagnetics to the physical optics or Kirchhoff approximation, and typically requires
a maximum aperture size D large in terms of the considered wavelength (D ≥ λ). By reasonably
assuming the illumination of a linearly-polarized uniform (homogeneous) plane wave (UPW), that
is transverse electromagnetic (TEM) having wavenumber k = 2π f /c = ω/c (ω being the angular
frequency) and replacing in Equation (1) the incident field on the object, we have:

E(r′) = Ei(r′) = E0e−jkŝ·r′ (2)

E0 being a complex amplitude taking into account also the initial phase and ŝ the unit vector defining
the UPW propagation direction. By exploiting Babinet’s and the duality principles [27], for our FSR
applications, we can relate the canonical scattering problem due to a planar aperture on a screen (a)
to that of a complementary metal PEC shape illuminated by the same source, as in Figure 2b. We
can therefore write the total electric field in the forward direction of a target A on a plane surface as
follows:

Epl
T (r) = Ei(r)− Eap(r) (3)

Eap(r) being the aperture field obtained from Equation (1) along with the choice of Equation (2),
and Epl

T (r) the total field radiated by the metal object (i.e., the PEC surface of area A as in Figure 2b,
where the superscript ‘pl’ is the abbreviation for ‘plate’): these fields are related to the overall field
Ei(r) in the absence of any obstacle.

In more general cases, from Equation (3), we can reach the following integral expression in terms
of the free-space Green’s function G(r, r′) = e−jk|r−r′ |/4π|r− r′| [27]:

Epl
T (r) = Ei(r)−

∫
A

[
Ei(r′)

(
jk + 1

|r−r′ |

)
z

|r−r′ | −
∂Ei(r′)

∂n′

]
e−jk|r−r′ |

4π|r−r′ | dA′ (4)

This represents a generalized expression for the total field scattered by a plane metallic object A
illuminated by an incident field Ei. According to the uniqueness theorem, if the field Ei(r′) (or ∂Ei(r′)

∂n′ )
is known on the surface, the field should be uniquely determined everywhere outside the surface [27];
hence, from Equation (4), we can finally reach the reference expression:

Epl
T (r) = E0

(
e−jkŝ·r − 1

2π

∫
A e−jkŝ·r′

(
jk + 1

|r−r′ |

)
z

|r−r′ |
e−jk|r−r′ |

|r−r′ | dA′
)

(5)

This is an integral relation describing in our cases of interest the radiation produced by a metallic
target A crossing the baseline between Tx and Rx: the source is assumed in FF with respect to the
illuminated object, while the receiver is located at an arbitrary distance (FF or NF) from the scatterer.
From Equation (5), we can easily derive also the scattered field (labeled with subscript S) from the
plane section A illuminated by the incident field Ei as:

Epl
S (r) = Epl

T (r)− Ei(r) = −Eap(r) (6)

This expression highlights for FSR the relation between the scattered field from an obstacle A and
the well-known formula of the field produced by an equivalent planar aperture on a screen. Overall,
Equations (5) and (6) represent the basic step toward the derivation of a simple analytical expression
for the electric field re-irradiated by a target and collected by the Rx antenna in general FSR scenarios.
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2.2. Electromagnetic Modeling

The basic FSR geometry is sketched in Figure 3, where the moving target is illuminated by a
source located in the far-field while crossing a baseline (BL). The moving target has an arbitrary
linear trajectory, between xi and x f , in the xz plane and described by a tilt angle ψ and a horizontal
angle αh. The signal propagating along the direct path of the BL between Tx and Rx antennas is
gradually reduced by the target shadow, which is generated as the object reaches its central position
(i.e., for αh = 0◦), where it results in being exactly interposed between the antennas.

αℎ 

Rx 

a 

b 

Ψ 

z𝑅𝑥 

x𝑖 

x𝑓 

 UPW  

(TEM) 

z 

x y 

𝑬𝒊 

Figure 3. Simulated scenario and frame for the considered FSR analysis. The metallic target of
the rectangular shape crosses the baseline moving from xi to x f with a uniform linear motion
(constant velocity or zero acceleration).

We consider specifically a rectangular target having dimensions a and b with respect to the x and y
axes, respectively. The fundamental geometrical parameter zRX is the distance from the Rx antenna to
the center of the target shape when the BL is crossed (that is the origin of the coordinate system of
Figure 3). By transmitting a continuous wave (CW) at angular frequency ω, the received total field due
to the target plate can be expressed from Equation (5):

Epl
T (r, ω) = E0

(
e−jkzRx − 1

2π

∫
A

(
jk + 1

R

)
zRx
R2 e−jkR dA′

)
(7)

where:
R = |r− r′| =

√
(xt − x′)2 + (yt − y′)2 + (zRx)2 = λR̃ (8)

and:
R̃ =

√
(x̃t − x̃′)2 + (ỹt − ỹ′)2 + (z̃Rx)2 (9)

R being the distance between the observation point r (where the Rx antenna is located) and the arbitrary
source point r′ of the target shape; xt and yt are the coordinates of the target center on the z = 0 plane at
each instant, and x′ and y′ are the target local coordinates referring to its center. In order to generalize
the previous expressions, we define R̃ in Equation (9) as the distance R normalized with respect to the
wavelength λ. The rectangular coordinates are normalized as follows: x̃t = xt/λ, ỹt = yt/λ, x̃′ = x′/λ,
ỹ′ = y′/λ and z̃Rx = zRx/λ (i.e., all of the quantities with the ‘tilde’ are normalized with respect
to the wavelength). By introducing the normalized coordinates and the normalized wavenumber
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k̃ = kλ = 2π, Equation (7) becomes independent of the angular frequency ω; we can therefore write
the expression of the received total field as follows:

Epl
T (r̃) = E0

(
e−jk̃z̃Rx − 1

2π

∫
Ã

(
jk̃ + 1

R̃

)
z̃Rx
R̃2 e−jk̃R̃ dÃ′

)
(10)

the integral evaluated on the surface of normalized area being Ã = A/λ2. These are reference
expressions for our model and allow one to numerically evaluate the FSR scattering effects for arbitrary
angular frequencies and arbitrary metallic targets, both in FF and NF conditions.

We first aim at achieving a simple but accurate closed-form solution of the considered integral
in Equation (10), also accounting for near-field conditions that may occur between the illuminated
rectangular-shaped target and receiver.

We exploit two canonical approximations: (i) paraxial approximation, valid in general when the
longitudinal distance of a point-like target from the Rx can be considered greater than the transverse
distance; (ii) first-order Taylor’s approximation on the phase expansion of the re-irradiated signal
given by Equation (10). Hence, Equation (9) can be written as follows:

R̃ ≈ z̃Rx +
(x̃t − x̃′)2 + (ỹt − ỹ′)2

2z̃Rx
(11)

On this basis, a closed-form solution of the integral in Equation (10) can be obtained for a
rectangular-shaped target with normalized sizes ã = a/λ and b̃ = b/λ, with respect to the x and y
axis.

After some algebra (the relevant details are reported in the Appendix A), Equation (10) reduces
to:

Epl
T (r̃) = E0e−jk̃z̃Rx

(
1− 1

2k̃
z̃2

Rx
R̃2

0

(
jk̃ + 1

R̃0

))
[−C(p−) + jS(p−) + C(p+)− jS(p+)][−C(q−) + jS(q−) + C(q+)− jS(q+)] (12)

where R̃0 =
√

x̃2
t + ỹ2

t + z̃2
Rx, C and S are the cosine and sine Fresnel integrals [27], and:

p± =
(
x̃t ± ã

2
)√ 2

z̃Rx
(13)

q± =
(

ỹt ± b̃
2

)√
2

z̃Rx
(14)

Equation (12) provides a straightforward analytical expression for the evaluation of the FSR signal
generated by canonical shapes both in far-field (Fraunhofer) and near-field (Fresnel) configurations
(Figure 3). By applying again the paraxial approximation, along with a first-order expansion for the
phase and neglecting the quadratic term related to the size of the target, we can write:

R̃ ≈ z̃Rx +
x̃2

t +ỹ2
t

2z̃Rx
− x̃t x̃′+ỹt ỹ′

z̃Rx
(15)

Hence, by assuming a distance zRx much larger than the target size and the wavelength (z̃Rx > 1),
the well-known Fraunhofer formula is obtained:

Epl
T (r̃) = E0

e−jk̃z̃Rx − 1
2π

z̃Rx
R̃2

0

(
jk̃ + 1

R̃0

)
e
−jk̃

(
z̃Rx+

x̃2
t +ỹ2

t
2z̃Rx

)
ãb̃ sinc( x̃t ã

z̃R
) sinc( ỹt b̃

z̃R
)

 (16)

It is interesting to note that Equation (16) correctly models the FS phenomenon in the far-field
(Fraunhofer) region by means of Babinet’s principle, showing the diffraction pattern, but in general, it
fails in predicting well a neat shadow effect, which is instead present in the near-field case. Indeed, by
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neglecting the quadratic phase term, we prevent the creation of the shadow effect that is responsible
for the persistent destructive interference between the direct and the scattered field. In other words,
the Fraunhofer approximation gives a field radiated by a target that can be derived from elementary
surfaces radiating in a parallel fashion; as a result, the interference phenomenon does not generate a
shadow region. Such observations are in full agreement with the results in [17], where it is shown that
a model for the FSR in the far-field region can be obtained by modulating the signal re-irradiated by
the target in the far zone with the Doppler signature produced by a moving point-like scatterer.

3. Results

In this section, numerical results are provided to test the proposed model for the FSR problem. A
target of fixed dimensions has been chosen to evaluate the proposed analytical model, both in the FF
and NF conditions. Numerical validations are provided. The sensitivity of the model proposed in the
previous section with respect to the approximations reported in Equations (11) and (15) is analyzed.

3.1. Far-Field and Near-Field Forward Scattering

A first result for a square object having dimensions ã = b̃ = 3 illuminated through a plane wave
having carrier frequency f (related to λ = c/ f ) and a linear-polarized (e.g., along y) electric field with
the amplitude equal to 1 V/m is considered (see, e.g., Figure 3). In Figure 4, the field collected by the
receiving antenna placed at an ‘FF’ distance z̃Rx = 200 is reported (the typical Fraunhofer distance
RF = 2D2/λ = 4a2/λ is equal to 36 in this case). The amplitude (A) and phase (Φ) of both ‘scattered’
field (i.e., related to the FS-CS of the illuminated target, ‘S’ subscripts in Figure 4) and ‘total’ field
(i.e., made by the interference between impinging and re-irradiated waves, ‘T’ subscripts in Figure 4)
are displayed on a double axis, representing the target movement along x and the relevant spanned
horizontal angle αh. The effect of the interference between the direct and the re-irradiated field is
clearly visible by comparing the two contributions. It is noted that the amplitude value of the total
field collected when the object is in x = 0 is equal to 1 V/m, whereas the scattered field is 0.045 V/m.
Indeed, the field re-irradiated by the target is a spherical wave that decays for increasing distances;
when the impinging plane wave is also considered, beyond the object (acting as a shield), it goes on
propagating up to the receiving antenna without undertaking a significant attenuation, and a field
equal to 1 V/m is detected by the receiving antenna modeled as a short electric dipole. In addition,
as expected since the target is in movement, the scattered field shows a parabolic variation of the phase
(see Figure 4b,e for the wrapped and unwrapped case, respectively), whereas the phase of the total field
is affected by the interference phenomenon, which represents indeed the peculiarity of this system. It
is worth noting that in Figure 4b,e, the phase obtained by implementing the Fraunhofer formula in (16)
is reported: a parabolic phase variation not presenting any oscillation has been obtained, confirming
the inherent point-like nature of the scattering generated by the target. We emphasize that, as expected
for these results obtained in the Fraunhofer region, the validity of our general analytical model (‘AM’),
based on Equation (12), is very good with respect to both the approximate FF model (‘AM(FF)’), based
on Equation (16), and also to the numerical model (‘NM’), based on the computation of Equation (10).
Moreover, all of the results presented here have independently been validated by means of an ad hoc
implementation on a commercial software (FEKO) [36], which performs a full-wave EM solution based
on the method of moments: the same scenarios are considered, with the source modeled as a linear
polarized plane wave having the same amplitude and initial phase. All of the results generated on
the CAD full-wave model are labeled with ‘FW’. Overall, an excellent agreement has been obtained,
confirming the accuracy of the proposed formulation. In Figure 5, the field collected in a near-field
configuration is analyzed, by considering the same FSR system, but placing the Rx antenna at z̃Rx = 10
from the target (Fresnel region). The peak value of the amplitude of the scattered field is equal here
to 0.85 V/m, resulting in being less attenuated with respect to the field in Figure 4a; this is coherent
with the shorter distance between the re-irradiating object and the receiving short dipole. In this case,
even though the target is tracing the same trajectory under the same angle-of-view (i.e, equal to 40◦ for
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both FF and NF case), the length of the trajectory decreases (from about 70 for the FF case to 3.5 for
the NF); hence, the phase variation of the scattered field changes accordingly. The same effect can be
observed on both the phase and amplitude of the total field. Furthermore, in this case, an excellent
agreement has been obtained with the full-wave CAD simulations, confirming the accuracy of the
proposed analytical model also for the NF cases. In Table 1, we characterize the results previously
presented for two typical configurations, i.e., small and large UAVs (1 m and 20 m).
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Figure 4. FSR scattered (subscripts ‘S’) and total (subscripts ‘T’) fields collected by the receiving
antenna for a square metallic object horizontally moving in the far-field with respect to the Rx antenna
having a size of ã = b̃ = 3. The distance object-Rx antenna z̃Rx = 200 for a generalized frequency
f . The source is assumed in the far-field and modeled in terms of a plane wave linearly polarized
along the y-direction, having amplitude equal to 1 V/m and zero initial phase. Different analytical
and numerical methods have been used and compared. Legend: NM = numerical solution of the
integral (Equation (7)), AM = analytical solution (Equation (12)), AM(FF) = analytical solution with
FF approximation (Equation (16)), FW = full-wave CAD solution. (a) Amplitude (S); (b) phase (S);
(c) amplitude (T); (d) phase (T); (e) unwrapped phase (S).
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Figure 5. As in Figure 4, for a near-field case with z̃Rx = 10. (a) Amplitude (S); (b) phase (S);
(c) amplitude (T); (d) phase (T); (e) unwrapped phase (S).

Table 1. Parameters of the results.

a = b (m) λ (m) f requency (MHz) zRx (m) xt (m)
10λ 200λ 10λ 200λ

1 0.33 900 3.33 66.66 1.1667 23.33
20 6.66 45 66.66 1333.33 23.33 466.66
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3.2. Model Sensitivity

The phase error ∆Φ obtained neglecting the second-order quadratic term of the series expansion
of Equation (15) can be written as:

∆Φ = k̃
(ã/2)2 + (b̃/2)2

2z̃Rx
(17)

For a square object and error phase equal to π/8, the well-known Fraunhofer far-field distance
formula can be obtained (i.e., zRx,FF > 2D2/λ). In the same way, the phase error obtained from
Equation (11) (first-order expansion) can be written as:

∆Φ = k̃ 1
8

[
(x̃t−b̃/2)4+(ỹt−ã/2)4

(z̃Rx)3 + 2 (x̃t−b̃/2)2(ỹt−ã/2)2

(z̃Rx)3

]
(18)

Equation (18) represents the sensitivity formula for the analytical model proposed by (12).
In Figure 6a, a two-dimensional representation of the formula in Equation (18) is shown for a square
target with a variable size (ã = b̃) and Rx-distance (z̃Rx). The result is obtained replacing the terms
related to the movement x̃t and ỹt with the value corresponding to a horizontal angle of 20◦. We note
two regions at the top-right and bottom-left in which the phase error is very high: these correspond to
a small Rx-distance and a big target, and to a big Rx-distance and a small target. These two regions
are better highlighted in Figure 6b obtained by applying a threshold to the phase error in Figure 6a:
such a threshold has been set to π/8, which is reasonable for radar applications. The sensitivity model
expresses by Equation (18) is very useful to set up, once having fixed the wavelength and the horizontal
angle ah, the operational parameters such as the Rx-distance and the dimension of the target in order
to have a defined accuracy on the phase approximation.
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Figure 6. Evaluation of phase errors. (a) Maps of the phase error from Equation (18) for a horizontal
angle (ah = 20◦). (b) Map of the area, where the phase error does not exceed π/8 (i.e., threshold π/8
applied to the data of case (a)). (a) Phase error maps; (b) validity maps under the threshold of π/8.

4. Discussion

In this section, we illustrate and discuss in more detail the original scattering features of an FSR
system when the transition from FF to NF regions occurs; the effects of the target electrical dimensions
on the received signal are evaluated; also, trajectories describing a certain angle with respect to the
baseline are considered.
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4.1. Transition from Far-Field to Near-Field

In Figure 7, the plane wave propagating along the BL direction z, having the electric field linearly
polarized, e.g., along y, impinges on a square target when it traces a certain number of rectilinear
trajectories sweeping from the FF to NF regions (i.e., by considering different values for zRx). The choice
of a simple square shape, characterized by just one geometrical parameter (a = b), allows us to clearly
emphasize the distinctive features of the scattering problem both in the FF and NF conditions.

a 

b 

Rx 

αℎ,3 

x𝑓 

x𝑖 

αℎ,1 

y 
x 

z 

 UPW  

(TEM) 
𝑬𝒊 

Figure 7. Simulated FSR scenario for different Rx-target distances: z̃Rx1 = 10, z̃Rx2 = 30, z̃Rx3 = 100.
The target is here a square metallic object having a side of ã = b̃ = 3 illuminated by CW having
frequency f . Each distance generates a different angle-of-view from Rx, ranging from NF to FF (z̃RX1 to
z̃RX3 ), i.e., αh,1 = 74◦, αh,2 = 49.4◦ and αh,3 = 19.3◦ (plot not to scale).

In Figure 8, the total and scattered field vs. x for a square object having side ã = b̃ = 3 crossing
the baseline at different distances with respect to the receiver, from 10–100, is presented. The signal at
the receiver is evaluated through the analytical closed-form model proposed in the previous sections
(AM, solid lines). We assume that the target follows a linear horizontal trajectory along x between
x̃i = −35 and x̃ f = 35 and is moving with a uniform velocity spanning an angle of view αh on the xz
plane that is a function of the distance from the Rx antenna (see Figure 7). By selecting a fixed value
for the length of the trajectory, αh obviously results in being wider for shorter distances. In the results
of Figure 8, for the normalized Rx-target distances z̃Rx, we show 10 (yellow curves), 30 (red curves)
and 100 (blue curves), thus considering both FF and NF operation conditions.

In Figure 8a–c, the scattered field is reported as a function of x: in particular, the amplitude AS is
shown in Figure 8a; in Figure 8b, we display the values of the unwrapped phase ΦS,u, and in Figure 8c,
we plot the phase differences of the first-order approximations with respect to the correct numerical
value, according to the considerations previously presented in Section 3.2. Comparisons between our
analytical formulation (solid lines) and numerical full-wave CAD results (dots) are also provided.
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Figure 8. Scattered (subscripts ‘S’) and total (subscripts ‘T’) signals collected by the receiving antenna
as the target moves along the x-direction (see Figure 7), for three different NF/FF distances, equal to
10 (yellow curves), 30 (red curves) and 100 (blue curves), where the solid lines refer to our analytical
approach and dots to numerical CAD results. (a) Scattered amplitude; (b) unwrapped scattered phase;
(c) phase difference between first-order approximation and numerical evaluation; (d) amplitude of the
total received signal; (e) phase of the total received signal. Solid lines: AM; dots: FW.

As expected, the amplitude of the field scattered by the object (which acts as a re-irradiating
element) is particularly sensitive to the distance z̃Rx. This is coherent with the fact that, when we are
no longer in FF conditions, the re-irradiated field can be viewed as a spherical wave whose power
can decrease in a more complex way than 1/z̃2

Rx. The behavior of the beamwidth may result in being
less predictable and should be interpreted by taking into account the relevant angle-of-view and the
movement of the target; indeed, by moving farther from the Rx antenna, the angle of view decreases
while covering the same distance along the x axis, and the object generates a re-irradiation that appears
less variable. At the same time, even though when the FF is approached, the directivity of the object
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generally increases and becomes independent of z̃Rx (and dependent just on θ and φ in the relevant
spherical coordinate system): in fact, when the object is farther (i.e., z̃Rx is larger), it re-irradiates
almost inside the main lobe of the radiation pattern, and consequently, the field at the receiving
point results in being less variable (see, e.g., the blue curve in Figure 8a). The well-known far field
concepts of directivity can be generalized in the near field, where this definition become dependent
on the target/Rx distance [24]. The phase of the scattered field has a typical chirp-like behavior,
where the phase oscillations along the distance are related to the well-known Doppler effect. Indeed,
the unwrapped phase of the scattered signal, shown in Figure 8b, results in the expected parabolic
trend. In Figure 8d,e, the values of the amplitude and phase of the total received signal, respectively,
are presented. The effect of the interference between direct and re-irradiated waves confirms the
expected FS phenomenon. In fact, the magnitude of the total field is oscillating around 1 V/m, and
a fast variation is observed in the central part for reduced distances, due to strong variations of the
field re-irradiated when the object is moving closer to the receiver. This aspect could result in being
counter-intuitive and represents indeed an original feature of the FS phenomenon. As concerns the
phase, going from the FF case up to the NF, the chirp-like nature of the signal is progressively lost.

As said, all of our results have been validated through the full-wave commercial code FEKO
(all of the dotted data in Figure 8): it results in an excellent agreement obtained for the amplitude of
both scattered and total fields (Figure 8a,d, respectively). It is interesting to note that the proposed
model fails at predicting the phase of the field re-irradiated outside the central region, as clearly
shown in Figure 8b,c: this is due to the truncated first-order expansion introduced to obtain the
closed-form expression in (16), and it results in being manifestly worse when the target gets closer to
the receiver (i.e., when ã is comparable to z̃Rx and we are no longer in FF conditions). In this case, to
better approximate the phase behavior, more terms of the series expansion are needed, preventing the
possibility to obtain a closed-form expression. Equation (18) is proposed to set up the limitations for
our model.

4.2. Effect of the Target Size

In order to analyze the effects of the target size on the FSR signal, we consider here two different
shapes, i.e., the square and the rectangle, each one having three different dimensions, as shown in
Figure 9. In this case, we fix z̃Rx = 50, with a correspondent overall angle-of-view equal to 70◦; all of
the other parameters describing the trajectory and the FSR system remain unchanged, with the target
still illuminated by a linear-polarized plane wave as in Figure 7.

a 

b 

a 

b 

Figure 9. Simulated FSR scenario to investigate the effects of the target dimension and shape. Three
different square (left) and rectangular (right) metallic plates are considered. Squares size along x-y:
1 (blue), 3 (red), 4 (yellow); rectangular size along x-y: 2× 1 (blue), 6× 3 (red), 8× 4 (yellow).
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In Figures 10 and 11, the scattered and the total fields are shown for increasing dimensions of
the target profile, for a square and a rectangular shape, respectively: for the square side (Figure 10),
it is ã = b̃ = 1 (blue), 3 (red) and 4 (yellow); for the rectangle (Figure 11), the same choices refer to the
minor side b̃ along ỹ, the major side being ã = 2b̃ along x (see Figure 9). Again, our closed-form results
(solid lines) are compared to full-wave CAD (dots).
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Figure 10. Scattered (‘S’) and total (‘T’) signals vs. target horizontal position, collected by the receiving
antenna for three different square PEC objects as in Figure 9: Side 1 (blue), 3 (red), 4 (yellow).
(a) Scattered-field amplitude; (b) scattered-field phase difference; (c) scattered-field unwrapped phase;
(d) total-field amplitude; (e) total-field phase. Closed-form results (solid) and full-wave CAD (dots)
are compared.
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Figure 11. Same as of Figure 10 for various rectangular shapes, with b̃ = ã/2 = 1 (blue), 3 (red),
4 (yellow); see also Figure 9. (a) Scattered-field amplitude; (b) scattered-field phase difference;
(c) scattered-field unwrapped phase; (d) total-field amplitude; (e) total-field phase. Closed-form
results (solid) and full-wave CAD (dots) are compared.

Both the amplitude and phase of the scattered field mainly confirm the characteristics previously
discussed. Differences on the re-irradiated field between the square and the rectangular shapes
showing a common dimension for one of the two sides are anyway clearly visible. In both cases,
as the object becomes larger, the field in the forward direction tends to be stronger and its distribution
along the x axis narrower, whereas the phase distribution results in being less sensitive to the same
variations. It is important to note that these results have been obtained by keeping fixed the Rx-antenna
distance; hence, as expected, the effect generated by a larger object on the re-irradiated field is
similar to that produced by a smaller object whose trajectory runs closer to the receiving antenna.
In Figures 10c and 11c the unwrapped phase, along with the full-wave validation, is reported again
for the square and rectangle, respectively, confirming the accuracy of the proposed formulation.
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In Figures 10d,e and 11d,e, the amplitude and phase of the total field are displayed again for square
and rectangular targets, respectively. Furthermore, in these cases, the amplitude of the total field
oscillates around 1 V/m, and a fast variation is observed in the central part, for smaller objects. This is
coherent with the strong variation observed in Figure 8d for the field re-irradiated when the same object
is moving closer to the receiver. As concerns the phase, by increasing the target size, the chirp-like
nature of the signal is progressively lost, since the presence of a larger object makes the apparent
distance between the re-irradiating target and the Rx antenna smaller. It is still emphasized that there
is an excellent agreement between closed-form (solid lines) and full-wave CAD results (dots).

4.3. Effect of the Trajectory

To analyze the effect of the trajectory, i.e., when a target is moving not necessarily perpendicular
to the BL, in this subsection, different values of the ψ angle (see Figure 3) are considered. The distance
from the receiver is set to z̃Rx = 100 with respect to the central point (i.e., for x = 0), and the initial and
final positions are x̃i = −90 and x̃ f = 90. The moving object is a metallic square (ã = b̃ = 3), while
all of the remaining parameters, included the impinging plane wave, are unchanged. Three different
linear trajectories are considered at different tilt angles, i.e., ψ1 = 0◦, ψ2 = 30◦, ψ3 = 45◦; in order to
evaluate the effect of each tilted trajectory, we keep fixed x̃i and x̃ f , so that the target could move along
its path from the FF to NF regions. Consequently, three different asymmetric couples of angles of view
are generated: the relevant geometrical details are reported in Table 2. Let us stress that, according
to Figure 3, for ψ > 0, the moving object may result in the FF region for positive values of x and in
the NF for those negative. Finally, it is important to note that, for modeling purposes, we considered
here an object moving on a tilted trajectory, but showing always its flat face to the receiver; indeed,
to consider an object whose profile is oriented along the direction of movement, one could refer to
the shadow-contour theorem, whose validity along the transition between the FF-NF region deserves
further investigation.

Table 2. Parameters of the trajectories.

ψ(◦) z̃Rx|x̃=0 zRx|x̃=x̃i z̃Rx|x̃=x̃ f αh,min/αh,max(
◦)

0 100 100 100 −42/42
30 100 50 160 −62/31
45 100 10 200 −84/25

For these results, we furnish again a comparison among our analytical model of Equation (10)
(‘AM’, gray curves), the numerical model of Equation (7) (‘NM’, black curves) based on the computation
of the diffraction integral and the full-wave (‘FW’, dotted green curves) CAD implementation.

In Figure 12a,b, the scattered field (amplitude and phase, respectively) for ψ = 0◦

(straight trajectory, perpendicular to BL) is presented: with respect to the results reported in the
previous sections in this case, we can test the effect of the paraxial approximation (fully satisfied
for relatively small αh) on the re-irradiated field. An excellent agreement is obtained in the central
region for both amplitude and phase of the signal, whereas the agreement is gradually lost as x and
consequently αh increase. In Figure 12c–f, the amplitude and phase results of the scattered fields for the
two tilted trajectories, ψ2 and ψ3, are presented: as expected, the amplitude of the scattered field loses
its symmetry, and the agreement among the analytical model, the numerical solution of the integral
and the full-wave validation is gradually lost along the path, i.e., in particular as the object approaches
toward the negative values of x, entering NF regions.

In Figure 13, the same results of tilted trajectories are for the total field. Again, the symmetry is
lost for ψ 6= 0, and the amplitude of the total field oscillates around 1 V/m; even though the typical
chirp signature results in being perturbed, this behavior allows us to recognize a trajectory different
from 0◦ and to potentially provide an estimation of the tilted angle. Once again, the results have been
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validated by means of the full-wave CAD solution, and an excellent agreement has still been obtained
as long as the paraxial approximation is satisfied.
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Figure 12. Amplitude (left column) and phase (right column) of the scattered field collected by the
receiving antenna for different tilt angles ψ of the target trajectory (see Figure 3). Parameters: ã = b̃ = 3,
frequency f . The EM field radiated by the source is still assumed as a z-directed plane wave polarized
along the y-direction. Comparisons between analytical model (AM, gray curves), numerical model
(NM, black curves) and full-wave (FW, green dots) CAD are displayed. Cases (a) and (b) for ψ = 0◦;
(c,d) for ψ = 30◦; (e,f) for ψ = 45◦.
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Figure 13. As in Figure 12 for the total field. (a,b) Ψ = 0◦; (c,d) Ψ = 30◦; (e,f) Ψ = 45◦.

5. Conclusions

Since FSR systems are able to provide an enhanced detection capability that can be very effective
for the monitoring of UAV and low-observable targets, a comprehensive electromagnetic model
has been presented in this work for the characterization of the forward scattering generated by
two-dimensional shapes, useful when the receiver is either in far-field and in near-field with respect to
the target illuminated by a plane wave.

A simple but efficient closed-form expression has been derived and tested for canonical shapes by
taking into account different target dimensions and trajectories. The validity of the proposed analytical
approach has been discussed and confirmed through numerical evaluations of the scattering integrals
and also by implementing an ad hoc full-wave solution with a commercial EM CAD tool for the
same scenarios.

The results have emphasized to what extent the FF-NF transition is efficiently described by the
closed-form model, so that it can be used to suitably investigate the fundamental characteristics of the
FSR phenomenon in particularly critical applications.
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This work can thus represent a basic step toward the design of a comprehensive model capable of
better characterizing and describing an FSR operating in challenging realistic conditions. Consequently,
useful guidelines can be outlined for the design of optimal signal processing techniques of FSR systems.
Additional developments may be focused on systematic parametric analyses of the FSR signatures
including the study of wider classes of targets, made of different materials (e.g., dielectric) and having
various shapes for both 2D and 3D geometries.
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Abbreviations

The following abbreviations are used in this manuscript:

BL baseline
BP Babinet’s principle
CAD computer-aided design
CW continuous wave
EM electromagnetic
FF far-field
FS forward scattering
FS-CS forward-scatter cross-section
FSR forward scatter radar
NF near-field
PEC/PMC perfect electric conductor/perfect magnetic conductor
PO physical optics
PTD physical theory of diffraction
RCS radar cross-section
TEM transverse electromagnetic
Tx/Rx transmitting/receiving
UAV unmanned aerial vehicle

Appendix A. Analytical Formula for EM Model

We focus here on the mathematical steps that lead to the analytical expression of the EM model in
Equation (12). Recalling the generalized expression in Equation (10):

Epl
T (r̃) = E0

(
e−jk̃z̃Rx − 1

2π

∫
Ã

(
jk̃ + 1

R̃

)
z̃Rx
R̃2 e−jk̃R̃ dÃ′

)
(A1)

we follow the (i) and (ii) approximations in Section 3.2 by replacing the distance R̃ with Equation (11)
and then Equation (10):

Epl
T (r̃) = E0e−jk̃z̃Rx

(
1− 1

2π

(
jk̃ + 1

R̃0

)
z̃Rx
R̃2

0

∫
Ã e−jk̃ (x̃t−x̃′)2+(ỹt−ỹ′)2

2z̃Rx dx̃′dỹ′
)

(A2)

Now, we consider the integral:

∫
Ã e−jk̃ (x̃t−x̃′)2+(ỹt−ỹ′)2

2z̃Rx dx̃′dỹ′ =[
−
∫ −ã/2

0 e−jk̃ (x̃t−x̃′)2
2z̃Rx dx̃′ +

∫ ã/2
0 e−jk̃ (x̃t−x̃′)2

2z̃Rx dx̃′
] [
−
∫ −b̃/2

0 e−jk̃ (ỹt−ỹ′)2
2z̃Rx dỹ′ +

∫ b̃/2
0 e−jk̃ (ỹt−ỹ′)2

2z̃Rx dỹ′
]
=

z̃Rx
2 [−C(p−) + jS(p−) + C(p+)− jS(p+)][−C(q−) + jS(q−) + C(q+)− jS(q+)]

(A3)
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The last expression derives from the definition of Fresnel integrals
∫ z

0 exp(−j(π/2)t2) dt =

C(z)− jS(z) [27] and leads directly to the EM formulation in Equation (12). Similar mathematical steps
have been applied to the expression valid only in the far-field (Fraunhofer) condition of Equation (16).
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