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We investigated the actuation performances of anisotropic gels driven by mechanical and chemical

stimuli, in terms of both deformation processes and stroke–curves, and distinguished between the

fast response of gels before diffusion starts and the asymptotic response attained at the steady state.

We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is

especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely

isotropic extensions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4969046]

I. INTRODUCTION

Soft active materials admit deformations and displace-

ments that can be triggered through a wide range of external

stimuli such as electric field, pH, temperature, and solvent

absorption.1–4 The effectiveness of these systems may criti-

cally depend on the capability of achieving both prescribed

changes in shape and size and on the range of performances

in actuator applications, which can involve isotropic or

fibrous gels. We recently presented an investigation about

fiber reinforced gels, a soft composite material, whose shape

changes can be programmed by adjusting both fiber orienta-

tion and stiffness, and about the possible shape changes that

they realize in free–swelling conditions; we also discussed

the role of fibre orientation in determining these shape

changes.5 Moreover, we showed that, by considering geo-

metric composites made of homogeneous layers of fibrous

gels, an even larger variety of shapes can be generated start-

ing from a flat strip.6

Fibrous or anisotropic gels are at the center of many

recent realisation dealing with fibrous soft materials inspired

by plant world,7 natural filtration systems,8 biomedical mate-

rials for cardiovascular medicine,9 polymer hydrogels with

anisotropies in structure and optical properties,10 as well as

theoretical investigations. These different applications

exploit the ability of such gels to undergo anisotropic swell-

ing and to show an anisotropic mechanical response; both

of these elements characterise the mechanics of fibrous

hydrogels.

To the best of our knowledge, the performances of

fibrous hydrogels in actuator applications have not been

extensively studied.11 As it is well known, actuators are

usually characterized by their force–stroke curves, which

deliver critical information when designing an actuator.12,13

In particular, the range of forces that an anisotropic hydro-

gel can exert when constrained is especially wide. Indeed,

changing fiber orientation in gel cubic elements allows us

to induce shear as well as transversely isotropic extensions,

under free–swelling conditions.5 Correspondingly, under

appropriate imposed deformations, i.e., boundary con-

straints, anisotropic gels can exert both tangential and nor-

mal forces, depending on fiber orientation. Moreover, due

to swelling, such forces decrease from the instantaneous

values attained before diffusion starts to the lower values

attained at the steady state.14

This paper aims to investigate performances of aniso-

tropic gels driven by mechanical and chemical stimuli, in

terms of both deformation processes and stroke–curves, and

distinguish between the fast response of gels before diffusion

starts and the asymptotic response attained at the steady

state. We start from a Sec. II devoted to revisit a few results

related to isotropic gel actuators. Then, with reference to a

thermodynamic model, which can be viewed as the extension

of the well–known Flory–Rehner model, a few prototypical

anisotropic actuators are investigated, and the corresponding

deformation processes and stroke–curves are discussed.

II. BACKGROUND

Our starting point is the multiphysics model presented

and discussed in Ref. 15; therein, three different states of a

gel body were introduced: a dry state Bd , a swollen and

stress–free state Bo, and an actual state Bt (see cartoon in

Figure 1). Then, the constitutive equation for the stress

Sd ð½Sd� ¼ Pa ¼ J=m3Þ at the dry configuration Bd, from

now on denoted as dry–reference stress, and that for the

chemical potential l ([l]¼ J/mol) were derived from

the classical Flory–Rehner thermodynamic context. The

Flory–Rehner model16,17 for stress diffusion in gels is based

on a free energy w per unit dry volume, which depends on

the deformation gradient Fd from the initial dry configura-

tion of the polymer gel through an elastic component we

and on the molar solvent concentration cd per unit dry vol-

ume ([cd]¼mol/m3) through a polymer–solvent mixing

energy wm: w¼weþwm. We include in the definition of

the free–energy a volumetric constraint prescribing that

changes in volume are only due to solvent absorption or

release. In order to account for such a constraint, we relax

the Flory–Rehner free energy by adding a term which

enforces that constraint and write
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wrðFd; cd; pÞ ¼ weðFdÞ þ wmðcdÞ � pðJd � ĴðcdÞÞ: (2.1)

The pressure p represents the reaction to the volumetric con-

straint, which maintains the volume change due to the dis-

placement equal to the one due to solvent absorption or

release

Jd ¼ det Fd ¼ ĴðcdÞ ¼ 1þ X cd; (2.2)

being X ([X]¼m3/mol) the solvent molar volume. The func-

tion wr is called the Lagrangian function associated with the

energy w, while p is the Lagrangian multiplier, which mea-

sures the sensitivity of the minimum energy to a change in

the constraint. Key features of w (or wr) are the following: (i)

w is a density per unit volume of the dry polymer; (ii) the

elastic contribution we hampers swelling; and (iii) the mixing

contribution wm favors swelling.

The constitutive equation for the stress Sd and the chem-

ical potential l ([l]¼ J/mol) come from thermodynamic

issues and prescribe that

Sd ¼ SdðFdÞ � p F?d and l ¼ lðcdÞ þ p X; (2.3)

with

Sd Fdð Þ ¼
@we

@Fd
and l cdð Þ ¼

@wm

@cd
; (2.4)

being F? ¼ ðdet FÞF�T . The Flory–Rehner thermodynamic

model prescribes a neo-Hookean elastic energy we

we Fdð Þ ¼
G

2
Fd � Fd � 3ð Þ; (2.5)

being G the shear modulus of the dry polymer; moreover, it

prescribes the following polymer–solvent mixing energy

wm cdð Þ ¼
RT

X
h cdð Þ; (2.6)

with

h cdð Þ ¼ X cd log
X cd

1þ X cd
þ v

X cd

1þ X cd
; h½ � ¼ 1; (2.7)

being R ([R]¼ J/(K mol), T ([T]¼K), and v the universal gas

constant, the temperature, and the Flory parameter, respec-

tively. From (2.4)1 and (2.5), we derive the constitutive

equation Sd(Fd) for the dry–reference stress; from (2.4)2,

(2.6), and (2.7), we derive the constitutive equation l(cd) for

the chemical potential. This latter can also be rewritten as a

function of Jd by exploiting the volumetric constraint (2.2);

with a slight abuse of notation, we write l(cd)¼l(Jd)

l Jdð Þ ¼ RT log
Jd � 1

Jd
þ 1

Jd
þ v

J2
d

� �
: (2.8)

Performances of gels in terms of both deformation processes

and stroke–curves driven by mechanical and chemical stim-

uli can be studied solving a time–dependent stress–diffusion

problem based on appropriate balance equations and consti-

tutive prescriptions for Sd, l, and the solvent flux.5,15

However, sometimes homogeneous solutions are of interest,

corresponding to steady states and/or, on the opposite side,

to before–diffusion–starts states. A typical example deals

with a gel body embedded into a solvent bath of assigned

chemical potential le. In this case, the homogeneous solu-

tions of the problem can be completely determined by data

prescribed on the boundary in terms of boundary loads and/

or constraints, and le.

The simplest example of such problems is the one with

zero boundary loads. In this case, mechanical and chemical

balance laws prescribe Sd¼ 0 and le¼lo, that is, the swol-

len and stress–free state Bo, attained from Bd with

Fd ¼ Fo ¼ koI, is completely defined by the value lo of the

bath’s chemical potential. The condition of zero stress yields

the pressure p

GFo � p F?o ¼ 0 ) p ¼ G

ko
: (2.9)

By substituting p in the constitutive relation for the chemical

potential yields a non linear equation relating lo and ko
18

l Joð Þ þ
G

ko
X ¼ lo; with Jo ¼ k3

o: (2.10)

For large deformation (1/Jo ! 0), Equation (2.10) can be

approximated, by estimating the leading order term in the

Maclaurin asymptotic expansion in 1/Jo, as19

RT

X
v� 1=2ð Þ ¼ lo

X
J2

o �
G

ko
J2

o : (2.11)

In some cases, it may be convenient to use the free-swollen

state Bo as reference configuration; the deformation from Bo

to the actual state Bt is then described by the deformation

gradient F ¼ Fd F�1
o . The actual (Cauchy) stress T can then

be represented in terms of the dry–reference stress Sd, or of

the swollen–reference stress S, defined as the push–forward
of Sd and/or the pull–back of T

S ¼ 1

Jo
SdFT

o|fflfflfflffl{zfflfflfflffl}
push�forward

¼ TF?|{z}
pull�back

; T ¼ 1

Jd
SdFT

d : (2.12)

Using Equations (2.3)1, (2.4)1, (2.5), and defined

Bd ¼ Fd FT
d , we have

FIG. 1. Given a dry ball Bd , the swollen and stress–free state Bo only differs

for a change in size, whereas the actual state Bt for a change in size and pos-

sibly in shape.
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S ¼ G

Jo
FFoFT

o � pF? and T ¼ 1

Jd
G Bd � pI: (2.13)

The deformation F can have different characteristics; in the

following, we quickly revise two typical problems partially

studied in the Literature for isotropic gels.

A. Isotropic gels under step pressure and dilation

Given a free-swollen state Bo, we consider the steady–

state Bt determined by the bath’s chemical potential le and

by the external pressure pe. This state is described by the

deformation field F ¼ kI, and we look for homogeneous

solutions of the stress–diffusion problem, with boundary

conditions

T n ¼ �pe n and l ¼ le on @Bt; (2.14)

with n the unit normal to @Bt. Mechanical and chemical balan-

ces prescribe the spherical component r of the stress T ¼ rI

and the chemical potential within the gel

r ¼ �pe and l ¼ le inBt: (2.15)

Being Fo ¼ koI and F ¼ kI, from Equations (2.3)1, (2.4)1,

(2.5), and (2.12)2, we obtain r

r ¼ G

ko k
� p: (2.16)

With this, Equation (2.15)1 relates the (osmotic) pressure p
to the external pressure pe and to the additional deformation

k as

p ¼ G

ko k
þ pe: (2.17)

We focus on the slow response of the gel and assume that

solvent migration has reached a steady state. The characteris-

tics of this response are determined by Equation (2.15)2

which, together with Equations (2.3)2 and (2.8), yields an

implicit relation between the triplet (pe, k, le)

l J Joð Þ þ G X
ko k
þ pe X ¼ le; J Jo ¼ k koð Þ3: (2.18)

Fixed the pair (pe, le), the stretch k determines the size of

Bt; alternatively, fixed the pair (k, le) with k an imposed

dilation, pe determines both the isotropic stress within the

body and the intensity of the normal boundary traction (see

Equations (2.14)1 and (2.15)1).

We may look for the pressure pe needed to keep a fixed

dilation k, under different le; in this case, Equation (2.18)1

can be recast as a function delivering pe in terms of k and le,

with ko (or, equivalently, lo) as a parameter

pe ¼ pe k; le; koð Þ ¼ 1

X
le � l k3 k3

o

� �� �
� G

ko k
: (2.19)

Fixed the initial free-swollen conditions determined by lo

(or, through (2.10), by ko), we can have different stroke–

curves pe versus k, which depend on the new value of le;

Figure 2 shows some of these curves for lo¼�10 J/mol

(and correspondingly, ko¼ 2), and le¼lo 6 10 J/mol, once

fixed X¼ 6� 10�5 m3/mol, v¼ 0.2, and G¼ 0.1 MPa. At

different values of le¼�20, �10, 0 J/mol, pressure–stroke

curves intercept the axis pe¼ 0 at different values of k which

correspond to free–swelling stretches. For le¼ lo¼�10 J/

mol, we recover the free-swollen reference state, that is

k¼ 1, and pe¼ 0.

In particular, Equation (2.19) also allows us to discuss

the existence of a blocking pressure, that is, a pressure p?e
which, depending on the value of le, maintains k¼ 1, that is

Bt ¼ Bo. Equations (2.17) and (2.18) with k¼ 1

G

ko
� p ¼ �p?e and l Joð Þ þ

GX
ko
þ p?eX ¼ le; (2.20)

characterise the blocking pressure p�e

p?e ¼
1

X
le � loð Þ: (2.21)

As expected, Equation (2.21) gives a null blocking pressure

for le¼lo¼�10 J/mol; increasing (decreasing) le requires

a positive (negative) pressure p?e to maintain k¼ 1.

It is worth noting that for large swelling–induced defor-

mations, i.e., 1/Jo ! 0 and 1/J ! 0, Equation (2.18) can be

approximated as

G

ko

1

k6
� 1

k

� �
¼ pe; (2.22)

where we set lo¼le¼ 0.

B. Isotropic gels under step traction and extension

We consider a dry-reference cubic gel Bd , whose edges

are aligned along the directions of the orthonormal basis

ðe1; e2; e3Þ of the three–dimensional vector space V (see

Figure 3, panel a), and its free-swollen state Bo, determined

by the value lo of the solvent’s bath chemical potential (see

Figure 3, panel b). The gel may undergo further deforma-

tions, determined by a change le � lo of the solvent bath’s

FIG. 2. Pressure–stroke curves pe(k, le, ko) for three values of le with

ko¼ 2, corresponding to lo¼�10 J/mol. When le<lo (le>lo) the corre-

sponding blocking pressure is determined on the vertical axis k¼ 1 in corre-

spondence of the blue triangle (square) on the blue (green) curve.
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conditions, by uniaxial boundary loads re per unit current

area, and by a uniaxial step deformation k1. Both uniaxial

loads and deformations induce a transversely isotropic defor-

mation process

F ¼ k1e1 � e1 þ k�I; �I ¼ I� e1 � e1; (2.23)

where it was assumed that loads and deformations are aligned

with e1. The stress shares the transversely isotropic structure

of the deformation F and is represented as T ¼ r1e1 � e1

þr�I. From Equations (2.3)1, (2.4)1, (2.5), and (2.12)2, we

can write the constitutive equations of r1 and r as

r1 ¼
G

k2ko

k1 � p and r ¼ G

k1ko
� p: (2.24)

The slow response of the gel is described by the steady solu-

tion of the stress–diffusion problem, under the following

boundary conditions:

Tn ¼ re e1 for n ¼ e1

0 for n ¼ e2; e3
and l ¼ le on @Bt :

�

Hence, the homogeneous solutions of the problem corre-

spond to the mechanical and chemical balance equations,

which prescribe that

r1 ¼ re; r ¼ 0; and l ¼ le in Bt: (2.25)

The chemical balance (2.25)3, together with Equations (2.3)2,

yields the value attained by pressure p at the steady state

p ¼ 1

X
le � l J Joð Þð Þ: (2.26)

On the other hand, the mechanical balance (2.25)2, together

with Equation (2.24)2, gives p¼G/k1ko. Hence, using this

latter into Equations (2.25)1 together with Equation (2.24)1

and into Equation (2.26) together with Equation (2.8), we get

the two equations governing the steady response of the gel

G

ko

k1

k2
� 1

k1

� �
¼ re;

l JJoð Þ þ X
G

ko

1

k1

¼ le; J ¼ k1k
2 :

(2.27)

Equations (2.27) give the stretches k1 and k, which define

the shape of the gel parallelepiped Bt under the pair (re, le);

alternatively, they characterize the normal boundary traction

re and the stretch k under the pair (k1, le).

This solution is shown in the k1�k plane in Figure 4,

where the brown–to–orange colours identify different values

of le (from �100 to 0 J/mol), whereas lo has been fixed as

lo¼�10 J/mol. The red line is the iso–r1 (or equivalently,

due to Equation (2.25), iso–re) line corresponding to

r1¼ 0 kPa; the corresponding k1¼ k values identify the size

of the free–swelling states, at different values of le. We can

move from state 1 (k1¼ k¼ 1) to state 2 along the iso–le

line le¼�10 J/mol, acting upon the gel with a traction

re¼ 50 kPa; then, from state 2 to state 3, keeping the traction

fixed and increasing the chemical potential to a new value

le¼ 0 J/mol; and from state 3 to state 4 along the new iso–le

line le¼ 0 J/mol removing the traction; and, at the end, go

back to state 1 only changing le to the old value le¼�10 J/

mol. The corresponding shapes of the cubic gel are shown,

in scale, in the lateral panel in Figure 3.

Figure 4 also allows us to evaluate the traction re corre-

sponding to an imposed deformation k1 (which might repre-

sent the value prescribed by a boundary constraint), for

different values of le. As an example, for k1¼ 0.68 we get

re¼�50 kPa at le¼�10 J/mol; it means that the freely

swollen cube Bo with side length equal to ko, once

FIG. 3. From left to right: (a) dry state; (b) free-swollen state; (c) fast response state under swelling and loading; (d) asymptotic state under swelling and load-

ing. For a gel with G¼ 0.1 MPa, RT/X¼ 40 MPa, v¼ 0.2, under a traction re¼ 0.1 MPa, we have: Jo¼ 18.5, Jd ’ 23. Plots are in scale.

FIG. 4. Iso–traction lines r1¼�50 kPa (blue line), r1¼ 0 kPa (red line),

r1¼ 50 kPa (black line) in the k1�k plane over contour lines of le (from

�100 J/mol (brown) to 0 J/mol (light yellow). The state of the gel is pin-

pointed by the intersection of iso-traction lines with iso-potential lines: the

circled numbers from 1 to 5 show five of such points on the line l¼�10 J/

mol (states 1, 2, and 5) and on the line l¼ 0 J/mol (states 3 and 4). On the

right, the corresponding shapes of the gel are shown in scale.
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constrained to reduce the length of the side aligned with e1 to

k1ko¼ 0.68ko would exert a traction equal to �re¼ 50 kPa on

the constraint.

A direct visualization of the blocking force rr¼�re,

that is, of the traction exerted on the constraints hampering

the deformation of the swollen state Bo along e1, is given in

Figure 5: the blue square (triangle) on the green (blue) line

identifies the traction acting on the constraint that maintains

k1¼ 1. It is worth noting that, being the gel isotropic, a

completely equivalent situation would correspond to a con-

straint, which hampers the full deformation along the direc-

tion spanned by ea, with a¼ 2, 3. Our results are very similar

to the ones in Ref. 13, where the same problem was dis-

cussed for isotropic temperature–sensitive hydrogels both

from an experimental and theoretical point of view, through

the so–called ideal elastomeric gel model.

For large swelling–induced deformations, i.e., 1/Jo ! 0

and 1/J! 0, Equation (2.26) can be approximated as

p ’ �RT

X
v� 1=2ð Þ 1

J2
oJ2
’ G

ko

1

k2
1k

4
; (2.28)

where we used Equation (2.11) and set lo¼le¼ 0. With

this, being r¼ 0, we get the relationship which links the

steady values k1 and k (experimentally discussed in Ref. 14),

as well as the asymptotic relationship valid at the steady state

between r1 and k1

k ¼ k�1=4
1 and r1 ¼

G

ko
k3=2

1 � k�1
1

� �
: (2.29)

C. Fast response of isotropic gels

Figure 4 describes the asymptotic state under uniaxial

step traction or deformation. It is also of interest to determine

the mechanical state just after traction (or deformation) is

applied and before diffusion starts; during such a transient,

the gel behaves as an elastic and incompressible solid

J ¼ 1 and k ¼ k�1=2
1 ; (2.30)

moreover, its response is different. Indeed, from being r¼ 0,

we get the relationship holding between the before–diffu-

sion–starts values r1f of the stress and k1

r1f ¼
G

ko
k2

1 �
1

k1

� �
; (2.31)

where the Equation (2.30)2 has been taken into account.

A comparison between Equations (2.29) and (2.31)

allows us to identify both the force relaxation due to a step

deformation and the creep due to diffusion in response to a

step load, a phenomenon which is different from the one

characteristic of the viscoelastic response of solids, as dis-

cussed in Ref. 14.

III. ANISOTROPIC GELS UNDER UNIAXIAL TRACTION
AND EXTENSION

For anisotropic gels, we proposed in Ref. 6 an extension

of the classical Flory–Rehner model, where the elastic term

we in the free energy w has the following form:

we Fdð Þ ¼
G

2
Fd � Fd � 3ð Þ þ 1

2
G c Fd e � Fd e� 1ð Þ2; (3.1)

where c is a stiffening parameter, and the unit vector e

describes the fibers’ direction. Behind the representation

(3.1), there is the idea to describe the effect of the presence

of reinforcements (fibers) into the gel, which hampers the

swelling along their direction. Within that context, the dry–

reference stress Sd is represented by Equation (2.3)1 with

SdðFdÞ ¼ G Fd þ 2 G c ðCd � E� 1ÞFd E; (3.2)

being Cd ¼ FT
d Fd the right Cauchy-Green strain, and

E ¼ e� e the direction of the fiber e. We are interested in

homogeneous solutions of the swelling problem, which real-

ize the following triaxial deformation Fd:

Fd ¼ kdiEi; Ei ¼ ei � ei; i ¼ 1; 2; 3; (3.3)

compatible with fibres aligned with e1 or e2 or e3. The

(Cauchy) stress T admits the following representation

T ¼ 1

Jd
G Bd þ 2 c Cd � E� 1ð ÞFd E FT

d

� 	
� p I; (3.4)

being, in this case, Bd ¼ Cd ¼ k2
di Ei. Given a plane in the

dry-reference configuration having unit normal m, the image

under Fd of that plane will have a normal n represented by

n ¼ F?d m

jF?d mj ¼
k�1

i Ei m

jk�1
i Ei mj

; (3.5)

Denoting with t a unit vector orthogonal to n, the normal and

tangential stress component of T with respect to n and t are

rn ¼ T n � n and sn ¼ T n � t, and are given by

rn ¼
G

Jd
k2

di n � eið Þ2 � p

þ 2
G c
Jd

k2
di e � eið Þ2 � 1

� �
kdi n � eið Þ e � eið Þ
� 	2

;

sn ¼
G

Jd
k2

di n � eið Þ t � eið Þ þ 2
G c
Jd

k2
di e � eið Þ2 � 1

� �
� kdi n � eið Þ e � eið Þ
� 	

kdi t � eið Þ e � eið Þ
� 	

: (3.6)
FIG. 5. Stress–stroke curves rr¼�re(k1) at different values of le when

lo¼�10 J/mol and ko¼ 2, being G¼ 0.1 MPa.

215107-5 P. Nardinocchi and L. Teresi J. Appl. Phys. 120, 215107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  78.13.18.99 On: Thu, 08 Dec 2016

06:17:15



For anisotropic gels, free–swelling states yield changes in

both size and shape.5 As for the isotropic gel, balance laws

prescribe Sd¼ 0 and le¼ lo; the free-swollen state Bo,

deformed by Fd ¼ Fo ¼ kok Eþ ko? Î with respect to Bd, is

completely defined by the value lo of the bath’s chemical

potential. Let us only note that, for lo¼ 0, the relationship

between kok and ko? prescribes that

k2
o? ¼ k2

okð1þ 2cðk2
ok � 1ÞÞ; (3.7)

and for large deformation (1/Jo! 0), it holds

RT

X
v� 1=2ð Þ 1

J2
o

¼ � G

kok
; Jo ¼ kkk

2
?: (3.8)

In the following, we present and discuss the slow and fast

responses of anisotropic gels to imposed uniaxial tractions

and/or deformations, with reference to a unit cube Bd at dry

state, having fibers aligned along the direction e¼ e1 (panel

(a) in Figure 6), which realizes a free–swollen state Bo with

a bath’s chemical potential equal to lo (panel (b) in Figure

6). The free-swollen gel may experience a further deforma-

tion determined by a change of the bath’s potential, by the

action of uniaxial boundary loads re per unit current area, or

by a uniaxial step extension.

We shall examine two cases: (A) corresponds to normal

boundary tractions on the faces of unit normal 6e1 or, equiv-

alently, to impose a deformation k1 (Section III A); (B) cor-

responds to normal boundary tractions on the faces of unit

normal 6e2 or, equivalently, to impose a stretch of intensity

k2 along e2 (Section III B).

A. Parallel–to–the–fibers normal loads

The deformation is transversely isotropic; thus, kd1 ¼ kdk,
and kd2 ¼ kd3 ¼ kd?, being kdk and kd? the linear swelling

ratios along the fiber direction E¼E1 and in the orthogonal

plane �I ¼ I� E ¼ E2 þ E3, respectively

Fd ¼ kdkEþ kd?�I: (3.9)

We can set the stress–diffusion problem in the dry state Bd

and look for homogeneous steady solutions which are driven

by the boundary conditions

Sdm ¼
see1 for m ¼ e1;

0 for m ¼ e2; e3;
and l ¼ le;

(

on @Bd , being se ¼ k2
d?re the uniaxial and normal boundary

load per unit dry area, and re the corresponding load per unit

of current area (see panel (c) in Figure 6). Hence, mechanical

and chemical balances prescribe

sdk ¼ se; sd? ¼ 0; and l ¼ le in Bd; (3.10)

being Sd ¼ sdkEþ sd?�I the representation of the dry–refer-

ence stress. The anisotropy of the gel is of elastic nature and

does not change the constitutive structure of the chemical

potential; hence, the chemical balance (3.10)3, together with

Equations (2.3)2, yields the osmotic pressure field in the form

given by Equation (2.26). Once used this last equation together

with (3.2) into (2.3)1, the mechanical balance (3.10)2 yields

l Jdð Þ þ
X G

kdk
¼ le; Jd ¼ kdk k

2
d?; (3.11)

this last relation characterizes kd? in terms of le and kdk :
kd? ¼ kd?ðkdk; leÞ. Equations (2.26), (3.2), and (2.3)1 allow

us to evaluate the stress component sdk. Being

sdk ¼ se ¼ k2
d?re, we get

re ¼
G kdk

k2
d?

1þ 2 c k2
dk � 1

� �� �
� G

kdk
: (3.12)

Equation (3.12) also delivers re1
, being this latter equal to

re; from Equation (3.6), we get as expected se1
¼ 0, i.e., no

tangential tractions are exerted on the face of unit normal e1.

Equations (3.11) and (3.12) determine kdk and kd? in

terms of the pair (re, le), when these latter are the control

parameters of the deformation process or, equivalently,

allow us to evaluate kd? and re in terms of the pair ðkk; leÞ
when a deformation kk ¼ kdk=kok is imposed on the free–

swollen state Bo.

The solution is shown in the kdk � kd? plane in Figure 7

for G¼ 0.1 MPa and c¼ 0.1, where we used the same color

code as in Figure 4 for le, ranging from �100 J/mol (brown)

to 0 J/mol (light yellow). The red line is the iso–re line corre-

sponding to re¼ 0, which is no longer along the bisectrix of

the plane due to the anisotropic swelling: kdk is always

smaller than kd?.

The corresponding kdk and kd? values identify the size

of the free–swelling states, at different values of le. We can

move from state 1 (kdk ¼ 1:77 and kd?¼ 2.12) to state 2

along the iso-potential line le¼�10 J/mol, acting upon the

gel with a traction re¼ 50 kPa; then, from 2 to 3, along the

iso-traction line re¼ 50 kPa, by increasing the chemical

potential to the new value le¼ 0 J/mol; from 3 to 4 along the

new iso-potential line le¼ 0 J/mol, and removing the trac-

tion; then, eventually, go back to state 1 by decreasing le to

the initial value le¼�10 J/mol. The corresponding actual

shapes realized by the gel cube are shown, in scale, in the

lateral panel in Figure 7.

We may compare asymptotic and fast response of isotro-

pic gels under uniaxial traction with the corresponding

responses of anisotropic gels under uniaxial traction aligned

with fiber direction. For large swelling–induced deforma-

tions, i.e., 1/Jo ! 0 and 1/J ! 0, Equation (2.26) can be

approximated as

FIG. 6. From left to right: (a) dry state; (b) free–swollen state: re¼ 0, and

le¼�10 J/mol; (c) swollen with traction along the fiber: re¼ 50 kPa,

and le¼�10 J/mol; (d) swollen with traction orthogonal to the fiber:

re¼ 50 kPa, and le¼�10 J/mol.
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p ’ �RT

X
v� 1=2ð Þ 1

J2
oJ2
’ G

kok

1

J2
; (3.13)

where we set lo¼le¼ 0. Under the asymptotic approxima-

tion determined by the Equation (3.13), mechanical balance

(3.10)1,2 yields k? ¼ k�1=4

k and re1
¼ re as

re1
¼ G

kok
a kk; c
� 	

k3=2

k � k�1
k

� �
; (3.14)

with

a kk; c
� 	

¼
1þ 2 c k2

ok k
2
k � 1

� �
1þ 2 c k2

ok � 1
� � : (3.15)

The relationship between the two stretches is the same as in

the isotropic case and says that Poisson modulus at the

steady state is 1/4; on the other hand, as aðkk; 0Þ ¼ 1, for

c¼ 0 Equation (3.14) delivers Equation (2.29)2 and the iso-

tropic case is recovered.

The fast response to the deformation kk is driven by the

anisotropic elastic nature of the network. Before diffusion

starts, we have J ¼ kkk
2
? ¼ 1; Equations (3.10)1,2 yield the

pressure field p and

rf e1
¼ G

kok
a kk; c
� 	

k2
k � k�1

k

� �
: (3.16)

The difference between the two stresses is a measure of the

swelling–induced relaxation in the gel. Figure 8 shows the

differences in stress relaxation due to the anisotropy when

c¼ 1. Comparing isotropic and anisotropic response curves,

it can be noted that anisotropy enhances stress relaxation

when the imposed uniaxial deformation is aligned with fiber

direction.

B. Transverse–to–the–fibers normal loads

In this case, fibres and tractions are not aligned and the

deformation Fd maintains the triaxial anisotropic structure

given by (3.3). We look for homogeneous solutions of the

stress–diffusion problem posed on the dry configuration Bd,

under the following boundary conditions

Sd m ¼ 0 for m ¼ e1; e3;
se e2 for m ¼ e2;

and l ¼ le

�
on @Bd . Hence, mechanical and chemical balances prescribe

sd1 ¼ sd3 ¼ 0; sd2 ¼ se; and l ¼ le in Bd; (3.17)

being Sd ¼ sdiei � ei, (i¼ 1, 2, 3), the appropriate represen-

tation of the dry–reference stress. The anisotropy of the gel

is of elastic nature and does not change the constitutive for-

mula of the chemical potential; hence, the chemical balance

(3.17)3, together with Equations (2.3)2, yield the osmotic

pressure field in the form given by the Equation (2.26). Once

used this last equation into (2.3)1 and (3.2), the mechanical

balance (3.17)2 yields

l Jdð Þ þ
X G

kd1 kd2

kd3 ¼ le; Jd ¼ kd1 kd2 kd3: (3.18)

On the other hand, Equation (3.17)1 delivers

k2
d3 ¼ ð1þ 2 c ðk2

d1 � 1ÞÞ k2
d1; (3.19)

that is, yields the relation kd3 ¼ kd3ðkd1Þ. Equations (3.18)

and (3.19) concoct the representation of kd1 in terms of kd2

and le : kd1 ¼ kd1ðkd2; leÞ. Equations (2.26), (3.2), and

(2.3)1 allow us to evaluate the stress component sd2. Being

sd2 ¼ se ¼ kd1 kd3 re, we get

re ¼
G

kd1

kd2

kd3

� kd3

kd2

� �
; (3.20)

with kd3 ¼ kd3ðkd1Þ and kd1 ¼ kd1ðkd2; leÞ.

FIG. 7. Iso–traction lines re¼�50 kPa (blue line), re¼ 0 kPa (red line),

re¼ 50 kPa (black line) in the kd1�kd2 plane, over contour lines of le (from

�100 J/mol (brown) to 0 J/mol (light yellow). The state of the gel is pin-

pointed by the intersection of iso-traction lines with iso-potential lines: the cir-

cled numbers from 1 to 5 show five of such points on the line l¼�10 J/mol

(states 1, 2, and 5) and on the line l¼ 0 J/mol (states 3 and 4). On the right,

the corresponding shapes of the gel are shown in scale.

FIG. 8. The swelling–induced stress reduction in isotropic gels is measured

by the difference between the blue solid line (Equation (2.31)) and the red

solid line (Equation (2.29)) at the same value of the imposed deformation

k1. That difference represents material relaxation due to diffusion. The cor-

responding dashed lines measure the swelling–induced stress reduction in

the presence of fibers (c¼ 1 and kok ¼ 2) as difference between the blue

dashed line (Equation (3.16)) and the red dashed line (Equation (3.14)) at

the same value of the imposed deformation k1 ¼ kk.
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Equation (3.20) also delivers re2
, as re2

¼ re; from

Equation (3.6)2, we get as expected se2
¼ 0, i.e., no tangen-

tial tractions are exerted on the face of unit normal e2 under

this deformation process.

C. Blocking forces

The characterisation of stroke curves in the anisotropic

gel actuator is especially interesting as both normal and tan-

gential blocking forces can arise, depending on the aniso-

tropic structure of the gel.

In the case parallel–to–the–fibers normal blocking

forces, and with reference to Section III A, re may be viewed

as the boundary traction exerted on the body by constraints

hampering deformation along e1 (see inset (a) in Figure 9).

In this case, Figure 9 shows, for different values of le, the

traction corresponding to the constraints which prescribes a

stretch intensity kdk ¼ kc. Precisely, by using Equation

(3.11) to characterize the relation kd? ¼ kd?ðkdk; leÞ, it

can be derived from (3.12) the family of stroke curves rr

¼ �reðkdk; leÞ which is shown in Figure 9 (solid lines, with

kc ¼ kdk). The intercepts of the curves with the vertical axis

kc¼ 1 yield the corresponding blocking forces

rr ¼ �re 1; leð Þ ¼ �G
1

k2
d?
� 1

 !
; (3.21)

being kd? ¼ kd?ð1; leÞ. Equation (3.21) shows that rr¼ 0

for kd?¼ 1; however, from being kd?¼ kd?(1, le), it occurs

that kd?¼ 1 if le ! –1. Hence, when constraints maintain

the gel in the dry configuration under the special bath condi-

tions characterised by le ! –1, blocking forces are null as

that configuration is stress–free.

Due to the anisotropic response, the characteristic stroke

curves are different when transverse–to–the–fibers–normal

loads are considered. We view re as the boundary traction

exerted on the body by constraints hampering deformation

along e2 (see the right inset in Figure 9), and evaluate,

for different values of le, the traction corresponding to a

prescribed stretch kd2¼ kc. Precisely, using Equation (3.19)

to characterise kd3 as kd3(kd1) and Equation (3.18) to

characterise kd1 as kd1(kd2, le), the family of stroke curves

rr¼�re(kd2) for different values of le are shown in Figure 9

(dashed lines, with kc¼ kd2). The intercepts of the stroke

curves with the vertical axis kc¼ 1 define the blocking forces

for different le

rr ¼ �re2
¼ G

kd1

1

kd3

� kd3

� �
; (3.22)

with kd3¼ kd3(kd1), and kd1¼ kd1(1, le). In contrast to what

happens in isotropic gels, stroke–curves (dashed lines) are

different from the ones discussed in the Section III A (solid

lines), and the blocking forces exerted on the orthogonal

faces of unit normals e1 and e2 are not the same, as Figure 9

evidences (look at the intercepts of the stroke curves with the

vertical axis kc¼ 1).

IV. ANISOTROPIC GELS UNDER TANGENTIAL
FORCES

Interestingly, the range of blocking forces generated by

an anisotropic gel is quite large, as free–swelling can also

induce shear, depending on the anisotropy directions.

Let us consider a fiber distribution within the hydrogel

aligned along e ¼
ffiffiffi
2
p

=2e1 þ
ffiffiffi
2
p

=2e2, a situation that can be

easily generalized. We imagine that appropriate constraints

hamper the swelling in both the directions m¼ e1 and

m¼ e2, so allowing the initial dry unit cube to swell into a

parallelepiped of side kd1 and kd2, having in general

kd1 6¼ kd2, and both of them smaller than kfk, that is, the lin-

ear swelling ratio along fiber’s direction corresponding under

a chemical potential le to free swelling conditions (see

Figure 10). Hence, we assume that the representation (3.3) of

Fd still holds. We look for homogeneous solutions of the

stress–diffusion problem posed on the dry configuration Bd,

under the boundary conditions

Sd m ¼ 0 for m ¼ e3 and l ¼ le on @Bd; (4.1)

and prescribed values of kd1 and kd2. Hence, mechanical and

chemical balances prescribe

sd3 ¼ 0 and l ¼ le in Bd; (4.2)

FIG. 9. Stroke curves rr(kc) for different values of le: case a) �r1ðkdkÞ
(solid lines); case b) �r2(kd2) (dashed lines). The insets show the constraints

(red surfaces) acting on the fibered gel cube in the two cases (a) (left) and

(b) (right).

FIG. 10. Sketch of the plane section of unit normal e3 of the unit cube at the

dry state (dark green square), at the free–swelling state (light green dia-

mond), and at the constrained state (green rectangle).
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that is, using Equations (3.2) and (4.1),

p ¼ G
kd3

kd1kd2

;

l Jdð Þ þ X G
kd3

kd1kd2

¼ le; Jd ¼ kd1kd2kd3:

(4.3)

Equation (4.3)2 implicitly characterizes kd3 in terms of le

and the pair (kd1, kd2), here considered as parameters.

We consider the traction on the face of unit normal

m¼ e1; we have n¼ e1 and fix t¼ e2. With this, Equations

(3.6) prescribe

re1
¼ G

kd1

kd2 kd3

1þ c
k2

d1 þ k2
d2

2
� 1

� �� �
� kd3

kd1 kd2

 !
;

se1
¼ G c

1

kd3

k2
d1 þ k2

d2

2
� 1

� �
: (4.4)

Due to the symmetry of the stress, tangential traction se2
on

the face of unit normal m¼ e2 (that is, for n¼ e2) is equal to

se1
, whereas in general re1

6¼ re2
. Using Equations (4.3)2 and

(4.4), we can evaluate the normal stroke curves of the gel as

rr(kd1) at kd2¼ 1 and rr(kd2) at kd1¼ 1, at different values of

the solvent bath’s potential le. Likewise, we can evaluate the

tangential stroke curves sr(kd2) at kd1¼ 1. It is worth noting

that for kd1¼ kd2¼ 1, it holds

re1
¼ re2

¼ G
1

kd3

� kd3

� �
; (4.5)

and se1
¼ se2

¼ 0. Figure 11 shows normal and tangential

stroke curves corresponding to G¼ 0.1 MPa, c¼ 0.1, and for

different values of le; the range of kd2 goes from 1, corre-

sponding to dry conditions (being also kd1¼ 1), to kdk (which

is around 2.1 with the aforementioned values of G and c).

Normal blocking forces are always positive, and tangential

blocking forces are always negative, according to the cartoon

shown in Figure 10.

V. CONCLUSIONS

We investigated performances of anisotropic gels driven

by mechanical and chemical stimuli, in terms of both defor-

mation processes and stroke–curves. In some cases, we

distinguished between the fast response of gels before-diffu-

sion-starts, and the asymptotic response attained at the steady

state, highlighting the difference in material relaxation due

to diffusion.

We also showed as anisotropic gel–based actuators can

exert tangential, other than normal, blocking forces when

fibers and constraints are not parallel and/or orthogonal each

other. This kind of performance may be useful in actuator

applications, which have not been extensively studied when

fibrous hydrogels are involved, even if literature concerning

technological applications is increasing.
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