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Abstract—This paper presents a novel approach to Demand
Side Management (DSM), using an “individualised” price policy,
where each end user receives a separate electricity pricing
scheme designed to incentivise demand management in order to
optimally manage flexible demands. These pricing schemes have
the objective of reducing the peaks in overall system demand
in such a way that the average electricity price each individual
user receives is non-discriminatory. It is shown in the paper
that this approach has a number of advantages and benefits
compared to traditional DSM approaches. The “demand aware
price policy” approach outlined in this paper exploits the knowl-
edge, or demand-awareness, obtained from advanced metering
infrastructure. The presented analysis includes a detailed case
study of an existing European distribution network where DSM
trial data was available from the residential end-users.

NOMENCLATURE

Indices and sets

S set of substation indices

s indices of substations (elements of S)

T set of time-slots indices

t indices of time-slots (elements of T )

U set of residential user indices

u indices of residential users (elements of U )

T tariff system

P set of individualised price policies

Parameters and Constants

dtu forecasted power demand of user u in time-slot t

d̃tu historical power demand of user u in time-slot t

d̂tu power demand of user u in time-slot t, as a response

to individualised price policies

P tS maximum power for substation s in time-slot t

Qu capacity of storage of user u

Ru power rate of storage of user u

Cu maximum power for user u, from energy contract

α multiplier for Cu, in order to guarantee minimum

low-tariff energy

bl residential users low price for buying energy

bh residential users high price for buying energy

β residential users price for selling energy from local

renewable sources
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Variables

btu state of charge of storage of user u in time-slot t

atu charge/discharge action on storage of user u in time-

slot t

∆t exceeding power at substation level

P tu maximum power for user u in time-slot t

ζu percentage of load shifting required for user u

ξ index of price policy non-discrimination

I. INTRODUCTION

THis paper presents a set of Demand Side Management

(DSM) software services which were introduced in the

SmartHG project [1]. These services are designed to manage

residential end-user energy demand with two objectives: to

minimize energy costs for each individual user, and to assist

the Distribution System Operator (DSO) in managing network

constraints and optimising the operation of the distribution

system. This is achieved by exploiting demand awareness

as obtained from smart metering and other Advanced Me-

tering Infrastructure (AMI). One of the unique aspects of

the approach introduced in the SmartHG project is that the

price policies are “individualised”, e.g. each individual user

receives a separate electricity pricing scheme designed to

incetivise demand management in order to optimally manage

flexible demands. These pricing schemes are designed with the

primary objective of reducing the peaks in overall distribution

system demand, which has significant benefits for the network

and for the DSO. This is achieved in such a way that the

average electricity price each individual user receives is non-

discriminatory, and the pricing policy is designed to shape the

demand without reducing the overall demand volume, which

is undesirable from the DSO point of view.

The paper is structured as follows: Section II discusses

previous work, Section III contains the problem formulation,

and Section IV outlines the methodology. Section V describes

the case study and results, and Section VI concludes.

II. PREVIOUS WORK

In light of the increasing penetrations of variable energy

resources, and the decreasing contribution from traditional

generation sources, i.e. large, controllable thermal generation

plant, a number of recent studies have identified a need for

new sources of flexibility in electricity networks, e.g., [2],

[3]. For several decades, network operators have used various

forms of DSM to improve the balancing of system supply and

demand and to reduce load peaks. Many of the practical DSM
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programmes implemented worldwide to date have focused on

large industrial consumers since these have demand of suffi-

cient volume to produce significant effects at the system level

(e.g., [4], [5]). However, with the introduction of smart meter-

ing and time-varying electricity rates for individual customers,

new opportunities are being created for small electricity users

to participate in demand side services. Recently, much research

has focused on DSM in the residential sector [6]–[13].

Many existing DSM programmes use direct load control,

where the network operator is able to directly actuate large

industrial loads according to the needs of the network [4],

[5], and the exact terms of the DSM contract are agreed

beforehand. While direct load control may be suitable for cer-

tain industrial users, it has technical and practical difficulties

in the context of residential users, where direct actuation of

loads is typically considered an invasion of user privacy and

comfort. In addition, direct load control may require large

investments in order to provide additional communication

and control technology for each user. Most residential DSM

schemes instead rely on the user response to a electricity price

signal to produce the required outcome, e.g., [6], [7], [9]–[14].

Recent studies carried out in Ireland [15] and in Den-

mark [16], have tested the response of residential users to

various Time of Usage (ToU) electricity pricing schemes, in

order to quantify their potential to offer DSM services. It

was shown in these trials that a significant amount of the

residential demand (up to 19% in [16]) could be shifted away

from the peak hour if appropriate economic incentives are

applied. In order to achieve the volumes of demand required to

participate in the electricity market, and to make a significant

contribution to system-level energy balancing, a means of

combining and coordinating DSM actions from many highly-

distributed users is required. Several approaches for this have

been proposed, such as the “aggregator” [17] and “virtual

power plant” concepts [18], [19].

One of the drawbacks of traditional approaches to DSM,

where all users are subject to the same price (global price

policy), is that the peak-shifting schemes may result in un-

desirable “rebound” effects, e.g. simply shifting the demand

peaks from the peak hour to the off-peak hours, and creating

new demand peaks, or “rebound peaks” [11]–[13]. The authors

in [11] and [12] discuss automated DSM algorithms designed

to schedule flexible residential user loads. It is demonstrated

that this can produce rebound peaks, and it is concluded in [11]

that DSM algorithms need to be studied for large numbers of

devices and users, and that DSM schemes need to be designed

with the objective of flattening the overall electricity usage in

order to avoid these issues.

Exposing electricity end users to wholesale market prices

(real-time pricing) has the drawback that demand may be

shifted to hours with low electricity price, which can “lead

to a higher peak electricity price and peak-to-average ratio

during the low price time”, according to [13]. There is a

significant challenge in ensuring that such real-time prices do

not cause physical or market instabilities [20], and it has been

shown that multiple, uncoordinated responses to frequently

changing prices can cause increased volatility, and potentially

grid instability [21]–[23].

III. PROBLEM FORMULATION

A. Individualised User Price Policies

A real-world example of the rebound effect is shown below,

using recorded data from a residential DSM study carried out

by a Danish DSO [16]. In this study, residential users were

given a time-varying price policy with three distinct pricing

periods, designed to test the flexibility of residential demand

to economic peak-shifting incentives. The values are provided

below in Danish Krone (DKK):

• Day: 1.50 DKK / kWh (06:00-17:00)

• Peak: 8.00 DKK / kWh (17:00-20:00)

• Night: 0.00 DKK / kWh (20:00-06:00)

This electricity pricing scheme provided strong incentives

for household users and assessed the potential for residential

users to shift their demand away from the peak cooking hours

(17:00-20:00) to the night period (20:00-06:00) where the

price is zero1.

The above price policy was applied to a “Test group” of

350 households, with a “Reference group” of 349 households2

receiving a fixed price of 2.25 DKK / kWh at all hours

during the day (as per the standard flat tariff residential pricing

scheme used in Denmark). The study was carried out over a

full year from 1 October 2013 to 30 September 2014. The

results showed that, with the above price incentives, a signif-

icant amount of residential demand (up to 19%) was shifted

away from the peak hours, compared to the reference group.

The price incentives had little effect on the overall demand

consumption, i.e. the total volume of consumption remained

almost constant, only the times at which consumption occurred

were influenced by the pricing scheme.
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Fig. 1. Sample of the results from the Danish study, showing peak shifting
in the Test group compared to the Reference group during January 2014 [16].

Fig. 1 shows a sample of the results from the Danish

study [16] for the month January 2014. All months of the

year showed a similar pattern, but the amount of demand shift

from the peak hour was largest during the winter months.

The results in Fig. 1 are a good example of the “rebound

peak” effects which can result from global ToU price policies.

1It could be argued that this is a rather extreme pricing policy and that the
zero night time price is more likely to cause rebound peaks than a pricing
scheme with, for example, a non-zero night-time price. However, the results
of this study are insightful in that they demonstrate that significant residential
demand-shifting is possible with appropriate financial incentives, and these
results provide real data on user responses to price signals for the subsequent
analysis in the paper.

2The SEAS-NVE study was originally designed with 350 test and 350
reference householders, but data was unavailable for one of the reference
group households; hence this group only has 349 households.
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There is a significant increase in demand at the beginning

of the off-peak period for the “Test group”, and this pricing

scheme has created a new demand peak at 21:00, which is even

larger than the demand peak in the “Reference group”, Fig. 1.

These effects are undesirable, since typical DSM objectives

are to smooth the load profile, increase the load factor, and

reduce demand peaks.

An alternative solution to the “global” price policy, where

all users (or at least all users in the same sector), receive

the same price incentives is proposed in this paper. Instead,

an “individualised” price policy is provided to each user,

using the Demand-Aware Price Policy (DAPP) computational

service outlined in Section IV. This is designed to maximise

the benefits of demand response actions for both the user

and the DSO. The effects on network operation and the

potential benefits to the DSO in using such an individualised

price policy are evaluated using the scenarios presented in

Section V.

Even with strong ToU price incentives for demand-shifting,

such as those used in the SEAS-NVE study [16]), the amount

of demand flexibility from residential appliances is limited.

Energy Storage Systems (ESS) offer much greater possibil-

ities for demand flexibility. It is widely expected that the

cost of such technologies will continue to decrease, making

storage accessible to a wide range of users, including domestic

consumers. Moreover, Plug-in Electric Vehicles (PEVs) can

significantly alter the demand profiles, and create critical

congestions in the distribution network if their charging is not

managed appropriately [24], [25]. Accordingly, this paper also

analyses scenarios where the residential homes are equipped

with PEVs and ESS, in order to examine potential future

scenarios with greater user flexibility in response to ToU

pricing.

IV. METHODOLOGY

A. Overview

The proposed methodology is based on two integrated soft-

ware services, which are described schematically in Fig. 2. The

Electricity Distribution Network Virtual Tomography (EVT)

service is aimed at assisting the DSO in the operation and

management of the distribution networks. The EVT service

uses available measurements from Supervisory Control And

Data Acquisition (SCADA) and smart metering/AMI systems

to estimate the network state in real-time using a Weighted

Least Squares (WLS) state estimator, and also to carry out

network analysis ahead of time, as described in [26], [27]. This

detects possible violations of network constraints, and raises

warnings and alarms to the DSO accordingly. The results of

the state estimation and network analysis carried out in the

EVT can be used to make operational constraints, limiting

the demand drawn at some or all substations s within the

distribution network at times of peak demand. This could be

motivated by economic reasons (e.g. in order to reduce the

cost for the DSO of buying energy from the market at times

of peak electricity price), by technical reasons (in order to

reduce overloading of network components during times of

peak demand, or during periods when the system is weakened

due to line/transformer maintenance or other outages).

The second service, DAPP, is designed to redistribute the

power demand (load shifting) so that the constraints on the

substations s are fulfilled. This is done by computing, for each

residential home u connected to s, an individualised suggested

power profile Pu (i.e. different users may get different power

profiles), so that if all users follow their power profile then the

operational constraints on s, as suggested by EVT, are met.

Each user u is motivated to follow the suggested power profile

Pu by an individualised price policy based on Pu. Proposing

individualised price policies avoids the problem of rebound

peaks, i.e. where the demand peaks are simply shifted through

the day, which may violate operational constraints.

Fig. 2. The proposed services architecture.

B. The DAPP Service

In this section, the DAPP service is described. In order to

understand how DAPP works, we first define how we model

residential users flexibility (Section IV-B1). Then, we outline

the DAPP service input-output behaviour (Section IV-B2).

Third, we formally define one of the main requirements for the

DAPP service, i.e., the fact that resulting individualised price

policies must be non-discriminatory (Section IV-B3). Finally,

we describe the algorithm underlying the DAPP service (Sec-

tion IV-B4) and we prove that it outputs non-discriminatory

price policies (Section IV-B5).

The notation used in the DAPP service is as follows: a time-

slots set T is a finite set of contiguous time-slots, all having the

same duration τ (in minutes). Without loss of generality, we

will assume T to contain time-slot indices. A power profile

is a function P : T → R, where we write P t for P (t). A

power profile P1 follows a power profile P2 if and only if

P1(t) ≤ P t2 for all t ∈ T . The area of a power profile P on T

is τ
∑

t∈T P
t, i.e., the overall energy yielded by P . Finally, a

Linear Programming (LP) problem is a minimisation problem

over a set of linear inequalities (constraints) on real variables.

1) Residential User Flexibility Model: In our approach,

each residential user u is provided, with a given periodicity

(every day in our experiments), with an individualised price

policy to be followed. Such price policy is defined on the

basis of an individualised power profile Pu. The resulting tariff

for u, which we call DAPP tariff, is based on two prices for

energy, the high price and the low price: if user u needs power

d̃tu in time-slot t, then u will pay the low price if d̃tu ≤ P tu, and
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Fig. 3. Historical demand compared to power profile output by DAPP for a
single home on a given day in our evaluation scenario.

the high tariff otherwise. As a consequence, we call low tariff

area the area of Pu on T . Note that the DAPP tariff is: (i)

Inclining Block Rate (IBR) (two prices are used depending on

user power demand); (ii) ToU (Pu varies with time); and (iii)

individualised (Pu varies with the user too). As an example,

Fig. 3 shows the individualised power profile Pu (red curve)

together with the actual power demand du (green curve) on

the 6th of September 2012 for a selected user u connected to

a selected substation s in the reference scenario we will use

for our experimental evaluation (see Section V). In the time-

slot t1 from 16:00 to 17:00, the user is outside the low tariff

area (i.e., dt1u > P t1u ), thus the high tariff is applied, whilst in

the preceding time-slot t2 the low tariff is applied. In order to

stay inside the low tariff area also in t1, the user should be

flexible and, as an example, move approximately 0.3 kW of

power demand (i.e., dt1u − P t1u ) from t1 to t2 (load shifting).

In this section, we want to provide a mathematical model

for user flexibility, based on the one in [14], in order to show

the effectiveness of the DAPP-based methodology in scenarios

in which the flexibility of each user may vary. To this aim,

we proceed as follows. We model flexibility of a residential

user u by means of a load shifting capability. Such capability

may be either “physical”, i.e., user u has a battery installed at

home, or “virtual”, i.e., user u has to shift the loads of other

appliances, in order to stay inside the low tariff area.

Given this, we model the load shifting capability, both in

the physical and in the virtual case, as an ESS: the power rate

of the ESS defines a bound on load shifting in each time-slot,

whilst the capacity of the ESS gives a bound on the summation

of consecutive load shifts. Namely, in our mathematical model,

the flexibility of u is a pair (Qu, Ru), where Qu is the ESS

capacity (i.e., the maximum energy which may be stored, in

kWh) and Ru is the ESS power rate (i.e., the maximum power

in kW which may be used from or saved into the ESS in a

given time-slot). In the example of Fig. 3, in order to perform

the above described load shifting, it is sufficient to have Qu =
0.3 kWh and Ru = 0.3 kW. Since the user has to move 0.3 kW

in one hour, from time-slot t1 to time-slot t2, the ESS must be

charged by 0.3 kW in time-slot t1 and discharged by 0.3 kW in

time-slot t2. Both actions require at least Qu = 0.3 kWh and

Ru = 0.3 kW. Of course, the ESS modelling the load shifting

capability should have been charged during time-slot t2 (from

15:00 to 16:00, where the user needs less energy than the one

allowed in low tariff), and then discharged during time-slot

t1 (from 16:00 to 17:00, where instead the user needs more

energy than the one allowed in low tariff). Instead, in order

to be able to stay in the low tariff area of Fig. 3 for all the

displayed 9 hours (from 12:00 to 21:00), the user flexibility

required is Qu = 1 kWh, with a power rate Ru = 1 kW, since

the user is 1kW outside the low tariff area in the time-slot from

12:00 to 13:00. A possible shifted demand with respect to a (1

kWh, 1 kW) flexibility, which is always inside the low tariff

area, is shown in the blue curve in Fig. 3. In the following, we

will call charge/discharge plan a power profile au returning,

for each time-slot t, the action taken on a ESS of capacity

Qu and power rate Ru. Namely, if atu ≥ 0, then the ESS is

charged by atu kW (in Fig. 3 this happens, e.g., from 15:00 to

16:00). Otherwise, if atu < 0, then the ESS is discharged by

atu kW (in Fig. 3 this happens, e.g., from 12:00 to 13:00). Of

course, if atu = 0 no loads are shifted (in Fig. 3 this happens,

e.g., from 13:00 to 14:00).
2) DAPP Input and Output: We now describe in detail

input and output for our DAPP algorithm (for a high-level

view, see Fig. 4). Namely, DAPP requires the following input:

1) a set of users U connected to a substation s;

2) a time-slots set T (typically with a time span one day in

the future);

3) the desired power profile Ps (in kW) on T for the

substation s, as decided by the DSO on the basis of EVT

output;

4) three per-unit tariffs bl ≤ bh, β ∈ R
+ coming from the

energy retailer: respectively, the low (buy) price, the high

(buy) price, and the sell price for energy;

5) for each u ∈ U , a forecast du for the power profile of

u in T (this may be computed on the basis of d̃u, i.e.,

of the power profile of u in the days preceding T using,

e.g., [28]);

6) for each user u ∈ U , the maximum power (in kW) Cu ∈
R supported by the home main, as defined in the energy

contract for electricity consumption and production (e.g.,

3 or 6 kW);

7) for each user u ∈ U , the flexibility of u as a pair (Ru, Qu)
(see Sect. IV-B1);

8) the minimum energy (in kWh) that must be contained

in the resulting low tariff area of each user u, as a

coefficient α multiplying the user energy contract Cu. As

an example, if α = 2 and the maximum power supported

by home u main is 6 kW, then the low tariff area of u

must contain at least 12 kWh on all period T . In our

experiments, we always use α = 1.

The output of DAPP is a set of individualised power profiles

Pu on T , for each residential user u ∈ U . Note that each Pu
defines a low tariff area. Namely, the DAPP (output) tariff,

for a given user u, is defined to incentivise the user to follow

the output power profile region as follows: i) if u is producing

energy, then the sell price β is applied; ii) if u is consuming

energy, then either the low price bl or the high price bh are

applied, depending on the power profile of u following Pu or

not, respectively.
3) Non-Discriminatory Price Policies: Intuitively, in order

to have residential users actually agreeing on paying bills

based on individual price policies, it is necessary that such
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price policies are non-discriminatory. This is also important

for the DSO and/or the energy retailer, as releasing discrim-

inatory price policies would decrease the number of users

accepting the price schema. In our context, we informally state

that a set of individualised price policies is non-discriminatory

if and only if all residential users have the same opportunities

to always pay the low tariff, i.e., if individualised price

policies, in the same period of time, are all at the same relative

distance from each user’s habits. The proposed DAPP price

policies are designed to always be non-discriminatory, even in

the case that users do not perform load shifting in order to

follow the suggested load profile (see the discussion on the

robustness of the DAPP price policies in Section V-C).

We formally define this notion as follows. First of all, we

define a tariff system T as a triple T = (bl, bh, β,P), where

bl, bh, β ∈ R
+ are, respectively, the low price and the high

price for buying energy and the price for selling energy, as

decided by the energy retailer, whilst P = {Pu | u ∈ U} is

the set of individualised price policies. Since prices bl, bh, β

are equal for all residential users, they are non-discriminatory

by construction. As for P , the following holds. If the power

demand of a user u, as a response to an individualised price

policy Pu, is d̂tu on a given time-slot t, then u will pay

blmin{P tu, d̂
t
u}+bhmax{d̂tu−P

t
u, 0} (here, we do not consider

the case in which d̂tu < 0, as production is always paid with

the same price β). Since our goal is to show that all users

must have the same opportunity to stay inside the low tariff

area, we have to focus on max{d̂tu−P
t
u, 0}, which is the load

shifting which is required by user u in order to stay inside

the low tariff area. Intuitively, if Pu forces user u to perform

load shifting in the same way Pu′ does for u′ (for any pair

u, u′ ∈ U ), then P is non-discriminatory.

In order to formally define this concept, we define, for each

user u ∈ U and time-slot t ∈ T , the load shifting required by

u in t as:

ζtu =
max{d̂tu − P tu, 0}

d̂tu
(1)

That is, the load shifting required by a user is the percentage

of power (with respect to the historical demand) which must

be shifted to keep the resulting demand inside the low tariff

area. Given the definition of required load shifting, we say that

a tariff system T is r−non-discriminatory if:

ξ = stddevu∈Uavgt∈T ζ
t
u ≤ r (2)

where, for any (finite) set V , we have

avgv∈V ψ(v) = µψ =
1

|V |

∑

v∈V

ψ(v) (3)

and

stddevv∈V ϕ(v) =

√

1

|V |

∑

v∈V

(ϕ(v) − µϕ)
2

(4)

As an example, T is 0.1-non-discriminatory if the standard

deviation of the set of averaged load shifts is below 10%

(which is a reasonable threshold in our present paper). This

Fig. 4. DAPP input and output on a single DSO substation.

allows us to measure how much the DAPP price policies

are non-discriminatory, including the case where users do not

follow the suggested power profiles (see Section V-C).

Finally, we note that estimating the flexibility of each user

is very important in order to enable DAPP to output non-

discriminatory price policies. To this aim, in our experiments,

we compute the capacity of the flexibility of each residential

user u as the average on all power variations between consec-

utive time-slots in the historical power demand of u. As for

power rate, we fix it as the typical power rate for ESSs, i.e.,

2kW. That is, for all u ∈ U , if the power profile of u from

the available history T̃ is d̃u, the flexibility of u is defined as

follows:

(Qu, Ru) = (τavgt∈T̃ |d̃
t+1
u − d̃tu|, 2) (5)

In this way, we assume u to be able to shift the demand of

u not more than u already does in the historical records.

4) DAPP Algorithm: DAPP algorithm consists in the fol-

lowing steps:

1) set up LP problem L;

2) solve L via an LP solver (CPLEX in our case);

3) extract the required output from the solution of L.

In the following, we describe the mathematical formulation

of the LP problem L. To this aim, first of all we list all

3|U ||T |+ |T | decision variables involved.

• For each user u ∈ U and time-slot t ∈ T , a decision

variable P tu, modelling the upper bound (in kW) of the

low tariff area of user u in time-slot t.

• For each user u ∈ U and time-slot t ∈ T , a decision

variable btu, modelling the state of charge (in kWh) of

the load shifting capability of user u in time-slot t.

• For each user u ∈ U and time-slot t ∈ T , a decision

variable atu, modelling a charge/discharge plan, i.e., the

charge (if positive) or the discharge (if negative) action

(in kW) decided by user u in time-slot t in order to

stay within the low tariff area. Note that, in our problem

formulation, we only consider fixed load shifting capabil-

ities, and do not try to compute the charging/discharging

of “mobile” battery appliances such as PEVs. In our

experiments, we consider recharging of PEVs as an

additional load (that is, residential homes with a Plug-

in Electric Vehicle(s) (PEV) have higher power demand).

• For each time-slot t ∈ T , a decision variable ∆t,

modelling the aggregated user demand (in kW) which

exceeds substation desired power profile in t.
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Then, we describe all 2|U |+ 2|T |+ 6|U ||T | constraints in

L, involving the above defined decision variables and input

values described in Section IV-B2.

Minimise
∑

t∈T

∆t (6)

bt1u = b
t|T |
u =

Qu

2
: ∀u ∈ U (7)

bt+1
u = btu +

τ

60
atu : ∀u ∈ U, t ∈ T (8)

atu ≥ min{−dtu, 0} : ∀u ∈ U, t ∈ T (9)

atu + dtu ≤ P tu : ∀u ∈ U, t ∈ T (10)
∑

t∈T

P tu ≥
60

τ
αCu : ∀u ∈ U (11)

∑

u∈U

P tu ≤ P ts +∆t : ∀t ∈ T (12)

0 ≤ P tu ≤ Cu : ∀u ∈ U, t ∈ T (13)

0 ≤ btu ≤ Qu : ∀u ∈ U, t ∈ T (14)

−Ru ≤ atu ≤ Ru : ∀u ∈ U, t ∈ T (15)

∆t ≥ 0 : ∀t ∈ T (16)

• Constraint (7): for each user u ∈ U , the state of charge

at the beginning of T and at the end of T must be both

equal to half of user flexibility.

• Constraint (8): for each user u ∈ U and time-slot t ∈ T ,

the ESS modelling flexibility of u behaves like a battery,

i.e., the action taken at time-slot t effects state of charge

at time t+ 1.

• Constraint (9): for each user u ∈ U and time-slot t ∈ T ,

the ESS modelling flexibility of u cannot be used to inject

power into the grid, i.e., it may be discharged only up to

the current power consumption.

• Constraint (10): for each user u ∈ U and time-slot t ∈ T ,

the power resulting from applying the ESS action to the

current demand must be below the price policy upper

bound. This constraint ensures that DAPP will output

non-discriminatory price policies (see Section IV-B3).

This is formally proved in Proposition 1.

• Constraint (11): for each user u ∈ U , the resulting low

tariff area for u must contain at least αCu kWh on all T .

This avoids reduction of the overall demand volume.

• Constraint (12) and objective function (6): for each time-

slot t ∈ T , if all users synchronize and use the maximum

energy allowed in their low tariff areas, the resulting

aggregated demand must be below the substation desired

threshold, plus an offset to be minimised (in order to

achieve peak shaving).

• Finally, the remaining constraints (13)-(16) define the

upper and lower bounds for each decision variable. Note

that, since we minimise
∑

t∈T ∆t, we simply require

each ∆t to be non-negative.

The final output of DAPP is obtained by retrieving the

values of P tu from the solution returned by the LP solver.

Note that the solution returned by the LP solver also contains

a charge/discharge plan for each user u ∈ U (using values of

atu decision variables). This allows us to define, for each user

u ∈ U , the DAPP collaborative power profile of u cu : T → R

as the result of applying the charge/discharge plan au to the

input forecasted profile du, i.e., for all t ∈ T

ctu = dtu + atu (17)

Note that each collaborative power profile is always inside

the low tariff area defined by Constraint 10.

5) DAPP Output Price Policies Are Non-Discriminatory:

In this section, we formally prove that the individualised

price policies output by our DAPP service are indeed non-

discriminatory as wanted, if the forecasting is precise.

Proposition 1. Let d̃tu be the historical power demand of user

u ∈ U in time-slot t ∈ T , and let dtu be the forecast of

d̃tu given in input to DAPP. If the forecasting error is 0, i.e.,

dtu − d̃tu = 0, then the price policies output by DAPP are

0−non-discriminatory.

Proof. If the relative forecasting error is 0 then, for each user

u ∈ U , dtu = d̃tu. Let us assume that, for each user u ∈ U , the

collaborative power profile cu output by DAPP is the actual

response of u to the individualised price policy Pu output by

DAPP for u. Hence, d̂tu = ctu = dtu+ atu for all t ∈ T, u ∈ U .

By Constraint 10, we have that d̂tu ≤ P tu, thus avgt∈T ζ
t
u = 0

for all u ∈ U which implies ξ = stddevu∈Uavgt∈T ζ
t
u ≤ r for

each r ≥ 0.

Note that, in the general case, for a given user u ∈ U ,

cu is not the only possible choice for d̂u in order to always

stay inside the low tariff area of u. However, the proof given

above works for any d̂u = c′u 6= cu, provided that ctu
′
=

dtu + atu
′

and that au
′ fulfils Constraints (8), (9), (10), (14)

and (15). In particular, since Constraint (10) is satisfied, the

thesis holds.

As for the case in which the forecasting error is non-

zero, Section V-C shows the results of applying (2) to our

experimental scenarios, by considering the worst case in which

the users do not respond to the individualised price policies

(i.e., d̂tu = d̃tu for all u ∈ U, t ∈ T ). This will show that

the output of DAPP is robust with respect to errors in the

input forecasted demand. In the proposed scheme, users are

motivated to stay inside the low tariff area by the low energy

price provided by DAPP individualised price policies. It should

be noted that DAPP does not directly provide an incentive

to users to increase their flexibility, e.g., by installing ESS.

However, users with high flexibility play an important role in

enabling load shifting, which in turn allows DAPP to return a

smaller value for the upper bound (Pu) for the low tariff area of

such users. Hence, the aggregated user demand which exceeds

the substation desired power profile will be smaller (i.e., the

value of the objective function of the LP problem described

in Section IV-B4 is smaller). Since this is a benefit for the

DSO, it will be in the DSOs interest to provide an economic

incentive for users willing to increase their flexibility.

C. Implementation Issues

In order to implement the DAPP load shifting, it was

assumed that each user’s battery and/or controllable appliances
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are controlled automatically using a home energy management

system, whose objective is to minimise the user’s energy bill,

by staying inside the low tariff area as much as possible. In the

SmartHG project [1] (on which the presented paper is based),

a test-bed was developed where residential users had Home

Area Networks (HANs) with load sensors and actuators and

a corresponding communication infrastructure. This provided

a means of implementing the individualised price policies.

The SmartHG test bed and communication infrastructure are

outlined in more detail in [29]. A full evaluation of this home

energy management system is out of the scope of this paper,

which is devoted to computational services at the network

level.

However, the individualised pricing schemes proposed in

this paper could in theoretically be implemented using any

home energy management system, such as those already

proposed the literature (e.g. [12], [13]), or through any com-

bination of direct load control of home appliances, or indirect

user responses to price signals. One of the advantages of

the proposed approach is that the price signal user sees is

very simple: in any given hour receive either the low or

the high tariff. However, the proposed demand management

approach is likely to be more effective in cases where there is

a home energy management system, which can automatically

implement the demand response, rather than depending on

an indirect or manual user response to the price signal. The

communication hardware cost of implementing individualised

price policies is expected to be low, since it is assumed

that all users already have smart meters installed, and users

can receive individual rather than global prices without any

hardware modifications.

V. CASE STUDY AND RESULTS

A. Base Case

The case study network used in this paper is taken from the

European Commission project “SmartHG” [1]. This network is

a suburban/rural 10kV system with a weakly-meshed structure.

A reduced version of the network schematic diagram is shown

in Fig. 5. The network has a peak demand of 3.2 MW

(with the largest demands occurring in winter), and serves

approximately 1,600 customers. There are 46 MV nodes in

the network, where each MV node corresponds to a secondary

transformer substation (10:0.4 kV). Of these 46 secondary sub-

stations, 30 serve suburban/rural residential customers (77%

of the total network demand), and the remaining 16 MV sub-

stations serve demand comprising of factory, district heating

and water pumping loads. It was assumed that price policies

outlined in Section IV only affect the residential demands.

Measurements of power consumption were recorded at each

substation at hourly intervals over the course of a two year

period from September 2012 to September 2014, in the form

of aggregated smart meter measurements. In addition, smart

meter data was available from selected individual users in the

network.

This data was used to create the reference scenario called

“Base Case” which shows the results calculated using the

actual recorded data from the network for the two-year pe-

riod from September 2012 to September 2014. The results
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Fig. 5. Schematic diagram of MV distribution network case study.

calculated using the actual recorded data from the network for

the two-year period from September 2012 to September 2014.

All users received a fixed (i.e., flat) electricity price during

this period.

B. Test Scenarios

The test scenarios described below and in Table I are

extensions of the Base Case. Scenarios 1 and 2 show the results

of simulations designed to examine the effects of both “global”

and “individualised” price policies:

• Scenario 1a All residential users in the case study

network receive the same ToU price designed to shift

demand away from the peak hours (e.g. a “global” price

policy). Households do not have energy storage or PEV.

• Scenario 1b All residential users receive the individu-

alised ToU price policy proposed by the DAPP service.

Households do not have energy storage or PEV.

• Scenario 2a All users receive the same “global” ToU

price policy designed to shift demand away from the peak

hours. 50% of the households (randomly-selected) have

PEV (with 16 kWh capacity and 13 kW power rate). The

PEV data used in this study was taken from actual vehicle

charging data from the “Test-an-EV” project [30].

• Scenario 2b All residential users receive the individu-

alised ToU price policy proposed by the DAPP service.

50% of the households have a PEV as in Scenario 2a, and

all households are equipped with energy storage in the

form of a PowerWall battery [31] (with 7 kWh capacity

and 2 kW power rate).

TABLE I
SCENARIO CHARACTERISTICS SUMMARY

Scenario Price policy PEV ESS

Base Case flat rate No No

1a global No No

1b indiv No No

2a global 50% 100%

2b indiv 50% 100%
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Fig. 6. Load shifing required by users connected to the substation with most
connected houses in Scenario 1b.

C. Robustness of Non-Discrimination in DAPP Price Policies

In this section we show that the individualised price policies

output by DAPP for each residential user are indeed non-

discriminatory (see Section IV-B3) in a robust way. Proposi-

tion 1 only holds if the forecast has no errors. In real applica-

tions, there will always be an error in power forecasting, thus

we want to show that the price policies output by DAPP are

r−non-discriminatory with a very low r, e.g., r = 0.1. To this

aim, we compute ξ from (2) with d̂tu = d̃tu, i.e., when there is

no response to the individualised price policies (which implies

that the response coincides with the historical demand). This

allows us to investigate the worst case scenario and to show

that, even if each user does not perform load shifting at all

(i.e., atu = 0 for all u ∈ U, t ∈ T ), the price policies output by

DAPP are 0.1−non-discriminatory. This proves robustness of

DAPP output price policies, as they are not strongly dependent

on the power demand forecasting.

Considering Scenarios 1b and 2b (the only ones involving

DAPP output), we obtain the following results for the non-

discrimination index ξ in (2):

Scenario 1b : 2.08%;

Scenario 2b : 5.32%

As a result, we have that in both our scenarios the in-

dividualised price policies output by DAPP are indeed 0.1-

non-discriminatory (and thus non-discriminatory), as required.

Finally, in order to show an interesting example of load

shifting requirements, Fig. 6 depicts the load shifting required

by all 136 houses connected to the substation with highest

number of connected users in our Scenario 1b. Moreover,

Fig. 6 also shows the mean of the load shifting of all 136

houses, and the standard deviation from this mean. As a

result, we have that the standard deviation of the required

load shifting on these 136 houses is less than 2%. On the other

hand, the standard deviation σ of the total energy demand (i.e.,

accumulated on the whole period of two years) for the 136

houses in this example is 22% of the maximum total energy

demand. This shows that, even in a scenario in which power

demands have an high variance among users, the price policies

output by DAPP are 0.02−non-discriminatory.

D. Simulated Impacts of Price Policies on Network Demand

Profiles and Load Factor

1) Impact on Demand Profiles: This section shows the

impact on load profiles at each substation calculated by

simulation of each of the above scenarios. Figures 7a and 7b

show a sample of the load profiles for the Base Case, Scenario

1a and Scenario 1b. These are shown for the Winter Peak and

Summer Minimum demand cases respectively.
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Fig. 7. Scenario 1 - Time series of aggregate residential demand profiles
showing Base Case, global price policy (Scenario 1a), and individualised price
policy (Scenario 1b) for: a) Winter Peak; b) Summer Minimum.

It can be seen from Fig. 7 that the global price policy

(dashed line, Scenario 1a) results in a rebound demand peak

similar to that recorded in Fig. 1, Section I and [16]. For the

individual price policy case (dotted line, Scenario 1b, Fig. 7b),

the demand peaks are much reduced due to the effect of the

DAPP algorithm. This significantly improves the load factor

(the ratio of average to maximum load).

For Scenario 2 (Fig. 8), the overall demand is increased due

to the influence of PEV load, with larger peaks in the evening

hours. The global price policy results show a large demand

rebound at hours 20:00 - 22:00 (dashed lines, Scenario 2a).

The proposed individual price policy results in a much flatter

demand profile (dotted lines, Scenario 2b in Fig. 7b).

2) Impact on Aggregate Load Factor: The aggregate load

factors, calculated across all residential customers, are pro-

vided in Tables II and III. These were calculated for typical

“Winter Peak” and “Summer Minimum” days, and also for

the “Overall” case, which calculates the total load factor over

the two years of the simulation.

These results reflect the pattern shown in Fig. 1, Section III

and in the load profile results in Figs. 7-8. It can be seen in

that the global price policy (Scenarios 1a and 2a) increases

the overall magnitude of the demand peaks and reduces the

demand middle of the day, which produces lower load factors

than in the Base Case. In contrast, the individualised price

policy flattens the demand profiles and increases load factors
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Fig. 8. Scenario 2 - Time series of aggregate residential demand profiles
showing Base Case, global price policy (Scenario 2a), and individualised price
policy (Scenario 2b) for: a) Winter Peak; b) Summer Minimum.

(Scenarios1b and 2b).

TABLE II
SCENARIO 1 AGGREGATED LOAD FACTORS

Load Factor Base Case Scenario 1a Scenario 1b

Winter Peak 0.7054 0.6164 0.8017

Summer Min 0.6205 0.5794 0.6257

Overall 0.3327 0.2897 0.3933

The load factors in the “Overall” case (final rows of

Tables II and III are much lower than the Winter Peak/Summer

Minimum day cases, since the “Overall” values represent the

average load factor calculated over the entire two year period,

considering all of the seasonal variations during this time.

The results in Tables II and III clearly show the poten-

tial benefits of applying the proposed individualised pricing

scheme. In Scenario 1 there is an overall annual load factor

improvement compared to the Base Case by using DAPP

of 15.4%, and in Scenario 2, the corresponding figure is

27.2 %. It is also shown that the amount of load flattening

varies throughout the course of the year, and in the Summer

Minimum day in Scenario 1, the improvement in load factor

compared to the Base Case is not significant (less than 1 %).

However, in Scenario 2b, the corresponding load factor im-

provement is 18.7%. This suggests that the benefits of applying

an individualised are likely to be much more significant in

networks with PEV and ESS.

This simulated increase in load factors due to the application

of individualised price policies would have clear benefits

for the DSO. This would reduce the amount of energy to

be purchased from the wholesale market during expensive

peak hours, and the flatter load profiles would result in less

instances where network is overloaded, potentially reducing

network maintenance and upgrade costs and allowing deferral

TABLE III
SCENARIO 2 AGGREGATED LOAD FACTORS

Load Factor Base Case Scenario 2a Scenario 2b

Winter Peak 0.7116 0.6176 0.8124

Summer Min 0.5927 0.5280 0.7038

Overall 0.3471 0.3084 0.4415

of network investments. In the following section, some of

the impacts of the proposed price policies on the distribution

network operation are examined in more detail.

E. Simulated Network Impacts of Price Policies

1) Impact on Network Power Flows: The impacts on power

flows throughout the MV network is shown in Fig. 9 for

Scenarios 1 and 2, using the maximum thermal MVA flow

expressed as a percentage of the line rating. The thermal MVA

flow is calculated for all of lines and transformers in the MV

distribution network (Fig. 5), and the maximum value for each

day in the 2-year period is shown. From both Figs. 9a and 9b,

it is clear that the global price policy (Scenario 1a and 2a,

dashed lines) results in heavier line loading values, whereas the

individualised price policy (Scenario 1b and 2b, dotted lines)

results in reduced line loading. This result is expected, since it

is shown in Section V-D2 that the individualised price policy

reduces the magnitude of the demand peaks and improves

the load factor. Table IV shows the results for the number

of overloads (MVA flow >100% of line rating) in each case.
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Fig. 9. Daily maximum loading as a percentage of the line limits for: a)
Scenario 1; b) Scenario 2.

2) Impact on Network Voltages: The number of low voltage

violations in the distribution network case study are sum-

marised in Table V. Any voltages lower than 0.97 p.u.3 were

3MV network voltage limits are set tighter than the typical statutory voltage
limits of 1.1 - 0.9 p.u., since it is expected that there will be significant further
voltage drops on the LV feeders downstream of the MV substations in Fig. 5
(LV feeders are not shown in the schematic), particularly along longer lines.
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TABLE IV
SUMMARY OF LINE THERMAL MVA LIMIT VIOLATIONS

No. Overloads

(> 100 %)
Base Case

Global

Price Policy

Individual

Price Policy

Scenario 1 3 6 0

Scenario 2 3 18 2

recorded as voltage violations. High voltage events are not

considered in the study, nor are events involving network

faults and planned/unplanned outages, which would affect

the voltage profiles. These results show that several voltage

violations occur in both the Base Case and Scenario 1a and 2a

(global price policy) cases. These low voltages occur during

time of peak loading, in the parts of the network with the

greatest electrical distance from the primary substation. In the

individual price policy simulations, Scenario 1b and 2b, there

were no violations, due to the reductions in peak loading.

TABLE V
SUMMARY OF LOW VOLTAGE VIOLATIONS

No. Low Voltages

(> 0.97 p.u.)
Base Case

Global

Price Policy

Individual

Price Policy

Scenario 1 2 2 0

Scenario 2 2 2 0

3) Impact on Network Line Losses: The analysis of the total

losses in the MV test case network showed some differences

in network losses as a results of applying the global and

individualised price policy scenarios:

• Scenario 1: Typical cumulative losses in the MV network

are 142 MWh/year and 68 MVAr/year. The individualised

price policy produced 1.5 - 1.6% lower line losses com-

pared to the global price policy case.

• Scenario 2: Typical cumulative losses in the MV network

162 MWh/year and 78 MVAr/year. The individualised

price policy had 2.2 - 2.3% lower line losses.

VI. CONCLUSIONS

This paper proposed a novel approach to DSM, using

an “individualised” price policy, which incentivises users to

optimally manage flexible demands. The primary objective is

to reduce peaks in the overall distribution system demand, in

such a way that the average price received by each end user is

non-discriminatory. This approach is compared to traditional

“global” price policy schemes, where all users (or a large

number of users in the same network region or associated

with the same retailer) are given the same price policy. The

analysis in the paper illustrates the potential advantages of

the individualised price policy approach through extensive

simulations using a case study of residential users in a typical

European distribution network, where each of the scenarios

used was based on actual data from network end-users.

It was demonstrated both in the trial results in [16] and in the

results in Section V that the use of global DSM price policies

can cause synchronisation of user demand patterns, reducing

load diversity and creating undesirable “rebound” effects. The

individualised price policy approach proposed in this paper has

advantages over a global policy approach. It was shown that

the individualised price policy can increase the load factor,

and improve voltage and line loading conditions, and reduce

network losses, compared to a global DSM price signal.

The results here are based on trials from a Danish DSO and

extensive simulations using recorded demand data. However,

the actual behaviour of a particular group of customers in

response to a price signal (global or individualised) is complex

and difficult to predict accurately. Therefore it is not possible

to draw general conclusions, which apply to other users across

all regions and market conditions, based on these results.

Despite this, the presented results are informative in that they

illustrate that there are significant problems in using a global

price policy approach for residential DSM, and show that

the proposed individualised price policy approach is able to

resolve these problems and provide operational benefits for the

DSO. There are other potential long-term DSO benefits which

are not assessed in this paper, such as network investment

deferral, and improvement of equipment lifetimes due to re-

duced instances of overloading. One limitation of the approach

is that it does not specifically encourage users to increase their

flexibility. The DSO may wish to offer economic compensa-

tion to encourage users to install more ESS and increase their

flexibility, since this flexibility clearly benefits the DSO in

terms of reducing operational and network investment costs.

A possible approach to providing these incentives would be

to allocate a portion of the projected savings from the deferral

of network investments for this purpose.
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