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LARGE MASS BOUNDARY CONDENSATION PATTERNS IN THE
STATIONARY KELLER-SEGEL SYSTEM

MANUEL DEL PINO, ANGELA PISTOIA, AND GIUSI VAIRA

ABSTRACT. We consider the boundary value problem
—Au+u=MXe%, inQ
Ovu =10 on 02
where Q is a bounded smooth domain in R?, A > 0 and v is the inner normal derivative at
0f). This problem is equivalent to the stationary Keller-Segel system from chemotaxis.
We establish the existence of a solution w) which exhibits a sharp boundary layer along the

entire boundary 92 as A — 0. These solutions have large mass in the sense that fQ AeUr ~
[log Al.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Chemotaxis is one of the simplest mechanisms for aggregation of biological species. The term
refers to a situation where organisms, for instance bacteria, move towards high concentrations of
a chemical which they secrete. A basic model in chemotaxis was introduced by Keller and Segel
[9]. They considered an advection-diffusion system consisting of two coupled parabolic equations
for the concentration of the considered species and that of the chemical released, represented,
respectively, by positive quantities v(z,t) and u(z,t) defined on a bounded, smooth domain
in RY under no-flux boundary conditions. The system reads

%v = Av—V - (vVu) in Q
T% =Au—u+v in Q (1.1)
%:%:O on 01,

where v denotes the unit inner normal to 9€2. Steady states of (II]) are the positive solutions of
the system

Av—V - (vVu)=0 in Q
Au—u+v=0 in Q (1.2)
%:%:0 on Of).

Problem (2] can be reduced to a scalar equation. Indeed, testing the first equation against
(Inv — u), an integration by parts shows that a solution of (LZ) satisfies the relation

/ v|V(lnv —u)|* =0
Q

and hence v = \e* for some positive constant A\, and thus u satisfies the equation

2 on 0. (13)
Reciprocally, a solution to problem (L3]) produces one of (2] after setting v = Ae*. In this

paper we consider problem (L3]) when  C R? is a bounded domain with smooth boundary and

{ —Au+u = N, in €,
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A > 0 is a small parameter. By integrating both sides of the equation we see that a necessary
condition for existence is A\ < 1.

The analysis of problems (L)), (L2) and their corresponding versions in entire space R?, has
a long history, starting with the work by Childress and Percus [3]. The analysis of the steady
state problem (3] for small A started with Schaaf [I7] in the one-dimensional case. Existence
of a radial solution when (2 is a ball, generating a spike shape at the origin when A — 0 was
established by Biler [I]. The shape of an unbounded family of solutions wy with uniformly
bounded masses

limsup/ At < 400
Q

A—0+
was established in [I8, [20]. As in the classical analysis by Brezis and Merle [2], blow-up of the
family is found to occur at most on a finite number of points &1, ...,& € Q, ki1, .-, sy € 0N
More precisely, in the sense of measures,
k -+l
— Auy +uy = A" — 287{'5& + Z 4o, (1.4)
i=1 i=k+1

as A — 0. Here ¢ denotes the Dirac mass at the point {. Correspondingly, away from those
points the leading behavior of u) is given by

k K+l
ux(z) = Z 8rG(x,&) + Z A7G(x,&;) (1.5)
i=1 i=k+1

where G(-, ) is the Green function for the problem

{ —AG+ G =4, in Q, (1.6)

% =0 on O

For each given non-negative numbers k and [, a solution uy with the properties (4] and (TH)
for suitable points ; is proven to exist in [7]. Near each point £ = &; the leading concentration
behavior is given by

ux(@) ~ w(|z —¢|)
where w is a radially symmetric solution of the equation

—Aw = Xe¥ in R?, (1.7)
namely a function of the form
842
W(T) =1In m —InA\.

where § is a suitable scalar dependent on A and the point £.
Since u) is uniformly bounded away from the points &;, this forces for the parameter § to
satisfy 6% ~ X. We observe that all solutions w of (7)) satisfy

/ e = 8.
RQ

Thus, consistently with (L], masses are quantized as
/ e — 4 (2k +1). (1.8)
Q

A natural question is that of analyzing of solutions with large mass, namely solutions u)y of
([C2) with
/)\e“A — 400 as A — 0.
Q



It is natural to seek for solutions with property which concentrate not just at points but on a
larger-dimensional set. The purpose of this paper is to prove the existence of a family of solutions
to ([L2) with a boundary condensation property, exhibiting a boundary layer behavior along the
entire 0€). These solutions satisfy

1
lim —/ Ae' > 0.
A—0 |1n >\| O

Let us formally derive the asymptotic shape of these solutions. Let us parametrize points of
space in a sufficiently small neighborhood of 99 in the form x = ~(0) + yv(0), where v(0) is
a parametrization by 6, arclength of 99, and v() a corresponding unit inner normal, so that
v(0) = —k(0)7(0), where x designates inner normal curvature. We get the following expansion
for the Euclidean Laplacian in these coordinates

A=09,, + 1 9 1 0y __w 9
T 1 —k(0)y 00 \ 1 — k(0)y 00 1—k(0)y Oy

The solution we look for has a boundary layer, thus large derivatives along the normal and a
comparatively smooth behavior along the tangent direction. It is then reasonable to take near
O as a first approximation of a solution u(6,y) of the equation (L3) a solution of the ordinary
differential equation

w, + A =0, w,(0) =0, (1.9)
which is
wy(y)—In A =w(y/p) —2Inp —In A, (1.10)
where w(y) = In 4% and the concentration parameter p satisfies

1(0) = efic(0) ~ efio(0).

Here £ = ¢()) is a small positive number which we shall choose below and fip(6) is a uniformly
positive and bounded smooth function.
Let ¢ € C(Q) compactly supported near the boundary of Q. A direct computation yields

E/Aeww:\/i/ ol do+O(e) ,
Q o0

+oo
since [ e*Wdy = /2. Thus,
0

exer — \/5/)0_1(539

where dgq is the Dirac measure on the curve 92.
Then we expect that, globally, v/2 U = cuy, satisfies approximately

~AU+U = iy 00,
which means in the limit
~AU+U=0inQ, U= —fiy" on IQ.
Now, from our ansatz (L.I0), we should have that close to the boundary
V2U(0,y) ~ ew(y/p) — 2eInefi —eln X

and hence, in particular

V2U(0,0) ~ —cln X — 2 1ne
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By maximum principle and d,U = — iy 1 < 0 the latter relation is consistent in the limit if the
constant €In A approaches a negative number. If we choose &Y = 1 on the boundary of €2, then
we take € such that

—eln ) —2elne ~ V2

so that
V2
T\
Hence the limiting U equals Uy, the unique solution of the problem
— AUy +Uy=01in Q, Uy =1 on ON. (1.11)

We observe that by maximum principle and Hopf’s Lemma, we have that 0,Uy < 0, and hence
this fixes our choice of fig(f) as

on 0f).

Our main result asserts the existence of a solution with exactly the profile above for all A
sufficiently small which remains suitably away from a sequence of critical small values where
certain resonance phenomenon occurs.

Theorem 1.1. Suppose that §) is a smooth bounded domain of R?. Then there exists a sequence
of positive small numbers X = A, converging to 0 as m — +oo such that the problem ([L3) has
a solution uy such that
1
0< i
A50 TIn |
Moreover, if ex = €y, is the parameter defined by

/ e dx < +oo.
Q

4 2
1n—2—1n)\:£ (1.12)
5)\ EX
then
)l\ir% exux = V2 Uy C° — uniformly on compact sets of §
—

and, in the sense of measures,
exre’r — 7\/5 o,Uy doa.

We actually believe that problem ([3]) has a solution which concentrates along the entire
boundary, also in the higher-dimensional case Q@ C RN with N > 3. This fact has been estab-
lished in the radial case, when Q is a ball, in [16].

Remark [43] below assures the existence of small numbers A > 0 for which the problem (L3)
has a solution with the desidered behavior. In fact, a more general condition on €5 (and then
on \) defined as in (LI2) is provided there. This type of condition, known as non-resonance
condition, were imposed to establish the presence of higher dimensional concentration patterns
without rotational symmetries in several works in the literature, starting with the pioneering
works by Malchiodi and Montenegro [12] [13], who prove existence of a concentrating solution u.
along the boundary for the classical Neumann problem

E2Au—u+uP =0 inQ, yu=0on0dN (1.13)
with p > 1. See also [], [I], [T4] for related results.
A major difference between our problem and (LI3]) is that the limiting profile is highly local-

ized in the sense that the limiting solution has an exponentially sharp boundary layer O(e’g)
where d designates distance to the boundary. Instead, in our setting the interaction with the
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inner part of the domain is much stronger. The interaction inner-outer problem makes the im-
provement of approximations considerably more delicate. The construction of an inverse for the
approximate linearized operator is in fact quite different because of the presence of slow decay
elements in the kernel of the asymptotic linearization.

The proof of our result relies on an infinite-dimensional form of Lyapunov-Schmidt reduction.
We look for a solution to ([L3) of the form Uy + ®, where Uy, the main term, is a suitably
constructed first approximation and ®, is the remainder term. Then Problem ([[3) can be
rewritten as

+L(®y) = S\ + N(®,) in , (1.14)
where
L(®) := A® — & + N\ D, (1.15)
S\(Uy) := =AUy + Uy — AP (1.16)
and
N(®) :=—Xe" [e® —1 - @]. (1.17)

The strategy consists of finding an accurate first approximation Uy (Section [21]) so that the
error term Sy (Uy) be small in a suitably chosen norm (Section [B)). Then an invertibility theory
for associated linearized operator L (Section [H) allows to solve equation (ILI4) for term @, via a
fixed point argument (Section [I).

The main term Uy looks like w, —In A close to the boundary, with w,, defined in (ILI0) solves the
ODE (I9) and concentration parameter i := p(\) approaches 0 as A goes to 0. The profile of Uy
in the inner part of the domain looks like 7 Uy where Uy solves the Dirichlet boundary problem
(CII) and the dilation parameter 7 := 7(\) approaches +o0o as A goes to 0. The concentration
parameter () and the dilation parameter 7(A) have to be chosen so that the two profiles match
accurately close to the boundary. This is the most delicate part of the paper and it is carried
out in sub-section

2. THE MAIN TERM

2.1. The problem close to the boundary. Let us parametrize 02 by the arc length

V(0) == (1(0),72(0)),  0€[0,4]

where £ := |0€|. The tangent vector and the inner normal vector to the point v(0) € 9 are
given by

7(0) := (11(0),72(0));  v(0) := (=12(0),71(0))

respectively.
If 6 > 0 is small enough, let

Ds :={x e Q : dist(z,00) < d}

be a neighbourhood of the curve 9f).
Then for any = € D; there exists a unique (0,y) € [0, ] x [—0d,0] such that

x = (0) +yv(0) = (71(0) — y¥2(0),72(0) + y71(0)).

We remark that in these coordinates the points of the boundary take the form (6,0). If u(6,y)
is a function defined in [0, ] x [—0,0] we can define the function u(x) = w(f(x),y(x)) (we use
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the same symbol for sake of simplicity) for € Ds and hence close to the boundary the equation
([C3) takes the form

1
2 2
e D2y — 02 u —

yk(0) r(0)
1= yn(0) v

T ym(@)P " T T @)

Oyu+u = Ae" in Ds,
(2.1)
0yu(0,0) =0

where k() is the curvature at the point v(6) € 9.

It is useful to introduce the spaces CP(R) and C7(R) of /—periodic C°—functions and C?—functions,
respectively.

2.2. The scaled problem close to the boundary. Now, let us introduce an extra parameter
€ := gy such that

4 2 4 _v2
In— —In\= i, fe. A= —e 5. (2.2)
€5 € €5

It is easy to check that ey — 0 as A — 0. We agree that in the following we will use indifferently
the two parameters € and \ to get the necessary estimates.
Moreover, let us choose the concentration parameter p(0) := (X, 0) in (LI0) as

w(0) := efi(0), where u(0) := f1.(0) € C7(R). (2.3)

The function ji will be defined in Lemma 2.8
Finally, let us set

1 1

- - - 2.4
aqu o0 GyUO(H, O) ( )

fio(6) =
We note that by maximum principle and Hopf’s lemma., i is a strictly positive C?—function.

Now, let us scale problem (Z1]). In Ds it is natural to consider the change of variables

w(@,y) = (g %) , with @ = (s, t). (2.5)

It is clear that

(0,y) € Dy if and only if (s,1) € [0, q « {é,o].
S

Let @ = (s, t), then we can compute

Ogu = €105l — iy~ M0y
Dpou = e 20201 — 2 100 — jip 00 + 202 P top + P 2 t2 054
3yu = ‘U,ilat’l]

2 _ =202~
Oyyu = p “Onu



where the dot stands for the derivative with respect to 6.
Hence, problem (2.1]) can be written as

12 (e8)0%, 0 + 0% a + A1) + e = 0 in Cs,

Ot =0 on ICs N {t =0}
, (2.6)
U (8 + o t) = (s, t), le. @is f—periodic ins
where Cs := RT x {f%, 0} and the linear operator A is defined by
-2 §212
T~ I ~2l 92 ~ et 2 ~
A(w) = |———— — 050+ ———— 05,1
. l(l — pitr(es))” “01 (1 — ptr(es)” ™
—_————
bo(s,t) by(s,t)
7 2e gt 2 0 e i(es) Oii — 12
(1= ptr(es))” T (U= jm(es)
—_——— —_———
bz(s,t) b4(s,t)
Ll i B wrt?i(es) 2[%t ~ pk(es) 5
(1—ptr(es))® (1 — ptr(es))®  (L—ptr(es))? 1 — utw(es) '
bg(s,t)
(2.7)

It is important to point out that the linear operator A is a perturbation term since all b;’s are
uniformly small when X is small (because of ([Z3))).

2.3. A linear theory close to the boundary. Let us read the first order term of uy close to
the boundary in the scaled variables: since uy looks like w, — In A where the one-dimensional
bubble w,, is defined in (ILI0), it turns out that the first order term of @y is nothing but w —1In A
where w = w1, namely

V2t
w(t) :=ln4———, teR (2.8)
(1 + e\/it)
which solves
w +e” =0, in R. (2.9)

Therefore, it is important to develop a linear theory for the linear operator £ which comes
from the linearization of equation (Z:6]) around the bubble w — In A, namely

L() = (07,6 + 076 + A() + o (2.10)
In order to study £, an important role is played by the linear operator
£(J) = 02+ "¢ (2.11)

which is nothing but the linearized operator around w of equation (2.9).

Lemma 2.1. Let us consider the associated linearized eigenvalue problem

L(})=Ad inR.
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(i) A=0is an eigenvalue with associated eigenfunctions Z1(t) = 2 + tw'(t) and Zz(t) =

w'(t) = 21_‘_6\/—1 We point out that Z1 behaves like a constant at infinity and that Zs

is not a bounded function.
(ii) There exists a positive eigenvalue Ay with associated radial, positive and bounded eigen-
function Zo = Zo(t) with L>—norm equal to one. Moreover, Zy decays exponentially at

infinity as O (ef‘ml‘”) .

Proof.(i) has been proved in [§]. (ii) can be proved arguing as in Section 3 in [6]. O

We consider the following projected problem: given a bounded function h, which is ffperiodic
in s, find s bounded f—pem’odic function co(s) and qg such that

ﬁ((g) =h+ Co(S)Zo(t) in Cs,

dp=0  on ACsN{t =0},

¢ (s + §t> = d(s,1) (2.12)

0
/ B(s, 1) Zo(t) dt = 0 VseRT.
_ 25

In Section B we will establish existence and a priori estimates for problem (2.I2) in the
following norms:

6]l := Sélp(1+ |t|")|¢|+s(1:1p(1+ LTIV, (7] = Sélp(1+ [t/72)[n], for o € (0,1). (2.13)
5 5 é

More precisely, we prove that

Proposition 2.2. There exist \g > 0 and a constant C > 0, such that for any A € (0, \g) and
for any h with ||h]|« < +oo, there exists a unique ¢ = T (h) bounded solution of the problem

2I2) such that
[6ll« < CllAllxx. (2.14)

2.4. The main term close to the boundary. The function w, — In A is the main term of
the approximated solution close to the boundary. We need to add some correction terms, which
improve the main term.

More precisely, we let

ux(0,y) = w,(0,y) —In A+, (0, y) +v.(0,y) + Bu(0,y) + 2.(0,y) +e5(0)Z5(y)  (2.15)
——

%’_/
15t —order 274 _order 374 _order unknown!
where
o «a,(0,y) is defined in Lemma 23]
° (9, y) is defined in Lemma [Z4 and £,(0,y) is defined in Lemma 23]
° (9, y) is defined in Lemma 2.6
o Zl'(y) = Zo(£), where Zj is defined in Lemma 2T and the function €§(f) is defined as

follows
e5(0) = e%eg(6) with eo € CZ(R). (2.16)
We point out that the function eg is unknown: it is playing the role of one parameter
and it will be chosen in Section as solution of an ordinary differential equation. We



assume that e has uniformly bounded || - ||c—norm, i.e.
lleolle = lle*€olloc + lleéolloo + lleolloo < Mo, (2.17)

for some large fixed number Mj.

The first term we have to add is a sort of projection of the function w,, namely the function
oy, given in the next lemma.

Lemma 2.3. (i) The Cauchy problem
0) k(0) 1
-0% —l—L@a =7 9w, —w, + I\ ———— 5w
W T T ) v =TT (g T wm@PF "™ )

,,(6,0) = 9,0, (6,0) = 0

has the solution

— _ Y 1 — ’ — DK —71%(9) w —w n o
oubn) == [ 1_0H(9)/0 (1-p (9))[ T 00 (6) — ) 41 A} dor dp

y 1 o . )
_/0 1—ok(0) /0 1— pﬁ(e)aeewp(/)) dpdo

(i) For any (6,y) € Das \ Ds it holds:

2 2
o Y 9 d .9 V2 4
a,(0,y) = (k(0)Ind)y+ 5|k (9) ln4+wlnu - 7/1(9) + <1HE —InA|| +
3 2
y 2V2 V2 4 V2 d? 1
= |——k(0) — — OH{ln— —In\ | +———
+6[ O = O I A e
3 ly[*
(i) Moreover, via the change of variables § = es and y = pt, the function &,(s,t) :=
oy (es, pt) solves the problem
1
o 82 ~ IU’(ES)H(ES) a o M(ES)K’(ES) a 2 1 . 71 )\
- tu(es)k(es) t 1 —tu(es)r(es) A u? nAtw
1 . 1 ji 242 .
T [ g 0 (< ) 4 219
au(es,0) = Oray(es,0) = 0.

(iv) The following expansion holds
d#(sv t) = OZ#(ES, ‘Ltt) - /LOél(ES, t) + :LLQO‘Q(ESa t) + O(€3t4)a fOT |t| <
where

as(es, t) = ﬁ(ss)/o w(o)do + g,&(as)t2 (2.20)
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and
! t2 1
ag(es, t) = (ES)/ w(o) do + 3 In 20)
(2.21)
// ) dpdo + L0y + L g2l
P 6" a2 g
Proof. We argue as in s Lemma 3.1 of [10]. O
Now, let us construct the second order term of our approximated solution.
Lemma 2.4. (i) There exists v solution of the linear problem (ay is given in ([2.20)))
— 02 —evv=e"o(0,y) (2.22)
such that
v(0,y) = 1)y +2(0) + O™ ) Jy| = +oo
where
v1(0) :=2k(0)(1 — In2) + In4/i(0) (2.23)
and

)= [ (i L) mOout)e ay (2.24)

(ii) In particular, the function v, (0,y) = pv (9, %) solves the problem

—85111)# — ey, = perog <9, %) .
(ili) Moreover, via the change of variables 0 = es and y = pt, the function 0,(s,t) =
vu(es, pt) = p(es)v(es, t) solves the problem
—050,, — €Y, = pe”as(es,t)
and the following expansion holds (see [23)))
Uu(s,t) = evi(es)u(es)t + eva(es)fi(es) + O (567‘”) as |t| = +oo.

Proof. We apply Lemma 2.7 O

As we have done for the function w,,, we have to add the projection of the function v,, namely
the function 3, given in the next lemma.

Lemma 2.5. (i) The Cauchy problem (v, is given in Lemma[2.)
0) K(0)
—02. 8 +L86=—7G’U 0,
yyr K 17yfi(9> Y 17yfi(9> Y M( y) (225)

Bu(0,0) = 9,5,(6,0) =0

has the solution

y
0,y) = —_— Oyv,. (0, p)dpd
Bu(0,y) /O 1_M / you(0, p) dp do.
(iv) For any (0,y) € Das \ Ds we have:

8,(0,9) = n (O)r(O)L

5 +O(yl).
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(i) Moreover, via the change of variables 8 = es and y = put, the function B,(s,t) :=
Bu(es, ut) solves the problem

Y w(es)k(es) 5 p(Es)k(es) .

O + 1- tu(as)m(as)atﬁu 1 —tu(es)k(es) Oy (2.26)

BM(ES, 0) = atBM(Es, 0)=0

(iv) The following expansion holds:
Bu(s,t) = Bules, ut) = 2B (es,t) + 0(53153)

where .

Bi(es,t) = H(ES)/ / Oyv(es, p) dp do. (2.27)
0o Jo

Proof. We argue as in Lemma 3.4 of [16]. O

Finally, we build the third order term of our approximated solution.

Lemma 2.6. There exists z solution of the linear problem (a1, aa and (1 are given in

Z20), B30) and Z20) respectively, and v is given in Lemma[24) )

03,5z = e aa(0,0) + (00) + 3 (@1(0.9) +0(0.0)

such that
2(0,y) = G (0)y + &(0) + Oy |y| — +o0
where o
1
Glo) = [ h(6,4)0,w(y)e” dy
and .
2
)=~ [ (1= + 5 ) MO.00ulne dy,
with

hO9) = as(6,) + i(0,9) + 5 (1 (6,) + 0(6,0)*.

(ii) In particular, the function z,(0,y) := p*z (9, %) solves the problem

2
wy, _ wy, Yy Yy 1 ) Y
_ajyzu —ePrz, = e lag (9, ;) + 51 (9, ;) + 3 (a1 (9, ;) +v (9’ ;)) 1 -

(i) Moreover, via the change of variables 0 = es and y = ut, the function Z,(s,t) :=
zu(es, ut) = p*(es)z(es,t) solves the problem

1
—0pZ — €z, = pPe” {042(5570 + Pi(es,t) + 5 (ar(es,t) + v(es, t))ﬂ
and the following expansion holds (see ([2.3]))
Zu(s,t) == e%Ci(es) i (es)t + e2(a(es) i (es) + O (526_“‘) as |t| = +oo.

Proof. We apply Lemma 2.7 O
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Lemma 2.7. (Lemma 4.1, [§]) Let h € C°(R) such that [ h(y)w'(y)e*®dy < +oo. Then the
function ®
y 0
U) =) [z [ b (e drds
/ Wi

g

solves the ordinary differential equation
—U" — ¥ =e"h in R.
In particular,

Wy)=ay+b+0 (efc‘y‘) in CY(R) as y — —o0

where
1 : O 2
a:= 7 / b(r)w' (7)e” dr and b := — / (m + %) bh(r)w' (1)e* D dr
and
Uy)=cy+0+0 (efc‘y‘) in C*(R) as y — +oo
where

+o0 +oo
€= % O/ b(r)w' (1)e Ddr and v := — O/ (ﬁ + %) h(r)w (r)ev M dr.

2.5. How to match the main term close to the boundary with the main term in inner
part. The solution uy in the inner part of the domain looks like 7y where Uy solves (LIT]) and

the dilation parameter 7 := 7(\) approaches +0co as A goes to 0. The function uy (and its
derivative) built in (ZI8) in a neighborhood of the boundary has to match with the function
T(MUp (and its derivative). To this aim it is necessary to choose the dilation parameter 7 = g

and most of all it is essential to modify the profile of the solution in the inner part of the domain
by building a new function U, which approaches U, as € goes to zero and such that its value
on the boundary together with the value of its normal derivative coincide with the value of uy
and its normal derivative. The main tool here is the Dirichlet-to-Neumann map and the key
ingredient is the choice of the concentration parameter fi as showed in the next crucial lemma.

Lemma 2.8. There exists go such that for any € € (0,&¢) there exist a function ji. € C?(09)
and a solution U to the problem

—AU. +U. =0, in €,

Us =1 = 5 (Inp2—eficra—e2 %G (0)) on 0%, (2.28)
AU = _ﬂ_la + % (26 + fic Ind+e0(1(0)) on Of.

Moreover (fiy is given in ([2.4]))
fie = fio +O(e) in C1(OQ) ase — 0 (2.29)

and
U. =Uy+ 0 () inC%(Q) as e — 0. (2.30)
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Proof. Let us apply the Dirichlet-to-Neumann map, which maps the value on 90 of a harmonic

function U to the value of its normal derivative 0, on 0L, i.e. F (Z/l| m) = 0,U. Therefore, we
are going to find a function i € C%(9Q) such that

F (1 - % (lnﬂQEﬂVQSQﬂQQ(H))) = —% + % (2K + A lnd+efici(0)) . (2.31)
Let
H(e.f) = F (1 - (1nﬂ2€ﬂV262ﬂ2<2(9))> + 2= 5 (6(0) + il + 20 (6)).
We have that

1

H(0, fio) = F(1) + — =

0, since F(1) = d,Uy and jig = —51 (see ZF))
Ho
Moreover

oH

i) — —

Hence by the Implicit Function Theorem, there exists a unique i = fi.(8) € C?(99) such that

H(e, i) = 0, namely (Z31)) holds. Estimates [229) and (Z30) follow by elliptic standard
regularity theory.

d

Lemma 2.9. Let U. be given in Lemma[Z8. Then there exists €9 such that for any e € (0,¢&0)

2 * :
ux(0,y) — %Ug(é’,y) =0 (elyl’) + O (%) uniformly in Das \ Dy

(2.32)
and
V2 _ yl’ : :
Oy |ua(8,y) — ?L{E(G, y)| = O(ely]) + O - uniformly in Das \ Ds. (2.33)
Proof. Let us prove the estimate ([Z32). The proof of ([233) is similar.
Let U be a generic harmonic function, namely
—AU+U=01in Q. (2.34)
Then the expansion of @u on the boundary reads as

V2 V2 y? y? y|*
7u(9,y) == U0, 0) + yo,U(0,0) + Eajyu(e, 0) + Eajyyu(a, o)] +0 <%) . (2.35)

Now, let us write the expansion of the function uy close to the boundary. In Das \ D5 we get
4 2 y 2 2 v
wu(y) — A =In— —ln)— V2 LoV = V2 Inj2 — V2 O(e~ Vi,
Ju Ju € Ju
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because u = /i and (2.2]) holds. Therefore, by Lemmas 23] 2.4] and we deduce
ur(0,y) = wu(y) —InA+ou(0,y) +vu(0,y) + Bu(0,y) + 2.0, y) + €5(0) Zy (y)

v2 (1 e 0)-="i(0)|

=

~ U(0,0)

(26(0) + ﬂ1n4+aﬂ<1<e>>}

m

<

|
= |
gl
[\

~ B,U(6,0)

V2 y? K(0) | € & ~2 ~2 2 -
Jr?? [1 i +ﬁ (Wlnu —Ing® + 2k (9)+H(9)uln4>}

~ 92,U(6,0)

~ 83,,U(0.0)

+0 (ly*) + O (@) + O(e*‘:‘_lé"), (2.36)

for some ¢ > 0. Let us compare ([Z35]) with [236]): the first four terms have to be equal! In partic-
ular, it means that we have to find an harmonic function ¢ such that the value of ¢ and the value

of its normal derivative 9,4 on the boundary have to be equal to {1 — % (1n 2 —efivo—e? 12y (9))}

and [f% + %(2/& + flnd+efdy (9))}, respectively. This is done in Lemma Therefore, let

us replace in ([Z35) and (Z30) the generic armonic function I with the function U, which solves
problem ([Z28). The first two terms coincide. Now, let us check what happens with the higher
order terms, namely terms which involve the second and third derivatives of U.. The function
U. solves equation (2:28) which in a neighborhood of the boundary reads as

1 2 2
03U — 2 U —

YK K .
_ YR -+ U. =0 in Das. 2,
= ) OyU: +U: = 0 in Do; (2.37)

(17 369u5+ 7(1 7ylﬁ)
We have then on the boundary
92, U=(0,0) = —pgU=(0,0) + £(0)9,U:(6,0) + Uc(6,0)

and
93, U(0,0) = —2k(0)055Ue(6,0) — 035, U:(0,0) — i:(0)IplU-(6, 0)
+5%(0)0,U:(0,0) + r(0)2,U=(6,0) + 8,U-(6,0)

Then differentiating twice with respect to 6 the value U, on the boundary and the values of 0,U.
on the boundary we get

2 Ue(0,0) = ——= Ly (f(0)) — L (72G0) ) = ——= - i 4 O(e?)

604\ 0 = a \aer M T Caer M < age\t - ae c
2?1 ¢ . d? d? 1

3 e c . N v _ 4 =

0po,U=(0,0) = d92ﬂ+\/§<2K(9)+”1n4+5d92(“<1)> d92ﬂ+0(€)

(2.38)
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By [237) and 238) we deduce
V2 V2 k(@) e (d* . .
?ajyug(o,()) - {1 - + 7 <W Ing? —Inf? + 26%(0) + n(e)ulnzxﬂ +0(e)
V2 4 V21 2, d? 1
— eW,0)=—|—>— = 7S 1).
. 0y U=(0,0) 5 [ 7 MK 0) +H(9)+d92 H} +0(1)
(2.39)
Finally, by [235), 230) and (Z39) the claim follows.
O

2.6. The main term in the whole domain. The main term of the solution is given by

Un(z) = mo(y(@))ur (0(x), y(w)) + (1 - mau(2))) e (), (2.40)

where uy is defined in (ZI5)), U is defined in [Z2]) and ns(z) = ns(y(x)) is a cut-off function
such that 75 = 1 in Dy, ns = 0 in Q\ Das, 0 < 15 < 1 and |nf| < $ and [, | < 55. We choose

(see Lemma (B.1))

13
=g —, 1. 2.41
d:=¢ a€(14, ) (2.41)

3. THE ERROR ESTIMATE

In this section we study the error term

Sx(Uy) := —AU)\-FU)\—)\eU*, in Q. (3.1)

3.1. Estimate of the error close to the boundary. It is useful to scale the problem. After
the change of variables (2.3, in a neighborhood of the curve, we get that the error term is given
by
R(Uy) = fid(e5)02,Us + 02U\ + A(Uy) 4+ M2eP™  in Cos (3.2)
where A is the operator defined in @7) and Uy is defined as follows:
ux(s,t) in Cs
Ux(s,t) := (3.3)
i5(t)n(s,t) + (1 — As(t) 2Ue(es, ut) i Ca5\ Cs
where @y is the scaled function uy defined in (ZTIH), i.e.
4 1 ~
ux(s,t) :==1n = In A+ In L) +w(t)+au(s,t)+0,(s,t) + Bu(s, t) + Z.(s, t) +eges) Zo(t).
(3.4)

Here 7j5(t) = ns(ut) is the cut-off function 7 scaled, which is 1 inside Cs and 0 outside Cas. It is
only necessary to compute the rate of the error part R(U)) defined as

R(U») = R(U») — fis[e2 135 (e5) + Aref(e5)] Zo(t) (3.5)
Lemma 3.1. There exist C > 0 and g9 > 0 such that for all € € (0,e9) we get

IR < Ce3.
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Proof.
For sake of simplicity, let va  := 7501 3+ (1—175)vs,x where v1 x(s,t) = ux(s,t) and vz A(s,t) :=
gus(ss,ﬂt). We are going to estimate ||R(v;x)]|sx for i = 1,2, 3.

It is useful to point out that the weight 1+ [¢|** present in the weighted norm || - ||, in Cas
has the following growth

sup(L + [t|7+2) = O (s*<1*a><d+2>) . (3.6)
Cas
Claim 1: |R(v1.2)|es < Ce3.

For sake of simplicity, set

ﬁ#(s,t) = hy(es, p(es)t) and h,(0,y) == au(0,y) +vu(0,y) + Bu(0,y) + 2.(0, ).

We have to take into account that p = ¢fi. Therefore, a direct computation proves that

D¢hy, = efidyhy, and dsh,(s,t) = edghy, + 2[itdyh,, (3.7)
8t2t}~ht = EQﬂQasyhm (3.8)
02, hy, = 203 hy, + 2% 1t 0F, hy, + €7 [itDyhy + £ 1202, by, (3.9)
and
% hy = €2 pdyhy, + €20, hy + €° patdy hy,. (3.10)

A straightforward computation together with Lemmas 23] 24] and lead to

4 1 ~ 9.
R(vin) =R (ln = InA+1In 4—122 +w+hy, + eg(ss)Zo(t)) — [EQM%eg(Es) + Areg(es)] Zo(t)

-2 2,2 -1, - 2,9
__# 2 j [T er 267 ppat o5 pOTR
= 0. h o) — _ )
= )2 = T 2 T T 2 T = s
3.—14,
UK - nee K 1 - 97
- 0 O (In— + hy | — p*h
1— ptk to (1 — ptr)3 [n 472 + u} Wohy
iyt 2t 2/i%t S
- - Och A (eg Zo(t
" ( (1 —ptr)? (1 — ptr)? * (1—ptr)2 ) 1 +A(eg(es)Zo(t))

T e - - 1
+ev (eh“JreOZ" —1 =0, — pay — 2, — p? (042 + p1+ 5(041 + 0)2) - egZo) .

So
(3.11)

Now

R(via) = A(e5(e9) Z0(0) = So = O (20 +0 (2tP0R ) + O (eltl0% )
+0 (53|t|26t’w) +0 ((52|t| + 53|t|2)atilu) +0 (52|t|53ilu)
+0 (017,) + O (R, ) + O (71t (3.12)

By using the estimates of Lemma [B.2] together with the derivatives of the function Bu computed
in 1), ), BO) and BI0), we get
IR(v1,5) — A(€5(e5) Zo(t)) — Sollx < ce®@m! =m0 H2)
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Now ~
A (e§(e5) Zo(t)):= bo(s, )25 Z0 + by (s, 1)e50% Zo + ba(s, t)eé50; Zo
+b3(s, 1) [e§0: Zo] + ba(s, t) [gé§Z0] — 1Pes Zo
where the coefficients b;(s, t) are defined in (27). Then we deduce immediately
I (e5(5) Zo (1)) [l < =

Finally,
w | _h ~ 5 2 1 2
So=¢€"|e" —1 -0, —pa; —Z, — p a2+51+§(a1+v)
Sg
e thu {eegz" —-1- eéZo} +e” (eg“ - 1) €520
S5 S§
and hence
3l < CE*

and it is independent of ey while
83 < G20
and it is quadratic in eg and finally
I183]|s < Ce?
and it is linear in eg. Since a > % the claim follows.
Claim 2: ||R(v3.3)|l«» < Ce™% for some positive constant c.

Since )
R(vs ) = R(vszr) = AZevs
we get

\/_ c
HR(UB,/\)H** < c¢ sup *Jevs,x (1+ |t|a+2) <cef.

—€
2
C25\Cs | €

Claim 3: |R(vax)]|sx < Ce3.

By making some tedious computations, one gets that

R(van) = iisR(v1x) + (1 — 75)R(v3.x) + Ra (3.13)
where
Ry = 150275 (1, x — v3,0) + 215057505 (V1,x — v3,x) + Ofyfls (Vi) — v3\) + 2047750 (V1 x — v3,2)
By
+ A(sv1x + (1 = 7s)vs 2) — AsA(v1,2) — (1 — 7s)A(vs 2)
Bs

+ )\,UQ (eﬁév1,>\+(1*ﬁ6)vs,>\ — fjgett> — (1 _ ﬁé)evs,x)

B3
By using the expansion (3I3) and the result of claim 1 and claim 2 we get that

R(v2,3) || < ce3 4 ce™ % 2|
[R(v2,\)[lx < ce® + + IRz
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So we are left to estimate || Ral|««. Let us prove that
[Ralss < Cede=(ma)e+2), (3.14)
Now we take into account that
) ) ) 2 g2
85775 =0 (5)7 at775 =0 ( ) 855775 (62) ) 852’15775 =0 <F> 8tt775 (5_2) .
By 232), 233) and ([B.30), we immediately deduce that for any (s,t) € Cas \ Cs (remember that
1= ¢ef)

vLA(s,t) —vsa(s, 1) = da(es, pt) — \fue(fs,ut) =O0(E[t]*) + O,

01 (v1.7(5.1) — vaa(s:1)) = 0, (amss,ut) - ?us@s,m)) — 0(3]) + O(E 1)
and by using (3.30)
Os (v1,2(8,t) — v A(s,t)) = €0p (uk(ss,ut) - gue(as, ,ut)> + e2itd, (uk(ss,ut) - gue(ss,ut)>

= O(*[t]) + O(E%|t°) + O(e|t?)
Then

e? €
By :=0 (52|'Ul,/\ - U3,A|) + O (|0s(vix —u3)|) + O <§|U1,>\ - ”37>\|) +0 (g|at(”17>\ - ”37>\)|)

e’ gt
=0 + O@E3t) + O (5—2|t|4> +0 <F|t|3)
from which it follows that
1Bi]|,s < ce20t1-(-a)(o+2),

Now
Bo := bo02,75(v1,x — V3,0) + 2b00sT1s0s (V1 x — v3,0) + b103ils (V1,0 — V3,0) + 2b1047750; (v1,x — v3,2)

+bo02%i15 (01,0 — v3.2) + b20sT50; (V1. x — v3.0) + D205 05 (V1,3 — V3.2) + baOsTI50 (V1.5 — v3.))

+b30i7is (V1,2 — v3x) + DaDsTs (V1,0 — v3,2)
and straightforward computations show that

||82||** < C€3a7(17a)(0+2).

Finally,
33 — )\u2€v1,x (e(l—ﬁa)(vs,A—m,A) _ 1) + )\/1/261}1’)\(1 _ 776) (1 _ evs,x—m,x)
and so
Bs = O (e”|vi,x — v3,al)
and hence

1B3 ]l < CEP.
Putting together all these estimates [B1) follows by using the fact that a < 1. The result of the

That concludes the proof.
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Lemma 3.2. Let oy, vy, B, and z, as in Lemmas [2.3, and [2.8, respectively. It holds
true that uniformly with respect to y € Das

and

@u(0,y) = O ('y;) +o(|?;|4)
D, (0,y) = ('yf) +0 (“2'3) ) (lz;lf’),
03y (8,y) = O (IyEIQ) Lo (|y|3) Lo (lyl‘*) 0 ("Z{P)’ .

Oyau(8,y) =0 (M)

02, 00,(0.5) = O (E) e ('3'2),
gy (0,y) = O (Jyl)

vu(0,y) = O (Jy]),
9ovu(0,y) = O (lyl)

02,0,(6,1) = O o (¥
991)#( 5y)* (|y|)+ 23 )

dyv, =0 (1), (3.16)
ly|?
o =0 (15).

62 9 _ O |y|3
Gyvu( ay) - 5—3 )

Bu(0.y) = O(ly*),
5
uit.0) = 0 () + 0 (1),
R0 =0 (uf?) + 0 (U7) +0 (117), (3.17)
yﬂu(9 y) =0 (lyl),
95,8.(0,y) = O (|yl)
39yﬂu(9 y) =0(yl),

2,(0,y) = O(ely|),
aezu(G,y) =0 (elyl),

4
Y
OBz (0.) = 0lely) + 0 (14 ).

Oyzu(0,y) = O (e), (3.18)
aiyzu(H,y) =0 (|z—|2)a

3
agyzli(ea y) =0 (%) +0 (E),
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Proof.
Let us remind that g = €/i(0). Then

1 1 Y
wu(y):hl? +1DE +w(€ﬂ) . (3.19)

It is easy to check that (taking into account (Z3))

V2 1 V2

2
7~Uu(y)—1n>\:?Jrhnﬂ2 —~ Eﬂy+0(1). (3.20)
Moreover, some straightforward computations show that
poio(y\y |
9 =22 - (= | ==0(= 3.21
R
Y 1 1
0 = —=0(- 3.22
vuly) = v (Eﬂ) = (s) (3.22)
and

fi y\1 a4 v(y\y 1 |yl

i
. . . 2
d ([ d (i y\y (2 (Y \ Y ly[?
2 _ o = T ~ 1 I J I J
o=t (1) 35 () (5) £+ () v (3) 5 -0 (%) em

and analogously

3
Bggowy(y) = O <|5—|3) (3.25)
and \
Fee0wn(y) = O <|5—‘|1> (3.26)

Moreover

. . 2
d i\ »(y\y p\ oy Y
63 — _ - L 327
Oeywu (y) 4o <ﬂ2> w (Eﬂ) 52[2 + (‘LALQ w Eﬂ Egﬂ ( )

(3.28)

o(L)+o (%) o () o9

Let us estimate «, and its derivatives.
By using (320), B21), (322), 23), B24), B28), (328) and B217) and using the expression
of a;, given in Lemma we immediately deduce the first three estimates in (3I5). The last
three estimates in (.15 follows by the mean value theorem taking into account the initial value
data in ([ZI8) and by using the equation satisfied by c,.

Let us estimate v, and its derivatives. Since v, (6,y) = efw (9, %) we get immediately

2
Y
v =0(y);  Ouu=0(1); v, =0 <L>

e3

Moreover

60, (0, y) = efw <9, i) + fi0pv <9, i) — Lo <9, %) y = O(ly)),
efl efl i efl



A2
Roa(0,y) = eiw(0,L) +2e0000 (0, L) o (0, L
oV (0, y) Euv( u)+ efl ev( Eu) 20w\ 05 Y

Yy
i o5) s 12)

We have used the following facts. Since v solves equation (Z22)), the functions dpv and 9j,v
solve the equations

faiyagv —eY0pv = eV Opar1(0,y) in R
and
—8;7!3391) — Y0300 = €031 (0, y) in R.

Therefore we apply Lemma 27 and we deduce that v, 9gv and 93,v have a linear growth, namely
they satisfy for any y € R and 6 € [0, ¢], the inequalities

[0(8,9)],|86v(8, )|, 0550(0, y)| < erly| + c2
and
|8yv(9,y)|, |662yv(9ay)|’ |ageyv(9a y)' S c3

for some positive constants ¢, co and c¢3. We also remark that by equation ([2:22) we deduce that
02,0 (6, 9) | < arlyl? + azly| + as for any y € R and 0 € [0, 4],

for some positive constants a1, as and as.

Arguing in a similar way, we prove estimates involving the functions 3, and z,. O

Lemma 3.3. Let U be given in LemmalZ38 Then if € is small enough

B |ix(0,y) — gus(o,y) O(ly))+ 0 <|y|2> +0 <|y|3> +0 <|y|5> uniformly in Das.
(3.30)

Proof. First of all, by mean value theorem we get for some g € [0, 3]

V2

30145(9, y) = 30145(9, 0)+yay (aOZ/lE) (9a 0)+?a§y89u6(97 g)y2 = -2 ) +

t>|t>

@3
I
)
<
Q

7N\

§

(V]

\_/

ﬂz

Here we use the boundary condition in (2.28) and the fact that 9.y (9ple) is uniformly bounded

because of (2.30).
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Now let us compute
dgux(0,y) = Ogwyu(y) + g (6, y) + 0ovu(0,y) + 09Bu(0, ) + 0oz, (6, y) + €2 Zg

— Bw(y) + O (lyl) + O ('9'2) 10 ('9'3) 10 ('gl5) .
- —2% +%£ L0y +0 ('9'2) ‘o ('yi?’) Lo (Iz;If’) |

We take into account estimate ([B2I)) together with the first estimates in BI5), BI46), (I17)
and ([BI8). Then the claim follows.

O
3.2. Estimate of the error in the inner part.
Lemma 3.4. There exist ¢ >0 and g9 > 0 such that for any € € (0,£¢) we have
IS UN) oo, D55 < €7 F- (3.32)

Proof.
Since U solves ([2.28) we have

Sx(Ux) = Sx QUE = el = —ieg(uf_l) = —ie\/g(uf_u")eg(u"_l).
€ g2 g2
Now, by the fact that 9,Uy < 0 we deduce that Up(z) — 1 < ¢ < 0 if z € Q\ Dys for some
Uy

constant ¢. Moreover, by ([230) we also deduce that |U:(x) — Uy (z)| < ce for any x € 2\ Days for
some constant c¢. Therefore, the claim follows. O

3.3. The projection of the error along Z;. We are going to compute the component of the
scaled error R(Uy) given in ([B.2) along Zj.

Lemma 3.5. There exists €9 > 0 such that for any € € (0,e9) the following expansion hold:

0
. R(U\) Zo dt = €2 €% (ao(es)éo(es) + af (es)éq) + az(es)eq] + > Mo(es) (3.33)

+ e¥Hy(eg, €0, €0) for any s € [0, f],

where
ao(es) = it + eaf(es) (3.34)
and
as(es) = Ay + ea5(es) (3.35)
with af i =0,1,2 explicit smooth functions, uniformly bounded in e. Moreover in (3.33))

e My is a sum of explicit smooth functions of the form, uniformly bounded in €;
e Hy denotes a sum of functions of the form

ho(ES) [hl(eo) + 0(1)h2(60, éo, 60)]
— hg is a smooth function uniformly bounded in &;
— hy1 and hs is a smooth function of its arguments, uniformly bounded in € when eg

satisfys (2I7);
— o(1) = 0 as € — 0 uniformly when ey satisfys 217).
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Proof. For sake of simplicity, let vo x := 7sv1 x + (1 — 75)vs,x where vy A(s,t) = (s, t) and
v (s, t) == ‘/_U (es, ut).

First of all we get that by using (3H) and BI3))

0

: -4 -4
R(U)\)Zo dt = RoZy dt + R(’Ug )\)ZO dt +/ 7]572(’01 ,\)Zo( )d
_ 25 _ 25 _ 28 25
10 1 10

0
+ [e20285 (e5) + Aveg(es)] / s Z3(t) db.

"

n

We remark that

/O Z2(t)dt = % +0 (e—m%)

T

and hence
e3 [e*fi3éo(es) + Areg(es)] + O (e*m%) .

Moreover by using Claim 2 of Lemma B.J] we get that
=0 (e_c%)

for some positive ¢ and similarly, by using Claim 3 of Lemma [3I] and also the exponential decay
of Zy it follows that

I? =0 (e_c%)

for some positive c. It remains to evaluate only I9. By using (B.11))

I = [ Rix)Zo(t)dt+0(e7%)
0 n2 0 1242 0
4 pt 27 2¢ gty
= 78hZ t)dt ———=0;h, Zo(t) dt — 75thdt
/é (1 — ptr)2 "% 0() +/_é (1 — ptr)? tt'op 0() /_é (1 — ptr)? st 0()
W W m
0 c g2 - 0 0 3 —14:
itk WK - wee Ttk 1 ~
— —_— Zo(t) dt — Zo(t) dt —_— 1 h,| Zo(t)dt
/,g (1—/m)38tw ot /J 1—/matz“ ot +/J (1 — ptr)? o [n‘l 7 4 o)

0 0 . 2012 -2
~ t nepteR 204t ~
- 2thdt/ oo Buh Zo(t) dt
[ rewoas [ (=G~ G e ) M0

0 0
+[}&%Oﬁ+[i<%mwa»%@w+/

T o
Tl

0
A S3Z(t) dt +/ SiZo(t)dt + O (e %)
_s _s

0
= e Mo(es)(1 + of / (eg(es)Zo(t)) Zo(t) dt + SEZ(t) dt

s
m

x:\cﬂ

0
+/ S Zo(t)dt + O (e %)
_3s
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where My(gs) is a sum of smooth functions uniformly bounded in e that does not depend on ey.
Now

o

52é0<16ﬂ = 4 2k(es)i?(es) / ’ tzg(t)dt)

0
/_g A(e(25)Z0(t)) Zo(t) dt = & 202 |,

ag(es)
5 [0 5 0
+e2 |eég (—Qﬂﬂ/ tO Zo 2y dt) +e2 |eg (—ﬂlﬁ/ 0 Zo 2 dt)
a5 (es) as(es)

+ e2h(eq, éo, é0)(1 + o(1))

where h(eg, €9, €0) is a sum of functions depending linearly on e, ég, €y. Now

0 0 , 0
/ S3Zydt = e*F(eo)(1 + o(1)); / S3Zydt = e2 eo/ e Z3 (g +v)dt| (1+0(1))
_s _s

— 00

as(es)
where F' is quadratic in eg.
Putting together all these estimates we get

0
- : 1 1
. R(UN)Zo dt = £3 |2 <§ﬂ% + 5a8> éo + aj(es)éo + <§A1 + €a§> eo| + &3 My(es)

_ 25
ag(es) as(es)

+e3F(e)(1 + (1)) + ¥ h(eo, éo, é0)(1 + o(1))

and the result follows. O

4. THE REMAINDER TERM
We split the remainder term @y in ([LI4) as
Dy = n25Pr + Y, (4.1)

where ¢, solves a linear problem defined in a neighborhood of the boundary and ), solves a
linear problem defined in the whole domain. More precisely, we are led to consider the couple of
linear problems

AY — 4 (1 —mas)AePh = —(1 — 025)Sx(Un) — (1 — 126)N (25 + )
— 2Vna5V — pAnas in Q (4.2)
0, = 0 on 99

and

{ L(¢) = —Sx(Ux) — N(n2s¢ + 1) — AeP ) in Dyg 43)

&,gb =0 on 82?25.
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4.1. The remainder term in the whole domain. Given a function ¢ defined in a neighbor-
hood of the boundary, let us find a function ¢ which solves problem ([@.2]).

First of all, it is useful to point out that for any g € L% (Q) there exists a unique 1 solution
to the linear problem

A — 9+ (1 —mas) XePp =g in Q
{ B =0 on 99 (44)
with
[¥]loe < Cllglloo- (4.5)

It is enough to show that the linear perturbation term (1 — 725) AeY*1) is small as ¢ goes to zero.
Indeed, arguing as in Lemma [3.4] we have

11 = m25)Ae oo < €%

for some positive constant c.

Now, let us split the remainder ¢ = ! + 42 where 1! solves a linear problem and ? solves
a nonlinear problem. More precisely, ¢! solves (@4 with

g = —(1 = n25)S\(Ux) = (1 = n25) N (n26%) — 2V 125V — pAnas (4.6)
and 12 solves ([@4) with
9= —(1 = n25)[N (1260 + 9" + %) — N(125)]. (4.7)

It is clear that for any function ¢ there exists a unique 1! solution to (#4) with the R.H.S.
as in (A0). Let us prove that

3lle < e 2D g, (4.8)

By ([@3) we need to estimate the L>°-norm of R.H.S. given in (£8). First of all, in Lemma [34]
we have

[[(1 = 126)SA(Un)|oc < € ¢

for some positive constant ¢. Moreover

(1 = n25) N (11269) [l < €| (1 = m25) A" 03567 [lo < €ll(L = m25)Ae™ [loo | (1 = 1126 )m25 615
< cem 2070 g .

since
1 ~ -
(1 = m2s)m250 00 < €| sUp ——=] 4]l < """l
” Cas\Cs 1 T £l

where we agree that ¢ is nothing but the scaled function o(gs, ut). Finally

e reN°tl -~ —a) T
IVn5V6lloe < = (5) N9l < e D).

and
2

€ EN7 1 1 o —a)|| 4
o8l < 55 (5)” 101l < e+ 20- ).

Moreover it is possible to show thta the nonlinear operator ¢y is Lipschitz such that

[0a(dr1 — Ya(dr2)]loo < ce@TDA=D|G) — o,
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Once we have found the function !, we solve equation (&) with R.H.S. @7). A simple
contraction mapping argument (the nonlinear term N is quadratic) yields the existence of a
function 92 such that

1920 < 11 = m25)Ae™ [loo |9 oo < €™ %9l (4.9)

for some positive constant c.

4.2. The remainder term close to the boundary: a nonlinear projected problem. In
order to solve problem ([3]), it is necessary to solve a nonlinear projected problem naturally
associate with it. Since it is defined in a neighborhood of the boundary, it is useful to scale it.
Then we are led to study the problem: given u which satisfies 23) and eq which satisfies (Z11),
find a function co(s) and a function ¢ so that

E(Qf;) - *R(U)\) *Nl ((5) 4+ 00Z0 iIl C25,

¢ =0, on 9Cys N {t = 0},

_ ¢ N

¢><s+g,t) =¢(s:1) (4.10)

(s,1) Zo(t)dt = 0,

\..o
-

where £ is defined in @I0), R(Uy) is defined in @3)) and the superlinear term A (¢) is defined
by

Ni(G) = Aute™ [t — 1 — (o5 + ()] + M2ePab(@) + (Mi2e™ — ) b (4.11)
Here (@) is the scaled function [1)(¢)] (€5, ut) and 1)(¢) is the solution to the problem ([@2). In
(#I0) the terms which contains €5 and e§ in R(Uy) are encode in the last sum (see (30])).

By Proposition 2] £ is invertible. Hence solving (£10) together with boundary, the periodic
and orthogonality conditions reduces to solve a fixed point problem, namely

¢ =T(=R(Ux) = M(9)) = M(9) (4.12)

where 7 is the operator defined in Proposition 2.2
We will prove the following result.

Proposition 4.1. There ezist ¢ > 0 and Ao > 0 such that for all A € (0,Xo) and for any eo
satisfying ZIT), the problem ([EIQ) has a unique solution ¢ = ¢(eg) and co = co(eg), which
satisfy

16l < ce?. (4.13)
Proof. Let us consider the set
~ ~ 5
&:={d: 16l < et}

for a certain positive constant c. We first show that M maps £ into itself.
Let ¢ € £. Then by using Lemma [B.1]

IM(@)][« < CIR(TN) + M (@)[|x < 23 + | N1 ()]s
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We evaluate [N ()]s

IV e < AP (1156 + ()2 e + AP A () [l + [|(Ai”e™ — )
< (e @ [les + € PR s + €GP (D) s + (€D (@) [|x + [[(Ar”e”™ =€) ]|
Now ]2
~ ~ 14 |¢t]° ~
€Y P vx < Zsupe¥ ———— < 2
[ ¢7 (s < |9l up et g ey S fall
le9? (8) e < [1W0(9) 112 sup e (14 [t]7F2) < 22| g2
25
wiT < Id - w1+t < (o+2)(1—a)|| 3|12
¥ (D)]lex < [[¥(D)locl@ll« sUP ¥ ———= < € 91l
Cas I+ |t|
analogously . .
et (9)llr < DD,
and finally

1Oe™ = €)gllen < [l (@p + B+ B + 2 + €5Z0)0n < ™G]
Putting together all these computations we find that
INL(D) [l < 7DD (4.14)
and the first claim is proved.
We next prove that M is a contraction, so that the fixed point problem (I2)) can be uniquely

solved in £. o R ~ ~ R
Indeed, for any ¢1, g2 € M we get (setting 11 := 10(¢1) and 12 := ¥(¢2))

[M(¢1) = M(d2)ll. < ClIN1(D1) = Ni(2)]| s
< Hew .€ﬁ25¢1+¢1 (1 _ €ﬁ25(¢2*¢1)+¢2*¢1 + (7726((52 _ (51) + 1;2 _ 1/;1)) ||**
+]le" (7725((52 — 1) + 1y — 151) (67725&1“;1 — 1) s
Hle® (@1 — ) e + [|(A2e™ — ) (@2 — 1) s

~ ~ ~ ~ 2
< e (ias(d2 — &) + (2 = 1)) o
+lle® (7725((232 — 1)+ — 1/31) (251 + 1)
e (@1 = do)lle + O™ =) = G)llee
< lle®(92 = 1) llee + ll€” (V2 = 1) [lx + [l (92 — 1) (Y2 = W)l
He® (92 = ¢1)(sd1 + ¥1)ll + €% (W2 = 1) (R2sd1 + Y1) s
e (Y1 = Da)llow + 1™ =€) (2 = 61)][n
< max ||gjllf[é2 — Puls + max [lvjlleclv2 — Yrlleo

+ max [95]lc0lld2 — P1llx + |01l P2 — D1lloc + 191 l|oc P2 — b1l

Gl P2 = Dilloo + [d1lloo P2 — i lloo
< e3)|do — bulls

Hence M is a contraction and the proof is complete. O
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4.3. Proof of Theorem [I.1] completed. It only remains to find the function ey to get the
coefficient ¢ in ([@I0) identically equal to zero. To do this, we multiply equation (@I0) by Zy
and we integrate in ¢. Thus the equation
co(0) =0 for any 0 € [0,¢] (here es = 0)
is equivalent to
0 ~ ~ ~ L
/ [R(UA) + L(9) +/\/‘1(¢)} Zodt =0 for any s € [0, E} . (4.15)

25
M

We first remark that, by using (£14), it follows that

0
|, [£@) 4 %:(0)] 2o dt = ctosa-d, (4.16)

M

where 7 is the sum of functions of the form

ho(ES) [hl (60, 60) + 0(1)h2(60, éo, 60)]

where hg is a smooth function uniformly bounded in €, hy depends smoothly on ey and on é;
and it is bounded in the sense that

1Pa]loo < clleolle

and it is compact, as a direct application of Ascoli-Arzeld Theorem shows.
The function hy depends on eg, ég, €9 and it depends linearly on éy and it is Lipschitz with

1h2(eg) — ha(ef) oo < o(1)lleg — e
By using [3.33)) it follows that (@I3) is equivalent to the following ODE
2 (ap(e8)éo + a1(e8)éo) + az(es)ey = E%Mo({;‘s) + 2 Hy 4 elotD-a)+1, (4.17)

where a;( es), 1 =0,1,2 , My, Fy and Hp are as in Lemma B35 and r is as in ([£I6). Our goal is
to find a smooth periodic function ey which solves ([EIT).

In order to do this we introduce an auxiliary problem.

Suppose that po(6) is a positive C?(0,¢) function, p;1(#) is a C*(0,¢) function and € > 0 is a
parameter small enough.

Given an arbitrary function f € C°(0,¢) let us consider the problem

£ (& +pu(0)d) +po(@)r = f i (0,0)
{ 2(0) = () &(0) = () (4.18)

Lemma 4.2. Let
2
¢
APO(G) = (/0 V po(ﬁ) dt) .

There is a small number eg = €o(po, £) > 0 such that if € € (0,e9) satisfies the gap condition
|42 m2e? — Ay, | = Goe for anym € NU {0} (4.19)

whit ¢y is small enough, then there exists a constant C' > 0 such that problem [EIR) has a unique
solution which satisfies

. . c
&[|lloc + elllloo + lloo < —1£lloo (4.20)
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for any f € C°(0,¢). Moreover, if in addition f € C?(0,¢), the unique solution to problem [EIR)
satisfies

2 illo + el + lzlloe < C (I Flloo + 1Flle + 1) (121)
Proof. Although similar results were obtained in [6], we sketch the proof to illustrate why

condition ([@I9) is required.
We take

¢ 2 0
Apo(o) = (/0 Vpol(t) dt) ;o s(0) Vpo(t)dt,  y(s) = xz(0).

Then [EIR) is transformed into

il

€%§+qux+wyff@) in (0, ) (4.22)
y(0) = y(m) 9(0) = y(m)
with
Po 1 P Ap, g Apo S
S)= 5 — —] vy = ; s) = .
Q( ) 200 ﬂ'\/A_pO\/p_o 0 2 f( ) w2 Do
It is a standard fact that the eigenvalue problem
y+q(s)y+rvy=20 in (0,7
i+als)y y | (0,7) (4.23)
y(0) = y(m) 9(0) = g(m)

has an infinite sequence of eigenvalues (v, ), C R such that

1
,/Vm2m+0<—3> as m — oo
m

with associated eigenfunctions y,,(s) that forms an orthonormal basis in L?(0, 7).
Thus, if vy # &2v,y, for all m > 0 the problem (IF) is solvable. In such a case the solution ([EIS))
can be described as

W)= Y (o)
m=0 m

where fm / f $)Ym(s) ds.
Since y € 02(0 7) the above expression holds in C?(0, 7). From ([@I9) we find that

Vg — vme?| = gs

if € is sufficiently small. Next we notice that, by using Cauchy-Schwarz inequality and Parseval’s

identity we have
o0
722
(3 2ot
m=0

[yl <
Coming back to the original variable

N

fmym(s)

vy — 2v,,

N

(§ ) i

m=0

m=0

A

¢ Po

12lloo = llyllee < -

C
7l < SNl

In this way, one can also estimate the L°°(0,7)- norms of ¢ and . Therefore the result holds.
For a more detailed treatment of this and estimate ([4.2I]) one can see [[6], Lemma 8.2]. O
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In view of system (£.I8), it is natural to consider a perturbation of the equation in ({I8]), namely

(4 p1(0)3) + (po(6) + hoc@) o = f  in (0,0) o)
z(0) =z(¢)  #(0) =i(¢) '
where {Po.c(0)}e>o is a family of C?(0,¢) functions such that
sup [|po.cllc2(0,0) < C (4.26)
e>0
and 5
Po,e
sup e : <C. 4.27
E>IO) Oe 0 ( )
Then we have a constant M > 0 and a family {A.}. C R such that
Apo(0)+po,- (0) = Dpo(e) T he
and oA
|Ac| + ¢ a; <M. (4.28)
We observe that if there exists a small € > 0 such that
[4m?m?e? — (Ap, +eAe) | = &e  m=0,1,2,... (4.29)

for some small ¢y > 0, then ([@I9) holds afetr A, is substituted by Ay, <5, . and hence existence
of a unique solution to ([@23]) satisfying a priori bounds (@20) and (2] is guaranteed.
Moreover ([@26]) allows us to choose the constant C' > 0 in ([@20) and (£ZI) to be independent
of e.

Remark 4.3. (i) First we deduce a sufficient condition of £ > 0 for which inequality ([@29])
holds. Notice that (£29]) means that if
Am*m?e® = Ay, + el (or 4m*m?e? < Ay, + )
then it should be
4m*m?e? — Eoe < Ap, + €A (or 4m*m?e? + e < Ay, + )

for a sufficiently small ¢ > 0 and for every m € NU {0}. Given any small number & > 0,

let us write
Ap, +eAe

(mo + ao)?
with some mg € N large and ag € [0,1). Assume ag # 0. Then the least m € N satisfying
4m2m2e? > Ap, +eAc is m = mg + 1. Besides, for m > my + 1 we have

<m0—|—1 )2& (A +eh.)7 %
mo + ao 0 27 (mo + ag)

2(1 — C 1 1
1+ ( ao)f €0 _+O<_2>
mo 2m\/Apy Mo mg
co

provided ag < 1 — 2m/hnn choosing ¢y < 2my/Ap,.

(ii) Let us show the existence of a sequence of small positive numbers & > 0 converging to

zero satisfying ([£29) provided ([E27) holds.
Indeed it is easy to see that the equation ([£30) has a unique pair (mg,ap) for any

e € (0,e1) where e1 > 0 is determined by A,, and M in ([@28).

A% = (4.30)

Am®m2e? — Ge = (Ap, +eAL)

> (Apy +eAe)

2 Ay, + €A
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We come back to the original problem.
Let us introduce the linear operator

Lo(eo) := &2 (ap(e5)éo + ai(es)éq) + az(es)eo.
The following result holds.
Lemma 4.4. We have a positive number Ay, and a number {Ag, }e such that if
[Am*m®e® — (Mpy +eMpgc)| = e m=1,2... (4.31)

for some positive and sufficiently small constant ¢y, then for any f € CP(R) N L>=(R), there
exists a unique eg € C7(R) solution of Lo(eg) = f. Moreover, there exists C > 0 such that

. ) C
leolle = €[€olloc + €lléolloc + [leoll < I fllee-
Finally, if f € C}(R), then
leolle = €2lollo + ellolloo + lleoll < € [ 7loa + 1o + 1 Flc] -

Proof. The equation &2 (ag(e5)éo + a1(es)éo) + aa(es)eg = f can be written as

g2 (éo +p1(9)é0) + (po(é’) + Eﬁ(),g)eo =g

with
ai(es) A a5(0)3(0) — iy 0
0) = ; 0) = =575 £(0) = - +eq:(0); = .
nO= e PO gEy P it 6) w08 9=
It is clear that po(6) > 0 is a C2(0,¢) function and po . € C?%(0,¢) function and ([E26) and [E27)

hold. Then we let

¥/ A 2
Ay = /1/A1dt
Ho (0 H% )

and hence there exist numbers Ay, . such that
Apotepo. = Mo + M jg e
and the result comes from the above discussions. O

Proof.[Proof of Theorem [[LT] By Lemma 4] it follows that there exists a sequence of small
€ = &, > 0 converging to zero as m — 400 such that the operator Lo(eg) is invertible with
bounds for Lo(ep) = h given by

lleolle < Ce™[[hl|oo,

for some positive constant C. Finally, by Contraction Mapping Argument using the properties
of the right-hand side of ([@I1), it follows that, the problem ([IT) has a unique solution with
HeOHE < cg(a+2)(17a)

and that concludes the proof. a
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5. THE LINEAR THEORY

In this section we give the proof of Proposition 2221 We need a couple of preliminary results.

Lemma 5.1. Assume & ¢ {0,++/A1}. Then given h € L>®(R?), there exists a unique bounded
solution of

(£ — €% = h in R2. (5.1)
Moreover

[¥]loo < Céllh]lo (5.2)
for some constant C¢ > 0 only depending on &.

Proof.We argue as in Lemma 3.1 of [6]. O

Lemma 5.2. Let ¢ a bounded solution of ﬁ((b) + 0%¢ = 0 in R2. Then ¢(s,t) is a linear
combination of the functions Z1(t), Zy(t) cos(v/A1s), Zo(t) sin(v/A1s).

Proof. We argue as in Lemma 7.1 of [5]. O

Proof of Proposition The proof will be carried out in three steps.

Step 1: A priori bound (special case) Let us assume for the moment that in problem EI0)
the function c¢q is identically zero.

We will prove that there exits C' > 0 so that for any h with ||A|.. < 400 and any ¢ solution of
problem

L(¢) =h in Cos
9,6 =0 on 9Cas N {t =0}
¢ (s+ f, t) = ¢(s, 1) (5.3)
0
(s5,8)Zo(t)dt =0  VseRT.

_2s
m

with ||¢]|« < 400 we have

911« < C|lh]|xx-

By contradiction we assume that there exist sequences A, — 0, (hy), and (én), solutions of
B3) where

dp, = e for some a € (0,1) and pn(e,8) = enfi(ens)
such that
[fnll« =1 1P lx — 0.

To achieve a contradiction we will first show that

[énlloc — 0. (5.4)
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If this was not the case then we may assume that there is a positive number ¢ for which
|#nlloo,cas, > . Since we also know that

|¢n(s,1)] <

c
(L+ [t
we conclude that for some A > 0

|PnllLoe(tj<a) > ¢

Let us fix an s,, such that
c
Pn(sns M Loe(ej<a) > 3

By elliptic estimates, compactness of Sobolev embeddings and the fact that the coefficients
of A(gbn) tends to zero as A\, — 0, we see that we may assume that the sequence of functions
q}n(s, t) := ¢n(s+sn,t) converges uniformly over compact subsets of R?, to a nontrivial, bounded
solution of

AF020+ 050 +€"p=0  in R?
where [ig° is a positive constant, which with no loss of generality via scaling, we may assume
equal to one. By virtue of Lemma then gz~5 is a linear combination of Zy and Z;. Moreover
by the decay behavior and the orthogonality conditions assumed, which pass to the limit thanks
to the Dominated Convergence, we find then that (5 = 0. This is a contradiction that shows the

validity of (B.4).
Let us conclude now the result of Step 1.
Since || ||« = 1, there exists (sy, t,) with r, := |t,| = +00 such that
7| (8 tn)| + 75Dy (81, t0)| > € > 0.
Let us consider now the scaled function
bn(20,2) = 15.0n(sn + Tnz0,n2)
defined on D given by

_ 14 28,71
D::{(zo,z) : —r;lsngzogrgl (——sn>; —#<z<0}.
pin(Ens)

Then we have
|¢n (20, 2)| + [2]|[DPn(20,2)| < |2|77 inD

and for some z,, with |z,| =1
|6 (0, 2)| 4+ [ D (0, 2,)| > ¢ > 0.
Moreover g?)n satisfies
6,002z 00 + 02,00 +0(1)C(¢n) =hn  in D

where Bn(zo, 2) =13 2hy (Sp + 20, Tnz), fion = [ (Sn + Tn20) and C‘(q;n) is bounded.

Since 1
.S
0s L = 0(ep);
<Mn(€n(3n + TnZO))> Hoo,D =)

i)
5\ pin (En(8n + Tn20))

10572 1|0, p = Olen);

=0(e,")

‘OO,D
then, we may assume that

fio.n — i1° >0
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and that the function g?)n converges uniformly, in C'— sense over compact subsets of D, to gz~5
which satisfies

[*0z020h+ 0.6 =0 in D, (5.5)
where
D, :=(0,00) x (—00,0)
and ¢ satisfies
|6(20, 2)| + |2[| D20, 2)| < |2| 77 (5.6)
with the boundary condition. With no loss of generality, we may assume that g* = 1.
Hence ¢ is weakly harmonic in D, and hence ¢ = const. Moreover since it satisfies (5.6, it

follows that gzNS =0.
This is a contradiction.

Step 2: A priori bound (general case) We claim that the a priori estimate obtained in Step 1
is valid for the full problem [@I0). We conclude from Step 1 that

[6ll+ < c[llallee + llcoZollex] < Cl[R]lex + [lcolloo] (5.7)

for any h with ||h]|.« < oo and solution ¢ of problem (£I0). To conclude we have to find a bound
for the coefficient co(s).
Testing the equation in (ZI0) with Zy and integrating with respect to dt, we get

co(s)/o ngt/o E(qb)Zldt/O hZy dt (5.8)

=8
=8
=8

Since Zy decays exponentially

0
1 e
/ Zjdt =5 +0(e” )

_2
Hence from (B.8)) it follows that
1 — VAT Ry O w °
co(s) 5+0(e ) = | i§0%eZodt+ | (0h0+e"0) Zodt+ | A(¢)Zodt
3 % —#
0
f/ hZ, dt.
_25
(5.9)
It is easy to see that
0 0 1
hZy dt| < ||h|x ————— dt < C||h]]sx. 5.10
[ nzoa <l [ G de< Ol (5.10)

Now by using the boundary condition, the orthogonality condition and the radial symmetry
of Zy we get

0
[, @+ ero)zadt] < 0ol (5.11)

26
n

Now, since
0
¢Zpdt =0

28
m
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if we make twice the s— derivative and we make some computations, we immediately get that

0
02,07, dt
)

26
"

<O (e79) lIgll-.

Moreover we get

0 0 0
‘ / A($)Zodt| = ‘ / bols, )92, 070 dt + / by (5, )02 0 2 dt
_ 25 _ 25 _ 25
0

0 0
+/ ba(s,1)0% 02 dt+/ bg(s,t)atqﬁZo,dt—i—/ ba(s, )00 7y dt
_ 25 )

I~
=[5

=|

m
where b; are defined in (2.1).
Now reasoning as before

0
< / 102,670 dt < =0 (%) |6

2

£

0
/ bO(Sv t)agsd)ZO dt
28
m

=|

0
‘/ bi(s, )00 Zo dt| < O(e%)||¢ll« + CE||¢ll. < Ol

=8

0 0
‘/ . ba(s,1)0%.0Z0 dt| < €| @] / Ny bs(s,t)0cdZo dt| < e||d||+;
T T
0
[, 00020 1] < 2161l
_ 25
I
hence by (5.9)
[colloe < CllAllx + cell@]] (5.12)

Combining (5I12) with (1) the result follows.

Step 3: (Ezistence part) We establish now the existence of a solution ¢ for problem (ZI0).
We consider the case in which h(s, t) is a T-periodic function in s, for an arbitrarily and large but
fixed T'. We then look for a weak solution ¢ to ([LI0) in Hp defined as the subspace of functions
¥ which are in H'(B) for any B bounded subset of Cas, which are T-periodic in s, such that

9,9 = 0 on dCas N {t = 0} and so that
0
/ VZodt =0 YV € HY(B).
_2s

Let Dy :={t € [—2#—5, 0} : s €(0,7)} and the bilinear form in Hyp:

B(o.w) = | wL(@)dt Ve Hy.
Dr
Then problem (ZI0) gets weakly formulated as that of finding ¢ € Hp such that
Bow)= [ hodt  Vuetr.
Dr

If h is smooth, elliptic regularity yields that a weak solution is a classical one.
The weak formulation can be readily put into the form

6+ K@) =h  inHy
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where h is a linear operator of h and K is compact.

The a priori estimate of Step 2 yields that for A = 0 only the trivial solution is present. Fredholm
alternative thus applies yielding that problem ([I0) is thus solvable in the periodic setting. This
is enough for our purpose. However we remark that if we approximate a general h by periodic
functions of increasing period and we use uniform estimate we obtain in the limit a solution to
the problem.
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