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LARGE MASS BOUNDARY CONDENSATION PATTERNS IN THE

STATIONARY KELLER-SEGEL SYSTEM

MANUEL DEL PINO, ANGELA PISTOIA, AND GIUSI VAIRA

Abstract. We consider the boundary value problem
{

−∆u+ u = λeu, in Ω
∂νu = 0 on ∂Ω

where Ω is a bounded smooth domain in R
2, λ > 0 and ν is the inner normal derivative at

∂Ω. This problem is equivalent to the stationary Keller-Segel system from chemotaxis.
We establish the existence of a solution uλ which exhibits a sharp boundary layer along the
entire boundary ∂Ω as λ → 0. These solutions have large mass in the sense that

∫

Ω
λeuλ ∼

| log λ|.

1. Introduction and statement of the main result

Chemotaxis is one of the simplest mechanisms for aggregation of biological species. The term
refers to a situation where organisms, for instance bacteria, move towards high concentrations of
a chemical which they secrete. A basic model in chemotaxis was introduced by Keller and Segel
[9]. They considered an advection-diffusion system consisting of two coupled parabolic equations
for the concentration of the considered species and that of the chemical released, represented,
respectively, by positive quantities v(x, t) and u(x, t) defined on a bounded, smooth domain Ω
in R

N under no-flux boundary conditions. The system reads






∂v
∂t

= ∆v −∇ · (v∇u) in Ω
τ ∂u
∂t

= ∆u− u+ v in Ω
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω,

(1.1)

where ν denotes the unit inner normal to ∂Ω. Steady states of (1.1) are the positive solutions of
the system 





∆v −∇ · (v∇u) = 0 in Ω
∆u− u+ v = 0 in Ω
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω.
(1.2)

Problem (1.2) can be reduced to a scalar equation. Indeed, testing the first equation against
(ln v − u), an integration by parts shows that a solution of (1.2) satisfies the relation

∫

Ω

v|∇(ln v − u)|2 = 0

and hence v = λeu for some positive constant λ, and thus u satisfies the equation

{
−∆u+ u = λeu, in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.3)

Reciprocally, a solution to problem (1.3) produces one of (1.2) after setting v = λeu. In this
paper we consider problem (1.3) when Ω ⊂ R

2 is a bounded domain with smooth boundary and
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λ > 0 is a small parameter. By integrating both sides of the equation we see that a necessary
condition for existence is λ < 1.

The analysis of problems (1.1), (1.2) and their corresponding versions in entire space R
2, has

a long history, starting with the work by Childress and Percus [3]. The analysis of the steady
state problem (1.3) for small λ started with Schaaf [17] in the one-dimensional case. Existence
of a radial solution when Ω is a ball, generating a spike shape at the origin when λ → 0 was
established by Biler [1]. The shape of an unbounded family of solutions uλ with uniformly
bounded masses

lim sup
λ→0+

∫

Ω

λeuλ < +∞

was established in [18, 20]. As in the classical analysis by Brezis and Merle [2], blow-up of the
family is found to occur at most on a finite number of points ξ1, . . . , ξk ∈ Ω, ξk+1, . . . , ξk+l ∈ ∂Ω.
More precisely, in the sense of measures,

−∆uλ + uλ = λeuλ ⇀

k∑

i=1

8πδξi +

k+l∑

i=k+1

4πδξi (1.4)

as λ → 0. Here δξ denotes the Dirac mass at the point ξ. Correspondingly, away from those
points the leading behavior of uλ is given by

uλ(x) →
k∑

i=1

8πG(x, ξi) +
k+l∑

i=k+1

4πG(x, ξi) (1.5)

where G(·, ξ) is the Green function for the problem
{

−∆G+G = δξ, in Ω,
∂G
∂ν

= 0 on ∂Ω.
(1.6)

For each given non-negative numbers k and l, a solution uλ with the properties (1.4) and (1.5)
for suitable points ξi is proven to exist in [7]. Near each point ξ = ξi the leading concentration
behavior is given by

uλ(x) ∼ ω(|x− ξ|)
where ω is a radially symmetric solution of the equation

−∆ω = λeω in R
2, (1.7)

namely a function of the form

ω(r) = ln
8δ2

(δ2 + r2)2
− lnλ.

where δ is a suitable scalar dependent on λ and the point ξ.
Since uλ is uniformly bounded away from the points ξi, this forces for the parameter δ to

satisfy δ2 ∼ λ. We observe that all solutions ω of (1.7) satisfy
∫

R2

λeω = 8π.

Thus, consistently with (1.4), masses are quantized as
∫

Ω

λeuλ → 4π(2k + l). (1.8)

A natural question is that of analyzing of solutions with large mass, namely solutions uλ of
(1.2) with

∫

Ω

λeuλ → +∞ as λ→ 0.
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It is natural to seek for solutions with property which concentrate not just at points but on a
larger-dimensional set. The purpose of this paper is to prove the existence of a family of solutions
to (1.2) with a boundary condensation property, exhibiting a boundary layer behavior along the
entire ∂Ω. These solutions satisfy

lim
λ→0

1

| lnλ|

∫

Ω

λeuλ > 0.

Let us formally derive the asymptotic shape of these solutions. Let us parametrize points of
space in a sufficiently small neighborhood of ∂Ω in the form x = γ(θ) + yν(θ), where γ(θ) is
a parametrization by θ, arclength of ∂Ω, and ν(θ) a corresponding unit inner normal, so that
ν̇(θ) = −κ(θ)γ̇(θ), where κ designates inner normal curvature. We get the following expansion
for the Euclidean Laplacian in these coordinates

∆ = ∂yy +
1

1− κ(θ)y

∂

∂θ

(
1

1− κ(θ)y

∂

∂θ

)

− κ(θ)

1− κ(θ)y

∂

∂y

The solution we look for has a boundary layer, thus large derivatives along the normal and a
comparatively smooth behavior along the tangent direction. It is then reasonable to take near
∂Ω as a first approximation of a solution u(θ, y) of the equation (1.3) a solution of the ordinary
differential equation

w
′′

µ + λewµ = 0, w′
µ(0) = 0, (1.9)

which is

wµ(y)− lnλ = w(y/µ)− 2 lnµ− lnλ, (1.10)

where w(y) = ln 4 e
√

2y

(1+e
√

2y)2
and the concentration parameter µ satisfies

µ(θ) = εµ̂ε(θ) ∼ εµ̂0(θ).

Here ε = ε(λ) is a small positive number which we shall choose below and µ̂0(θ) is a uniformly
positive and bounded smooth function.

Let ϕ ∈ C(Ω̄) compactly supported near the boundary of Ω. A direct computation yields

ε

∫

Ω

λewµϕ =
√
2

∫

∂Ω

ϕµ̂−1
0 dθ +O(ε) ,

since
+∞∫

0

ew(y)dy =
√
2. Thus,

ελewµ ⇀
√
2µ̂−1

0 δ∂Ω

where δ∂Ω is the Dirac measure on the curve ∂Ω.
Then we expect that, globally,

√
2 U = εuλ satisfies approximately

−∆U + U = µ̂−1
0 δ∂Ω,

which means in the limit

−∆U + U = 0 in Ω, ∂νU = −µ̂−1
0 on ∂Ω.

Now, from our ansatz (1.10), we should have that close to the boundary
√
2 U(θ, y) ≈ εw(y/µ)− 2ε ln εµ̂− ε lnλ

and hence, in particular √
2 U(θ, 0) ≈ −ε lnλ− 2ε ln ε



4

By maximum principle and ∂νU = −µ̂−1
0 < 0 the latter relation is consistent in the limit if the

constant ε lnλ approaches a negative number. If we choose U = 1 on the boundary of Ω, then
we take ε such that

−ε lnλ− 2ε ln ε ≈
√
2

so that

ε ≈ −
√
2

lnλ
.

Hence the limiting U equals U0, the unique solution of the problem

−∆U0 + U0 = 0 in Ω, U0 = 1 on ∂Ω. (1.11)

We observe that by maximum principle and Hopf’s Lemma, we have that ∂νU0 < 0, and hence
this fixes our choice of µ̂0(θ) as

µ̂0(θ) = − 1

∂νU0
on ∂Ω.

Our main result asserts the existence of a solution with exactly the profile above for all λ
sufficiently small which remains suitably away from a sequence of critical small values where
certain resonance phenomenon occurs.

Theorem 1.1. Suppose that Ω is a smooth bounded domain of R2. Then there exists a sequence
of positive small numbers λ = λm converging to 0 as m → +∞ such that the problem (1.3) has
a solution uλ such that

0 < lim
λ→0

1

| lnλ|

∫

Ω

λeuλ dx < +∞.

Moreover, if ελ = ελm
is the parameter defined by

ln
4

ε2λ
− lnλ =

√
2

ελ
(1.12)

then
lim
λ→0

ελuλ =
√
2 U0 C0 − uniformly on compact sets of Ω

and, in the sense of measures,

ελλe
uλ ⇀ −

√
2 ∂νU0 δ∂Ω.

We actually believe that problem (1.3) has a solution which concentrates along the entire
boundary, also in the higher-dimensional case Ω ⊂ R

N with N > 3. This fact has been estab-
lished in the radial case, when Ω is a ball, in [16].

Remark 4.3 below assures the existence of small numbers λ > 0 for which the problem (1.3)
has a solution with the desidered behavior. In fact, a more general condition on ελ (and then
on λ) defined as in (1.12) is provided there. This type of condition, known as non-resonance
condition, were imposed to establish the presence of higher dimensional concentration patterns
without rotational symmetries in several works in the literature, starting with the pioneering
works by Malchiodi and Montenegro [12, 13], who prove existence of a concentrating solution uε
along the boundary for the classical Neumann problem

ε2∆u − u+ up = 0 in Ω, ∂νu = 0 on ∂Ω (1.13)

with p > 1. See also [4], [11], [14] for related results.
A major difference between our problem and (1.13) is that the limiting profile is highly local-

ized in the sense that the limiting solution has an exponentially sharp boundary layer O(e−
d
ε )

where d designates distance to the boundary. Instead, in our setting the interaction with the
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inner part of the domain is much stronger. The interaction inner-outer problem makes the im-
provement of approximations considerably more delicate. The construction of an inverse for the
approximate linearized operator is in fact quite different because of the presence of slow decay
elements in the kernel of the asymptotic linearization.

The proof of our result relies on an infinite-dimensional form of Lyapunov-Schmidt reduction.
We look for a solution to (1.3) of the form Uλ + Φλ where Uλ, the main term, is a suitably
constructed first approximation and Φλ is the remainder term. Then Problem (1.3) can be
rewritten as

+L(Φλ) = Sλ +N(Φλ) in Ω, (1.14)

where

L(Φ) := ∆Φ− Φ+ λeUλΦ, (1.15)

Sλ(Uλ) := −∆Uλ + Uλ − λeUλ (1.16)

and

N(Φ) := −λeUλ
[
eΦ − 1− Φ

]
. (1.17)

The strategy consists of finding an accurate first approximation Uλ (Section 4.21) so that the
error term Sλ(Uλ) be small in a suitably chosen norm (Section 3). Then an invertibility theory
for associated linearized operator L (Section 5) allows to solve equation (1.14) for term Φλ via a
fixed point argument (Section 4).
The main term Uλ looks like wµ− lnλ close to the boundary, with wµ defined in (1.10) solves the
ODE (1.9) and concentration parameter µ := µ(λ) approaches 0 as λ goes to 0. The profile of Uλ
in the inner part of the domain looks like τ U0 where U0 solves the Dirichlet boundary problem
(1.11) and the dilation parameter τ := τ(λ) approaches +∞ as λ goes to 0. The concentration
parameter µ(λ) and the dilation parameter τ(λ) have to be chosen so that the two profiles match
accurately close to the boundary. This is the most delicate part of the paper and it is carried
out in sub-section 2.5.

2. The main term

2.1. The problem close to the boundary. Let us parametrize ∂Ω by the arc length

γ(θ) := (γ1(θ), γ2(θ)), θ ∈ [0, ℓ]

where ℓ := |∂Ω|. The tangent vector and the inner normal vector to the point γ(θ) ∈ ∂Ω are
given by

τ(θ) := (γ̇1(θ), γ̇2(θ)); ν(θ) := (−γ̇2(θ), γ̇1(θ))
respectively.
If δ > 0 is small enough, let

Dδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ}
be a neighbourhood of the curve ∂Ω.
Then for any x ∈ Dδ there exists a unique (θ, y) ∈ [0, ℓ]× [−δ, 0] such that

x = γ(θ) + yν(θ) = (γ1(θ)− yγ̇2(θ), γ2(θ) + yγ̇1(θ)).

We remark that in these coordinates the points of the boundary take the form (θ, 0). If u(θ, y)
is a function defined in [0, ℓ] × [−δ, 0] we can define the function u(x) = u(θ(x), y(x)) (we use
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the same symbol for sake of simplicity) for x ∈ Dδ and hence close to the boundary the equation
(1.3) takes the form







− 1

(1− yκ(θ))2
∂2θθu− ∂2yyu− yκ̇(θ)

(1− yκ(θ))3
∂θu+

κ(θ)

1− yκ(θ)
∂yu+ u = λeu in Dδ,

∂yu(θ, 0) = 0

(2.1)

where κ(θ) is the curvature at the point γ(θ) ∈ ∂Ω.

It is useful to introduce the spaces C0
ℓ (R) and C

2
ℓ (R) of ℓ−periodic C0−functions and C2−functions,

respectively.

2.2. The scaled problem close to the boundary. Now, let us introduce an extra parameter
ε := ελ such that

ln
4

ε2λ
− lnλ =

√
2

ελ
, i.e. λ =

4

ε2λ
e
−

√
2

ελ . (2.2)

It is easy to check that ελ → 0 as λ→ 0. We agree that in the following we will use indifferently
the two parameters ε and λ to get the necessary estimates.
Moreover, let us choose the concentration parameter µ(θ) := µ(λ, θ) in (1.10) as

µ(θ) := εµ̂(θ),where µ̂(θ) := µ̂ε(θ) ∈ C2
ℓ (R). (2.3)

The function µ̂ will be defined in Lemma 2.8.
Finally, let us set

µ̂0(θ) := − 1

∂νU0

∣
∣
∣
∂Ω

= − 1

∂yU0(θ, 0)
. (2.4)

We note that by maximum principle and Hopf’s lemma, µ0 is a strictly positive C2−function.

Now, let us scale problem (2.1). In Dδ it is natural to consider the change of variables

u(θ, y) = ũ

(
θ

ε
,
y

µ

)

, with ũ = ũ(s, t). (2.5)

It is clear that

(θ, y) ∈ Dδ if and only if (s, t) ∈
[

0,
ℓ

ε

]

×
[

− δ

µ
, 0

]

.

Let ũ = ũ(s, t), then we can compute

∂θu = ε−1∂sũ− µ̇µ−1t∂tũ

∂2θθu = ε−2∂2ssũ− 2ε−1µ̇µ−1t∂2stũ− µ̈µ−1t∂tũ+ 2µ̇2µ−2t∂tũ+ µ̇2µ−2t2∂2ttũ

∂yu = µ−1∂tũ

∂2yyu = µ−2∂2ttũ
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where the dot stands for the derivative with respect to θ.
Hence, problem (2.1) can be written as







µ̂2
0(εs)∂

2
ssũ+ ∂2ttũ+ Ã(ũ) + λµ2eũ = 0 in Cδ,

∂tũ = 0 on ∂Cδ ∩ {t = 0}

ũ

(

s+
ℓ

ε
, t

)

= ũ(s, t), i.e. ũ is ℓ
ε
−periodic in s

(2.6)

where Cδ := R
+ ×

[

− δ
µ
, 0
]

and the linear operator Ã is defined by

Ã(ũ) :=

[

µ̂2

(1− µtκ(εs))
2 − µ̂2

0

]

︸ ︷︷ ︸

b0(s,t)

∂2ssũ+
µ̇2t2

(1− µtκ(εs))
2

︸ ︷︷ ︸

b1(s,t)

∂2ttũ

− 2ε−1µµ̇t

(1− µtκ(εs))
2

︸ ︷︷ ︸

b2(s,t)

∂2stũ+
µ3ε−1tκ̇(εs)

(1− µtκ(εs))
3

︸ ︷︷ ︸

b4(s,t)

∂sũ− µ2ũ

+

[

− µ̈µt

(1− µtκ(εs))
2 − µ2µ̇t2κ̇(εs)

(1− µtκ(εs))
3 +

2µ̇2t

(1− µtκ(εs))2
− µκ(εs)

1− µtκ(εs)

]

︸ ︷︷ ︸

b3(s,t)

∂tũ

. (2.7)

It is important to point out that the linear operator Ã is a perturbation term since all bi’s are
uniformly small when λ is small (because of (2.3)).

2.3. A linear theory close to the boundary. Let us read the first order term of uλ close to
the boundary in the scaled variables: since uλ looks like wµ − lnλ where the one-dimensional
bubble wµ is defined in (1.10), it turns out that the first order term of ũλ is nothing but w− lnλ
where w ≡ w1, namely

w(t) := ln 4
e
√
2t

(

1 + e
√
2t
)2 , t ∈ R (2.8)

which solves

w
′′
+ ew = 0, in R. (2.9)

Therefore, it is important to develop a linear theory for the linear operator L which comes
from the linearization of equation (2.6) around the bubble w − lnλ, namely

L(φ̃) := µ̂2
0∂

2
ssφ̃+ ∂2ttφ̃+ Ã(φ̃) + ewφ̃. (2.10)

In order to study L, an important role is played by the linear operator

L̂(φ̃) := ∂2ttφ̃+ ewφ̃ (2.11)

which is nothing but the linearized operator around w of equation (2.9).

Lemma 2.1. Let us consider the associated linearized eigenvalue problem

L̂(φ̃) = Λφ̃ in R.
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(i) Λ = 0 is an eigenvalue with associated eigenfunctions Z1(t) = 2 + tw′(t) and Z2(t) =

w′(t) =
√
21−e

√
2t

1+e
√

2t
. We point out that Z1 behaves like a constant at infinity and that Z2

is not a bounded function.
(ii) There exists a positive eigenvalue Λ1 with associated radial, positive and bounded eigen-

function Z0 = Z0(t) with L2−norm equal to one. Moreover, Z0 decays exponentially at

infinity as O
(

e−
√
Λ1|t|

)

.

Proof.(i) has been proved in [8]. (ii) can be proved arguing as in Section 3 in [6]. ✷

We consider the following projected problem: given a bounded function h, which is ℓ
ε
−periodic

in s, find s bounded ℓ
ε
−periodic function c0(s) and φ̃ such that







L(φ̃) = h+ c0(s)Z0(t) in Cδ,

∂tφ̃ = 0 on ∂Cδ∩{t = 0},

φ̃

(

s+
ℓ

ε
, t

)

= φ̃(s, t)

∫ 0

− 2δ
µ

φ̃(s, t)Z0(t) dt = 0 ∀ s ∈ R
+.

(2.12)

In Section 5, we will establish existence and a priori estimates for problem (2.12) in the
following norms:

‖φ‖∗ := sup
Cδ

(1+ |t|σ)|φ|+sup
Cδ

(1+ |t|σ+1)|∇φ|, ‖h‖∗∗ := sup
Cδ

(1+ |t|σ+2)|h|, for σ ∈ (0, 1). (2.13)

More precisely, we prove that

Proposition 2.2. There exist λ0 > 0 and a constant C > 0, such that for any λ ∈ (0, λ0) and
for any h with ‖h‖∗∗ < +∞, there exists a unique φ = T (h) bounded solution of the problem
(2.12) such that

‖φ‖∗ ≤ C‖h‖∗∗. (2.14)

2.4. The main term close to the boundary. The function wµ − ln λ is the main term of
the approximated solution close to the boundary. We need to add some correction terms, which
improve the main term.
More precisely, we let

uλ(θ, y) = wµ(θ, y)− lnλ+ αµ(θ, y)
︸ ︷︷ ︸

1st−order

+ vµ(θ, y) + βµ(θ, y)
︸ ︷︷ ︸

2nd−order

+ zµ(θ, y)
︸ ︷︷ ︸

3rd−order

+ eε0(θ)Z
µ
0 (y)

︸ ︷︷ ︸

unknown!

(2.15)

where

• αµ(θ, y) is defined in Lemma 2.3,
• vµ(θ, y) is defined in Lemma 2.4 and βµ(θ, y) is defined in Lemma 2.5,
• zµ(θ, y) is defined in Lemma 2.6
• Zµ0 (y) = Z0(

y
µ
), where Z0 is defined in Lemma 2.1 and the function eε0(θ) is defined as

follows

eε0(θ) = ε
3
2 e0(θ) with e0 ∈ C2

ℓ (R). (2.16)

We point out that the function e0 is unknown: it is playing the role of one parameter
and it will be chosen in Section 4.3 as solution of an ordinary differential equation. We
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assume that e0 has uniformly bounded ‖ · ‖ε−norm, i.e.

‖e0‖ε := ‖ε2ë0‖∞ + ‖εė0‖∞ + ‖e0‖∞ 6M0, (2.17)

for some large fixed number M0.

The first term we have to add is a sort of projection of the function wµ, namely the function
αµ given in the next lemma.

Lemma 2.3. (i) The Cauchy problem






−∂2yyαµ +
κ(θ)

1− yκ(θ)
∂yαµ = − κ(θ)

1− yκ(θ)
∂ywµ − wµ + lnλ+

1

(1 − yκ(θ))2
∂2θθwµ

αµ(θ, 0) = ∂yαµ(θ, 0) = 0

(2.18)

has the solution

αµ(θ, y) = −
∫ y

0

1

1− σκ(θ)

∫ σ

0

(1 − ρκ(θ))

[

− κ(θ)

1− ρκ(θ)
∂ywµ(ρ)− wµ(ρ) + lnλ

]

dσ dρ

−
∫ y

0

1

1− σκ(θ)

∫ σ

0

1

1− ρκ(θ)
∂2θθwµ(ρ) dρ dσ

(ii) For any (θ, y) ∈ D2δ \ Dδ it holds:

αµ(θ, y) := (κ(θ) ln 4)y +
y2

2

[

κ2(θ) ln 4+
d2

dθ2
ln µ̂2 −

√
2

µ
κ(θ) +

(

ln
4

µ2
− lnλ

)]

+

+
y3

6

[

−2
√
2

µ
κ2(θ)−

√
2

µ
+ κ(θ)

(

ln
4

µ2
− lnλ

)

+

√
2

ε

d2

dθ2
1

µ̂

]

+O
(
|y|3
)
+O

( |y|4
ε

)

.

(iii) Moreover, via the change of variables θ = εs and y = µt, the function α̃µ(s, t) :=
αµ(εs, µt) solves the problem







− ∂2ttα̃µ +
µ(εs)κ(εs)

1− tµ(εs)κ(εs)
∂tα̃µ = − µ(εs)κ(εs)

1− tµ(εs)κ(εs)
∂tw − µ2

(

ln
1

µ2
− lnλ+ w

)

+
1

(1− µtκ(θ))2

[

µ̂2∂2ss ln
1

4µ̂2
+ t∂tw

(

− µ̈
µ
+

2µ̇2

µ2

)

µ2 + µ̇2t2∂2ttw

]

α̃µ(εs, 0) = ∂tα̃µ(εs, 0) = 0.

(2.19)

(iv) The following expansion holds

α̃µ(s, t) := αµ(εs, µt) = µα1(εs, t) + µ2α2(εs, t) +O(ε3t4), for |t| 6 2δ

µ

where

α1(εs, t) = κ(εs)

∫ t

0

w(σ) dσ +

√
2

2
µ̂(εs)t2 (2.20)
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and

α2(εs, t) = κ2(εs)

∫ t

0

σw(σ) dσ +
t2

2
ln

1

µ̂2(θ)

+

∫ t

0

∫ σ

0

(w(ρ) − ln 4) dρ dσ +

√
2

6
µ̂κ(θ)t3 +

d2

dθ2
ln µ̂2 t

2

2
.

(2.21)

Proof. We argue as in s Lemma 3.1 of [16]. ✷

Now, let us construct the second order term of our approximated solution.

Lemma 2.4. (i) There exists v solution of the linear problem (α1 is given in (2.20))

− ∂2yyv − ewv = ewα1(θ, y) (2.22)

such that
v(θ, y) = ν1(θ)y + ν2(θ) +O(e−|y|) |y| → +∞

where
ν1(θ) := 2κ(θ)(1− ln 2) + ln 4µ̂(θ) (2.23)

and

ν2(θ) := −
∫ 0

−∞

(
2

1− e
√
2y

+
y√
2

)

α1(θ, y)∂yw(y)e
w(y) dy. (2.24)

(ii) In particular, the function vµ(θ, y) := µv
(

θ, y
µ

)

solves the problem

−∂2yyvµ − ewµvµ = µewµα1

(

θ,
y

µ

)

.

(iii) Moreover, via the change of variables θ = εs and y = µt, the function ṽµ(s, t) :=
vµ(εs, µt) = µ(εs)v(εs, t) solves the problem

−∂2ttṽµ − ewṽµ = µewα1(εs, t)

and the following expansion holds (see (2.3))

ṽµ(s, t) := εν1(εs)µ̂(εs)t+ εν2(εs)µ̂(εs) +O
(

εe−|t|
)

as |t| → +∞.

Proof. We apply Lemma 2.7. ✷

As we have done for the function wµ, we have to add the projection of the function vµ, namely
the function βµ given in the next lemma.

Lemma 2.5. (i) The Cauchy problem (vµ is given in Lemma 2.4)






−∂2yyβµ +
κ(θ)

1− yκ(θ)
∂yβµ = − κ(θ)

1− yκ(θ)
∂yvµ(θ, y)

βµ(θ, 0) = ∂yβµ(θ, 0) = 0

(2.25)

has the solution

βµ(θ, y) =

∫ y

0

κ(θ)

1− σκ(θ)

∫ σ

0

∂yvµ(θ, ρ) dρ dσ.

(iv) For any (θ, y) ∈ D2δ \ Dδ we have:

βµ(θ, y) = ν1(θ)κ(θ)
y2

2
+ O(|y|3).
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(iii) Moreover, via the change of variables θ = εs and y = µt, the function β̃µ(s, t) :=
βµ(εs, µt) solves the problem







−∂2ttβ̃µ +
µ(εs)κ(εs)

1− tµ(εs)κ(εs)
∂tβ̃µ = − µ(εs)κ(εs)

1− tµ(εs)κ(εs)
∂tṽµ

β̃µ(εs, 0) = ∂tβ̃µ(εs, 0) = 0

(2.26)

(iv) The following expansion holds:

β̃µ(s, t) := βµ(εs, µt) = µ2β1(εs, t) +O(ε3t3)

where

β1(εs, t) = κ(εs)

∫ t

0

∫ σ

0

∂yv(εs, ρ) dρ dσ. (2.27)

Proof. We argue as in Lemma 3.4 of [16]. ✷

Finally, we build the third order term of our approximated solution.

Lemma 2.6. There exists z solution of the linear problem (α1, α2 and β1 are given in
(2.20), (3.35) and (2.27) respectively, and v is given in Lemma 2.4 )

−∂2yyz − ewz = ew
[

α2(θ, y) + β1(θ, y) +
1

2
(α1(θ, y) + v(θ, y))2

]

such that

z(θ, y) = ζ1(θ)y + ζ2(θ) +O(e−|y|) |y| → +∞
where

ζ1(θ) :=
1√
2

∫ 0

−∞
h(θ, y)∂yw(y)e

w(y) dy

and

ζ2(θ) := −
∫ 0

−∞

(
2

1− e
√
2y

+
y√
2

)

h(θ, y)∂yw(y)e
w(y) dy,

with

h(θ, y) = α2(θ, y) + β1(θ, y) +
1

2
(α1(θ, y) + v(θ, y))

2
.

(ii) In particular, the function zµ(θ, y) := µ2z
(

θ, y
µ

)

solves the problem

−∂2yyzµ − ewµzµ = µ2ewµ

[

α2

(

θ,
y

µ

)

+ β1

(

θ,
y

µ

)

+
1

2

(

α1

(

θ,
y

µ

)

+ v

(

θ,
y

µ

))2
]

.

(iii) Moreover, via the change of variables θ = εs and y = µt, the function z̃µ(s, t) :=
zµ(εs, µt) = µ2(εs)z(εs, t) solves the problem

−∂2ttz̃µ − ew z̃µ = µ2ew
[

α2(εs, t) + β1(εs, t) +
1

2
(α1(εs, t) + v(εs, t))

2

]

and the following expansion holds (see (2.3))

z̃µ(s, t) := ε2ζ1(εs)µ̂
2(εs)t+ ε2ζ2(εs)µ̂

2(εs) +O
(

ε2e−|t|
)

as |t| → +∞.

Proof. We apply Lemma 2.7. ✷
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Lemma 2.7. (Lemma 4.1, [8]) Let h ∈ C0(R) such that
∫

R

h(y)w′(y)ew(y)dy < +∞. Then the

function

U(y) := w′(y)

y∫

0

1

(w′(σ))2

0∫

σ

h(τ)w′(τ)ew(τ)dτdσ

solves the ordinary differential equation

−U′′ − ewU = ewh in R.

In particular,

U(y) = ay + b +O
(

e−c|y|
)

in C1(R) as y → −∞

where

a :=
1√
2

0∫

−∞

h(τ)w′(τ)ew(τ)dτ and b := −
0∫

−∞

(
2

1− e
√
2τ

+
τ√
2

)

h(τ)w′(τ)ew(τ)dτ

and

U(y) = cy + d+O
(

e−c|y|
)

in C1(R) as y → +∞

where

c :=
1√
2

+∞∫

0

h(τ)w′(τ)ew(τ)dτ and d := −
+∞∫

0

(
2

1− e
√
2τ

+
τ√
2

)

h(τ)w′(τ)ew(τ)dτ.

2.5. How to match the main term close to the boundary with the main term in inner

part. The solution uλ in the inner part of the domain looks like τU0 where U0 solves (1.11) and
the dilation parameter τ := τ(λ) approaches +∞ as λ goes to 0. The function uλ (and its
derivative) built in (2.15) in a neighborhood of the boundary has to match with the function

τ(λ)U0 (and its derivative). To this aim it is necessary to choose the dilation parameter τ =
√
2
ε

and most of all it is essential to modify the profile of the solution in the inner part of the domain
by building a new function Uε which approaches U0 as ε goes to zero and such that its value
on the boundary together with the value of its normal derivative coincide with the value of uλ
and its normal derivative. The main tool here is the Dirichlet-to-Neumann map and the key
ingredient is the choice of the concentration parameter µ̂ as showed in the next crucial lemma.

Lemma 2.8. There exists ε0 such that for any ε ∈ (0, ε0) there exist a function µ̂ε ∈ C2(∂Ω)
and a solution Uε to the problem







−∆Uε + Uε = 0, in Ω,
Uε = 1− ε√

2

(
ln µ̂2

ε−εµ̂εν2−ε2µ̂2ζ2(θ)
)

on ∂Ω,

∂νUε = − 1
µ̂ε

+ ε√
2
(2κ+ µ̂ε ln 4+εµ̂ζ1(θ)) on ∂Ω.

(2.28)

Moreover (µ̂0 is given in (2.4))

µ̂ε = µ̂0 +O(ε) in C1(∂Ω) as ε→ 0 (2.29)

and

Uε = U0 +O (ε) in C2(Ω) as ε→ 0. (2.30)



13

Proof. Let us apply the Dirichlet-to-Neumann map, which maps the value on ∂Ω of a harmonic
function U to the value of its normal derivative ∂νU on ∂Ω, i.e. F

(
U|∂Ω

)
= ∂νU . Therefore, we

are going to find a function µ̂ ∈ C2(∂Ω) such that

F

(

1− ε√
2

(
ln µ̂2−εµ̂ν2−ε2µ̂2ζ2(θ)

)
)

= − 1

µ̂
+

ε√
2
(2κ+ µ̂ ln 4+εµ̂ζ1(θ)) . (2.31)

Let

H(ε, µ̂) = F

(

1− ε√
2

(
ln µ̂2−εµ̂ν2−ε2µ̂2ζ2(θ)

)
)

+
1

µ̂
− ε√

2
(2κ(θ) + µ̂ ln 4 + εµ̂ζ1(θ)) .

We have that

H(0, µ̂0) = F (1) +
1

µ̂0
= 0, since F (1) = ∂νU0 and µ̂0 = − 1

∂νU0
(see (2.4)).

Moreover

∂H

∂µ̂
(0, µ̂0) = − 1

µ̂2
0

6= 0.

Hence by the Implicit Function Theorem, there exists a unique µ̂ = µ̂ε(θ) ∈ C2(∂Ω) such that
H(ε, µ̂ε) = 0, namely (2.31) holds. Estimates (2.29) and (2.30) follow by elliptic standard
regularity theory.

✷

Lemma 2.9. Let Uε be given in Lemma 2.8. Then there exists ε0 such that for any ε ∈ (0, ε0)

uλ(θ, y)−
√
2

ε
Uε(θ, y) = O

(
ε|y|2

)
+O

( |y|4
ε

)

uniformly in D2δ \ Dδ (2.32)

and

∂y

[

uλ(θ, y)−
√
2

ε
Uε(θ, y)

]

= O(ε|y|) +O

( |y|3
ε

)

uniformly in D2δ \ Dδ. (2.33)

Proof. Let us prove the estimate (2.32). The proof of (2.33) is similar.
Let U be a generic harmonic function, namely

−∆U + U = 0 in Ω. (2.34)

Then the expansion of
√
2
ε
U on the boundary reads as

√
2

ε
U(θ, y) =

√
2

ε

[

U(θ, 0) + y∂yU(θ, 0) +
y2

2
∂2yyU(θ, 0) +

y3

6
∂3yyyU(θ, 0)

]

+O

( |y|4
ε

)

. (2.35)

Now, let us write the expansion of the function uλ close to the boundary. In D2δ \ Dδ we get

wµ(y)− lnλ = ln
4

µ2
− lnλ−

√
2y

µ
+O(e−

√
2 |y|

µ ) =

√
2

ε
− ln µ̂2 −

√
2y

µ
+O(e−

√
2 |y|

µ ),
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because µ = εµ̂ and (2.2) holds. Therefore, by Lemmas 2.3, 2.4, 2.5 and 2.6 we deduce

uλ(θ, y) = wµ(y)− lnλ+ αµ(θ, y) + vµ(θ, y) + βµ(θ, y) + zµ(θ, y) + eε0(θ)Z
µ
0 (y)

=

√
2

ε

[

1− ε√
2

(
ln µ̂2−εµ̂ν2(θ)−ε2µ̂2ζ2(θ)

)
]

︸ ︷︷ ︸

∼ U(θ,0)

+

√
2

ε
y

[

− 1

µ̂
+

ε√
2
(2κ(θ) + µ̂ ln 4+εµ̂ζ1(θ))

]

︸ ︷︷ ︸

∼ ∂yU(θ,0)

+

√
2

ε

y2

2

[

1− κ(θ)

µ̂
+

ε√
2

(
d2

dθ2
ln µ̂2 − ln µ̂2 + 2κ2(θ) + κ(θ)µ̂ ln 4

)]

︸ ︷︷ ︸

∼ ∂2
yyU(θ,0)

+

√
2

ε

y3

6

[

− 1

µ̂
− 2

µ̂
κ2(θ) + κ(θ)+

d2

dθ2
1

µ̂

]

︸ ︷︷ ︸

∼ ∂3
yyyU(θ,0)

+O
(
|y|3
)
+O

( |y|4
ε

)

+O(e−c
|y|
ε ), (2.36)

for some c > 0. Let us compare (2.35) with (2.36): the first four terms have to be equal! In partic-
ular, it means that we have to find an harmonic function U such that the value of U and the value

of its normal derivative ∂νU on the boundary have to be equal to
[

1− ε√
2

(
ln µ̂2−εµ̂ν2−ε2µ̂2ζ2(θ)

)]

and
[

− 1
µ̂
+ ε√

2
(2κ+ µ̂ ln 4+εµ̂ζ1(θ))

]

, respectively. This is done in Lemma 2.8. Therefore, let

us replace in (2.35) and (2.36) the generic armonic function U with the function Uε which solves
problem (2.28). The first two terms coincide. Now, let us check what happens with the higher
order terms, namely terms which involve the second and third derivatives of Uε. The function
Uε solves equation (2.28) which in a neighborhood of the boundary reads as

− 1

(1− yκ)2
∂2θθUε − ∂2yyUε −

yκ̇

(1− yκ)3
∂θUε +

κ

(1 − yκ)
∂yUε + Uε = 0 in D2δ. (2.37)

We have then on the boundary

∂2yyUε(θ, 0) = −∂2θθUε(θ, 0) + κ(θ)∂yUε(θ, 0) + Uε(θ, 0)

and

∂3yyyUε(θ, 0) = −2κ(θ)∂2θθUε(θ, 0)− ∂3θθyUε(θ, 0)− κ̇(θ)∂θUε(θ, 0)
+κ2(θ)∂yUε(θ, 0) + κ(θ)∂2yyUε(θ, 0) + ∂yUε(θ, 0)

Then differentiating twice with respect to θ the value Uε on the boundary and the values of ∂νUε
on the boundary we get

∂2θθUε(θ, 0) = − ε√
2

(
d2

dθ2
ln µ̂2 − ε

d2

dθ2
(µ̂ν2(θ))− ε2

d2

dθ2
(µ̂2ζ2(θ))

)

= − ε√
2

d2

dθ2
ln µ̂2 +O(ε2)

∂3θθyUε(θ, 0) = − d2

dθ2
1

µ̂
+

ε√
2

(

2κ̈(θ) + ¨̂µ ln 4 + ε
d2

dθ2
(µ̂ζ1)

)

= − d2

dθ2
1

µ̂
+O(ε)

(2.38)
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By (2.37) and (2.38) we deduce
√
2

ε
∂2yyUε(θ, 0) =

√
2

ε

[

1− κ(θ)

µ̂
+

ε√
2

(
d2

dθ2
ln µ̂2 − ln µ̂2 + 2κ2(θ) + κ(θ)µ̂ ln 4

)]

+O(ε)

√
2

ε
∂3yyyUε(θ, 0) =

√
2

ε

[

− 1

µ̂
− 2

µ̂
κ2(θ) + κ(θ)+

d2

dθ2
1

µ̂

]

+O(1).

(2.39)
Finally, by (2.35), (2.36) and (2.39) the claim follows.

✷

2.6. The main term in the whole domain. The main term of the solution is given by

Uλ(x) = ηδ(y(x))uλ(θ(x), y(x)) +
(

1− ηδ(y(x))
)
√
2

ε
Uε(x), (2.40)

where uλ is defined in (2.15), Uε is defined in (2.28) and ηδ(x) = ηδ(y(x)) is a cut-off function

such that ηδ = 1 in Dδ, ηδ = 0 in Ω \ D2δ, 0 6 ηδ 6 1 and |η′δ| 6 1
δ
and |η′′

δ | 6 1
δ2
. We choose

(see Lemma (3.1))

δ := εa a ∈
(
13

14
, 1

)

. (2.41)

3. The error estimate

In this section we study the error term

Sλ(Uλ) := −∆Uλ + Uλ − λeUλ , in Ω. (3.1)

3.1. Estimate of the error close to the boundary. It is useful to scale the problem. After
the change of variables (2.5), in a neighborhood of the curve, we get that the error term is given
by

R(Ũλ) := µ̂2
0(εs)∂

2
ssŨλ + ∂2ttŨλ + Ã(Ũλ) + λµ2eŨλ in C2δ (3.2)

where Ã is the operator defined in (2.7) and Ũλ is defined as follows:

Ũλ(s, t) :=







ũλ(s, t) in Cδ

η̃δ(t)ũλ(s, t) + (1− η̃δ(t))
√
2
ε
Uε(εs, µt) in C2δ \ Cδ

(3.3)

where ũλ is the scaled function uλ defined in (2.15), i.e.

ũλ(s, t) := ln
4

ε2
− lnλ+ ln

1

4µ̂(εs)2
+w(t) + α̃µ(s, t) + ṽµ(s, t) + β̃µ(s, t) + z̃µ(s, t) + eε0(εs)Z0(t).

(3.4)
Here η̃δ(t) = ηδ(µt) is the cut-off function ηδ scaled, which is 1 inside Cδ and 0 outside C2δ. It is
only necessary to compute the rate of the error part R̃(Ũλ) defined as

R̃(Ũλ) := R(Ũλ)− η̃δ[ε
2µ̂2

0ë
ε
0(εs) + Λ1e

ε
0(εs)]Z0(t) (3.5)

Lemma 3.1. There exist C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) we get

‖R̃(Ũλ)‖∗∗ ≤ Cε
5
2 .
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Proof.

For sake of simplicity, let v2,λ := η̃δv1,λ+(1−η̃δ)v3,λ where v1,λ(s, t) = ũλ(s, t) and v3,λ(s, t) :=√
2
ε
Uε(εs, µt). We are going to estimate ‖R̃(vi,λ)‖∗∗ for i = 1, 2, 3.

It is useful to point out that the weight 1 + |t|2+σ present in the weighted norm ‖ · ‖∗∗ in C2δ
has the following growth

sup
C2δ

(1 + |t|σ+2) = O
(

ε−(1−a)(σ+2)
)

. (3.6)

Claim 1: ‖R̃(v1,λ)‖∗∗ ≤ Cε
5
2 .

For sake of simplicity, set

h̃µ(s, t) := hµ(εs, µ(εs)t) and hµ(θ, y) := αµ(θ, y) + vµ(θ, y) + βµ(θ, y) + zµ(θ, y).

We have to take into account that µ = εµ̂. Therefore, a direct computation proves that

∂th̃µ = εµ̂∂yhµ and ∂sh̃µ(s, t) = ε∂θhµ + ε2 ˙̂µt∂yhµ, (3.7)

∂2tth̃µ = ε2µ̂2∂2yyhµ, (3.8)

∂2ssh̃µ = ε2∂2θθhµ + 2ε3 ˙̂µt∂2θyhµ + ε3 ¨̂µt∂yhµ + ε4 ˙̂µ2t2∂2yyhµ (3.9)

and

∂2sth̃µ = ε2 ˙̂µ∂yhµ + ε2µ̂∂2θyhµ + ε3µ̂ ˙̂µt∂2yyhµ. (3.10)

A straightforward computation together with Lemmas 2.3, 2.4, 2.5 and 2.6 lead to

R̃(v1,λ) = R
(

ln
4

ε2
− lnλ+ ln

1

4µ̂2
+ w + h̃µ + eε0(εs)Z0(t)

)

− [ε2µ̂2
0ë
ε
0(εs) + Λ1e

ε
0(εs)]Z0(t)

=
µ̂2

(1− µtκ)2
∂2ssh̃µ +

µ̇2t2

(1 − µtκ)2
∂2tth̃µ−

2ε−1µµ̇t

(1− µtκ)2
∂2sth̃µ−

µ2µ̇t2κ̇

(1− µtκ)3
∂tw

− µκ

1− µtκ
∂tz̃µ +

µ3ε−1tκ̇

(1− µtκ)3
∂s

[

ln
1

4µ̂2
+ h̃µ

]

− µ2h̃µ

+

(

− µ̈µt

(1− µtκ)2
− µ2µ̇t2κ̇

(1− µtκ)3
+

2µ̇2t

(1− µtκ)2

)

∂th̃µ + Ã (eε0(εs)Z0(t))

+ ew
(

eh̃µ+e
ε
0Z0 − 1− ṽµ − µα1 − z̃µ − µ2

(

α2 + β1 +
1

2
(α1 + v)2

)

− eε0Z0

)

︸ ︷︷ ︸

S0

.

(3.11)
Now

R̃(v1,λ)− Ã (eε0(εs)Z0(t))− S0 = O
(

∂2ssh̃µ

)

+O
(

ε2|t|2∂2tth̃µ
)

+O
(

ε|t|∂2sth̃µ
)

+O
(
ε3|t|2∂tw

)
+O

(

(ε2|t|+ ε3|t|2)∂th̃µ
)

+O
(

ε2|t|∂sh̃µ
)

+O (ε∂tz̃µ) +O
(

ε2h̃µ

)

+O
(
ε3|t|

)
(3.12)

By using the estimates of Lemma 3.2 together with the derivatives of the function h̃µ computed
in (3.7), (3.8), (3.9) and (3.10), we get

‖R̃(v1,λ)− Ã (eε0(εs)Z0(t))− S0‖∗∗ ≤ cε4a−1−(1−a)(σ+2)
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Now
Ã (eε0(εs)Z0(t)):= b0(s, t)ε

2ëε0Z0 + b1(s, t)e
ε
0∂

2
ttZ0 + b2(s, t)εė

ε
0∂tZ0

+b3(s, t) [e
ε
0∂tZ0] + b4(s, t) [εė

ε
0Z0]− µ2eε0Z0

where the coefficients bj(s, t) are defined in (2.7). Then we deduce immediately

‖Ã (eε0(εs)Z0(t)) ‖∗∗ ≤ cε
5
2

Finally,

S0 = ew
[

eh̃µ − 1− ṽµ − µα1 − z̃µ − µ2

(

α2 + β1 +
1

2
(α1 + v)2

)]

︸ ︷︷ ︸

S1
0

+ew+h̃µ

[

ee
ε
0Z0 − 1− eε0Z0

]

︸ ︷︷ ︸

S2
0

+ ew
(

eh̃µ − 1
)

eε0Z0

︸ ︷︷ ︸

S3
0

and hence

‖S1
0‖∗∗ ≤ Cε3

and it is independent of e0 while

‖S2
0‖∗∗ ≤ Cε2γ0

and it is quadratic in e0 and finally

‖S3
0‖∗∗ ≤ Cε

5
2

and it is linear in e0. Since a >
13
14 the claim follows.

Claim 2: ‖R̃(v3,λ)‖∗∗ ≤ Ce−
c
ε for some positive constant c.

Since

R̃(v3,λ) = R(v3,λ) = λµ2ev3,λ ,

we get

‖R(v3,λ)‖∗∗ ≤ c sup
C2δ\Cδ

∣
∣
∣
∣

4

ε2
e−

√
2

ε ev3,λ
∣
∣
∣
∣
(1 + |t|σ+2) ≤ ce−

c
ε .

Claim 3: ‖R̃(v2,λ)‖∗∗ ≤ Cε
5
2 .

By making some tedious computations, one gets that

R̃(v2,λ) = η̃δR̃(v1,λ) + (1− η̃δ)R(v3,λ) +R2 (3.13)

where

R2 := µ̂2
0∂

2
ssη̃δ(v1,λ − v3,λ) + 2µ̂2

0∂sη̃δ∂s(v1,λ − v3,λ) + ∂2ttη̃δ(v1,λ − v3,λ) + 2∂tη̃δ∂t(v1,λ − v3,λ)
︸ ︷︷ ︸

B1

+ Ã(η̃δv1,λ + (1− η̃δ)v3,λ)− η̃δÃ(v1,λ)− (1− η̃δ)Ã(v3,λ)
︸ ︷︷ ︸

B2

+ λµ2
(

eη̃δv1,λ+(1−η̃δ)v3,λ − η̃δe
v1,λ − (1− η̃δ)e

v3,λ
)

︸ ︷︷ ︸

B3

By using the expansion (3.13) and the result of claim 1 and claim 2 we get that

‖R̃(v2,λ)‖∗∗ ≤ cε
5
2 + ce−

c
ε + ‖R2‖∗∗
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So we are left to estimate ‖R2‖∗∗. Let us prove that

‖R2‖∗∗ 6 Cε3a−(1−a)(σ+2). (3.14)

Now we take into account that

∂sη̃δ = O (ε) , ∂tη̃δ = O
(ε

δ

)

, ∂2ssη̃δ = O
(
ε2
)
, ∂2stη̃δ = O

(
ε2

δ

)

, ∂2ttη̃δ = O

(
ε2

δ2

)

.

By (2.32), (2.33) and (3.30), we immediately deduce that for any (s, t) ∈ C2δ \Cδ (remember that
µ = εµ̂)

v1,λ(s, t)− v3,λ(s, t) = ûλ(εs, µt)−
√
2

ε
Uε(εs, µt) = O(ε3|t|2) +O(ε3|t|4),

∂t (v1,λ(s, t)− v3,λ(s, t)) = µ∂y

(

ûλ(εs, µt)−
√
2

ε
Uε(εs, µt)

)

= O(ε3|t|) +O(ε3|t|3)

and by using (3.30)

∂s (v1,λ(s, t)− v3,λ(s, t)) = ε∂θ

(

uλ(εs, µt)−
√
2

ε
Uε(εs, µt)

)

+ ε2 ˙̂µt∂y

(

uλ(εs, µt)−
√
2

ε
Uε(εs, µt)

)

= O(ε2|t|) +O(ε3|t|5) +O(ε4|t|2).
Then

B1 := O
(
ε2|v1,λ − v3,λ|

)
+O (ε|∂s(v1,λ − v3,λ)|) +O

(
ε2

δ2
|v1,λ − v3,λ|

)

+O
(ε

δ
|∂t(v1,λ − v3,λ)|

)

= O(ε5|t|4) +O(ε3|t|) +O

(
ε5

δ2
|t|4
)

+O

(
ε4

δ
|t|3
)

from which it follows that

‖B1‖∗∗ ≤ cε2a+1−(1−a)(σ+2).

Now

B2 := b0∂
2
ssη̃δ(v1,λ − v3,λ) + 2b0∂sη̃δ∂s(v1,λ − v3,λ) + b1∂

2
ttη̃δ(v1,λ − v3,λ) + 2b1∂tη̃δ∂t(v1,λ − v3,λ)

+b2∂
2
stη̃δ(v̂1,λ − v3,λ) + b2∂sη̃δ∂t(v1,λ − v3,λ) + b2∂tη̃δ∂s(v1,λ − v3,λ) + b2∂sη̃δ∂t(v1,λ − v3,λ)

+b3∂tη̃δ(v1,λ − v3,λ) + b4∂sη̃δ (v1,λ − v3,λ)

and straightforward computations show that

‖B2‖∗∗ 6 Cε3a−(1−a)(σ+2).

Finally,

B3 := λµ2ev1,λ
(

e(1−η̃δ)(v3,λ−v1,λ) − 1
)

+ λµ2ev1,λ(1− η̃δ)
(
1− ev3,λ−v1,λ

)

and so

B3 = O (ew|v1,λ − v3,λ|)
and hence

‖B3‖∗∗ 6 Cε3.

Putting together all these estimates (3.1) follows by using the fact that a < 1. The result of the
claim follows since a >????.

That concludes the proof.
✷
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Lemma 3.2. Let αµ, vµ, βµ and zµ as in Lemmas 2.3, 2.4, 2.5 and 2.6, respectively. It holds
true that uniformly with respect to y ∈ D2δ







αµ(θ, y) = O

( |y|2
ε

)

+ O

( |y|4
ε2

)

∂θαµ(θ, y) = O

( |y|2
ε

)

+O

( |y|3
ε2

)

+O

( |y|5
ε3

)

,

∂2θθαµ(θ, y) = O

( |y|2
ε

)

+O

( |y|3
ε2

)

+O

( |y|4
ε3

)

+O

( |y|6
ε4

)

,

∂yαµ(θ, y) = O

( |y|
ε

)

,

∂2yyαµ(θ, y) = O

(
1

ε

)

+O

( |y|2
ε2

)

,

∂2θyαµ(θ, y) = O (|y|) ,

(3.15)







vµ(θ, y) = O (|y|),
∂θvµ(θ, y) = O (|y|) ,

∂2θθvµ(θ, y) = O(|y|) +O

( |y|4
ε3

)

,

∂yvµ = O (1) ,

∂2yyvµ = O

( |y|2
ε3

)

,

∂2θyvµ(θ, y) = O

( |y|3
ε3

)

,

(3.16)







βµ(θ, y) = O(|y|2),

∂θβµ(θ, y) = O
(
|y|2
)
+O

( |y|5
ε3

)

,

∂2θθβµ(θ, y) = O
(
|y|2
)
+O

( |y|5
ε3

)

+O

( |y|6
ε4

)

,

∂yβµ(θ, y) = O (|y|) ,
∂2yyβµ(θ, y) = O (|y|)
∂2θyβµ(θ, y) = O (|y|) ,

(3.17)

and






zµ(θ, y) = O(ε|y|),
∂θzµ(θ, y) = O (ε|y|) ,

∂2θθzµ(θ, y) = O(ε|y|) +O

( |y|4
ε2

)

,

∂yzµ(θ, y) = O (ε),

∂2yyzµ(θ, y) = O

( |y|2
ε2

)

,

∂2θyzµ(θ, y) = O

( |y|3
ε2

)

+O (ε),

(3.18)
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Proof.

Let us remind that µ = εµ̂(θ). Then

wµ(y) = ln
1

ε2
+ ln

1

µ̂2
+ w

(
y

εµ̂

)

. (3.19)

It is easy to check that (taking into account (2.3))

wµ(y)− lnλ =

√
2

ε
+ ln

1

µ̂2
−

√
2

εµ̂
y +O (1) . (3.20)

Moreover, some straightforward computations show that

∂θwµ(y) = −2
˙̂µ

µ̂
−

˙̂µ

µ̂2
w′
(
y

εµ̂

)
y

ε
= O

( |y|
ε

)

, (3.21)

∂ywµ(y) = w′
(
y

εµ̂

)
1

εµ̂
= O

(
1

ε

)

(3.22)

and

∂2θywµ(y) = −
˙̂µ

µ̂2
w′
(
y

εµ̂

)
1

ε
−

˙̂µ

µ̂3
w

′′
(
y

εµ̂

)
y

ε2
= O

(
1

ε

)

+O

( |y|
ε2

)

, (3.23)

∂2θθwµ(y) = −2
d

dθ

(
˙̂µ

µ̂

)

− d

dθ

(
˙̂µ

µ̂2

)

w′
(
y

εµ̂

)
y

ε
+

(
˙̂µ

µ̂2

)2

w
′′
(
y

εµ̂

)
y2

ε2
= O

( |y|2
ε2

)

, (3.24)

and analogously

∂3θθθwµ(y) = O

( |y|3
ε3

)

(3.25)

and

∂4θθθθwµ(y) = O

( |y|4
ε4

)

. (3.26)

Moreover

∂3θθywµ(y) = − d

dθ

(
˙̂µ

µ̂2

)

w
′′
(
y

εµ̂

)
y

ε2µ̂
+

(
˙̂µ

µ̂2

)2

w
′′′
(
y

εµ̂

)
y2

ε3µ̂
(3.27)

(3.28)

= O

(
1

ε

)

+O

( |y|
ε2

)

+O

( |y|2
ε3

)

(3.29)

Let us estimate αµ and its derivatives.
By using (3.20), (3.21), (3.22), (3.23), (3.24), (3.25), (3.26) and (3.27) and using the expression
of αµ given in Lemma 2.3 we immediately deduce the first three estimates in (3.15). The last
three estimates in (3.15) follows by the mean value theorem taking into account the initial value
data in (2.18) and by using the equation satisfied by αµ.

Let us estimate vµ and its derivatives. Since vµ(θ, y) = εµ̂v
(

θ, y
εµ̂

)

we get immediately

vµ = O (|y|) ; ∂yvµ = O (1) ; ∂2yyvµ = O

( |y|2
ε3

)

.

Moreover

∂θvµ(θ, y) = ε ˙̂µv

(

θ,
y

εµ̂

)

+ εµ̂∂θv

(

θ,
y

εµ̂

)

−
˙̂µ

µ̂
∂yv

(

θ,
y

εµ̂

)

y = O(|y|),
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∂2θyvµ(θ, y) =
˙̂µ

µ̂
∂yv

(

θ,
y

εµ̂

)

+ ∂2θyv

(

θ,
y

εµ̂

)

−
˙̂µ

εµ̂2
∂2yyv

(

θ,
y

εµ̂

)

y−
˙̂µ

µ̂
∂yv

(

θ,
y

εµ̂

)

= O

( |y|3
ε3

)

,

and

∂2θθvµ(θ, y) = ε ¨̂µv

(

θ,
y

εµ̂

)

+ 2ε ˙̂µ∂θv

(

θ,
y

εµ̂

)

−
˙̂µ2

µ̂2
∂yv

(

θ,
y

εµ̂

)

y

+εµ̂∂2θθv

(

θ,
y

εµ̂

)

− 2
˙̂µ

µ̂
∂2θyv

(

θ,
y

εµ̂

)

y

− d

dθ

˙̂µ

µ̂
∂yv

(

θ,
y

εµ̂

)

y +
˙̂µ2

εµ̂3
∂2yyv

(

θ,
y

εµ̂

)

y2

= O(|y|) +O

( |y|4
ε3

)

.

We have used the following facts. Since v solves equation (2.22), the functions ∂θv and ∂2θθv
solve the equations

−∂2yy∂θv − ew∂θv = ew∂θα1(θ, y) in R

and

−∂2yy∂2θθv − ew∂2θθv = ew∂2θθα1(θ, y) in R.

Therefore we apply Lemma 2.7 and we deduce that v, ∂θv and ∂2θθv have a linear growth, namely
they satisfy for any y ∈ R and θ ∈ [0, ℓ], the inequalities

|v(θ, y)|, |∂θv(θ, y)|, |∂2θθv(θ, y)| 6 c1|y|+ c2

and

|∂yv(θ, y)|, |∂2θyv(θ, y)|, |∂3θθyv(θ, y)| 6 c3

for some positive constants c1, c2 and c3. We also remark that by equation (2.22) we deduce that

|∂2yyv (θ, y) | 6 a1|y|2 + a2|y|+ a3 for any y ∈ R and θ ∈ [0, ℓ],

for some positive constants a1, a2 and a3.

Arguing in a similar way, we prove estimates involving the functions βµ and zµ. ✷

Lemma 3.3. Let Uε be given in Lemma 2.8. Then if ε is small enough

∂θ

[

ûλ(θ, y)−
√
2

ε
Uε(θ, y)

]

= O (|y|) +O

( |y|2
ε

)

+O

( |y|3
ε2

)

+O

( |y|5
ε3

)

uniformly in D2δ.

(3.30)

Proof. First of all, by mean value theorem we get for some ȳ ∈ [0, y]

∂θUε(θ, y) = ∂θUε(θ, 0)+y∂y (∂θUε) (θ, 0)+
√
2

ε
∂2yy∂θUε(θ, ȳ)y2 = −2

˙̂µ

µ̂2
+

˙̂µ

µ̂2

√
2

ε
y+O (|y|)+O

( |y|2
ε

)

.

Here we use the boundary condition in (2.28) and the fact that ∂2yy (∂θUε) is uniformly bounded
because of (2.30).
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Now let us compute

∂θuλ(θ, y) = ∂θwµ(y) + ∂θαµ(θ, y) + ∂θvµ(θ, y) + ∂θβµ(θ, y) + ∂θzµ(θ, y) + e0εZ0

= ∂θwµ(y) +O (|y|) +O

( |y|2
ε

)

+O

( |y|3
ε2

)

+O

( |y|5
ε3

)

= −2
˙̂µ

µ̂2
+

˙̂µ

µ̂2

√
2

ε
y +O (|y|) +O

( |y|2
ε

)

+O

( |y|3
ε2

)

+O

( |y|5
ε3

)

.

(3.31)

We take into account estimate (3.21) together with the first estimates in (3.15), (3.16), (3.17)
and (3.18). Then the claim follows.

✷

3.2. Estimate of the error in the inner part.

Lemma 3.4. There exist c > 0 and ε0 > 0 such that for any ε ∈ (0, ε0) we have

‖Sλ(Uλ)‖∞,Ω\D2δ
≤ e−

c
ε . (3.32)

Proof.

Since Uε solves (2.28) we have

Sλ(Uλ) = Sλ

(√
2

ε
Uε
)

= −λe
√

2
ε

Uε = − 4

ε2
e

√
2

ε
(Uε−1) = − 4

ε2
e

√
2

ε
(Uε−U0)e

√
2

ε
(U0−1).

Now, by the fact that ∂νU0 < 0 we deduce that U0(x) − 1 6 c < 0 if x ∈ Ω \ D2δ for some
constant c. Moreover, by (2.30) we also deduce that |Uε(x)−U0(x)| 6 cε for any x ∈ Ω \D2δ for
some constant c. Therefore, the claim follows. ✷

3.3. The projection of the error along Z0. We are going to compute the component of the
scaled error R(Ũλ) given in (3.2) along Z0.

Lemma 3.5. There exists ε0 > 0 such that for any ε ∈ (0, ε0) the following expansion hold:
∫ 0

− 2δ
µ

R(Ũλ)Z0 dt = ε
3
2

[
ε2 (a0(εs)ë0(εs) + aε1(εs)ė0) + a2(εs)e0

]
+ ε3M0(εs)

+ ε3H0(e0, ė0, ë0) for any s ∈ [0, ℓ
ε
],

(3.33)

where

a0(εs) = µ̂2
0 + εaε0(εs) (3.34)

and

a2(εs) = Λ1 + εaε2(εs) (3.35)

with aεi i = 0, 1, 2 explicit smooth functions, uniformly bounded in ε. Moreover in (3.33)

• M0 is a sum of explicit smooth functions of the form, uniformly bounded in ε;
• H0 denotes a sum of functions of the form

h0(εs) [h1(e0) + o(1)h2(e0, ė0, ë0)]

– h0 is a smooth function uniformly bounded in ε;
– h1 and h2 is a smooth function of its arguments, uniformly bounded in ε when e0

satisfys (2.17);
– o(1) → 0 as ε→ 0 uniformly when e0 satisfys (2.17).
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Proof. For sake of simplicity, let v2,λ := η̃δv1,λ + (1 − η̃δ)v3,λ where v1,λ(s, t) = ũλ(s, t) and

v3,λ(s, t) :=
√
2
ε
Uε(εs, µt).

First of all we get that by using (3.5) and (3.13)

∫ 0

− 2δ
µ

R(Ũλ)Z0 dt =

∫ − δ
µ

− 2δ
µ

R2Z0 dt

︸ ︷︷ ︸

I01

+

∫ − δ
µ

− 2δ
µ

R(v3,λ)Z0 dt

︸ ︷︷ ︸

I02

+

∫ 0

− 2δ
µ

η̃δR̃(v1,λ)Z0(t) dt

︸ ︷︷ ︸

I03

+
[
ε2µ̂2

0ë
ε
0(εs) + Λ1e

ε
0(εs)

]
∫ 0

− 2δ
µ

η̃δZ
2
0 (t) dt

︸ ︷︷ ︸

I04

.

We remark that

∫ 0

− δ
µ

Z2
0 (t) dt =

1

2
+O

(

e−
√
Λ1

δ
µ

)

and hence

I04 :=
1

2
ε

3
2

[
ε2µ̂2

0ë0(εs) + Λ1e0(εs)
]
+O

(

e−
√
Λ1

δ
µ

)

.

Moreover by using Claim 2 of Lemma 3.1 we get that

I02 = O
(

e−c
1
ε

)

for some positive c and similarly, by using Claim 3 of Lemma 3.1 and also the exponential decay
of Z0 it follows that

I01 = O
(

e−c
1
ε

)

for some positive c. It remains to evaluate only I03 . By using (3.11)

I03 =

∫ 0

− δ
µ

R̃(v1,λ)Z0(t) dt+O
(
e−

c
ε

)

=

∫ 0

− δ
µ

µ̂2

(1− µtκ)2
∂2ssh̃µZ0(t) dt+

∫ 0

− δ
µ

µ̇2t2

(1− µtκ)2
∂2tth̃µZ0(t) dt−

∫ 0

− δ
µ

2ε−1µµ̇t

(1− µtκ)2
∂2sth̃µZ0(t) dt

−
∫ 0

− δ
µ

µ2µ̇t2κ̇

(1− µtκ)3
∂twZ0(t) dt−

∫ 0

− δ
µ

µκ

1− µtκ
∂tz̃µZ0(t) dt+

∫ 0

− δ
µ

µ3ε−1tκ̇

(1− µtκ)3
∂s

[

ln
1

4µ̂2
+ h̃µ

]

Z0(t) dt

−
∫ 0

− δ
µ

µ2h̃µZ0(t) dt+

∫ 0

− δ
µ

(

− µ̈µt

(1− µtκ)2
− µ2µ̇t2κ̇

(1 − µtκ)3
+

2µ̇2t

(1 − µtκ)2

)

∂th̃µZ0(t) dt

+

∫ 0

− δ
µ

S1
0Z0(t) dt+

∫ 0

− δ
µ

Ã (eε0(εs)Z0(t))Z0(t) dt+

∫ 0

− δ
µ

S2
0Z0(t) dt+

∫ 0

− δ
µ

S3
0Z0(t) dt+O

(
e−

c
ε

)

= ε3M0(εs)(1 + o(1)) +

∫ 0

− δ
µ

Ã (eε0(εs)Z0(t))Z0(t) dt+

∫ 0

− δ
µ

S2
0Z0(t) dt

+

∫ 0

− δ
µ

S3
0Z0(t) dt+O

(
e−

c
ε

)
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where M0(εs) is a sum of smooth functions uniformly bounded in ε that does not depend on e0.
Now

∫ 0

− δ
µ

Ã (eε0(εs)Z0(t))Z0(t) dt = ε
5
2









ε2ë0

(
1

2

∂µ̂ε
∂ε |ε=0

+ 2κ(εs)µ̂2(εs)

∫ 0

−∞
tZ2

0(t) dt

)

︸ ︷︷ ︸

aε0(εs)









+ ε
5
2









εė0

(

−2µ̂ ˙̂µ

∫ 0

−∞
t∂tZ0Z0 dt

)

︸ ︷︷ ︸

aε1(εs)









+ ε
5
2









e0

(

−µ̂κ
∫ 0

−∞
∂tZ0Z0 dt

)

︸ ︷︷ ︸

âε2(εs)









+ ε
7
2h(e0, ė0, ë0)(1 + o(1))

where h(e0, ė0, ë0) is a sum of functions depending linearly on e0, ė0, ë0. Now

∫ 0

− δ
µ

S2
0Z0 dt = ε3F (e0)(1 + o(1));

∫ 0

− δ
µ

S3
0Z0 dt = ε

3
2









e0

∫ 0

−∞
ewZ2

0 (α1 + v) dt

︸ ︷︷ ︸

ãε2(εs)









(1 + o(1))

where F is quadratic in e0.
Putting together all these estimates we get

∫ 0

− 2δ
µ

R(Ũλ)Z0 dt = ε
3
2







ε2
(
1

2
µ̂2
0 + εaε0

)

︸ ︷︷ ︸

a0(εs)

ë0 + aε1(εs)ė0 +

(
1

2
Λ1 + εaε2

)

︸ ︷︷ ︸

a2(εs)

e0







+ ε3M0(εs)

+ ε3F (e0)(1 + o(1)) + ε
7
2h(e0, ė0, ë0)(1 + o(1))

and the result follows. ✷

4. The remainder term

We split the remainder term Φλ in (1.14) as

Φλ = η2δφλ + ψλ, (4.1)

where φλ solves a linear problem defined in a neighborhood of the boundary and ψλ solves a
linear problem defined in the whole domain. More precisely, we are led to consider the couple of
linear problems







∆ψ − ψ + (1− η2δ)λe
Uλψ = −(1− η2δ)Sλ(Uλ)− (1− η2δ)N(η2δφ+ ψ)

− 2∇η2δ∇φ− φ∆η2δ in Ω

∂νψ = 0 on ∂Ω

(4.2)

and {

L(φ) = −Sλ(Uλ)−N(η2δφ+ ψ)− λeUλψ in D2δ

∂νφ = 0 on ∂D2δ.
(4.3)
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4.1. The remainder term in the whole domain. Given a function φ defined in a neighbor-
hood of the boundary, let us find a function ψ which solves problem (4.2).

First of all, it is useful to point out that for any g ∈ L∞(Ω) there exists a unique ψ solution
to the linear problem

{
∆ψ − ψ + (1− η2δ)λe

Uλψ = g in Ω
∂νψ = 0 on ∂Ω

(4.4)

with

‖ψ‖∞ ≤ C‖g‖∞. (4.5)

It is enough to show that the linear perturbation term (1− η2δ)λe
Uλψ is small as ε goes to zero.

Indeed, arguing as in Lemma 3.4, we have

‖(1− η2δ)λe
uλ‖∞ ≤ e−

c
ε

for some positive constant c.

Now, let us split the remainder ψ = ψ1 + ψ2 where ψ1 solves a linear problem and ψ2 solves
a nonlinear problem. More precisely, ψ1 solves (4.4) with

g := −(1− η2δ)Sλ(Uλ)− (1− η2δ)N(η2δφ)− 2∇η2δ∇φ− φ∆η2δ (4.6)

and ψ2 solves (4.4) with

g := −(1− η2δ)[N(η2δφ+ ψ1 + ψ2)−N(η2δφ)]. (4.7)

It is clear that for any function φ there exists a unique ψ1 solution to (4.4) with the R.H.S.
as in (4.6). Let us prove that

‖ψ1
λ‖∞ ≤ cε(σ+2)(1−a)‖φ̃‖∗. (4.8)

By (4.5) we need to estimate the L∞-norm of R.H.S. given in (4.6). First of all, in Lemma 3.4
we have

‖(1− η2δ)Sλ(Uλ)‖∞ ≤ e−
c
ε

for some positive constant c. Moreover

‖(1− η2δ)N(η2δφ)‖∞ ≤ c‖(1− η2δ)λe
Uλη22δφ

2‖∞ ≤ c‖(1− η2δ)λe
uλ‖∞‖(1− η2δ)η2δφ‖2∞

≤ ce−
c
ε ε2σ(1−a)‖φ̃‖∗

since

‖(1− η2δ)η2δφ‖∞ ≤ c

(

sup
C2δ\Cδ

1

1 + |t|σ

)

‖φ̃‖∗ ≤ cεσ(1−a)‖φ̃‖∗,

where we agree that φ̃ is nothing but the scaled function φ(εs, µt). Finally

‖∇η2δ∇φ‖∞ ≤ ε

δ

(ε

δ

)σ+1

‖φ̃‖∗ ≤ cε(σ+2)(1−a)‖φ̃‖∗

and

‖φ∆η2δ‖∞ ≤ ε2

δ2

(ε

δ

)σ

‖φ̃‖∗ ≤ cε(σ+2)(1−a)‖φ̃‖∗.
Moreover it is possible to show thta the nonlinear operator ψλ is Lipschitz such that

‖ψλ(φλ,1 − ψλ(φλ,2)‖∞ 6 cε(σ+2)(1−a)‖φ̃1 − φ̃2‖∗.
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Once we have found the function ψ1, we solve equation (4.4) with R.H.S. (4.7). A simple
contraction mapping argument (the nonlinear term N is quadratic) yields the existence of a
function ψ2 such that

‖ψ2‖∞ ≤ ‖(1− η2δ)λe
uλ‖∞‖ψ1‖∞ 6 e−

c
ε ‖ψ1‖∞ (4.9)

for some positive constant c.

4.2. The remainder term close to the boundary: a nonlinear projected problem. In
order to solve problem (4.3), it is necessary to solve a nonlinear projected problem naturally
associate with it. Since it is defined in a neighborhood of the boundary, it is useful to scale it.
Then we are led to study the problem: given µ which satisfies (2.3) and e0 which satisfies (2.17),

find a function c0(s) and a function φ̃ so that







L(φ̃) = −R(Ũλ)−N1(φ̃) + c0Z0 in C2δ,
∂tφ̃ = 0, on ∂C2δ ∩ {t = 0},

φ̃

(

s+
ℓ

ε
, t

)

= φ̃ (s, t)

0∫

−2 δ
µ

φ̃ (s, t)Z0(t)dt = 0,

(4.10)

where L is defined in (2.10), R(Ũλ) is defined in (3.3) and the superlinear term N1(φ̃) is defined
by

N1(φ̃) = λµ2eŨλ

[

eη̃2δφ̃+ψ̃(φ) − 1− (η̃2δφ̃+ ψ̃(φ))
]

+ λµ2eŨλ ψ̃(φ) +
(

λµ2eŨλ − ew
)

φ̃. (4.11)

Here ψ̃(φ) is the scaled function [ψ(φ)] (εs, µt) and ψ(φ) is the solution to the problem (4.2). In

(4.10) the terms which contains eε1 and eε2 in R(Ũλ) are encode in the last sum (see (3.5)).

By Proposition 2.2 L is invertible. Hence solving (4.10) together with boundary, the periodic
and orthogonality conditions reduces to solve a fixed point problem, namely

φ̃ = T (−R̃(Ũλ)−N1(φ̃)) = M(φ̃) (4.12)

where T is the operator defined in Proposition 2.2.
We will prove the following result.

Proposition 4.1. There exist c > 0 and λ0 > 0 such that for all λ ∈ (0, λ0) and for any e0
satisfying (2.17), the problem (4.10) has a unique solution φ̃ = φ̃(e0) and c0 = c0(e0), which
satisfy

‖φ̃‖∗ ≤ cε
5
2 . (4.13)

Proof. Let us consider the set

E :=
{

φ̃ : ‖φ̃‖∗ ≤ cε
5
2

}

for a certain positive constant c. We first show that M maps E into itself.
Let φ̃ ∈ E . Then by using Lemma 3.1

‖M(φ̃)‖∗ ≤ C‖R̃(Ũλ) +N1(φ̃)‖∗∗ ≤ cε
5
2 + c‖N1(φ̃)‖∗∗.
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We evaluate ‖N1(φ̃)‖∗∗.

‖N1(φ̃)‖∗∗ ≤ ‖λµ2eŨλ(η̃δφ̃+ ψ̃(φ))2‖∗∗ + ‖λµ2eŨλ ψ̃λ(φ)‖∗∗ + ‖(λµ2eŨλ − ew)φ̃‖∗∗
≤ ‖ewφ̃2‖∗∗ + ‖ewψ̃2

λ(φ)‖∗∗ + ‖ewφ̃ψ̃(φ)‖∗∗ + ‖ewψ̃(φ)‖∗∗ + ‖(λµ2eŨλ − ew)φ̃‖∗∗
Now

‖ewφ̃2‖∗∗ ≤ ‖φ̃‖2∗ sup
C2δ

ew
1 + |t|σ+2

(1 + |t|σ)2 ≤ ‖φ̃‖2∗

‖ewψ̃2(φ)‖∗∗ ≤ ‖ψ̃(φ)‖2∞ sup
C2δ

ew(1 + |t|σ+2) ≤ ε2(σ+2)(1−a)‖φ̃‖2∗

‖ewφ̃ψ̃(φ)‖∗∗ ≤ ‖ψ̃(φ)‖∞‖φ̃‖∗ sup
C2δ

ew
1 + |t|σ+2

1 + |t|σ ≤ ε(σ+2)(1−a)‖φ̃‖2∗
analogously

‖ewψ̃(φ)‖∗∗ ≤ ε(σ+2)(1−a)‖φ̃‖∗
and finally

‖(λµ2eŨλ − ew)φ̃‖∗∗ ≤ ‖ew(α̃µ + β̃µ + ṽµ + z̃µ + eε0Z0)φ̃‖∗∗ ≤ εmin{1,γ0}‖φ̃‖∗.
Putting together all these computations we find that

‖N1(φ̃)‖∗∗ ≤ ε(σ+2)(1−a)‖φ̃‖∗ (4.14)

and the first claim is proved.

We next prove that M is a contraction, so that the fixed point problem (4.12) can be uniquely
solved in E .
Indeed, for any φ̃1, φ̃2 ∈ M we get (setting ψ̃1 := ψ̃(φ1) and ψ̃2 := ψ̃(φ2))

‖M(φ̃1)−M(φ̃2)‖∗ ≤ C‖N1(φ̃1)−N1(φ̃2)‖∗∗
≤ ‖ew · eη̃2δφ̃1+ψ̃1

(

1− eη̃2δ(φ̃2−φ̃1)+ψ̃2−ψ̃1 + (η̃2δ(φ̃2 − φ̃1) + ψ̃2 − ψ̃1)
)

‖∗∗

+‖ew
(

η̃2δ(φ̃2 − φ̃1) + ψ̃2 − ψ̃1

)

(eη̃2δ φ̃1+ψ̃1 − 1)‖∗∗

+‖ew(ψ̃1 − ψ̃2)‖∗∗ + ‖(λµ2eŨλ − ew)(φ̃2 − φ̃1)‖∗∗
≤ ‖ew

(

η̃2δ(φ̃2 − φ̃1) + (ψ̃2 − ψ̃1)
)2

‖∗∗

+‖ew
(

η̃2δ(φ̃2 − φ̃1) + ψ̃2 − ψ̃1

)

(η̃2δ φ̃1 + ψ̃1)‖∗∗

+‖ew(ψ̃1 − ψ̃2)‖∗∗ + ‖(λµ2eŨλ − ew)(φ̃2 − φ̃1)‖∗∗
≤ ‖ew(φ̃2 − φ̃1)

2‖∗∗ + ‖ew(ψ̃2 − ψ̃1)
2‖∗∗ + ‖ew(φ̃2 − φ̃1)(ψ̃2 − ψ̃1)‖∗∗

+‖ew(φ̃2 − φ̃1)(η̃2δφ̃1 + ψ̃1)‖∗∗ + ‖ew(ψ̃2 − ψ̃1)(η̃2δφ̃1 + ψ̃1)‖∗∗
+‖ew(ψ̃1 − ψ̃2)‖∗∗ + ‖(λµ2eŨλ − ew)(φ̃2 − φ̃1)‖∗∗

≤ max
j=1,2

‖φ̃j‖∗‖φ̃2 − φ̃1‖∗ + max
j=1,2

‖ψ̃j‖∞‖ψ̃2 − ψ̃1‖∞

+ max
j=1,2

‖ψ̃j‖∞‖φ̃2 − φ̃1‖∗ + ‖φ̃1‖∗‖φ̃2 − φ̃1‖∞ + ‖ψ̃1‖∞‖φ̃2 − φ̃1‖∗

+‖φ̃1‖∗‖ψ̃2 − ψ̃1‖∞ + ‖ψ̃1‖∞‖ψ̃2 − ψ̃1‖∞
≤ ε

5
2 ‖φ̃2 − φ̃1‖∗.

Hence M is a contraction and the proof is complete. ✷
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4.3. Proof of Theorem 1.1 completed. It only remains to find the function e0 to get the
coefficient c0 in (4.10) identically equal to zero. To do this, we multiply equation (4.10) by Z0

and we integrate in t. Thus the equation

c0(θ) = 0 for any θ ∈ [0, ℓ] (here εs = θ)

is equivalent to
∫ 0

− 2δ
µ

[

R(Ũλ) + L(φ̃) +N1(φ̃)
]

Z0 dt = 0 for any s ∈
[

0,
ℓ

ε

]

. (4.15)

We first remark that, by using (4.14), it follows that
∫ 0

− 2δ
µ

[

L(φ̃) +N1(φ̃)
]

Z0 dt = ε(σ+2)(1−a)+ 5
2 r (4.16)

where r is the sum of functions of the form

h0(εs) [h1(e0, ė0) + o(1)h2(e0, ė0, ë0)]

where h0 is a smooth function uniformly bounded in ε, h1 depends smoothly on e0 and on ė0
and it is bounded in the sense that

‖h1‖∞ 6 c‖e0‖ε
and it is compact, as a direct application of Ascoli-Arzelá Theorem shows.
The function h2 depends on e0, ė0, ë0 and it depends linearly on ë0 and it is Lipschitz with

‖h2(e10)− h2(e
2
0)‖∞ 6 o(1)‖e10 − e20‖ε.

By using (3.33) it follows that (4.15) is equivalent to the following ODE

ε2 (a0(εs)ë0 + a1(εs)ė0) + a2(εs)e0 = ε
3
2M0(εs) + ε

3
2H0 + ε(σ+2)(1−a)+1r (4.17)

where ai( es), i = 0, 1, 2 , M0, F0 and H0 are as in Lemma 3.5 and r is as in (4.16). Our goal is
to find a smooth periodic function e0 which solves (4.17).
In order to do this we introduce an auxiliary problem.
Suppose that p0(θ) is a positive C2(0, ℓ) function, p1(θ) is a C2(0, ℓ) function and ε > 0 is a
parameter small enough.
Given an arbitrary function f ∈ C0(0, ℓ) let us consider the problem

{

ε2 (ẍ+ p1(θ)ẋ) + p0(θ)x = f in (0, ℓ)

x(0) = x(ℓ) ẋ(0) = ẋ(ℓ)
(4.18)

Lemma 4.2. Let

Λp0(θ) =

(
∫ ℓ

0

√

p0(t) dt

)2

.

There is a small number ε0 = ε0(p0, ℓ) > 0 such that if ε ∈ (0, ε0) satisfies the gap condition

|4π2m2ε2 − Λp0 | > c̃0ε for anym ∈ N ∪ {0} (4.19)

whit c̃0 is small enough, then there exists a constant C > 0 such that problem (4.18) has a unique
solution which satisfies

ε2‖ẍ‖∞ + ε‖ẋ‖∞ + ‖x‖∞ 6
C

ε
‖f‖∞ (4.20)
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for any f ∈ C0(0, ℓ). Moreover, if in addition f ∈ C2(0, ℓ), the unique solution to problem (4.18)
satisfies

ε2‖ẍ‖∞ + ε‖ẋ‖∞ + ‖x‖∞ 6 C
(

‖f̈‖∞ + ‖ḟ‖∞ + ‖f‖∞
)

. (4.21)

Proof. Although similar results were obtained in [6], we sketch the proof to illustrate why
condition (4.19) is required.
We take

Λp0(θ) =

(
∫ ℓ

0

√

p0(t) dt

)2

; s(θ) =
π

√
Λp0

∫ θ

0

√

p0(t) dt, y(s) = x(θ).

Then (4.18) is transformed into
{

ε2 (ÿ + q(s)ẏ) + ν0y = f̃(s) in (0, π)

y(0) = y(π) ẏ(0) = ẏ(π)
(4.22)

with

q(s) =
ṗ0
2p0

+
1

π
√
Λp0

p1√
p0

; ν0 =
Λp0
π2

; f̃(s) =
Λp0
π2

f

p0
.

It is a standard fact that the eigenvalue problem
{

ÿ + q(s)ẏ + νy = 0 in (0, π)

y(0) = y(π) ẏ(0) = ẏ(π)
(4.23)

has an infinite sequence of eigenvalues (νm)m ⊂ R such that

√
νm = 2m+O

(
1

m3

)

as m→ ∞

with associated eigenfunctions ym(s) that forms an orthonormal basis in L2(0, π).
Thus, if ν0 6= ε2νm for all m > 0 the problem (4.18) is solvable. In such a case the solution (4.18)
can be described as

y(s) =

∞∑

m=0

f̃m
ν0 − ε2νm

ym(s)

where f̃m(s) :=

∫ π

0

f̃(s)ym(s) ds.

Since y ∈ C2(0, π) the above expression holds in C2(0, π). From (4.19) we find that

|ν0 − νmε
2| > c

2
ε

if ε is sufficiently small. Next we notice that, by using Cauchy-Schwarz inequality and Parseval’s
identity we have

‖y‖∞ 6

∞∑

m=0

∣
∣
∣
∣
∣

f̃mym(s)

ν0 − ε2νm

∣
∣
∣
∣
∣
6

( ∞∑

m=0

f̃2
my

2
m

) 1
2
( ∞∑

m=0

1

(ν0 − νmε2)2

) 1
2

6
c

ε
‖f̃‖∞ (4.24)

Coming back to the original variable

‖x‖∞ = ‖y‖∞ 6
c

ε

∥
∥
∥
∥

Λp0
p0

∥
∥
∥
∥
∞

‖f‖∞ 6
C

ε
‖f‖∞.

In this way, one can also estimate the L∞(0, π)- norms of ẏ and ÿ. Therefore the result holds.
For a more detailed treatment of this and estimate (4.21) one can see [[6], Lemma 8.2]. ✷
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In view of system (4.18), it is natural to consider a perturbation of the equation in (4.18), namely
{

ε2 (ẍ+ p1(θ)ẋ) + (p0(θ) + εp̃0,ε(θ)) x = f in (0, ℓ)

x(0) = x(ℓ) ẋ(0) = ẋ(ℓ)
(4.25)

where {p̃0,ε(θ)}ε>0 is a family of C2(0, ℓ) functions such that

sup
ε>0

‖p̃0,ε‖C2(0,ℓ) < C (4.26)

and

sup
ε>0

ε

∥
∥
∥
∥

∂p̃0,ε
∂ε

∥
∥
∥
∥
∞
< C. (4.27)

Then we have a constant M > 0 and a family {Λε}ε ⊂ R such that

Λp0(θ)+εp̃0,ε(θ) = Λp0(θ) + εΛε

and

|Λε|+ ε

∣
∣
∣
∣

∂Λε
∂ε

∣
∣
∣
∣
6M. (4.28)

We observe that if there exists a small ε > 0 such that

|4π2m2ε2 − (Λp0 + εΛε) | > c̃0ε m = 0, 1, 2, . . . (4.29)

for some small c̃0 > 0, then (4.19) holds afetr Λp0 is substituted by Λp0+εp̃0,ε and hence existence
of a unique solution to (4.25) satisfying a priori bounds (4.20) and (4.21) is guaranteed.
Moreover (4.26) allows us to choose the constant C > 0 in (4.20) and (4.21) to be independent
of ε.

Remark 4.3. (i) First we deduce a sufficient condition of ε > 0 for which inequality (4.29)
holds. Notice that (4.29) means that if

4π2m2ε2 > Λp0 + εΛε (or 4π2m2ε2 6 Λp0 + εΛε)

then it should be

4π2m2ε2 − c̃0ε 6 Λp0 + εΛε (or 4π2m2ε2 + c̃0ε 6 Λp0 + εΛε)

for a sufficiently small c > 0 and for every m ∈ N ∪ {0}. Given any small number ε > 0,
let us write

4π2ε2 =
Λp0 + εΛε
(m0 + a0)2

(4.30)

with some m0 ∈ N large and a0 ∈ [0, 1). Assume a0 6= 0. Then the leastm ∈ N satisfying
4π2m2ε2 > Λp0 + εΛε is m = m0 + 1. Besides, for m > m0 + 1 we have

4π2m2ε2 − c̃0ε > (Λp0 + εΛε)

[(
m0 + 1

m0 + a0

)2

− c̃0
(Λp0 + εΛε)

− 1
2

2π(m0 + a0)

]

> (Λp0 + εΛε)

[

1 +
2(1− a0)

m0
− c̃0

2π
√
Λp0

1

m0
+ o

(
1

m2
0

)]

> Λp0 + εΛε

provided a0 6 1− c̃0

2π
√

Λp0

choosing c̃0 < 2π
√
Λp0 .

(ii) Let us show the existence of a sequence of small positive numbers ε > 0 converging to
zero satisfying (4.29) provided (4.27) holds.
Indeed it is easy to see that the equation (4.30) has a unique pair (m0, a0) for any
ε ∈ (0, ε1) where ε1 > 0 is determined by Λp0 and M in (4.28).
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We come back to the original problem.
Let us introduce the linear operator

L0(e0) := ε2 (a0(εs)ë0 + a1(εs)ė0) + a2(εs)e0.

The following result holds.

Lemma 4.4. We have a positive number Λµ̂0
and a number {Λµ̂0,ε}ε such that if

|4π2m2ε2 − (Λµ̂0
+ εΛµ̂0,ε)| > c̃0ε m = 1, 2 . . . (4.31)

for some positive and sufficiently small constant c̃0, then for any f ∈ C0
ℓ (R) ∩ L∞(R), there

exists a unique e0 ∈ C2
ℓ (R) solution of L0(e0) = f . Moreover, there exists C > 0 such that

‖e0‖ε = ε2‖ë0‖∞ + ε‖ė0‖∞ + ‖e0‖ ≤ C

ε
‖f‖∞.

Finally, if f ∈ C2
ℓ (R), then

‖e0‖ε = ε2‖ë0‖∞ + ε‖ė0‖∞ + ‖e0‖ ≤ C
[

‖f‖∞ + ‖ḟ‖∞ + ‖f̈‖∞
]

.

Proof. The equation ε2 (a0(εs)ë0 + a1(εs)ė0) + a2(εs)e0 = f can be written as

ε2 (ë0 + p1(θ)ė0) + (p0(θ) + εp̃0,ε)e0 = g

with

p1(θ) =
a1(εs)

a0(εs)
; p0(θ) =

Λ1

µ̂2
0(θ)

; p̃0,ε(θ) =
aε2(θ)µ̂

2
0(θ) − aε0Λ1

µ̂4
0(θ)

+ εqε(θ); g =
f(θ)

a0(θ)
.

It is clear that p0(θ) > 0 is a C2(0, ℓ) function and p̃0,ε ∈ C2(0, ℓ) function and (4.26) and (4.27)
hold. Then we let

Λµ̂0
=

(
∫ ℓ

0

√

Λ1

µ̂2
0

dt

)2

and hence there exist numbers Λµ̂0,ε such that

Λp0+εp̃0,ε = Λµ̂0
+ εΛµ̂0,ε

and the result comes from the above discussions. ✷

Proof.[Proof of Theorem 1.1] By Lemma 4.4 it follows that there exists a sequence of small
ε = εm > 0 converging to zero as m → +∞ such that the operator L0(e0) is invertible with
bounds for L0(e0) = h given by

‖e0‖ε ≤ Cε−1‖h‖∞,
for some positive constant C. Finally, by Contraction Mapping Argument using the properties
of the right-hand side of (4.17), it follows that, the problem (4.17) has a unique solution with

‖e0‖ε < cε(σ+2)(1−a)

and that concludes the proof. ✷
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5. The linear theory

In this section we give the proof of Proposition 2.2. We need a couple of preliminary results.

Lemma 5.1. Assume ξ 6∈ {0,±√
Λ1}. Then given h ∈ L∞(R2), there exists a unique bounded

solution of

(L̂ − ξ2)ψ = h in R
2. (5.1)

Moreover

‖ψ‖∞ ≤ Cξ‖h‖∞ (5.2)

for some constant Cξ > 0 only depending on ξ.

Proof.We argue as in Lemma 3.1 of [6]. ✷

Lemma 5.2. Let φ a bounded solution of L̂(φ) + ∂2ssφ = 0 in R
2. Then φ(s, t) is a linear

combination of the functions Z1(t), Z0(t) cos(
√
Λ1s), Z0(t) sin(

√
Λ1s).

Proof. We argue as in Lemma 7.1 of [5]. ✷

Proof of Proposition 2.2 The proof will be carried out in three steps.

Step 1: A priori bound (special case) Let us assume for the moment that in problem (4.10)
the function c0 is identically zero.
We will prove that there exits C > 0 so that for any h with ‖h‖∗∗ < +∞ and any φ solution of
problem







L(φ) = h in C2δ

∂νφ = 0 on ∂C2δ ∩ {t = 0}

φ
(
s+ ℓ

ε
, t
)
= φ(s, t)

∫ 0

− 2δ
µ

φ(s, t)Z0(t) dt = 0 ∀ s ∈ R
+.

(5.3)

with ‖φ‖∗ < +∞ we have

‖φ‖∗ ≤ C‖h‖∗∗.
By contradiction we assume that there exist sequences λn → 0, (hn)n and (φn)n solutions of
(5.3) where

δn = εan for some a ∈ (0, 1) and µn(εns) = εnµ̂(εns)

such that

‖φn‖∗ = 1 ‖hn‖∗∗ → 0.

To achieve a contradiction we will first show that

‖φn‖∞ → 0. (5.4)
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If this was not the case then we may assume that there is a positive number c for which
‖φn‖∞,C2δn

> c. Since we also know that

|φn(s, t)| ≤
c

(1 + |t|)σ ,

we conclude that for some A > 0

‖φn‖L∞(|t|≤A) ≥ c.

Let us fix an sn such that

‖φn(sn, ·)‖L∞(|t|≤A) ≥
c

2
.

By elliptic estimates, compactness of Sobolev embeddings and the fact that the coefficients
of Ã(φn) tends to zero as λn → 0, we see that we may assume that the sequence of functions

φ̃n(s, t) := φn(s+sn, t) converges uniformly over compact subsets of R2, to a nontrivial, bounded
solution of

µ̂∞
0 ∂

2
ssφ̃+ ∂2ttφ̃+ ewφ̃ = 0 in R

2

where µ̂∞
0 is a positive constant, which with no loss of generality via scaling, we may assume

equal to one. By virtue of Lemma 5.2 then φ̃ is a linear combination of Z0 and Z1. Moreover
by the decay behavior and the orthogonality conditions assumed, which pass to the limit thanks
to the Dominated Convergence, we find then that φ̃ ≡ 0. This is a contradiction that shows the
validity of (5.4).

Let us conclude now the result of Step 1.
Since ‖φn‖∗ = 1, there exists (sn, tn) with rn := |tn| → +∞ such that

rσn |φn(sn, tn)|+ rσ+1
n |Dφn(sn, tn)| ≥ c > 0.

Let us consider now the scaled function

φ̃n(z0, z) = rσnφn(sn + rnz0, rnz)

defined on D̄ given by

D̄ :=

{

(z0, z) : −r−1
n sn ≤ z0 ≤ r−1

n

(
ℓ

εn
− sn

)

; − 2δnr
−1
n

µn(εns)
< z < 0

}

.

Then we have

|φ̃n(z0, z)|+ |z||Dφ̃n(z0, z)| ≤ |z|−σ in D̄
and for some zn with |zn| = 1

|φ̃n(0, zn)|+ |Dφ̃n(0, zn)| ≥ c > 0.

Moreover φ̃n satisfies

µ̃2
0,n∂

2
z0z0

φ̃n + ∂2zzφ̃n + o(1)C̃(φ̃n) = h̃n in D̄
where h̃n(z0, z) = rσ+2

n hn(sn + rnz0, rnz), µ̃0,n = µ̂n0 (sn + rnz0) and C̃(φ̃n) is bounded.
Since

‖∂sµ̂2
0,n‖∞,D̄ = O(εn);

∥
∥
∥
∥
∂s

(
r−1
n sn

µn(εn(sn + rnz0))

)∥
∥
∥
∥
∞,D̄

= O(εan);

∥
∥
∥
∥
∂2ss

(
r−1
n sn

µn(εn(sn + rnz0))

)∥
∥
∥
∥
∞,D̄

= O(ε1+an )

then, we may assume that

µ̃2
0,n → µ̂∗ > 0
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and that the function φ̃n converges uniformly, in C1− sense over compact subsets of D∗, to φ̃
which satisfies

µ̂∗∂z0z0 φ̃+ ∂zzφ̃ = 0 in D∗ (5.5)

where

D∗ := (0,∞)× (−∞, 0)

and φ̃ satisfies

|φ̃(z0, z)|+ |z||Dφ̃(z0, z)| ≤ |z|−σ (5.6)

with the boundary condition. With no loss of generality, we may assume that µ̂∗ = 1.
Hence φ̃ is weakly harmonic in D∗ and hence φ̃ ≡ const. Moreover since it satisfies (5.6), it

follows that φ̃ ≡ 0.
This is a contradiction.

Step 2: A priori bound (general case) We claim that the a priori estimate obtained in Step 1
is valid for the full problem (4.10). We conclude from Step 1 that

‖φ‖∗ 6 c [‖h‖∗∗ + ‖c0Z0‖∗∗] 6 C [‖h‖∗∗ + ‖c0‖∞] (5.7)

for any h with ‖h‖∗∗ <∞ and solution φ of problem (4.10). To conclude we have to find a bound
for the coefficient c0(s).
Testing the equation in (4.10) with Z0 and integrating with respect to dt, we get

c0(s)

∫ 0

− 2δ
µ

Z2
0 dt =

∫ 0

− 2δ
µ

L(φ)Z1 dt−
∫ 0

− 2δ
µ

hZ1 dt (5.8)

Since Z0 decays exponentially
∫ 0

− 2δ
µ

Z2
0 dt =

1

2
+O(e−

√
Λ1

δ
µ )

Hence from (5.8) it follows that

c0(s)

(
1

2
+O

(

e−
√
Λ1

1
ε

))

=

∫ 0

− 2δ
µ

µ̂2
0∂

2
ssφZ0 dt+

∫ 0

− 2δ
µ

(
∂2ttφ+ ewφ

)
Z0 dt+

∫ 0

− 2δ
µ

Ã(φ)Z0 dt

−
∫ 0

− 2δ
µ

hZ0 dt.

(5.9)
It is easy to see that

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

hZ0 dt

∣
∣
∣
∣
∣
≤ ‖h‖∗∗

∫ 0

− 2δ
µ

1

(1 + |t|)σ+2
dt ≤ C‖h‖∗∗. (5.10)

Now by using the boundary condition, the orthogonality condition and the radial symmetry
of Z0 we get

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

(∂2ttφ+ ewφ)Z0 dt

∣
∣
∣
∣
∣
≤ O(e−

c
ε )‖φ‖∗. (5.11)

Now, since
∫ 0

− 2δ
µ

φZ0 dt = 0
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if we make twice the s− derivative and we make some computations, we immediately get that
∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

∂2ssφZj dt

∣
∣
∣
∣
∣
6 O

(
e−

c
ε

)
‖φ‖∗.

Moreover we get
∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

Ã(φ)Z0 dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b0(s, t)∂
2
ssφZ0 dt+

∫ 0

− 2δ
µ

b1(s, t)∂
2
ttφZ0 dt

+

∫ 0

− 2δ
µ

b2(s, t)∂
2
stφZ0 dt+

∫ 0

− 2δ
µ

b3(s, t)∂tφZ0, dt+

∫ 0

− 2δ
µ

b4(s, t)∂sφZ0 dt

∣
∣
∣
∣
∣

where bj are defined in (2.7).
Now reasoning as before

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b0(s, t)∂
2
ssφZ0 dt

∣
∣
∣
∣
∣

≤ ε

∫ 0

− 2δ
µ

|∂2ssφZ0| dt ≤ εO
(
e−

c
ε

)
‖φ‖∗

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b1(s, t)∂
2
ttφZ0 dt

∣
∣
∣
∣
∣
≤ O(e−

c
ε )‖φ‖∗ + Cε2‖φ‖∗ 6 Cε2‖φ‖∗

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b2(s, t)∂
2
stφZ0 dt

∣
∣
∣
∣
∣
≤ ε‖φ‖∗;

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b3(s, t)∂tφZ0 dt

∣
∣
∣
∣
∣
≤ ε‖φ‖∗;

∣
∣
∣
∣
∣

∫ 0

− 2δ
µ

b4(s, t)∂sφZ0 dt

∣
∣
∣
∣
∣
≤ ε2‖φ‖∗

hence by (5.9)

‖c0‖∞ ≤ C‖h‖∗∗ + cε‖φ‖∗. (5.12)

Combining (5.12) with (5.7) the result follows.

Step 3: (Existence part) We establish now the existence of a solution φ for problem (4.10).
We consider the case in which h(s, t) is a T -periodic function in s, for an arbitrarily and large but
fixed T . We then look for a weak solution φ to (4.10) in HT defined as the subspace of functions
ψ which are in H1(B) for any B bounded subset of C2δ, which are T -periodic in s, such that
∂νφ = 0 on ∂C2δ ∩ {t = 0} and so that

∫ 0

− 2δ
µ

ψZ0 dt = 0 ∀ ψ ∈ H1(B).

Let DT := {t ∈
[

− 2δ
µ
, 0
]

: s ∈ (0, T )} and the bilinear form in HT :

B(φ, ψ) :=
∫

DT

ψL(φ) dt ∀ ψ ∈ HT .

Then problem (4.10) gets weakly formulated as that of finding φ ∈ HT such that

B(φ, ψ) =
∫

DT

hφdt ∀ ψ ∈ HT .

If h is smooth, elliptic regularity yields that a weak solution is a classical one.
The weak formulation can be readily put into the form

φ+K(φ) = h in HT
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where h is a linear operator of h and K is compact.
The a priori estimate of Step 2 yields that for h = 0 only the trivial solution is present. Fredholm
alternative thus applies yielding that problem (4.10) is thus solvable in the periodic setting. This
is enough for our purpose. However we remark that if we approximate a general h by periodic
functions of increasing period and we use uniform estimate we obtain in the limit a solution to
the problem.
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