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ḡ2, g2 Dimensional, nondimensional controller’s constant corresponding to

viscoelastic damping
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Chapter 1

Introduction

1.1 Generalities

Atomic Force Microscopes (AFMs) are powerful devices used for surface

analysis in nano-electronics, mechanics of materials and biotechnology, as

they permit to topologically characterize surfaces up to micro and nano

resolution levels. An AFM consists of a probe, scanner, controller, and a

signal processing unit (figure 1.1). AFM works by rastering a sharp probe

across the surface to obtain a three-dimensional surface topography. As

the probe rasters, it feels the highs and lows of surface topography through

complex mechanisms of tip-surface interactions. These signals are sent via a

laser reflected back from the probe surface to a photo-detector. The photo-

detector, through a feedback control loop, keeps the tip at constant height

or constant force from the surface. The feedback signals are sent to a signal

processing software, which generates a three-dimensional topograph of the

surface.

The operating modes of AFM can be divided into static mode, when

the probe does not vibrate during imaging, and dynamic mode, when the

cantilever is excited to vibrate at or off its resonant frequency. The dynamic

mode AFM can be either an amplitude-modulated AFM (AM-AFM) or a

frequency-modulated AFM (FM-AFM), depending on the parameters used

as feedback signal, oscillation amplitude in AM-AFM and frequency shift

and excitation amplitude in FM-AFM. Usually, AM-AFM is referred to as

intermittent contact mode or tapping mode, and is characterized by the

close proximity of the probe to the sample surface, which induces both at-

1
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Figure 1.1: Schematic diagram of the main features of an AFM

tractive and repulsive interactions between the probe and the sample atoms

depending on their mutual distance. When, on the other hand, the imaging

is conducted by manipulating the repulsive interaction between a probe and

the surface, AFM is referred to as contact mode AFM, and when the probe

images the surface via an attractive interaction, it is usually referred to as

noncontact mode, which is also called FM-AFM (figure 1.2).

This study is focused on the latter mode, in which the beam is placed

above the sample, and the attractive forces cause the beam to change its

stable equilibrium configuration. The new position is a result of the balance

between the tip-sample atomic interaction and the stiffness of the beam.

When the beam elastic restoring force cannot contrast the attractive atomic

force, instability of the equilibrium configuration occurs, with the so called

“jump to contact” or escape (in dynamical systems terms) phenomenon.
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(a) Contact mode (b) Tapping mode (c) Noncontact mode

Figure 1.2: AFM operation modes

In addition, the cantilever motion can be influenced by various perturba-

tions, such as instrumental noise, thermal fluctuations, artifacts created by

the AFM tip, contamination of the mineral or tip surface, and tip-induced

surface deformations, which cause strong alterations of the dynamical re-

sponse and lead to possible unstable, aperiodic or even chaotic oscillations.

Well-known dynamical events have been experimentally and theoretically

documented in responses of atomic force microscopes operating in dynamic

mode, so that the crucial importance of investigating the AFM cantilever

nonlinear dynamical behavior has been clearly revealed in the last years.

Tools of nonlinear dynamics are in fact widely used not only for the purpose

of describing and interpreting the dynamical features of several mechanical

systems, but also, although still in a marginal way, to obtain useful practi-

cal indications to be applied toward design and control. The latter topics,

in particular, are of great interest in the field of AFM, and more generally

regarding all systems which require a precise calibration of the operating

parameters and efficient control techniques aimed at avoiding unwanted re-

sponses of the system.

This work intends to deepen both the mentioned instances, on one hand

dealing with the detailed analysis of the dynamical behavior of a model of

AFM and its dependence on the main system parameters, and on the other

hand using the obtained results to provide design indications of practical

interest, as well as proposing, in the second part of the thesis, a simple yet

effective control technique to prevent dangerous unstable motions.
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1.2 Literature review

Starting from the birth of Atomic Force Microscopes (AFMs) in 1986 [11],

a considerable number of improvements and developments have been made,

and many results have been achieved in measuring topography and physical-

chemical properties of organic and inorganic materials at nanometer length

scales in a variety of ambient media, together with the manipulation and fab-

rication of a variety of functional nanostructures. The great success of AFM

utilization has produced also a wide variety of experimental and theoreti-

cal studies, which have inspired several books [10, 27, 76, 77, 100], surveys

and special issues [36, 38, 58, 127] as well as a number of workshops and

conferences dedicated to the topic.

In a typical AFM, the topography is imaged by scanning a sharp tip,

fixed to the free end of a micro-cantilever vertically bending over the sample

surface, and by measuring the tip deflection through a laser technology.

The tip-sample interaction modifies the beam dynamics and allows one not

only to image surfaces, but also to measure some physical properties of

the sample [36, 38, 58]. Thus, referring to a proper mechanical model for

the analysis of strongly nonlinear dynamics of these devices, in different

operational modalities, is crucial at both the design and in-service phase.

A commonly used model for the AFM microbeam is the lumped-mass

model, in which the cantilever beam is modeled as a single spring-mass sys-

tem [8, 21, 26, 29, 108]. This simple model, however, does not capture the

complexity of the spatial-temporal boundary-value problem describing AFM

dynamics because of the single-frequency content of the low-order dynamical

model. Moreover, its discrete nature does not allow one to account for the

effects of the actual geometry and location of the tip in cantilever dynamics,

as well as to accurately reproduce the actual control force applied to the

continuum structure. On the other hand, the continuum problem of the

scanning microbeam is addressed by formulation of the IBVP describing the

whole beam’s deflection and its boundary conditions. Theoretical investiga-

tions that treat the continuum problem include models employing nonlinear

boundary conditions and models incorporating nonlinear field forces local-

ized towards the end of the cantilever [17, 44, 45, 85, 94, 110, 117, 118, 120].

As far as the AFM dynamics is concerned, there are three main com-

monly used techniques for AFM operation, as already mentioned: contact,
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tapping and noncontact mode [10]. In contact AFM [4, 38, 107, 117, 118] the

tip is brought to a close proximity with the sample, where repulsive forces

dominate the tip-sample interaction, and the beam’s deflection is measured

and compared to the calibrated value. This mode can be operated in con-

stant force mode or constant height mode, depending on whether the feed-

back loop is turned on or off; the first one is used for non-atomically smooth

surfaces, while the second is most suitable for scanning atomically smooth

surfaces. This mode permits fast scanning and is used for rough samples

and for friction analyses, even if sometimes forces can deform or damage

samples. In the intermittent mode (also called tapping or Amplitude Modu-

lation mode (AM-AFM)) [59, 78, 85, 93, 97, 110, 111, 128], the tip operates

in the repulsive force region, but touches the surface only for short periods,

in order to reduce damage to potentially fragile samples. The cantilever is

excited at a setpoint amplitude of cantilever oscillation, which dampens from

full oscillation (noncontact) to smaller oscillation when it encounters a struc-

ture on the surface (intermittent contact). The change in the amplitude of

the probe stores the structural information of the surface, which generates

a three-dimensional topography. It is usually conducted on soft samples,

such as loosely attached structure on the surface or even more delicate bio-

logical samples such as DNA, cells and micro-organisms, and permits high

resolution topography, although it becomes more challenging when scanning

liquids, for which slower scan speed is needed. In the noncontact mode (also

called Frequency Modulation mode (FM-AFM))[1, 21, 29, 38, 86, 120] the

tip is excited with a low amplitude (which produces a displacement of a few

nm), while vibrating 10-100 nm above the sample surface. In this range,

attractive van der Waals forces govern tip-sample interaction and cause a

change in its oscillating frequency. Thus, the detection of these forces is

performed by measuring the change in the beam’s resonance frequency as a

function of the tip-surface distance. Thanks to this mode a very low force

is exerted on the sample, even if it usually needs ultra high vacuum (UHV)

to have best imaging.

For the noncontact AFM the tip has to maintain a design gap from the

sample such to ensure that the beam elastic restoring force is stronger than

the atomic attraction. Otherwise, an instability of the equilibrium config-

uration called “jump to contact” or escape (in dynamical systems terms)

[115] occurs. As the dynamic excitation tends to strongly reduce the equi-
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librium gap, the system stability study as a function of varying excitation

amplitude, or other (bifurcation) parameters, is a very important issue for

noncontact AFMs, in order to reliably determine the escape threshold sep-

arating the region of bounded (i.e., noncontact) solutions from that of un-

bounded solutions, the latter corresponding to unwanted contacts between

tip and sample.

As in all dynamical systems, the existence of possibly transient un-

bounded solutions is triggered by the occurrence of global bifurcations of

the system main saddle, whose analytical approximation is obtained by the

Melnikov method [7, 44], whereas in the specific AFM literature the thresh-

old for final jump to contact is determined only via numerical integration of

the system equations of motion with fixed initial conditions [44]. In fact to

date there are no works that evaluate AFMs escape boundary based on a

system bifurcation analysis. Yet, bifurcation diagrams permit to follow the

evolution (and eventually the disappearance) of all steady-state solutions of

the system (and not only of those related to particular sets of initial condi-

tions) and therefore offer a complete description of the dynamical response

as a function of the varying parameter (usually, the forcing amplitude). Ex-

amples of systematic numerical simulations based on basins of attraction,

bifurcations diagrams and behavior charts which are used to develop a care-

ful interpretation of systems nonlinear dynamical behavior are Rega and

Salvatori [91], Rega et al. [92], Szemplinska-Stupnicka [112], Szemplinska-

Stupnicka and Tyrkiel [114] for what concerns nonlinear oscillators, Lenci

and Ruzziconi [68] for cable-supported beams, Ghayesh et al. [37] for axi-

ally moving viscoelastic beams, Orlando et al. [82] for the Augusti’s model,

Ruzziconi et al. [95],[96] for MEMs and Liu et al. [72] for axially moving

plates.

Together with the deep investigation of the dynamical bifurcation behav-

ior, identification of the main kinds of regular response and of their basins

of attraction, along with the analysis of the erosion process of the latter up

to final escape of the solutions are topics of great theoretical and practical

importance, as it is nowadays agreed that the safe operation of a nonlinear

system depends not only on the local stability of its solutions but also on

the global dynamics associated with the uncorrupted basin surrounding each

solution [66, 67]. The issue of safety and integrity of a nonlinear dynamical

system was first addressed by Thompson and co-workers [56, 105, 106, 115]
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which introduced the concepts of safe basin and erosion profiles. To investi-

gate in an analytical manner how the structure reliability is changed when

the parameters of the problem vary, integrity criteria have been proposed in

the literature to measure the magnitude of the safe basins [89]; among them

the global integrity measure (GIM) and the integrity factor (IF) are capable

of providing adequate information without formidable computational efforts.

The GIM is defined as the normalized hyper-volume of the safe basin, while

the IF is defined as the normalized radius of the largest hyper-sphere en-

tirely belonging to the safe basin. The IF is as computationally easy as

GIM, but it succeeds in eliminating the unsafe fractal tongues from the in-

tegrity evaluation. It is indeed a measure of the compact part of the safe

basin, which is the largest convex set entirely belonging to the basin and

the sole region which guarantees the system dynamical integrity. Drawing

the integrity measure vs. a selected system parameter which, from a prac-

tical point of view, is often the excitation amplitude, provides the so-called

“erosion profiles”, which are very useful in evaluating the loss of structural

safety. Detailed investigations on this topic have been presented by Lenci

and Rega [64, 67, 88, 90] who analyzed several definitions of safe basins

and different measures for their integrity, and presented also practical appli-

cations of dynamical integrity concepts to nonlinear mechanical oscillators

[60, 61, 89] and MEMs [63], as well as other authors who applied them to

nonlinear oscillators (Lansbury et al. [56], Szemplinska-Stupnicka [112], Soli-

man and Thompson [106], Souza and Rodrigues [109], Xu et al. [121], Gan

et al. [35]), to cylindrical shells (Gonçalves et al. [40], Gonçalves et al. [39],

Soliman and Gonçalves [104]), to suspended bridges (de Freitas et al. [24]),

to guyed masts (Orlando et al. [83]) and to MEMs (Ruzziconi et al. [95]),

just to quote some examples. Integrity tools are here used to theoretically

check the robustness of competing attractors [65], [40], [39] and to analyze

erosion processes that bring to the escape from bounded regions [60], [67],

[114], but they become also practical instruments to validate experimantal

results and to furnish valuable information toward engineering design [83],

[96], [69]. Conversely, analyses devoted to investigate the solutions robust-

ness and dynamical integrity are to date lacking in AFM literature, despite

several numerical analyses have been accomplished to describe the AFM

nonlinear dynamical behavior. Moreover, in spite of many studies concern-

ing AFMs operating in tapping mode, such as investigation of their bistable
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oscillatory regime [14, 80, 85], detection of subharmonic, quasiperiodic and

chaotic motions [7, 23, 50, 122], examination of possible internal resonances

[94, 97] and influence of higher modes [3, 53], a handful of results refers to

the noncontact AFMs [20, 21, 44, 45, 120].

On the other hand, another topic of crucial importance in the AFM op-

eration study concerns motion control to avoid possible unstable or chaotic

responses of the system. It is in fact known that AFM nonlinear dynam-

ics exhibits several nonlinear phenomena, such as bifurcations, in-well in-

stability regions and possibly chaotic motions, that are common to many

other dynamical systems and represent an undesirable behavior which re-

stricts the operating range of many electronic and mechanical devices. For

this reason, several control techniques have been proposed in the last two

decades, mostly devoted to the interesting feature of controlling chaos of

whatsoever dynamical system. The starting point of this field is the work

published at the beginning of the 90s by Ott et al. [84], who suggested a

method (known as OGY method) for stabilizing an unstable periodic or-

bit by making a small time-dependent perturbation in the form of feedback

to an accessible system parameter. Subsequently, an alternative approach

has been introduced by Pyragas [87], who proposed two effective control

methods for continuous chaotic dynamical systems, the external and the de-

layed feedback control technique. The first method combines feedback with

a periodic external force of a special form, while the second (DFC method)

is based on a self-controlling delayed feedback and thus does not require

any external force. Starting from these pioneering works, several books

[16, 18, 19, 33, 51, 52, 57, 99, 102], surveys [12, 13, 31, 32, 34, 88], journal

issues [5, 64], conference symposia and workshops have been devoted to the

topic of chaos control, together with various attempts to classify control tech-

niques and goals to be attained with them. Among them, Chen and Dong

[19] proposed a classification based on various tools employed in the control

process (parameter-dependent approaches, open-loop strategies, engineering

feedback control, adaptative control, intelligent control, etc.), while Fradkov

[31] proposed also a classification of the various applications in science and

engineering. Recent classifications focused on the phenomenological aspects

of chaos control distinguish among techniques aimed at stabilizing an unsta-

ble zone in parameter space or moving away from previously known chaotic

zones (control by system design [12], control through operating conditions,
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parametric variation methods [19]), techniques which stabilize a given, er-

ratic solution (classical methods where a properly modified input, periodic or

a-periodic, open-loop or feedback, is applied to the system [47, 48, 87, 103],

OGY method and its revision and enhancement [28, 42, 84, 125]) and meth-

ods able to regularize the overall system dynamics, irrespective of a single so-

lution behavior (method based on either combining parametric and external

excitations [71], or applying weak periodic perturbations [16], or modifying

the shape of the excitation [62, 90]). Together with the great development

of chaos control theory, several experimental realizations have been carried

out in the area of science and engineering, such as the physics of turbulence,

laser physics and optics, physics of plasma, molecular and quantum physics,

chemistry and electrochemistry, biology and ecology, economics and finance,

medicine, electrical and chemical engineering, motion control, telecommuni-

cation and information systems. Many theoretical and experimental studies

have focused also on mechanics and mechanical engineering, an extensively

survey of which was presented by Fradkov and Evans [32], who referred to

pendulums, beams and plates, stick-slip friction motion, impacting systems,

spacecrafts, vibroformers, ship oscillations, robot-manipulator arms, earth-

quake engineering applications, milling, whirling motion under mechanical

resonance and mechanical systems with clearance.

Also in the field of AFMs, chaos control techniques have been applied

to improve microscope performances or avoid unwanted behaviors: Ashhab

et al. [8] proposed a state feedback control based on the Melnikov function;

Humphris et al. [46] used a positive feedback system to improve the AFM

force; Zou et al. [129] presented and experimentally applied an inversion-

based feedback/feedforward control approach; Merry et al. [74] applied a

feedback control to all of 3 d.o.f. of a metrological AFM. Besides, Arjmand

et al. [6] used a nonlinear delayed feedback control to control chaos in AFMs,

as well as Yamasue and Hikihara [126] and Salarieh and Alasty [98]. More-

over, a feedback control composed by a sliding mode control (SMC) and a

backstepping feedback is proposed by Wang et al. [119] to control chaotic

motions in a spring-mass model of AFM, while Nozaki et al. [81] applied

the State Dependent Riccati Equation (SDRE) together with time-delayed

feedback control to a tapping-mode AFM model, and Korayem et al. [54]

used a sliding mode controller. Furthermore, Yagasaki [123] has recently

applied the external feedback control technique proposed by Pyragas to a
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simple tapping AFM model, which works by keeping the cantilever vibra-

tion to a selected reference one and allowing to simultaneously measure the

sample surface.

1.3 Aims of the work

Considered the above mentioned state of the art, the research focuses on

the description of the global dynamical behavior of a reduced-order model

of AFM. Different numerical analyses and continuation techniques are em-

ployed to investigate the evolution of the main system periodic solutions and

relevant basins of attraction under variations of the most significant system

parameters. Local bifurcations, stability boundaries and basin erosion pro-

cesses are studied in presence of the parametric horizontal excitation, as

well as of the external one, the former corresponding to horizontal scan ex-

citation of the AFM cantilever, the latter to vertical motion of its support.

Similarities and differences on the system outcomes, in the vicinity of both

primary and subharmonic resonance regions, are highlighted.

The obtained behavior charts represent a valuable tool not only to com-

pare the results with the literature findings, but also as practical instruments

able to characterize the operation ranges in terms of the selected parameters.

Within the same perspective, dynamical integrity concepts, such as basin-

of-attraction detection, and quantification of their erosion process via in-

tegrity measures, are applied to determine acceptable frequency-dependent

thresholds associated with a priori safe design targets.

On the other hand, the mentioned analyses allow one to theoretically

discuss similarities and differences between the chosen global approach and

the more traditional local one: the first involves the study of the evolution

of the periodic solutions and of their basins, while the other one is based on

the numerical integration of single trajectories.

Furthermore, an external feedback control is introduced at the outset

of the model formulation, with the aim to take the system response to a

selected reference one, and thus provide a simple and efficient method to

avoid possible unstable motions.

Upon checking the effectiveness of the procedure in the weakly nonlin-

ear regime via a perturbation approach, several numerical analyses in the
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strongly nonlinear regime are carried out for the controlled model too, with

the aim of achieving a description of its dynamical behavior in terms of

the newly inserted control parameters, and to realize a comparison with the

previous results related to the uncontrolled system. The latter objective has

the practical consequence of permitting the critical evaluation of the effec-

tiveness of the control actuation on the system dynamics, with also a view

to the overall response scenario.

1.4 Thesis outline

The first part of this thesis deals with the strongly nonlinear dynamics of

a reduced-order model of noncontact AFM formulated by Hornstein and

Gottlieb [44], and presents results obtained by the combined use of bifurca-

tion diagrams, behavior charts, attractor-basins phase portraits and erosion

profiles. In the second part of the work an external feedback control accord-

ing to the Yagasaki [123] proposal is applied to the same AFM model, and

its effect on the dynamical behavior of the system is analyzed in view of a

comparison with the previous results.

More specifically, Chapter 2 includes a brief description of the single-

mode model noncontact AFM proposed by Hornstein and Gottlieb [44]

which represents the object of further numerical analyses; Chapter 3 is de-

voted to a systematic detection of bifurcation scenarios, response charts and

escape thresholds for the system under horizontal parametric excitation and

under vertical external excitation. On the other hand, the issue of dynam-

ical integrity and basins erosion is elaborated in Chapter 4, which presents

several erosion profiles and isointegrity curves for both the parametrically

and externally forced system. A comparison between theoretical and prac-

tical stability boundaries of possible intent for design purposes is finally

presented in Chapter 5. The topic of controlling undesirable system dynam-

ical responses is addressed in Chapter 6, with the formulation of a 2-dof

system of AFM model with external feedback control (Sect. 6.1) and anal-

ysis of existence and stability of its equilibrium solutions (Sect. 6.2). The

weakly nonlinear dynamics of the controlled system is analyzed in Chapter

7 by means of the asymptotic technique of multiple scales, together with its

validation via comparison with numerical results. A detailed description of

the strongly nonlinear dynamical behavior for the system under horizontal
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and vertical excitation applied separately is shown in Chapter 8, where the

influence of the applied control on the overall dynamical behavior of the

AFM system is discussed together with some critical aspects of practical

utility summarized in the concluding part of the work.



Chapter 2

Continuum formulation and

reduced-order modeling

In AFMs, a small radius tip is connected to a cantilever with a low spring

constant and interacts with a surface; in the non-contact mode region, the

tip is always in the weak attractive region, so that the sample and tip are not

easily damaged. Away from the surface, the cantilever is made to oscillate

close to its resonance frequency at a certain oscillation amplitude. When

the tip is close to the surface, the gradient of the total force on the tip acts

as an additional spring on the cantilever, so that it changes its resonant

frequency and, consequently, its amplitude, measured by a lock-in amplifier.

The deflection signal is then fed to the lock-in amplifier, and a feedback loop

performs topography changing the voltage in a piezoscanner used to control

the cantilever oscillation. Thus, imaging of the surface topography in AFM

is performed by measurement of the changes of the microbeam properties

and the quality of the mathematical model used for the microstructure dy-

namics influences the force estimation and consequently the final mapping

of the measured surface. Among many lumped-mass-spring-dashpot models

presented in literature, Hornstein and Gottlieb [44] proposed a general non-

linear continuum model of noncontact AFM which consistently incorporates

the generalized forces describing motion control and tip-sample interaction

and which the following sections refer to.

13
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2.1 Equations of motion

The physical model at the base of the work is a fixed-free AFM microcan-

tilever, which is assumed to be planar, inextensible and horizontal, with

length L and a sharp tip of height hT close to its free end, and with a

distance g between its fixed side and the sample (figure 2.1). The beam ma-

terial is considered linearly elastic, homogeneous and isotropic, with Young’s

modulus denoted by E. The general formulation proposed by Hornstein and

Gottlieb [44], based on the classical inextensional beam model of Crespo da

Silva and Glynn [22], is referred to and is reported here for the sake of com-

pleteness. The associated set of two truncated coupled PDEs for the beam

Figure 2.1: Microbeam parameters

horizontal and vertical transverse vibrations is

mūtt − [EIv̄rrrv̄r − Jz v̄ttrv̄r + Λ(1 + ūr)]r = Q̄u

mv̄tt − [EI(v̄rrr + v̄rv̄
2
rr) + Jz(v̄ttr + v̄2trv̄r) + Λv̄r]r = Q̄v

(2.1)

where ū(r, t) and v̄(r, t) are the horizontal and vertical displacements and

subscript letters denote partial differentiation with respect to the arc-length

r and time t. Coefficients EI, Jz and m are the beam flexural stiffness, prin-

cipal mass moment of inertia about z and mass per unit reference length,

respectively, and Λ is a Lagrange multiplier accounting for the inextensibil-

ity condition. Generalized forces in the horizontal and vertical directions

are represented by Q̄u and Q̄v, the former corresponding to a feedback con-

trol force depending on the horizontal displacement and the latter also ac-

counting for the localized (at r = aT see figure 2.1) transverse atomic force

interaction. They have the following expressions

Q̄u = −ḡ1ūt − ḡ2ūtrr − ḡ3ū

Q̄v = δ(r − aT )F
A
v − dv̄t

(2.2)
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where ḡ1, ḡ2 and ḡ3 are coefficients related to linear viscous damping, mate-

rial viscoelastic damping and a proportional displacement gain, respectively,

while d is a viscous damping coefficient and δ is the Dirac delta. FA
v takes

into account the interaction forces between cantilever tip and sample; dif-

ferent intermolecular, surface and macroscopic effects, in fact, give rise to

interactions with distinctive distance dependencies. They can involve a va-

riety of forces derived from electric, magnetic, and atomic interactions for

the noncontact regime, and from atomic, indentation, adhesion, and capil-

lary interactions for the contact regime. Several approximations to simu-

late tip-surface forces have been proposed, based on continuum mechanics

(Hertz model, JKR model, MD model, Schwarz model), long-range van der

Waals force, capillary forces, short-range forces, electrical double-layer force

in a liquid, and contamination effects [15, 49, 73]. In absence of external

fields and without special environmental conditions, an intermediate ap-

proach that represents a good compromise between a realistic description

of the tip-surface interaction and reasonable computational times consists

in referring to the phenomenological Lennard-Jones potential [49, 101] for

a sphere-plane system, which combines the attractive van der Waals and

repulsive atomic potentials, yielding

WA
v =

AHRT

6σa

[

1

210

(

σa
ga

)7

− σa
ga

]

(2.3)

The term out of parenthesis to the right-side is the magnitude of the poten-

tial in terms of Hamaker constant AH and tip radius RT , while the term in

parenthesis describes the shape of the potential in terms of the actual tip-

sample distance ga and a typical atomic distance σa. The Lennard-Jones

force FA
v , localized at the tip of the microcantilever (figure 2.1), is obtained

by taking the derivative of the potential function with respect to ga and

changing its sign

FA
v =

AHRT

6σ2
a

[

−σ2
a

g2a
+

1

30

σ8
a

g8a

]

=
AHRT

6σ2
a

[

−
(

σa
g + v̄ − hT

)2

+
1

30

(

σa
g + v̄ − hT

)8
] (2.4)

where s = g + v̄ − hT and hT is the tip height.
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Figure 2.2: Lennard-Jones force as a function of the tip-sample distance s, for RT = 10
nm, σa = 0.35 nm, AH = 1 aJ

The set of non-homogeneous boundary conditions

v̄(0, t) = V̄ (t), v̄r(0, t) = 0, ū(0, t) = Ū(t),

v̄rr(L, t) = 0, v̄rrr(L, t) = 0, ūr(L, t) = 0.
(2.5)

completes the formulation of the problem, with V̄ (t) and Ū(t) the vertical

transverse and horizontal scan displacement, respectively. The holonomic

inextensibility constraint ((1 + ūr)
2 + v̄2r = 1) integration and incorporation

in the horizontal boundary conditions yields

ū(r) = Ū(t)−
∫ r

0
v̄2rdr (2.6)

Its substitution in the first equation of (2.1) and the subsequent integra-

tion of the partial integro-differential equation, allows one to isolate the

Lagrangian multiplier:

Λ =

(

1− 1

2
v̄2r

)−1 [

Jz v̄ttrv̄r − EIv̄rrrv̄r

+m

∫ r

L

Ūttdr −
m

2

∫ r

L

d2

dt2

(
∫ r

0
v̄2rdr

)

dr −
∫ r

L

Q̄udr

]
(2.7)

Rescaling the boundary problem by its length L (s = r/L) and time (τ =

ωst) by a standard characteristic frequency ωs =
√

EI/mL4, expanding the

multiplier up to the cubic order and substituting into the nondimensional
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form of the second of (2.1) yields

vττ + vssss − µvττss −Qv =

[

−vs (vssvs)s + µvs (vτsvs)τ

− vs
1

2

∫ s

1

(
∫ s

0
v2sds

)

ττ

ds+ vs

(

1 +
1

2
v2s

)

(
∫ s

1
Uττds−

∫ s

1
Quds

)]

s

(2.8)

where

v = v̄/L, vs = v̄r, vss = v̄rr/L,

vsss = v̄rrr/L
2, Qu = L3Q̄u/EI, Qv = L3Q̄v/EI,

µ = Jz/mL2, U(τ) = Ū/L, V (τ) = V̄ /L.

(2.9)

Equation 2.8, expressed in an inertial reference system, has nonhomogeneous

boundary conditions; it is thus convenient to transform the nondimensional

system in equation 2.8 to a moving reference frame:

v(s, τ) = w(s, τ) + V (τ) (2.10)

It results

wττ + Vττ + wssss − µwττss −Qw =

[

−ws (wssws)s + µws (wτsws)τ

+ ws

((

1 +
1

2
w2
s

)(

Uττ −
∫ s

1
Quds

)

−1

2

∫ s

1

(
∫ s

0
w2
sds

)

ττ

ds

)]

s

(2.11)

where

Qu = −g1

[

Uτ (τ)−
1

2

∂

∂τ

(
∫ s

0
w2
sds

)]

+
1

2
g2

[

∂3

∂τ∂s2

(
∫ s

0
w2
sds

)]

− g3

[

U(τ)− 1

2

∫ s

0
w2
sds

]

Qw = δ(s− α)Γ̄1

[

− 1

(γ + w + V (τ))2
+

Γ̄2

(γ + w + V (τ))8

]

− ν(wτV τ(τ))

(2.12)
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and

g1 = ḡ1L
4ωs/EI, g2 = ḡ2L

2ωs/EI, g3 = ḡ3L
4ωs/EI,

Γ̄1 = AHRT /6EI, Γ̄2 = (σaL)
6/30, ν = dωsL,

α = aT /L, γ = (g − hT )/L.

(2.13)

g1, g2 and g3 are controller’s constants, Γ̄1 and Γ̄2 are nondimensional

atomic force constants, α is the nondimensional distance between tip and

microbeam fixed end, γ is the nondimensional gap distance and ν is the

nondimensional damping coefficient. A set of homogeneous boundary con-

ditions completes the problem formulation:

w(0, τ) = 0, ws(0, τ) = 0, wss(1, τ) = 0, wsss(1, τ) = 0. (2.14)

2.2 Single-mode model

To study the main aspects of the nonlinear dynamics of AFMs, reduced-

order models can be satisfactorily used by considering the first-order ap-

proximation of the generalized force of transverse interaction. In this per-

spective, it has been shown that for tapping AFMs a multimode Galerkin

approximation allows to detect nonlinear phenomena (e.g. grazing bifurca-

tions) which a single-mode analysis cannot describe [3, 9], thus highlighting

the importance of employing higher-order modes to avoid qualitative and

quantitative errors. However, in the noncontact operation range, a multi-

mode discretization does not enrich the system response, and a single-mode

approximation is thus sufficient to detect the main nonlinear aspects [9].

Moreover, the frequency range of the analyses reported in this paper spans

around the primary and subharmonic resonance of the first mode, where the

contribution of the higher modes is substantially negligible [45]. For these

reasons, a single-degree-of-freedom model is used for the purposes of this

work, as it allows feasible analyses and computations aimed at highlighting

the main response aspects in the absence of internal resonances, which are

instead considered in [43]. Thus, a single-mode assumption and a Galerkin

procedure are employed to reduce the IBVP to a set of ordinary differential
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equations:

w(s, τ) = q1(τ)Φ1(s) (2.15)

where the basis function is that of a clamped-spring beam:

Φ1(s) = cosh(z1s)− cos(z1s)−K1 (sinh(z1s)− sin(z1s)) ,

K1 =
cos(z1s) + cosh(z1)

sin(z1) + sinh(z1)

(2.16)

and the frequencies are obtained form the dispersion equation:

ω1 = z21 :

z31 [cosh(z1s) cos(z1s)]− f1 [sin(z1s) cosh(z1s)

− cos(z1s) sinh(z1s)]

(2.17)

Substitution of (2.15) into (2.11)-(2.12), multiplication by Φ1(s) and inte-

gration over the domain yields

I1q1ττ + I11(νq1τ + ω2
1q1) + I2(Vττ (τ) + νVτ (τ)) + I3q

3
1

+ I4q1
(

q21τ + q1ττq1
)

= q21q1τ (g1I41 + g2I7) +
1

2
q31I41g3

+ Γ̄1Φ1(α)

(

− 1

(γ + q1Φ1(α) + V (τ))2

)

+

(

q1I5 +
1

2
q31I6

)

(Uττ (τ) + g1Uτ (τ) + g3U(τ))

(2.18)

where expressions of the Iij integrals are reported in Appendix A. Here

the repulsion interaction (Γ̄2) has been neglected, since the work focuses

on noncontact mode, for which the most important atomic force interaction

is the attractive one, associated with the Γ1 parameter. A new variable

x(τ) = q1(τ)Φ1(α)/γ is defined, and a new time scale tN = ω1τ is introduced
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to obtain

(

1 + α2x
2
)

ẍ+
(

α1 + α2ẋ
2 + α3x

2
)

x =

− Γ1

(1 + x+ Vg)
2 −

(

ρ1 + ρ2x
2
)

ẋ

−
(

V̈g + ν1V̇g

)

ν2

+
(

µ1x+ µ2x
3
)

(

Üg + η1U̇g + η2Ug

)

(2.19)

where

α1 =
I11
I1

, α2 =
γ2I4

Φ1(α)I1
, α3 =

γ2

Φ2
1(α)ω

2
1

(

I3
I1

+
g3I41
2I1

)

,

Γ1 = Γ̄− 1
Φ2
1(α)

γ3ω2
1I1

, µ1 =
I5γ

I1
, µ2 =

I6γ
3

2Φ2
1(α)I1

,

ρ1 =
νI11
ω1I1

, ρ2 =
γ2

Φ− 12(α)

(

g1I41
ω1I1

g2I7
ω1I1

)

, η1 =
g1
ω1

,

η2 =
g3
ω1

, ν1 =
ν

ω1
, ν2 =

I2Φ1(α)

I1
, Vg =

V (τ)

γ
, Ug =

U(τ)

γ
.

(2.20)

ρ1 is the damping coefficient; Ug and Vg are horizontal and vertical exci-

tations, respectively, that are supposed to be harmonic (Ug = U sin(ωut),

Vg = V sin(ωvt)); η1, η2 and ρ2 are feedback control parameters related to

the time-dependent horizontal scan and the cubic damping term, respec-

tively; the coefficient α3 of the cubic stiffness term is also affected by the

horizontal control gain. Looking at the various orders of magnitudes of the

parameters in (2.20) with respect to the nondimensional distance between

the tip and the sample γ, it results that α1 is of order 1, whereas both α2 and

α3 are a function of γ2. Choosing a dimensional gap (between the tip and

the sample) of g−hT = 100 nm, and a microbeam length of L = 200 µm, it

turns out to be γ = O(10−4) and γ2 = O(10−8), so that both α2, α3 ≪ α1,

and for the other parameters, µ2 ≪ µ1 and ρ2 ≪ ρ1. Accounting for the

orders of magnitude of various coefficients in commercial AFMs [44], and

in view of obtaining a simplified model for the numerical analyses reported

hereafter, terms related to feedback controls and the nonlinear term related

to α2 can thus be neglected, while the curvature nonlinearity, which is re-

lated to the coefficient α3, is considered different from zero. The latter also

depends on the neglected proportional displacement gain of the controller in

the horizontal direction; yet, even consistently considering only small varia-
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tions of α3, it is possible to observe nontrivial modifications of the position

and amplitude of the system response, as shown, e.g., in the following figure

2.3, where the almost negligible contribution of α2 is also highlighted.

-0.1332 -0.1330 -0.1328 -0.1326

-0.0002

-0.0001

0.0000

0.0001

0.0002

x

x
 

Figure 2.3: System periodic response in the state plane for α2 = 0, α3 = 0 (black orbit),
α2 = 0, α3 = 0.1 (red orbit) and α2 = 0.1, α3 = 0 (green orbit)

The simplified dynamical system becomes

ẍ+ α1x+ α3x
3 = − Γ1

(1 + x+ Vg)
2 − ρ1ẋ

−
(

V̈g + ν1V̇g

)

ν2 + µ1xÜg

(2.21)

which describes the single-mode dynamics of a nonlinear microcantilever

with a localized atomic interaction, subject to both parametric and external

excitation. Note that the vertical excitation Vg appears also in the nonlinear

atomic interaction term, thus generating a parametric excitation which adds

to the sole external ones, after a series expansion. However, since the ensuing

relation with the variable x is of order -3, it is reasonable to liken the effects

of the vertical excitation Vg to those of the sole externally forced problem.

2.3 Equilibrium analysis

The operation domain of noncontact AFMs must be such to avoid jump

to contact with the scanned sample. In dynamical system terms, this is

ascertained by considering the undamped, unforced version of (2.21)

α1x+ α3x
3 +

Γ1

(1 + x)2
= 0 (2.22)
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whose Hamiltonian version reads















x1 = x, ẋ1 =
∂H

∂x2

x2 = ẋ, ẋ2 = −∂H

∂x1

H(x1, x2) =
α1x

2
1

2
+

α3x
4
1

4
− Γ1

1 + x1
+

x22
2

(2.23)

with the associated single potential well with left (i.e. , towards the sample

position x = −1) contact direction. The unperturbed state space is depicted

in figure 2.4(a), where the two fixed points of the time-independent prob-

lem, the stable equilibrium (E) of the cantilever tip under elastic (α1, α3)

and atomic interaction (Γ1) forces and the corresponding hilltop saddle (S),

are reported for a given set of values of the governing parameters. The

homoclinic orbit of the saddle is also plotted in figure 2.4(a): it separates

the inner region of bounded periodic solutions from the outer region of un-

bounded solutions, the former representing the safe domain for noncontact

AFM operation.

The study of the fixed points as a function of the atomic interaction

coefficient Γ1 is reported in figure 2.4(b) for α1 = 1 and α3 = 0.1, and fixes

the upper boundary for the stable equilibrium E existence at the limit value

Γ1 = 4/27 where a saddle-node bifurcation leads to the birth of the unstable

branch S. Beyond this point, the microbeam “jump to contact” with the

sampled surface. Note that the fixed points and the extent of the safe domain

(a) (b)

Figure 2.4: Unperturbed phase space for Γ1 = 0.1 (a) and fixed points as a function
of Γ1 (b) for α1 = 1, α3 = 0.1. Homoclinic orbit (solid red), periodic orbit (solid black),
unbounded orbit (dashed black), equilibrium point (E), saddle point (S)
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depend not only on the balance between atomic interaction force and non-

linear elastic force of the microbeam but also on the horizontal control gain

taken into account by the α3 coefficient [44]. Apart from the distinct phys-

ical framework, the bounded/unbounded nature of the AFM Hamiltonian

phase space is analogous to that of a number of archetypal softening systems

[60, 112, 115], also occurring in micromechanics (see, e.g. , [2, 63, 95, 96]),

which possibly undergo escape of the response from the single potential well

in one direction. In the AFM physical context, this phenomenon corresponds

to jump of the microbeam tip to contact with the sampled surface. This op-

eration mode is precluded in noncontact AFMs: so, there is a great interest

in analyzing the conditions for its impending occurrence in different ranges

of frequency around parametric and/or external resonance, along with the

features through which they are realized when varying a control parameter,

typically an excitation amplitude characteristic of the system.

In this last respect, the AFM scan process is performed by means of

both vertical and horizontal excitations, the former allowing to quantify

the interaction forces and the latter being necessary to obtain the three-

dimensional map of the sample. Yet, in existing commercial AFMs the

horizontal scan frequency is much smaller than the vertical one (which is on

the order of 100 kHz and above) [44, 101]. Thus, in view of a systematic

bifurcation analysis of the response, it appears reasonable to study the two

forced cases in the neighborhood of resonances separately, as their weak

interaction does not meaningfully modify the qualitative and quantitative

behavior of the system. Following [44], most of the results presented in the

subsequent sections will refer to the sole horizontal scan (i.e. , Vg = 0),

which entails only parametric excitation, with the equation (2.21) reading

ẍ+ α1x+ α3x
3 = − Γ1

(1 + x+ Vg)
2 − ρ1ẋ− µ1xUω2

u sin(ωut) (2.24)

However, considering the major role played by the sole vertical external

excitation (i.e. , Ug = 0) in the AFM resonant dynamics [36, 77], it will be

addressed in the Sect. 3.2, as well.
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Chapter 3

Local bifurcations and

response scenarios

The nonlinear response of the AFM single-mode model described in the

previous chapter has been analyzed via continuation techniques (using Dy-

namics software and AUTO software) and numerical simulations, taking

into account the presence of the horizontal parametric excitation and of the

vertical external one, separately.

Several bifurcation diagrams have been obtained in a large range of forc-

ing frequencies which includes the fundamental (primary) (ωu(ωv) ∼= ω1) and

principal (subharmonic) (ωu(ωv) ∼= 2ω1) parametric (external) resonances,

whereby the main periodic solutions and local bifurcations have been de-

tected (for a description of such bifurcations in terms of Floquet multipli-

ers, see Appendix D). These diagrams, produced by increasing slowly the

forcing amplitude while holding the frequency constant, exhibit a variety

of response scenarios. The local bifurcation loci in the excitation parame-

ter control space (forcing frequency vs. forcing amplitude) are summarized

in semi-logarithmic charts, which report also the system escape threshold

obtained as the envelope of local bifurcation escape thresholds in different

parameter ranges. The escape excitation amplitude corresponds to total

annihilation of all basins of attraction (see Chapter 4 forward) and, from

a physical viewpoint, it represents the (unacceptable) amplitude value that

would bring the beam tip oscillation beyond the location of the sample (at

x = −1).

25
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3.1 AFM system under parametric excitation

The parametrically excited single-mode model (2.24) has been analyzed for

the following set of parameter values

α1 = 1, α3 = 0.1, ρ1 = 0.001, µ1 = 1.5708, Γ1 = 0.1

corresponding to those chosen in [44]. The calculated natural frequency for

these values is ω1 = 0.8358. For the sake of completeness, it is useful to

report here that analyses concerning the effect of the damping ratio varia-

tion on the system escape threshold have been presented by Hornstein and

Gottlieb [44]; the results show that increasing the damping by two orders of

magnitude (corresponding to low damping (10−4) in ultra-high vacuum and

larger damping (10−2) in air) does not modify the fundamental structure of

the escape region. As a consequence, the following numerical analyses have

been carried out setting the damping parameter at a fix intermediate value

of 10−3.

The local bifurcation loci in the ωu-U plane, obtained as result of a series

of bifurcation diagrams, are summarized in the semi-logarithmic chart of

figure 3.1. The system escape threshold (black curve) separates the bounded

solutions (below the curve) from the unbounded solutions (above the curve);

changes in its slope correspond to changes in the kind of bifurcation event

leading to escape and, apart from a localized exchange of the governing

one in the frequency range between 0.2 and 0.5 (which will be analyzed

hereinafter), four main different regions can be identified in the parameter

control space (figure 3.1), from the escape viewpoint. The corresponding

response scenarios are reported in figures 3.2-3.7 in terms of bifurcation

diagrams, time histories, phase portraits and frequency power spectra.

Region I includes low frequencies set to the left (ωu = 0.5− 0.72) of the

downward vertex A of the overall escape threshold corresponding to nonlin-

ear fundamental resonance. Here, the system displays coexistence, for low

values of the forcing amplitude, of two stable period-1 solutions, with the

initial Low-amplitude (non-resonant) P1L solution being connected to the

(resonant) P1H solution of High-amplitude through the classical unstable

branch in between a couple of saddle-node bifurcations (figure 3.2(a)). The

upper one (SN1L), related to the low-amplitude solution, is responsible for

the system escape from bounded response (green line in figure 3.1). The
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disappearance of P1H is caused by a supercritical period doubling bifurca-

tion (SpPD1H), which occurs at growing amplitude values as the frequency

increases close to the A-vertex (ωu
∼= 0.72), and is followed by a sequence of

period doublings. Note that, for the sake of readability, in figure 3.2(a) and

in the following bifurcation diagrams only one branch of the period-doubled

solutions is reported.

In the right neighborhood of the nonlinear fundamental resonance this

bifurcation becomes the local event (red line in figure 3.1) triggering global

escape, and it plays this role in the whole region II (ωu = 0.72 − 1.12),

as reported in figures 3.3(a), 3.4(a), where coexisting solutions with higher

periodicity are also seen to occur in some ranges of forcing amplitude.

Figure 3.1: Local bifurcations map and overall escape threshold in the frequency-
amplitude space of parametric excitation. Gray area: region of stable reference response
of the controlled system; dotted gray line: overall escape boundary; SN1H: saddle-node
bifurcation of the P1H solution; SN1L: saddle-node bifurcation of the P1L solution; SN2:
saddle-node bifurcation of the P2 solution; SpPD1: supercritical period doubling of the
P1 solution; SpPD2: supercritical period doubling of the P2 solution; SbPD1: subcritical
period doubling of the P1 solution. Numbers I to IV correspond to four main regions of
distinct response scenarios
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Figure 3.2: Bifurcation diagram at ωu = 0.7 (region I)(a); time histories, trajectories
in the state plane and Fourier transform of P1L solution (b) and P1H solution (c) at
U = 0.05. Gray lines on time history diagrams represent the parametric excitation
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Figure 3.3: Bifurcation diagram at ωu = 0.8 (around fundamental resonance)(a); time
histories, trajectories in the state plane and Fourier transform of P1 solution (b) and P8
solution (c) at U = 0.6. Gray lines on time history diagrams represent the parametric
excitation
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Figure 3.4: Bifurcation diagram at ωu = 1 (region II)(a); time histories, trajectories in
the state plane and Fourier transform of P1 solution (b) and P1’ solution (c) at U = 1.1.
Gray lines on time history diagrams represent the parametric excitation
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Figure 3.5: Bifurcation diagram at ωu = 1.4 (region III)(a); time histories, trajectories
in the state plane and Fourier transform of P1 solution (b) and P2 solution (c) at U = 0.01.
Gray lines on time history diagrams represent the parametric excitation
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Figure 3.6: Bifurcation diagram at ωu = 1.6 (around principal resonance)(a); time
histories, trajectories in the state plane and Fourier transform of P2 solution (b) and P20
solution (c) at U = 0.02. Gray lines on time history diagrams represent the parametric
excitation
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Figure 3.7: Bifurcation diagram at ωu = 1.8 (region IV)(a); time histories, trajectories in
the state plane and Fourier transform of P2 solution (b) and P11 solution (c) at U = 0.05.
Gray lines on time history diagrams represent the parametric excitation
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At the same time, the region of coexistence of P1L and P1H solutions is

progressively reduced as the forcing frequency approaches the fundamental

resonance (ωu = ω1 = 0.835), as evident in figure 3.1 and also from the

comparison between figures 3.2(a) and 3.3(a); after this value, the P1H

solution becomes the main periodic solution for the system (figure 3.4(a)).

Figure 3.5(a) shows a sample bifurcation diagram for frequencies rang-

ing in between 1.12 and 1.56 (region III), to the left of the downward vertex

B of the nonlinear principal resonance. Here a subcritical period doubling

bifurcation (SbPD1) of the sole stable period-1 solution P1 entails its dis-

appearance and onset of an unstable period-2 solution, thus marking the

occurrence of escape (dotted red line in figure 3.1). In this last respect,

the role played by the saddle-node bifurcation (SN1L) of the low-amplitude

period-1 solution to the left of the A-vertex is herein replaced by this sub-

critical period doubling bifurcation.

In figure 3.5(a), the period-2 solution becomes stable via saddle-node

(SN2) bifurcation at low values of forcing amplitude and is characterized

by a highly prevailing amplitude of the subharmonic component (see the

frequency spectrum in figure 3.5(b)); the response pattern is now similar to

the one in region I (figure 3.2), apart from replacing P1H with P2. As in

that case, the range of coexistence of stable P1 and P2 solutions grows up

with increasing forcing frequency, up to entailing (at ωu
∼= 1.56, B-vertex)

the exchange of the local event triggering overall escape from SbPD1 to the

supercritical period doubling bifurcation (SpPD2) of P2 (dashed red line in

figure 3.1). This is substantially the same pattern as the one occurring to

the right of the nonlinear fundamental resonance and, indeed, the cascade

of period doubling bifurcations arising from SpPD2 (figures 3.6(a), 3.7(a))

keeps governing the system escape in the whole region IV (figure 3.1), which

includes the principal resonance range (ωu = 1.56-1.8). Also in this case, the

P1-P2 coexistence region reduces after the B-vertex, up to its disappearance

at the principal frequency value ωu = 2ω1 = 1.67, after which the subcritical

period doubling bifurcation (SbPD1) responsible for the instability of the

P1 solution is replaced by a supercritical period doubling event (SpPD1)

(see comparison between figures 3.6(a) and 3.7(a)).

As already mentioned, the reported examples also show the coexistence

with the main periodic solutions of variable solutions of higher periodicity,

which arise from saddle-node bifurcations and end up with local chaotic
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responses via series of period doublings occurring in very narrow ranges of

amplitude values. This is the case of the period-5 and -6 solutions (P5 and

P6) in figure 3.4, for ωu = 1 and amplitudes in between 0.5 and 0.9, or of

the period-5 and -11 solutions in figure 3.7, for ωu = 1.8, at low forcing

amplitudes and around SpPD1, respectively.

3.1.1 Bifurcation/response charts at fundamental and prin-

cipal resonances

It is worth focusing on the fundamental and principal resonance zones to

highlight similarities and differences in the local bifurcation/response sce-

narios prior to escape. Two charts summarizing the relevant outcomes are

reported in figures 3.8 and 3.9, respectively, with the identification of the lo-

cal bifurcation loci and of the main periodic solutions in the various regions.

In the left neighborhood of fundamental resonance (ωu = 0.835, figure 3.8),

the system shows the same qualitative behavior of a number of softening

oscillators subjected to primary external excitation, such as the Helmholtz

oscillator [112] and single-mode models of MEMs [2, 63], especially for what

concerns the V-shaped region of escape, its limiting boundaries, and the un-

derlying triangle region with the two coexisting period-1 solutions. Figure

3.8 shows that such a coexistence in the region in between the two SN loci

occurs up to ωu = 0.835 = ω1, where they collapse with each other. To the

right of this value, and above the corresponding value of forcing amplitude,

the sole period-1 solution previously associated with P1H occurs and its an-

nihilation through SpPD1H (and the following series of period doublings)

characterizes the smooth transition to escape for increasing amplitude (see

also figure 16a in the following). Note that no loci of supercritical period

doubling of higher periodicity solutions are reported in figure 3.8, to the left

of the SpPD1H threshold, nor the ensuing locus of boundary crisis leading

to escape (as the one in, e.g., figure 3.8 of [63]), since these events occur

in a very narrow range of control parameter values. Note also that, in con-

trast, transition to escape from the left side occurs via the typical sudden

SN bifurcation.

The chart of bifurcation/response scenarios in the neighborhood of prin-

cipal resonance (ωu = 1.67 = 2ω1, figure 3.9) shows some similarities with

the previous one, along with some meaningful differences. To grasp the lat-

ter, it is worth looking at the bifurcation diagram in figure 3.6(a), just to the
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Fig.3.2 Fig.3.3

Fig.3.10(b)

Figure 3.8: Frequency-amplitude response chart and bifurcation loci of AFM system
with parametric scan excitation close to fundamental resonance ωu = ω1 = 0.835

Fig.3.5 Fig.3.6

Fig.3.11(b)

Figure 3.9: Frequency-amplitude response chart and bifurcation loci of AFM system
with parametric scan excitation close to principal resonance ωu = 2ω1 = 1.67

left of ωu = 1.67. Here, the main periodic solutions are P1 and P2, with the
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(a) (b) (c)

Figure 3.10: Frequency-response curves at U = 0.002 (a), U = 0.1 (b), U = 0.3 (c) near
the fundamental resonance frequency ωu = 0.835

latter playing a major role according to closeness to the 2ω1 frequency; the

end of the region of their coexistence is due to collision between the SbPD1

locus (responsible for onset of the unstable P2 solution from P1) and the

SN2 locus (which stabilizes the unstable P2 solution) at ωu = 1.67. At this

highly degenerate cusp point, the subcritical period doubling of period-1 so-

lution (SbPD1) changes to supercritical (SpPD1). The regions of occurrence

of the main periodic solutions are clearly detected also in this case, and a

common feature with the previous chart (figure 3.8) consists of the main

coexisting solutions being confined within the triangle region, with the P1H

of figure 3.8 being now replaced by P2. To the right of principal resonance,

the P2 solution persists in the quite large region in between the two super-

critical period doubling thresholds now governing the response scenario. As

regards transition to escape, it still occurs suddenly (via SbPD1) from the

left and smoothly (via the complete period doubling sequence originated at

SpPD1) from the right.

The frequency-response curves of figures 3.10 and 3.11 complete the de-

scription of system response around the two resonance frequencies. In both

regions, softening behavior is observed, with the typical features of primary

and subharmonic response [79]. At fundamental resonance, with low values

of forcing amplitude, the classical frequency-response curve occurs (figure

3.10(a)). At values of forcing amplitude within the triangle region and

sweeping the frequency down (figure 3.10(b)), the P1H branch of period-

1 solution becomes unstable via the supercritical period doubling SpPD1H;

finally, within the V-shaped region (figure 3.10(c)), zones of unbounded so-

lutions appear.
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(a) (b) (c)

Figure 3.11: Frequency-response curves at U = 0.001 (a), U = 0.02 (b), U = 0.1 (c)
near the principal resonance frequency ωu = 1.67

At principal resonance, with decreasing frequency, the stable and unsta-

ble branches of the dominant P2 response originate from P1 via supercritical

(SpPD1) and subcritical (SbPD1) period doublings, respectively. Just above

the lower degenerate cusp (figure 3.11(a)), the two branches disappear via

saddle-node (SN2); for higher forcing amplitude still within the triangle re-

gion (figure 3.11(b)), the stable P2 solution becomes unstable via SpPD2;

finally, within the V-shaped region (figure 3.11(c)), zones of unbounded so-

lutions appear. It is worth noting that the results at principal resonance

qualitatively match those obtained for different systems. In particular, the

outcomes of figures 3.9 and 3.11(b) are similar to those of figures 1 and 3

of [113], relevant to a driven nonlinear oscillator at 2T-subharmonic res-

onance, and confirm the possibility [60, 113] to analyze a parametrically

driven system via the equivalent externally forced one. As regards dis-

tributed parameter systems, the occurrence of the two different, subcritical

and supercritical, bifurcation scenarios, respectively to the left and right of

principal resonance, can be found, e.g., in [40].

3.1.2 Bifurcation/response charts at low frequencies

Furthermore, the inspection of the chart of bifurcation/response scenarios at

low values of the forcing frequency reported in figure 3.12 points out some

interesting features of the system dynamical behavior. The global escape

threshold, in fact, displays local minima at frequencies values correspond-

ing to superharmonic resonances ωu
∼= 0.41 = ω1/2, ωu

∼= 0.27 = ω1/3

and ωu
∼= 0.21 = ω1/4, where, as already seen at fundamental resonance,

the dynamical response is characterized by a recurrent triangle region of
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coexistence of nonresonant P1L and resonant P1H solutions. Their dynam-

ical evolution at increasing values of the forcing amplitude U reproduces

what already described for ωu = ω1, with the two solutions connected to

an unstable branch via a couple of saddle-node bifurcations and the P1H

solution which dies through a supercritical period doubling. According to

the resonance frequency value, such solutions are now periodic responses

with 2 harmonics of frequency ω and 2ω (3ω, 4ω) respectively, as shown

in temporary evolutions and power spectra of figures 3.13-3.14, where the

superharmonic components are seen to exhibit the highest amplitudes for

the P1H solution.

Soon after and to the right of these triangle regions, the behavior chart

highlights the presence of two thresholds of period doubling which delimit

a narrow region around ultrasuperharmonic frequencies at ωu = 0.218 −
0.229 ∼= 2ω1/7, ωu = 0.301 − 0.326 ∼= 2ω1/5 and ωu = 0.47 − 0.55 ∼=
2ω1/3. Inside these ranges, the sole P1 solution becomes unstable via a

subcritical period doubling SbPD which leads to the birth of an unstable

P2 solution (see bifurcation diagrams of figures 3.15(a), 3.16(a)); a saddle-

node bifurcation SN2 provides it stability, just as it occurs to the right

of the principal resonance (e.g., at ωu = 1.4, in figure 3.5). Also in this

Figure 3.12: Frequency-amplitude response chart of the parametrically forced system
at low frequency values. Red lines: period doubling bifurcation loci (PD); green lines:
saddle-node bifurcation loci (SN)
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Figure 3.13: Bifurcation diagram at ωu = 0.4 ∼= ω1/2 (a). Time histories, trajectories
in the phase plane and Fourier transform of P1L solution (b) and P1H solution (c) at
U = 0.4. Gray lines on time history diagrams represent the parametric excitation
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Figure 3.14: Bifurcation diagram at ωu = 0.25 ∼= ω1/3 (a). Time histories, trajectories
in the phase plane and Fourier transform of P1L solution (b) and P1H solution (c) at
U = 1.8. Gray lines on time history diagrams represent the parametric excitation
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Figure 3.15: Bifurcation diagram at ωu = 0.32 ∼= 2ω1/5 (a). Time histories, trajectories
in the phase plane and Fourier transform of P1 solution (b) and P2 solution (c) at U = 1.5.
Gray lines on time history diagrams represent the parametric excitation



3.1. AFM system under parametric excitation 43

(a)

59 900 59 920 59 940 59 960 59 980 60 000

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t

x

59 900 59 920 59 940 59 960 59 980 60 000

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t

x

-0.20 -0.15 -0.10 -0.05

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x

x
 

-0.3 -0.2 -0.1 0.0 0.1

-0.2

-0.1

0.0

0.1

0.2

x

x
 

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

Ω

x
_
am

p
li

tu
d
e

(b)

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ω

x
_
am

p
li

tu
d
e

(c)

Figure 3.16: Bifurcation diagram at ωu = 0.52 ∼= 2ω1/3 (a). Time histories, trajectories
in the phase plane and Fourier transform of P1 solution (b) and P2 solution (c) at U = 0.6.
Gray lines on time history diagrams represent the parametric excitation
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case the P2 solution fails to become the dominant solution, but now it

disappears through a reverse period doubling RevPD (and not via a series

of supercritical perdiod doublings as in the principal resonance case) which

gives back stability to the initial P1 solution.

Bifurcation diagrams with analysis of P1 and P2 solutions are reported

in figures 3.15-3.16, where the close proximity to the ultrasuperharmonic

resonances is highlighted by the power spectra of the P2 solutions, which

include, besides the ω/2 frequency characterizing the period-doubled so-

lutions, the superharmonic frequency and its higher harmonics. The de-

scribed results allow to detect two different dynamical behaviors the system

displays, depending on the kind of resonance frequency the parametric ex-

citation interacts with. At fundamental resonance and superharmonic res-

onance frequencies (i.e. ωu = ω1/n, n = 1, 2, 3, 4...) the system response is

characterized by coexistence of resonant and nonresonant 1-period solutions,

while at principal resonance and ultrasuperharmonic resonance frequencies

(i.e. ωu = 2ω1/n, n = 1, 3, 5, 7...) the main periodic responses are 1-period

and 2-period solutions.

3.1.3 Influence of the nonlinear atomic interaction

Finally, it is of interest to analyze the influence of the nonlinear interaction

parameter variation Γ1 on the system dynamical response; such parameter,

which depends on the kind of tip and sample materials and their distance

at nanoscale level, is in fact the characterizing ingredient of an AFM model,

and introduces a nonlinear term of order -2 into the system.

The result of the influence of the interaction parameter Γ1 on the forc-

ing amplitude escape value U is reported in the behavior chart of figure 3.17

for a frequency value of ωu = 0.7 close to the fundamental resonance, with

bifurcation diagrams of figure 3.18 as a support for the description. As the

nonlinear interaction increases, with respect ot the reference value Γ1 = 0.1

used for the previous numerical analyses, the amplitude escape value for the

P1L solution rapidly decreases, up to the disappearance of such periodic

solution and consequently of the region of coexistence of resonant P1H and

nonresonant P1L solutions (at Γ1
∼= 0.13); after that, for higher values of

the interaction parameter the sole P1H solution remains as system stable

periodic solution, and its escape boundary represented by the supercritical

period doubling threshold PD1H moves to higher values of the forcing am-
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Figure 3.17: Bahavior chart in the Γ1-U plane at ωu = 0.7

plitude U , enlarging the stability region up to Γ1
∼= 0.14, when it drastically

falls down causing the annihilation of the P1H stability region.

Conversely, the behavior chart of figure 3.17 can be analyzed consider-

ing the effect of the forcing amplitude presence on the system equilibria as a

function of the interaction parameter; as already described in the previous

section 2.3, for the chosen set of parameters values the limiting value of the

nonlinear interaction parameter Γ1 in the unperturbed case is about 0.15,

and corresponds to the stability loss via a saddle-node bifurcation of the sole

acceptable equilibrium solution (see figure 2.4(b)). The parametric excita-

tion insertion into the model, together with the damping term, obviously

modifies the system nonlinear dynamics changing the stability of the peri-

odic solutions derived from the equilibria, leading to the birth of a softening

resonance peak on the original equilibrium stable branch, which is now com-

posed of two periodic nonresonant and resonant solutions (P1L and P1H),

and also to the occurrence of a narrow instability region, close to the orig-

inal saddle-node bifurcation, which is confined by two (direct and reverse)

period doubling bifurcations PD1H (see figure 3.18(b) at U = 0.0005). As

the amplitude increases, the resonance peak moves to lower values of the

atomic interaction parameter, and accentuates its softening behavior, while

the unstable region between the two period doublings enlarges reducing the

escape value of Γ1 (figures 3.18(c), 3.18(d)). The described behavior occurs
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at all the frequencies around the principal resonance, as reported in figure

3.19.

This dual reading key in interpreting the outcomes of figure 3.17 can also

be exploited for design purposes; on the one hand, in fact, it points out the

crucial role played by the tip-sample nonlinear interaction on the response

of the AFM cantilever, furnishing practical informations about the limiting

values of forcing amplitude to be used depending on the sample constitutive

properties, while on the other hand it can be used to calibrate the tip-sample

interaction (e.g., tip material choice, or material of the sample to be possibly

scanned) depending on the AFM operation settings.

(a) (b)

(c) (d)

Figure 3.18: Bifurcation diagrams as a function of the atomic interaction Γ1 at ωu = 0.7
for U = 0 (a), U = 0.0005 (b), U = 0.01 (c) and U = 0.15 (d). E in (a) represents the
equilibrium position of the unforced system
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(a) (b)

Figure 3.19: Behavior chart in the ωu-Γ1 plane at U = 0.0005 (a), and U = 0.15 (b)

3.2 AFM system under external excitation

To complete the nonlinear analysis of the system in terms of bifurcation

scenarios, it is interesting to study the response under the sole vertical exci-

tation Vg, which, as in the case of the horizontal excitation, is supposed to

be harmonic (Vg = V sin(ωvt)). The system equation (2.21) hence becomes:

ẍ+ α1x+ α3x
3 = − Γ1

(1 + x+ V sin(ωvt))
2 − ρ1ẋ

− ν2
(

ν1ωvV cos(ωvt)− ω2
vV sin(ωvt)

)

(3.1)

and the parameter values used in the numerical analyses are

α1 = 1, α3 = 0.1, ρ1 = 0.001, Γ1 = 0.1, ν1 = 0.01, ν2 = 0.01.

This case can be referred to as of a (largely dominant) external excitation.

The results concerning the local escape thresholds exhibit the same quali-

tative behavior as the one obtained under parametric excitation, even though

some differences can be pointed out. Analyzing the local bifurcation map of

figure 3.20, it is evident how the application of an external force shifts the

absolute minimum of the total escape threshold (continuous gray line) from

the subharmonic resonance range to the primary one, consistent with the

well-known higher response amplitudes occurring at the latter for a given

excitation amplitude. Therein, the figure shows the same local bifurcation

scenario as the one previously analyzed at fundamental parametric reso-
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Figure 3.20: Local bifurcations map and overall escape threshold in the frequency-
amplitude space of external excitation. Gray area: region of stable reference response
of the controlled system; dotted gray line: overall escape boundary; SN1H: saddle-node
bifurcation of the P1H solution; SN1L: saddle-node bifurcation of the P1L solution; SN2:
saddle-node bifurcation of the P2 solution; SpPD1: supercritical period doubling of the
P1 solution; SpPD2: supercritical period doubling of the P2 solution; SbPD1: subcritical
period doubling of the P1 solution. Numbers I to IV correspond to four main regions of
distinct response scenarios

nance, while the system behavior is slightly different in the subharmonic

region (see figure 3.1 for comparison). Figure 3.21 is a zoom around the

latter and, for high values of the forcing amplitude, displays the birth, at

ωv
∼= 1.31, of a narrow region of stable solutions which does not exist in the

parametrically driven case.

Such a new stability region involves the same periodic solutions as the

main stable one (i.e. P1 and P2 solutions), which have former become un-

stable through a subcritical and supercritical period doubling, respectively.

In the bifurcation diagram (figure 3.22), the latter gives rise to an unstable

bubble characterized by a period doubling transition to in-well chaos. For

frequency values of about 1.30 a couple of reverse supercritical period dou-

blings (RevSpPD2 and RevSpPD1) make those solutions again stable, and

finally a saddle-node bifurcation (SN1) causes the disappearance of P1 (fig-
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Figure 3.21: Frequency-amplitude response chart and bifurcation loci of AFM system
with external beam excitation close to subharmonic resonance ωv = 2ω1 = 1.67

ure 3.22(a)). The new stability region grows up as the frequency increases

up to about ωv = 1.648 where it connects with the main stable one, owing

to the collapse of the two bifurcation loci (RevSpPD2 and SpPD2) limit-

ing the unstable bubble (figure 3.22(b)). At the same frequency value, the

escape threshold shifts from the series of supercritical period doublings orig-

inated from P2 (SpPD2), typical of the companion region under parametric

excitation (figure 3.9), to the saddle-node of P1 (SN1).

Moving to higher forcing frequencies, the lower right vertex of the P2

triangle region (at ωv = 1.672) corresponds to collision between the SN2

and SbPD1 thresholds (figure 3.22(c)), and to the concurrent change of the

latter to supercritical (SpPD1), just as in figure 3.9. Finally, at ωv = 1.745

the collapse of the SpPD1 threshold with the RevSpPD1 one marks the

disappearance of P2 and the existence of the sole P1 solution (figure 3.22(d)).

It is thus worth noting how, to the right of subharmonic resonance, the

characterizing P2 solution is definitely less robust than the companion one at

principal parametric resonance. As regards actual escape to contact between

beam tip and sample, it only occurs above the SN1 threshold, which is indeed

identified as the stability threshold in figure 3.21. However, from a system

effectiveness viewpoint the highly periodic or chaotic solutions occurring
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(a) (b)

(c) (d)

Figure 3.22: Bifurcation diagrams for ωv = 1.64 (a), ωv = 1.648 (b), ωv = 1.672 (c),
ωv = 1.745 (d)

within the unstable bubble region, though confined, may meaningfully affect

the quality of the AFM dynamics expected in practical applications.

It’s interesting to note that such behavior characterized by a confined

unstable region is present also at the fundamental resonance of the paramet-

rically forced system, in correspondence of the tongue of period doubling

just above the triangle region on figure 3.1,at values of the forcing frequency

around U = 0.8. Here, as in the above described case, an unstable bubble

affects the P1H solution delimited by the period doubling thresholds, up to

ωu
∼= 0.775 when it disappears leaving the P1H solution return the only one

for the system.

Such behavior can be explained by referring to what said about the
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system behavior at low frequency values: since primary (subharmonic) reso-

nance is the dominant one for an externally (parametrically) forced system,

the dynamical behavior in this region is of the typical type described in liter-

ature [112, 113] and previously analyzed; on the other hand, in the region of

subharmonic (primary) resonance, the system results to be slightly affected

by the influence of the ultrasuperharmonic behavior seen in the previous

section, which leads to the birth of a period doubled superharmonic solu-

tion. As a result, even if the P1 and P2 (P1L and P1H) solutions remain the

dominant ones, in a limited range of amplitude V (U) values a new period

doubled solution P4 (P2) occurs, with the frequency content typical of the

subharmonic resonance condition.

The same motivation can explain also the strong decrease, at low fre-

quencies, of the stability region boundary with respect to the parametrically

forced case (see figure 3.1 or figure 3.12 for a comparison), with a reduction

of the amplitude escape value up to 97%. At ωu,v = 0.25, in fact, the es-

cape value of the parametric excitation amplitude is U ∼= 4, in spite of an

amplitude value of V ∼= 0.1 of the vertical excitation. Also in this case,

the dominant role of the primary resonance in the externally forced sys-

tem ensures that it significantly influences the frequencies at its left-side,

causing a considerable reduction of the stability region, while in the system

under parametric excitation its reduced importance entails no lowering of

the neighboring escape threshold.
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Chapter 4

Global dynamics and

integrity

The previous investigations highlight that the lowest escape values of forc-

ing amplitude occur at the two resonance regions, and provide the escape

profile as the envelope of forcing amplitude values at which bounded so-

lutions disappear. Yet, such a global stability boundary does not furnish

any information about the erosion process of the basins of attraction of the

various solutions, which is indeed a critical issue corresponding to system

impending jump to contact; therefore, it has no practical utility from the

viewpoint of AFM safe operation mode.

Within this context, the fundamental guiding concept is the dynamical

integrity of the system, which depends on the extent of the erosion of its

so-called safe basin [90, 115]. Tools for investigating the complete basin

evolution under a control parameter variation up to escape are the so-called

erosion profiles, which permit to quantify the varying level of basin erosion.

Their construction is carried out by means of specific computational tools,

based on the safe basin definition and the integrity measure concept [89, 90,

105].

In this chapter the evolution of basins of attraction is examined for in-

creasing parametric (and external, separately) excitation amplitude, span-

ning the whole range of forcing frequencies which includes fundamental (pri-

mary) and principal (subharmonic) resonances. The rich erosion patterns

underlying escape which occur in the two resonance regions are then quan-

tifyied using selected integrity measures, and several erosion profiles are

53
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constructed at different forcing frequencies. The outcomes are interpreted

from a theoretical viewpoint to highlight similarities and differences between

the chosen integrity measures and to judge the robustness of periodic solu-

tions, while from a design perspective they will be used to obtain thesholds

of residual integrity able to ensure acceptable safety targets established a

priori according to required system performances.

4.1 Dynamical integrity concepts

The investigation of the dynamical integrity of a system when varying some

of the control parameters is strictly related to the definition and choice

of specific tools, namely the safe basin concept and the integrity measure

detection.

The safe basin is the union, in phase space, of all initial conditions guar-

anteeing some specific response performances, which are usually the con-

vergence in time toward one or more attractors, or the non-escape from a

potential well. It can be the safe basin of a specific attractor, in this case

coinciding with a classical basin of attraction or it can be related to a poten-

tial well, in this case being the union of the basins of all attractors belonging

to the considered well [89]. The safe basin can be built either by consid-

ering only the steady-state dynamics, if the interest is only in the system

stationary regime, or by paying attention also to the transient dynamics, in

instances in which the short-term dynamics is the most important part of

the response or some unsafe phenomena, such as a temporary escape from

the potential well, may occur during the transient phase. The former basins

are bounded by the stable manifolds of some relevant saddles, thus having

a clear dynamical meaning, whereas the latter do not possess this property.

Moreover, in many practical situations it can actually be important to take

into account the phase of the excitation; in this respect, the true safe basin

is defined as the intersection of the previously defined safe basins when the

excitation phase ranges over a time interval of interest (e.g., the period for

periodic excitations, or the period of free vibration for impulsive excitation).

The true safe basin is the smallest phase-independent set of initial conditions

leading to safe dynamics [89].

In this work the transient dynamics of the system as well as the phase

of the excitation are ignored and, in view of final escape, the safe basin is
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considered as the union of all classical basins of attraction of the bounded

solutions belonging to the system potential well represented by the region of

the phase space bounded by the homoclinic orbit in the underlying unper-

turbed system of figure 2.4(a). This means that, in the case of coexistence

of more in-well attractors, the safe basin may comprise two, or more, com-

peting basins. However, safe basins in the more classical meaning of basins

of attraction of given solutions will also be considered when being interested

in evaluating the robustness of competing attractors, too, along with the

respective roles in the erosion process.

To measure the magnitude of the safe basins many different integrity

measures have been proposed [89, 90, 105], with different meaning, relevance

and properties.

The Global Integrity Measure (GIM) is the normalized hyper-volume

(area in 2D cases) of the safe basin. It is the most intuitive and easy integrity

measure, but it is not satisfactory in all cases in which the safe basin is

strongly fractal.

The Local Integrity Measure (LIM) is the minimum distance, in the

Poincar section, from the attractor to the transient basin boundary [105].

This definition is good in ruling out the fractality of the basins and in focus-

ing on the compact part of the safe basin surrounding the attractor, even if

it becomes unclear in the recurrent case of coexisting in-well attractors and

is numerically cumbersome, especially when the in-well attractor is chaotic.

The Integrity Factor (IF) is the normalized radius of the largest hyper-

sphere (circle in 2D cases) entirely belonging to the safe basin. As it rep-

resents a measure of the sole compact part of the safe basin, it succeeds

in eliminating the unsafe fractal tongues from the integrity evaluation and

deals with the solely region which guarantees the dynamical integrity of the

system.

In the following numerical analyses, the integrity indicators used to build

the erosion profiles are the global integrity measure (GIM), and the in-

tegrity factor (IF), considering the phase space window x ∈ [−0.3, 0.3], ẋ ∈
[−0.65, 0.25], since it contains the compact part of the basin of each of the

main attractors involved in the erosion/escape process. Normalization has

been performed with respect to the integrity measure calculated for the ref-

erence safe basin of the unforced system (i.e. for U(V ) = 0), so that GIM

and IF are dimensionless numbers.
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4.2 Basins of attraction and erosion

In this section, the evolution of basins of attraction is examined for increasing

excitation amplitude at the same frequency values of figures 3.2, 3.4, 3.5 and

3.7; the results, reported in figures 4.1-4.4, are thus examples of the erosion

process which characterizes each one of the previously distinguished four

regions (figure 3.1). In all four cases, the erosion of the dominant (period-1)

in-well solution is seen to begin at quite low values of forcing amplitude, just

above the threshold of homoclinic bifurcation of the hilltop saddle (see figure

4.9(b) forward) which represents its triggering global event. However, the

erosion progression features up to final escape are possibly different. The

global scenarios at the two considered frequencies to the left of the two V-

escape regions, ωu = 0.7 (figure 4.1) and ωu = 1.4 (figure 4.3), exhibit strong

similarities. In both cases, a competing red basin corresponding to the newly

SN-originated periodic solution, P1H in figure 4.1(b) and P2 in figure 4.3(b),

appears within the in-well safe basin initially coinciding with the blue basin

of attraction of the P1L solution, close to its boundary. In both cases, the

red basin corresponds to a weak competing solution (see figures 3.2 and 3.5).

Nearly after this event (in the considered large range of forcing amplitude

values), erosion tongues of the unbounded solution (surrounding white area)

enter the boundary between the two basins (figures 4.1(c) and 4.3(c)). This

behavior is likely due to a heteroclinic connection between the hilltop saddle

in figure 2.4(a) and the saddle on the inner basin boundary corresponding

to the unstable solution in figure 3.2 or 3.5.

This entails fast disappearance of the small basin of the weak solution,

which has meanwhile evolved to a localized chaos (not shown in the bifur-

cation diagrams) through the sequence of period doublings originated at

SpPD1 (figure 3.2) and SpPD2 (figure 3.5), respectively. Upon disappear-

ance of the small basin, the erosion of the main (blue) one progresses up

to escape with smooth, i.e. uncorrupted, basin boundary (figures 4.1(d),(e)

and 4.3(d),(e)), since it is protected by the stable manifold of the corre-

sponding saddle. Overall, apart from the change of competing basin from

P1H to P2, in connection with staying to left of fundamental and principal

resonance, respectively, there are no meaningful global differences between

the two cases.



4.2. Basins of attraction and erosion 57

(a) (b) (c) (d) (e)

Figure 4.1: Basin evolution at ωu = 0.7 for U = 0 (a), U = 0.005 (b), U = 0.05 (c),
U = 0.1 (d), U = 0.2 (e). Black circles are the safe basin IF measure

(a) (b) (c) (d) (e)

Figure 4.2: Basin evolution at ωu = 1 for U = 0 (a), U = 0.3 (b), U = 0.5 (c), U = 0.8
(d), U = 1.1 (e). Black circles are the safe basin IF measure

(a) (b) (c) (d) (e)

Figure 4.3: Basin evolution at ωu = 1.4 for U = 0 (a), U = 0.001 (b), U = 0.01 (c),
U = 0.07 (d), U = 0.15 (e). Black circles are the safe basin IF measure

(a) (b) (c) (d) (e)

Figure 4.4: Basin evolution at ωu = 1.8 for U = 0 (a), U = 0.007 (b), U = 0.03 (c),
U = 0.05 (d), U = 0.07 (e). Black circles are the safe basin IF measure
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The frequency value ωu = 1 (figure 4.2) corresponds to an intermedi-

ate region in between the two resonances, where there is no meaningful

effect from any of them. The associated erosion scenario exhibits a sequence

of competing basins corresponding to higher periodicity solutions (figures

4.2(b), 4.2(d)), each one of them lasting for a limited forcing amplitude

range. Their distributed small sub-basins are located close to the bound-

ary of the main (blue) basin, a circumstance that entails an overall ragged

aspect of the latter along the erosion process. The subsequent onset of the

new competing period-1 solution P1L (figure 3.4) brings to the separation

of the residual in-well safe basin in two parts (figure 4.2(e)), with strongly

fractal edges in between them.

In the fourth case (ωu = 1.8, figure 4.4), which corresponds to a fre-

quency range relatively high but still affected by the presence of the P2

solution (see figure 3.7), the period-1 initial basin turns into the period-2

basin (in between U = 0.03 and U = 0.05) thanks to the supercritical pe-

riod doubling bifurcation; then, its erosion through fractal tongues from the

surrounding unbounded solution brings to the separation in two sub-basins,

as before, just prior to total annihilation. The occurrence (for small am-

plitude intervals) of small basins of higher periodicity solutions also in this

case highlights how we are relatively far away from the governing resonance

condition. Overall, such a circumstance entails, from the global viewpoint,

the ragged aspect of the boundary of the disappearing main basin.

It is worth completing the analysis by looking also at the basins evolu-

tion closer to the resonance conditions, and in between linear and nonlinear

resonances. This is interesting mostly to ascertain the global effect entailed

by the presence of a stronger competing solution, with respect to the dom-

inant one. In fact, the analysis is aimed not only at identifying features of

overall erosion of the in-well safe basin but also at evaluating the relative

robustness of competing solutions and the role they play in the erosion pro-

cess. The relevant sequence of basins of attraction is reported in figures 4.5

and 4.6, respectively, for the cases ωu = 0.8 and ωu = 1.6, along with the

relevant bifurcation diagrams, which have been already addressed in Sect. 3

(figures 3.3(a), 3.6(a)). Here, the common feature is represented just by the

competition between the basin of the original period-1 solution and that of

another, comparably robust, solution, i.e. the P1H (P2) around fundamental

(principal) resonance. In the former case (figure 4.5), the newly born P1H
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Basin evolution at ωu = 0.8, for U = 0 (a), U = 0.01 (b), U = 0.03 (c),
U = 0.1 (d), U = 0.6 (e), U = 0.7 (f). Black circles are the safe basin IF measure

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Basin evolution at ωu = 1.6, for U = 0 (a), U = 0.002 (b), U = 0.01 (c),
U = 0.015 (d), U = 0.02 (e), U = 0.05 (f). Black circles are the safe basin IF measure
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basin grows up swiftly, and with smooth boundary, within the in-well safe

basin (see the value U = 0.01), up to fully replacing the original P1L basin

and being then raggedly eroded from the outside. This global scenario is

indeed very common when the newly born solution is a strong one (see, e

g., [63]). In the latter case (figure 4.6), according to the major closeness to

the reference (principal) resonance, there is a larger forcing amplitude range

of coexistence of the two basins, the original P1 (blue) and the new-born

P2 (red), which are of comparable robustness. Again, the erosion from the

outside meaningfully affects the boundary in between the two basins, as in

figures 4.1 and 4.3; here, however, it is much more apparent. As in figure

4.3, the blue basin decreases up to its subcritical period doubling disappear-

ance with a smooth boundary, which is the stable manifold of the relevant

saddle. Here, however, the final erosion involves only the split red basin of

the formerly stronger P2 solution, which plays the definitely major role, as

in figure 4.4.

4.3 Erosion profiles and dynamical integrity

The previous investigation highlights how the richest erosion patterns under-

lying escape occur in the two resonance regions. Accordingly, in this section

the dynamical integrity analysis aimed at quantifying the extent and de-

velopment of these phenomena is restricted to those regions. GIM and IF

integrity measures have been calculated from the basins evolution to the left

and right of the fundamental and principal resonances, within the triangle

regions; the ensuing erosion profiles are reported in figures 4.7 and 4.8. Ref-

erence is made both to the individual basins of main periodic solutions (red

and blue lines) and to the total in-well safe basin (black lines). GIM and IF

profiles are plotted in solid and dashed lines, respectively.

In each figure, the left-side profiles (a) refer to frequencies before the

vertex of V-shaped escape region, the right-side profiles (b) to frequencies

after the vertex. A comparison between them shows that, before the peak,

the safe basin erosion of the in-well safe basin, which coincides with the

basin of the dominant periodic solution, starts at lower values of the forcing

amplitude, but develops with a substantially smooth profile. In contrast,

after the escape peak, the erosion profiles undergo a sudden, i.e., more dan-

gerous, decrease, corresponding to a strong reduction of safe basin size, with
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(a) (b)

Figure 4.7: Erosion profiles inside the triangle region of fundamental resonance, before
and after the A vertex, for ωu = 0.7 (a) and ωu = 0.8 (b). Solid lines: GIM measure;
dashed lines: IF measure; blue lines: P1L basin; red lines: P1H basin; black lines: total
safe basin

(a) (b)

Figure 4.8: Erosion profiles inside the triangle region of principal resonance, before and
after the B vertex, for ωu = 1.4 (a) and ωu = 16 (b). Solid lines: GIM measure; dashed
lines: IF measure; blue lines: P1L basin; red lines: P1H basin; black lines: total safe basin

only the very final part of the erosion process evolving in a smooth way.

Thus, analysis of the integrity process to the right of the two resonances

(figures 4.7(b) and 4.8(b)) is carried on with the aim of highlighting common

and distinct features of the basin erosion process. Firstly, it is interesting

to consider the mutual role of the two competing periodic solutions, whose

integrity is described by the single component profiles, with the crossing

between the decreasing one of the initial P1 solution and the increasing one,

related to the new growing up P1H (P2) solution in the fundamental (prin-

cipal) resonance case. The two groups of profiles quantify the robustness of

the competing solutions with the varying parameter, and some differences

occur in the two resonance cases. At fundamental resonance (figure 4.7(b)),
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the internal competition occurs up to nearly complete substitution of the

original P1L basin with the new P1H one, which is immediately followed by

an ever sharper erosion (red profiles) of the in-well safe basin (now coincid-

ing with the P1H one), due to the surrounding escape tongues. Instead, at

principal resonance (figure 4.8(b)), the erosion of the in-well safe basin (red

profile, initially relevant to the P1, P2 union) smoothly progresses as the P2

profile is still increasing, up to becoming very sharp when the latter starts

to decrease: this occurs at the separation of the two competing basins (for

U = 0.012, see figure 4.6(c)-4.6(d)), which also entails drastic reduction of

the compact part of the in-well safe basin.

The integrity curves of the two different basins also highlight a different

behavior of the two integrity measures, ensuing from their respective defini-

tions. At both resonances, since the basin of the new periodic solution, P1H

(P2) in figure 4.7(b) (4.8(b)), is born inside the compact one of the original

solution, its onset causes a meaningful initial reduction of the circle measur-

ing the integrity (IF, dashed blue profile) of the former (P1) safe basin, while

affecting its volume decrease (GIM, solid blue profile) to a minor extent. So,

initially, the IF measure is definitely more conservative than the GIM one,

from the safety viewpoint. This is a rather general behavior, also found for

other systems [90]. However, after a while, the decrease of the circle radius

(IF) of the disappearing solution becomes smoother than the decrease of

the corresponding basin volume (GIM), which entails crossing of the two

blue curves and major conservativeness of GIM in the residual part of the

profiles. Overall, the different behavior of the two measures is less apparent

in the (black) profiles of the in-well safe basin. This is evident in figure

4.7(b), where the erosion is due to a penetration of fractal tongues localized

in the overall basin boundary (see figures 4.5(c)), thus poorly affecting the

different integrity evaluation of the anyway compact in-well basin. In the

second part of the profile, this coincides with the basin of the dominant

P1H solution, which is rapidly eroded. In contrast, the effect of the different

integrity evaluations is somehow higher in figure 4.8(b), since the fractal

tongues affect now not only the outer boundary of the in-well safe basin,

but also the inner boundary in between the two component basins. From

about U = 0.012, the reduction of the basin of the now dominant P2 solution

(and of the corresponding (solid red) GIM profile) corresponds to a sharp

reduction also of the (solid black) GIM profile of the in-well safe basin, since
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the latter substantially coincides with the former. But the reduction of the

(dashed black) IF profile of the in-well safe basin is even sharper because of

the separation of the two component basins (see figures 4.6(c)-4.6(d)), which

entails the mentioned drastic reduction of the compact part of the in-well

basin, i.e. of the circle of the P2 basin now governing the IF evaluation.

In the residual part of the IF profiles, although the (dashed blue and red)

ones of the two component solutions are comparable almost up to complete

erosion, the (dashed black) profile of the in-well basin coincides with the

sole (dashed red) one of the dominant P2.

It is worth looking at a summary diagram of GIM profiles of the in-

well safe basin for different forcing frequencies: figures 4.9(a), 4.9(b) show

an erosion surface in the range ωu = 0.5 − 1.8 , with several iso-integrity

curves obtained by expressing the erosion profiles in terms of remaining safe

basin percentage. The profiles have the classical qualitative behavior of the

so-called Dover cliff erosion curve [116], which is characterized by a slow

decrease of the un-eroded volume of the safe compact region, followed by a

sudden fall down to zero. Near the two resonance frequencies, the surface

shows two evident depressions, with the lowest percentage values of residual

integrity before the V peak and the sharpest decrease of the profiles after the

peak, thus confirming what already noticed about the differences between

figure 4.7(4.8)(a) and figure 4.7(4.8)(b). A matter of interest consists of

investigating the safe basin evolution around the peaks, this time fixing the

forcing amplitude U and using the forcing frequency ωu as control param-

eter. Focusing, for example, around the fundamental resonance frequency,

at an amplitude value of U = 0.01, a strong residual integrity variability is

evident in the frequency range 0.6 − 0.8 (dashed blue line in figure 4.9b),

with differences up to nearly 20% of residual integrity. This behavior can

be explained by analyzing the basin evolution at the selected excitation am-

plitude (figure 4.9(c)): at ωu = 0.65 two disconnected competing attractors

(P1H and P1L solutions) are present in the same well, with the external one

(P1H solution) which arises and gradually reduces the existent P1L basin

(and consequently its residual integrity) as the frequency increases up to

ωu = 0.73, where the interpenetration of the two basins occurs, thus en-

larging the safe basin. After this frequency value, the penetration of fractal

tongues of the surrounding infinity attractor starts for higher values of the

forcing amplitude, and therefore the residual integrity at the reference ampli-
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(a)

(b)

(c)

Figure 4.9: Erosion surface (a) with isointegrity curves (a,b) and basin evolution at
U = 0.01 in the 0.6− 0.8 frequency range(dashed blue line in (b))(c)
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tude (U = 0.01) increases. These results confirm, from another perspective,

the observations of Sect. 4.2 about the increasing robustness of the new P1H

basin as the frequency increases. In fact, before the frequency peak (see fig-

ure 4.1(b), 4.1(c), whose U values include the present one), the newly born

basin of the weak P1H solution is disconnected from the dominant one of the

strong P1L solution and reduces the in-well safe basin, which coincides with

the latter. Instead, after the frequency peak (figure 4.5(b)), the robustness

of the two solutions becomes comparable and the competition of the two

connected basins occurs inside the in-well basin, which is now the sum of

the two. A similar process happens in the principal region, where the new

growing basin corresponds to the solution P2. It is important to highlight

that, even if the two regions exhibit a qualitatively similar behavior, the

escape amplitude values differ by an order of magnitude, being around 1 in

the fundamental resonance range and around 0.1 in the principal resonance

one. For the sake of comparison with the iso-integrity curves, the Melnikov

curve of homoclinic bifurcation [44], corresponding to the threshold of trans-

verse interaction of stable and unstable manifolds of the perturbed saddle

of figure 2.4(a), is also reported in figure 4.9(b). It provides an estimate for

the existence of solutions with long transverse transients that may lead to

unbounded response. Possible occurrence of these transients is not taken

into account in the integrity evaluation and, accordingly, the curve of nearly

maximal (90%) iso-integrity is non-trivially higher than the Melnikov one.

Finally, the erosion processes of the total safe basin and of the main

periodic solutions basins have been analyzed also for the externally driven

system. The obtained results match very well those described in the previ-

ous section, as regards both the features of basins erosion and the slope of

the corresponding profiles. In spite of the different sequence of bifurcations

leading to escape, such a good agreement also holds in the high-frequency

range, to the right of the subharmonic resonance vertex, due to the advanced

erosion level at which the new bifurcations occur. Figure 4.10 represents the

basin evolution and the erosion profiles at ωv = 1.648. Here, indeed, the

supercritical flip bifurcation of P2, which marks the escape event in the

parametrically driven system (see figure 4.8(a)), occurs when the erosion

process has reduced the safe basin size of about 99% (figure 4.10(b)4), con-

fining the subsequent bifurcations to the very last part of the profiles, with

no meaningful effects.
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(a)

(b)

1 2 3 4

Figure 4.10: Erosion profiles (a) and basin evolution (b) for ωv = 1.648 and for V = 0 (P1
solution, (b1)), V = 0.03 (P1-P2 solutions, (b2)), V = 0.1 (P2 solution, (b3)), V = 0.35
(P4 solution, (b4))



Chapter 5

Exploiting dynamical

integrity for engineering

design

The potential of nonlinear dynamics to enhance performance, effectiveness,

reliability and safety of systems is crucial to the aim of developing novel

design criteria. In particular, dynamical integrity associated with global

behavior meaningfully affects the actual practical stability of systems, and

their capability to effectively withstand excitations in a dynamic environ-

ment.

The increasing interest towards such aspects for designing engineering

systems is reflected in different works related to the topic, which have applied

the dynamical integrity tools and concepts to different mechanical systems

with the aim of highlighting their relevance and further investigating other

mechanical/integrity issues that arise in practical cases [39, 40, 66, 70, 82,

95]. The quoted works highlight the great advantages of the integrity concept

use with regard to the validation of experimental results, the verification of

theoretical outcomes and a design perspective, the latter two being addressed

in this chapter.

For what concerns the checking of theoretical results, attention is de-

voted to the critical comparison between stability boundaries obtained with

a global approach, based on the study of the evolution of the periodic so-

lutions and of their basins, and the ones obtained via the more traditional

local methods based on the numerical integration of single trajectories. Fur-

67
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thermore, integrity measures are applied to determine frequency-dependent

thresholds able to ensure a priori established safety targets, in view of avoid-

ing the escape from bounded region, which for noncontact AFMs corre-

sponds to the unwanted “jump to contact” phenomenon, responsible for the

alteration of the scanning results.

5.1 Theoretical and practical stability boundaries

From the viewpoint of AFM safe operation mode, some matters are of con-

siderable interest regarding the evaluation of the system theoretical and

practical stability. The first one is concerned with the comparison of the

stability boundary carried out by mapping the bifurcation diagrams (bd), to

be considered as a global boundary, with the escape threshold obtained by

looking at the response under numerical integration (ni) with fixed initial

conditions (i.c.) [44], to be considered as a local boundary. The compari-

son is reported in figure 5.1 for both parametric (blue) and external (red)

excitations, where the dashed thresholds, related to numerical simulation,

represent the forcing amplitude values U or V , for several forcing frequen-

cies, at which divergence of system response does occur. Of course, the ni

escape values strongly depend on the particular selection of the i.c. pair;

here, values corresponding to the equilibrium position of the unperturbed

system have been chosen. With respect to all of the local ni boundaries

to be possibly constructed by considering divergence from different pairs

of i.c. inside the safe basin, the global bd boundary represents the upper

bound, since it corresponds to safe basin annihilation. For the considered

selection of i.c. , the figure highlights significant differences between the two

boundaries, the local one lying below the global, with a gap of up to 25 times

the ni absolute value. Moreover, ni local minima occur at primary and sub-

harmonic resonance frequencies, while bd minima are shifted towards left

(i.e. , to nonlinear resonances) due to the softening behavior of the system.

The apparent underestimation of system stability with ni ensues from the

particular selection of the i.c. pair against the basin erosion scenario. Focus-

ing on parametric excitation and looking for example at ωu = 0.8, a slight

increase of the excitation amplitude (around the escape value U = 0.03) is

seen to cause a basin boundary erosion which swiftly expands up to includ-

ing the initial position (black point in figures 5.1(b),5.1(c)), while leaving
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(a)

(b) (c) (d) (e)

Figure 5.1: Comparison between ni (dashed) and bd (solid) escape thresholds for the
parametrically (blue) (externally (red)) driven system (a): for parametric excitation, state-
space basin evolution at ωu = 0.8, for U = 0.03 (b) and U = 0.04 (c), and at ωu = 1.64
for U = 0.023 (d) and U = 0.025 (e). The black point is the equilibrium position

more than 50% of residual integrity of the (red) safe basin. In contrast, the

actual basin annihilation (bd threshold) occurs only at U = 0.74. In turn,

figures 5.1(d), 5.1(e) show the similar topological process responsible for the

marked difference between ni and bd thresholds at principal resonance: in

fact, here, the selected i.c. lie just in the region of the in-well safe basin sepa-

ration, so that the divergence of the trajectory occurs for a residual integrity

of more than 40%. This clearly highlights how, in terms of overall system

safety with respect to escape, consideration of the outcome of a single trajec-

tory may furnish misleading and too conservative information, unless being

specifically interested in the response ensuing from that particular set of i.c.

Anyway, even correctly referring to the global stability boundary in terms

of escape, the major problem in a safety assessment perspective ensues from
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(a) (b)

(c) (d)

Figure 5.2: Comparison between theoretical (ni and bd) and practical (residual integrity)
stability boundaries with the detection of some residual isointegrity curves. (a) and (b)
refer to fundamental and principal resonance region for the parametrically forced system,
respectively, while (c) and (d) refer to the externally forced system, respectively

the associated total lack of information about the features of basin erosion.

Hence, in practical applications, it is particularly important to refer to in-

tegrity evaluations in order to determine acceptable frequency-dependent

thresholds associated with a priori safe design targets [2, 66]. Figure 5.2

shows four iso-integrity curves corresponding to increasing target values in

the two resonance regions under scan parametric excitation. Selecting for

instance the 30% residual safety target, the corresponding red threshold al-

lows us to critically discuss the results furnished by numerical simulations

(black threshold). Away from the two nonlinear resonances (left of them),

though the ni thresholds underestimate system safety with respect to the bd

threshold, they are definitely unacceptable because of corresponding to very

low values of residual integrity (0-30%). Yet, the most questionable point is

that ni thresholds correspond to a residual integrity strongly variable over

the control parameter range (see for example the frequency range in between

0.7 and 0.8 in figure 5.2(a)), even though the associated threshold tends to

become more and more over conservative (thus corresponding to a higher
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Figure 5.3: bd stability boundaries of the system under combination of varying horizontal
U and fixed V excitations, for V = 0 (parametrically forced system)(solid black line),
V = 0.001 and ωv = 0.8325 (dashed blue line), V = 0.025 and ωv = 0.82 (dashed green
line), V = 0.05 and ωv = 1.64 (dashed red line)

residual integrity) just where this is more needed. At principal resonance

(figure 5.2(b)), a minor variability of the ni threshold with respect to the

residual integrity occurs. However, the threshold corresponds again to a

very poor safety reserve, and this occurs where it is more needed, owing to

the lower values of escape excitation. Behaviors similar to those in figure

5.2(a), 5.2(b) have been obtained also for the externally forced problem,

whose results are reported in figures 5.2(c), 5.2(d).

A final point has to be made as regards the influence of combined hor-

izontal scan excitation and vertical beam excitation, which coexist in the

noncontact AFM operation mode, on the overall dynamics. Using the nu-

merical integration approach, Hornstein and Gottlieb [44] compared the lo-

cal escape thresholds in the ωu − U control plane as obtained either with

the sole (parametrical) horizontal scan or by adding an (external) vertical

excitation with constant amplitude (V = 0.001) and a frequency at primary

resonance (ωv = 0.8325). They found that the effect of dual frequency exci-

tation on the escape regions is negligible, apart from a substantially minor

decrease of the allowed forcing amplitude of the scan process in the low

frequency area, with respect to that obtained without base excitation (see

also [45]). The same behavior is obtained constructing the global escape

threshold with the same ωv − V values of [44]: the results highlight a neg-
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ligible difference with those obtained from the bifurcation diagrams of the

sole parametric excitation case, therefore confirming that, for the chosen set

of parameters values, the dual excitation analysis is not even necessary in

the primary resonance region in which the vertical excitation produces the

major effects. To complete the analysis, higher values of the vertical excita-

tion amplitude have been also considered, corresponding to 50% of residual

integrity of the externally forced problem both at primary (V = 0.025 at

ωv = 0.82) and subharmonic (V = 0.05 at ωv = 1.64) resonance frequencies,

whose results are reported in figure 5.3. Also in these cases the escape pro-

file remains substantially unchanged, with a slight decrease of the forcing

amplitude at the fundamental resonance vertex and a small increase (reduc-

tion) of the one at the principal resonance vertex for ωv = 0.82 (ωv = 1.64).

The negligible differences between the dual excitation problem and the sole

scan process make the previous results not worth to be reported.



Chapter 6

Noncontact AFM with

external feedback control

The AFM dynamical behavior is strongly related to the distance between

the cantilever tip and the sample to be scanned, which modifies the nonlin-

ear atomic force interaction and is used to perform the topography. During

the scan operations, the sample roughness can thus induce unstable mo-

tions to the cantilever and eventually chaotic responses, which have been

numerically and experimentally observed [9, 20, 58, 75, 122]. Referring to

the AFM model presented in the previous section, it is therefore of inter-

est to investigate the changes in the system response as a function of the

varying tip-sample gap. To this end, a new nondimensional parameter is

introduced in the atomic interaction term of (2.19), which represents the

possible changes in the tip-sample distance:

(

1 + α2x
2
)

ẍ+
(

α1 + α2ẋ
2 + α3x

2
)

x =

− Γ1

(1− δg + x+ Vg)
2 −

(

ρ1 + ρ2x
2
)

ẋ−
(

V̈g + ν1V̇g

)

ν2

+
(

µ1x+ µ2x
3
)

(

Üg + η1U̇g + η2Ug

)

(6.1)

where δg = δ̄g/γ is the nondimensional reduction ratio of the tip-sample

gap. Remember that the nondimensional equation (2.19) has been scaled

with respect to the dimensional gap γ to set it equal to 1. Some behavior

charts as a function of the varying δg are reported in figure 6.1, for the
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parametrically excited AFM model near the fundamental resonance and for

the following set of parameters values:

α1 = 1, α3 = 0.1, ρ1 = 0.001, Γ1 = 0.1, µ1 = 1.5708.

(a) (b)

(c) (d)

Figure 6.1: Behavior charts at ωu = 0.7 (a), ωu = 0.76 (b), ωu = 0.82 (c), ωu = 0.9
(d). PDH = period doubling threshold of the high-amplitude P1 solution; SNH = saddle-
node threshold of the high-amplitude P1 solution; SNL = saddle-node threshold of the
low-amplitude P1 solution

The reported charts point out that the tip-sample gap strongly modifies

the dynamical behavior of the AFM cantilever, changing the regions of ex-

istence of the main periodic solutions (i.e. low-amplitude P1L solution and

high-amplitude P1H solution) together with their stability thresholds. This

means that during the scan operations, which lead to changes in the tip-
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(a) (b)

Figure 6.2: Bifurcation diagram (a) and trajectories in the state plane for δg = 0.03 (red
orbit B) and δg = 0 (black orbit A) (b) at ωu = 0.7 and U = 0.15

sample distance, the dynamical response of the cantilever can suddenly pass

from low-amplitude oscillations to high-amplitude motions and eventually

bring to unstable periodic solutions. Such undesirable behavior is shown,

as example, in figures 6.1(a) and 6.2 which are referred to a frequency of

ωu = 0.7 and a forcing amplitude of U = 0.15. Here, point (orbit) A

represents the stable low-amplitude 1-period solution for the system which

maintains an unitary distance from the sample. As the tip-sample gap de-

creases, P1L solution loses stability through a saddle-node bifurcation and

the system displays a narrow region of instability between δg = 0.025 and

δg = 0.039, which corresponds to the white area just above the V vertex

of the behavior chart 6.1(a), characterized by the presence of the unstable

high-amplitude solution (point(orbit) B). For higher values of the gap ra-

tio δg the P1H solution becomes the only stable solution. It is therefore

clear that even slight variations of tip-sample distance can produce critical

changes in the system dynamics and thus bring to erroneous results on the

sample topography.

To avoid possible unstable periodic responses of the system, an exter-

nal feedback control is applied to the AFM model, following the method

proposed by Yagasaki [123], whose objective is not to stabilize a specific

unstable periodic orbit (as, e.g., in the OGY method [84]), but to keep the

cantilever vibration to the one chosen as reference and simultaneously mea-

sure the sample surface. The periodic reference response is obtained when
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the center of the cantilever base oscillation and the sample surface are at

the reference position. The control implementation into the model leads

to the introduction of a new variable ξ̄(t) which represents the distance of

the fixed side of the cantilever from the horizontal reference axis, and of a

new parameter ξ̄s which is the displacement of the sample surface from the

selected reference position (figure 6.3).

(a) (b)

Figure 6.3: Cantilever at reference position (a) and in a generic configuration (b); lines
A and B represent the reference positions of the microcantilever and the sample surface,
respectively.

6.1 Model formulation

Differently from the procedure followed by Yagasaki, who inserted the con-

trol into the reduced single-mode model of tapping AFM, in this work the

control insertion occurs at the very beginning of the model formulation; ac-

cordingly, a new d.o.f. is added to the general relations of the uncontrolled

system (2.1) deduced from the extended Hamilton’s principle:

mūtt − [EIv̄rrrv̄r − Jz v̄ttrv̄r + Λ(1 + ūr)]r = Q̄u

mv̄tt − [EI(v̄rrr + v̄rv̄
2
rr) + Jz(v̄ttr + v̄2trv̄r) + Λv̄r]r = Q̄v

ξ̄t = k̄(v̄ref − v̄)

(6.2)

where Q̄u and Q̄v are the same of (2.2) and

FA
v =

AHRT

6σ2
a

[

−
(

σa
g + v̄ − hT − ξ̄s

)2

+
1

30

(

σa
g + v̄ − hT − ξ̄s

)8
]

(6.3)

ū(r, t) and v̄(r, t) are now the horizontal ad vertical displacements of the

controlled system, v̄ref (r, t) represents the reference vertical displacement,

obtained from the uncontrolled system (ξ̄ = 0, i.e. v̄(r, t) of (2.1)), and k̄ is
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a feedback constant. The new variable ξ̄(t) modifies the boundary conditions

as follows:

v̄(0, t) = V̄ (t) + ξ̄(t) = W̄ (t), v̄r(0, t) = 0, ū(0, t) = Ū(t),

v̄rr(L, t) = 0, v̄rrr(L, t) = 0, ūr(L, t) = 0.
(6.4)

so that the nondimensional homogeneous boundary system (2.11) (2.14)

becomes

wττ +Wττ + wssss − µwττss −Qw =

[

−ws (wssws)s + µws (wτsws)τ

+ ws

((
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2
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s

)
∫ s

1
Uττds−

1

2

∫ s

1

(
∫ s

0
w2
sds

)

ττ

ds

−
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1 +
1

2
w2
s

)
∫ s

1
Quds

)]

s

ξτ = k(wref − w)

(6.5)

where Qu has the same form of (2.12), while the generalized force in vertical

direction Qv is modified by the boundary conditions (6.4) as follows

Qw = δ(s− α)Γ̄1

[

− 1

(γ + w +W − ξs)2
+

Γ̄2

(γ + w +W − ξs)8

]

− v(wτ +Bτ )

(6.6)

with ξ = ξ̄/L, ξs = ξ̄s/L, k = k̄/L, W = W̄/L, wref = v̄ref /L. As pro-

posed for the uncontrolled case, a single-mode reduction is applied to the

controlled vertical displacement variable w(s, τ) and to the reference vertical

displacement wref (s, τ):

w(s, τ) = q1(τ)Φ1(s)

wref (s, τ) = qref1 (τ)Φ1(s)
(6.7)
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Remember that wref (s, τ) corresponds to w(s, τ) of equation (2.15). The

Galerkin procedure leads to the following governing equations:

I1q1ττ + I11(νq1τ + ω2
1q1) + I2(Wττ + νWτ ) + I3q

3
1

+ I4q1
(

q21τ + q1ττq1
)

= q21q1τ (g1I41 + g2I7) +
1

2
q31I41g3

+ Γ̄1Φ1(α)

(

− 1

(γ + q1Φ1(α) +B − ξs)
2

)

+

(

q1I5 +
1

2
q31I6

)

(Uττ + g1Uτ + g3U)

I2ξτ = I11k (qref1 − q1)

(6.8)

where Ii,j are the same of the uncontrolled case reported in Appendix A.

Compared with equation (2.18), note that, as expected, the feedback control

acts on the system by modifying the terms related to the tip-sample distance,

which are the nonlinear atomic interaction term and the vertical vibration

V .

New variables x(τ) = q1(τ)Φ1(α)/γ, xref (τ) = qref1 (τ)Φ1(α)/γ and z =

ξ/γ are defined, which are rescaled by the time scale tN = ω1τ , to obtain

the final form of the controlled system equations:

(
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2 + α3x

2
)

x =

− Γ1

(1 + x+ Vg + z − zs)
2 −

(

ρ1 + ρ2x
2
)

ẋ
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)

ż = kg (xref − x)

(6.9)

where coefficients have the same definition of (2.20) and

zs =
ξs
γ
, Vg =

W

γ
, kg =

I11k

Φ1(α)I2ω1
.

Note that xref represents the periodic reference response of the uncontrolled

system, and thus can be expressed as the sum of a mean x̄ref and a time-

dependent oscillating component x̃ref (t)

xref = x̄ref + x̃ref (t) (6.10)
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6.2 Equilibrium analysis and stability of fixed points

The equilibrium analysis of the controlled system involves the elimination

of the explicit time-dependent excitations Ug = Vg = 0 together with the

oscillating reference position x̃ref (t) = 0 so that xref = x̄ref :

ẋ =y

ẏ =− 1

1 + α2x2

(

(

α1 + α2y
2 + α3x

2
)

x+
Γ1

(1 + x+ z − zs)
2

+
(

ρ1 + ρ2x
2
)

y + (−y + ν1 (x̄ref − x)) kgν2
)

ż =kg (x̄ref − x)

(6.11)

To obtain the system fixed points, the velocities are set equal to zero (ẋ =

ẍ = ż = 0); consequently x = x̄ref , and z = zs is the arbitrary displacement

from the reference position. The controlled system becomes

(1 + x)2
(

α1 + α3x
2
)

x+ Γ1 = 0 (6.12)

whose solution q∗ (x̄ref , zs) points out that the system equilibria are not

influenced by the feedback control parameter kg.

For a general choice of the parameters, the five solutions are obtained

from a quintic polynomial which is the same as that of the uncontrolled

system; among them, only two solutions are acceptable, and correspond to

the upper stable fixed point and to the unstable one of the uncontrolled

system (see figure 2.4(b) in Sect. 2.3).

The stability of the system fixed points involves the study of the Jacobian

matrix at the equilibrium q∗ (x̄ref , zs):

Jq∗ =







0 1 0

a21 a22 a23

−kg 0 0






(6.13)
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where

a21 =
(

1 + α2x̄
2
ref

)−2 ((
1 + α2x̄

2
ref

)

α1 − x̄2ref
(

3 + α2x̄
2
ref

)

α3

+2Γ1 (1 + x̄ref )
−3 (1 + α2x̄ref (1 + 2x̄ref ))

+ν1ν2kg
(

1 + α2x̄
2
ref

))

a22 =
(

1 + α2x̄
2
ref

)−1 (
ρ1 + ρ2x̄

2
ref − ν2kg

)

a23 =2Γ1

(

1 + α2x̄
2
ref

)−1
(1 + x̄ref )

−3

(6.14)

The coefficients of its characteristic polynomial pJq∗ (λ) = λ3+C1λ
2+C2λ+

C3 = 0 are

C1 = −tr (pJq∗) = −a22

C2 = Z (pJq∗) = −a21

C3 = −det (pJq∗) = −a23kg

∆2 = C1C2 − C3

(6.15)

The equilibrium solutions are asymptotically stable if and only if







Cj > 0, j = 1, 2, 3

∆2 > 0
(6.16)

Due to the dependence on the feedback parameter kg, the stability analysis

of the two fixed points has been carried out in function of both Γ1 and kg

for the following set of parameters values:

α1 = 1, α2 = 0, α3 = 0.1, ρ1 = 0.001, ρ2 = 0,

ν1 = 0.01, ν2 = 0.01, µ1 = 1.5708, µ2 = 0, η1 = 0,

η2 = 0, zs = 0.01.

(6.17)

The reported results are evaluated numerically, with the values of the equi-

librium position q∗ (x̄ref , zs) obtained as solution of the corresponding un-

controlled system. Figure 6.4 shows the influence of the coefficients of the

characteristic polynomial (6.15) on the stability of the system stable equi-

librium solution; their contributions are summarized, together with the ones

related to the unstable equilibrium branch, in figure 6.5. It is evident that

the ∆2 coefficient governs the fixed point stability, reducing it as the value

of the feedback control parameter increases, up to the upper boundary of
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kg = 0.1 for which both ∆2 and C1 change their sign making the fixed

point unstable. As regards the equilibrium that corresponds to the unstable

equilibrium of the uncontrolled system, it remains unstable over the whole

domain even after the control introduction.

C1
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kg
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kg

C3
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kg

D2
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G10.00
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0.06

0.08

0.10

kg

Figure 6.4: Stability thresholds of the fixed point that corresponds to the stable equi-
librium of the uncontrolled system, determined by studying the characteristic polynomial
coefficients: gray regions represent the loci where C(∆)j > 0, gray curves are the loci
where C(∆)j = 0

For the parameters choice (6.17) and for Γ1 = 0.1, the coefficients values

as function of kg are:

x̄ref 1 : C1 = 0.001− 0.01kg, C2 = 1.978− 0.0001kg, C3 = 3.085kg,

∆2 = 10−6k2g − 3.066kg − 0.002

x̄ref 2 : C1 = 0.001− 0.01kg, C2 = 0.699− 0.0001kg, C3 = 3.07kg,

∆2 = 10−6k2g − 3.314kg + 0.0007

Therefore, for the chosen value of the nonlinear interaction parameter, x̄ref 1

is always unstable while the asymptotic stability of the equilibrium solution

x̄ref 2 occurs for 0 < kg < 0.00223. The three eigenvalues which are solution

of the characteristic polynomial pJq∗ can be studied to point out the possible

bifurcation scenarios of the system fixed points; as they turn out to be

λ1,2 = Re1,2±iIm1,2, λ3 = Re3, the possible kinds of bifurcations the system
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-0.5

0.0

xref

Figure 6.5: Stability regions of the controlled fixed points as a function of the feedback
control parameter kg and the atomic interaction parameter Γ1. Gray area = stable region,
red area = unstable region.

can display are:

• Divergence bifurcation: Re3 = 0 ⇒ C3 = 0

• Hopf bifurcation: Re1,2 = 0 , Im1,2 = ωH > 0 ⇒ ∆2 = 0 , ωH =
√

C3/C1 > 0 with C3 = C1C2

• Divergence-Hopf bifurcation: Re3 = Re1,2 = 0 , ωH > 0 ⇒ C1 = C3 =

0 ,
√
C2 > 0

The bifurcation loci for the system with parameters values (6.17) are re-

ported in figure 6.6(a). Here, blue curve depicts the Hopf bifurcation locus,

and comparison with figure 6.4 highlights that it corresponds to the case

∆2 = 0 and represents the stability boundary for the system equilibrium so-

lutions. Note that positive region of ωH reported in figure 6.6(b) guarantees

the existence of the imaginary parts of λ1,2 eigenvalues. On the contrary, the

green line which represents the divergence bifurcation locus (C3 = 0) and the

red point referring to the Hopf-divergence bifurcation (C3 = 0 and ∆2 = 0)

occur for kg = 0, that is when the control is not activated and thus become

meaningless scenarios. The red point, in particular, is located at Γ1
∼= 1.5
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Figure 6.6: Bifurcation chart of the equilibrium solution (a): Hopf bifurcation locus (blue
line), Divergence bifurcation locus (green line) and Divergence-Hopf bifurcation locus (red
point). ωH > 0 region is reported in gray in (b)

which is the limit value non only for the stability of the uncontrolled equi-

librium, but also for its existence: it corresponds, in fact, to the position

of the saddle-node bifurcation which connects the stable equilibrium branch

with the unstable one.
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Chapter 7

Weakly nonlinear dynamics

of the controlled system

In this section, attention is devoted to study the system nonlinear dynamics

around the previously obtained fixed point, close to primary resonance; for

this purpose, the method of multiple scales is applied. This method, as other

perturbation techniques, is useful to separate the slow and fast dynamics of

the system. In particular, after the introduction of different time scales,

namely the fast one, t0, and the slower ones, t1, t2, . . ., and an asymptotic

expansion of the dependent variables, the application of the method of mul-

tiple scales provides an approximate expression of the solution of the weakly

nonlinear system, as well as a reduced set of differential equations which

rule the slow-time amplitudes of motion. While the solution is obtained

through the chain-solving of non-homogeneous linear differential systems,

the reduced set is obtained through the imposition of solvability conditions

at each perturbation step, entailing the neglection of secular terms in the

solution, which is actually expected to be bounded.

85
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7.1 Multiple scale analysis

The equations of motions (6.9) are analyzed around the reference position

(xref , zs), that is y = x− xref = x− x̄ref − x̃ref and p = z − zs:

ÿ = − 1

(1 + α2(y + x̄ref + x̃ref )2)

(

α1 + α2ẏ
2 + α3(y + x̄ref + x̃ref )

2
)

(y + x̄ref + x̃ref ) +
Γ1

(1 + (y + x̄ref + x̃ref ) + Vg + p)2

+
(

ρ1 + ρ2(y + x̄ref + x̃ref )
2
) (

ẏ + ˙̃xref
)

+
(

V̈g − kgẏ + ν1

(

V̇g − kgy
))

ν2

−
(

µ1(y + x̄ref + x̃ref ) + µ2(y + x̄ref + x̃ref )
3
)

(

Üg + η1U̇g + η2Ug

)

ṗ = −kgy

(7.1)

with Vg = V sin(ωvt), Ug = U sin(ωut+ φu) and accounting for (6.10). The

multiple scales method [79] is employed by introducing 4 independent time

scales

T0 = t, T1 = ǫt, T2 = ǫ2t, T3 = ǫ3t (7.2)

where ǫ is a small dimensionless ordering parameter and, consistently, ex-

pressing the time derivatives as

d/dt = D0 + ǫD1 + ǫ2D2

d2/dt2 = D2
0 + 2ǫD0D1 + ǫ2D2

1 + 2ǫ2D0D2 + 2ǫ3D1D2

(7.3)

Both displacement y and target distance p are scaled as small perturbations

of the reference position:

y(t) =ǫy1(T0, T1, T2, T3) + ǫ2y2(T0, T1, T2, T3)

+ ǫ3y3(T0, T1, T2, T3) + ǫ4y4(T0, T1, T2, T3)

p(t) =ǫp1(T0, T1, T2, T3) + ǫ2p2(T0, T1, T2, T3)

+ ǫ3p3(T0, T1, T2, T3) + ǫ4p4(T0, T1, T2, T3)

(7.4)
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The system parameters are rescaled to describe small base excitation

amplitude (V → ǫ3V̂ ), small scan amplitude (U → ǫ3Û), small damping

(ρ1 → ǫ2ρ̂1, ρ2 → ǫ2ρ̂2, ν1 → ǫ2ν̂1, ν2 → ǫ2ν̂2) and small control (kg

→ ǫ2k̂g). Two detuning terms are also defined to express the nearness of

exciting frequencies to primary resonance:

ǫ2σu = ωu − ω1 = ω1(Ωu − 1), ǫ2σv = ωv − ω1 = ω1(Ωv − 1)

where ω1 is the natural system frequency and Ωi = ωi/ω1, i = u, v.

Note that the feedback control parameter kg is ordered in such a way

to come into play within the perturbation scheme as the same order as the

one where the other system nonlinearities appear, i.e. the third order. To

evaluate the effect of control on the system asymptotic response, therefore,

the perturbation analysis is carried out up to the fourth order.

It is worth underlining here that the reference solution x̃ref in (7.1) is the

modulated response of the uncontrolled system, and in view of a perturba-

tion analysis, it can be seen as solution of the perturbed uncontrolled system

which has been analyzed, up to the third order, by Hornstein and Gottlieb

[44] with the same choice of variables and parameters scaling. Here, how-

ever, a further perturbation equation at the fourth order has been added,

and the system obtained is reported and developed in Appendix B.

Hence, x̃ref (t) can be considered, and thus scaled, as a further variable:

x̃ref (t) =ǫx̃ref1 (T0, T1, T2, T3) + ǫ2x̃ref2 (T0, T1, T2, T3)

+ ǫ3x̃ref3 (T0, T1, T2, T3) + ǫ4x̃ref4 (T0, T1, T2, T3)
(7.5)

For the controlled system, after pre-multiplication by denominator, the fol-

lowing set of perturbation equations is obtained:
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order ǫ0 :

Γ1 + x̄ref (1 + x̄ref )
2(α3x̄

2
ref + α1) = 0

(7.6a)

order ǫ1 :

D2
0y1 + ω2

1y1 +D2
0x̃ref1 + ω2

1x̃ref1 + C11p1 = 0

D0p1 = 0

(7.6b)

order ǫ2 :

D2
0y2 + ω2

1y2 +D2
0x̃ref2 + ω2

1x̃ref2 + C11p2 = N21(y1)

+N22(x̃ref1 ) +N23(p1) +N24(y1, x̃ref1 )

+N25(y1, p1) +N26(p1, x̃ref1 )

D0p2 = −D1p1

(7.6c)

order ǫ3 :

D2
0y3 + ω2

1y3 +D2
0x̃ref3 + ω2

1x̃ref3 + C11p3 = N31(y1, y2)

+N32(x̃ref1 , x̃ref2 ) +N33(p1, p2) +N34(y1, y2, x̃ref1 , x̃ref2 )

+N35(y1, y2, p1, p2) +N36(p1, p2, x̃ref1 , x̃ref2 )

+N37(y1, x̃ref1 , p1)− Ccu cos(ω1T0 + σuT2 + φu)

− Csv sin(ω1T0 + σvT2)− Csu sin(ω1T0 + σuT2 + φu)

D0p3 = −D1p2 −D2p1 − k̂gy1

(7.6d)

order ǫ4 :

D2
0y4 + ω2

1y4 +D2
0x̃ref4 + ω2

1x̃ref4 + C11p4 = N41(y1, y2, y3)

+N42(x̃ref1 , x̃ref2 , x̃ref3 ) +N43(p1, p2, p3)

+N44(y1, y2, y3, x̃ref1 , x̃ref2 , x̃ref3 )

+N45(y1, y2, y3, p1, p2, p3)

+N46(p1, p2, p3, x̃ref1 , x̃ref2 , x̃ref3 )

+N47(y1, y2, x̃ref1 , x̃ref2 , p1, p2)

D0p4 = −D1p3 −D2p2 −D3p1 − k̂gy2

(7.6e)

where expressions of the Nij terms are reported in Sect. C.1 of Appendix C.

It is worth noting that N21(y1) and N22(x̃ref1 ) terms have the same struc-

ture, as well as N31(y1, y2) and N32(x̃ref1 , x̃ref2 ) terms, N41(y1, y2, y3) and

N42(x̃ref1 , x̃ref2 , x̃ref3 ) terms, N35(y1, y2, p1, p2) and N36(x̃ref1 , x̃ref2 , p1, p2)
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terms andN45(y1, y2, y3, p1, p2, p3) andN46(x̃ref1 , x̃ref2 , x̃ref3 , p1, p2, p3) terms.

This is due to the fact that the y and x̃ref variables appear in all of the

terms of (7.1) simultaneously, apart from some terms related to the forcing

Vg which, in any case, are scaled at higher orders. It is also important to

observe that, at each order, all the terms of the uncontrolled system (B.2)

can be detected in the controlled system (7.6), as functions of x̃ref and y;

the ones related to x̃ref vanish identically considering that x̃ref is solution

for the uncontrolled system.

The system hence becomes:

order ǫ1 :

D2
0y1 + ω2

1y1 + C11p1 = 0

D0p1 = 0

(7.7a)

order ǫ2 :

D2
0y2 + ω2

1y2 + C11p2 = N21(y1)

+N23(p1) +N24(y1, x̃ref1 )

+N25(y1, p1) +N26(p1, x̃ref1 )

D0p2 = −D1p1

(7.7b)

order ǫ3 :

D2
0y3 + ω2

1y3 + C11p3 = N31(y1, y2)

+N33(p1, p2) +N34(y1, y2, x̃ref1 , x̃ref2 )

+N35(y1, y2, p1, p2) +N36(p1, p2, x̃ref1 , x̃ref2 )

+N37(y1, x̃ref1 , p1)

D0p3 = −D1p2 −D2p1 − k̂gy1

(7.7c)

order ǫ4 :

D2
0y4 + ω2

1y4 + C11p4 = N41(y1, y2, y3)

+N43(p1, p2, p3)

+N44(y1, y2, y3, x̃ref1 , x̃ref2 , x̃ref3 )

+N45(y1, y2, y3, p1, p2, p3)

+N46(p1, p2, p3, x̃ref1 , x̃ref2 , x̃ref3 )

+N47(y1, y2, x̃ref1 , x̃ref2 , p1, p2)

D0p4 = −D1p3 −D2p2 −D3p1 − k̂gy2

(7.7d)
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whose first equation, at each order, has the same structure as that in (B.2),

apart from replacing x̃ref with y, including the x̃ref y coupling terms, and

exhibiting terms ensuing from the target distance variable p. Solutions of

system (7.7a) are

p1 = B(T1, T2, T3)

y1 = A(T1, T2, T3)e
iω1T0 − C11/ω

2
1B(T1, T2, T3) + c.c.

(7.8)

with A(T1, T2, T3) and B(T1, T2, T3) which are undetermined functions of the

slow time scales and c.c. which are the complex conjugate of terms contain-

ing the complex amplitude A (the overbar denotes the complex conjugate

and i the imaginary unit). Solutions (7.8) highlight that p1(T1, T2, T3) is a

modulated nontrivial equilibrium solution, while y1(T1, T2, T3) is a harmonic

solution modified by the equilibrium position of p1. Substitution of p1 in

the second equation of (7.7b) yields

D0p2 = −D1B (7.9)

where the dependence on the time scales has been omitted. Elimination of

secular terms requires

D1B = 0 (7.10)

so that B = B(T2, T3), and solution of (7.9) is

p2 = 0 (7.11)

Using (7.8) and (7.11), and remembering equation (B.3)

x̃ref1 = Aun(T1, T2, T3)e
iω1T0 + c.c.

is solution of amplitudeAun(T1, T2, T3) of the first order uncontrolled system,

the first equation of (7.7b) becomes

D2
0y2+ω2

1y2 = −2C214

(

AĀ+AĀun

)

− C212B
2

− eiω1T0 (C213 (A+Aun)B + 2iω1D1A)

− C211e
2iω1T0

(

A2 + 2AAun

)

+ c.c.

(7.12)
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and the solvability condition implies that

D1A =
iC213

2ω1
(A+Aun)B (7.13)

For the uncontrolled system, it is (B.5)

D1Aun = 0 thus Aun = Aun(T2, T3)

The particular solution at this order is

y2 =
C211

3ω2
1

(

A2 + 2AAun

)

e2iω1T0 − 2C214

ω2
1

(

AĀ+AĀun

)

− C212

ω2
1

B2 + c.c.

(7.14)

while the solution of the uncontrolled system (B.2) is (B.6)

x̃ref2 =
C211

3ω2
1

A2
une

2iω1T0 − 2C214

ω2
1

AunĀun + c.c.

For the expression of the Cijk coefficients, see Sect. C.2 of Appendix C.

At the third order, by means of the obtained results the second of (7.7c)

becomes

D0p3 =−D2B + k̂gC11B/ω2
1 − k̂gAe

iω1T0 + c.c. (7.15)

and the secular terms elimination, providing

D2B = k̂gC11B/ω2
1 (7.16)

permits to obtain

p3 =
ik̂gAe

iω1T0

ω1
+ c.c. (7.17)

Using (7.8), (B.3), (7.10),(7.11),(7.13),(7.14),(7.16),(7.17), the first equation

of (7.7c) becomes
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D2
0y3 + ω2

1y3 =γ31e
iω1T0 + γ32e

2iω1T0 + γ33e
3iω1T0 + γ35B

3

+ γ36
(

AĀ+ ĀAun +AĀun +AunĀun

)

B

+ γ37
(

Ā+ Āun

)

D1A+ γ37ĀD1Aun

− C11/ω
2
1D

2
1B + c.c.

(7.18)

with γijk defined in Sect. C.2 of Appendix C.

The solvability condition is, using the definition of γ31,

2iω1D2A+ C301

(

A2Ā+ 2AĀAun + ĀA2
un +A2Āun + 2AAunĀun

)

+ C302

(

AB2 +AunB
2
)

+ i

(

C35ω1 +
C11k̂g
ω1

)

A = 0

(7.19)

from which

D2A = −C35ω
2
1 + C11k̂g
2ω2

1

A

+ i
C301

(

A2Ā+ 2AĀAun + ĀA2
un +A2Āun + 2AAunĀun

)

2ω1

+ i
C302

(

AB2 +AunB
2
)

2ω1

(7.20)

By eliminating the secular terms in (7.18), the particular solution at the

third order for the controlled system results

y3 =C306B
3 + C303

(

A3 + 3A2Aun + 3A2
un

)

e3iω1T0

+ C304

(

A2B + 2AAunB +A2
unB

)

e2iω1T0

+ C305

(

AĀB +AunĀB +ABĀun +AunBĀun

)

+ c.c.

(7.21)

For what concerns the uncontrolled system, the solvability condition at the

third order yields (B.8)

D2Aun = −C35

2
Aun + i

C301

2ω1

(

A2
unĀun

)

+
Csv

4ω1
eiσvT2 +

Csu

4ω1
ei(σuT2+φu) + i

Ccu

4ω1
ei(σuT2+φu)
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and the particular solution results (B.9)

x̃ref3 =C303A
3
une

3iω1T0 + c.c.

Such results allow one to rewrite the second equation of (7.7d) as

D0p4 =−D3B − i
k̂g
ω1

D1Ae
iω1T0

+
2C214k̂g

ω2
1

(

AĀ+AunĀ+AĀun

)

+
C212k̂g
ω2
1

B2

− C211k̂g
2ω2

1

(

A2 + 2AAun

)

e2iω1T0 + c.c.

(7.22)

with the secular term being

D3B =+
2C214k̂g

ω2
1

(

AĀ+AunĀ+AĀun

)

+
C212k̂g
ω2
1

B2 (7.23)

and the particular solution resulting

p4 =− iC213k̂g
2ω3

1

(AB +AunB) eiω1T0

+
iC211k̂g
3ω3

1

(

A3 + 2AAun

)

e2iω1T0 + c.c.

(7.24)
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The first equation (7.7d) at the fourth order hence becomes

D2
0y4 + ω2

1y4 =−A2
(

γ47Ā
2 + 2γ47ĀĀun + γ47Ā

2
un

)

− 4γ47AAunĀĀun −A
(

B2
(

γ45Ā+ γ45Āun

)

+γ49Āun + γ54e
−iσvT2 + γ55e

−iσuT2−iφu

)

− 2γ47A
2
unĀĀun − γ45AunB

2Āun

−B
(

γ48ĀD1A+ γ48ĀD1Aun

+γ48ĀunD1A+ γ48ĀunD1Aun + γ58D
2
1B
)

− γ57ĀD
2
1A− γ57ĀD

2
1Aun − γ56ĀD2A

− γ56ĀD2Aun − γ57ĀunD
2
1A

− γ56ĀunD2A− γ50D1AD1Ā

− γ50D1ĀD1Aun − γ51D1B
2

− γ46B
4 − γ52D1D2B

− γ53D1B − γ41e
iω1T0 − γ42e

2iω1T0

− γ43e
3iω1T0 − γ44e

4iω1T0 + c.c.

(7.25)

The secular terms elimination requires that γ41 = 0. Using equations

(7.10),(7.13),(B.5),(7.16),(7.20),(B.8), and assuming that

2D1D2A =
dD1A

dT2
+

dD2A

dT1

it results

D3A =B3 (γ402A+ γ402Aun)

+B
(

γ401A
2Ā+ γ401A

2Āun

+2γ401AĀAun + 2γ401AAunĀun

+γ404A+ γ403Aun

+γ401ĀA
2
un + γ401A

2
unĀun

+γ405e
iσuT2+iφu + γ406e

iσvT2

)

(7.26)

According to the usual reconstitution procedure [79], the amplitudes

derivatives with respect to time t are obtained from (7.3)
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Ȧ = ǫD1A+ ǫ2D2A+ ǫ3D3A

Ḃ = ǫD1B + ǫ2D2B + ǫ3D3B
(7.27)

in whichD1B,D1A,D2B,D2A,D3B,D3A are defined in (7.10), (7.13), (7.16),

(7.20), (7.23) and (7.26). Finally, considering that C35, C405, C423 = f(ρ̂1, ρ̂2),

Ccu, Csu, Ccuu, Csuu, C411, C413 = f(Û), Csv, Csvv, Csvvv, C412 = f(V̂ ), the ǫ

parameter is completely reabsorbed through the backward rescaling

ǫA → A, ǫB → B, ǫAun → Aun, ǫ2k̂g → kg, ǫ2C35 → C35,

ǫ2C405 → C405, ǫ2C423 → C423, ǫ3Ccu → Ccu, ǫ3Csu → Csu,

ǫ3Ccuu → Ccuu, ǫ3Csuu → Csuu, ǫ3Csv → Csv, ǫ3Csvv → Csvv,

ǫ3Csvvv → Csvvv, ǫ3C411 → C411, ǫ3C412 → C412,

ǫ3C413 → C413, ǫ2σu → σu, ǫ2σv → σv.

(7.28)

The obtained modulation equations (or bifurcation equations) are

Ȧ =+ β6AB + β9A+ β5AunB + β8B cos (σut+ φu)

− β10B sin (σut+ φu) + β11B cos (σvt)

+ i
(

Āun

(

A2 (β1B + β4) + 2AAun (β1B + β4) + β1A
2
unB

)

+A2Ā (β1B + β4) + 2β4AĀAun

+AB
(

2β1ĀAun +B (β2B + β3) + β7
)

+Aun

(

B
(

β1ĀAun +B (β2B + β3) + β7
)

+ β4ĀAun

)

+B (β8 sin (σut+ φu) + β10 cos (σut+ φu) + β11 sin (σvt)))

Ḃ =
2C214kg

ω2
1

(

AĀun +AĀ+ ĀAun

)

+
C212kg
ω2
1

B2 +
C11kg
ω2
1

B

(7.29)

Note that the complex amplitudes A and B are of order ǫ (A = ǫA,B =

ǫB), as they refer to the displacement y and the target distance p, respec-

tively.

To conveniently express the system (7.29) in Cartesian coordinates, it has

to be transformed in an autonomous form, and so the presence of resonant

external vertical excitation Vg or resonant parametric horizontal excitation
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Ug has to be taken into account separately. For the horizontally forced case

(Vg = 0), and remembering that σu = (Ωu − 1)ω1, system (7.29) reduces to

Ȧ =+ β6AB + β9A+ β5AunB + β8Beiφu+(Ωu−1)ω1t

+ i
(

Āun

(

A2 (β1B + β4) + 2AAun (β1B + β4) + β1A
2
unB

)

+A2Ā (β1B + β4) + 2β4AĀAun

+AB
(

2β1ĀAun +B (β2B + β3) + β7
)

+Aun

(

B
(

β1ĀAun +B (β2B + β3) + β7
)

+ β4ĀAun

)

+β10e
iφu+(Ωu−1)ω1t

)

Ḃ =
2C214kg

ω2
1

(

AĀun +AĀ+ ĀAun

)

+
C212kg
ω2
1

B2 +
C11kg
ω2
1

B

(7.30)

Pre-multiplication of both sides of equation (7.30) by e−iφu−(Ωu−1)ω1t yields

Ġ =+ β6BG+ β8B + β5BGun + β9G

+ i
(

Ḡun

(

G2(β1B + β4) + β1BG2
un + 2GGun(β1B + β4)

)

+Ḡ
(

G2(β1B + β4) +G2
un(β1B + β4) + 2GGun(β1B + β4)

)

+β2B
3(G+Gun) + β3B

2(G+Gun)

+B(β7(G+Gun) + β10)− ω1(Ωu − 1)G)

(7.31)

where transformations

G = Ae−iφu−(Ωu−1)ω1t, Ḡ = Āe−iφu−(Ωu−1)ω1t,

Gun = Aune
−iφu−(Ωu−1)ω1t, Ḡun = Āune

−iφu−(Ωu−1)ω1t

have been applied. Finally, using the following coordinates transformations

G =
1

2
(j(t) + i n(t)), Ḡ =

1

2
(j(t)− i n(t)), B = b(t),

Gun =
1

2
(jun(t) + i nun(t)), Ḡun =

1

2
(jun(t)− i nun(t))
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system (7.30) results

j̇(t) =− β2n(t)b(t)
3 − β2nun(t)b(t)

3 − β3n(t)b(t)
2 − β3nun(t)b(t)

2

− β1
3
jun(t)

2nun(t)b(t)−
β1
3
nun(t)

3b(t) + β5jun(t)b(t)

+ β6j(t)b(t)− β7n(t)b(t)− β7nun(t)b(t) + 2β8b(t)

− β1
4
j(t)2nun(t)b(t)−

3β1
4

n(t)2nun(t)b(t)

− β1
2
j(t)jun(t)n(t)b(t)−

β1
4
jun(t)

2n(t)b(t)

− 3β1
4

n(t)nun(t)
2b(t)− β1

4
j(t)2n(t)b(t)

− β1
2
j(t)jun(t)nun(t)b(t)

− β1
4
n(t)3b(t) + β9j(t)−

β4
4
j(t)2nun(t)

− β4
4
jun(t)

2n(t)− 3
β4
4
n(t)2nun(t)

− 3
β4
4
n(t)nun(t)

2 − β4
4
j(t)2n(t)

− β4
2
j(t)jun(t)n(t)−

β4
2
j(t)jun(t)nun(t)

− β4
4
n(t)3 + (ω1Ωu − ω1)n(t)

(7.32)
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ṅ(t) =β2j(t)b(t)
3 + β2jun(t)b(t)

3 + β3j(t)b(t)
2 + β3jun(t)b(t)

2

+
β1
4
jun(t)

3b(t) +
β1
4
jun(t)nun(t)

2b(t) + β5nun(t)b(t)

+ β6n(t)b(t) + β7j(t)b(t) + β7jun(t)b(t) + 2β10b(t)

+ 3
β1
4
j(t)2jun(t)b(t) +

β1
4
jun(t)n(t)

2b(t)

+
β1
2
j(t)n(t)nun(t)b(t) + 3

β1
4
j(t)jun(t)

2b(t)

+
β1
4
j(t)nun(t)

2b(t) +
β1
4
j(t)3b(t)

+
β1
4
j(t)n(t)2b(t) +

β1
2
jun(t)n(t)nun(t)b(t) + β9n

+ 3
β4
4
j(t)2jun(t) + 3

β4
4
j(t)jun(t)

2

+
β4
4
j(t)nun(t)

2 +
β4
4
jun(t)n(t)

2

+
β4
4
j(t)3 +

β4
4
j(t)n(t)2 +

β4
2
j(t)n(t)nun(t)

+
β4
2
jun(t)n(t)nun(t) + (ω1 − ω1Ωu)j(t)

ḃ(t) =
C212kg
ω2
1

b(t)2 +
C11kg
ω2
1

b(t) +
C214kg
2ω2

1

j(t)2

+
C214kg
ω2
1

j(t)jun(t) +
C214kg
2ω2

1

n(t)2 +
C214kg
ω2
1

n(t)nun(t)

(7.33)

where j(t) and n(t) are the real and imaginary parts of the complex am-

plitude A, respectively, and jun(t) and nun(t) are the real and imaginary

parts of the reference complex amplitude Aun, respectively. The asymptotic

system is completed by the 2 Cartesian perturbation equations furnished by

the analysis of the uncontrolled system (B.17)

j̇un(t) = +
Csu

4ω1
− C35

4
jun(t)−

C301

16ω1

(

jun(t)
2nun(t) + nun(t)

3
)

+
ω1

2
nun(t) (Ωu − 1)

ṅun(t) = +
Ccu

4ω1
− C35

4
nun(t) +

C301

16ω1

(

nun(t)
2jun(t) + jun(t)

3
)

− ω1

2
jun(t) (Ωu − 1)



7.2. Validity of the asymptotic solution 99

7.2 Validity of the asymptotic solution

To check the validity of the asymptotic solution, AMEs of the uncontrolled

system (B.17) have been added to the controlled ones (7.32), so that the am-

plitudes reported in figure 7.1, obtained through the relation a =
√

j2 + n2,

furnish not only the trivial solution (j, n, b) = (0, 0, 0), which confirms the

validity of the control application, but also the couple (jun, nun) which cor-

responds to the asymptotic reference response.

Figure 7.1: Asymptotic solutions for the parametrically forced system at Ug = 0.0001:
controlled amplitudes a, b (a) and uncontrolled amplitude aun (b)

Once verified the validity of the controlled asymptotic solution, an ad-

ditional check is developed comparing the reference asymptotic solution –

as obtained with the enlarged (i.e., controlled) system – with the results

obtained via numerical integration of the system equations, for the verti-

cally and horizontally forced system, separately. Here, the amplitude of the

numerical solution is evaluated from (xmax − xmin) /2 and the chosen pa-

rameters values are the same already considered in (6.17) with kg = 0.001.
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Figures 7.2, 7.3 demonstrate that the obtained asymptotic solutions (red

lines) are in good agreement with the behavior of the original ODEs (black

lines). It is interesting to point out that the amplitude of the system re-

sponse under horizontal excitation is half the one obtained with the vertical

force; this is due to the fact that the primary resonance is the principal

one for an externally driven system, while the parametric excitation affects

mainly the subharmonic resonance.

Figure 7.2: Asymptotic (red line) and numerical (black line) solutions for the paramet-
rically forced system at Ug = 0.0001

Figure 7.3: Asymptotic (red line) and numerical (black line) solutions for the externally
forced system at Vg = 0.0001
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Stability of the asymptotic solution has been also verified by studying the

response of the bifurcation equations as a function of the feedback control

parameter kg. On the basis of what said about figures 7.2-7.3, analyses are

referred to the horizontally forced system.

(a) (b)

(c)

Figure 7.4: Behavior charts in the Ωu-kg plane around primary resonance at U = 0.0001
for the asymptotic system (a) and for the original ODEs system (b). Comparison between
the asymptotic result (red curve) and the original system result (black curve) (c). TR:
torus bifurcation, HB: Hopf bifurcation, T: transcritical bifurcation, gray region: stable
region

The behavior chart reported in figure 7.4(a) shows the escape threshold

of the asymptotic system in the Ωu-kg plane. The results show that the

asymptotic system loses its stability through a Hopf bifurcation, except for

a confined region around the resonance peak, for which the instability arises

via a transcritical bifurcation.

It is evident the similarity between the qualitative behavior of the ana-

lyzed system and the same results obtained for the original system of ODEs
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reported in figure 7.4(b), which will be described in detail in Sect. 8.1, just

considering that a torus bifurcation of a periodic solution corresponds to a

Hopf bifurcation of the relevant amplitude asymptotic solution. The good

agreement of the results concerns also the quantitative aspect, as shown in

figure 7.4(c), with an error on the amplitude of about 2%.

To confirm the accuracy of the asymptotic system, additional bifurcation

diagrams, for increasing values of the feedback control parameter kg, are

reported in figure 7.5, together with the corresponding results obtained for

the original ODEs system.

(a)

(b)

Figure 7.5: Bifurcation diagram at U = 0.0001 for varying kg at Ωu = 0.9999 for
the asymptotic system (a) and at ωu = 0.8358 (∼= Ωu = 1) for the ODEs system (b).
S1,S1′,S1′′: equilibrium solutions in the AMEs which correspond to P1,P1′,P1′′ periodic
solutions in the ODEs; C′,C′′: limit cicles in the AMEs which correspond to quasiperiodic
solutions in the ODEs; HB: Hopf bifurcation in the AMEs which correspond to torus
bifurcation (TR) in the ODEs; T: transcritical bifurcation; SN: saddle-node bifurcation

Figure 7.5(a) shows the evolution of the system response as a function of
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kg, at a forcing frequency value close to the primary resonance Ωu = 0.9999,

to be compared with figure 7.5(b) (deeply analyzed in Sect. 8.1). Both the

asymptotic system and the original one exhibit the presence of two peri-

odic solutions P1′ and P1′′ which arise from the transcritical bifurcation

responsible for the loss of stability of the controlled main periodic solution

P1. Such solutions, anyway, are not properly controlled by the system, as

highlighted by the non-zero value of the control variable z (with amplitude

b) reported on the right side of figures 7.5(a),7.5(b). Also in this case an

excellent agreement between the results of the two systems can be observed,

not only about the qualitative behavior of the response but also about the

detection of the bifurcation events responsible for changes in stability. Also

the quantitative results are satisfactory, with an error on the amplitude of

the controlled solution P1 of about 5% (see spectra of the P1, P1′ and P1′′

solution reported in figures 8.13,8.14 of Sect. 8.1). It is worth underlining

that the asymptotic system allows one to select and follow also the evolu-

tion of the system quasiperiodic responses, which in such system appear as

periodic solution arisen from the Hopf bifurcations (red curves C′ and C′′

on figures 7.5(a)).

(a) (b)

Figure 7.6: Comparison between results obtained from ODEs system (black) and from
AMEs system (red) for U = 0.0001 and kg = 0.002 (a) and for U = 0.001 and kg = 0.001
(b)

Finally, the good concordance of results is confirmed by the comparison

between frequency-amplitude curves obtained for the AMEs system and for

the ODEs system at feedback control value close to the escape kg = 0.002

(figure 7.6(a)). The reported response curves almost overlap, as well as the
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region of instability confined by a couple of transcritical bifurcations which

correspond to the crossing of the resonance loop of figure 7.4. Also for an

increased forcing amplitude value U = 0.001 (figure 7.6(b)) the asymptotic

system provides good results, even if slight differences can be highlighted

around the top of the resonance curve, where the high value of the response

amplitude does not fulfill the ordering of the asymptotic system (i.e. a = ǫa).



Chapter 8

Strongly nonlinear dynamics

of the controlled system

The previous chapter has pointed out that the external feedback control

introduced into the AFM model is a simple but powerful technique able

to avoid possible unstable responses of the AFM cantilever and thus to

contribute to guarantee the accuracy of the scanning operations. As already

explained, this method can be defined as a “local” control, as its aim is not

to overall regularize the global system dynamics [62, 90], but to keep the

cantilever response to the reference one thus reliably measuring the sample

surface. Yet, a matter of considerable theoretical and practical interest is

also the study of the global nonlinear dynamics of the controlled system, in

order to investigate and a posteriori verify possible undesirable effects of the

control introduction on the system behavior.

For this purpose, a comprehensive analysis of the system dynamical re-

sponse has been carried out and the influence of selected parameters varia-

tion has been examined, for both the cases of parametrically and externally

forced system. Behavior charts around primary and subharmonic resonances

are reported together with several bifurcation diagrams to detect the main

local bifurcation thresholds as a function of the forcing amplitude, the feed-

back control parameter and the nonlinear interaction. Here, the increased

number of dofs and parameters produces an enriched dynamical scenario

which can be compared with the results presented in Chapter 3 for the

uncontrolled system. Overall, the analysis of strongly nonlinear dynamics

allows one to highlight the influence of the external feedback control on the

105
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dynamical behavior of the system up to the undesired “jump-to-contact”.

8.1 Controlled AFM system under parametric ex-

citation

The dynamical response of the controlled system under the horizontal para-

metric scan excitation has been studied for a wide range of forcing frequen-

cies that include the principal and the fundamental resonances. By again

neglecting the following parameters

α2 = 0, ρ2 = 0, µ2 = 0, η1 = 0, η2 = 0

as in the uncontrolled case, the system equation becomes

ẍ+ α1x+ α3x
3 = − Γ1

(1 + x+ z − zs)
2 − ρ1ẋ+ µ1xÜg

ż = kg (xref − x)

(8.1)

with Ug = U sin(ωut). Parameter values used for the reported analyses are

the same considered previously, namely,

α1 = 1, α3 = 0.1, ρ1 = 0.001, ν1 = 0.01, ν2 = 0.01

µ1 = 1.5708, Γ1 = 0.1, zs = 0.01.
(8.2)

Numerical analyses have been carried out by means of the continuation soft-

ware AUTO [25], which permits to obtain bifurcation diagrams and behavior

charts in terms of selected parameters. Here, most attention is devoted to

study the system nonlinear response under changes in the forcing amplitude

U and the feedback control parameter kg, although the influence of the non-

linear interaction term is also investigated. It is worth noting here that some

graphical devices are used in the next figures to distinguish among bifurca-

tion loci and simplify their interpretation: considering the charts of bifur-

cation/response scenarios, green lines correspond to saddle-node thresholds

(SN), red lines are associated to period doubling bifurcations (PD), blue

lines represent transcritical bifurcations (T) and black lines identify torus

loci (TR).

For what concerns the analysis of the system dynamics under variation
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of the forcing amplitude U , several bifurcation diagrams have been realized

to detect the main kinds of local bifurcations responsible for the stability

loss, and local bifurcation thresholds have been numerically obtained, whose

results are summarized in figure 8.1. The local bifurcation loci which rep-

resent the escape thresholds for the uncontrolled system are present also in

the controlled case, even if they do not correspond to the actual stability

boundaries anymore: Nevertheless, they are reported in figure 8.1 together

with the escape thresholds of the controlled system, as they are useful tools

for an immediate comparison of results. In the low-frequency range range

up to the fundamental resonance (ωu = 0.835 = ω1), the system escape

threshold is governed by the torus bifurcation of the nonresonant P1 so-

lution (apart from confined thresholds of period doublings) which occurs

before the saddle-node formerly governing the onset of escape in the uncon-

Figure 8.1: Local bifurcations map and overall escape threshold in the frequency-
amplitude plane of parametric scan excitation and for kg = 0.001. Gray area: region
of stable reference response of the controlled system; dotted gray line: overall escape
boundary; SN1: saddle-node bifurcation of P1 solution; T1: trascritical bifurcation of P1
solution; TR1: torus bifurcation of P1 solution; SpPD1: supercritical period doubling of
P1 solution; SbPD1: subcritical period doubling of P1 bifurcation; SN2: saddle-node of
P2 solution; TR2: torus bifurcation of P2 solution
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Figure 8.2: Behavior chart at low frequencies in the ωu-U plane and for kg = 0.001

trolled case (see figure 8.2), while the transcritical bifurcation of the resonant

P1 solution occurs before the period doubling, thus leading to system in-

stability for frequencies to the right of the fundamental resonance instead

of the period doubling sequence. For higher frequencies which include the

principal resonance (ωu = 1.67 = 2ω1), the system shows the coexistence

of 1-period and 2-period solutions, which become unstable via a couple of

period doublings and a torus bifurcation which replaces the period doubling,

respectively.

Figure 8.3: Bifurcation diagram at ωu = 0.7 with detection of the torus bifurcation at
U = 0.1867 and the saddle-node bifurcation at U = 0.2293
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It is worth underlining that the stable region of figure 8.1 refers to solu-

tions for which the feedback control works properly, i.e. stable responses of

the type (xref , zs). Accordingly, stable motions exhibited by the system that

do not settle onto the reference one are considered as unwanted outcomes

and thus out of the stability range. This is the case, for example, of stable

quasi-periodic solutions born out of the torus bifurcations, an example of

which is reported in figures 8.3 and 8.4 for a forcing frequency of ωu = 0.7.

Here, the bifurcation diagram as function of the forcing amplitude shows the

occurrence of a torus bifurcation at U = 0.1867 which makes the nonresonant

P1 solution unstable. After that, the birth of a stable quasi-periodic motion

can be numerically detected in the controlled system, while it does not exist

in the reference uncontrolled one (see figure 3.2). Note that in this case the

control variable z does not reach the expected position zs = 0.01 (see the

temporal evolution of figure 8.4(b) against the one in figure 8.4(a)). The

quasi-periodic solution exists up to the amplitude value U = 0.2293, when

a saddle-node bifurcation makes the reference solution disappear; since it

represents the input for the numerical solution of the controlled system, this

local bifurcation signs also the death of the stable quasi-periodic response.

To analyze more in details the system dynamical response, several charts

of bifurcation/response scenarios have been realized around fundamental

and principal resonances, as function of the most relevant dynamical pa-

rameters, i.e. the forcing frequency ωu, the forcing amplitude U and the

feedback control parameter k − g. To achieve an exhaustive description of

their mutual influence of the system behavior, these charts are produced in

the ωu-U , ωu-kg and kg-U planes, to be considered as planar sections of a

more general three-dimensional plot. Moreover, the effect of the nonlinear

atomic interaction on the system response is analyzed in view of a com-

parison with the uncontrolled case, and a series of bifurcation diagrams is

presented to complete the results. In the latter, local bifurcations that do

not modify the solutions stability are also reported for the sake of complete-

ness, as they belong to thresholds which are plotted in the behavior charts,

and they contribute to increase/decrease the number of stable Floquet mul-

tipliers. A special behavior concerns the period doubling loci which actually

correspond to a couple of local bifurcations occurring consecutively; each of

them causes the passage of one Floquet multiplier through −1 but only one

signs the arise of a 2-period solution. To improve the figures readability,
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only one period doubling is thus reported.

8.1.1 Nonlinear dynamics around the fundamental resonance

The system dynamical behavior around the fundamental resonance in the

three-dimensional space (ωu, U, kg) is reported in figures 8.5, 8.6, 8.18, 8.19

and 8.11. In the ωu-U plane, it is interesting to investigate the influence

of the increasing feedback control parameter on the stability of the main

periodic solutions, and compare the results with the ones obtained for the

uncontrolled system (i.e. kg = 0 in figure 8.5(a)). For frequencies up to

ωu = 0.835 = ω1, the system shows the presence of two 1-period solu-

tions (low-amplitude/nonresonant P1 (P1L) and high-amplitude/resonant

P1 (P1H)) connected through a couple of saddle-node bifurcations, just as

in the uncontrolled case. However, the control introduction in the model

causes the birth of a new threshold of torus bifurcation (TRL) related to

the P1L solution and of two thresholds of transcritical bifurcation (TH)

of the P1H solution, which considerably modify the system stability region.

Figure 8.5(b), in fact, shows the appearance of an unstable tongue delimited

by the new bifurcation thresholds which occurs for low values of the forcing

amplitude U , and even for weakly controlled systems. Bifurcation diagrams

of figures 8.7-8.10 help to clarify the point: due to the control, the nonreso-

nant solution becomes unstable with a torus bifurcation TRL which occurs

before the saddle-node SNL, while the resonant one, nearly always unstable

in the low-frequency range, regains stability thanks to the transcritical bifur-

cation TH, which happens always for amplitude values considerably higher

than the ones corresponding to both the saddle-nodes and the torus too.

The main consequence of these new thresholds is that the triangle region

below the V vertex detected in the uncontrolled system with the existence

of both P1L and P1H solutions tends to be reduced by the torus curve, with

the two periodic solutions not coexisting anymore, up to its complete dis-

appearance for higher kg values. Furthermore, P1H solution loses stability

through another transcritical bifurcation before the period doubling PDH

which marked the escape from the boundary region in the uncontrolled sys-

tem. As a result, the total escape boundary for the controlled system settles

on to reduced values of the forcing amplitude. The reported bifurcation

diagrams highlight also the presence of other P1 solutions born out of the

transcritical bifurcations (represented with green lines in figures 8.7-8.10),
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which coexist with the main ones and which display a rich scenario of lo-

cal bifurcations; however, bifurcation diagrams with respect to the control

variable z show that for these additional solutions the system fails to reach

the reference position (i.e. z = zs = 0.01) actually making the z response

periodic, so that they appear as unwanted responses. As for the discussed

case of the quasi-periodic orbits, this is due to the fact that such responses

are peculiar to the controlled system, while do not exist in the reference one.

For higher values of the feedback control parameter, (figure 8.6(a)), an

unstable region confined by a torus bifurcation (TRH) arises below the up-

per transcritical threshold, and expands as the control increases. Simulta-

neously, the torus bifurcation which instabilizes the P1L solution occurs for

decreasing values of U , up to the critical value of kg = 0.00223 when the

P1L solution becomes entirely unstable. After that, stability regions reduce

to narrow strips of existence of stable P1H solution, associated with limited

ranges of forcing amplitude U (see behavior charts at kg = 0.01 of figure

8.6(b)).

It is worth underlining that the limit value of the feedback control pa-

rameter kg is the same obtained studying the stability of the equilibrium

solution in Sect. 6.2, which was related to the occurrence of a Hopf bifur-

cation. The comparison with the obtained numerical results shows a good

agreement in terms of both the numerical value and the kind of associated

local bifurcation (the Hopf bifurcation of the asymptotic equilibrium cor-

responds to the torus on the ODEs problem), and thus confirms that it

represents the upper boundary for the existence of the main stable periodic

solution P1L of the system, for increasing kg.
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Figure 8.4: Time histories, phase portraits and Poincaré maps of stable solutions at
ωu = 0.7 before and after the torus bifurcation: periodic solution at U = 0.18 (a) and
quasi-periodic solution at U = 0.21 (b)
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(a)

(b)

Figure 8.5: Behavior charts in the ωu-U plane around primary resonance for kg = 0 (a)
and kg = 0.001 (b)
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(a)

(b)

Figure 8.6: Behavior charts in the ωu-U plane around primary resonance for kg = 0.002
(c) and kg = 0.01 (d)
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(a) (b)

Figure 8.7: Bifurcation diagrams at ωu = 0.7 for kg = 0.001 (a) and kg = 0.002 (b).
Periodic orbits on the phase plane refer to solutions at U = 0.1 (P1L orbit) and U = 0.91
(P1H orbit)
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(a) (b)

Figure 8.8: Bifurcation diagrams at ωu = 0.76 for kg = 0.001 (a) and kg = 0.002 (b).
Periodic orbits on the phase plane refer to solutions at U = 0.05 (P1L orbit) and U = 0.25
(P1H orbit)
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(a) (b)

Figure 8.9: Bifurcation diagrams at ωu = 0.82 for kg = 0.001 (a) and kg = 0.002 (b).
Periodic orbits on the phase plane refer to solutions at U = 0.005 (P1L orbit) and U = 0.2
(P1H orbit)
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(a) (b)

Figure 8.10: Bifurcation diagrams at ωu = 0.9 for kg = 0.001 (a) and kg = 0.002 (b).
Periodic orbits on the phase plane refer to solutions at U = 0.2 and U = 0.08
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Additional informations are given by figure 8.11 which refers to the bi-

furcation/response scenario in the ωu-kg plane.

Figure 8.11(a) is obtained at a forcing amplitude value of U = 0.0001,

and shows that such torus threshold is approximately valid in the whole

frequency range analyzed, with the exception of a narrow range around

the fundamental resonance frequency ωu = ω1 = 0.8358 where a loop of

transcritical bifurcation breaks the torus curve and let the escape bound-

(a)

(b)

Figure 8.11: Behavior charts in the ωu−kg plane around primary resonance for different
values of the forcing amplitude: U = 0.0001 (a), U = 0.15 (b)
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ary decrease. The bifurcation diagram at this forcing frequency against the

kg parameter is reported in figure 8.12(a). Here, the transcritical event

at kg = 0.00193 leads to the birth of a stable switched P1 solution (P1′),

while from the unstable switched branch another P1 solution (P1′′) arises

through a saddle-node bifurcation at kg = 0.0019. Both the new P1′ and

P1′′ responses are periodic in x and z variables, and thus show an improper

control operation. Finally, two different torus bifurcations make them un-

stable at kg = 0.00226 and kg = 0.00214, respectively, and become starting

points for quasiperiodic solutions which exist as the feedback control pa-

rameter increases. Looking at temporary evolutions and fft diagrams of P1,

P1′ and P1′′ solutions reported in figures 8.13-8.14 for increasing kg values,

it is interesting to note that the z variable moves from constant response

(figure 8.13) to quasiperiodic motion (figure 8.17(b)) in a narrow range of

feedback control values (∆kg = 4 × 10−4), while the x variable remains al-

most unchanged, becoming quasiperiodic after the torus bifurcation with a

frequency modulation which tends to zero. It can be conjectured that at

the considered forcing frequency the close proximity to the natural system

frequency (ωu
∼= ω1) leads to a substantial increase of the response ampli-

tude that the feedback control barely dominates and that is manifested in

the decrease of the escape threshold. Outside the resonance loop, on the

contrary, the P1 solution becomes quasiperiodic via a torus event for an

almost constant value of the feedback control parameter kg = 0.00223, with

the x variable which has a modulation considerably faster than the z one,

as reported in figure 8.15 for ωu = 0.7. In this case, thus, it is the x which

governs the passage from periodicity to quansiperiodical behavior. Lastly, it

is worth focusing on the quasiperiodic response evolution as the forcing fre-

quency approaches the fundamental resonance, referring thus to figure 8.16

at a feedback control parameter value of kg = 0.00228. The reported results

highlight that the x variable exhibits the known phenomenon of phase lock-

ing, due to the synchronization of the response frequency to the forcing one,

which produces the passage from quasiperiodic behavior to periodic oscil-

lations. Its modulation frequency, in fact, passes from fast to almost zero,

even if the system variable coupling does not allow it to become periodic.

Simultaneously, it is evident a substantial increase of the response ampli-

tude, which is reflected on the increasingly marked quasiperiodic response

of the z variable.
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(a) (b)
Fig.8.13Fig.8.14 Fig.8.15(a)Fig.8.15(b)

Figure 8.12: Bifurcation diagram at U = 0.0001 for varying kg at ωu = 0.8358 (a) and
ωu = 0.7 (b)
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Figure 8.13: Temporary evolution of P1 solution (kg = 0.0015) at ωu = 0.8358. Gray
line represents the reference response evolution
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Figure 8.14: Temporary evolutions of P1′ (a) and P1′′ (b) solutions at kg = 0.002 for
ωu = 0.8358 and U = 0.0001. Gray line represents the reference response evolution
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Figure 8.15: Temporary evolutions of P1 solution (kg = 0.0015) (a) and of the quasiperi-
odic solution arisen from the torus bifurcation (kg = 0.00228) (b) at ωu = 0.7. Gray line
represents the reference response evolution
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Figure 8.16: Temporary evolutions of quasiperiodic solutions at kg = 0.00228 for ωu =
0.7 (a) and ωu = 0.8 (b). Gray line represents the reference response evolution
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Figure 8.17: Temporary evolutions of quasiperiodic solutions at kg = 0.00228 for ωu =
0.82 (a) and ωu = 0.8358 (b). Gray line represents the reference response evolution
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Behavior charts of figures 8.18-8.19 in the kg-U plane for different forc-

ing frequencies show that some confined stable regions exist also past the

disappearance of the P1L solution and for high values of the feedback con-

trol parameter; they are related to the P1H solution and are present only

for rather high forcing amplitudes.

(a)

(b)

Figure 8.18: Behavior charts in the kg −U plane around primary resonance for ωu = 0.7
(a) and ωu = 0.76 (b)
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(a)

(b)

Figure 8.19: Behavior charts in the kg−U plane around primary resonance for ωu = 0.82
(a) and ωu = 0.9 (b)
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Finally, changes in the dynamical response of the controlled system for

varying values of the nonlinear interaction parameter Γ1 are studied in fig-

ures 8.20-8.22 focusing at a frequency of ωu = 0.7. This value, in fact,

belongs to the frequencies range which shows the presence of the lowest

peak in the P1 solution of the uncontrolled system, as already explained in

Sect. 3.1. A comparison with figures 3.17-3.19 permits to clearly understand

the effect of the control addition on the system response to a varying atomic

interaction. Also in the Γ1-U plane, the region of coexistence of the P1 solu-

tions disappears and a new torus TRL threshold lowers the escape boundary

of the P1L response, formerly represented by the saddle-node SNL thresh-

old. However, the control presence affects mostly the P1H solution, which

in the uncontrolled system was confined by the period doubling threshold;

the onset of a new trancritical locus (TH) and of a new torus one (TRH)

significantly reduces its stability range which passes from Γ1 ∈ [0.127, 0.149]

to Γ1 ∈ [0.1305, 0.1313] at a forcing amplitude of U = 0.0005. As expected,

the escape value of the atomic interaction decreases as the forcing amplitude

grows up, and the instability area consequently expands, as displayed also

in the ωu − Γ1 charts of figure 8.21.

Figure 8.20: Behavior chart in the Γ1-U plane around principal resonance for ωu = 0.7
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(a)

(b)

(c)

Figure 8.21: Behavior charts in the ωu-Γ1 plane around primary resonance for different
values of the forcing amplitude: U = 0.0001 (a), U = 0.0005 (b) and U = 0.15 (c)
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(a)

(b)

(c)

Figure 8.22: Bifurcation diagrams as function of the nonlinear interaction coefficient Γ1

at ωu = 0.7 for U = 0.0001 (a), U = 0.0005 (b) and U = 0.15 (c). Periodic orbits on the
phase plane refer to P1l and P1H solutions 1of the corresponding bifurcation diagrams
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8.1.2 Nonlinear dynamics around the principal resonance

Moving to the neighborhood of principal resonance (ωu = 1.67 = 2ω1), bi-

furcation diagrams of figures 8.24-8.25 show the coexistence of 1-period and

2-period solutions, which is a typical feature of the system. However, with

the control introduction the system displays the presence of three P2 so-

lutions, two of them arisen from the subcritical (SbPD) and supercritical

(SpPD) period doublings which occur in sequence and instabilize the P1 so-

lution (P2′ (red) and P2′′ (green) curves in figures 8.24-8.25), the third one

which on the contrary is disconnected from the others (P2 (blue) solution in

figures 8.24-8.25). Of these three 2-period responses, only the independent

one exhibits a stable branch delimited by a saddle-node (SNP2) and a torus

(TRP2) bifurcation, while the others remain unstable as the forcing ampli-

tude increases. On the other hand, bifurcation diagrams with respect to the

control variable z highlight that the feedback control works properly only

on the unstable P2′ solution related to the subcritical period doubling, as it

was reasonable to expect since it is the only 2-period solution present also in

the uncontrolled system. Accordingly, in the chart of bifurcation/response

scenarios in the ωu-U plane of figure 8.23(a) the system escape threshold

coincides with the subcritical period doubling curve which instabilizes the

P1 solution, as in the uncontrolled case (figure 3.9). Nevertheless, it is in-

teresting to study the dynamical evolution of the new P2 solution as the

forcing amplitude increases: figure 8.23(b) is referred to its local bifurcation

thresholds and some observations can be pointed out. While torus bifur-

cations are new events which instabilize the response, period doubling and

saddle-node curves coincides with the ones related to the 2-period solution

of the uncontrolled system, and thus to the bifurcations which affect the

unstable P2′ solution arisen from the subcritical period doubling (SbPD).

This entails that, differently from the other solutions typical of the con-

trolled system (i.e. quasi-periodic responses and 1-period solutions arisen

from trancritical bifurcations) which exhibit local bifurcations absent in the

uncontrolled case, the P2 solution around principal resonance shows a bifur-

cation behavior coherent with the correctly controlled responses. However, it

is qualitatively different from the original 2-period solution since its portrait

in the phase plane in figure 8.24 highlights a different frequency content and

an amplitude considerably lower (at U = 0.01 its amplitude is 0.006 versus

an amplitude of 0.18 of the uncontrolled 2-period solution). A final remark
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concerns the frequency range at right of the triangle region, where in the un-

controlled system P2 solution becomes stable through a supercritical period

doubling (SpPD). Here the saddle-node responsible for the stability of the

P2 solution gets close to the period doublings of the P1 solution but remain

separated, even if the corresponding bifurcation thresholds almost coincide

(see bifurcation diagram at ωu = 1.75 in figure 8.25).

(a)

(b)

Figure 8.23: Behavior chart in the ωu-U plane around principal resonance for kg = 0.001
with detection of stability regions for the properly controlled system (i.e. P1 solution)(a)
and for the P2 solution (b)
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Figure 8.24: Bifurcation diagrams at ωu = 1.64 with detection of the stable P1 solu-
tion (solid black line), the unstable P2′ and P2′′ solutions (dashed red and green lines,
respectively) and the stable P2 solution (solid blue line) (a); comparison between phase
portraits of the controlled P2 solution (b) and the uncontrolled P2 one (c)

Figure 8.25: Bifurcation diagrams at ωu = 1.75 with detection of the stable P1 solu-
tion (solid black line), the unstable P2′ and P2′′ solutions (dashed red and green lines,
respectively) and the stable P2 solution (solid blue line)
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For what concerns the system dynamical response in the ωu-kg plane,

the phase locking phenomenon observed around fundamental resonance and

already described in figures 8.11(a),8.13 can be detected also around princi-

pal resonance, as shown in figure 8.26(a). Here, however, the escape thresh-

old represented by the torus bifurcation locus is interrupted by a loop of

period doubling, which replaces the transcritical loop present around fun-

damental resonance and leads to the arise of a 2-period solution which then

becomes unstable via a torus bifurcation (figure 8.26(b)). The presence of a

switched 2-period solution instead of the 1-period solutions denounces the

(a)

(b) (c)

Figure 8.26: Behavior chart in the ωu − kg plane around principal resonance for U =
0.0001 (a) and bifurcation diagrams at ωu = 1.6717 with respect to x variable(b) and z
variable (c)
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resonance region under consideration, which is characterized by the presence

of period doubled responses and represents the main resonance region for a

system under parametric excitation, as evident by the significantly increased

loop size with respect to what obtained at ωu = ω1 (the period doubling

threshold spans a kg range of 1.2×10−3 and a ωu range of 5×10−4, while the

trancritical locus exists for a kg range of about 5× 10−4 and for a ωu range

of about 1× 10−4). Finally, as for the other cases previously analyzed, the

bifurcation diagram with respect to the control variable z (figure 8.26(c))

highlights the failure of the feedback control for all the solutions which are

typical of the controlled system while absent in the uncontrolled one.

Still focusing around the principal resonance, analysis of the system be-

havior in the kg-U plane reported in figure 8.27 points out another feature

different from what obtained in the fundamental resonance range. In the

former case, in fact, escape from the stability region as function of the feed-

back control parameter kg was due to the disappearance of the torus curve

responsible for the instabilization of the P1 solution; around ωu = 2ω1,

on the contrary, stability of P1 solution results to be independent of kg

since the SbPD escape threshold is not modified by the control increase.

Nevertheless, around kg = 0.0022 a torus bifurcation leads to the sudden

annihilation of the stable P1 solution and consequently to the stability loss

of the controlled system. This time the transition from stability to insta-

bility is not consequence of smooth changes in system responses, but it has

to be attributed to the end of the equilibrium stability for the system (note

that for U = 0.0001 the torus threshold appears at kg = 0.00223, the same

value obtained studying the equilibrium stability in Sect. 6.2), and thus to

an intrinsic characteristic of the system.
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(a)

(b)

Figure 8.27: Behavior chart in the kg-U plane around principal resonance for ωu = 1.64
(a) and ωu = 1.75 (b)
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8.2 Controlled AFM system under external exci-

tation

The analysis of the strongly nonlinear dynamics for the controlled system

is completed by a summary of the outcomes obtained studying the case of

sole vertical excitation, and with the parameter values (8.2). The problem

is governed by the following equation:

ẍ+ α1x+ α3x
3 = − Γ1

(1 + x+ Vg + z − zs)
2 − ρ1ẋ

−
(

V̈g + kg (ẋref − ẋ) + ν1

(

V̇g + kg (xref − x)
))

ν2

ż = kg (xref − x)

(8.3)

with Vg = V sin(ωvt) and the presented results allow one to underline sim-

ilarities and differences with respect to both the uncontrolled problem and

the parametrically forced system with feedback control. For what concern

the system behavior as a function of the forcing amplitude V , figure 8.28

shows the bifurcation behavior in the whole range of frequencies considered

previously, while charts reported in figures 8.29-8.30 focus around primary

and subharmonic resonance regions.

The charts highlight that in general the vertically forced system has the

same behavior of the horizontally forced one, with the maintenance of the lo-

cal bifurcation thresholds present in the uncontrolled case, while new thresh-

olds of torus and transcritical bifurcations contribute to reduce the stability

region for the system. Nevertheless, some distinctions can be pointed out:

around primary resonance (figure 8.29), as for the parametrically forced

case (8.5(b)), the P1L solution loses stability through a torus bifurcation

(TRL) which happens before the original saddle-node (SNL), while P1H

solution becomes stable via a transcritical bifurcation (TH). However, the

latter bifurcation occurs for amplitude values significantly higher than in the

parametrically forced case, so that the presence of both the P1 solutions at

the same frequency is limited to a narrow range around the triangle vertex

at ωv = 0.82, and anyway without regions of coexistence, as in the horizontal

case. After that, the system exhibits only one P1 solution, which disappears

through a period doubling, as in the uncontrolled case (see figure 3.20). The

transcritical threshold which in the case of horizontal forcing was responsible
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Figure 8.28: Local bifurcations map and overall escape threshold in the frequency-
amplitude plane of external excitation, for kg = 0.001. Gray area: region of stable refer-
ence response of the controlled system; dotted gray line: overall escape boundary; SN1:
saddle-node bifurcation of P1 solution; T1: trascritical bifurcation of P1 solution; TR1:
torus bifurcation of P1 solution; SpPD1: supercritical period doubling of P1 solution;
SbPD1: subcritical period doubling of P1 bifurcation; SN2: saddle-node of P2 solution;
TR2: torus bifurcation of P2 solution

Figure 8.29: Behavior chart in the ωv-V plane around primary resonance
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for the system instability, in fact, is here shifted to high-amplitude values,

and becomes escape boundary only for frequencies around ωv = 1.1.

Around subharmonic resonance in figure 8.30, the same thresholds of

the uncontrolled case (see figure 3.21) can be found again, together with

the reverse supercritical period doublings (RevPDP1 and RevPDP2) which

confined the region of in-well instability. With the control introduction, how-

ever, the original P2 solution remains unstable as the amplitude increases,

and the subcritical period doubling threshold of the P1 solution (SubPDP1)

marks the stability boundary for all the properly controlled solutions. Also

in the vertically forced system, as in the parametrically forced case, the pres-

ence of the disconnected P2 solution can be detected, with the associated

curves of saddle-node (SNP2) and torus (TRP2) which sign its birth and

death (figure 8.30(b)). Differently from what happened in the parametric

case, however, the torus threshold exists also after the disappearance of the

P2 solution at a frequency of about 1.74, but here pertains to the P1 solution

and becomes the bifurcation event responsible for the escape from stability

region in the highest frequency range, instead of the saddle-node SNP1.

Finally, the system behavior analysis as a function of the feedback con-

trol parameter kg points out that also the vertically forced system loses

stability via a torus bifurcation at a value of kg ∼= 0.00223 in the whole fre-

quency range, with the exception of a loop of transcritical bifurcation around

primary resonance and of a loop of period doubling bifurcation around sub-

(a) (b)

Figure 8.30: Behavior charts in the ωv-V plane around subharmonic resonance with
detection of stability regions for P1 solution (a) and P2 solution (b)
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harmonic resonance, as reported in figures 8.31(a)-8.31(b) and as already

discussed for the parametric case (see figures 8.11(a), 8.26(a)). For the sys-

tem under external excitation, however, the phase locking phenomenon is

stronger around ωv = ω1 and involves a quite larger range of frequencies

with respect to what happens at ωv = 2ω1. This is due to the fact that

the externally forced system has its main resonance at the system natural

frequency, while the parametric one at twice natural frequency.

(a) (b)

Figure 8.31: Behavior chart in the ωv-kg plane around primary resonance (a) and around
subharmonic resonance (b) for V = 0.0001

As a final remark, it is worth noting that the results reported in figure

8.31(a) are qualitalively similar to those presented by Yagasaki in [124],

obtained from a simple model of tapping AFM subject to the same external

feedback control technique and operating in the noncontact region. Figure

10 of [124], in fact, shows the stability thresholds of the externally forced

system around primary resonance, with the detection of the resonance loop

of transcritical bifurcation which breaks the Hopf bifurcation threshold of

the main periodic orbit. Besides confirming the goodness of the obtained

results, this comparison allows one to reasonably assume that the described

behavior is typical of AFM systems under the presented kind of feedback

control.
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8.3 Stability regions with/without control

To summarize the results obtained in the previous sections concerning the

controlled system, and in view of easily comparing them with what already

presented for the uncontrolled system, two behavior charts in the frequency-

amplitude plane are shown for both the cases of parametric and external

excitations. Figures 8.32-8.33 show the overall escape thresholds of the

two systems (controlled/uncontrolled) together with the detection of the

corresponding stability regions, and they clearly highlight the effect of the

external feedback control in reducing the dynamical stability of the system,

mostly around the main resonance frequencies, i.e. ω1, 2ω1 and ω1/2.

In the close neighborhood of these values, in fact, the feedback control

causes the onset of instability tongues which dramatically decrease the es-

cape value of the forcing amplitude, with reductions of about 99,9% around

the fundamental (primary) resonance, of 99,4% around the principal (sub-

harmonic) resonance and of about 94% around the superharmonic resonance

frequency. This effect can be explained, as previously mentioned, with the

fact that the close proximity to the resonance frequencies leads to a sub-

stantial increase of the response amplitude of the resonant periodic solu-

tions, that the feedback control is unable to dominate. In these regions,

therefore, the escape threshold of the controlled system is governed by the

nonresonant responses, which become unstable for considerably lower val-

ues of the forcing amplitude. Furthermore, the escape threshold minima

of the controlled system are shifted at frequency values related to the sys-

tem natural frequency ω1 (i.e. ω1/2, ω1, 2ω1), since the nonresonant pe-

riodic solutions are not affected by the softening effect of the nonlinear

resonance (as, in contrast, happened for the resonant solutions which gov-

ern the escape profile of the uncontrolled system). It is important to re-

member also that for the controlled system the stability region does not

coincide with all the stable periodic responses, but includes only those on

which the control works properly, thus causing an additional reduction of

the forcing amplitude values to be taken into account. This is evident par-

ticularly around the 2ω1 frequency, where the escape boundary of the un-

controlled system is governed by the 2-period response which represents

the main periodic solution for the whole range of high frequency values

(see figures 3.1 and 3.20 for details about the escape local bifurcations).
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Figure 8.32: Behavior chart in the ωu-U plane with detection of the overall escape
thresholds for the controlled (orange line) and uncontrolled (black line) systems under
parametric excitation. Dark gray area represents the stability region of the controlled and
uncontrolled systems, light gray area represents the stability region of the sole uncontrolled
system

Figure 8.33: Behavior chart in the ωv-V plane with detection of the overall escape
thresholds for the controlled (orange line) and uncontrolled (black line) systems under
external excitation. Dark gray area represents the stability region of the controlled and
uncontrolled systems, light gray area represents the stability region of the sole uncontrolled
system
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Conversely, such solution cannot be considered acceptable in the controlled

system, whose stability threshold settles onto the lower amplitudes values

of the escape bifurcations of the 1-period solution (figures 8.1 and 8.28).

Finally, it is worth noting that the above-mentioned features are equally

present both in the parametrically forced system and in the externally forced

one. Furthermore, the qualitative behavior of the escape threshold is not

modified by the control activation, and therefore maintains the typical fea-

tures of systems under parametric (external) excitations already analyzed in

the previous chapters, with V-shaped profiles around resonance regions and

the absolute minimum at principal (primary) resonance, thus demonstrating

that the applied control acts on the system irrespective of the forcing type.

Some concluding remarks are in order as regards the actual effective-

ness of the considered control procedure. As shown in Chapter 7, it works

well for the ”local” purpose for which it is specifically designed, i.e. solely

keeping the system dynamics to a specific 1-period response, assuming of

course that this is the one actually guaranteeing reliable AFM operations.

Accordingly, the control procedure cannot be discredited by the observed

”globally” unfavorable effects, though they are very important in the over-

all system dynamics. Indeed, to possibly affect the strongly nonlinear global

dynamics in a favorable way, a control procedure specifically aimed at mod-

ifying some relevant bifurcation event should be implemented as, e.g., the

one controlling homoclinic bifurcations of the hilltop saddle recently shown

able to increase the escape threshold for a number of dynamical systems of

interest in mechanics (see, e.g., [62]). Yet, while being of no concern that a

local control procedure leaves substantially unchanged the escape threshold,

or even reduces it slightly, it is definitely of major concern that it strongly re-

duces the escape thereshold when the system works at resonance conditions,

as it may happen in unexpected practical situations. As to the second issue,

i.e. the occurrence of a further decrease of stability boundary at principal

(subharmonic) resonance, this is actually of lower concern since, of course,

control should be designed to keep the response to the dominant 2-period

one where this is needed and where it plays the major response role up to

the strongly nonlinear dynamic regime.



144 8. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM



Chapter 9

Conclusions

Global dynamics of a single-mode model of noncontact AFM have been

investigated with specific focus on the system dynamical response under

variation of its most important parameters. Extended numerical analyses

have been carried out considering the horizontal scan excitation and the

vertical one separately. The obtained results have allowed to construct sev-

eral bifurcation diagrams and to determine the system escape threshold in

the excitation parameter space as the envelope of local bifurcation escape

boundaries in a large range of forcing frequencies, which includes the pri-

mary and subharmonic resonances.

The outcomes around resonance frequencies highlight that the system

has the same qualitative behavior of a number of softening oscillators, espe-

cially for what concerns the V-shaped region of escape, its limiting bound-

aries and the underlying triangle region with coexisting solutions. Further-

more, the system response under the two different kinds of excitation ex-

hibits the expected position of minimum escape amplitude value, which

occurs at primary (principal) resonance frequency for the external (para-

metrical) excitation case.

The obtained escape excitation amplitudes, corresponding to safe basin

annihilation, have been then compared with those obtained via numerical

integration of the system equations with fixed initial conditions, which cor-

respond to solution divergence. By conducting a comprehensive analysis of

basins of attraction evolution and by evaluating different integrity measures

(GIM and IF), several erosion profiles have been obtained as a function of

the increasing excitation amplitude. This kind of analysis has furnished
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residual integrity levels associated with the system global dynamics. The

results highlight a marked variability with respect to the stability boundary

obtained via numerical integration and, mostly, a meaningful lack of homo-

geneous safety of the latter, as regards robustness of periodic solutions, in

the excitation parameter space. In contrast, the analysis of basins of attrac-

tion evolution in state space and the construction of erosion profiles allow

to detect thresholds of residual integrity able to ensure acceptable safety

targets established a priori according to the required system performances.

Starting from the analyzed model, an external feedback control has been

introduced with the aim of avoiding possible unstable motions of the system;

the control works by keeping the cantilever vibration to the reference one

which corresponds to the response obtained from the uncontrolled system

with the same set of parameter values. The equilibrium stability analysis

of the controlled system highlights that the control implementation does

not affect the existence of equilibriun states but acts upon its stability by

substantially reducing the stable range. This behavior can also be observed

in the strongly nonlinear dynamical analysis, which has been systematically

carried out both for the parametrically forced system and for the externally

forced one. Due to the increased number of dofs, the results show a richer

bifurcation scenario, characterized by the new presence of torus and tran-

scritical bifurcations which affect the main system periodic responses and

are responsible for the stability boundary reduction. Moreover, such local

bifurcations lead to the onset of quasiperiodic and new periodic solutions

which are absent in the uncontrolled system and for which thus the control

fails to reproduce the reference response. Therefore, the escape threshold for

the controlled system is no longer coincident with the limit of existence of

all stable bounded solutions, but becomes dependent on the actual existence

of the solutions which are the goal of the control procedure.

The comparison with the results obtained from the uncontrolled system

allows one to conclude that the applied control technique works well for the

”local” purpose for which it is specifically designed and from a methodolog-

ical viewpoint represents a simple and efficient procedure of sample surface

measurement in AFM. However, it must be supported, for its practical ap-

plication, by a comprehensive analysis of its effects on the global dynamics

of the system, necessary to properly define the parameters operation ranges,

or even be accompained by a further control procedure specifically aimed at
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modifying some relevant dynamical features of the system.
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Appendix A

Integral expressions of the

modal dynamical system

The integral expressions in (2.18) are:

I1 = (I11 − µI12) , I4 = (I41 − µI42) , I11 =

∫ 1

0
Φ2
1 ds = 1,

I41 =

∫ 1

0
Φ1

(

Φ1s

∫ s

1

∫ s

0
Φ1

2
s ds ds

)

s

ds,

∫ 1

0
Φ1Φ1ssss ds = ω2

1

∫ 1

0
Φ2
1 ds = ω2

1I11,

I42 =

∫ 1

0
Φ1

(

Φ1
3
s

)

s
ds,

I12 =

∫ 1

0
Φ1Φ1ss ds,

I5 =

∫ 1

0
Φ1 (Φ1s (s− 1))s ds =

∫ 1

0
Φ1

2
s (1− s) ds,

I2 =

∫ 1

0
Φ1 ds,

I6 =

∫ 1

0
Φ1

(

Φ1
3
s (s− 1)

)

s
ds =

∫ 1

0
Φ1

4
s (1− s) ds,

I3 =

∫ 1

0
Φ1 (Φ1s (Φ1sΦ1ss)s)s ds

= 2

∫ 1

0
(Φ1sΦ1ss)

2 ds,

I7 =

∫ 1

0
Φ1

(

Φ1s

∫ s

1

(
∫ s

0
Φ1

2
s ds

)

ss

ds

)

s

ds.

(A.1)

149



150 A. INTEGRAL EXPRESSIONS OF THE MODAL DYNAMICAL SYSTEM



Appendix B

Multiple scale analysis of the

uncontrolled system

The equations of motions of the uncontrolled system are analyzed around

its stable point x̄ref , that is x̃ref = x− x̄ref :

¨̃xref = − 1

(1 + α2(x̄ref + x̃ref )2)

(

α1 + α2
˙̃x2ref + α3(x̄ref + x̃ref )

2
)

(x̄ref + x̃ref ) +
Γ1

(1 + x̄ref + x̃ref )
2

+
(

ρ1 + ρ2(x̄ref + x̃ref )
2
)

˙̃xref +
(

V̈g + ν1V̇g

)

ν2

−
(

µ1(x̄ref + x̃ref ) + µ2(x̄ref + x̃ref )
3
)

(

Üg + η1U̇g + η2Ug

)

(B.1)

with Vg = V sin(ωvt), Ug = U sin(ωut + φu) The perturbation equations

of the uncontrolled system up to the fourth order, with the same choice of

variables and parameters scaling used in Sect. 7, are
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order ǫ0 :

Γ1 + x̄ref (1 + x̄ref )
2(α3x̄

2
ref + α1) = 0

(B.2a)

order ǫ1 :

D2
0x̃ref1 + ω2

1x̃ref1 = 0
(B.2b)

order ǫ2 :

D2
0x̃ref2 + ω2

1x̃ref2 = −C21x̃
2
ref1 − C22(D0x̃ref1 )

2

− 2D0D1x̃ref1 − C25x̃ref1D
2
0x̃ref1

(B.2c)

order ǫ3 :

D2
0x̃ref3 + ω2

1x̃ref3 = −C25x̃ref1D
2
0x̃ref2 − C25x̃ref2D

2
0x̃ref1

− 2D0D1x̃ref2 − 2C22D1x̃ref1D0x̃ref1 − 2C21x̃ref1 x̃ref2

− 2C25x̃ref1D0D1x̃ref1 − 2D0D2x̃ref1 − C37x̃
2
ref1D

2
0x̃ref1

− 2C22D0x̃ref1D0x̃ref2 − C33(D0x̃ref1 )
2x̃ref1 − C35D0x̃ref1

−D2
1x̃ref1 − C36x̃

3
ref1 − Ccu cos(ω1T0 + σuT2 + φu)

− Csv sin(ω1T0 + σvT2)− Csu sin(ω1T0 + σuT2 + φu)

(B.2d)

order ǫ4 :

D2
0x̃ref4 + ω2

1x̃ref4 = −2C21x̃ref3 x̃ref1 − C21x̃
2
ref2 − C22D

2
1x̃

2
ref1

− 2C22D0D2x̃
2
ref1 − 4C22D0D1x̃ref2 x̃ref1 − 2C22D

2
0x̃ref3 x̃ref1

− C22D
2
0x̃

2
ref2 − C25D

2
1x̃

2
ref1 − 2C25D0D2x̃

2
ref1

− 4C25D0D1x̃ref2 x̃ref1 − 2C25D
2
0x̃ref3 x̃ref1 − C25D

2
0x̃

2
ref2

− 2C33D0D1x̃
3
ref1 − 3C33D

2
0x̃ref2 x̃

2
ref1 − C35D1x̃ref1

− C35D0x̃ref2 − 3C36x̃ref2 x̃
2
ref1 − 2C37D0D1x̃

3
ref1

− 3C37D
2
0x̃ref2 x̃

2
ref1 − C400x̃

4
ref1 − C405D0x̃

2
ref1

− C406D
2
0x̃

4
ref1 − C407D

2
0x̃

4
ref1 − 2D1D2x̃ref1

− 2D0D3x̃ref1 −D2
1x̃ref2 − 2D0D2x̃ref2 − 2D0D1x̃ref3

− Ccuux̃ref1 cos (ω1T0 + σuT2 + φu)

− Csuux̃ref1 sin (ω1T0 + σuT2 + φu)

−
(

Csvvx̃ref1 + CsvvvD
2
0x̃ref1

)

sin (ω1T0 + σvT2)

(B.2e)
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The ǫ0 order reports the equilibrium equation, while the homogenous equa-

tion at the first order has solution

x̃ref1 = Aun(T1, T2, T3)e
iω1T0 + c.c. (B.3)

Substitution of (B.3) into (B.2c), yields

D2
0x̃ref2+ω2

1x̃ref2 = −2C214AunĀun − C211A
2
une

2iω1T0

− 2iω1D1Aune
iω1T0 + c.c.

(B.4)

The solvability condition requires that

D1Aun = 0 thus Aun = Aun(T2, T3) (B.5)

and the particular solution at this order is

x̃ref2 =
C211

3ω2
1

A2
une

2iω1T0 − 2C214

ω2
1

AunĀun + c.c. (B.6)

At the third order, by means of equations (B.3) and (B.6), the perturbation

equation results

D2
0x̃ref3 + ω2

1x̃ref3 =− γ31une
iω1T0 − γ32une

2iω1T0

− γ33une
3iω1T0 + γ37ĀunD1Aun + c.c.

(B.7)

where

γ31un =−D2Aun − C35

2
Aun + i

C301

2ω1

(

A2
unĀun

)

− D2
1Aun

2iω1

+
Csv

4ω1
eiσvT2 +

Csu

4ω1
ei(σuT2+φu) + i

Ccu

4ω1
ei(σuT2+φu)

γ32un =C321AunD1Aun

γ33un =8C303ω
2
1A

3
un

The secular terms elimination implies that

D2Aun = −C35

2
Aun + i

C301

2ω1

(

A2
unĀun

)

+
Csv

4ω1
eiσvT2 +

Csu

4ω1
ei(σuT2+φu) + i

Ccu

4ω1
ei(σuT2+φu)

(B.8)
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The particular solution at the third order is

x̃ref3 =C303A
3
une

3iω1T0 + c.c. (B.9)

The obtained results allow one to express the fourth order perturbation

equation as

D2
0x̃ref4 + ω2

1x̃ref4 =− γ41une
iω1T0 − γ42une

2iω1T0 − γ43une
3iω1T0

− γ44une
4iω1T0 − γ47A

2
unĀ

2
un − γ54Aune

−iσvT2

− γ52Aune
−iσuT2−iφu − γ56D2AunĀun

− γ57ĀunD
2
1Aun − γ50D1AunD1Āun + c.c.

(B.10)

where

γ41un =2iω1D3Aun + C35D1Aun + γ430D1AunAunĀun + γ429A
2D1Āun

γ42un =γ410A
3
unĀun + γ414unA

2
un + γ421AunD

2
1Aun + γ420AunD2Aun

+ γ415Aune
iσuT2+iφu + γ416Aune

iσvT2 + γ418D1A
2
un

γ43un =C424A
2
unD1Aun

γ44un =C425A
4
un

γ414un =
2iC211C35

3ω1
+ iC405ω1

The solvability condition requires that γ41un = 0 and since γ41un = f(D1Aun),

from (B.5) it results

D3Aun = 0 (B.11)

According to the usual reconstitution procedure [79], the amplitudes deriva-

tives with respect to time t are obtained from (7.3) of Sect. 7

Ȧun = ǫD1Aun + ǫ2D2Aun + ǫ3D3Aun (B.12)

in which D1Aun, D2Aun, D3Aun are defined in (B.5), (B.8) and (B.11). Fi-

nally, considering that C35, C405 = f(ρ̂1, ρ̂2), Ccu, Csu, Ccuu, Csuu = f(Û),

Csv, Csvv, Csvvv = f(V̂ ), the ǫ parameter is completely reabsorbed through
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the backward rescaling

ǫAun → Aun, ǫ2C35 → C35, ǫ2C405 → C405,

ǫ3Ccu → Ccu, ǫ3Csu → Csu, ǫ3Ccuu → Ccuu,

ǫ3Csuu → Csuu, ǫ3Csv → Csv, ǫ3Csvv → Csvv,

ǫ3Csvvv → Csvvv, ǫ2σu → σu, ǫ2σv → σv.

(B.13)

The obtained complex modulation equation (or bifurcation equation) is

Ȧun =− C35

2
Aun +

Csv

4ω1
cos(σvt)

+
Csu

4ω1
cos(σut+ φu)−

Ccu

4ω1
sin(σut+ φu)

+ i

(

C301

2ω1
A2

unĀun +
Csv

4ω1
sin(σvt)

+
Csu

4ω1
sin(σut+ φu) +

Ccu

4ω1
cos(σut+ φu)

)

(B.14)

To express equation (B.14) in the Cartesian coordinates, it has to be trans-

formed in an autonomous system, so that the horizontally forced system (Ug)

and the vertically forced one (Ug) have to be considered separately. Here,

the system under horizontal parametric excitation is analyzed, i.e. Vg = 0.

Equation (B.14) in exponential form hence becomes

Ȧun =− C35

2
Aun +

Csu

4ω1
eiσut+iφu

+ i

(

C301

2ω1
A2

unĀun +
Ccu

4ω1
eiσut+iφu

) (B.15)

Pre-multiplication of both sides of (B.15) by e−iσut−iφu , and transformation

of variables as follows

Gun = Aune
−iφu−(Ωu−1)ω1t, Ḡun = Āune

−iφu−(Ωu−1)ω1t, σu = (Ωu − 1)ω1

yields

Ġun =− C35

2
Gun +

Csu

4ω1

+ i

(

C301

2ω1
G2

unḠun +
Ccu

4ω1
+ ω1Gun(1− Ωu)

) (B.16)
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Finally, using the following coordinates transformations

Gun =
1

2
(jun(t) + i nun(t)), Ḡun =

1

2
(jun(t)− i nun(t))

system (B.16) results

j̇un(t) = +
Csu

4ω1
− C35

4
jun(t)−

C301

16ω1

(

jun(t)
2nun(t) + nun(t)

3
)

+
ω1

2
nun(t) (Ωu − 1)

ṅun(t) = +
Ccu

4ω1
− C35

4
nun(t) +

C301

16ω1

(

nun(t)
2jun(t) + jun(t)

3
)

− ω1

2
jun(t) (Ωu − 1)

(B.17)

Expressions of the introduced coefficients not defined here are reported in

Appendix C.



Appendix C

Expressions of the Multiple

Scale analysis coefficients

C.1 Expressions of Nij terms in the order equa-

tions

Terms of order (ǫ2) equations (7.6c):

N21 = −C21y
2
1 − C22(D0y1)

2 − 2D0D1y1 − C25y1D
2
0y1

N22 = −C21x̃
2
ref1 − C25(D0x̃ref1 )

2 − 2D0D1x̃ref1 − C25x̃ref1D
2
0x̃ref1

N23 = −C26p
2
1

N24 = −2C22D0y1D0x̃ref1 − C25x̃ref1D
2
0y1 − C25y1D

2
0x̃ref1 − 2C21x̃ref1y1

N25 = −C23p1D
2
0y1 − C24p1y1

N26 = −C23p1D
2
0x̃ref1 − C24p1x̃ref1

157
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Terms of order (ǫ3) equations (7.6d):

N31 =− C25y1D
2
0y2 − C25y2D

2
0y1

− 2D0D1y2 − 2C22D1y1D0y1 − 2C21y1y2

− 2C25y1D0D1y1 − 2D0D2y1 − C37y
2
1D

2
0y1

− 2C22D0y1D0y2 − C33(D0y1)
2y1 − C35D0y1

−D2
1y1 − C36y

3
1

N32 =− C25x̃ref1D
2
0x̃ref2 − C25x̃ref2D

2
0x̃ref1

− 2D0D1x̃ref2 − 2C22D1x̃ref1D0x̃ref1 − 2C21x̃ref1 x̃ref2

− 2C25x̃ref1D0D1x̃ref1 − 2D0D2x̃ref1 − C37x̃
2
ref1D

2
0x̃ref1

− 2C22D0x̃ref1D0x̃ref2 − C33(D0x̃ref1 )
2x̃ref1 − C35D0x̃ref1

−D2
1x̃ref1 − C36x̃

3
ref1

N33 =− C41p1p2

N34 =− 3C36y
2
1x̃ref1 − C36y1x̃

2
ref1

− 2C21y2x̃ref1 − 2C21y1x̃ref2 − 2C22D1x̃ref1D0y1

− 2C22D1y1D0x̃ref1 − C33x̃ref1 (D0y1)
2 − C33y1(D0x̃ref1 )

2

− 2C33y1D0y1D0x̃ref1 − 2C33x̃ref1D0y1D0x̃ref1

− 2C22D0y2D0x̃ref1 − 2C22D0y1D0x̃ref2 − 2C25x̃ref1D0D1y1

− 2C25y1D0D1x̃ref1 − 2C37y1x̃ref1D
2
0y1 − 2C37y1x̃ref1D

2
0x̃ref1

− C37x̃
2
ref1D

2
0y1 − C37y

2
1D

2
0x̃ref1 − C25x̃ref2D

2
0y1

− C25x̃ref1D
2
0y2 − C25y2D

2
0x̃ref1 − C25y1D

2
0x̃ref2

N35 =− C43y
2
1p1 − C48y1p

2
1

− C24y2p1 − C24y1p2 − C42p1(D0y1)
2

− 2C23p1D0D1y1 − C30y1p1D
2
0y1 − C49p

2
1D

2
0y1

− C23p2D
2
0y1 − C23p1D

2
0y2

N36 =− C43x̃
2
ref1p1 − C48x̃ref1p

2
1

− C24x̃ref2p1 − C24x̃ref1p2 − C42p1(D0x̃ref1 )
2

− 2C23p1D0D1x̃ref1 − C30x̃ref1p1D
2
0x̃ref1 − C49p

2
1D

2
0x̃ref1

− C23p2D
2
0x̃ref1 − C23p1D

2
0x̃ref2

N37 =− 2C43y1p1x̃ref1 − 2C42p1D0y1D0x̃ref1

− C30x̃ref1p1D
2
0y1 − C30y1p1D

2
0x̃ref1
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Terms of order (ǫ4) equations (7.6e):

N41 =− 2C21y3y1 − C21y
2
2 − C22(D1y1)

2 − 2C22D0y1D2y1

− 2C22D0y2D1y1 − 2C22D0y1D1y2 − 2C22D0y3D0y1

− C22(D0y2)
2 − C25y1D

2
1y1 − 2C25y1D0D2y1

− 2C25y1D0D1y2 − 2C25y2D0D1y1 − C25y3D
2
0y1

− C25y1D
2
0y3 − C25y2D

2
0y2

− 2C33y1D0y1D1y1 − 3C33y2(D0y1)
2 − C35D1y1

− C35D0y2 − 3C36y2y
2
1 − 2C37y

2
1D0D1y1

− 2C37y1y2D
2
0y1 − C37y

2
1D

2
0y2 − C400y

4
1 − C405y1D0y1

− C406y
2
1(D0y1)

2 − C407y
3
1D

2
0y1 − 2D1D2y1

− 2D0D3y1 −D2
1y2 − 2D0D2y2 − 2D0D1y3

− Ccuuy1 cos (ω1T0 + σuT2 + φu)

− Csuuy1 sin (ω1T0 + σuT2 + φu)

−
(

Csvvy1 + CsvvvD
2
0y1
)

sin (ω1T0 + σvT2)

N42 =− 2C21x̃ref3 x̃ref1 − C21x̃
2
ref2 − C22(D1x̃ref1 )

2

− 2C22D0x̃ref1D2x̃ref1 − 2C22D0x̃ref2D1x̃ref1

− 2C22D0x̃ref1D1x̃ref2 − 2C22D0x̃ref3D0x̃ref1

− C22(D0x̃ref2 )
2 − C25x̃ref1D

2
1x̃ref1 − 2C25x̃ref1D0D2x̃ref1

− 2C25x̃ref1D0D1x̃ref2 − 2C25x̃ref2D0D1x̃ref1

− C25x̃ref3D
2
0x̃ref1 − C25x̃ref1D

2
0x̃ref3

− C25x̃ref2D
2
0x̃ref2 − 2C33x̃ref1D0x̃ref1D1x̃ref1

− 3C33x̃ref2 (D0x̃ref1 )
2 − C35D1x̃ref1 − C35D0x̃ref2

− 3C36x̃ref2 x̃
2
ref1 − 2C37x̃

2
ref1D0D1x̃ref1

− 2C37x̃ref1 x̃ref2D
2
0x̃ref1 − C37x̃

2
ref1D

2
0x̃ref2

− C400x̃
4
ref1 − C405x̃ref1D0x̃ref1 − C406x̃

2
ref1 (D0x̃ref1 )

2

− C407x̃
3
ref1D

2
0x̃ref1 − 2D1D2x̃ref1

− 2D0D3x̃ref1 −D2
1x̃ref2 − 2D0D2x̃ref2 − 2D0D1x̃ref3

− Ccuux̃ref1 cos (ω1T0 + σuT2 + φu)

− Csuux̃ref1 sin (ω1T0 + σuT2 + φu)

−
(

Csvvx̃ref1 + CsvvvD
2
0x̃ref1

)

sin (ω1T0 + σvT2)
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N43 =− C26p
2
2 − C41p1p3 − C411p1 cos (ω1T0 + σuT2 + φu)

− C412p1 sin (ω1T0 + σvT2)− C413p1 sin (ω1T0 + σuT2 + φu)

N44 =− 2C406y1x̃ref1 (D0x̃ref1 )
2 − 3C407y1x̃

2
ref1D

2
0x̃ref1

− C407D
2
0y1x̃

3
ref1 − 4C400y1x̃

3
ref1 − 2C406x̃

2
ref1D0y1D0x̃ref1

− C406x̃
2
ref1 (D0y1)

2 − 3C407y
2
1(D0x̃ref1 )

2 − C406y
2
1(D0x̃ref1 )

2

− 3C407y1x̃
2
ref1D

2
0y1 − 6C400y

2
1x̃

2
ref1 − 4C406y1x̃ref1D0y1D0x̃ref1

− 4C37y1x̃ref1D0D1x̃ref1 − C46x̃ref1D0y1D1x̃ref1

− C46y1D1x̃ref1D0x̃ref1 − 2C33x̃ref1D0x̃ref1D1y1

− 2C37x̃
2
ref1D0D1y1 − C33y2(D0x̃ref1 )

2

− 2C37y2x̃ref1D
2
0x̃ref1 − C37x̃

2
ref1D

2
0y2 − 3C36y2x̃

2
ref1

− 2C33x̃ref1D0y2D0x̃ref1 − C407y
3
1D

2
0x̃ref1 − 2C406y

2
1D0y1D0x̃ref1

− 3C407y
2
1x̃ref1D

2
0y1 − 4C400y

3
1x̃ref1 − 2C406y1x̃ref1 (D0y1)

2

− 2C37y
2
1D0D1x̃ref1 − 2C33y1D1x̃ref1D0y1 − C46x̃ref1D0y1D1y1

− 4C37y1x̃ref1D0D1y1 − C46y1D0x̃ref1D1y1 − C25y1D
2
1x̃ref1

− C25x̃ref1D
2
1y1 − C405y1D0x̃ref1 − 2C25y1D0D2x̃ref1

− C405x̃ref1D0y1 − 2C22D2x̃ref1D0y1 − 2C22D1y1D1x̃ref1

− 2C22D0x̃ref1D2y1 − 2C25x̃ref1D0D2y1 − 2C37y1x̃ref2D
2
0x̃ref1

− 2C37y1x̃ref1D
2
0x̃ref2 − C46y1D0x̃ref2D0x̃ref1

− 2C37x̃ref2 x̃ref1D
2
0y1 − 6C36x̃ref2y1x̃ref1

− 2C33x̃ref2D0y1D0x̃ref1 − C46x̃ref1D0y1D0x̃ref2

− 2C25y2D0D1x̃ref1 − 2C22D1y2D0x̃ref1 − 2C22D0y2D1x̃ref1

− 2C25x̃ref1D0D1y2 − 2C37y1x̃ref1D
2
0y2 − 2C37x̃ref1y2D

2
0y1

− 2C37y1y2D
2
0x̃ref1 − C46y1D0x̃ref1D0y2 − 6C36y1y2x̃ref1

− 2C33y2D0y1D0x̃ref1 − C46x̃ref1D0y1D0y2

− C25y3D
2
0x̃ref1 − C25x̃ref1D

2
0y3 − 2C21y3x̃ref1

− 2C22D0y3D0x̃ref1 − C37y
2
1D

2
0x̃ref2 − C33x̃ref2 (D0y1)

2

− 2C37y1x̃ref2D
2
0y1 − 3C36x̃ref2y

2
1 − 2C33y1D0x̃ref2D0y1

− 2C25x̃ref2D0D1y1 − 2C22D1y1D0x̃ref2 − 2C22D0y1D1x̃ref2

− 2C25y1D0D1x̃ref2 − C25x̃ref3D
2
0y1 − C25y1D

2
0x̃ref3

− 2C21x̃ref3y1 − 2C22D0x̃ref3D0y1 − C25x̃ref2D
2
0y2

− C25y2D
2
0x̃ref2 − 2C21x̃ref2y2 − 2C22D0x̃ref2D0y2
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N45 =− C23p1D
2
1y1 − 2C23p1D0D2y1

− 2C23p2D0D1y1 − C23p3D
2
0y1 − 2C23p1D0D1y2

− C23p2D
2
0y2 − C23p1D

2
0y3 − C24p3y1 − C24p2y2

− C24p1y3 − C30p2y1D
2
0y1 − C30p1y2D

2
0y1

− C30p1y1D
2
0y2 − C407p1y1D

2
0y1 − 2C42p1D0y1D1y1

− C42p2(D0y1)
2 − 2C42p1D0y1D0y2 − C420p1y

3
1

− C421p
2
1y

2
1 − C422p1p2y1 − C423p1D0y1

− C424p1y1D0D1y1 − C425p
2
1D0D1y1 − C425p1p2D

2
0y1

− C426p1y
2
1D

2
0y1 − C427p

2
1(D0y1)

2 − 2C427p
2
1y1D

2
0y1

− C43p2y
2
1 − 2C43p1y2y1 − C48p

2
1y2 − C49p

2
1D

2
0y2

N46 =− C23p1D
2
1x̃ref1 − 2C23p1D0D2x̃ref1 − 2C23p2D0D1x̃ref1

− C23p3D
2
0x̃ref1 − 2C23p1D0D1x̃ref2 − C23p2D

2
0x̃ref2

− C23p1D
2
0x̃ref3 − C24p3x̃ref1 − C24p2x̃ref2

− C24p1x̃ref3 − C30p2x̃ref1D
2
0x̃ref1 − C30p1x̃ref2D

2
0x̃ref1

− C30p1x̃ref1D
2
0x̃ref2 − C407p1x̃ref1D

2
0x̃ref1

− 2C42p1D0x̃ref1D1x̃ref1 − C42p2(D0x̃ref1 )
2

− 2C42p1D0x̃ref1D0x̃ref2 − C420p1x̃
3
ref1 − C421p

2
1x̃

2
ref1

− C422p1p2x̃ref1 − C423p1D0x̃ref1 − C424p1x̃ref1D0D1x̃ref1

− C425p
2
1D0D1x̃ref1 − C425p1p2D

2
0x̃ref1

− C426p1x̃
2
ref1D

2
0x̃ref1 − C427p

2
1(D0x̃ref1 )

2

− 2C427p
2
1x̃ref1D

2
0x̃ref1 − C43p2x̃

2
ref1 − 2C43p1x̃ref2 x̃ref1

− C48p
2
1x̃ref2 − C49p

2
1D

2
0x̃ref2
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N47 =− C30p2x̃ref1D
2
0y1 − C30p1x̃ref2D

2
0y1 − C30p1x̃ref1D

2
0y2

− C30p2y1D
2
0x̃ref1 − C30p1y1D

2
0x̃ref2 − C30p1y2D

2
0x̃ref1

− 2C407p1y1D0x̃ref1D0y1 − 2C407p1x̃ref1D0x̃ref1D0y1

− C407p1y1(D0x̃ref1 )
2 − C407p1x̃ref1 (D0y1)

2

− 2C42p1D1x̃ref1D0y1 − 2C42p2D0x̃ref1D0y1

− 2C42p1D0x̃ref2D0y1 − 2C42p1D0x̃ref1D0y2

− 2C42p1D0x̃ref1D1y1 − 3C420p1x̃ref1y
2
1

− 3C420p1x̃
2
ref1y1 − 2C421p

2
1x̃ref1y1

− C424p1x̃ref1D1D0y1 − C424p1y1D0D1x̃ref1

− C426p1y
2
1D

2
0x̃ref1 − 2C426p1x̃ref1y1D

2
0x̃ref1

− 2C426p1x̃ref1y1D
2
0y1 − C426p1x̃

2
ref1D

2
0y1

− 2C427p
2
1D0x̃ref1D0y1 − 2C427p

2
1y1D

2
0x̃ref1

− 2C427p
2
1x̃ref1D

2
0y1 − 2C43p2x̃ref1y1

− 2C43p1x̃ref2y1 − 2C43p1x̃ref1y2
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C.2 Expressions of MSM coefficients

Expressions of the coefficients introduced in the formulation of the asymp-

totic problem described in Chapter 7.

Coefficients of order (ǫ1) equations:

ω2
1 =

α1 + 5α3x̄
3
ref + 3α3x̄

2
ref + 3α1x̄ref

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C11 =
2x̄ref

(

α1 + α3x̄
2
ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

Coefficients of order (ǫ2) equations:

C21 =
2α1 + 10α3x̄

3
ref + 12α3x̄

2
ref + 3α1x̄ref + 3α3x̄ref

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C22 =
α2x̄ref

α2x̄2
ref + 1

C23 =
2

x̄ref + 1

C24 =
2
(

α1 + 4α3x̄
3
ref + 3α3x̄

2
ref + 2α1x̄ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C25 =
2
(

2α2x̄
2
ref + α2x̄ref + 1

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C26 =
x̄ref

(

α1 + α3x̄
2
ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C211 =C21 − ω2
1(C22 + C25)

C212 =
C11

(

C11C21 − C24ω
2
1

)

ω4
1

+ C26

C213 =C11

(

C25 −
2C21

ω2
1

)

− C23ω
2
1 + C24

C214 =C21 + ω2
1(C22 − C25)
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Coefficients of order (ǫ3) equations:

C30 =
2
(

3α2x̄
2
ref + 2α2x̄ref + 1

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C33 =
α2(3x̄ref + 1)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C35 =
ρ1 + ρ2x̄

2
ref

α2x̄2
ref + 1

C36 =
α1 + α3 + 10α3x̄

2
ref + 8α3x̄ref

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C37 =
α2 + 6α2x̄

2
ref + 6α2x̄ref + 1

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C41 =
2x̄ref

(

α1 + α3x̄
2
ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C42 =
2α2x̄ref

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C43 =
2
(

α1 + 6α3x̄
2
ref + 3α3x̄ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C48 =
α1 + 3α3x̄

2
ref

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C49 =
1

(x̄ref + 1)2

Ccu =−

η1Ux̄ref ω1

(

µ1 + µ2x̄
2
ref

)

α2x̄2
ref + 1

Csv =
2V x̄ref

(

α1 + α3x̄
2
ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

Csu =−

Ux̄ref

(

η2 − ω − 12
) (

µ1 + µ2x̄
2
ref

)

α2x̄2
ref + 1
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C301 =
1

3

(

2C21(C211 − 6C214)

ω2
1

+ 4C211C22 − 5C211C25

+ 6C214C25 + 3ω2
1(C33 − 3C37) + 9C36

)

C302 =−

4C2
11C37 − 4C11C213C25 + 8C11C43 + 8C21C212 + C2

213

4ω2
1

+
3C2

11C36

ω4
1

+ C11C30 + C212C25 − C213C23 + C48 − C49ω
2
1

C303 =
2C21C211 + ω2

1

(

−4C211C22 − 5C211C25 − 3ω2
1(C33 + C37) + 3C36

)

24ω4
1

C304 =
1

9ω6
1

(

−2C11C21C211 + ω4
1(3(C11C33 + 2C11C37 + C43))

+ ω4
1(−4C211C23 − 3C213(C22 + C25)) + ω2

1(C211(4C11C25 − 4C213 + C24)

− 9ω2
1C11C36)− 3ω6

1(C30 + C42)

)

C305 =2

(

1

ω6
1

(

−2C11C21C214 + ω2
1(3C11C36 + C214C24)

+ω4
1(−(−C11C33 + 2C11C37 + C213C22 − C213C25 + C43))

)

+ C30 − C42

)

C306 =
C3

11C36 − C11ω
2
1(C11C43 + 2C21C212) + ω4

1(C11C48 + C212C24)

ω8
1

C307 =−

C2
11C37 + 2C11C43 + 2C21C212

ω2
1

+ C11

(3C11C36

ω4
1

+ C30

)

+ C212C25 + C48 − C49ω
2
1

C308 =
2

3

(

2C21(C211 − 6C214)

ω2
1

+ 4C211C22

− 5C211C25 + 6C214C25 + 3ω2
1(C33 − 3C37) + 9C36

)

C309 =
1

3

(

2C21(C211 − 6C214)

ω2
1

+ 4C211C22

− 5C211C25 + 6C214C25 + 3ω2
1(C33 − 3C37) + 9C36

)

C310 =−

2iC11C22

ω1

C311 =2iC23ω1 −
2iC11C25

ω1

C312 =
i
(

C11kg + C35ω
2
1

)

ω1

C320 =
1

3

(

−

2C11C21C211

ω4
1

+
4C11C211C25 − 9C11C36 + C211C24

ω2
1

+ 3C11C33 + 6C11C37 − 4C211C23 − 3ω2
1(C30 + C42) + 3C43

)

C321 =
8iC211

3ω1

+ 2iω1(C22 + C25)
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γ31 =C309A
2Ā+ C309A

2Āun + C308AĀAun

+ C308AAunĀun + C307AB2 +A(C310D1B + C312)

+ C309ĀA2
un + C307AunB

2 + C310AunD1B

+B(C311D1A+ C311D1Aun) +D2
1A+ 2iD2Aω1

γ32 =(A+Aun)(BC320(A+Aun) + C321D1A) +AC321D1Aun

γ33 =8AC303ω
2
1

(

A2 + 3AAun + 3A2
un

)

γ35 =
−C3

11C36 + C11ω
2
1(C11C43 + 2C21C212) + ω4

1(−(C11C48 + C212C24))

ω6
1

γ36 =
4C11C21C214

ω4
1

−

6C11C36 + C214C24

ω2
1

+ 2
(

−C11C33 + 2C11C37 + ω2
1(C42 − C30) + C43

)

γ37 =− 2iω1(C22 − C25)



C.2. Expressions of MSM coefficients 167

Coefficients of order (ǫ4) equations:

C400 =
α3(5x̄ref + 2)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C405 =
2
(

ρ1 + 2ρ2x̄
2
ref + ρ2x̄ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C406 =
α2(3x̄ref + 2)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C407 =
2α2(2x̄ref + 1)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

Ccuu =−

η1Uω1

(

µ1 + 5µ2x̄
3
ref + 3µ2x̄

2
ref + 3µ1x̄ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

Csuu =−

U
(

η2 − ω2
1

) (

µ1 + 5µ2x̄
3
ref + 3µ2x̄

2
ref + 3µ1x̄ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

Csvv =
2V

(

α1 + 4α3x̄
3
ref + 3α3x̄

2
ref + 2α1x̄ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

Csvvv =
2V

x̄ref + 1

C411 =−

2η1Ux̄ref ω1

(

µ1 + µ2x̄
2
ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C412 =
2V x̄ref

(

α1 + α3x̄
2
ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C413 =−

2Ux̄ref

(

η2 − ω2
1

) (

µ1 + µ2x̄
2
ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C420 =
2α3(4x̄ref + 1)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C421 =
3α3x̄ref

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C422 =
2
(

α1 + 3α3x̄
2
ref

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C423 =
2
(

ρ1 + ρ2x̄
2
ref

)

(x̄ref + 1)
(

α2x̄2
ref + 1

)

C424 =
4
(

3α2x̄
2
ref + 2α2x̄ref + 1

)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C425 =
2

(x̄ref + 1)2
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C426 =
2α2(3x̄ref + 1)

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

C427 =
α2x̄ref

(x̄ref + 1)2
(

α2x̄2
ref + 1

)

γ41 =2γ426ĀB + γ426A
2ĀunB +A2(γ429D1Ā+ γ429D1Āun)

+ γ428AĀAunB +AĀ(γ430D1A+ γ430D1Aun)

+ γ428AAunĀunB +AAun(2γ429D1Ā+ 2γ429D1Āun)

+AĀun(γ430D1A+ γ430D1Aun) + γ427AB3

+AB(γ432D1B + γ433) +A(γ440D
2
1B + γ436D2B)

+ γ426ĀA2
unB + ĀAun(γ430D1A+ γ430D1Aun)

+ γ426A
2
unĀunB + γ429A

2
unD1Ā+ γ430AunĀunD1A

+ γ427AunB
3 +AunB(γ432D1B + γ434) +Aun(γ440D

2
1B +D2Bγ436)

+B2(γ431D1A+ γ431D1Aun) +B
(

γ438D
2
1A+ γ438D

2
1Aun

− 2iω1γ438D2A− 2iω1γ438D2Aun + γ437e
iσuT2+ic

+ γ439e
iσvT2

)

+ C35D1A+ 2D1D2A+ γ435D1AD1B

+ γ435D1AunD1B + 2iω1D3A

γ42 =γ410A
3Ā+ γ410A

3Āun + γ408A
2ĀAun + γ408A

2AunĀun + γ407A
2B2

+ γ411A
2D1B + γ414A

2 + γ408AĀA2
un + γ408AA2

unĀun + γ409AAunB
2

+D1A(γ412AB + γ412AunB) + 2γ411AAunD1B + γ413AAun

+ γ412ABD1Aun + γ421AD2
1A+ γ419AD2

1Aun + γ420AD2A

+ γ417AD2Aun + γ415AeiσuT2+iφu + γ416AeiσvT2 + γ410ĀA3
un

+ γ407A
2
unB

2 + γ411A
2
unD1B + γ412AunBD1Aun + γ421AunD

2
1A

+ γ420AunD2A+ γ418D1A
2 + 2γ418D1AD1Aun

γ43 =γ422A
3B + γ423A

2AunB +A2(γ424D1A+ γ425D1Aun)

+ γ423AA2
unB +AAun(2γ424D1A+ 2γ424D1Aun)

+ γ422A
3
unB + γ424A

2
unD1A

γ44 =γ425A
4 + 4γ425A

3Aun + 6γ425A
2A2

un + 4γ425AA3
un

γ45 =
1

ω6
1

(

−6C2
11C214C36 − 2ω4

1(C11(−C11C406 + 3C11C407 + C21C305 + 3C420)

+ 3C212C36 + C214C48) + 4ω2
1(C11(3C11C400 + C214C43) + C21C212C214)

+ ω6
1(−2C11C407 + 4C11C426 − 2C212C33 + 4C212C37 + C24C305 + 2C421)

− 2C427ω
8
1

)
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γ46 =
1

ω8
1

(

C4
11C400 − C2

11ω
2
1(C11C420 + 3C212C36)

+ ω4
1

(

C11(C11C421 + 2C212C43) + C21C
2
212

)

− ω6
1(2C11C21C306 + C212C48) + C24C306ω

8
1

)

γ47 =
2

9ω4
1

(

C21

(

C2
211 + 18C2

214

)

+ ω2
1

(

4C2
211(C22 − C25) + 9C36(C211 − 6C214)

)

+ 9ω4
1((C211 − 2C214)(C33 − 2C37) + 3C400)

+ 9ω6
1(C406 − 3C407)

)

γ48 =−

i
(

C11(4C37 − C46) + ω2
1(2C42 − C424)

)

ω1

γ49 =
ikg

(

C24 − C23ω
2
1

)

ω1

γ50 =2C22 −
4C214

ω2
1

γ51 =
C2

11C22 − 2C212ω
2
1

ω4
1

γ52 =−

2C11

ω2
1

γ53 =−

C11C35

ω2
1

γ54 =
1

2
i
(

Csvv − Csvvvω
2
1

)

γ55 =
1

2
(Ccuu + iCsuu)

γ56 =2iω1(C22 + C25)

γ57 =C25 −
2C214

ω2
1

γ58 =
C2

11C25 − ω2
1(C11C23 + 2C212)

ω4
1
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γ401 =−

i

12ω5
1

(

6(−4C22C304 + C25(5C304 + C305)− C407 + 3C426)ω
6
1

+ 2(C211(5C30 − 4C42)− 3(2C214C30 − C23C301 + 2C21(C304 + C305)

+ C213C33 − 3C213C37 − 2C11C406 + 9C11C407 + 3C420))ω
4
1

+ (3(−2C11C25C301 + C213(C301 − 4C214C25) + 8C11C214C37

+ 24C11C400 + 8C214C43)− 2C211(4C213C22 − 5C213C25

+ 10C11C37 + 2C43 − 2C11C46))ω
2
1 + 12C11(C211 − 6C214)C36

)

γ402 =−

i

8ω7
1

(

4C25C306ω
8
1 + 2(−2C212C30 + 2C23C302 − 4C21C306

+ C213C425 − 4C11C427)ω
6
1 + (C23C

2
213 + 2(−2C212C25 + C302

− C11C424)C213 + 4C11(−C25C302 + 2C212C37 + 2C421 + C11C426)

+ 8C212C43)ω
4
1 − C11(C25C

2
213 − 4C11C37C213 + 24C212C36

+ 4C11(C11C407 + 3C420))ω
2
1 + 16C3

11C400

)

γ403 =
1

8ω4
1

(

4(C23C35 − C423)ω
4
1 + 4C11(C405 − C25C35)ω

2
1

+ C11(C213 + 8C11C22)kg

)

γ404 =
1

4ω4
1

(

2(C23C35 − C423)ω
4
1 + 2(C11(−C25C35 + C405 + C23kg)− C41kg)ω

2
1

+ C11(C213 + 4C11C22 + 2C24 − 2C11C25)kg

)

γ405 =
1

16ω3
1

(

4(iC411 + C413 − iC23Ccu − C23Csu)ω
2
1

+ C213(−iCcu − Csu) + 4C11(iC25Ccu − iCcuu + C25Csu − Csuu)

)

γ406 =
1

16ω3
1

(

4(C412 − C23Csv)ω
2
1 − C213Csv + 4C11C25Csv − 4C11Csvv

)
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γ407 =
1

3ω6
1

(

3C2
11C211C36 + ω4

1(C211(4C11C30 + 4C212C25 + C48)

− 3(C11(C11C406 + 3C11C407 + 2C21C304 + 3C420)

+ 3C212C36))− 2ω2
1(C11(2C11C211C37

− 9C11C400 + C211C43) + C21C211C212)

+ ω6
1(3(C11(4C25C304 + C407 + 2C426) + C212C33

+ 2C212C37 + C24C304 + C421)− 4C211C49)

− 3ω8
1(4C23C304 + 3C427)

)

γ408 =2

(

−

2C21C211C214

ω4
1

+ 3C21C303

+
4C211C214C25 + 3C211C36 − 9C214C36

ω2
1

+ C211C33

− 6C211C37 + 3C214C33 + 6C214C37

+ 3ω2
1(3C22C303 − 5C25C303 − 2C407) + 6C400

)

γ409 =
1

3ω6
1

(

6C2
11C211C36 + 2ω4

1(C211(4C11C30 + 4C212C25 + C48)

− 3(C11(C11C406 + 3C11C407 + 2C21C304 + 3C420) + 3C212C36))

− 4ω2
1(C11(2C11C211C37 − 9C11C400 + C211C43)

+ C21C211C212) + 2ω6
1(3(C11(4C25C304 + C407 + 2C426)

+ C212C33 + 2C212C37 + C24C304 + C421)− 4C211C49)

− 6ω8
1(4C23C304 + 3C427)

)

γ410 =
1

3ω4
1

(

2ω4
1(3C21C303 + C211(C33 − 6C37)

+ 3C214C33 + 6C214C37 + 6C400)− 4C21C211C214

+ 2ω2
1(4C211C214C25 + 3C211C36 − 9C214C36)

+ 6ω6
1(3C22C303 − 5C25C303 − 2C407)

)

γ411 =−

2i
(

2C11C211C22 + 3C11C33ω
2
1 − 6C304ω

4
1

)

3ω3
1

γ412 =
i

3ω3
1

(

−8C11C211C25 − 6C11ω
2
1(C33 + 2C37)

+ 8C211C23ω
2
1 + 3ω4

1(8C304 + 2C42 + C424)

)

γ413 =
i
(

C11C211kg + ω2
1

(

4C211C35 − 3C23kgω
2
1 + 3C24kg + 6C405ω

2
1

))

3ω3
1

γ414 =
i
(

C11C211kg + 2ω2
1

(

2C211C35 + 3ω2
1(C405 − C23kg) + 3C24kg

))

6ω3
1
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γ415 =
1

2
(Ccuu − iCsuu)

γ416 =−

1

2
i
(

Csvv − Csvvvω
2
1

)

γ417 =
8iC211

3ω1

+ 2iω1(C22 + C25)

γ418 =
2C211

3ω2
1

+ C22

γ419 =
2C211

3ω2
1

+ C25

γ420 =
8iC211

3ω1

+ 2iω1(C22 + C25)

γ421 =
2C211

3ω2
1

+ C25

γ422 =
1

3ω4
1

(

ω4
1(3(9C11C25C303 + 2C11C406 + 3C11C407

+ 2C21C304 + C24C303 + C420)− C211(5C30 + 4C42))

+ 2ω2
1(C11(−3C21C303 + 2C211C33 + 5C211C37 − 6C400) + C211C43)

− 6C11C211C36 − 3ω6
1(4C22C304 + 9C23C303 + 5C25C304 + C407 + C426)

)

γ423 =3

(

C11

(

−

2(C21C303 + 2C400)

ω2
1

+ 9C25C303 + 2C406 + 3C407

)

+ 2C21C304 + ω2
1(−(4C22C304 + 9C23C303 + 5C25C304 + C407 + C426))

+ C24C303 + C420

)

+ C211

(2(2C11C33 + 5C11C37 + C43)

ω2
1

−

6C11C36

ω4
1

− 5C30 − 4C42

)

γ424 =
2iC211(4C22 + 5C25)

3ω1

+ 2iω1(9C303 + C33 + C37)

γ425 =
1

9ω4
1

(

C21C
2
211

+ 3ω4
1(6C21C303 − 5C211C33 − 6C211C37 + 3C400)

+ C211ω
2
1(9C36 − 4C211(C22 + C25))

− 9ω6
1(6C22C303 + 10C25C303 + C406 + C407)

)

γ426 =
1

3ω4
1

(

ω4
1(−6C11C406 + 27C11C407 + 6C21(C304 + C305)

− 5C211C30 + 4C211C42 + 6C214C30 + 9C420)

− 2ω2
1(C11(2C211C33 − 5C211C37 + 6C214C37 + 18C400)− C43(C211 − 6C214))

− 6C11C36(C211 − 6C214)

+ 3ω6
1(4C22C304 − C25(5C304 + C305) + C407 − 3C426)

)
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γ427 =
1

ω6
1

(

−4C3
11C400 − ω4

1

(

C2
11C426 + 2C11(C212C37 + C421) + 2C212C43

)

+ ω6
1(2C11C427 + 2C21C306 + C212C30)

+ C11ω
2
1(C11(C11C407 + 3C420) + 6C212C36)− C25C306ω

8
1

)

γ428 =
1

3ω4
1

(

2ω4
1(−6C11C406 + 27C11C407 + 6C21(C304 + C305)

− 5C211C30 + 4C211C42 + 6C214C30 + 9C420)

− 4ω2
1(C11(2C211C33 − 5C211C37 + 6C214C37 + 18C400)

− C43(C211 − 6C214))− 12C11C36(C211 − 6C214)

+ 6ω6
1(4C22C304 − C25(5C304 + C305) + C407 − 3C426)

)

γ429 =−

2i
(

C211(C25 − 2C22) + 6C214C22 + 3ω2
1(C37 − C33)

)

3ω1

γ430 =−

4i
(

C211(C22 − 2C25) + 3C214(C22 + C25)− 3C37ω
2
1

)

3ω1

γ431 =
i
(

2C2
11C37 − ω2

1(C11C424 + 2C212C25) + C425ω
4
1

)

ω3
1

γ432 =
2i

(

C2
11C33 − ω2

1(C11C42 + 2C212C22)
)

ω3
1

γ433 =−

i
(

C11kg(C213 + 2C24) + 2ω2
1(C11C405 − C41kg)− 2C423ω

4
1

)

2ω3
1

γ434 =−

i
(

C11C213kg + 2C11C405ω
2
1 − 2C423ω

4
1

)

2ω3
1

γ435 =−

2C11C22

ω2
1

γ436 =−

2iC11C22

ω1

γ437 =
1

2

(

−

C11(Ccuu − iCsuu)

ω2
1

+ C411 − iC413

)

γ438 =C23 −
C11C25

ω2
1

γ439 =−

1

2
i

(

C412 −
C11Csvv

ω2
1

)

γ440 =−

C11C25

ω2
1
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β1 =
1

12ω5
1

(

6(4C22C304 − C25(5C304 + C305) + C407 − 3C426)ω
6
1

− 2(C211(5C30 − 4C42)− 3(2C214C30 − C23C301 + 2C21(C304 + C305)

+ C213C33 − 3C213C37 − 2C11C406 + 9C11C407 + 3C420))ω
4
1

+ (2C211(4C213C22 − 5C213C25 + 10C11C37 + 2C43 − 2C11C46)

− 3(−2C11C25C301 + C213(C301 − 4C214C25) + 8C11C214C37

+ 24C11C400 + 8C214C43))ω
2
1 − 12C11(C211 − 6C214)C36

)

β2 =
1

8ω7
1

(

−4C25C306ω
8
1 + 2(2C212C30 − 2C23C302 + 4C21C306

− C213C425 + 4C11C427)ω
6
1 − (C23C

2
213 + 2

(−2C212C25 + C302 − C11C424)C213 + 4C11(−C25C302

+ 2C212C37 + 2C421 + C11C426) + 8C212C43)ω
4
1

+ C11(C25C
2
213 − 4C11C37C213

+ 24C212C36 + 4C11(C11C407 + 3C420))ω
2
1 − 16C3

11C400

)

β3 =
C302

2ω1

β4 =
C301

2ω1

β5 =
4(C23C35 − C423)ω

4
1 + 4C11(C405 − C25C35)ω

2
1 + C11(C213 + 8C11C22)kg

8ω4
1

β6 =
1

4ω4
1

(

2(C23C35 − C423)ω
4
1

+ 2(C11(−C25C35 + C405 + C23kg)− C41kg)ω
2
1

+ C11(C213 + 4C11C22 + 2C24 − 2C11C25)kg

)

β7 =
C213

2ω1

β8 =
4(C413 − C23Csu)ω

2
1 − C213Csu + 4C11C25Csu − 4C11Csuu

16ω3
1

β9 =−

C35ω
2
1 + C11kg
2ω2

1

β10 =
4(C411 − C23Ccu)ω

2
1 − C213Ccu + 4C11C25Ccu − 4C11Ccuu

16ω3
1

β11 =
4(C411 − C23Csv)ω

2
1 − C213Csv + 4C11C25Csv − 4C11Csvv

16ω3
1



Appendix D

Local bifurcations of periodic

orbits

The determination of the asymptotic stability and bifurcation behavior of

the periodic orbits, solutions of the system under analysis, is carried out by

means of the continuation software AUTO, which refers to the well known

Floquet theory [41],[79] to compute the Floquet multipliers having modulus

nearly 1 and the number of multipliers lying well inside or well outside the

unit circle [30]. For this purpose, the system equations have to be expressed

in the form of a system of n autonomous first-order ordinary differential

equations

ẏ(t) = f(y(t), ζ) (D.1)

with ζ being the bifurcation parameter vector and with T -periodic solution

p(t, ζ0). To analyze the stability of such solution, a small variation of p(t, ζ0)

is applied:

y(t, ζ0) = p(t, ζ0) + v(t)

and equation (D.1), after carrying out a first order Taylor expansion, be-

comes

ṗ(t, ζ0) + v̇(t) =f(p(t, ζ0) + v(t))

=f(p(t, ζ0)) + fv(p(t, ζ0), ζ0)v(t) + o(v(t))
(D.2)
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where fv is the Jacobian matrix, so that

v̇(t) = fv(p(t, ζ0), ζ0)v(t)

v(0) = v0

(D.3)

represents the first-order variational equation with associated set of initial

conditions. Equations (D.3) are linear in v(t) and thus have solution

v(t) = M(t, 0)v0 (D.4)

where M(t, 0) is the fundamental matrix for (D.3), so that M(0, 0) = I.

Since fv(p(t, ζ0), ζ0) has period T (due to the T -periodicity of p(t, ζ0)), one

of Floquet’s theorems allows one to express the fundamental matrix as

M(t, 0) = R(t)eQt (D.5)

where R(t) ∈ R
n×n has period T , R(0) = R(T ) = I, and Q ∈ R

n×n. Since

M(t, 0) and R(t) are T -periodic matrices, after a period T equation (D.5)

becomes

M(t+ T, 0) = R(t+ T )eQ(t+T )

= R(t)eQteQT

= R(t)eQtR(T )eQT

= M(t, 0)M(T, 0)

(D.6)

and after n periods

M(t+ nT, 0) = M(t, 0)M(T, 0)n (D.7)

so that , from (D.4),

v(t+ nT ) = M(t, 0)M(T, 0)nv0, t ∈ [0, T ), n ∈ N (D.8)

The matrixM(T, 0) is called monodromy matrix of the periodic orbit p(t, ζ0)

and has eigenvalues

1, λ1, λ2, ..., λn−1

where λi are known as Floquet multipliers (or characteristic multipliers),

while eigenvalues γi of the matrix Q are known as Floquet exponents (or
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characteristic exponents). They are related via

λi = eγit (D.9)

and their values determine the asymptotic stability of the periodic solution

p(t, ζ0). In particular, the periodic orbit p is asymptotically stable if all

Floquet multipliers satisfy |λi| < 1 (respectively all Floquet exponents sat-

isfy Re(γi) < 0), while it is asymptotically unstable if at least one Floquet

multiplier satisfyes |λi| > 1 (respectively one Floquet exponent satisfyes

Re(γi) > 0). If for some multiplier (exponent) it occurs that |λi| = 1

(Re(γi) = 0), while for the others is |λi| < 1 (Re(γi) < 0), the stability

evaluation requires the anaysis of the higher order terms of the linearized

equation (D.3). Note that λi correspond to the multipliers of the linearized

Poincaré map associated with the periodic orbit p.

In order to evaluate the Floquet multipliers, it is necessary to calcu-

late a fundamental set of solutions of (D.3); it can be done by numerically

integrating (D.3) during a period of oscillation, using alternatively as ini-

tial conditions v0 the columns of the identity matrix I and evaluating it

at t = T . Each solution provides one column of the monodromy matrix

M(T, 0), whose characteristic equation produces the wanted multipliers.

The values of the Floquet multipliers can also be used to ascertain the

bifurcation behavior of the branches of periodic orbits traced out when the

parameter ζ is varied [55].

A bifurcation occurs when a single real, or complex conjugate pair of

Floquet multipliers pass through the unit circle in the complex plane, and a

Floquet multiplier lying precisely on the unit circle defines the bifurcation

point. The type of ensuing bifurcation is determined by the point at which

the Floquet multiplier passes through the unit circle and the direction in

which it is moving. As in the case of bifurcations of fixed points, bifurca-

tions of periodic orbits can be classified into continuous and discontinuous or

catastrophic bifurcations. In the case of continuous bifurcations, the motion

of the system evolves continuously onto another motion as a control param-

eter is varied in a quasi-stationary manner. As in the case of fixed points,

discontinuous or catastrophic bifurcations may be dangerous or explosive.

In a dangerous bifurcation, the system response jumps to a remote attractor

which may be infinity, as a control parameter is varied in a quasi-stationary
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manner. In an explosive bifurcation, the old attractor explodes into a larger

attractor, with the old attractor being a proper subset of the new attractor.

Periodic orbits can exhibit three kinds of codimension-1 local bifurcations:

Divergence Bifurcation: It is a local bifurcation which occurs when

a real Floquet multiplier, increasing its values, passes through the unit circle

on the positive side of the real axis of the complex plane; the Floquet multi-

plier defining the bifurcation point is thus λ = 1. Depending on the nature

of the periodic solution prior to the bifurcation, transcritical bifurcation,

symmetry-breaking bifurcation or cyclic-fold (saddle-node) bifurcation can

occur.

If the periodic solution possesses a symmetry property, the bifurcation

which breaks such symmetry is called a symmetry-breaking bifurcation; in

the case of a supercritical bifurcation, locally stable asymmetric periodic

solutions coexist with unstable symmetric periodic solutions on one side of

the bifurcation point. In the case of a subcritical bifurcation, locally un-

stable asymmetric periodic solutions coexist with stable symmetric periodic

solutions on one side of the bifurcation point.

Conversely, if a branch of stable periodic solutions and a branch of unsta-

ble periodic solutions coalesce and obliterate each other at the bifurcation

point, the local bifurcation is called saddle-node (cyclic-fold) bifurcation.

Saddle-node bifurcations are discontinuous or catastrophic bifurcations.

Finally, if branches of stable and unstable periodic solutions exchange

thier stability after the bifurcation point, the so called transcritical bifurca-

tion occurs.

Period Doubling (flip) Bifurcation: It is a local bifurcation which

occurs when a real Floquet multiplier passes through the unit circle on the

negative side of the real axis of the complex plane; the Floquet multiplier

defining the bifurcation point is thus λ = −1. This entails that a periodic

orbit reverses its stability, and in addition, a new periodic solution with

doubled period appears in its immediate neighborhood.

There are two types of period-doubling bifurcations, namely supercritical

and subcritical. In the supercritical form the original stable periodic orbit

loses stability by emanating a stable period-doubled orbit whereas in the

subcritical form an unstable orbit gains stability by absorbing an unstable

period-doubled orbit. Both these forms occur when a real Floquet multiplier
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(a) Supercritical symmetry-
breaking bifurcation

(b) Subcritical symmetry-breaking
bifurcation

(c) Saddle-node bifurcation (d) Transcritical bifurcation

Figure D.1: Different kinds of divergence bifurcation

decreases through the point λ = −1 on the complex plane.

Period doubling bifurcations can also occur in reverse, when an unstable

periodic solution changes its stability, by absorbing a stable period-doubled

orbit (supercritical case) or by emanating an unstable period-doubled orbit

(subcritical case). Reverse period-doubling bifurcations occur when a real

Floquet multiplier increases through the point λ = −1 on the complex plane.

Torus (secondary Hopf) bifurcation: It is a local bifurcation oc-

curring when a complex conjugate pair of Floquet multipliers with nonzero

imaginary part λ1,2 = e±iθ0 crosses the unit circle. In a torus bifurcation, a

spiral limit cycle reverses its stability and spawns a zero-amplitude torus in

its immediate neighborhood, to which trajectories in the system are asymp-
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totically attracted or repelled. The amplitude of the torus grows as the bi-

furcation parameter ζ is pushed further beyond the bifurcation point. Also

in this case, supercritical and subcritical forms can occur, corresponding to

the arise of a stable or unstable torus, respectively.

(a) Period Doubling bifurca-
tion

(b) Reverse Period Doubling
bifurcation

(c) Divergence bifurcation (d) Reverse Divergence bifurca-
tion

(e) Torus or Neimark-Sacher
bifurcation

(f) Reverse Torus bifurcation

Figure D.2: Critical and stable Floquet multipliers in the complex plane for codimension-
1 bifurcations of periodic orbits
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