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Chapter 1

| ntroduction

In many data sharing environments data manipulation lgesr@an transaction pro-
cessing. A transaction consists of a set of operations whiasgessing must provide
specific guarantees. These guarantees are defined in tepnspeities of transac-
tions, namely Atomicity, Consistency, Isolation and Duiiahb(ACID properties). In
IT applications transaction processing is used for the Idpweent of various com-
ponents of dferent layers of the system architecture. E.g., transatan be used
in a database client application to execute sets of opesatio data contained in a
database server, or by processes to execute sets of opsratidiles, as well as in
multi-threaded applications to execute sets of memory/waétd operations.

Transaction processing relies on the so-called Concwr&untrol Protocols
(CCPs). A CCP defines a set of rules that allow the system touctently execute
transactions preserving the desired properties.

Over the last few decades, transaction processing got aoriam role in many
contexts, spanning from enterprise applications to opgyaystems. As a conse-
quence, its increasing popularity has led to a growing éstiein CCPs. Today, CCPs
act as core components for the design and implementationvafeaspectrum of ap-
plications, as banking, booking, e-commerce, as well asasfyniow level synchro-
nization mechanisms, as in file system management and, graeim concurrent
programming. For these reasons they are of interest foraf Idt players. Further-
more, despite the transaction processing is not a new msaaga, CCPs continue
to even more attract the interest of researchers, as eederaq., by the emergence
of transactional memories [1], which today represent andywit in the concurrent
programming research.

The growing interest in CCPs is also due to a recent trend nmpcter manu-
facturing [2]. Over the last decade, the hardware architeadf a majority of com-
puter systems, including the entry level ones, has profiguctthnged, moving from
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2 CHAPTER 1

a single-core to a multi-core architecture. On the othedh#re exponential growth

of the CPU clock speed has stalled, so that, nowadays, theais®e of computing
power of a system is mainly due to the increase of the numb&Rij cores. As

a consequence, single progéisseaded applications can no longer take advantage of
such a performance gain of hardware architectures. In todemtinue to exploit the
growth of computing power to boost the performance perfoicaaof applications,

we need for concurrent applications. This results in a gngvaiare for CCPs.

1.1 ThePerformance lssue

The appeal of the transactional processing systems is yndird to the ability to
transparently ensure the properties of transactionsjrieguhe system user only to
demarcate the blocks of operations which form a transac@nthe other hand, the
concurrency control may have a remarkable impact on thesyperformance. The
latter is a critical issue for the transaction processingiesys. Sffice it to say that
the transaction response time is one of the most widely usdidators in service
level agreements negotiation, as well as the maximum aahbie\system throughput
is used as a foundamental indicator in transaction pratgsaid database system
benchmarking [3].

The impact on system performance of a CCP depends on manydaBasically,
a contribution to the performance degradation is due to yinamhics of execution of
transactions, which depend on the rules of the protocol. eékample, some pro-
tocols prevent data conflicts by blocking the execution ahagdaction when, while
accessing a data item, a (potential) conflict with a conatitransaction occurs. Con-
versely, other protocols aborts a transaction (which h&®tsubsequently restarted)
when a conflict with a concurrent transaction is detectedh Biocking and restart-
ing a transaction result in an increment of the transactegmpaonse time. The per-
formance degradation is also due to the extra processing dissociated with the
execution of the code for the protocol implementation, Whitay require both large
data structure management and explicitly memory fencetdictsbns or expensive
hardware operations (e.g. compare-and-swap) for pribessd synchronizatioh

The dfects on system performance due to the concurrency con&rabanplex to
analyze. Infact, the transaction execution dynamics diéparthe mix of various fac-
tors, as the transaction profiles (including, e.qg., the atpmr types and the accessed
data items), the transaction arrival rate, the concurréat, the processing speed of
the system, etc. For example, transactions may experientt@l®a waiting phases
whose durations depend, in turn, on the execution time ottmlicting transac-
tions. Also, a transaction may experience a number of aldrish depends on the

lin some systems, as database ones, these costs cdliofoalzle, but in others, as transactional

memories, their impact can be remarkable [4].
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readupdate rate of the set of accessed data items determinee bgnicurrent trans-
actions. Furthermore, generally, a protocol provides éiigierformance than others
depending on the workload and system features. E.g. sonecpte are optimized
for read-intensive workloads (as MultiVersion Concurse@ontrol (MVCC) proto-
cols [5]) and some protocols perform better than others wise in systems with
low resources [6].

According to the observations made so far, understandidgpasvaluating the
impact of the concurrency control on the system performanedéundamental issues,
and, on the other hand, they are non-trivial tasks becaube afultitude of involved
factors. At any rate, designing, optimizing and tuning $@agtion processing sys-
tems are complex activities which require a deep knowleddbeoalternatives and
implications associated with the choices of CCPs.

The analysis and the proper understanding of the impact esyhtem perfor-
mance of the concurrency control require quantitative eggiies. A largely used
approach in computer system performance analysis is thelrb@ded one [7, 8].
With this approach the analysis is conducted using an dcalytr simulative sys-
tem model. With respect to the measurement-based appra&ith) entails direct
measurements on the real system, it provides various aatyesit Basically, it allows
to conduct performance studies by avoiding the burden ddlingj (a component of)
the real system or a prototype, as well as by avoiding expersinstructions of
test-cases. This can be very valuable, in particular in #uly stages of the system
design. The model-based approach allows to abstract fratesined &ects due to
factors which, conversely, could be unmovable when theopeidince assessment is
conducted with a real system. It is an inexpensive approaexplore alternatives,
to test new ideas, as well as to analyze, through the conosif models, more
complex systems. Obviously, all assumptions and apprdiomaused in the con-
struction of a model, and all its implications and limitaitsp are crucial aspects to be
taken into account in the performance analysis. Finallg,rttodel-based approach
must not be considered a completely alternative approatiietmeasurement-based
one, rather they have to be considered complementary.

1.2 Performance M odeling of Concurrency Control Proto-

cols

Analytical modeling and simulation are two common appreachsed for the per-
formance analysis of transaction processing systemselfottow, we discuss some
basic aspects which need to be considered when dealing lwatbesign of perfor-
mance models for CCPs.

A transaction processing system is characterized by aipeasipect with respect
to a system without data contention [9]. In the latter cdsepperation response time
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is afected by the queuing and processing delay in accessing Aegdesources. In
a transaction processing system, the transaction respioneds dfected by both
hardware resources and data contention, and these, indamndfect each other.
For example, when a transactidnis blocked due to data contention, thEmmay
determine an increment of the data contention probabifith@® concurrent transac-
tions due to the increase of the lock holding time of lockdhsl T. Similarly, if

T is aborted and restarted, it may determine an incrementeogpithcessing time of
the concurrent transactions due to the extra resourceatidn for the re-processing.
The increment of the data contention grcthe higher processing time of the con-
current transactions, in turn, may determine a subsequergdse of probability for
T to be blocked or restarted. These factors entail non-tridégpendences between
the various system performance indicators (e.g. the tcinsaresponse time vs. the
transaction contention probability). Furthermore, thedeminance of the impact on
the system performance of some factors with respect to ©#ileo depends on the
mix of mechanisms used by the CCP.

A performance models of a CCP has to be #ective tool aimed to analyze
andor understand performance issues related to the concyrmrdrol. The in-
trinsic complexity of the transaction processing systemgases to rely on system
models where specific assumptions are needed in order tottmak@alysis feasible.
For this reason, the level of abstraction of a model reptesefundamental choice
determining its validity. For example, models aimed to perf a qualitative analysis
of the transaction execution dynamics could abstract flwrattual utilization of the
hardware resources. On the other hand, it has been showthetehount of available
hardware resources can determine which type of protocothgashance to provide
the best performance [6]. Accordingly, such models wouttvjgle unreliable results
if used to conduct a performance comparison study betwetareti protocols.

The wide diversity characterizing the workloads of appi@as for transaction
processing systems, and the attempt to build models whdidéy&s not restricted to
specific applications, entails the adoption of generic \a@#t models, by the defini-
tion of a limited number of parameters determining the waakll model configuration
space.

Finally, the complex relations existing between the vesitactors that canféect
the system performance lead to use approximation basedagby@s.

1.3 Contribution Overview

In this dissertation we present performance models of CGPsensaction process-
ing systems. Primarily, we use an analytical approach.hEurtve also use detailed
simulation models to evaluate the accuracy of the analyticalels we propose, and
to analyze some features of the protocols we deal with. Wepeal to focus mainly

on the analytical approach for two main reasons: (1) arwaytnodeling can be a
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practical approach for building cosffective computer system performance models
and, in particular, (2) the analytical approach enablesuntjtatively describe the
complex dynamics characterizing the concurrency conaibbwing us to analyze
and understand existing dependencies between systenrrparfoe indicators and
other system configuration parameters, and to reason aheiutimplications. In
this work, we deal with both Database Systems (DBS) and SoftwWransactional
Memories (STMs), which represent traditional and emergiagsaction processing
systems, respectively.

The first model we present focuses on the MVCC in DBS. The padace mod-
eling of CCPs has been largely conducted in the field of DBSyway, the most of
performance analysis work focus on modeling/anévaluation of protocols consid-
ering basic concurrency control strategies and the agsddiaplementation mecha-
nisms (e.g. blocking or restart-oriented lock-based @ity optimistic timestamp-
based protocols). Over the time, the need of performangelgdito the design of
new, more complex protocols. Thus, what often happens naygaid that systems
use protocols relying on more complex strategies than thoakyzed in performance
modeling studies. This entails the need of nélerts in the performance analysis and
of new performance evaluation tools. In particular, thithis case of the most used
MVCC protocol in Database Management Systems (DBMS), dialy both com-
mercial and open source ones. It combingkedent mechanisms, as data versioning,
transaction blocking and transaction restart. This mix ethanisms provides high
performance in particular with read-intensive workloadsich characterize many
applications which require transaction processing. Orother hand, it determines
more complex transaction execution dynamics with respgeother protocols. The
literature does not provide analytical performance moddigh allows us to study
and to quantify the féect on system performance of such a mix of mechanisms. We
address this lack by providing an analytical performanceehtailored for this pro-
tocol. To cope with the its complexity, we use a modeling apph wich focuses on
the transaction execution dynamics. These are capturedelaysnof a transaction
model which represents the transaction execution thratgjphases and on basis of
the phase transition probabilities. By relying on this s@&etion model, we incremen-
tally derive a set of analytical expressions to calculagevérious probabilities and
the other involved quantities. The system performanceisaitars can be calculated
numerically resolving the set of expressions. By this madelcan evaluate the ex-
pected transaction response time and other indicatorfieadata validation failure
probability and the data version creation rate, which alowguantify the impact on
system performance associated with théedent mechanisms used by the protocol.

We then move to the field of STMs. Very little performance modework has
been made in this field. Concurrency control in DBMS and in STrklies on simi-
lar concepts, therefore, used methodologies and modeBB& can also provide a
valuable support for performance analysis of STMs. Anyway)saction processing
in STMs and in DBS is dierent in many aspects [10], and this entailfetences
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concerning both the used CCPs and the choice of appropyistens models. So far,
performance analysis of STMs has been essentially cordiudtie the measurement-
based approach. More recently, a few analytical and siiunlahodels have been
proposed. In some cases, these models assume simplifiednsysidels which do
not allow to evaluate time-related performance indicaferg. the transaction re-
sponse time and the system throughput), hence, they erallady and evaluate
protocols only by a limited analysis perspective. In otresges, the focus of the pro-
posed models is shifted toftBrent aspects from the CCPs. We propose a framework
tailored for a more comprehensive performance analysisSTdsSwhich overcomes
the main limitations of the previous studies. In this frarnéewve deal with the ef-
fects on system performance associated with both the CGRbanynamics related
to the transaction executions by the concurrent threads appglication. Our system
model is ispired to a typical STM application where threagssapposed to run on
CPU-cores of a multi-core processor system. Threads ateethe execution of trans-
actions, where they perform accesses both on shared andifdaaand code blocks
where they perform only local computations (e.g. see [ITd)this purpose, we pro-
pose a two-layered modeling approach, where a layer captiheedynamics related
to the execution of threads, delegating the concurrencyr@lomodel to another in-
dependent layer. These allows us to evaluate the systewripenice also capturing
the dfect due to the continuos variation of the concurrency lewdl @ the mix of
different transactions in the system. At same time, with our fireglapproach, this
can be simply obtained by devoloping a CCP model for a fixdakitparametric,
concurrency level and mix of transactions. Furthermore,této-layered structure
makes the framework feasible to build models foffetient CCPs. We present an
istance of the CCP layer for the case of the Commit-Time LagKICTL) protocol
[12], which is currently used by several STM implementatioThe complete in-
stantiation of the framework allows us to evaluate, in addito the expected system
throughput, various indicators, as the transaction abmthabilities throughout the
various phases of the transaction execution. The indis@i@m be evaluated on basis
of various system configuration parameters, as the profildgdransaction classes,
the number of concurrent threads, the duration of thEeint memory operations
and the shared memory size.

Finally, we propose a modeling approach which opens a negppetive in the
CCPs performance analysis. So far, proposed modeling agipes rely on the as-
sumption according to which the data items accessed byaittoss do not depend
on the phase of the transaction execution. In other worésjdlta access sequences
of transactions are not considered. Actually, in many aptithns for transaction
processing systems, transactions tend to access datadtmmsling to specific se-
quences (e.g. see TPC-C [3] and TPC-W [13] benchmark apipls). We show that
performance delivered by CCPs which acquire locks duriegrdmsaction execution
(i.e. before the commit time, as the Two-phase locking (2BD) can be strongly
affected by such data access patterns. Futhermore, we shquetf@mance models
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which ignore these aspects can provide unreliable reshigmnwsed in performance
analysis of applications. Today, the aforesaid types dbomls represent a very large
class of CCPs used in transaction processing systems.

To cope with the above-mentioned problem, we propose, bysfag on the
Strong-Strict 2PL (SS2PL) protocol, which is the most usetsion of the 2PL, a
modeling approach which enables to capture ftifiecés due to transaction data ac-
cess patterns where data accesses depend on the transaetiotion phases. This
approach can be used in the case of both deterministic amalpifistic transaction
data access patterns. In addition, we show as this appreaaled suitable for ap-
plications with diferent transaction profiles, where each profile is charaetrby
a different data access pattern. The model we present allowslt@eyshe average
transaction response time for each transaction profile anidus other indicators,
as the lock holding time and the transaction waiting timeegghindicators are very
useful to investigate theffiects on the system performance of the data access pat-
terns of applications. Models built with the approach wesprd can also be used to
support the selection of the optimal transaction data aqoatierns for the design of
applications.

The analytical models we present in this dissertation carobpled with diferent
hardware resource models and can be resolved by iteratiershdév how this can be
done by using an hardware model typically adopted in perdmce studies of CCPs.

Finally, all these models can help to answer further typigadstions in the area
of the transaction processing systems, as: Which is thenpaitgoerformance bot-
tleneck? How does the system scale up? Which mechanism ysagiwtocol is
the main responsible for the performance loss? Which is thi& tnansaction class
responsible for the system overhead?

1.4 Structure of the Dissertation

The rest of this dissertation is organized as follows. Inp@E&a2 we provide an
overview of the CCPs in the field of both DBS and STMs. A litaratoverview
is presented in Chapter 3. In Chapter 4 we present the peafaenmodel of the
MVCC protocol. The modeling framework for STMs and the maafghe CTL pro-
tocol are presented in Chapter 5. In Chapter 6 we presenteifiermance study on
the transaction data access patterns and the performarded afdhe SS2PL proto-
col. Further, we conclude the Chapter 6 with a brief analgbthe sensitivity to data
access patterns of other protocols, including those cereidin previous chapters.
A concluding discussion is in Chapter 7.

Most of the material contained in this dissertation can Biséound in the following
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Chapter 2

Concurrency Control Protocolsin

Transactional Processing Systems

Over the years, the need for performance improvement haducted researchers
and system designers to explore many alternatives and lioedealtterent solutions
for the problem of concurrency control in transactionalgessing systems. Today a
variety of Concurrency Control Protocols (CCPs) exist. His thapter we provide
an overview of these protocols, focusing on the fields of bate Systems (DBS)
and Software Transactional Memories (STMs) [14]. We disdheir peculiarities
and provide various examples. Before discussing STMsopmis, we also provide
a brief overview on STMs and point out some basitelences with respect to DBS.
We do not focus on protocols for distributed systems becthigseare out of the scope
of this dissertation. Further details about notions we ji®in Section 2.1 and 2.2
can be found in [5].

2.1 Basics

A largely used criterion to evaluate the correctness of G€&arializability. It states
that an execution of a set of transactions must have the sfiewt en data items as
some serial execution of the same transactions. Seridligatorresponds to the
higher isolation level defined by ANSEO SQL Standard [15]. Actually, a such iso-
lation level is not necessary in many applications. For gdamin some benchmark
applications (e.g. [3]) some transactions require a loweel|l asRead Committed
which only ensures that transactions do not read updateataritdms made by trans-
actions not committed yet. Furthermore, some DBMS do nataquee serializability

9
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(e.g. Oracle Database [16]). In this case, to enforce smfde executions, the sys-
tem user has to explicitly add specific instructions withansactionsRecoverability

is another requirement for the execution of transactiomsexXecution isecoverable

if transactions which read values written by another tretisaT do not commit be-
foreT. This ensures that f has to be aborted, it can be safely done. However, this is
not enough to avoidascading abortsThis phenomenon occurs when a transaction
Ti gets aborted and another transacfigrnas already read a value written By In

this case alsdj has to be aborted. Cascading abort can be avoided by preyenti
transactions from reading values wrote by uncommittedstretions. In this case the
execution is saidtascadelessAnother phenomenon is the following one. When a
transactionT; is aborted, the previous value of each data item update} bgs to

be restored. If another transactidin updates one of this data item befdfegets
aborted, restoring the previous value of this data itemilentiae loss of the value
written by T;. This can be avoided by preventing transactions from vgitialues
written by uncommitted transactions. This is calldctness Note that strictness
implies cascadeless, which, in turn, implies recovergbilhll these are orthogonal
properties with respect to serializability.

As concerns concurrency control strategies, basicallyP€€an be classified in
pessimistic and optimistic ones. In addition, there arergetyaof mixed protocols.
Pessimistic protocols avoid conflicts between transastiynblocking angbr restart-
ing a transaction before a conflicting operation is executedhis purpose, conflicts
are detected before the execution of the operations. Cgitthpirotocols do not block
or restart transactions before operations, but allow tlodpe executed as soon as they
are requested. The conflict detection is delayed to the etrdmdaction, i.e. to the
commit-phase. In this phase, if a conflict is detected, thestction is aborted and
restarted. These protocols are also catledificationprotocols.

In the follow, we describe various examples of pessimistitimistic, and mixed
protocols. We start from the field of DBS, and after we moveTiS.

2.2 Database-Oriented Protocols

In DBS, pessimistic protocols are tipically implementedrbgans oflocks Trans-
actions acquire aharedlock on a data item before executing a read operation, or
anexclusivelock before executing a write operation. If an exclusivekléar a data
item is held, no other locks can be acquired for the same thatg while, if a shared
lock is held, only shared locks can be acquired. If a traimmaatan not acquire a
lock due to another lock held by a concurrent transacti@n &.lockconflictoccurs)
then it is blocked and waits until the concurrent transactigleases the lock. The
Two-phase locking (2PL) is a protocol where a transactideases locks only after
having acquired all needed locks. The 2PL ensures selidltya The Strong Strict
2PL (SS2PL) [17] is a version of the 2PL where all locks acepliby a transaction
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are released only when the transaction terminates or iseghofhe SS2PL ensures
serializability and strictness. For these reasons, itagilost used version of 2PL.

Locking protocols which block transactions on conflict anbject to deadlock.
In these cases, further mechanisms are needed to avoiddhiem. A widely used
method is based on timeouts, i.e. a transaction which expegs a lock conflict
can waits at most for a fixed time, after which it gets abort@dis is a low cost
method, but it can cause the abort of a transaction also dldela does not really
occur. Another method is based on the wait-graph. This isec@id graph where
a nodei corresponds to a transactidin. An edge from a nodéeto a nodej means
that the transactioil; is blocked due to a lock held by transactiop When a lock
conflict occurs the corresponding edge is added to the grAptycle in the graph
indicates that a deadlock has occurred, and it is solved bytiag a transaction in
the cycle. The aborted transaction has to be subsequesthrterl. The drawback
of wait-graph method is due to the graph management cost.nfdtlkeod based on
timeouts is more widely used in DBMS.

Concerning optimistic protocols, the conflict detection oaly on various mech-
anisms. One of these is the Serialization Graph Test (SGTi)fiCation. This is
based on a serialization graph, i.e. a directed graph wheoel@i corresponds to a
transactionT; and an edge from a nodgo a nodej denotes that an operation ex-
ecuted by transactiom; precedes and has conflicted with an operation executed by
transactioriTj. When a transaction executes an operation and a conflictsdben
an edge is added to the graph. At commit time, if the trangads within a cycle in
the graph, it gets aborted.

The Basic Timestamp Ordering (Basic TO) is a protocol whibbrts transac-
tions as soon as a conflict is detected. It allows a transadtiexecuting an opera-
tion only if no conflicting operations have been already exed by other concurrent
transactions started after the transaction T. Otherwiseimiinediately aborted. This
protocol uses timestamps associated with the start ofactingss to detect the order
of the operations. Basic TO ensures serializability. Thassiwn does not provide
recoverability, but can be easily specialized to enforce it

MultiVersion Concurrency Control (MVCC) is a technique wihimaintains mul-
tiple copies, or versions, of a data item. Each version iglygced by a write opera-
tion. When a transaction reads a data item updated by a genturansaction, it is
served by using a previous version of the data item. Henceydigtaining previous
versions of updated data items, a reading transaction &r téecked or aborted. An
example of such a protocol is the Multiversion Timestampe@irdy (MVTO). Upon
a read operation, a transactidrreads the version of a data item produced by the last
transaction committed befofiestarted. Upon a write operation of a transacfioan
a data itend, if a version ofd has already been read by a transaction started Bfter
thenT is aborted. Otherwise a new versiondk created. Finally, a transactidnis
committed only after all transactions which have produceions read by have
been committed. MVTO ensures serializability and recaviéita
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Many different protocols can be defined by combining the aforesakthigges.
For example, a common version of MVCC used in DBMS is basedcoksl Specif-
ically, transactions acquire an exclusive lock upon a wopteration. When a lock
is acquired, the write operation is allowed to be executdy ibrthe data item has
not been updated by concurrent transactions, otherwistahsaction gets aborted.
Versions created by a transactidnbecome visible to other transactions only after
T has been committed. This protocol ensures an isolation lewer than serial-
izability, namelysnapshot-isolatiorf18]. This level ensures a transaction reads all
data from the same (consistent) snapshot of the databaggrevehts lost updates.
In DBMS which provide snhapshot-isolation as highest isolgtthe user can add
instructions to explicitly acquire locks within transaxts to enforce serializability.
However, although snapshot-isolation does not providelsebility, this isolation
level is considered acceptable for a wide set of applicatmatexts. Also, several
recent works have provided formal frameworks for the idatiion of classes of
applications where this type of isolation levelffstes to ensure serializability [19],
and for detecting (and correcting) applications potelytizposed to non-serializable
execution histories [20].

2.3 Brief Overview on Software Transactional Memories

STMs [21] are emerging as a highly attractive and potegtidisruptive program-
ming paradigm for concurrent applications. The early psaf® for Transactional
Memories (TMs) architectures date back to 90s [22]. Howether research on this
topic has been largely dormant till the 2002, when the adefmiulti-core processors
made parallel programming exit from the niche of scientificl digh-performance
computing and turned it into a mainstream concern for theneoé industry. One of
the main challenges posed by parallel programming consfségnchronizing con-

current access to shared memory by multiple threads. Rrogesis have tradition-
ally used locks, but lock-based synchronization has waedivkn pitfalls. Simplistic

coarse-grained locking does not scale well, while more istipated fine-grained
locking risks introducing deadlocks and data races. Furtbee, scalable libraries
written using fine-grained locks cannot be easily composedway that retains scal-
ability and avoids deadlock and data races [23].

By bringing the concept of transaction to parallel programgn STMs allow
freeing the programmers from the burden of designing andyirgy complex fine-
grained lock synchronization schemes. By avoiding de&dland automatically
allowing fine-grained concurrency, transactional-lamguaonstructs enable the pro-
grammer to compose scalable applications safely out ohthsafe libraries. With
an STM, programmers have just to demarcate code blocks whiaghto be executed
as transactions. The underlying STM layer provides thesitin that transactions
are executed in a serial fashion, which allows programntersason serially on the
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correctness of their applications. Of course, the STM lalgers not really execute
transactions serially, instead, "under the hood" it allowdtiple transactions to exe-
cute concurrently by relying on a Concurrency Control Reot¢CCP).

Today research on STMs is very active. Commercial releab&3 bls do not
exist yet, however many research prototypes (e.g. [12,5¥, & well as prototypes
for commercial systems (e.g. [26]) are available.

2.4 Database Transactionsvs. Memory Transactions

Some basic dierences exist between transactions in DBS (database dtams)
and transactions in STMs (memory transactions) [10]. Mgni@nsactions are ex-
ecuted ensuring atomicity, isolation and consistency.ikgnllatabase transactions,
they do not ensure durability, but encompass operatiordingariting data only
in volatile memory. This also leads to another significatifedence. As memory
transactions do not require access to persistent storage dédita are updated, the
execution time is tipically much smaller compared to dasab@ansactions. Addi-
tionally, memory transactions are mediated by lightweighguage primitives (e.g.
theatomic{} construct) that do not sier, e.g., of the overheads for SQL parsing and
plan optimization typical of database environments. THas®rs make the mem-
ory transactions execution time typically two or three osdef magnitude smaller
than database transactions [27], even when consideringlegr8 TM benchmarking
applications.

Another diference concerns the isolation level required for memonsaetions.
Serializability is considered largely Sicient as isolation level in DBS. However,
with serializability inconsistent data values can be readrénsactions that will be
subsequently aborted. It has been shown that ffeets of observing inconsistent
states can be much more severe in STMs than in DBS [28]. In SiFMact, trans-
actions can be used to manipulate program variables whateditectly &ects the
execution flow of user applications. As such, observingtiatily inconsistent mem-
ory states (as it is allowed, for instance, by the optimi€{ePs used in DBS) could
lead applications to get trapped in infinite loops or in exiogs that could never
be triggered in any sequential execution. This is not the éasDBS, where trans-
actions are executed via interfaces with precisely defiaad (nore restricted) se-
mantic (e.g. with SQL interfaces), and are executed in alsawmt component (the
DBMS) which is designed not to fier from crashes or hangs in case the concurrency
control allowed observing inconsistent data snapshots. thase reasons memory
transactions require a higher isolation level than seadiiity, namelyopacity[29].
The latter, in addition, prevents all transactions (alangactions that will be subse-
quently aborted) from seeing inconsistent values of datast As we will see in the
following, most protocols used in STMs rely on the so-caliead validation[30] to
provide opacity.
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2.5 STM-Oriented Protocols

Essentially, CCPs for STMs are based on combined technitylest of them provide
opacity. Generally, in STMs implementations for objecteated languages (e.g.
JAVA) a data item corresponds to a memory object (objecédaSTMs), while in
other languages (e.g. C language) it corresponds to a mewang (word-based
STMSs). In STMs which use locks, one or more data items can lppathto a single
lock. This entails smaller memory structures needed fdt lnanagement. On the
other hand, this can lead to false conflicts when two trafsaaccess two tferent
data items mapped with the same lock. The number of data isswiated with a
single lock can be a design choice or, as in some STMs, it cad#gtively changed
at run-time. To simplify the discussion, in the following \@esume that a data item
is mapped with a single lock. In the rest of this section wevjol® some examples of
STMs which use dierent protocols.

TL2 [12] is a STM which uses exclusive locks. Upon a write @pien the ac-
cessed data item is not immediately updated, but the neve Vglstored in a private
buffer of the thread executing transaction. Upon a read operittis checked if
the accessed data item has not been updated by anothectiamsdter the reading
transaction started. This check is sa@lidation Furthermore, it is checked if the
associated lock is not held by another transaction. If oeelcails then the reading
transaction gets aborted. At commit time a transacTiamies to acquire an exclu-
sive lock on each data item to update. If a lock is held by asrottansaction then
T is aborted, otherwise, after the lock acquisition phadalaah items read by are
validated again. If one of these data items is not valid fhes aborted, otherwise
all data items are updated and all locks are released. Pistathich acquire lock at
commit-time are called Commit-Time Locking (CTL) protosol

TinySTM [24] uses a protocol similar to protocol used in TLRhey difer in
the lock acquisition time, namely TinySTM acquires the IbeKore executing the
write operation. Furthermore, TinySTM uses other optittiizes, e.g. as hierarchical
locking to reduce the cost of validation and dynamic tunifigame configuration
parameters.

Also mixed locking techniques can be used, e.g., as in SMISL]. In this
STM each data item hasverite lock and aread lock. A write lock prevents other
transactions from writing, but not from reading. A read Igrkvents other transac-
tions from reading. Upon a write operation a write lock is@#oed. At commit time a
transaction acquires also the read lock of each data iterm tptdated. Both read and
write locks are released after the transaction commits ertalbhis mixed technique
allows to detect conflicts between write operations as s@opoasible, but delays
conflict detection between read and write operations at dotimme. Furthermore,
SwissTM uses a mechanism which, in case of conflict, favarg toansactions by
aborting shorter ones.

DSTM [32] is an STM which uses the conceptmfnershipof a data item. An
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ownership is exclusive but revocable. Upon a write openaditransactioff; acquires
an exclusive ownership of the data item. If another transadt; executes a write
operation on a data item owned By T; can wait a while, but eventuallj; acquires
the ownership, possibly determining the abortTefif it has not yet released the
ownership. On a read operation a transacfiochecks if the accessed data item and
all data items previously read are still valid. If yéls,executes the read operation,
otherwiseT is aborted. At commit time a transaction validates agaimesd data
items. If the validation fails the transaction gets abqrtberwise all data items are
updated and ownerships are released.

Finally, multiversion protocols have also been used in Sasin JVSTM [33]. It
has been designed for the Java language. JVSTM uses th#esbveaisionedooxes
to store versions of data items, which are shared java objeotread operation a
transaction reads the version contained in the last box wiailge before the start of
the transaction. On write operation the value to write isestovithin a box created
by the transaction. Transactions execute the commit dperat mutual exclusion
by acquiring an exclusive global lock. After the lock acdfios, all boxes of updated
data items are made visible to other transactions and thedoeleased.

A still open debate concerns progress guarantees which @€B3 Ms have to
provide. In locking protocols running transactions can fiected also by threads
which execute transactions and are not running. For exanfpéethread is sus-
pended (e.g. preempted by operating system) while it isugkxera transaction that
holds an exclusive lock, all other running transactionsclwtiry to acquire the lock
can't make progress. Non-blocking protocols are thoseopad$ which can provide
progress guaranteeObstruction-freedonj34] is the weakest progress guarantee
of non-blocking protocols. Obstruction-freedom ensules if a thread runs by it-
self for long enough (including when other threads are sudpd) then it makes
progress. Obviously, also all transactions executed bthilead are guaranteed to be
obstruction-free. Roughly speaking, if a transaction eceed by itself long enough
to complete, it eventually successfully commits. Obstamefree protocols guaran-
tee that a deadlock does not occuluock-freedom[35] provides stronger progress
guarantees than obstruction-freedom. It guaranteesftiiaerads run long enough
then at least one thread makes progress. The first work whicbduced TMs
describes a transactional memory with a protocol which ajptaes lock-freedom.
Lock-free protocols guarantee that livelock does not acdtinally, Wait-freedom
[35] provides the strongest progress guarantees. It ensoat if threads run long
enough then all threads make progress. Wait-free protgr@santee that starvation
does not occur.

Despite progress guarantees may seem desirable, todayisheot a common
agreement on theirfkectiveness in STMs [36]. The STMs we presented in this chap-
ter provide diferent progress guarantees. E.g. DSTM provides obstruftéedom.
The version of JVSTM we presented provides lock-freedomofdy-read transac-
tion, while a more recent version is completely lock-fredneother STMs we dis-
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cussed above do not provide obstruction-freedom.



Chapter 3

Literature Overview

In the literature a number of publications which cope witl grerformance analysis
of CCPs exist. Most of them focus on DBS. Less work has beeg dothe field of
STMs. In this chapter we provide a literature overview faegn the performance
modeling. We start from the DBS, and after we move to the fie8TdMs.

3.1 Database Systems

The work done the field of DBS includes both simulation andyditaapproaches.
Most of analytical studies use simulation to validate thelgital models. Early
studies encompass locking protocols. Afterwards alsaragtic protocols have been
considered. E.g. static locking protocols (i.e. wheregaations predeclare all lock
requests before starting) have been studied by simulati¢®7i] and [38], and ana-
lytical models have been proposed in [39] and [40]. Dynamdking (as the SS2PL
described in Section 2.2) has been analyzed by simulatif88irand [41], and by an
analytical approach in [42]. Optimistic concurrency colgrhave been analyzed by
analytical models in [43] and by simulation in [44] and [45].

The majority of studies rely on system models based on thewilg assump-
tions. The database contains a fixed number of data itemstafitden can represent,
e.g., arecord, a page or an entire table. Transactionsrperfoperations uniformly
distributed over the whole set of data items. Some studmsas the presence of data
skew, e.g by considering hot spot using tie rule (i.e. a fraction ob operations
access a fraction afdata items in the database [42]). In other studies data itEmns
partitioned in dfferent sets, and fixed-sized subsets of transaction opesaitress
different data item sets [9]. In studies where both read and daite accesses are
considered, each data access is a/weaid with a fixed probability (e.g. in [46]).

17
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In some studies, to model a workload with more transactiafilps, transactions
are grouped into dlierent classes, where the number of operations and thauritad
probability depend on the transaction class [9]. A constamtber of transactions in
the system is assumed in some models (e.g. [42]). In otheksatomnsactions are
assumed to be generated by a fixed number of us@lesed system model) [46, 6].
In some studies a 'think time’ exponentially distributediwa fixed average value is
considered between transactions executed by users [43lbded system models the
transaction throughput is used as system performanceatodicd/Vhens is assumed
to be large, an open system model is considered, and traorsactivals are modeled
as a Poisson process with fixed average arrival rate (opeensysodel) ([48, 9]).
In this case the system performance is evaluated throughvidrage transaction re-
sponse time. As concerns the hardware resources, CPU &matdisonsidered. Two
different models for the hardware resources have been usedrdttané is a simple
model where resources are assumed to be 'infinite’, i.e. rsaGtion never waits
for a CPU or JO request ([44, 41]). In this model transactions interfare tb data
contention, but they do not compete for hardware resourcethe second model a
number of CPU an@r disks are explicitly accounted for (e.g. see [47]). If sowrce
is serving a transaction then the arriving transactiongjaesied. Typically, the CPU
and JO service demands associated with each operation deperitearpération
type (reagwrite), and they are assumed to be fixed or exponentiallyibliged ran-
dom variables. CPU and disks are modeled as a queuing netwlogke a transaction
operation involves CPU and disk requests. In some studéegrésence of a memory
buffer is assumed ([49, 9]). A subset of data items are contaimelei bufer and
are replaced according to a policy (e.g. least-recentlg)us&ith a memory bffer,
when a transaction accesses #éned data item the® time is not considered.

A contribution aimed to explore thefects of the hardware resources on the CCP
is provided in [6]. In this work the authors highlight as mo§the previous results
were seemingly contradictory, and they presented a siivelatudy aimed to eval-
uate pessimistic and optimistic protocols. The main resfithis work is that, in
environments with limited resources, pessimistic prot®@zrform better, because
they tend to prevent further resource utilizations by bieglconflicting transactions.
Conversely, with low resource utilizations, so that furthested work can be toler-
ated, optimistic protocols are preferable. Finally, ththats claimed that the seem-
ing contradictions of previous studies were due to tHeedénces in the underlying
assumptions concerning the hardware model.

An analytical model based on a recursive solution has beepoged in [50].
The work addresses the case of shared and exclusive lodksnuitiple transaction
classes. A performance study encompassing a restartadig@notocol is described
in [51]. In this work a method to improve the response timesdasnvolatile save-
pointsis considered. A savepoint allows to reduce the wasted psatg time when
a transaction is restarted. The ideal distribution of cpeait over the transaction
lifetime is evaluated. Other analytical works have beemsgméed in [52, 47, 53], for
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which, most of results have been surveyed in [47]. In thedatiork a queuing net-
work model for hardware resources is presented and an dppated analytical ap-
proach for the dynamic locking is considered. Furthermtbrework revises models
for optimistic and mixed protocols, and some possible im@noents are proposed.

A mean value analysis methodology aimed to model lock-basedoptimistic
protocols is presented in [9]. It brings together variousuhes by diferent previous
studies of the authors. On basis of probabilistic assumstithe proposed method-
ology allows to obtain simple approximate expressions ¥atuating various prob-
abilities and other quantities which characterize the dyina of the execution of
a transaction (e.g. the conflict probability, the mean waieton conflict, and the
average number of transaction restarts). The providedessfums allow to build ap-
proximate models, which can be coupled with a hardware mertttcan be resolved
via iterations.

Finally, few publications addressed the evaluation of thdégymance of MVCC
protocols, and they are mostly based on simulative appesa@Ehg. [54]). Analytical
models have been proposed in [55, 56]. The objective of thieskes was to provide
an analysis of the storage cost for maintaining data itemselying on the evalua-
tion/prediction of the space occupancy for th&etient versions of the data items vs,
e.g., the data update frequency.

3.2 Software Transactional Memories

As concerns STMs, the wide majority of existing performastiaies focus on the
evaluation of STMs implementations. Among these, someaesumbmpare dierent
STMs prototypes (e.g., [12, 24, 31]), while other studiesufoon the assessment of
alternative design choices [25]. Some studies are aimegalaae adaptive policies
[57], and finally, other studies use STMs implementatiorsveduate alternative con-
flict detection and validation strategies (e.g. [30]). Awbkmited number of studies
rely on model-based approaches. A simulation study haspresented in [58]. The
authors propose a simulation model to analyze the perfaenasith three protocols,
namely a pessimistic protocol and two optimistic ones, withie bufering and with
in-place memory updates, respectively. The pessimisttopol relies on the typi-
cal sharetexclusive lock mechanism and transactions are abortedanclonflict.
Conversely, with the optimistic protocols transactions parform write operations
without checking if a concurrent transaction has already the accessed data item,
and read operations require data validation. With writédsing, when a transaction
executes a write operation, it stores the new value locailg, the value is made vis-
ible at commit time. With in-place memory update, the newugak immediately
stored in shared memory, and an undo log is used to restongréh@us value of
the updated data item if the transaction gets aborted. Byubke simulation model
and synthetic workloads, the study encompasses the aealwdtthree performance
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indicators, i.e. the mean number of restarts per tranggdtie mean number of steps
executed and the mean number of locks held by a transactiom.alithors show as
in their tests optimistic protocols perform better in terofisnean number of restarts.
The studies based on analytical are presented below. The aathors of the
above-mentioned simulation study also proposed an acalyapproach [59]. They
provide an analytical framework for STM systems where theesa@rotocols as in
the simulation study are considered. Subsequently, thendgd the framework for
the case of optimistic protocol with lazy locking [60]. Thariework is based on an
absorbing discrete-time Markov Chain [61] which models ¢lkecution of a trans-
action. The system model assumes a fixed nunkbafr active transactions in the
system, each one executiiyreagwrite accesses uniformly distributed @ndata
items, withP,, as probability for an access to be a write. Given a protobte,aut-
come of the analytical model depends exclusively on thesafid four parameters.
The framework allows to evaluate the same performance atalis as the simula-
tion model proposed by the authors. The analytical models baen validated by
performing comparative tests with the output of a discreenesimulator. In these
studies the performance indicators are evaluated witheoégp the probabilityP,,
and the number of concurrent transactidhsFurther, the authors present some re-
sults calculated by means of the analytical model. They oornte advantages of
the optimistic protocols, unlesB,, assumes very large or very small values. The
study presented in [62] proposes two analytical models topaoe the performance
of the typical lock-based approach for the execution of icatisection and of a sim-
ple version of the CTL protocol (see Section 2.5). In the afsbe CTL protocol,
the authors consider transactions which speculativelgsacthe critical section. At
commit-time, if a concurrent transaction has committeentthe committing transac-
tion aborts and restarts, otherwise successfully commiis.system model consists
of N processors witch execute threads, each one repeatedly issuing critical sec-
tiongtransactions. All critical sectigtransaction executions are assumed to access
to the same memory location protected by a unique global Idtle duration of a
critical sectioritransaction is exponentially distributed. Concerning tiamsaction
model, the durations of the abort phase and the commit pliaseaconsidered. A
gqueuing based model have been used for both critical seciod transactions. Both
the models have been validated by simulation. Accordingea¢sults obtained with
models, the typical critical section approach generalljperforms the transaction
approach, while with low contention they are comparablee $ame authors sub-
sequently proposed other two works. Also in these works thsgya queuing-based
approach. In the first work [63] they consider a system witlxedfinumber of treads,
each one executing on a processor. Threads execute a nuhad@e@nt transaction
types according to a given distribution probability. Tresaction types fier in the
number of checkpoints executed. While executing a cheakpaitransaction may
be aborted. The execution of transactions is modeled by snafaan continuous-time
Markov Chain [61], where a state is represented by the nurabactive transac-
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tions and by the number of checkpoints executed by the fasistiction that will
commit. A transition occurs when a new transaction stadsjmits, aborts or ex-
ecutes a checkpoint. The conflict detection is simply asslutoée lazy or eager
(see Section 2.5) depending on the number of checkpointamgactions. Read and
write accesses are noffidirentiated and the conflicting probability between transac
tions is considered to be fixed and to be an input parametahémodel. In the
tests performed by the authors, the conflict probability been evaluated by experi-
mental measurements on a real system. The model has bedatedlagainst a real
system by using STAMP benchmark [11] and by comparing theageetransaction
response time predicted by the analytical model. In thersbomrk [64] the authors
propose a similar approach. Unlike the previous approadjs model a state of the
Markov Chain is represented by the number of active traiecand by the number
of transactions that will commit. A transition occurs whene transaction starts,
commits or aborts. Also in this work read and write accessesat diferentiated.
The conflict detection relies on checkpoints and the conflicbability is calculated
according to the size of the overlapped sets of data itemassaed by concurrent
transactions. Also this model has been validated by usidgVBTbenchmark.
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Chapter 4

Perfor mance M odeling of
MultiVersion Concurrency

Control Protocols

4.1 Introduction

Several DBMS rely on MVCC protocols (Section 2.2). Thesetqmols are also
largely used in other data management systems (as JBo$wC[6&¢), and are gain-
ing ground in STMs (e.g. JVSTM [33]). The exploitation of rtiplle data versions
allows the system to immediately serve, via a version of teessed data item, a
read operation, which with other protocols could entail lag®r an abort of the
reading transaction in case of conflict. This approach iwvgsdhe level of concur-
rency between transactions and, mainly, it makes muliimergrotocols especially
suitable for a read-intensive workload. Such a kind of waek is representative of
several applications, as most of the Web-based ones.

In Section 2.2 we also discussed the most widely used MVC@pobin DBMS.
This protocol provide the snapshot-isolation level andais lheen adopted in both
mainstream proprietary and open source DBMS (e.g. Oradiatiase [16] and Post-
greSQL [66]). In this chapter we address the performanceetirad of the MVCC
and we present an analytical performance model tailorethfoaforesaid protocol.
The model we propose is able to capture the transaction geealynamics due to
the mix of mechanisms used by this protocol and allows taewalboth the main per-
formance indicators (e.g. average transaction responsedther specific indicators
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for this protocol (e.g. the version check failure probagilihe frequency of creation
of versions, the lock holding time). In our analysis we cdesia level of abstraction
which makes the model independent of some specific aspesystgins. In particu-
lar, the model is independent of the specific policy adoptethb system to retrieve
data item versions (e.g. explicit storing, as in PostgreS@ldynamic regeneration
of the required version via rollback segments, as in Orael@Base). This makes the
model suitable for a variety of version management mechairgplementations.

The model has been validated via a simulation study. The sisadation model
explicitly mimics the dynamics of the transaction exeausion a database system
where the transction execution is regulated by the coresidistvVCC protocol.

The remainder of this chapter is structured as follows. IctiSe 4.2 we provide
a description of the protocol rules. The analytical modepriesented in Section
4.3, where we first provide a basic version of the model, ater afe present an
extended version copying with multiple transaction clasaed non-uniform data
access. Finally, we present a model validation study ini@edt6.

4.2 An Overview of MultiVersion Concurrency Control Pro-

tocol Ensuring Snapshot-I solation

The protocol we are analyzing combinegtelient concurrency control techniques,
namely data versioning, transaction blocking and traimacestart. In the follow
we describe more in depth the protocol and the basic implatien mechanisms.
Each transaction in the system is associated with a sodc8tiert-Timestamp
whose value is set when the transaction starts. This valused to determine the
set of transactions that are concurrent within particular, this set is formed by the
transactions that are active when Start-Timestamp is sét,fplus the transactions
with timestamp greater than Start-Timestamp. When a tctiosel tries to write a
data itemx that has not yet been accessed by this same transaetision checks
performed to determine whether no concurrent transackiahvtrotex has already
been committed. In the positive case, version check is sdithte failed, and is
immediately aborted. Otherwisg,tries to acquire an lock or, which can lead to a
wait phase in case the lock is currently held by any othevadtansactiod”. In the
latter case, IfT” is eventually committed, theh gets aborted in order to avoid the so
calledlost update phenomengib8]. After the lock acquisitionT is allowed to create
a new version ok. If T wants to reagivrite a data itenx previously written during
its execution, the version of just created byl is immediately supplied. Instead, a
read operation on a data itexmot previously written byl is served by accessing the
version ofx that has been committed by the most recent transaction motio@nt
with T. In this way all read operations are never blocked and doauestransaction
abort. WhenT commits or aborts, all the acquired locks are released. $e cé
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commit, all the data item versions createdTbipecome visible to other transactions.

4.3 TheAnalytical M odel

4.4 System Model

We consider an open system model where transactions aotegding to a Poisson
Process. A transaction consists of a begin operation, whiftillowed by a number
of read or write operations, each one accessing a singleitéata and finally by
a commit operation. Begin, write and commit operations asaaed to require a
mean number of CPU instructions denoted with, nl,, andnl, respectively. CPU
instructions to support read accesses are modeled in &glighre complex way, as
areflection of the fact that a read access can require tingdfrge history of data item
versions to retrieve the correct one. This is modeled byrasgpfor a read access a
baseline of a mean numbermif CPU instructions, plus a mean numbengf CPU
instructions for each traversed version. In the case ob#@tion abort, we assume
the execution of a mean number wff, CPU instructions. Also, the transaction is
rerun after a randomly distributed backR-time with mean valu@packot . When a
read or write operation is performed, if the accessed detaii not in the bfiier then

a disk access occurs. Each disk access is assumed to refjued atencyt, 0. The
CPU is modeled as an Ml/k queue, where k is the number of CPUs, each of which
is assumed to have a processing speed denotktRS.

We first present a basic version of the analytical modeljmglgn the following
additional assumptions: (1) transactions belong to a @n@pss with a mean number
of Ny, write operations andil, read operations per transaction and with an arrival rate
4, (2) transactions perform accesses uniformly distributeer the whole set oD
data items. These assumptions will be then removed whilsepting an extended
version of the analytical model.

From this point onwards, all the assumptions we make in thapter are finalized
only to the construction of the analytical model. They aré¢ ecansidered in the
simulation model we used in the validation study.

In our analytical model we ignore th&ects on performance of transaction aborts
and restarts due to deadlocks. Previous studies on lockatggols (e.qg., [67], [42])
have shown that theséects are negligible with respect to the data contentitects.
Furthermore, given that the above-mentioned studies déhlthe 2PL protocol,
assuming that deadlock does not occur reveals even morgtieal case of MVCC
since it does not use locks on read operations, hence fugbecing the deadlock
probability.

Finally, we assume that the system is stable and ergodic.
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4.4.1 Basic Analytical Model

Transaction Execution Model

We assume that each transaction is formed by an interlea¥ireggadwrite operations
such that the arBl; reads uniformly mixed withN,, writes. This choice is motivated
by the fact that a transaction never aborts while executingad operation. Thus,
in order to evaluate the average transaction response itinseimportant the aver-
age number of read operations executed by a transactidading the operations
executed by the aborted runs of the transaction. The execaofia transaction is
modeled through a directed graph. Figure 4.1 shows an exafoph transaction
with N, = 2. Each node represents a state of a transaction executi@sgonding
to a specific phase of the transaction lifetime. The labelnodie from a nodep to
a nodeq represents the transition probability from statéo stateq. If the label is
omitted, than the transition probability is intended to beQbviously, the sum of
all transition probability values for outgoing arcs from@de must be 1. The states
labelled withbegin commitandabort are used to model the execution of the respec-
tive operations. Instead, as for réadte accesses to data items, we useféedent
state labelling approach to denote the corresponding phaSensidering that the
sequence oN; read operations performed by a transaction is uniformlyridiged
across the\,, write operations, we assume to have a write operation afesuting
NS = N;/(Ny + 1) read operations (see Figure 4.1). According to this stiete
represents the phase in which the initiidl read operations are performed before the
first write access, and stategwith 1 < i < N,) represent phases in which a write
operation has been issued, followed by a mean numbiFagad operations.

According to the MVCC description provided in Section 4.hen a write oper-
ation needs to be carried out, version check is performegbr#ion check for theth
write fails, the transaction is aborted. The correspondiade transition probability
is denoted a@ki. (The related arc starts from state 1 and ends to statabort.)
On the other hand, if version check succeeds (this occulspritbability 1— Pki)
a wait phase for lock acquisition occurs with probabily,n, corresponding to the
probability that a lock is being held by another transaction

Note that, by assumption (2) in Section 4R34, is independent of the accessed
data item. Thus, the probablllty of transition from statel to statel can be ex-
pressed a®yi = (1 — P i)Pcont. On the other hand, the probability that a lock is
immediately granted after version check is Peon. Thus, the probability of transi-
tion from statd — 1 to statd is Pei=(1- P i)(1-Pcony). A transaction in a waiting
statel gets aborted with probabllthCI WhICh we will subsequently evaluate. When
a reagwrite operation is executed, the accessed data item mighireéady available
in the bufer pool, otherwise a disk access is needed. We denoteRgjih the ex-
pected bffer hit probability. However, as suggested in [9], in ordeprtovide a more
accurate evaluation of thefects of bifer hits in case of transaction restart, et
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Figure 4.1: Base Transaction Execution Model.

ent value of the expected fiar hit probabilityPgy, is considered when, in a rerun,
the transaction accesses a data item already accessetopttierabort. BottPgp;
and Pgpy are intended as input parameter for our model, whose valllgeflect
specific choices for what concernfter pool size and related replacement policies.

According to the previous considerations, the graph modelansaction execu-
tion is extended as in Figure 4.2. Specifically, the graphaigitioned intoN,, + 1
subgraphsGy, Gi,..., Gy. SubgraphGq represents the first transaction run, for
which we considelPgy1 as the bffer hit probability for all reafivrite operations.
SubgraphGg (with 1 < k < N,) represents reruns of the transaction executed when
a previous run has already accessed all data items befoketltherite, and then has
been aborted. Hence, in the subgr&phwe usePgy, as the bifer hit probability
before the kth write, while Pgp1 is used as the liter hit probability for subsequent
data accesses. For example, referring to Figure 4.2, ifréimsaction aborts in state
1 of subgraptGg, the subsequent run is represented by subg@phvherePgy. is
the bufer hit probability for all read operations occurring up te thst write.

In the extended graph, we use the subscriptto label arcs of subgraplsy.
Hence, we hav®yi = (1 - PAk,)Pcont andPgy = (1 - PA ki) (L = Peon).

Transaction Response Time

When a new transaction starts it will require a numief (re)runs, depending on the
number of experienced aborts, to commit. We denote Nghthe expected number
of times that a run described by subgraBh is (re)started before the transaction
commits. For a run associated with a generic subgplwe denote wittP,(i) the
probability to reach staigi.e. the transaction does not abort before). This prolgbil
value iteratively depends on the probability to reach state, thus

P(0) =1
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Figure 4.2: Transaction Execution Model.

Pr(1) = P(0)(1 = (P + Puaia P 0))-

and, for a generic stafe
P(i) = Pi(i — 1)(1 = (P + PwikiP )-

Finally, by constructionP(commi) = Pi(Ny).

Ng, can be calculated considering that it iteratively deperushe number of
runs described by subgrap@s, with j < k, and, for each run, on the probability to
reach stategor j and that the transaction is subsequently aborted. Fuitdepends
on the probability for the transaction to be aborted beforetch the state during
the execution of a run described by the subgr&phHence, we havélg, = 1 and,
for 1 < k < Nw, Ng, can be calculate as
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k-1
Ne, = Py(K) Z No; Pj(k = )P j + PwikPg ) + Ny (1 - Pi(K).
j=0
Simplifying previous equation we get

k-1

D No Pk = 1)(Ply s + PwikPS jo)-
i=0

1
Pr(K)

Ng,

We denote WithRyegin, R, Ry, Reom andRapt, respectively, the mean residence
time for stateshegin f, i, commitandabort. On average, runs represented by sub-
graphGy spend Ryegin time in statebegin plus time in other states, according to the
probability for these states to be reached. Hence we get

R = Pk()Rg,
Ra = Puli = 1)PwiiRy
Rk com= Isk(commi)Rcom
Reabt = (1 — Pc(commi))Rap.

State0 of each subgraph is always visited in each run, fRigs= Rg- Therefore, the
mean run execution time, for a run represented by subgxaphis

N
Ra, = Roegin+ IQko + Z(Rkl + Ri) + Rccom+ Riant
i=1
The mean transaction response time is

Nw
Roc= ) No,Ra.
k=0

Lock Holding Time

A lock is acquired when visiting each statéwith 1 < i < Ny), and is released at
end of the run. If the run terminates with transaction comthin all its locks are
released upon completion of the phase associated withdtecsimmit Instead, if
the run terminates with transaction abort, then the locksr@leased upon entering
the stateabort. To simplify, as in other models for locking protocols [9]evassume
lock release in case of abort as an instantaneous actionhwlbis not contribute to
lock holding time. Hence, locks are held by a transactiohétime interval between
the acquisition and either the start of the abort phase eoetld of the commit phase.
Using the expressions previously defined for the mean tireatsp each state, the
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mean lock holding time for theth acquired lock in a generic run represented by
subgraphGg can be expressed as

Nw Nw
Thki = Z R + Z R + Rccom
=i

j=i+1

Hence, the mean lock holding time for théhiacquired lock, evaluated across all the
(re)runs of the transaction, can be expressed as

Ny
Thi = Z Ng, TH ki,
k=0

and the mean lock holding time is

1 o™
Ty = N—W;THJ.

L ock Contention Probability

As already hinted, due to assumption (2) in Section 4.4 ,dble tontention probabil-
ity Pcont IS uniform across all the data items, thus being indepenadktite specific
accessed data. Given that transactions arrive accordm@tisson Process, we also
use this assumpion for the lock arrivals. Hence, the lockesdion probability can
be expressed as the expected data utilization factor, gamel

ANWTH
F)contz g .

Lock Waiting Time

Now we evaluateR;, namely the average wait time experienced by a transaction
T when tries to acquire a lock held by any other active transadt’. We remark
that if T” successfully commits thef gets abortedR;; corresponds to the average
residence time in stafieof subgraphGy. We consider the approximation in which
at most one transaction is queued for lock acquisition orckdver data item. This
assumption is considered also in other studies on 2PL pb{ecy. [53]). Note
that in our case this approximation is further supportedhgyfact that, dierently
from 2PL, in this MVCC protocol if a transactioR” commits, then any transaction
T waiting for a lock held byT’ gets immediately aborted. Hence,Tif commits,

T needs to wait for the completion of at most one transactior. approximateR;
as the mean residual time required By to terminate the current run (with either
commit or abort), evaluated at the time of conflict occuresmamely whed enters
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stateR;. The probability that, at the time of conflict occurrendé,is executing a
run modeled by subgrapBy is

Tot
= _ No Ty i
contk = W,
H
where
Ny
Tot
Thk = Z Tk
i=1
and

Ny
Tot _ Tot
T _E N, TL%-
k=0

Thus, at conflict time, the probability values ot to be in states andi (with 1 <
i < Ny) within subgraphGy are

Ra
Pcontk? = =5
Thk
Ra -
pcontki~ = T?(')t(l -1),
H.k

and, finally, the probability folr’ to be in stat&commitis

Rk,comN

I:)contk com= —TTot w-
H.k

Now we introduce the conditional probabilj@k(jn) to reach state during a (re)run
associated with subgraby, given that state (with i < j) has already been reached
during that same run. Fgr= i we have

Py(jli) = 1,
and, forj > i, we have the following iterative expression
Pi(ill) = Pi(j = 1)L = (P i + Pwikisa Py cisn)-

If, at conflict time, T’ was executing in staﬁe(with 1 <i £ Ny), then we calculate
the residual lock holding time as

Rg = aiRui + Byg.

In the above equatiowq(;lik,i is the average residual time ®f in the stateé (remember
that the mean residence timeRg;) and B is the additional time to terminate the
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current run given that” has reached stateNote thata,; depends on the distribution
of the residence time in the staite This distribution is &ected by the biiier hit
probability. In fact, if the accessed data item is not in théfdy then the /O time
predominates over the CPU time. Conversely, if the data iteim the bufer then
the distribution depends on the distribution of the CPU isertime. We remember
that the JO time is assumed to be fixed. Hence, as proposed in [9], wexzippate
the residual time by setting, = 2(1 - Pgn1) for 1 < k < Ny and 1< i < k, and
:=2(1-Pgho) for 1 <k < Nyandk <i < Ny,.
As concerndBy;, we have

N

B = >, Pulill(Rg + PwiiRa) + Pu(Nwli)Reom

j=i+1
Similarly, if at conflict timeT” is in statel (with 2 < i < N,) we have
R i = b§+ Bk"l',

where
N

Ny
By = JZ Pr(iliR¢ + ,-;1 Pr(ill (PwiiR¢)
+|5k(Nw|i)Rcom-

In this case we approximate the average residual iBeby usingb = 1 (as in the
case of exponential distribution service time).
Finally, if at conflict timeT’ is executing in stateommit we have

Iicom = CReom

Also in this case we approximakom by usingc = 1
Overall, we expresRy as

NW NW NW
Rg = Z Pcom;k(z Peontiki R + Z Peontki R+
k=0 i=1 i=2
I:)contk conﬁcom)-

Version Check Failure Probability

Version check for transactioh upon write access to data itexfails if a concurrent
transaction wrotex and committed. As we assumed the system to be stable, the
rate of commit events is equal to the transaction arriva fat By approximating
commit events occurrence as a Poisson Process, for asean(p}iin Section 4.4,
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we have that version check failure probability correspdiodbie probability that the
requested data item has been updated by at least one cariduaresaction during
the time period from the startup of transactibrand the data access instant. Hence,
the version check failure probabilitﬁ?‘Aki while performing the ith write during an
run modeled by subgrapBy can be expressed as

AN
Paki = (1- eXp(—TWﬁki)),
whereRy; is time between the startup ®fand version check occurrence. This time
can be evaluated as

i-1
Ri = ) (Rq + PukiRizp)-
i=0

Version Access Cost Model

Existing implementations of multiversion concurrency twohrely on diferent ap-
proaches for the management of data item versions. Someigisofe.g. Oracle
Database [68]), explicitly store only the most recent cottedidata item versions,
so to reduce space usage, and exploit the information stordte DBMS log to
reconstruct data pages when an older data item version usreelg Instead, other
products use explicit version storing (e.g. PostgreSQI)[@Biven that our aim is to
provide an analytical model independent of specific impletai@n issues, we model
the cost of a read operationai§ +nlNY,_ , whereNY . is the number of backward
traversed data item versions in order to retrieve the comee. With this approach,
further implementation dependent management costs (ampage collection cost)
could be modeled as additional workload on hardware ressurghich we neglect
in the present analysis for simplicity.

In order to solve the previous read cost model, we now ealhataverage num-
ber of backward traversed versions for each read operaticatei of whichever
subgraptGy, namelyNY, .-

Given assumption (2) in Section 4.4, committed versionsaddita item are born
with an approximated rate = AN,,/D. Denoting withATgy; the time interval be-
tween transaction startup and the arrival in staté subgraphGy, we can then ap-

H \Y%
proximateNy,,  .; as

\ — )
Nreadki = ATS,kI ag.

Note that this value corresponds to the average number sibvercommitted during
the time intervalATs;. Using Rui previously introduced, we approximatd s as

ATski = Ra + Rg/2.
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Har dware Resource M odel

The CPU load (number of instructions) due to the executioa i represented by
subgraphGy is
Cr = nlp + N2(IF +nlYNY, 4 0) + Nt
Nyw—1
+P) D (hy + NPT + Y NY ) + D)+
i=1
+P(Nw) (Nl + NP(IE + 01 NY o )+
+P(commi)nlc + (1 — P(commi))nl,.
where we denote withl,¢ the average number of CPU instructions to perform ver-
sion check. Note that version check occurs in stafggth 0 < i < Ny — 1). The
CPU utilization can be expressed as

A% (N6, Ci)

~ k MIPS
We denote withp[queuing the wait probability for CPU requests, which can be
easily computed by leveraging classical queuing theorulte®n M/M/k queues
[69]. Then, definingy = 1 + p[queuind/(k(1 — p)), we can evaluate the average
response time for each state of the graph as

nlp
Ro =Y Mrps’
nl
Reom =7y MI F‘:’S’
nl
Rabt = VW;LS,
NP(IF +n1YNY ) + Ny + Nl
§=Y MIPS + TioGki
wherenly,, = 0 fori = 0, nlyc = 0 fori = Ny, andGy; is expressed as
Gki = NPPgpy
for k=0 and &0,
Gii = NPPgrp

for 1 <k < Nyandi =0,
Gki = NPPgp2 + Pghz
for 1 <k < Ny andi =k,
Gii = (N7 + 1)Pge
forl<k<Nyand1<i <Kk,
G = (NP + 1)Pg1
for1 <k < Nyandk <i < Ny.
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4.4.2 Numerical Resolution

The proposed model, analogously to, e.g., those in [70, hZ;a be solved via

an iterative approach. Once assigned numerical valued pammeters described
in Section 4.4 and tml,., Pgn1 and Pgn2, and once the initial values of all other
probabilities are set equal to 0, all model parameters cawvdlaeated via the provided
equations, and can be used as the input for the next iteratferhave experimentally

observed that, if the chosen initial values define a stalsigesy, then the computation
converges in a few iterations.

4.4.3 Extended Analytical Model

We provide in this section an extension of the model, whichhie to handle both
variable length transactions and non-uniform data accéssractice, this means
removing assumptions (1) and (2) in Section 4.4.

Variable Length Transactions

We adopt a transaction clustering approach based on thaga/eumber of opera-
tions executed by transactions within a same class. Spabifiransactions with a
similar number of read and write operations are grouped anttassC™', wherer
andw identify the corresponding number of expected reads arntesvri

Further we denote witRR andW two sets of integers, which are used to list the
average number of read and write operations fieédént classes. Thus, for eaCH',
r e Randw € W. We denote withX = {(r, w)} the set of all {, w) pairs characterizing
the workload, hencgX| is the total number of classes. A transaction belongs t@clas
C™ with probability PY, thus the average arrival rate of transactions of diSss
A™ = APYL. Now we redefine some parameters appearing in the basic inaateler
to capture the presence of transaction classes. To thisvenase the superscrigt”
to denote the parameter redefinition for each czli¥s We have

P\r/\\l/\,’ki = (1 - P,Io’ml)Pcont,

wherePk;‘(’iV is version check failure probability for a transaction aisdC"", and

P(i) = PG — 1)(1 - (P'Aflgiv + P PR ii)-
The expected number of runs whose execution is represegtedbdgraphGy for a

transaction of clas€™ is
w _ 1

= X
)
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k-1
» ; I, C
X Zo NGRS (k= )P + PP )
J:

The mean times spent in theffdirent states by a transaction of cl&¥ in a run
are the following
r\i/v — PI‘kW(I) r¥v’
Rd' = PR - DPwiiRg:
er<V¥:0m: |5ka(Commi) com

and
St = (1= P (commi)) R}y,

The mean execution time for a run modeled by subg@pls

w
RE! = Roegin+ Rig + (R + REY) + Rilom + R
i1

and the mean transaction response time for ¢fA%ss

W

R = D NIRY.

k=0

Concerning lock holding time equations in Section 4.4.&,dbrresponding expres-
sions for transactions of clag¥% are

w w
wo_ Srw W rw
Thki = Z it Z R * Rcconr

=

j=i+1

Nu
Tm = Z N(FBV:TLV,Vki’
k=0
and
l w
rw
Ty = W Z Thi-
i=1
Contention probability against transactions of cl@8¥ can be expressed using
the average transaction arrival rates for thietlent classes, that is

r'w, rw
A WTH

rw _
PCOﬂt - D ’

thus the average contention probability becomes

— rw
PCOht - Z Pcont-
(r,w)exX
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Version check failure probability for a transaction of d&8" is therefore

PI rw l exp( an ﬁ[(W)

Aki =
where
Z( P\r/\\llvk' |+1)
and
Aw
Wavg:(r,w)ex X

The average lock waiting time becomes a weighted averagsste waiting times
caused by transactions offidirent classes. Hence

i = i Z contRk,

Pcont (rwex

whereRL‘T"’ is the residual execution time of transactions specialipedach single
class. Finally, to evaluate the average number of accesssibrs for read opera-
tions, since committed versions of a data item are genewegitechn average rate
A"w
o= )
(r,w)exX

we have for read operations by a transaction of dzi¥sthe following expression

V,rw rw
Nread,kl - ATs,kl

where

T = R RE2

Expressions for the hardware resource model in Sectiot 4tdl.hold when consid-
ering per class parameters.

Non-uniform Data Access

We now consider non-uniform data access probability. Fehetata itemx € D
we denote a$p(X) the corresponding data access probability. For simplieite
consider in this section fixed length transactions, eveaghgin a similar manner to
what was done in the previous section, it is possible to densseveral transaction
classes characterized byfféirent lengths.
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Differently from the uniform access case, the contention pilityattepends on
the accessed data item. Data itenis locked for an approximated average time
fraction APp(X)Ny, TH, which we denote withPqon(X). Thus contention probability is

Pcont = Z Po(X)Pcont(X) = Z PZD(X)/lNWTH-

xeD xeD

To evaluate version check failure probability we note tlmahmitted versions of data
item x are born with an average rat¢x) = APp(X)N,,/D, thus

Pl = 3 Po( - expec 2R,

xeD D

whereR,; is the same as in Section 4.4.1. Also, the average numbece$sed data
item versions depends on the data access distribution.&;lemailarly to what done
in Section 4.4.1 we have

Therefore, the average number of accessed versions fod @pesation in stateof
subgraphGy is
% %
Nread,ki = Z I:)D(X)Nread,ki(x)'

xeD

45 Simulation M odel

The simulation model we used for validating the analiticaldel has been imple-
mented on a discrete-event simulation platform. It is irepito a general architec-
ture of a database system and is similar to models used in sithelation studies
(e.0. [46, 71)).

The model simulates an open system. It contains the follgwimulation ob-
jects:

Workload Generator (WG);

Transaction Manager (TM);

Concurrency Control Manager (CCM);

Buffer Manager (BM).
e CPU;

e Disk.
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The WG is in charge of generating transactions accordinqhtexgonential distri-
bution. In the case of multiple transaction classes, to igeéaea new transaction,
the WG selects the transaction class on basis of the assdgatbability. For each
operation of a transaction, it randomly selects the acdedata item and the type
of operation according the readite probability. The selections rely on a (pseudo)
random number generator. The TM receives transaction ggaaequests from the
WG and manages the execution of the transaction operafitnesCCM acts accord-
ing to the rules of the MVCC protocol as considered in thislgtu-urthermore, the
CCM keeps a transaction wait-for-graph [5] for detectiransaction deadlocks. A
deadlock is resolved by aborting the arriving transactighich is resubmitted by
the TM after a back4d phase. The BM is in charge of managing théfeuspace.
When an access to a data item is requested, if it is in tiebspace then the request
is immediately served, otherwise the BM sends a requestetdiBK. When the
DISK receives the request for a data item, the load entaitsed filelay, whereupon
the DISK notifies the BM of the completion of the request. Thé Bses the Least
Recently Used replacement policy. The CPU have k cores withnamon queue.
When a processing request is received it is enqueued, ardaafiumber of instruc-
tions associate with the processing request are execudadhib CPU notifies of the
completion of the request .

A transaction is executed according the following modeldiaplify here we
assume that deadlock does not occur). The WG setrdagaction executiorequest
to the TM, together with the sequence of operations to beuteddy the transaction.
The TM receives the request and sendegin processingequest to the CPU. When
the request has been processed the CPU notifies the TM of thpleton. Then
the TM sends aoperation executionequest for the first operation of the transaction
to the CCM. When the CCM allows to execute the operation,nitisehe request to
the BM, where the request is possibly blocked for waiting geplaad from the disk.
Hence aroperation executiomequest is sent to the CPU. When the CPU natifies the
BM of the completion of the request, the BM, in turn, notifiéshie completion of
the request to the TM. At this point the TM can execute the nperation. When all
operations of the transaction have been completed, the Tilt¥ssseommit processing
request to the CPU. When the TM is notified of the completibisends acommit
request to the CCM, which releases all locks acquired byreresaction and notifies
the completion to the TM.

4.6 Modd Validation

In this section we present a simulation study aimed at etiatly¢éhe accuracy of the
proposed analysis.

We consider a number of 10000 data items, andféebyool having size equal
to the 20% of the data set of the database. Concerning the atunfiinstructions
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Figure 4.3: Latency Results.

required for the dferent phases of the execution of a transaction (e.g. the bbgse
and the data item read phase), we have used in both the simatat the analytical
model values compliant with those used in the studies pteden [72, 9]. However,
our experiments are carried out considering more modegwaae. Specifically, for
both simulation and analytical model, the database systemssumed to be hosted
by a 8-CPU machine with processor speed equal to 1GHz.

In a first set of observations, we aimed to verify the accuEche basic ana-
lytical model, namely the one relying on the hypotheses mglsi transaction class
and uniform data access. For this setting, we report in Eigud(a) the transaction
execution latency, the lock waiting time and the lock hojdirme (lock duration)
vs the transaction arrival rate. Transactions of the undass perform an expected
amount of 20 data item accesses, with 20% of them being wpiéeadions. By the
plotted results, we can see that the model provides a very gocuracy when com-
paring its latency prediction and the simulation outputgytbdiscrepancies between
analytical and simulative data can be observed for traimsaetorkload close to the
system saturation point (i.e. on the order of 2500 transastper second). To further
observe the behavior of the model, we plot the probabilityarsion check failure
and the expected number of transaction (re)runs requirexlitwessful completion in
Figure 4.4(a) and in Figure 4.5(a), respectively. By thdtptbresults we have again
very good compliance between analytical and simulativeeslunless for workload
close to the saturation point.

In a second set of experiments, we have considered nonromifiata access,
so to evaluate the accuracy of the model extension provide®ection 4.4.3. We
have focused on a single transaction class, with data ape¢tssn ruled by a Zipf
distribution function with parameter. For this setting, we have fixed the transaction

0.8
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Figure 4.4: Version Check Failure Probability.

workload (at 300 transactions per second - TPS) and we haiedvihe value ofx

in between 0.3 and 0.8 (as in the classical range observedataraccess skew in
Web contexts [73, 74]). The results for latencies, versioaeck failure probability
and expected number of (re)runs are reported, respectimeirgures 4.3(b), 4.4(b)
and 4.5(b). As for the transaction execution latency, cosgbdo the uniform data
access case, it shows a non-monotonic trend in the skewadadatss case. This
is due to the mixedfeects of both increased fiar hit and increased contention as
the parametew of the Zipf distribution grows. Theffects show dierent balances
while « gets increased so monotonic behavior is not guaranteed.evémpwalso in
this case the analytical model provides results well matgtie simulative data. An
increased discrepancy (compared to the uniform data acesss is observed near
the saturation point (which is reached fervalues close to 0.8). This is mainly
due to the fact that, as the skew increases, the probalilitp fransaction to abort
because of an access to a highly popular data item correisgbndncreases. The
subsequent re-execution of such transactions leads, tiritsto an overall increase
of the skewness of the initially assumed data access distil) namelyPp(X). It is
our intention to enable the model to capture this phenoménarfuture work.

Finally, we have considered uniform data access bfiemintiated transaction
classes. This has been done to evaluate the accuracy oftémsiex of the analytical
model provided in Section 4.4.3. For this setting, we havesictered 8 dterent
transaction classes, withftérent length in terms of requested data items, spanning
from about 20 up to 40 accessed data items, and witkeréint percentages of read
vs write operations. In Figure 4.6, we report the expectetation latency for 4 of
the considered classes, as evaluated via both the analytickel and the simulator.
Again, we observe a very good compliance between analddisimulative data.
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Chapter 5

Perfor mance M odeling of
Concurrency Control Protocol for

Software Transactional Memories

5.1 Introduction

In Section 2.4 we presented some basftedénces between transactions in DBS and
in STMs. These dferences have an impact on concurrency control. In fact, the
CCPs commonly adopted in database environments are niyt idkét some typical
requirements of STMs. For example, we discussed the opadiigh is considered
an adequate isolation level for STMs, and is actually predidy many STMs proto-
types. Typical optimistic protocols for DBMS do not prevématnsactions doomed to
abort from seeing inconsistent data item values, hencedteeyot able to guarantee
opacity. Let us give another example. We said that STMs aaeackerized by fine
grained volatile memory operations and the transactiorugian time is typically
two or three orders of magnitude smaller than in databaseomments. As a conse-
guence, if database oriented locking protocols, whers#etions are tipically forced
to wait on lock conflicts, are blindly ported to STMs enviroemis and are actuated
on top of operating system supported mutex/andemaphores, they would induce
excessive overhead and non-negligible thread (re-)sthetilay. E.g., if a thread
executing transaction is descheduled on lock conflict, timext-switching cost may
be much larger then the transaction execution cost, heecgahsaction may expe-
rience an unacceptable execution time. At the same timeg&TMs optimized for
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tightly-coupled multi-corfprocessor systems, if the thread is not descheduled on lock
conflict, the system performance may be penalized becauseef CPU utilization.

The wide set of database oriented performance analysiksespresent an im-
portant reference point for the performance modeling of STMowever, according
to the aforesaid observations, they can not be representsta comprehensive per-
formance study for the STMs.

So far, the field of STMs has been very little explored by théqueance mod-
eling community. In Chapter 3 we discussed the analyticEdbpmance models pro-
posed in the literature. Some of these modeesfrom some limitations, while
others do not focus on the concurrency control. In the wods@nted in [62] a sim-
ple scenario is assumed, where transactions execute thaitoperation serially by
acquiring a unique global lock. Read and write operatiossyall as interleaved
operations, are not considered. The analytical framewosggsed in [59] assumes
a fixed number of active transactions in the system. Actuallyeal STM-based ap-
plications, threads alternate the execution of transastmd non-transactional code.
Furthermore, the framework abstracts over time by desgiltihe execution of a
transaction as a sequence of steps whose duration is lgfecified. For these rea-
sons it is not aimed to evaluate the time-related performanetrics, such as the sys-
tem throughput and the transaction response time. Thetaalynodels presented
in [63] and [64] are targeted to the prediction of time-rethperformance metrics,
but they do not focus on the CCP. In fact these works do notidens specific
protocol. In the former work, the transaction conflict pritity is assumed as input
to the model. In the latter, the conflict probability is simplstimated on the basis of
the overlapping sets of data items accessed by transactions

In this chapter we focus on the concurrency control in STMe.ppose a new
modeling approach well-suited for STMs applications. Intipalar, we provide a
general modeling framework which overcomes the main latkiseoprevious works
we discussed above. We use a two-layered modeling appréabhnead-level model
predicts the system performance as a function of the de@@mourrency within the
system, independently of the specific CCP adopted by thersysthe latter aspect is
instead assigned to the transaction-level model, whictbeapecialized on the basis
of a specific protocol. We provide an instantiation of thesaction-level model for
the case of the Commit-Time Locking (CTL) protocol. We presd this protocol
in Section 2.5, when we spoke about TL2 Software Transaatidtemory (STM)
[12]. In Section 5.3.3 we provide a more detailed descniptid the protocol and
of the implementation mechanisms. The complete instéomiadf the model allows
to evaluate the main performance metrics, as the systemghpat and the average
transaction execution time, and additional specific mgtris the abort probability
for a transaction for each transaction execution phasethAlmetrics can be evalu-
ated with respect to various parameters, as the number ofioemt threads, the size
of the data item set, andftrent workload configuration parameters. The model has
been validated against simulation results obtained cerisigl workloads configura-
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tions inspired to the widely used STAMP benchmark [11].

The remainder of this chapter is structured as follows. Tedydical modeling
methodology, with the specific model instantiation for th€LCGprotocol, are pro-
vided in Section 5.3. In the same section, we describe amsgie of the model to
cope with multiple transaction classes, and, further, veeige some hints to extend
the model to cope with non-uniform data access. In Sectibmg.describe the sim-
ulation model. The evaluation study is presented in Se@&idn Finally, in Section
5.6 we provide some hints on how to relax some modeling assonsp

5.2 System Model and Considerations

We consider an STM application with a numberlko&ctive threads. Each thread
executes on a distinct CPU-core. This choice is motivatedhbyfact that gener-
ally in STM applications, as concerns the parallelism, pnéwg the execution of a
number of transactions larger than the number of availatmescis an fectiveness
approach to boost performance [36]. In fact, this can minintihe number of context
switchings and reduce the frequency of conflicts, keepieditgh CPU utilizatiort.

Threads alternate the execution of transactions and amsdctional code blocks.

A non-transactional code block is formed by a sequence ofimadnstructions
which we denote astch. While executing a non-transactional code block a thread
performs only local computation, namely it does not acchesshared data. Each
transaction starts with laeginoperation, then executes a number of transactional op-
erations (namely, eitheiead or write operations) on shared data items and finally
ends by issuing aommitoperation. Overall, after theeginoperation and after each
transactional operation the thread executes a code bledted ascb. Also in this
code block the thread does not access shared data. The thogladla the transaction
model are depicted in Figure 5.1.

We denote the expected time required by a thread to execeteetiin read,
write andcommitoperations Withpegin, tread: twrite @Ndtcommis respectively. Further-
more, we denote the expected duratiortatif and ntch astic, andtpicp, respectively.
Whenever a transaction is aborted, abort operation is executed, whose handling
has an expected duratidg,ort. After experiencing an abort, a transaction is tem-
porarily held in a back+ state for a time interval whose average value is denoted as
thackof f» at the end of which a new run of the transaction starts. Wenasshamntcb
and the back interval have an exponentially distributed duration. Hoesexten-
sions of the model to cope with cases whigrg, andtyackot f represent the mean of
generic distributions will be discussed in Section 5.6.

We remark that in STMs, when a conflict occurs, tipically itpieferable that the transaction

restarts, instead of descheduling the executing threag¢oup the CPU-core.
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Figure 5.1: Thread model and transaction model.

All the durations defined above are assumed as input to thelmiNdte that, all
of them, exceptpyackoff, are dfected by both the speed of the underlying hardware
platform and the internals of the underlying STM system. Gt@ce of capturing the
above times through ad-hoc input parameters enhances:ttlifie of our model for
two main reasons. (i) It allows the model to be employed foatahanalysis aimed at
forecasting the performance for diverse scenariogoanvdorkloads. As an example,
the model can be used to assess the performance of STM-baskchons when
deployed on dterent hardware platforms (which might give rise tfielient machine
instruction patterns) or when changing the internals ofuhéerlying STM system.
(i) It allows the model to be easily coupled with an hardwessource model by
resolving the final model through iteration (in the same ifastihat we did in the
models presented in chapters 3 and 4). Due to the latterrreasthis work we do
not care of the hardware resource model.
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5.3 TheAnalytical Model

5.3.1 Modeling Approach Overview

As discussed above, we logically structure our model in tigtirett parts, each one
capturing complementary aspects of the execution dynaofi§§ M-based applica-
tions. The first part of the model, which we name thread-levetlel, is presented in
Section 5.3.2. It allows to determine how the various thsgadhe system alternate
among the following three phases (see figure 5.1) :

(i) execution of a non-transactional code block,
(i) execution of an STM transaction,
(i) blocked in back-dt.

By allowing the determination of the probability distriri of the number of
threads in each of these three phases, this layer of the maddbe used to output
standard performance metrics such as throughput and thegavransaction execu-
tion time. This part of the model is de-facto oblivious of gpecific algorithm used
by the STM to regulate concurrency, over which it abstragstwo key input pa-
rameters: (a) the mean run execution time of a transactilefiendently of its final
outcome) and (b) the commit probability for a run of a tratisa¢ given a number
i € [1, K] of threads concurrently executing transactions. Insttease parameters are
computed by what we refer to as transaction-level model. ldtber modeling com-
ponent is focused on capturing proper dynamics associatedhe specific conflict
detection and resolution schemes adopted by the STMs, agpanconstant, albeit
parametric, number of threads simultaneously executangsactions.

By decoupling the modeling of the dynamics associated vhitbad alternation
among the various phases from the modeling of the concwrremiatrol algorithm,
our two-layered modeling methodology provides the belguoreed benefits:

1. It simplifies the modeling stage of the concurrency cdrditgorithm, dele-
gated to the transaction-level model. In fact with this apph, as we will
show, the transaction-level model does not require to eiigliconsider dy-
namic variations of the number of threads concurrently etieg transactions,
but it only requires to provide performance predictionsemithe assumption
that exactlyi threads are concurrently executing transactions. Thavill ibe
the responsibility of the thread-level model to exploit théependent perfor-
mance forecasts associated witlffelient values of in order to generate the
final performance predictions.

2. It allows seamless replacement of the model of the CCPalti¢hnative ones,
either targeting dferent protocols ardr relying on diterent modeling ap-
proaches.
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Figure 5.2: State transition diagram of the CTMC kot 3.

5.3.2 Thread-level M odel

We model the execution of all threads via a Continuous TimekihaChain (CTMC)
[69]. Each state of the CTMC is marked and identified by a ecawplintegersi( j)
representing, respectively, the number of threads rurtnémgactions and the number
of threads in back4®. Since the total number of threads in the system is equial to
the only admissible states in the CTMC are those for whiclctreespondingi( j)
pair respects the constraing j < k. Note that in each state— i — j threads are
executing non-transactional code block.

We denote withl = ﬁ) the rate according to which a thread executes a non-
transactional code block (in between two transactionsjthEétmore we denote with
w;i andp;, respectively, the execution rate of the runs of transast{cmdependently
of whether a run gets aborted or committed) and the prolbalfdr a run of a trans-
action to successfully commit, assuming that therd #reeads concurrently running
transactions (namely when the system is in the sfafg, (ith 0 < j < k). Note
that give a statei(j), u; andpc; depend only on the running transactions in the state.
For eachi, the thread-level model takgs and pc; as input parameters from the
transaction-level model.

We can now list the rules defining the transition rates of tAi&/IC:

- fori + j < k, the transition rate from staté () to state { + 1, j), associated
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with the run of a new transaction after a thread completednatramsactional
code block, isequal ta@ - (k—i - j);

- fori > 0, the transition rate from statg {) to state {(— 1, j), associated with
the commit event of a run of a transaction and the subsequetination of a
non-transactional code block, is equal tq; - pc;;

- fori > 0, the transition rate from statg {) to state (— 1, j + 1), associated with
the abort event of a run of a transaction and the start of thke-b@ period, is
equal toi - ¢ - Pa;

- for j > 0, the transition rate from state {) to state (+ 1, j—1), associated with

the termination of back4{d periods and a new run of a transaction, is equal to

H _ 1
1y Wherey " tackoff"

We exclude state (&) as a possible one since, (i) the CTMC characterizing our
model does not express state transitions where multiptsacions get simultane-
ously aborted due to (mutual) conflicts, and (ii) adoptingolbver literature STM
concurrency control algorithm, if a single thread is cutiyeexecuting a transaction
then it cannot be aborted. An example of the CTMC for the cdighree threads
(namelyk = 3) is depicted in Figure 5.2.

As typically expected in any real system, assuming for aatestvherd € [1, K]
thaty; > O, pci # 0 andpg; # 1 (the cases ofici = 0 or ps; = 1 express, re-
spectively, a pathological scenario with no possibilitytr@nsaction progress and a
trivial scenario entailing no data contention), the CTM@rieducible [61]. Thus the
steady-state probability vectercan be computed by using following equations:

v-Q=0 (5.1)
Z Vij) =1 (5.2)
(i])es

whereQ is the infinitesimal generator matrix of the CTMC afds the set of states
of the CTMC. Assuming that we are provided withandpc; values ¥i € [1,K]), we
can evaluate the system throughpus the sum of the transaction commit rates in
the diferent states, weighted according to the probability forstretem to be in each
state {, j)
7= Z Vii.j) 1 - Hi -+ Pei (5.3)
@i.j)es’

(whereS’ is the subset db containing any state where- 0). The overall transaction
commit and abort probabilities, denoted@sand p,, can be accordingly evaluated,
using the expressions



50 CHAPTERS

2i.jes Vai.j) * P
= . 5.4
e 2(i.jes’ Vii.j) -4
and
Pa = (1 - pc) (5.5)

5.3.3 Transaction-level model: The Commit-Time Locking Case

In this section we introduce an analytical model of CTL poalp focusing on the
version implemented within the TL2 STM layer [12]. This versis considered as
one of the best performing concurrency control algorithrstypical STM work-
loads. We start by overviewing such a target version of thé @rbtocol, and then
we move to the presentation of its analytical model.

Algorithm Overview

CTL protocol acquires locks at commit-time, and locks omyolves written data
items. This choice enhances concurrency with respect teectional lock-based
schemes by, e.g., avoiding to block transactions issuingita wperation on a data
item that has already been réadtten by a concurrent transaction. Given the ab-
sence of read-locks, consistency is ensured via a validatiechanism used to no-
tify transactionT, which speculatively read a data itexnabout the fact thax was
overwritten by some concurrent transactibhprecedingT in the commit order. To
this end, a versioning scheme is employed which associategeatamp value with
each data item, referred to as Write-Version-Clock (WVQ@)e Beneration of WVC
values relies on a unigue Global-Version-Clock (GVC), wigread by any transac-
tion upon startup, and is atomically increased upon trdisacommit. The updated
value is used as the new WVC value for all the data items wrtiiethe committing
transaction. Manipulation of the GVC typically relies on amipare-and-Swap (CaS)
operation directly exploiting atomic sequences of machisguctions (e.g., via the
LOCK prefix in 1A-32 compliant processors). In other wordack transaction up-
dates the GVC as an acyclic, one shot operation, which doesequire software
spin-locking for accessing the corresponding criticatisec Hence, any delay in the
access to the GVC is only related to the underlying firmwaatqmol used to sup-
port the atomicity of the machine instruction pattern inmpéating the CaS. When
validating a transaction against a read data iletwo actions are performed:

1) itis checked whether there is a write-lock being heldkdwhich implies that
another transaction has writtgrand is currently within its commit phase);
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2) itis checked whether the current timestamp associatidxig greater than the
timestamp read by the transaction upon starting up (whidicétes that some
concurrent transaction has overwritteand has already been committed).

If one of the previous checks fails, the transaction getstato This validation
scheme is used upon read operations and, as we shall disslosg blso at com-
mit time. Accordingly, theopacity property [29] is guaranteed, which ensures that
the snapshot observed by any transaction (including tctéinss that are eventually
aborted), is equivalent to the one that would have been wbdexccording to some
serial execution history. As discussed in [29], this propesrcrucial since for several
categories of STM-based applications, transactions wlbgean inconsistent snap-
shot may be trapped within infinite loops, or may even causeagiplication program
to crash (e.g., due to an invalid memory reference). As fawrdte operations are
concerned, in CTL they are fiered within a private workspace until the commit
phase. When a transaction attempts to commit, it first aeguhe write-locks for
all the data items within its write-set. If any of these lodqaisitions fails (due to
lock holding by some other transaction), the transactiosbisrted. Otherwise, the
transaction increments the GVC and tries to validate alldga@ items it has within
its read-set (according to the aforementioned validatimecgdure). If the validation
fails for at least one item within the read set, the transaafiets aborted. If no abort
occurs, the data within the write-set are copied back ta thrginal memory loca-
tions, updating their WVCs with the value of the GVC. All theqaired locks are
released at the end of the commit phase, or upon the aborthéBgtiove descrip-
tion, we have that a read operation on a data item that wasopdy written by the
transaction gives rise to an access to the transactiont@rv@rkspace. Thus it is not
subject to the previously depicted read validation medmaniln other words, the
validation mechanism is used for read operations assdcveth any data item that
has not already been accessed in write mode by the transactio

Analytical M odel

In order to simplify the discussion, we present the anadyticodel in an incremental
fashion. We start by presenting the model considering that:

e all the transactions encompass the same amoahbperations;

e the accesses (both in read or write mode) to the shared data ére uniformly
distributed.

Model extensions to cope with multiple transaction profded non-uniform accesses
will then be discussed in Section 5.3.4 and Section 5.3.5.
In our analytical model, we rely on the following assumpson



52 CHAPTERS

e the sequence of read operations issued on shared data temsfPoisson
process;

e the arrival of transaction commit events form a Poisson gsec

A discussion on how to relax the above assumptions will therpiovided in
Sections 5.6

As already discussed, the transaction-level model corspghtrate of the runs
of transactiong; = 1/ry; (wherery; is the average run execution time) and the trans-
action commit probabilityp; under the assumption that there atbreads simulta-
neously processing transactions, witk 1 < k. We analyze the case= 1 andi # i
separately.

If i = 1, a single thread is currently executing transactionakcdidus no data
conflict can arise. This also means that the currently erecisansaction can not be
aborted and it follows thap. 1 = 1. Therefore, for the average transaction execution
time we have that

M1 = thegin+ N+ top + (N + Ltich + teommit (5.6)

wheret,p, Nnamely the average time to execute an access operationlaretsiata
item, is equal to
top = tread(1 — Puwrite) + twrite - Puwrite (5.7)

where we denote with the number of transactional operations on shared data items
within a transaction, withpyite the probability that the access is in write mode, and
with (1 — Pyrite) the probability that the access is in read mode.

As already discussed in Section 5.3.3, if the transactioesses a data iterin
write mode, producing a new version, any subsequent readbynthe same trans-
action will return the previously written version, retrieg it from the transaction
private workspace. Analogous considerations apply fossgbent writes over the
same data iterw, which will simply update the copy of buffered within the private
workspace. Hence readrite operations issued on previously updated data items ar
simply not taken into account by the parameteiOn the other hand the cost of the
corresponding accesses within the private workspace egpsatated iricp.

By the previous notation, we have that

Mwrite = N - Pwrite (5.8)

is the average number of shared data items accessed byrtbadtian in write mode,
and

Nread = N (1 = Puwrite) (5.9)

is the average number of read operations occurring on distirared data items that
were not already accessed by the transaction in write mode.
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Fori # 1 we proceed as follows. Once fixgdve use a procedure that iteratively
recalculates the values p§; andr¢;. Upon starting the iterative procedure, the initial
values can be selected psi = pci-1 andryi = r¢i—1 for commodity. The output
values by an iteration step are used as the input valuesdarekt step. We conclude
the iterative procedure as soon as the corresponding impubatput values fopc;
andr; differ by at most ar. In all the configurations that we have experimented,
usinge=1%, the procedure has always converged in at most fifteeatides.

In each iteration step the following set of parameters,waptby our model, are
re-evaluated:

- pgl, namely the probability for a transaction to abort while@xing itsI™" op-
eration due to validation fail (recall that a transaction ahort while executing
an operation only if the operation is a read);

- pac, hamely the probability for a transaction to abort at comtinite due to
lock contention experienced in the commit-time lock acigjois phase;

- pav, Namely the probability for a transaction to abort at comtimiie due to
validation failure of its read-set.

In order to model these parameters, we consider that thectpeystem state
seerby any of the active transactions is determined by the activities assediwith
the otheri — 1 transactions currently within the system. Thus we use dhewing
approach.

When a transaction successfully commits, an average numyhgrof write-locks
are first acquired, and then released after read-set validand write-back phases.
Actually, the duration of the lock acquisition and releabages are typically negligi-
ble with respect to the duration of validation and writetopbases (recall that, dur-
ing lock acquisition, transactions do never block, evehefitexperience contention).
Hence, for simplicity, we assume lock acquisition and regeta be instantaneous and
to occur, respectively, at the beginning and at the end otdmemit phase. Also, if
a transaction is aborted, no real rollback operation isiredufor undoing the ef-
fects of the corresponding write operations since traimaetrite-sets are reflected
to memory only in case of succesful commit attempts. Thusjnplify, we ignore
the cost of aborts when we evaluate the average lock holdireg by assuming that
if a transaction successfully completes the lock acquaisiphase, it holds the locks
for an average time equal t@mmit

Let us now compute the probability for a transaction to akdnile executing a
read operation on a shared data itergiven that it finds the corresponding write-lock
currently busy. For this case to be possible, there must axther transaction that
has writtenx, that is currently in its commit phase and that has succiigsfcquired
the write-locks for all the data items in its write-set. Givihat we are assuming
uniformly distributed accesses to distinct data items iwithtransaction, it follows
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that the probability for a committing transaction to hav@eacsfic data item within its
write-set ishyrite/d. EXploiting the aforementioned assumption of Poissobjaoi
the arrival process of read operations, we can rely on theTRABoperty (Poisson
Arrivals See Time Averages) [75] to compute the probabildyincur in a raised
write-lock during a read operation as

nW .
Prock = Ir * teommit* %te (5.10)

wherel; is the rate according to which the remaining 1 transactions in the system
successfully execute the write-lock acquisition phasds Tate can be evaluated as
follows

I = % - (Pei + Pav) - (1 = 1) (5.11)

wherepay+ is the probability for a transaction to abort during the reativalidation
phase. Such a transaction contributes anyway to the laglisition rate since read
set validation occurs after write-locks are acquired atmintime over any written
data item. We will evaluat@,y ¢ later in this subsection.

Now we determine the probabilify;, for a transactior to abort while executing
thel-th operation. The rate at which a data item is updated by transactions is equal

to
) Mwrite

d
wherec, expresses the rate at which the otherl transactions successfully commit,
and can be evaluated as

1 .
Q=E¢my0—ﬂ (5.13)
i

Upon thel-th operation by transaction, the average timé&,; elapsed sincd
started its execution can be expressedpggn + tich - | + top - (I — 1). As we are
assuming that the arrival of transactions to the commit@f@asns a Poisson process,
the probabilityp&l for aread (executed as th¢h operation ofT) to access a shared
data item that has been updated by some successfully cangiiitinsaction aftef
started can be expressed as

po = 1-e (5.14)

In the above expression, in order to avoid overcomplicaéentodel, we decided
not to capture the case of repeated transactional readtimpsran the same data
item. In this case, in fact, the invalidation window for aal@aemx would no longer
correspond to the time elapsed since the beginning of timsaction (namelyy)),
but would be equal to the (average) time elapsed since thedasrrence of a read
on x. Clearly, the error introduced by this modeling choice dajseon the actual
frequency of occurrence of repeated read operations orathe data item during the
same transaction. On the other hand, the model capturésufgitthe efects of a
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frequent optimization technique (possibly implementethatcompiler level), which
allows sparing subsequent read operations issued withieadme transaction on the
same data item from the cost of validation. To this end, iui&dent to copy the
values read from the shared transactional memory to thiezad Variables, and to
redirect subsequent reads on these data items (within the sansaction) towards
the thread local variables. Note that, since with this ojtation subsequent read
operations on a data item do not target the shared transattieemory, they do not
even need to be accounted for while computing the value gbdn@meten.

We can now evaluate the probability for a transaction to tatharing the execu-
tion of its first operation (i.e., whela1), namelypgLl as

Dgl = (1 - pwrite) * (Prock + (1 = Prock) - pﬁ,l) (5.15)

Since the abort of a transactidnduring itsl-th operation (where Z | < n) implies
thatT did not abort during its previous- 1 operations, it follows that

Pai = Phat - (1= Pwrite) - (Prock + (1 = Prock) - PY,) (5.16)

where pgal is the probability of not aborting until the completion ofetl| — 1)
operation. For this last probability we have

Poa1 = 1 (5.17)

and
pga,l =(1- pgl_l) : pga|_1 (5.18)

In equations (5.15)-(5.16) we have assumed that the evdintdifig a write-lock
raised on the shared data item by a concurrent transactisantly attempting to
commit, and the event that the same data item was previopsigted by a dierent
(already committed) concurrent transaction are indepgind@verall, independence
is related to that these events belong to commit time aietdvécross distinct transac-
tions.

The probabilityp,c for a transactiorT to abort at commit time due to lock con-
tention while acquiring the write-locks can be evaluateébiew. T can experience
contention while requesting the lock on a data iteronly if, at the time in which
T starts its commit phase, some other transaction that hé&mxihas successfully
completed its lock acquisition phase, and is still exegutimee commit procedure.
Considering thafl aborts only ifat least oneof the data items in its write-set is
locked, then, as in [9], we approximate this last probahilitamely pyic, with an
upper bound value, that is

Pwic = 1- (1 - plock)nwrite (5-19)

Thus we have
Paic = pﬁaml * Pwic (5.20)
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where we recall thamgaml is the probability for a transaction not to be aborted until
the completion of it operation, that is until it enters its commit phase. Conse-
quently, the probabilityp'nﬁ‘a for a transaction not to be aborted during its execution

and to succeed in its commit-time lock acquisition phasejiséto

PE, = Poanet - (1= Puic) (5.21)

Let us now show how we can evalugig, , namely the probability for a transac-
tion T to abort at commit time due to validation failure for its reset. The validation
fails if at least one data item belonging to the read-set @f has the corresponding
write-lock raised by another transaction, or if a new varsibx has been committed
after the validation executed Ayduring its last read operation ot We denote with
p[LI the probability that the shared data item accessed in rede atahd™ operation
by T has been updated after the last validation (occurred upoadiresponding last
read operation oR). We calculate this probability as follows

ply=1-ett (5.22)
wherety is the elapsed time since the original validation, that is
ty) = (teb + top) - (N =1 + 1) + teommit (5.23)

Analogously to what we did in equation (5.16), we evaluateahort probability
due to failure in the validation of the data item associatétth the I transactional
access ofl as follows

p;| = p[]aJ - (1 - pwrite) - (Piock + (1 = Piock) - pLJ) (5.24)

wherepy,, = 1and, forl > 1, pf,; = (1= p}_3) - Pha_1- Then, we can expregsy
as

Pavi = plr?a' Prvt (5.25)

where .
Prv = Z p;J (5-26)

=1

Finally, successful commit probability for the case attive threads can be evaluated
as

Pei = PE(L— Prvt) (5.27)

The average execution time of a transactigrcan now be computed as the sum
of the average time for a transaction to reachféedént execution phase, weighted
with the probability for the transaction to abort exactlyridg that phase. Let us
denote with
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- ta) the average duration of a transaction that aborts duringtitsoperation,
that is:

ta) = toegin+ I+ (tecn + top) + tabort (5.28)

- 11 =ty + tiep + taport the average duration of a transaction that aborts during its
commit phase due to contention while acquiring locks fordat items in its
write-set, where

th = thegin+ N - (tep + top) (5.29)

-t =ty + tiep + tcommit+ tabort the average duration of a transaction that aborts
during its commit phase due to failure in validating its resd;

- t3 = tp + tiep + tcommit the average duration of a transaction that successfully
commits.

Overall, the average transaction execution time can besegpd as

n
e = Z(ng “ta)) + Palc - t1 + Pavi -2+ Pc-t3 (5.30)
=1

Now let us evaluate the timiyc spent by any committing transaction while
updating the GVC. We consider this time logically includadcbmmis thuStcommitis
the sum of two terms, namet{ommitandtgyc, wheret’ .ommitis the time to execute
all the other operations, distinct from GVC manipulationridg the commit phase.
As explained in Section 5.3.3, the atomic operations regluior the update of GVC
typically rely on firmware level protocolsfiered by modern SMP ayat multi-core
machines. Assuming fairness by these protocols fieréint CPYcore requests, we
model the delay for performing an atomic increment of the GUénoted ascyc,
by means of an MD/1 queue [69] with service raje = t'”° (Wheret'é‘\c,C expresses

latency for the updating machine instructions, once thevmmz has granted access
to the corresponding critical section) and arrival yate |, (note that the increment of
the GVC is performed by any transaction that successfulipiaed all the requested
locks). According to this modeling approadhy,c corresponds to the residence time
within the M/D/1 queue, hamely

teve=(1+ ) - o, (5.31)

_r
2-(1-p)

wherep = 5.

5.3.4 Coping with Multiple Transaction Classes

In this section we extend the analytical model by considgtite case of) different
transactional classes, associated witfiedént transaction profiles. The number of
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operations executed by a transaction of classvith m € [1, q], is denoted byn™,
and each operation is a write operation with probabifffy, .. Hencen™- (1 - p[f...)
expresses the total amount of distinct transactional reeelsses. A thread executes
a transaction of clags with probability P™. Also, t™ andt™  are the expected

T . ) ' "commit abort
commit time and abort time for a transaction of clagsespectively.

Multi-class T hread-level Modéel

For g transactional classes, the state of the CTMC can be idehtiffe2q integers
(i1, .,1gs j1, s Jq) Whereim and jm (with m € [1, q) represent the number of threads
running transactions of classand the number of threads in baékdue to an abort
of a transaction of clas®, respectively. Note that + .. +iq+ j1 + .. + jqg < kfor
each state of the CTMC.

For any stateig, ..,ig, j1,.., Jg), the average transaction execution rate and the
transaction commit probability for a transaction of classlepend on the mix of
active transactions in that state. Thus we denote theal'as andp(;, ; , respec-
tively. Also, the abort probability for a transaction of €an while residing in state
(i1, - igs J1, - Jg) is denoted aPaj,. i, = 1 = Peis....iq-

The rate according to which a thread executes a new traosaaticlassm is
Am = P"/thep. The rules defining the transition rates from any two stafethe
CTMC are the following:

- forig+..+ig+j1+...+jq < K, the transition rate from statg (..., im, ..., ig, J1, .-» Jg)
to state iy, ...,im+ 1, ..., g, j1, ..., jg), associated with the activation of a run of
atransaction of clagsis equal todm(K — iy — ... —ig— j1 — ... = jg);

- for im > 0, the transition rate from staté(...,im,...,ig, j1,..., jg) 1O State
(i1, oim =1, ... igs 1, -» Jg), @ssociated with a successful commit event of a

transaction of classis equal toinu? ;5 PC,

-forip + ... +im+ .. +ig > 2 andin > 1, the transition rate from state

(ll, ceey im, aeey |q, Jl, ceey jm, aey Jq) tO State Kl, ceey |m—l, .oy |q, Jl, aey |m+ 1, “eey Jq), as-

- for jm > 1, the transition rate from statéi...,im, ....ig, J1, .es Jms oo jg) 1O
state (1, ...,im+1,...,ig, j1,.... J]m— 1, ..., ¢), associated with the termination of
a back-df period of an aborted transaction of classs equal toy - ji.

We can evaluate the stead-state probability vecfor the CTMC as we made in
Section 5.3.2 for the case of single transaction class. ¢Jéhe execution rateg;, of
transactions of clags can be expressed as

(8)es’
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where we used' in place ofi, ..,ig, j1, .., jgands” in place ofiy, .., iq, and wheres’
is the subset o6 containing any state whefig > 0. The overall system throughput
is

q
T= Z Tm (5.33)
m=1
The commit probability for a transaction of classs

7 V * m
o = 2(s)es' Vs - Pes (5.34)

2u(s)es Vs

Multi-class Tread-level Model for CTL

Fixed a configuration of active transactians., iq, the thread-level model is in charge
of evaluating for each transactional clasghe rate of the runs of transactior$

[T

and the transaction commit probabilify; ;. As for the single-class models, if

L)

there is just one active transaction, thatpjis= 1 andi,, = 0 for eachw # m, the
average transaction execution time of the transactionasioh is

wheretg},, namely the average time to execute an access operationtarerisata

item for a transaction of class, is equal to
t(r)np = tread(1 — Plirite) + bwrite * Plyrite (5.36)

When the number of active transactions is greater that onesei¢he same iter-
ative approach as in Section 5.3.3, by stopping the iteratishen two consecutive
values of the commit probability for transactions of eadssin (if i, > 1) differ by
at most are. Also, in what follows we use the same assumptions and ceraidns
as in Section 5.3.3.

When a transaction of classis active, its concurrent transactions are:

- iy active transactions of each other classuch thatx # mandiy > 1;
- im — 1 active transactions of the same clagsf iy, > 2.

At the start of each iterative step we evaluate the followiagameters. The lock
rate associated with transactions of each clagxpressed as

[X = 1 . ( X
r— [ X pc,il
t,il,..,iq

+ Payr) (5.37)

seolg

wherep} ; is the probability for a transaction of clagdo abort during the read-set
validation phase. The probability for a transaction of slasto find a write-lock
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raised while issuing a read operation, which is expressed as

q
P, . " Puri
p{gck = Z I - tcommltTWrlte + ”n (im—1)- tcommitTwme- (5.38)
x=1,x£m

The commit rate associated with transactions of clasehich is expressed as

Lo (5.39)

X ’ pc,ll,..,iq
titoig

G =

Finally, the update rate by concurrent transactions ofressaietion of classn, which
is expressed as

n*. pX.
um = Z - ix—'DW“te +a (im - 1)—'DW”te (5.40)

After solving the previous equations, we evaluate in eaafaiive step all the param-
eters we list below. The probabllltp Imfor a read operation, executed as tké
operation of a transaction of classm to access a data item that has been updated
by some successfully committing transaction aftestarted, which can be expressed
as

puI =1-gW (5.41)

wherety} is the average elapsed time since the validation performetieodata item
upon the read access by the transaction of al@asshich can be evaluated the same
way as the single-class case.

The probability to abort while executing the 1-st operationa shared data item
for a transaction of clags, expressed as

OT =(1- pvrCrite) ’ (plrgck +(1- plrgck) ’ pg:lm)’ (5.42)

and the probability to abort while executing thth operation with > 2 for a trans-
action of classn, expressed as

pg,lm = pna,l (1- pvn\?rite) ’ (plrgck +(1- pln(;ck) ’ pglm) (5.43)
wherep is the probability of not aborting until the completion ofetlf — 1)
operatlon for which we have
pnal =1 (5.44)
and
The contention probability during write-lock acquisitiphase for a transaction
of classm can be then approximated as



5.3. THE ANALYTICAL MODEL 61

pl. =1~ (1— ph )" Purie (5.46)

Hence the probability for a transaction of clamso abort at commit time due to
write-lock contention is

Paic = Phamms1  Poic (5.47)
The probability for a transaction of classnot to be aborted during its execution
and to succeed in its commit-time lock acquisition phase is

plr?ém = pﬁ’;:]m+1 (- pvn\jlc) (5.48)

The probability that a data item in the read-set of a traimsattelonging to class
m, which is accessed at thah transactional operation, has been updated vilhen
executes the read-set validation can be expressed as

Py =1-e (5.49)
wheretl)} is the elapsed time since the original validation, which again be com-
puted teh same way as for the single-class case.

Thus the abort probability due to failure in the validatiohtloe I data item
within the read-set can be evaluated as follows

PLI = Phar - (1= Plirite) - (Plock + (1= Pigad - PG (5.50)
wherep. T} = 1and, forl > 1, pi7} = (1- p;}",) - paj_4- Hence, the probability for

a transaction of clagwto abort during the read-set validation phase can be exqatess
as

pl ¢ = pam. pn (5.51)
where
nm
Pt = > Pa (5.52)
=1

Finally we can evaluate the probability of successful commfien residing within
state
(i1,..ig) as
Pl i = P - py) (5.53)

,..,Iq
For brevity we do not detail the equations for the evaluatbaverage transaction
execution time andsyc because they can be simply derived by using the same ap-
proach we have show at the end of Section 5.3.3. In fact, tile&tion of the average
transaction execution time for a transaction of classan be done by using the al-
ready provided set of equations, by substituting the patamvalues that depend on
the specific transactional class with the ones we calculatéds section. Regarding
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the evaluation ofgyc, by using the approach discussed in Section 5.3.3, we have ju
to evaluatel as the sum of the lock rate due to all the active transactioressa the
different classes, namely

q
A= 1M i (5.54)
m=1

5.3.5 Hintson Mode Extension for Non-uniform Data Access

By relying on the approach in [9], which has been proposedHercase of concur-
rency control algorithms in database systems, our modét dmiextended to cope
with non-uniform data accesses. We provide hints on how xfension could be
realized in this section.

The proposed approach considers the whole sesbfired data items as grouped
in s disjoint subsets, possibly exhibitingfi#irent cardinalities. The set aofopera-
tions executed by a transaction are grouped different subsets, possibly exhibit-
ing different cardinalities, where each operation accesses atdatebelonging to
a different data subset. The accesses executed on each substt émia by a
transaction are uniformly distributed over the subset.

Different subsets of data items exhibiffeient access frequencies. As a conse-
quence, the probability to find a lock raised on a data itemthadlata item update
rate are dierent for each specific subset of data items. To evaluate fitveangiven
subset we can use the same equations (5.10) and (5.12) higedmg, in place oh,
only the subset of operations executed by the transactiornbkad specific subset of
data items. Consequently, the subsequent equations sskmgehe abort probability
for a transaction, can be determined by considering thegibty of finding the lock
raised and the data item update rate &&dintiated for each subset, and then weight-
ing the correspondingfiects by the fraction of operations executed on the specific
subset.

5.4 Simulation modé€

The simulation model has been implemented on a discret@-ammulation plat-
form. It simulates a closed system wikhconcurrent threads which access shared
data through an STM layer. The model incorpord¢€ghread (TH) simulation ob-
jects and an STM simulation object. Each TH simulates a threlaich alternates
the execution of transactions and non-transactional ctmid&$ The STM regulates
the concurrency on basis of the rules of the considered C®olopol. It keeps a
list of d data items, and for each data item it keepsipdatetimestamp and a lock.
Furthermore, the STM keeps an integer value to simulate e @echanism.

When a TH has to execute a new transaction, the latter isectd®st selecting
(relaying on pseudo-random number generation) the trénsagass, the data items
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to be accessed and, for each data item, the access modedmwetad). Then the TH
sends deginrequest to the STM. Uponlzeginrequest the STM reads the value of
the GVC and assigns this value to thegintimestamp of the transaction. After a
time tpegin the STM notifies the TH of the completion of the request. ThenTH
waits for an exponential time with meag, (in order to simulate the execution of a
tbc) and sends to the STM aperation executionequest for the first operation of the
transaction. Upon this request the STM checks if the opmras a read or a write.

In the former case it checks if the accessed data item is nkétband if theupdate
timestamp of the requested data item has a value less thaeghdimestamp of the
transaction. If at least one check fails, then the transagets aborted. In this case,
the STM, after a timéyeag+tanort, NOtifies the TH of the abort event. Otherwise the
STM, after a timd,eag, Notifies the TH of the completion of the operation. In thescas
of write operation the STM simply notifies the TH of the contjga of the operation
after a timetyrie. When the TH receives the notification of the completion of an
operation, it continues by simulating the execution of thettbc and after it moves

to the next operation. When all operations of a transactiwhthe lastbc have been
executed, the TH sendscammitrequest to the STM. The latter executes the commit
operation as follows. If at least one data items in the wséeof the transaction is
locked by another transaction then the STM notifies, aftenatyyort, the TH of the
abort event, otherwise it acquires all locks. In the latesecthe STM continues the
commit operation by incrementing the GVC and then by vailidathe read-set, i.e.
by checking if at least onapdatetimestamp of the data items in the read-set has a
value greater than theegintimestamp of the transaction. If the validation fails then
the STM releases all previously acquired locks and notifiesliH of the abort event
after a timetcommirttabort. Otherwise the STM updates all thipdatetimestamps of
the locked data items with the new value of the GVC, releabesquired locks and
notifies the TH of the commit event after a timgmmitr When the TH receives such
a notification, it waits for a exponential time with mety,c (in order to simulate
the execution of aatbc) and then it moves to the execution of the next transaction.
When the TH is notified of an abort event, it waits for an expuiatime with mean
thackof f @nd then re-executes the aborted transaction by sendihg ®TM the new
beginrequest.

5.5 Validation

In this section we provide the results of an evaluation saidyed to verify the accu-
racy of the proposed modeling methodology, and of the ptede@TL model. The
study is based on the comparison between some key perfoenpamameters deter-
mined via our analytical model and the corresponding vahgesbtained by means
of the simulation model described in Section 5.4. The sitmdaresults were ob-
tained by repeating a number of independent runs (wiffemdint initial seeds for
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the random generators) until the amplitude of the 90% conéeentervals on the
throughput (committed transactions per second) becambesrtiean 10% of the av-
erage throughput value.

The workload parameters for this study have been selectédeopasis of mea-
surement and tracing activities, carried out for the STAMRdhmark [11]. To this
end, we have exploited an implementation of TL2 which we hag&umented to
trace the data access pattern and the costs associatedhevitbrresponding opera-
tions, as well as the internal operations performed by thigl &yer. Measurements
have been carried out using a quad-core 2.4 GHz machine pglipith 4 GB of
RAM and running the Suse Linux operating system (kernellZ)6.

In our study we focus on two of the applications included i 8TAMP bench-
mark, namely Intruder and Vacation. Intruder is a signahaged network intru-
sion detection system which processes network packetgatiglavia a user-tunable
number of threads that concurrently update two main datatstres, namely a FIFO
queue and a self-balancing tree. In this benchmark, eaehdtspends around 33%
of the time executing transactional code, and generatatvadly short transactions,
belonging to three dierent classes (capture, reassembly, and detection), Ya@&6
cent of which exhibit a read plus write set made of upte 71 items, 30% of which
are accessed in write mode. Based on our measurements, g set0.5useg
tntco = Susecandtcommit= 2usec

Vacation, on the other hand, implements an on-line traimsaptocessing system
emulating atravel reservation system. The system is imgrheed as a set of trees that
keep track of customers and their reservations for vari@velitems. Client threads
perform a number of sessions, each one enclosed in a caaised) transaction
(compared to Intruder), which are agaiffdrentiated into three classes (reservations,
cancellations, and updates), all interacting with thedraystem’s data layer. In
this application, client threads spend almost all theiicakien time (92%) executing
transactions, the 90% percent of which exhibit a read plite\wet made of up to =
200 items, 12% of which are accesses in write mode. Based omeasurements,
we setticp = 0.2uS€eq thich = Susecandteommit = Susec

In addition to the above parameters, we used our tracintityatci determine also
the following set of parameterssegin = 0.2uS€G tread = 0.25uS€G turite = 0.2uS€G
tabort = lusec Finally, the back-& period,tpackotf, Was set to 2sec

By the above description, both the selected benchmarkagtigins entail multi-
class transactions. Hence the tracing process and thedeabatcomes have been
used in a dterentiated manner depending on whether the target is tidatiah of
the single-class or the multi-class model.

To validate the single-class model, we configured the sitouta generate dura-
tions of the above mentioned timing activities based on egptal distributions. On
the other hand, the validation of the multi-class versiothefmodel, which captures
more in detail the execution dynamics of the STM system, e performed by
replaying within the simulator the exact timing of actiorsslagged in the execution
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Throughput (Intruder Benchmark)
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Figure 5.3: Throughput.

traces.

As for data accesses, the simulator generates them acgdodinuniform distri-
bution across the total numberatiata itemgmemory words (in compliance with the
assumptions of our analytical model). The paramdtirtreated as an independent
parameter of the validation study. Note that, once fixed tiatrer of threads, varia-
tions ofd allow to capture settings with filerentiated levels of contention, which, in
their turn, determine dierent transactions’ abort probabilities. Clearly, higleeels
of data contention are achieved when the memory is configwittdlower values
of d, since transactional memory accesses by the threads &ibudesd on a smaller
number of distinct memory words. We consideffelient values for the parameir
associated, respectively, with reduced and increase@wvaliithe benchmarks’ data-
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Commit Probability (Intruder Benchmark)
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Figure 5.4: Commit probability.

set size according to the indications provided in [11]. $medly, for Intruder, we
setd to 1,000 and 10,000, whereas, for Vacation, wedget10,000 and 100,000.

55.1 Single-classCase

The comparison between analytical and simulation ressilbg$ed on the following
four parameters: (A) the system throughput (Figure 5.3) ttiB commit probability
(Figure 5.4), (C) the mean execution time evaluated oven sagle run of transac-
tions, independently of whether the run is committed or edab¢Figure 5.5) and (D)
the likelihood of each of the possible causes of transaetimort (Figure 5.6).

The plots in Figure 5.3 and Figure 5.4 point out the accurddhe presented
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Mean Run Execution Time (Intruder Benchmark)
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Figure 5.5: Mean run execution time.

analytical model, highlighting how analytical and simidatresults coincide across
the whole considered region of the parameters space, ndomelys high number of
threads, as well as large vs small address space. In Figlirén5correspondence
with the lower value ofd, we can appreciate the accuracy of the analytical model
even in high contention scenarios (namely, for very redueddes of the transac-
tion commit probability). As for Figure 5.5, we remark howh@n considering the
case of smaller address spaces, the relatively high camentobability often leads
transactions to be early aborted (i.e., as soon as the firitatitng memory reference
is issued), thus contributing to a reduction of the meanevédu the run execution
time. (Recall that the mean run execution time is evaluatest both committed
and aborted run instances.) On the other hand, we observem@ase of the mean
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run execution time in the configuration with larger addrgssce, where the weight
of aborted run instances becomes lower. Note that, due taftlmlementioned early
abort phenomenon, the variance of the mean run executi@ngmows in high con-
tention scenarios. The above phenomenon, and tifeicts on the observed mean
value, are correctly captured by our analytical model wighyimited error, which
is an additional support of the high accuracy of our anaytapproach. The only
exception is represented by the case of the Vacation bemkhateen configured to
use the smaller address space. In this case, the accurdoy ahalytical model in
predicting the mean run execution time is in fact subject stight deterioration as
the number of threads increases. We argue that this is ifjeuta the fact that the
Vacation benchmark comprises transactions whose exedatiency is (on average)
significantly longer than the Intruder benchmark. This &tadan increase of the vari-
ance of the run execution time and to a corresponding ansdlific of the model’s
prediction error.

In Figure 5.6 we evaluate the accuracy of the analytical rioderedicting the
different causes of aborts for the transactions. Specificaltyset the number of
threads to eight and report: (i) the probability for a trantigen to abort during its
execution before reaching the commit phase (recall thatdhan only happen due
to a validation failure during a read operation), denotegas = 1 - pﬁaml (see
Equations (5.16-5.18)); (ii) the probability for a transa to abort in the commit
phase during the writeset lock acquisition, namgly: (see equation (5.19)); (iii) the
probability for a transaction to abort in the commit phase tluread-set validation
failure, namelypyt (see equation (5.26)). Also in this case we observe thatdhe a
curacy of the proposed analytical model is very good for tenarios in which the
benchmarks are configured to use the larger datasets. Othtfrehand, with smaller
datasets, namely the ones associated with very high caomerates (note that the
probability of abort is around 0.7 and 0.8 in these scengribere is a slight degra-
dation of the analytical model accuracy. We argue that thimputable to the fact
that the error introduced by assuming a Poisson Processidoartival of transac-
tion to the commit phase, which remains negligible at/foedium contention levels,
shows an increasing trend at very high contention levelds phenomenon is con-
firmed by the plots in Figure 5.7, where we evaluate the gosglnéthis assumption
in different workload scenarios by contrasting the empirical ilefisnctions of the
transaction interarrival time to the commit phase, as cdasetpby the simulator, and
the exponential distribution functions whose average esélas been computed via
the analytical model. More in detail, the plots on the leftesdf Figure 5.7 have
been obtained by considering moderate contention scenabtained by selecting,
for each benchmark, the largest address spaces and degreecofrency equal to
eight, that give rise to probability of abort on the order 8%2and 35% for Vacation
and Intruder, respectively. On the other hand, the plotsherright side of Figure
5.7 are associated with a very high (and, arguably, somepadthblogical in prac-
tice) contention scenario, in which we select for each bevagk the smallest address
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Figure 5.6: Abort causes.

spaces and degree of concurrency equal to eight, that géaiprobability of abort
on the order of 70% and 80%, for Vacation and Intruder, respdyg. The reported
results clearly highlight that, up to medium contentionelsy there is an excellent
match between the empirical and analytical distributidghas confirming the valid-
ity of the Poissionianity assumption for the commit phasevalrin case the timing
of actions natively associated with the transactions ¥alexponential distributions.
The right side plots, conversely, highlight a higher dipairecy between the empirical
and analytical density functions in very high contentioarsarios.

However, it is interesting to highlight that the degradatid the goodness of the
poissionianity assumption leads to a (slight) increasé@®fiodel’s error only when
predicting some internal state variables, such as thahidedl of the various abort
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Figure 5.7: Distribution of the transaction interarriviahés to the commit phase.

causes. On the other hand, the model’'s accuracy in preglietiternal performance
metrics, such as throughput and commit probability, resaéry high across every
analyzed workload, even those associated with very higkeotion rate (see Figure
5.3 and Figure 5.4).

5.5.2 Multi-class Case

In this section we validate the variant of the analytical mlathpturing multi-class
transaction profiles. To this purpose, the timing of acce$seshared memory data
items has been simulated by replaying the execution tratc#sed/acation bench-
mark. On the other hand, we used the reduced data set siz¢eskeler this bench-
mark (i.e., 10,000 data items) in order to stress the acgurhche model when
considering non-minimal contention scenarios. The patarseharacterizing this
workload are summarized in Table 5.1.

By the results shown in Figure 5.8 and 5.9, we have that thiytaoe model
again shows a very good match vs simulative results. Inquaati, for each individual
class the performance indicators are evaluated by the nmode®kry accurate manner
while increasing the number of threads.
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Parameter Class 1| Class 2| Class 3

Transaction Class Probability?{) | 0.898 | 0.047 | 0.056

Transaction Class Length() 154 57 121

Write Probability per Class(y;,.) | 0.046 | 0.117 | 0.080

Table 5.1: Parameters used for the multi-class study (Machenchmark)

Throughput (Vacation Benchmark)

Class1-Mod —
014 | Cadsamed
: ass3-Mo

Class1-Sim —o— /
0.12 | Class2-Sim

Class3-Sim o =

0.1

0.08 / /
0.06

0.04

Transactions per psec

0.02

(<

2 4 6 8 10 12 14 16
Threads

Figure 5.8: Analytical vs Simulative Results for the Mudtass Scenario.

5.6 On Removing Exponential Assumptions

In the analytical model presented in this chapter we haviigd the assumption of
exponential distribution of several random variables.his section we discuss how
our modeling approach could be extended to relax some of t&esumptions.

As for the thread-level model in Section 5.3.2, the reliance CTMC represen-
tation maps onto exponential assumptions for the timeswitich i) transactions exit
from their back-d period following an abort event, and ii) the execution of @no
transactional code block is completed. If one want to carsggneric, but known,
distributions of these quantities, the CTMC could be reptawith other random
process, e.g. a Semi-Markov process [76] or a Markov Redigagaocess [77, 78].
At this point one should rely on solution techniques to clalaie the steady-state
probability vector.

For what concerns the transaction-level model, we expidiie assumption that
the arrivals of the transaction commit events form a Poiggoness to computp&l
in equation (5.14) ang(, in equation (5.22). Further, we exploited the assumption
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Figure 5.9: Analytical vs Simulative Results for the Mudtass Scenario.

that the arrivals of read operations on shared data itenms foPoisson process to
derive the expression @gck in equation (5.10).

As for equations (5.14) and (5.22), they could be extendad¢ount for arbitrary
distributions of the transaction arrivals to the commitg#haWe could in fact write
them as

Pu = ©(toy, Ur) (5.55)

Py = O(ty, ur) (5.56)

whered(t, n),t € (0, «0) expresses the generic cumulative distribution functiotne
arrival process to the commit phase, havingyas ri; = 1/E[®(t,n)] its average
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arrival rate, andi, could be computed as before using equation (5.12) and equati
(5.13).

More problematic would be, instead, relaxing the assumpgtiat the arrivals of
read operations form a Poisson process. In equation (5ri@ct, we exploited
directly the PASTA property [75] of Poisson arrival processo compute the prob-
ability of finding a write-lock busy during a read on a datarite . However, if one
were to assume that the arrival process of read operatiorf@med a generic re-
newal process, one should explicitly account for the dyearhinterleaving between
the arrival process of read operations>oand the stochastic process associated with
the arrival of transactions that updatetb the commit phase. This would require de-
termining the conditioned probability that, given an awdity small interval {— h, t],
there is a transaction T that is locking the data iteduring its commit phase given
that a transaction T’ issues a read»oim the same time interval, or more formally:

limn_oPr{X(t — h) = 1N(t - h) > 1} (5.57)

whereX(t) expresses the number of transactions (that updgtemibe in the commit
phase at timé and N(t) is the counting process associated with the arrival of read
operations (0rx).
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Chapter 6

Per formance M odeling of CCPs
With Arbitrary Data Access

Patterns

6.1 Introduction

The development of analytical performance models of CClRssren the use of sys-
tem workload models. The workload model strongffeats the performance model
development. As we discussed in Section 3, tipically usedklwvad models represent
the transaction profiles in terms of various parametershastmber of operations,
the readwrite probability and the distribution of accesses on theo$alata items.
On the other hand, they abstract from some (more detaileti)res which dferenti-
ate the profile of workloads of transactional applicatiofisis level of abstraction is
generally considered adequate for the purpose the propesémmance models are
intended. In fact, mainly, it allows to symplify the consttion of &fective models
which, simultaneously, do not prevent from both (1) analgzihe dynamics related
to the specific CCPs by allowing a quantitative evaluatiorsystem performance
indicators in a large workload configuration space, and (@jeunstanding the mo-
tivations behind performance provided byfdrent CCPs under the same workload
profiles. On the other hand, the choice of such a level of atistn restricts the
range of validity of the performance models. In particwanen the analysis focuses
on more detailed workload profiles, e.g. considering a $igatdass of applications,
the workload model could be unable to provide an adequateseptation of them.

75
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In this chapter we address the aforesaid issue by consigatipical assumption
used in workload models which may remarkabifeat the accuracy of the analytical
performance models of CCPs. Basically, in previous perforce modeling studies
it is assumed that a transaction accesses data items amraodsome probability
distribution which does not depend on the phase of the tctinsaexecution (i.e. the
probability distribution is considered to be the same fartheaperation executed by
the transaction). This suggests some observations. In agplications, transactions
access the data items, or sets of data items, according ¢dispatterns. Let's con-
sider an example. In a warehouse application a transactiochvereates an order
of a customer in the database may execute the followingrecticeading the list of
products ordered by the customer, checking the customeess&ldipdating the order
information and updating the availability of the producissiock. This could lead to
the execution of the following sequence of operations: irgaffom the Cart table,
reading from the Customer table, updating the Orders tatdefanally, updating the
Products table. We note that this entails a specific datssaquatern to be executed
by the transaction, where each database table is accegseddd®y on the execu-
tion phase of the transaction. This feature is very commomamy transactional
applications (e.g. see TPC-C [3] and TPC-W [13] benchmagiiegtions).

In particular, the question which arises from the aforeséskrvations is the fol-
lowing: If the presence of specific transaction data accatsmos is not considered
in performance models of CCPs, can these models be corgideliable when a
more realistic workload is considered?.

The results of a simulation study we conducted, which we datv in this chap-
ter, clearly showed as the performance provided by lockiagopols which acquire
locks before to execute operations can be very sensitiveetadriation of transaction
data access patterns. Specifically, if we consider two egadtloads, except the se-
quence of accessed data items by the transactions, therparfoe can remarkably
change. As a consequence, performance models which dddednta account such
an aspect could provide unreliable results.

To cope with this problem, we propose an analytical modeimgroach for these
types of locking protocols which allows to build performanmodels capable to cap-
ture the &ects on system performance of the transaction data acdgssipaSpecif-
ically, we consider the case of the Strong-Strict 2PL (S92#btocol (see Section
2.2), as in our study it showed a high sensitivity to the agqegterns, and we pro-
vide a model tailored for it. We recall that the SS2PL is onthefmost used protocol
in (commercial) database systems. The aforesaid typestdquls are also largely
used in STMs.

The analytical model we present allows to evaluate the maites performance
indicators, as the expected transaction execution timeranthroughput saturation
point. Furthermore, it allows to evaluate other indicatwhsch can be used to study
more in deep the impact of the transaction data access fatterthe mean lock
holding time and the transaction wait time when a lock confimcurs. The model
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can be coupled with ffierent hardware resource models and can be resolved via an
iterative technique.

The accuracy of model has been evaluated via simulation.v@ligtation study
relies on both (i) Synthetic workload descriptions (e.gteirms of machine instruc-
tions for specific operations within a transaction), some/oich analogous to those
used for the validation of previous analytical results ogpwith SS2PL, and (i)
A workload we derived by abstracting the main features oftthasaction profiles
specified by the TPC-C benchmark [3].

The rest of this chapter is structured as follow. In Sectichv@e present some
results of the simulation study we conducted which show émsisivity to the trans-
actions data access patterns of the SS2PL protocol. InoBegiB we describe the
system model we used to build the analytical model, whichrésgnted in Section
6.4. In Section 6.5, we present a model validation study.alRinin Section 6.6,
we present further results of our simulation study on smitgitto the transactions
data access patterns for other protocols, including thaseamsidered in previous
chapters of this dissertation, i.e. the MVCC and the CTL.

6.2 Effectsof Data Access Patterns with SS2PL Protocol

Intuitively, in locking protocols as SS2PL, the presencdrends in the sequence
of data items accessed hy the transactions can have a sighiiiapact on the dis-
tribution of locks’ duration. Consider, for instance, twets of data items, say X
and Y, which are always the first, respectively the last, dod®e accessed within a
transaction. Being the duration of the locks held on the @atas of set X longer
than the duration of the locks on the tuples of set Y, it fokaivat the probability of
contention on the data items of set X will be much higher tinenprobability of con-
tention on the data items belonging to set Y. This may havergact on the conflict
probability of transactions, hence, consequently, it neagllto a non-minimal impact
on the system performance.

We present the results of a simulation test where we repeatitite workload
used in another performance analysis work for the SS2PLT[®§. comparison with
the results of another previous work allowed us also to gédidur simulation model.
In this test we considered twoftkrent transaction profiles. In the first transaction
profile (which we name phase-independent), the accessemdnemly distributed
across the whole set of items, independently of the traiosaekecution phase. Fur-
thermore, transactions execute 15 data accesses in wrie.michis profile repro-
duces the transaction profile used in the aforesaid workhénsecond transaction
profile (which we name phase-dependent) transactions #xexaiin the first one, 15
data accesses in write mode. However the accessed datavaeissacross dierent
transaction execution phases. Specifically, the wholefdgtras is partitioned into
5 equally sized, non-overlapping s¢8, . .., Ss} (which might be seen as represen-
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tative of, e.g., distinct database tables). In the first phihe transactions perform
three accesses, uniformly distributed in theSgtIn the second phase they perform
three accesses uniformly distributed in the Sgt Hence transactions continue in
this fashion, until they complete 15 data accesses. All theravorkload and system
configuration parameters are equal to those used in theenefed work. In Figure
6.1 we plotted the average transaction execution time fonibrkload composed by
transactions with the phase-independent profile as eesluat both the simulation
model used in the referenced work and by our simulator. Tineesuare quite over-
lapped, demonstrating the validity of our simulation mogethe simulation model
used in the referenced work. Furthermore, in the same figerplotted the aver-
age transaction execution time evaluated by means of owladion model for the
workload composed by transactions with phase-dependefiteprThe results show
clearly as the dference is remarkable, demonstrating the sensitivity oStB2PL to
the transaction access patterns.

6.3 System Model

In this section we present the system model we assume tothailanalytical model.
We consider a transactional system with a sdtitéms, each of which represents an
unit of data that can be accessed by an operation within aaction (e.g a tuple or
a set of tuples in a table of a database). Transactions acegsed according to the
SS2PL protocol. We assume an open system model. This clsometivated by the
fact that open models are more suited for scenarios wittga lanmber of users (like
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in, e.g., transactional applications over the Internet).

6.3.1 Transaction Model

We assume a workload characterized by a single transaatiditep This is specified
in terms of data items accessed and locality of the accessigdhe lifetime of the
transaction. Transactions arrive according to a Poissoocegs with arrival rata.
On the basis of these assumptions we present a basic vefglmmanalytical model
with one transaction class. In Section 6.4.7 we present eehmdension where
we consider multiple transaction classes to cope with wadd with diferentiated
transaction profiles.

Each transaction consists of a begin phase, which is folldwyea number oM
operations, each one accessing in read or write mode a slatdeitem, and finally
by a commit phase. According to the SS2PL, to execute a reaicidgn, a transac-
tion has to obtain a shared lock on the target data item, wiaitewrite operations,
exclusive locks are needed. Each operation might entailia(lblack) phase in case
the requested lock is currently unavailable. During théahand commit phases a
mean number ofil, andnl; CPU instructions, respectively, are executed. Also, the
execution of an operation is assumed to require a mean nushinéy CPU instruc-
tions. In case the access to a data item causederlmiss, a time; o is needed to
fetch the data from disk. Finally, for simplicity, we do nogpdicitly model the JO
delay associated with the commit phase (e.g. the transaldgwrite onto stable
storage). Anyway, given our disk model, this delay wouldycemtail an additional
latency term in the expression of the transaction exectitioe.

To cope with access patterns executed by the transactiengpresent the trans-
action access pattern by means df @ M matrix (which we name access matrix)
denoted byA. ElementA x expresses the probability that tk® operation of the
transaction accesses tifedata item. Note that the sum of each columnAaiust
be equal to 1. Further we represent with a vetthrwith |W| = M, the type of the
access, namely read or write, performed by the transaatitimei diferent phases of
its execution. SpecificallyVi (resp. 1- W) is probability that thé" operation is a
write (resp. read) operation. The access mairand the vectoW are the building
block allowing our model to capture the transaction executiistory, and its fects
on performance, in terms of locality variation irfldirent phases of its execution.

For the sake of clarity, let us now consider an example ticiwsal characterized
by a simple access pattern on a small database consistiely s6ll = 4 different
data items. Let us assume thitcarries out 2 data accesses, respectively a read
and a write operation. The read operation accesses to thdteat 1, whereas the
write operation is targeted, with equal probability, to theta item 2 or 3. Based on
these assumptions, we can describe the data access péaffetraugh the following
access matribA and vectoWw:
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As a further example, the matrix can be instantiated in a Wwaythe access to a
specific itemj is always prevented up to a given phdsef the transaction execution
(this can be done by setting to 0 all the elemeftswith i = j andk < f). This,
in its turn, captures scenarios where, e.g., items insideeq gable of a database are
always accessed after operations on other tables have beadyaexecuted.

6.3.2 Hardware Resource M odel

In accordance with typical assumptions in previous aradystudies (e.g. [79, 9]),
we assume a transactional system with an underling hardsyatem where the CPU

is modeled as an Wi/k queue. k is the number of CPU-Cores, each of which has
processing speed denoted M$PS (measured in terms of million instructions per
second). The disk has a fixetDl delay denoted &s,0. Anyway, we underline that
our focus is on theféects of data accesses and contention on logical resoutes) n
physical resources. In fact, the contribution we providerteogonal to the assumed
model for the underlying physical system, given that our etdar logical resources’
contention can be actually coupled withfdrent models for physical resources.

6.4 TheAnalytical Model

On the basis of the transaction model described in Sectibf, transaction can be
modeled through a direct graph (see Figure 6.2), where tdeswepresent fierent
states of the transaction execution and the arcs represgatimnsitions. A label on
an arc from a nod@ to a nodeg represents the transition probability from statto
stateg. If the label is omitted, then the transition probabilityritended to be 1. States
labelled withbeginandcommitrepresent the initial and commit phases respectively,
while the state labelled witk represents the execution of thi operation, and,
finally, the state labelled witk represents a waiting phase (due to lock contention)
preceding th&!" operation. We denote witRy the probability that the requested
data item by thé&!" operation is currently locked.

In the following we make some assumptions that we consideumanalytical
model. Other assumptions will be made in the next sectioresramark that all the
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Figure 6.2: Transaction model.

assumptions we will make from this point will be consideratlydor the construction
of the analytical model, but not in the simulation model.

With locking protocols, a transaction can be aborted by #edtbck manager,
however we ignore deadlock related aborts in our analytivadlel since previous
studies (e.g., [67], [42]) have shown as thdifeets on the final perceived perfor-
mance are negligible with respect to the data contentitacts, therefore they can be
considered not relevant in performance analysis.

We assume a Ifter hit probability Pg when a data item is accessed. Actually,
we do not explicitly model the btering policy and the relatedtects since several
models have already been proposed to cope with the evaluattioit probability vs
the item popularity, see, e.g. [80], which is orthogonal tio study. HencePgy will
be considered as an independent parameter in our study.

Finally, we assume the system to be stable and ergodic.

6.4.1 Transaction Execution Time

According the transaction model we have presented abovden@e withRyeqin and
Reommitthe times spent in statdgginandcommitrespectively, and witlR, and Ry,
where 1< k < M, the times spent in statésandk, respectively. The evaluation of
these times is presented in the following sections. The ntreausaction execution
time can be evaluated as the sum of the average times spexttirsate, that is:

M
Rix = Roegin + Z(R~k + F\sk) + Reommit
k=1
6.4.2 Lock Holding Time

The wait phase experienced by a transaction for lock adouisin a given data item
depends on the average lock holding times of transactioeseggT in the lock
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access queue on that item. In our model we explicitly capheedact that accesses
to data items can occur atffirent phases of a transaction. Hence, if data iéem
is typically the first one to be accessed by transactions datalitemb is normally
the last one to be accessed, then the average lock holdirgaimitema will be
significantly longer than the lock holding time on itdm

We evaluate the lock holding time for each data item, and Hasvaffected by
the transaction access pattern, by exploiting the accestxna Specifically, if data
item is accessed by a transaction atkHeperation, then it gets locked up to the end
of the execution of the commit phase. Hence, the lock holtimg for the access to
a data item at the!" phase can be expressed as:

M M
k=D Ri+ > R+ Reomm
=k j=k+1
We know that the probability to access data iteat thek" transaction phase

is expressed a8 x. Hence, the average lock holding time for data itecan be
evaluated as: "
2 ket AikDk

Z&il Ai,k ’
where the sum at denominator is due to the fact that the a¥doag holding time
must be evaluated by considering only the transactions factwan access to data
itemi actually occurs.

Th =

6.4.3 Data Contention

The arrival rate of read accesses towards'theéata item can be expressed as:
M
/1read,i =4 Z Ai,k(l - Wk),
k=1
while for write accesses we have:
M
Awritej = 4 Z A Wk
k=1

We recall that if the data item is requested by a write opanagind it is locked
(in either shared or exclusive mode) then a lock conflict o&cthe transaction is
blocked and the write operation is enqueued. On the othet, hiithe data item is
requested by a read operation then a lock conflict occursibtihe item is locked
in exclusive mode. Hence only in this case the transactidiioisked and the read
operation is enqueued. To cope with the determination @& dantention and trans-
action wait time without overly increasing the complexifytioe our model, we built
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Figure 6.3: Markov chain for data item

a simple approximate queue model to capture the read-wadtedonflict dynamics.
By the results of the validation study, the used approxiomatiare adequate for our
purpose. We recall that in typical scenarios of databastemsyapplications mod-
eled by means of an open system, with protocols which blaakstictions on lock
conflict, such as the SS2PL, the system reaches the satupatint when the lock
contention probability accessing a data item is still reédy low. E.g., in tests pre-
sented in [9] the saturation point is reached when the lockertion probability is
lower than 10 percent. In all the tests we present in Sectlith@ saturation point is
reached when the lock contention probability is, on avefagall data items, lower
than 15 percent. Hence, approximate solutions which peoaigood accuracy with
low data contention level are generally considered adequeabr example, in some
studies (e.g. [53]) the proposed analytical models aredbasdhe assumption that
the number of queued transactions waiting for a lock on theesdata item is at most
equal to one.

We have modeled the lock contention on each single dataiitema birth-death
process [69] with fixed arrival rate, equal to

Ai = Areadi + Awrite,j

and variable service rafg ; (see Figure (6.3)), whergcorresponds to the number of
standing requests for data itarin the corresponding state of the Markov chain. For
each single data itemthe valuey; ; depends on the interleaving of read and write
requests observed in stgteWe approximate; ; with its average value, calculated as
follow. If in state j the top standing request for lock access is a write requesiu j

is equal to%. In fact, since the exclusive write lock delivered to thetevsriequest
blocks any other standing request, then the item is resdorethe write request,
whose expected locking time T&y. On the other hand, if the top standing request is
aread request, all the other standing read requests, ifanyje concurrently served.
In the latter case, if in statgthere ard < | standing read requests, then we have

[ . . . . .
pi.j = ——. Overall, denoting withPreadi @andPyyite the probability that an incoming

Th
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access request is a read request or a write request, resheatie have

Aread,i
Preadi =
readi /1i
and A
Pt = write,i
write,i 1

We approximate the probability for the top request in sfate be a write request
(respectively a read request) Withyrite (respectivelyPread;).
Thus we have

1 = .
Hij = ﬁ(Pwrite,i + ((Preadi kZ; kljr(eadi) + JPﬂeadi))

When a write access occurs, a conflictis raised if the taetitemi is locked either

in shared or in exclusive mode. Thus we can model the conteptiobability for a
write acces$Wyritej ON data itemi as the sum of the probabilities to stay in any of
the statesj, with j > 0, of the Markov chain, which is equal to-1Py (where Py

is the probability to be in state 0 of the Markov chain). Herfoem queuing theory
[69], we have

1
P\MNrite,i = 1_ o k=1 A 9
1+ 2 M=o Hij+1

By the formula it can be noted th&Wyitej < 1 only if the sum at the denominator
converges to a finite value. Given that > % ¥j >0, the condition% > A for
every data iteni in the transactional system isfRaient to ensure that the contention
probability for any write access is less than 1, thus reprtésg a stability condition
for the system.

To evaluate the contention probability of a read access walrthat a conflict
can occur only if the data item is locked in exclusive modendég the contention
probability can be evaluated as the fraction of time durirfgclv the data item is
locked in exclusive mode. This time fraction correspondshio utilization of the

data item vs write accesses. Thus we have

ID\Nread,i = /lwrite,iTh-

6.4.4 Wait Time

When an incompatible lock is found on the currently requidett item, the trans-
action experiences a wait timewhich corresponds to the time spent in sta{see
Figure 6.2), withk being the index of the operation causing the conflicting s&ce
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The wait time depends on the data being requested (i.e. cantioeint of currently
standing access requests for that data item), not on the wéku

We firstly evaluate the average waiting time for a transadiiocase of a conflict
on a specific data iteiy which we denote aBya,itj. After we evaluate the average
waiting time experienced in each statéwith 1 < k < M), which we denote aR,.
The latter value will depend on the transaction access xatnvhich expresses, for
each operation, the likelihood of access to each specifit i&it; can be evaluated
through the aforementioned Markov chain associated with ilami. In particular,
the average amount of standing accesses is

N; = ijpj,
=1

whereP; is probability to stay in stat¢of the Markov chain. When a conflict occurs
upon data access, if no other access requests to the samardemrrently queued,
the wait time corresponds to residual lock holding time. @& dther hand, in case
other access requests are currently queued for lock atignjsa further delay occurs
due to lock holding on that item by transactions associati#iutive queued requests,
that is on averagé& hy for each one. Thus, given that a conflict has occurred, we have

N
Ruwaiti = (ﬁ - 1)Th + Li,

where;:

Ty AkD?
250, AikDk
and represents the normalized residual lock duration,ridépg on the dierent dura-

tions evaluated on the basis of the access pattern. NowaghRy,iti, by exploiting
the access matrid, we have

|
Z A kRuaiti [PWreadi (1 — Wk) + PWiyrite,j W]
i=1

6.4.5 Operation Execution Time

Times spent by a transaction in stabegin k, with 1 < k < M, andcommitcan be
evaluated by exploiting the model of the underlying hardwasources, which has
been provided in Section 6.3.2. The CPU load for the execwti@ transaction is

Ccpu = nlb + M' nlo + nIC
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and from queuing theory we get for the CPU utilization théofeing expression:

_ /l‘Ccpu
P = mips

Denoting withp[queuing the wait probability for a request in an/M/k queue [69],
and definingy as

y = 1+ p[queuing/(k(1 - p)),
we can evaluate the execution timBggin and Reommit Of Statesbegin and commit

respectively as:
nly

Rbegin = YMIPS
and |
Reommit = ’)’—M IPS’

Execution times of stateR further depend on biter hit probability and/O delays.
Using the notation in Section 6.3, we have

]

Re=7YVips

+ PsH-ti)0

for eachk such that 1< k < M.

6.4.6 Numerical Resolution

The model can be solved via an iterative procedure. Aftegasg the values to
hardware configuration parameters (e.g the CPU power) anddctional system pa-
rameters (e.g. the access matrix) the value 0 has to be adsigrthe parameters
Rwaiti, PWeadi and PWyitej (With 1 < i < I). Then the other model parameters
can be evaluated via the provided equations, using thetseasilthe input for the
next iteration. The desired computational accuracy carxied by defining a value
specifying the maximum éierence between values obtained by two consecutive iter-
ations (e.g. iR, is the transaction execution time at iteratigrihen the computation
can be stopped when the conditiBa— R,_1 < € becomes true).

This iterative approach has been used also in other prérexistudies on perfor-
mance models of CCPs (e.g, [70, 81, 52, 9]). As it has been idahese studies, we
have empirically observed that it converges in a few iteretiin all tests we carried
out, provided that the input assignment defines a stablersyst

6.4.7 Coping with Multiple Transaction Classes

In this section we show how our model can be employed in seahere the work-
load entails dferent transaction profiles (or classes). We denoté te number of
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the diferent transaction classes, each of which can be represdmtadjh a spe-
cific transaction model featured as the one described id.6\We use the following
notation:

e Vector M, with [M| = C, for which each element, denoted bif, with 1 < ¢ <
C, represents the number of operations of a transaction sécla

e \ectorA of matrix elements, withA| = C, for which each element, denoted by
A®, with 1 < ¢ < C, is the access matrix of a transaction of class

e Vector W, with |W| = C, for which each element, denoted W, with 1 <
c < C, is the vector representing the write probabilities forratiens of a
transaction of class.

Further the transaction arrival rate for class denoted byic.

The accuracy level while describing a workload witlffelientiated transaction
profiles according to the previous notation can be tuneddoraance to the require-
ments of the performance analysis the end-user is carryihgRoughly speaking,
the more the identified transaction classes, the more gectiva workload descrip-
tion. As an extreme, each plausible access pattern coulddoeiated with a specific
class in such a way to describe the variation of the trarmadbicality over the data
items in a deterministic manner. In this case each accessxmall be character-
ized by columns having a single element equal to 1, and abther elements equal
to 0. As it will be clear by the below description of the modifiions to the model
equations in case of multiple classes, a large number ofesawill only entail an
increased amount of computation power for the iterative ehedlving procedure. In
general, if transactions are composed by a fixed number defireed statements, as
in, e.g., a lot of three-tier Web based applications, toiaobdagood compromise we
suggest to model the workload using a single class for eagthefined transaction
pattern.

With more transaction classes, some of the previouslyduited equations must
be rewritten in order to consider parameter dependencyeadbess pattern and the
arrival rate of each class. For simplicity, we only show timalfishape of these equa-
tions without explicitly repeating intermediate modelisteps, which are anyway
intuitive once the model for the case of single transactiaeschas been analyzed.

The transaction execution time for class

MC
thx = Rgegin"' Z(R~E + F\;ﬁ) + Rgommit
k=1

where we added the superscripto the parameters introduced in Section 6.4.1 to
emphasize that each of them is related to casehe average lock holding time for
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data item becomes
c Mme MS 5 ME 5
1 A% i1 AN 2 RS + 22kt RS+ REgmmid
C NE
2c:l A° Zk:l A|Ck

The arrival rates of read and write accesses towardétdata item become

C Mme
Areadi = Z A Z Aﬁk(l - WIE)’

c=1 k=1

and

C m¢
Auitei = Y A° )" AT (WE).
k=1

=1

In the end, we can rewrite the equationF?Rffor each transaction class as

|
R~§ = Z Aﬁkaait,i[PVVread,i(l - V_VE) + P\MNrite,iV_VE]
i=1

6.5 Model Validation

We evaluated the accuracy of the analytical model via a seliftdrentiated tests
based on output comparison vs the results obtained by usiogete-event simula-
tion. The simulation model we used is similar to the model wasented in section
4.5, except the Concurrency Control Manager, which folltvesrules of the SS2PL,
and the Workload Generator, which generates the operatibtie transactions on
basis of the access pattern of the transaction class.

In this section we present a set of tests we carried out itizaléo three scenar-
ios characterized by diverse workload configurations arstiesy parameters. This
section is structured as follow. In Part-A we show the resofta validation test
where we reproduced the test we described in Section 6.2artrBPwe consider a
synthetic workloads which induces noticeabfteets on lock contention across dif-
ferent transaction classes. In Part-C we finally provideasibn results for the case
of transaction workloads derived by abstracting the madituiiees of the well known
TPC-C benchmark [3].
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#ltems 1000
#CPUs 5
CPU Speed 10 MIPS
ti/o 0.035s
#Accesses x Xact (M) 15
Purite 100%
PgH 0.27
nlp 150000
nlo 20000
nle 250000
Access Distribution - Phase Unif. in
(Phase Independent Workload) [1,2000]
Access Distribution - Phase Unif. in
(Phase Dependent Workload) [1+]5%]-200,( 5t + 1)-200]

Table 6.1: Parameters settings for Part-A (as in [9]).

#ltems 100000
#CPUs 8
CPU Speed| 2000 MIPS
ti/o 0.004 ms
Pgn 0
Purite 20%

Table 6.2: Parameters settings for Part-B.

6.5.1 Part-A

We start by showing the results of the validation test whezeaproduced the work-
load with the phase-dependent transaction profile desiriBection 6.2. All system
configurations parameters have been set according to thieartest we inspired to
(i.e. the test in [9]). In Figure 6.4 we plotted the averag@s$action execution time
as evaluated by our analytical model and by simulation. Asiated in Section 6.2,
with the phase-dependent profile the transaction respémgerémarkably changes
due to the ffects of access locality variations acrosfatient transaction execution
phases. The results show as our model well captures thi®piesron.
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Avg. Transaction Execution Time (sec)

Phase-independent profile - Model
Phase-dependent profile - Simulator ---=---

0.5 -
5 10 15 20 25

Transactions per Second (TPS)

Figure 6.4: Performance comparison for both independethphase-dependent pro-

files (Part-A).

#Accesses (M) Access Distribution - Phases[1,M]
Profile Py 20 Uniform in
[1+ 31120000, 52 ] + 1)-20000]

Profile P, 8 Uniform in
[1+ 31120000, 52 ] + 1)-20000]

Profile P3 8 Uniform in
[1+ (L2 ] +3)-20000,( 15t ] + 4)-20000]

Table 6.3: Synthetic workload (Part-B).
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Part B - Synthetic Workload 1
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Figure 6.5: Transaction execution time (Part-B).
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Figure 6.6: Lock utilization (Part-B).
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6.5.2 Part-B

We now focus our experimental study on the evaluation of tdoeiracy of our model
in a more complex scenario characterized by multiple tretia profiles and highly
skewed phase-dependent data access distributions. Fadhgared to the study in
the previous section, we consider system parameters egpatise of more modern
platforms (e.g. an increased number of CRLises and increased procegdmk
speed) and applications (e.g. an increased amount of itesideithe transactional
system). The detailed parameter settings adopted forttidy sire reported in Table
6.2. As the last preliminary consideration, this time thkigaof Pgy (which would
depend on the specific object replacement policy) has beea 6e (Recall that our
analysis is orthogonal to modeling approaches fdte@sueplacement policies and
related hifmiss dfects vs the item popularity.)

In this study data items are grouped in 5 contiguous setgéthg equivalent to,
e.g., database tables) which we again refer tg&as. .., Ss}. Also, the probability
of access in write mode is set equal to 20%. The workload (sé&ée16.3) entails
three diferent transaction profilg?,, P, andP3, with identical arrival rates, and the
following access patterns. For claBg the pattern is similar to the phase-dependent
pattern of Part-A of our study, with the only variation thlaé thumber of accesses is
equal to 20, and 4 accesses per set are executed before nmthegsubsequent set.
Transactions of clasB, perform 4 accesses to the &tand then other 4 accesses
to the setS, (for a total of 8 accessed items). Similarly, transactiohprofile P
perform 4 accesses to the &, and 4 subsequent accesses to theésgetn every
transaction profile, the 4 accesses in each set are unifalistjbuted over the whole
items in that set. The results for this workload (see Figusg $how a good matching
between simulation and analytical values for all the thraadaction classes. For this
same workload, we also show (see Figure 6.6) a comparisaebstthe lock utiliza-
tion values for each of the 5 sets as predicted by both thdaiion and the analytical
model. Beyond confirming the matching between simulaticth @malytical results,
these plots highlight an interesting feature of our modgiecHically, its ability to
capture data contention dynamics with single data itemulaaity makes it capable
to predict the performancefects due to the specific organization of the transactional
logic (such as the order of the accesses ftedint data sets within flerent phases
of a transaction). As an example, Figure 6.6 highlights thataccesses to the set of
itemsS; represent the system bottleneck.

6.5.3 Part-C

We conclude this section by providing the validation restdr a test where we used
a workload profile reflecting relevant features of a standemgchmark for transac-
tional systems, namely TPC-C [3]. The item tables’ popalaand layout (see Table
6.4) have been configured by setting the number of warehdqudesh represent an
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Table Name | #ltems | Table ID
WAREHOUSE 500 th0
DISTRICT 1000 thl
CUSTOMER 15000 th2
STOCK 500000 th3
ITEM 100000 th4
ORDER 1000 th5
NEW-ORDER 1000 th6
ORDER-LINE 1000 th7
HISTORY 1000 th8

Table 6.4: TPC-C tables’ population.

Phase Po P P2 P3
(A7%) | (45%) | (4%) | (4%)

0 | (RO | (R),bO | (R)tb2 | (R),tb6
1 | (Rubl | (R)tbL | (R).tb5 | (W),tb6
2 | (wWytbl | (R),b2 | (R),tb7 | (R),tbS
3 | RLD2 | (W),th0 (W), th5
4 | (W)tb5 | (W) thl (R),tb7
5 | (W)th6 | (W)tb2 (W),tb7
6 | (R)tb4 | (W)b8 (R),tb2
7 | (R).b3 (W), th2
8 | (w3

9 | (w)tb6

Table 6.5: Abstracted TPC-C transaction profiles (classes)
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Part C
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Figure 6.7: Simulation and analytical results for the aagtterd TPC-C workload.

explicit scale parameter for TPC-C) to 500. The only vaviafis related to the scal-
ing of the size of the tables which are accessed via seléehstats using intervals of
keys. This choice is motivated by the fact that such selatéstents would lead i€
read operations, as modeled in our approach. Therefore#iaghas been done in
order to provide a fair modeling approach for select (i.adjestatements operating
at different granularity values (single key vs interval of keys).

The characterization of the transaction access patterhased on the TPC-C
workload modeling carried out in [82]. Table 6.5 reports,dach transaction profile
and for each transaction execution phase, the accessethltémand the correspond-
ing access mode (read, denoted as (r), or write, denoted)asWie consider only 4
of the 5 diferent transaction classes identified in [82], since oneafitmamely the
Stock-level transaction, does not impose any isolatiorraptae, hence not trigger-
ing any concurrency control mechanism at all (whose modatrthe focus of this
work). The remaining model parameters (characterizirgy, the available hardware
resources) are not reported as they are unchanged wittctésgigection 6.5.2.

By the results in Figure 6.7, we can observe that our moddl fitelthe simu-
lation output. As for previous cases, the matching can bergbd for each single
transaction profile included in the workload. These restdtgirm the high accuracy
of our analytical performance model even in case of comphediverse workloads.
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Figure 6.8: Performance comparison with phase-indepératah phase-dependent

profiles with the MVCC protocol.

6.6 Analysisof the Sensitivity to Data Access Patternswith
Other Protocols

We conclude this chapter discussing the results of a siioalatudy we conducted
to evaluate the sensitivity to transaction data accessrpatof the other protocols we
deal with in this dissertation, namely the MVCC and the CTatpcols. In addition,
we also consider the results of another test we conductédapitotocol which can be
considered, as concerns the locking mode, the counterpiie € TL. This protocol
uses the eager-locking. i.e., unlike the CTL protocol, & lscacquired before to
execute the write operation.

We start with the MVCC protocol. We used the same workloadh it phase-
independent transaction profile and the same workload wighphase-dependent
transaction profile as in the test described in Section 6/2 dverage transaction
response time with respect to the transaction arrival @tbdth workloads is shown
in Figure 6.8. We can see that there is a very sligliedénce between the transaction
response time of the two fiierent profiles, and it becomes a little pronounced near
the saturation point.

Now we consider the CTL protocol and the protocol which udes @¢ager-
locking. In all tests we evaluated the throughput with respe the number of con-
current threads.

In Figure 6.9 we show the results obtained by using the twklwads as in the
tests for the MVCC protocol. The plot on the top side is ralat@ CTL protocol.
The results show as the CTL protocol appears insensitiieetalata access patterns
of the phase-dependent transaction profile. The plot ondtterh side is related to
the protocol which uses the eager-locking. The results si®with eager-locking
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the sensitivity grows.

To test the sensitivity of the CTL also in a more complex sdenave used an-
other workload profile with three transaction classes. is Workload the transac-
tions of classP; have a profile equal to the transactions of clBg®f the workload
with the phase-independent transaction profile used indiredr test. The transac-
tions of classP, sequentially access the data items belonging to theSseand S».
The transactions of clag¥ sequentially access the data items belonging to the sets
S, andSs. The throughput obtained with this workload has been coatpaiith the
throughput obtained with a workload with the same traneactiasses, except that
the accesses were independent of the transaction phasegeduits are shown in
Figure 6.10. On the top side we plotted the throughput fortcaresaction classfor
both workloads. Furthermore, we also plotted the commibabdlity for all classes
on the bottom side of the same figure. We can note that alsdsrtast the CTL
protocol appeared practically insensitive.

Summarizing the results of the tests we presented aboveamveliserve that the
sensitivity to the transaction data access patterns mosggnds on the concurrency
control strategy. Basically, it depends on the locks aegulyy the transaction and
by the time when they are acquired during the transactionwtim. The sensitivity
of the SS2PL protocol, which uses both exclusive and shaad] and they are ac-
quired before executing an operation, is remarkable. Theitbéty is less noticeable
with the MVCC protocol. We recall that the MVCC protocol wensidered uses
exclusive locks as the SS2PL protocol, but never blocks doparation. Therefore,
read operations are noffacted by the locks held by concurrent transactions. This
aspect can explain theftkrent sensitivity shown by this protocol with respect to the
SS2PL, where, conversely, read operations &erted by exclusive locks acquired
by the concurrent transactions. Finally, the CTL, whichhis inost optimistic pro-
tocol we considered in our analysis, appeared to be ingaensitWe recall that, as
the MVCC protocol, the CTL also uses exclusive locks, buy thiee acquired only
at the commit phase. For these reasons, the lock holdingisiedenost the same for
all locks acquired by a transaction, independently fromabguisition order. This
aspect can explain the insensitivity of the CTL.

In conclusion, the results suggest as the modeling metbggdale proposed in
this chapter could also be usefull to improve the accuragefdrmance models for
other lock-based protocols. On the other hand, the imprememaily depends on
the locking stategy established by the protocol.

1The throughput is equal for all classes because transadi@generated with the same probability

for all classes.
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Throughput with CTL protocol and multiple class
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Conclusions

Analytical modeling is an féective approach for building computer system perfor-
mance models. It enables to describe such systems in a tgti@atinanner and let
us to build valuable tools to analyze and understand conthtemmics characteriz-
ing them. In this dissertation we dealt with the analyticatfpmance modeling of
CCPs for transaction processing systems. We focused onitwds bf systems in
which the concurrency control plays a key role, namely theSGBd STMs. With
our work we contributed to both the development of new modélSCPs and the
development of new modeling approaches. We addressed rioerpance modeling
of the MVCC by developing the first analytical model of onela# tnost used MVCC
protocol in DBS. At the base of this model there is an appraglgich focuses on a
model of transaction execution which allows to capture thedaction execution dy-
namics due to the mix of mechanisms used by the protocol.dfi¢fd of STMs we
proposed a new analytical framework for building perforeceamodels of STM sys-
tems. This framework overcomes previous proposals asivalto conduct a more
comprehensive performance study, providing the abilitgvaluate various perfor-
mance indicators, including the analysis of both the treti@a execution dynamics
and the execution of concurrent threads. This is made gedsjbthe two-layered
structure of the framework, which also symplifies the deprient of models for dif-
ferent CCPs. Leveraging on this framework, we also built fiopmance model for
the case of the CTL protocol, currently used by many STMsalRinwe proposed
a new modeling approach which allows us to analyze the paence of CCPs by
a new perspective. We showed as CCPs hafferdnt sensitivity to the sequences
of data items accessed by transactions. In particulargaliaused class of locking
protocols have an high sensitive. This is an aspect whicinbebeen considered in
previous performance modeling works, and we showed thdytaoe models which
do not capture theffects due to such data access patterns can provide unreliable

99
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results when used for the performance analysis of appiicati To cope with this
problem, we proposed a new modeling approach allowing uayituce the fiect on
the system performance due to arbitrary transaction da@sagatterns, including
the cases with multiple transactions profiles.

In all models we proposed, we used a modeling approach whimead us to
abstract from the specific implementation details of thequals. Indeed, models we
presented focus on that aspects that can have meaningfiigatigns on the system
performance by the perspective of the concurrency confbthe same time, with
our approach, parameters depending on other factors, legpieration processing
time or the biffer hit probability, can be taken into account by both corraigethem
as input to the models and coupling the models with perfooaanodels of other
system components. This approach provides flexibility,artipular when we want
to use a model for the performance analysis withedént implementations of a pro-
tocol, or when a protocol is used infifirent systems. In addition, it provides high
modularity, allowing us to use a model for building largest®ym performance mod-
els by means of composition of models. Beyond these mativgtiwe think that the
previous aspects are also very important because the fielgptitation of the CCPs
is not limited to the systems we considered in this dissertat

Interesting improvements and extensions of the work weepitesl are the fol-
lowing.

Concerning the model of the MVCC protocol, we discussed ictiSe 4.6 the
loss of accuracy of the model when the data access skew s&sed his is due to
the modeling assumption according to which the actual detess distribution is
considered the same of data accesses of arriving transsiciéhen the data access
skew becames very high, the actual mix of data accesses [y the restarts
of transactions accessing many highly popular data itemes.thivik that a possible
solution to be evaluated relies on representing workloatts high data access skew
by means of multiple transaction classes, so that the datsaskew becames lower
within each transaction class. Then, an approach base@usattion clustering, as
we discussed in Section 4.4.3, could be used.

The STM performance modeling framework we proposed prevadeeasy way
to build CCPs models, thereby also being an useful tool talgonperformance
comparison studies of STM protocols. Hence, a natural sidganof this work is
the development of further models of such protocols. Anreggng improvements
concerns the thread-level model according the obsenstioSection 5.6, where we
discussed the removal of some assumptions used to buildTtNeECC

Finally, as regards the modeling approach for arbitrarpsaation data access
patterns, it would be interesting to evaluate this appradsh for protocols which
use mixed concurrency control mechanisms. In the simulattady we presented
in 6.6 we showed that also the MVCC protocol we consideredim dissertation
and the protocol which uses the eager-locking are sengitithe data access se-
quences. As both these protocols use locking and read tiahigldhey could be a
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further benchmark for this approach.

We conclude observing that in our work we addressed two nsaunels we con-
sider very important for the current state of art in the fieldRS performance mod-
eling. The first one is associated to the advancement of #ite st art in the field of
the concurrency control. Over the time, new CCPs have bespoped in order to
fit even more both the performance requirements of appticatand the transaction
processing requirements of new systems. Today, many sysiseprotocols based
on more complex strategies than those used in the past. tBdspigfort made in the
field of performance modeling, existing studies do not akvasovide performance
analysis tools suitable for new protocols and systems. €hersl one is associated
to the system models tipically used in CCPs performance fimgdstudies. Indeed,
they use system models which adequately represent quitrigestenarios, and do
not take into account the implications related to some bfesitures of applications
which can remarkablyfgect the system performance. We dealt with the first afore-
said issue in our modeling studies of both the MVCC protoca the STMs. In
the case of the MVCC protocol, we considered a widely usetbpob in modern
DBMS which is based on a mix of concurrency control mechagismich improves
the performance in read-intensive scenarios. In the case@TMs, we considered
a lock-based protocol which optimistically acquires lgdbst it also uses data vali-
dation in order to provide an isolation level which well fitgttransaction processing
requirements of the new STM systems. We dealt with the seafm@said issue
in the modeling studies of both the STMs and the transactaia dccess patterns.
In these studies we made further steps towards a more coersigh performance
analysis of real applications. In the STM modeling frameéwave included in the
analysis also theffects due to the variation of the concurrency level in theesyist
together with the mix of transactions withfidirent profiles. Finally, in the last con-
tribution, we extended the analysis by including tifieets due to a tipical feature of
the data access patterns of applications. All these faptokgde the ability to extend
the field of application of models including the analysis afrerealistic scenarios.
We think that the lack of approaches which allow us to perfamanalysis by a more
realistic, application-oriented, perspective is one efleaknesses which have to be
further addressed in the field of analytical performance etind of CCPs. For these
reasons it represents an important direction for the futtoek.
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2PL  Two-phase locking

DBMS Database Management Systems
CCP Concurrency Control Protocol
CTL  Commit-Time Locking

DBS Database Systems

MVCC MultiVersion Concurrency Control
SS2PL Strong-Strict 2PL

STM  Software Transactional Memory



