
Sapienza Università di Roma
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Chapter 1

Introduction

In many data sharing environments data manipulation leverages on transaction pro-
cessing. A transaction consists of a set of operations whoseprocessing must provide
specific guarantees. These guarantees are defined in terms ofproperties of transac-
tions, namely Atomicity, Consistency, Isolation and Durability (ACID properties). In
IT applications transaction processing is used for the development of various com-
ponents of different layers of the system architecture. E.g., transactions can be used
in a database client application to execute sets of operations on data contained in a
database server, or by processes to execute sets of operations on files, as well as in
multi-threaded applications to execute sets of memory read/write operations.

Transaction processing relies on the so-called Concurrency Control Protocols
(CCPs). A CCP defines a set of rules that allow the system to concurrently execute
transactions preserving the desired properties.

Over the last few decades, transaction processing got an important role in many
contexts, spanning from enterprise applications to operating systems. As a conse-
quence, its increasing popularity has led to a growing interest in CCPs. Today, CCPs
act as core components for the design and implementation of awide spectrum of ap-
plications, as banking, booking, e-commerce, as well as of many low level synchro-
nization mechanisms, as in file system management and, in general, in concurrent
programming. For these reasons they are of interest for a lotof IT players. Further-
more, despite the transaction processing is not a new research area, CCPs continue
to even more attract the interest of researchers, as evidenced, e.g., by the emergence
of transactional memories [1], which today represent an hottopic in the concurrent
programming research.

The growing interest in CCPs is also due to a recent trend in computer manu-
facturing [2]. Over the last decade, the hardware architecture of a majority of com-
puter systems, including the entry level ones, has profoundly changed, moving from
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a single-core to a multi-core architecture. On the other hand, the exponential growth
of the CPU clock speed has stalled, so that, nowadays, the increase of computing
power of a system is mainly due to the increase of the number ofCPU cores. As
a consequence, single process/threaded applications can no longer take advantage of
such a performance gain of hardware architectures. In orderto continue to exploit the
growth of computing power to boost the performance performance of applications,
we need for concurrent applications. This results in a growing care for CCPs.

1.1 The Performance Issue

The appeal of the transactional processing systems is mainly due to the ability to
transparently ensure the properties of transactions, requiring the system user only to
demarcate the blocks of operations which form a transaction. On the other hand, the
concurrency control may have a remarkable impact on the system performance. The
latter is a critical issue for the transaction processing systems. Suffice it to say that
the transaction response time is one of the most widely used indicators in service
level agreements negotiation, as well as the maximum achievable system throughput
is used as a foundamental indicator in transaction processing and database system
benchmarking [3].

The impact on system performance of a CCP depends on many factors. Basically,
a contribution to the performance degradation is due to the dynamics of execution of
transactions, which depend on the rules of the protocol. Forexample, some pro-
tocols prevent data conflicts by blocking the execution of a transaction when, while
accessing a data item, a (potential) conflict with a concurrent transaction occurs. Con-
versely, other protocols aborts a transaction (which has tobe subsequently restarted)
when a conflict with a concurrent transaction is detected. Both blocking and restart-
ing a transaction result in an increment of the transaction response time. The per-
formance degradation is also due to the extra processing time associated with the
execution of the code for the protocol implementation, which may require both large
data structure management and explicitly memory fence instructions or expensive
hardware operations (e.g. compare-and-swap) for process/thread synchronization1.

The effects on system performance due to the concurrency control are complex to
analyze. Infact, the transaction execution dynamics depend on the mix of various fac-
tors, as the transaction profiles (including, e.g., the operation types and the accessed
data items), the transaction arrival rate, the concurrencylevel, the processing speed of
the system, etc. For example, transactions may experience multiple waiting phases
whose durations depend, in turn, on the execution time of theconflicting transac-
tions. Also, a transaction may experience a number of abortswhich depends on the

1in some systems, as database ones, these costs can be affordable, but in others, as transactional

memories, their impact can be remarkable [4].
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read/update rate of the set of accessed data items determined by the concurrent trans-
actions. Furthermore, generally, a protocol provides higher performance than others
depending on the workload and system features. E.g. some protocols are optimized
for read-intensive workloads (as MultiVersion Concurrency Control (MVCC) proto-
cols [5]) and some protocols perform better than others whenused in systems with
low resources [6].

According to the observations made so far, understanding and/or evaluating the
impact of the concurrency control on the system performanceare fundamental issues,
and, on the other hand, they are non-trivial tasks because ofthe multitude of involved
factors. At any rate, designing, optimizing and tuning transaction processing sys-
tems are complex activities which require a deep knowledge of the alternatives and
implications associated with the choices of CCPs.

The analysis and the proper understanding of the impact on the system perfor-
mance of the concurrency control require quantitative approaches. A largely used
approach in computer system performance analysis is the model-based one [7, 8].
With this approach the analysis is conducted using an analytical or simulative sys-
tem model. With respect to the measurement-based approach,which entails direct
measurements on the real system, it provides various advantages. Basically, it allows
to conduct performance studies by avoiding the burden of building (a component of)
the real system or a prototype, as well as by avoiding expensive constructions of
test-cases. This can be very valuable, in particular in the early stages of the system
design. The model-based approach allows to abstract from undesired effects due to
factors which, conversely, could be unmovable when the performance assessment is
conducted with a real system. It is an inexpensive approach to explore alternatives,
to test new ideas, as well as to analyze, through the composition of models, more
complex systems. Obviously, all assumptions and approximations used in the con-
struction of a model, and all its implications and limitations, are crucial aspects to be
taken into account in the performance analysis. Finally, the model-based approach
must not be considered a completely alternative approach tothe measurement-based
one, rather they have to be considered complementary.

1.2 Performance Modeling of Concurrency Control Proto-

cols

Analytical modeling and simulation are two common approaches used for the per-
formance analysis of transaction processing systems. In the follow, we discuss some
basic aspects which need to be considered when dealing with the design of perfor-
mance models for CCPs.

A transaction processing system is characterized by a peculiar aspect with respect
to a system without data contention [9]. In the latter case, the operation response time
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is affected by the queuing and processing delay in accessing hardware resources. In
a transaction processing system, the transaction responsetime is affected by both
hardware resources and data contention, and these, in turn,can affect each other.
For example, when a transactionT is blocked due to data contention, thenT may
determine an increment of the data contention probability of the concurrent transac-
tions due to the increase of the lock holding time of locks held by T. Similarly, if
T is aborted and restarted, it may determine an increment of the processing time of
the concurrent transactions due to the extra resource utilization for the re-processing.
The increment of the data contention and/or the higher processing time of the con-
current transactions, in turn, may determine a subsequent increase of probability for
T to be blocked or restarted. These factors entail non-trivial dependences between
the various system performance indicators (e.g. the transaction response time vs. the
transaction contention probability). Furthermore, the predominance of the impact on
the system performance of some factors with respect to others also depends on the
mix of mechanisms used by the CCP.

A performance models of a CCP has to be an effective tool aimed to analyze
and/or understand performance issues related to the concurrency control. The in-
trinsic complexity of the transaction processing systems imposes to rely on system
models where specific assumptions are needed in order to makethe analysis feasible.
For this reason, the level of abstraction of a model represents a fundamental choice
determining its validity. For example, models aimed to perform a qualitative analysis
of the transaction execution dynamics could abstract from the actual utilization of the
hardware resources. On the other hand, it has been shown thatthe amount of available
hardware resources can determine which type of protocol hasthe chance to provide
the best performance [6]. Accordingly, such models would provide unreliable results
if used to conduct a performance comparison study between differet protocols.

The wide diversity characterizing the workloads of applications for transaction
processing systems, and the attempt to build models whose validity is not restricted to
specific applications, entails the adoption of generic workload models, by the defini-
tion of a limited number of parameters determining the workload model configuration
space.

Finally, the complex relations existing between the various factors that can affect
the system performance lead to use approximation based approaches.

1.3 Contribution Overview

In this dissertation we present performance models of CCPs for transaction process-
ing systems. Primarily, we use an analytical approach. Further, we also use detailed
simulation models to evaluate the accuracy of the analytical models we propose, and
to analyze some features of the protocols we deal with. We preferred to focus mainly
on the analytical approach for two main reasons: (1) analytical modeling can be a
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practical approach for building cost-effective computer system performance models
and, in particular, (2) the analytical approach enables to quantitatively describe the
complex dynamics characterizing the concurrency control,allowing us to analyze
and understand existing dependencies between system performance indicators and
other system configuration parameters, and to reason about their implications. In
this work, we deal with both Database Systems (DBS) and Software Transactional
Memories (STMs), which represent traditional and emergingtransaction processing
systems, respectively.

The first model we present focuses on the MVCC in DBS. The performance mod-
eling of CCPs has been largely conducted in the field of DBS. Anyway, the most of
performance analysis work focus on modeling and/or evaluation of protocols consid-
ering basic concurrency control strategies and the associated implementation mecha-
nisms (e.g. blocking or restart-oriented lock-based protocols, optimistic timestamp-
based protocols). Over the time, the need of performance gain led to the design of
new, more complex protocols. Thus, what often happens nowadays is that systems
use protocols relying on more complex strategies than thoseanalyzed in performance
modeling studies. This entails the need of new efforts in the performance analysis and
of new performance evaluation tools. In particular, this isthe case of the most used
MVCC protocol in Database Management Systems (DBMS), including both com-
mercial and open source ones. It combines different mechanisms, as data versioning,
transaction blocking and transaction restart. This mix of mechanisms provides high
performance in particular with read-intensive workloads,which characterize many
applications which require transaction processing. On theother hand, it determines
more complex transaction execution dynamics with respect to other protocols. The
literature does not provide analytical performance modelswhich allows us to study
and to quantify the effect on system performance of such a mix of mechanisms. We
address this lack by providing an analytical performance model tailored for this pro-
tocol. To cope with the its complexity, we use a modeling approach wich focuses on
the transaction execution dynamics. These are captured by means of a transaction
model which represents the transaction execution throughtits phases and on basis of
the phase transition probabilities. By relying on this transaction model, we incremen-
tally derive a set of analytical expressions to calculate the various probabilities and
the other involved quantities. The system performances indicators can be calculated
numerically resolving the set of expressions. By this modelwe can evaluate the ex-
pected transaction response time and other indicators, as the data validation failure
probability and the data version creation rate, which allowto quantify the impact on
system performance associated with the different mechanisms used by the protocol.

We then move to the field of STMs. Very little performance modeling work has
been made in this field. Concurrency control in DBMS and in STMs relies on simi-
lar concepts, therefore, used methodologies and models forDBS can also provide a
valuable support for performance analysis of STMs. Anyway,transaction processing
in STMs and in DBS is different in many aspects [10], and this entails differences
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concerning both the used CCPs and the choice of appropriate system models. So far,
performance analysis of STMs has been essentially conducted with the measurement-
based approach. More recently, a few analytical and simulation models have been
proposed. In some cases, these models assume simplified system models which do
not allow to evaluate time-related performance indicators(e.g. the transaction re-
sponse time and the system throughput), hence, they enable to study and evaluate
protocols only by a limited analysis perspective. In other cases, the focus of the pro-
posed models is shifted to different aspects from the CCPs. We propose a framework
tailored for a more comprehensive performance analysis of STMs which overcomes
the main limitations of the previous studies. In this framework we deal with the ef-
fects on system performance associated with both the CCPs and the dynamics related
to the transaction executions by the concurrent threads of an application. Our system
model is ispired to a typical STM application where threads are supposed to run on
CPU-cores of a multi-core processor system. Threads alternate the execution of trans-
actions, where they perform accesses both on shared and local data, and code blocks
where they perform only local computations (e.g. see [11]).To this purpose, we pro-
pose a two-layered modeling approach, where a layer captures the dynamics related
to the execution of threads, delegating the concurrency control model to another in-
dependent layer. These allows us to evaluate the system performance also capturing
the effect due to the continuos variation of the concurrency level and to the mix of
different transactions in the system. At same time, with our modeling approach, this
can be simply obtained by devoloping a CCP model for a fixed, albeit parametric,
concurrency level and mix of transactions. Furthermore, the two-layered structure
makes the framework feasible to build models for different CCPs. We present an
istance of the CCP layer for the case of the Commit-Time Locking (CTL) protocol
[12], which is currently used by several STM implementations. The complete in-
stantiation of the framework allows us to evaluate, in addition to the expected system
throughput, various indicators, as the transaction abort probabilities throughout the
various phases of the transaction execution. The indicators can be evaluated on basis
of various system configuration parameters, as the profiles of the transaction classes,
the number of concurrent threads, the duration of the different memory operations
and the shared memory size.

Finally, we propose a modeling approach which opens a new perspective in the
CCPs performance analysis. So far, proposed modeling approaches rely on the as-
sumption according to which the data items accessed by transactions do not depend
on the phase of the transaction execution. In other words, the data access sequences
of transactions are not considered. Actually, in many applications for transaction
processing systems, transactions tend to access data itemsaccording to specific se-
quences (e.g. see TPC-C [3] and TPC-W [13] benchmark applications). We show that
performance delivered by CCPs which acquire locks during the transaction execution
(i.e. before the commit time, as the Two-phase locking (2PL)[5]), can be strongly
affected by such data access patterns. Futhermore, we show thatperformance models
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which ignore these aspects can provide unreliable results when used in performance
analysis of applications. Today, the aforesaid types of protocols represent a very large
class of CCPs used in transaction processing systems.

To cope with the above-mentioned problem, we propose, by focusing on the
Strong-Strict 2PL (SS2PL) protocol, which is the most used version of the 2PL, a
modeling approach which enables to capture the effects due to transaction data ac-
cess patterns where data accesses depend on the transactionexecution phases. This
approach can be used in the case of both deterministic and probabilistic transaction
data access patterns. In addition, we show as this approach is also suitable for ap-
plications with different transaction profiles, where each profile is characterized by
a different data access pattern. The model we present allows to evaluate the average
transaction response time for each transaction profile and various other indicators,
as the lock holding time and the transaction waiting time. These indicators are very
useful to investigate the effects on the system performance of the data access pat-
terns of applications. Models built with the approach we present can also be used to
support the selection of the optimal transaction data access patterns for the design of
applications.

The analytical models we present in this dissertation can becoupled with different
hardware resource models and can be resolved by iteration. We show how this can be
done by using an hardware model typically adopted in performance studies of CCPs.

Finally, all these models can help to answer further typicalquestions in the area
of the transaction processing systems, as: Which is the potential performance bot-
tleneck? How does the system scale up? Which mechanism used by a protocol is
the main responsible for the performance loss? Which is the main transaction class
responsible for the system overhead?

1.4 Structure of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2 we provide an
overview of the CCPs in the field of both DBS and STMs. A literature overview
is presented in Chapter 3. In Chapter 4 we present the performance model of the
MVCC protocol. The modeling framework for STMs and the modelof the CTL pro-
tocol are presented in Chapter 5. In Chapter 6 we present the performance study on
the transaction data access patterns and the performance model of the SS2PL proto-
col. Further, we conclude the Chapter 6 with a brief analysisof the sensitivity to data
access patterns of other protocols, including those considered in previous chapters.
A concluding discussion is in Chapter 7.

Most of the material contained in this dissertation can alsobe found in the following
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Chapter 2

Concurrency Control Protocols in

Transactional Processing Systems

Over the years, the need for performance improvement has conducted researchers
and system designers to explore many alternatives and to evaluate different solutions
for the problem of concurrency control in transactional processing systems. Today a
variety of Concurrency Control Protocols (CCPs) exist. In this chapter we provide
an overview of these protocols, focusing on the fields of Database Systems (DBS)
and Software Transactional Memories (STMs) [14]. We discuss their peculiarities
and provide various examples. Before discussing STMs’ protocols, we also provide
a brief overview on STMs and point out some basic differences with respect to DBS.
We do not focus on protocols for distributed systems becausethey are out of the scope
of this dissertation. Further details about notions we provide in Section 2.1 and 2.2
can be found in [5].

2.1 Basics

A largely used criterion to evaluate the correctness of CCPsis serializability. It states
that an execution of a set of transactions must have the same effect on data items as
some serial execution of the same transactions. Serializability corresponds to the
higher isolation level defined by ANSI/ISO SQL Standard [15]. Actually, a such iso-
lation level is not necessary in many applications. For example, in some benchmark
applications (e.g. [3]) some transactions require a lower level, asRead Committed,
which only ensures that transactions do not read updates on data items made by trans-
actions not committed yet. Furthermore, some DBMS do not guarantee serializability

9
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(e.g. Oracle Database [16]). In this case, to enforce serializable executions, the sys-
tem user has to explicitly add specific instructions within transactions.Recoverability
is another requirement for the execution of transactions. An execution isrecoverable
if transactions which read values written by another transaction T do not commit be-
foreT. This ensures that ifT has to be aborted, it can be safely done. However, this is
not enough to avoidcascading aborts. This phenomenon occurs when a transaction
Ti gets aborted and another transactionT j has already read a value written byTi . In
this case alsoT j has to be aborted. Cascading abort can be avoided by preventing
transactions from reading values wrote by uncommitted transactions. In this case the
execution is saidcascadeless. Another phenomenon is the following one. When a
transactionTi is aborted, the previous value of each data item updated byTi has to
be restored. If another transactionT j updates one of this data item beforeTi gets
aborted, restoring the previous value of this data item entails the loss of the value
written by T j . This can be avoided by preventing transactions from writing values
written by uncommitted transactions. This is calledstrictness. Note that strictness
implies cascadeless, which, in turn, implies recoverability. All these are orthogonal
properties with respect to serializability.

As concerns concurrency control strategies, basically, CCPs can be classified in
pessimistic and optimistic ones. In addition, there are a variety of mixed protocols.
Pessimistic protocols avoid conflicts between transactions by blocking and/or restart-
ing a transaction before a conflicting operation is executed. To this purpose, conflicts
are detected before the execution of the operations. Optimistic protocols do not block
or restart transactions before operations, but allow them to be executed as soon as they
are requested. The conflict detection is delayed to the end oftransaction, i.e. to the
commit-phase. In this phase, if a conflict is detected, the transaction is aborted and
restarted. These protocols are also calledcertificationprotocols.

In the follow, we describe various examples of pessimistic,optimistic, and mixed
protocols. We start from the field of DBS, and after we move to STMs.

2.2 Database-Oriented Protocols

In DBS, pessimistic protocols are tipically implemented bymeans oflocks. Trans-
actions acquire asharedlock on a data item before executing a read operation, or
anexclusivelock before executing a write operation. If an exclusive lock for a data
item is held, no other locks can be acquired for the same data item, while, if a shared
lock is held, only shared locks can be acquired. If a transaction can not acquire a
lock due to another lock held by a concurrent transaction (i.e. a lockconflictoccurs)
then it is blocked and waits until the concurrent transaction releases the lock. The
Two-phase locking (2PL) is a protocol where a transaction releases locks only after
having acquired all needed locks. The 2PL ensures serializability. The Strong Strict
2PL (SS2PL) [17] is a version of the 2PL where all locks acquired by a transaction
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are released only when the transaction terminates or is aborted. The SS2PL ensures
serializability and strictness. For these reasons, it is the most used version of 2PL.

Locking protocols which block transactions on conflict are subject to deadlock.
In these cases, further mechanisms are needed to avoid this problem. A widely used
method is based on timeouts, i.e. a transaction which experiences a lock conflict
can waits at most for a fixed time, after which it gets aborted.This is a low cost
method, but it can cause the abort of a transaction also if deadlock does not really
occur. Another method is based on the wait-graph. This is a directed graph where
a nodei corresponds to a transactionTi . An edge from a nodei to a nodej means
that the transactionTi is blocked due to a lock held by transactionT j . When a lock
conflict occurs the corresponding edge is added to the graph.A cycle in the graph
indicates that a deadlock has occurred, and it is solved by aborting a transaction in
the cycle. The aborted transaction has to be subsequently restarted. The drawback
of wait-graph method is due to the graph management cost. Themethod based on
timeouts is more widely used in DBMS.

Concerning optimistic protocols, the conflict detection can rely on various mech-
anisms. One of these is the Serialization Graph Test (SGT) Certification. This is
based on a serialization graph, i.e. a directed graph where anodei corresponds to a
transactionTi and an edge from a nodei to a nodej denotes that an operation ex-
ecuted by transactionTi precedes and has conflicted with an operation executed by
transactionT j . When a transaction executes an operation and a conflict occurs, then
an edge is added to the graph. At commit time, if the transaction is within a cycle in
the graph, it gets aborted.

The Basic Timestamp Ordering (Basic TO) is a protocol which aborts transac-
tions as soon as a conflict is detected. It allows a transaction T executing an opera-
tion only if no conflicting operations have been already executed by other concurrent
transactions started after the transaction T. Otherwise T is immediately aborted. This
protocol uses timestamps associated with the start of transactions to detect the order
of the operations. Basic TO ensures serializability. This version does not provide
recoverability, but can be easily specialized to enforce it.

MultiVersion Concurrency Control (MVCC) is a technique which maintains mul-
tiple copies, or versions, of a data item. Each version is produced by a write opera-
tion. When a transaction reads a data item updated by a concurrent transaction, it is
served by using a previous version of the data item. Hence, bymaintaining previous
versions of updated data items, a reading transaction is never blocked or aborted. An
example of such a protocol is the Multiversion Timestamp Ordering (MVTO). Upon
a read operation, a transactionT reads the version of a data item produced by the last
transaction committed beforeT started. Upon a write operation of a transactionT on
a data itemd, if a version ofd has already been read by a transaction started afterT,
thenT is aborted. Otherwise a new version ofd is created. Finally, a transactionT is
committed only after all transactions which have produced versions read byT have
been committed. MVTO ensures serializability and recoverability.
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Many different protocols can be defined by combining the aforesaid techniques.
For example, a common version of MVCC used in DBMS is based on locks. Specif-
ically, transactions acquire an exclusive lock upon a writeoperation. When a lock
is acquired, the write operation is allowed to be executed only if the data item has
not been updated by concurrent transactions, otherwise thetransaction gets aborted.
Versions created by a transactionT become visible to other transactions only after
T has been committed. This protocol ensures an isolation level lower than serial-
izability, namelysnapshot-isolation[18]. This level ensures a transaction reads all
data from the same (consistent) snapshot of the database andprevents lost updates.
In DBMS which provide snapshot-isolation as highest isolation, the user can add
instructions to explicitly acquire locks within transactions to enforce serializability.
However, although snapshot-isolation does not provide serializability, this isolation
level is considered acceptable for a wide set of applicativecontexts. Also, several
recent works have provided formal frameworks for the identification of classes of
applications where this type of isolation level suffices to ensure serializability [19],
and for detecting (and correcting) applications potentially exposed to non-serializable
execution histories [20].

2.3 Brief Overview on Software Transactional Memories

STMs [21] are emerging as a highly attractive and potentially disruptive program-
ming paradigm for concurrent applications. The early proposals for Transactional
Memories (TMs) architectures date back to 90s [22]. However, the research on this
topic has been largely dormant till the 2002, when the adventof multi-core processors
made parallel programming exit from the niche of scientific and high-performance
computing and turned it into a mainstream concern for the software industry. One of
the main challenges posed by parallel programming consistsof synchronizing con-
current access to shared memory by multiple threads. Programmers have tradition-
ally used locks, but lock-based synchronization has well-known pitfalls. Simplistic
coarse-grained locking does not scale well, while more sophisticated fine-grained
locking risks introducing deadlocks and data races. Furthermore, scalable libraries
written using fine-grained locks cannot be easily composed in a way that retains scal-
ability and avoids deadlock and data races [23].

By bringing the concept of transaction to parallel programming, STMs allow
freeing the programmers from the burden of designing and verifying complex fine-
grained lock synchronization schemes. By avoiding deadlocks and automatically
allowing fine-grained concurrency, transactional-language constructs enable the pro-
grammer to compose scalable applications safely out of thread-safe libraries. With
an STM, programmers have just to demarcate code blocks whichhave to be executed
as transactions. The underlying STM layer provides the illusion that transactions
are executed in a serial fashion, which allows programmers to reason serially on the
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correctness of their applications. Of course, the STM layerdoes not really execute
transactions serially, instead, "under the hood" it allowsmultiple transactions to exe-
cute concurrently by relying on a Concurrency Control Protocol (CCP).

Today research on STMs is very active. Commercial releases of STMs do not
exist yet, however many research prototypes (e.g. [12, 24, 25]), as well as prototypes
for commercial systems (e.g. [26]) are available.

2.4 Database Transactions vs. Memory Transactions

Some basic differences exist between transactions in DBS (database transactions)
and transactions in STMs (memory transactions) [10]. Memory transactions are ex-
ecuted ensuring atomicity, isolation and consistency. Unlike database transactions,
they do not ensure durability, but encompass operations reading/writing data only
in volatile memory. This also leads to another significant difference. As memory
transactions do not require access to persistent storage when data are updated, the
execution time is tipically much smaller compared to database transactions. Addi-
tionally, memory transactions are mediated by lightweightlanguage primitives (e.g.
theatomic{} construct) that do not suffer, e.g., of the overheads for SQL parsing and
plan optimization typical of database environments. Thesefactors make the mem-
ory transactions execution time typically two or three orders of magnitude smaller
than database transactions [27], even when considering complex STM benchmarking
applications.

Another difference concerns the isolation level required for memory transactions.
Serializability is considered largely sufficient as isolation level in DBS. However,
with serializability inconsistent data values can be read by transactions that will be
subsequently aborted. It has been shown that the effects of observing inconsistent
states can be much more severe in STMs than in DBS [28]. In STMs, in fact, trans-
actions can be used to manipulate program variables whose state directly affects the
execution flow of user applications. As such, observing arbitrarily inconsistent mem-
ory states (as it is allowed, for instance, by the optimisticCCPs used in DBS) could
lead applications to get trapped in infinite loops or in exceptions that could never
be triggered in any sequential execution. This is not the case for DBS, where trans-
actions are executed via interfaces with precisely defined (and more restricted) se-
mantic (e.g. with SQL interfaces), and are executed in a sandboxed component (the
DBMS) which is designed not to suffer from crashes or hangs in case the concurrency
control allowed observing inconsistent data snapshots. For these reasons memory
transactions require a higher isolation level than serializability, namelyopacity[29].
The latter, in addition, prevents all transactions (also transactions that will be subse-
quently aborted) from seeing inconsistent values of data items. As we will see in the
following, most protocols used in STMs rely on the so-calledread validation[30] to
provide opacity.
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2.5 STM-Oriented Protocols

Essentially, CCPs for STMs are based on combined techniques. Most of them provide
opacity. Generally, in STMs implementations for object oriented languages (e.g.
JAVA) a data item corresponds to a memory object (object-based STMs), while in
other languages (e.g. C language) it corresponds to a memoryword (word-based
STMs). In STMs which use locks, one or more data items can be mapped to a single
lock. This entails smaller memory structures needed for lock management. On the
other hand, this can lead to false conflicts when two transactions access two different
data items mapped with the same lock. The number of data itemsassociated with a
single lock can be a design choice or, as in some STMs, it can beadaptively changed
at run-time. To simplify the discussion, in the following weassume that a data item
is mapped with a single lock. In the rest of this section we provide some examples of
STMs which use different protocols.

TL2 [12] is a STM which uses exclusive locks. Upon a write operation the ac-
cessed data item is not immediately updated, but the new value is stored in a private
buffer of the thread executing transaction. Upon a read operation it is checked if
the accessed data item has not been updated by another transaction after the reading
transaction started. This check is saidvalidation. Furthermore, it is checked if the
associated lock is not held by another transaction. If one check fails then the reading
transaction gets aborted. At commit time a transactionT tries to acquire an exclu-
sive lock on each data item to update. If a lock is held by another transaction then
T is aborted, otherwise, after the lock acquisition phase, all data items read byT are
validated again. If one of these data items is not valid thenT is aborted, otherwise
all data items are updated and all locks are released. Protocols which acquire lock at
commit-time are called Commit-Time Locking (CTL) protocols.

TinySTM [24] uses a protocol similar to protocol used in TL2.They differ in
the lock acquisition time, namely TinySTM acquires the lockbefore executing the
write operation. Furthermore, TinySTM uses other optimizations, e.g. as hierarchical
locking to reduce the cost of validation and dynamic tuning of some configuration
parameters.

Also mixed locking techniques can be used, e.g., as in SwissTM [31]. In this
STM each data item has awrite lock and aread lock. A write lock prevents other
transactions from writing, but not from reading. A read lockprevents other transac-
tions from reading. Upon a write operation a write lock is acquired. At commit time a
transaction acquires also the read lock of each data item to be updated. Both read and
write locks are released after the transaction commits or abort. This mixed technique
allows to detect conflicts between write operations as soon as possible, but delays
conflict detection between read and write operations at commit time. Furthermore,
SwissTM uses a mechanism which, in case of conflict, favors long transactions by
aborting shorter ones.

DSTM [32] is an STM which uses the concept ofownershipof a data item. An
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ownership is exclusive but revocable. Upon a write operation a transactionTi acquires
an exclusive ownership of the data item. If another transaction T j executes a write
operation on a data item owned byTi , T j can wait a while, but eventuallyT j acquires
the ownership, possibly determining the abort ofTi if it has not yet released the
ownership. On a read operation a transactionT checks if the accessed data item and
all data items previously read are still valid. If yes,T executes the read operation,
otherwiseT is aborted. At commit time a transaction validates again allread data
items. If the validation fails the transaction gets aborted, otherwise all data items are
updated and ownerships are released.

Finally, multiversion protocols have also been used in STM,as in JVSTM [33]. It
has been designed for the Java language. JVSTM uses the so-called versionedboxes
to store versions of data items, which are shared java object. On read operation a
transaction reads the version contained in the last box madevisible before the start of
the transaction. On write operation the value to write is stored within a box created
by the transaction. Transactions execute the commit operation in mutual exclusion
by acquiring an exclusive global lock. After the lock acquisition, all boxes of updated
data items are made visible to other transactions and the lock is released.

A still open debate concerns progress guarantees which CCPsfor STMs have to
provide. In locking protocols running transactions can be affected also by threads
which execute transactions and are not running. For example, if a thread is sus-
pended (e.g. preempted by operating system) while it is executing a transaction that
holds an exclusive lock, all other running transactions which try to acquire the lock
can’t make progress. Non-blocking protocols are those protocols which can provide
progress guarantees.Obstruction-freedom[34] is the weakest progress guarantee
of non-blocking protocols. Obstruction-freedom ensures that if a thread runs by it-
self for long enough (including when other threads are suspended) then it makes
progress. Obviously, also all transactions executed by thethread are guaranteed to be
obstruction-free. Roughly speaking, if a transaction is executed by itself long enough
to complete, it eventually successfully commits. Obstruction-free protocols guaran-
tee that a deadlock does not occur.Lock-freedom[35] provides stronger progress
guarantees than obstruction-freedom. It guarantees that if threads run long enough
then at least one thread makes progress. The first work which introduced TMs
describes a transactional memory with a protocol which guarantees lock-freedom.
Lock-free protocols guarantee that livelock does not occur. Finally, Wait-freedom
[35] provides the strongest progress guarantees. It ensures that if threads run long
enough then all threads make progress. Wait-free protocolsguarantee that starvation
does not occur.

Despite progress guarantees may seem desirable, today there is not a common
agreement on their effectiveness in STMs [36]. The STMs we presented in this chap-
ter provide different progress guarantees. E.g. DSTM provides obstruction-freedom.
The version of JVSTM we presented provides lock-freedom foronly-read transac-
tion, while a more recent version is completely lock-free. The other STMs we dis-
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cussed above do not provide obstruction-freedom.



Chapter 3

Literature Overview

In the literature a number of publications which cope with the performance analysis
of CCPs exist. Most of them focus on DBS. Less work has been done in the field of
STMs. In this chapter we provide a literature overview focusing on the performance
modeling. We start from the DBS, and after we move to the field of STMs.

3.1 Database Systems

The work done the field of DBS includes both simulation and analytic approaches.
Most of analytical studies use simulation to validate the analytical models. Early
studies encompass locking protocols. Afterwards also optimistic protocols have been
considered. E.g. static locking protocols (i.e. where transactions predeclare all lock
requests before starting) have been studied by simulation in [37] and [38], and ana-
lytical models have been proposed in [39] and [40]. Dynamic locking (as the SS2PL
described in Section 2.2) has been analyzed by simulation in[38] and [41], and by an
analytical approach in [42]. Optimistic concurrency controls have been analyzed by
analytical models in [43] and by simulation in [44] and [45].

The majority of studies rely on system models based on the following assump-
tions. The database contains a fixed number of data items. A data item can represent,
e.g., a record, a page or an entire table. Transactions perform n operations uniformly
distributed over the whole set of data items. Some studies assume the presence of data
skew, e.g by considering hot spot using theb-c rule (i.e. a fraction ofb operations
access a fraction ofc data items in the database [42]). In other studies data itemsare
partitioned in different sets, and fixed-sized subsets of transaction operations access
different data item sets [9]. In studies where both read and writedata accesses are
considered, each data access is a read/write with a fixed probability (e.g. in [46]).

17
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In some studies, to model a workload with more transaction profiles, transactions
are grouped into different classes, where the number of operations and the read/write
probability depend on the transaction class [9]. A constantnumber of transactions in
the system is assumed in some models (e.g. [42]). In other works transactions are
assumed to be generated by a fixed number of userss (closed system model) [46, 6].
In some studies a ’think time’ exponentially distributed with a fixed average value is
considered between transactions executed by users [47]. Inclosed system models the
transaction throughput is used as system performance indicator. Whens is assumed
to be large, an open system model is considered, and transaction arrivals are modeled
as a Poisson process with fixed average arrival rate (open system model) ([48, 9]).
In this case the system performance is evaluated through theaverage transaction re-
sponse time. As concerns the hardware resources, CPU and disk are considered. Two
different models for the hardware resources have been used. The first one is a simple
model where resources are assumed to be ’infinite’, i.e. a transaction never waits
for a CPU or I/O request ([44, 41]). In this model transactions interfere due to data
contention, but they do not compete for hardware resources.In the second model a
number of CPU and/or disks are explicitly accounted for (e.g. see [47]). If a resource
is serving a transaction then the arriving transactions arequeued. Typically, the CPU
and I/O service demands associated with each operation depend on the operation
type (read/write), and they are assumed to be fixed or exponentially distributed ran-
dom variables. CPU and disks are modeled as a queuing network, where a transaction
operation involves CPU and disk requests. In some studies the presence of a memory
buffer is assumed ([49, 9]). A subset of data items are contained in the buffer and
are replaced according to a policy (e.g. least-recently used). With a memory buffer,
when a transaction accesses a buffered data item the I/O time is not considered.

A contribution aimed to explore the effects of the hardware resources on the CCP
is provided in [6]. In this work the authors highlight as mostof the previous results
were seemingly contradictory, and they presented a simulative study aimed to eval-
uate pessimistic and optimistic protocols. The main resultof this work is that, in
environments with limited resources, pessimistic protocols perform better, because
they tend to prevent further resource utilizations by blocking conflicting transactions.
Conversely, with low resource utilizations, so that further wasted work can be toler-
ated, optimistic protocols are preferable. Finally, the authors claimed that the seem-
ing contradictions of previous studies were due to the differences in the underlying
assumptions concerning the hardware model.

An analytical model based on a recursive solution has been proposed in [50].
The work addresses the case of shared and exclusive locks with multiple transaction
classes. A performance study encompassing a restart-oriented protocol is described
in [51]. In this work a method to improve the response time based onvolatile save-
points is considered. A savepoint allows to reduce the wasted processing time when
a transaction is restarted. The ideal distribution of checkpoint over the transaction
lifetime is evaluated. Other analytical works have been presented in [52, 47, 53], for
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which, most of results have been surveyed in [47]. In the latter work a queuing net-
work model for hardware resources is presented and an approximated analytical ap-
proach for the dynamic locking is considered. Furthermore,the work revises models
for optimistic and mixed protocols, and some possible improvements are proposed.

A mean value analysis methodology aimed to model lock-basedand optimistic
protocols is presented in [9]. It brings together various results by different previous
studies of the authors. On basis of probabilistic assumptions, the proposed method-
ology allows to obtain simple approximate expressions for evaluating various prob-
abilities and other quantities which characterize the dynamics of the execution of
a transaction (e.g. the conflict probability, the mean wait time on conflict, and the
average number of transaction restarts). The provided expressions allow to build ap-
proximate models, which can be coupled with a hardware modeland can be resolved
via iterations.

Finally, few publications addressed the evaluation of the performance of MVCC
protocols, and they are mostly based on simulative approaches (e.g. [54]). Analytical
models have been proposed in [55, 56]. The objective of thesestudies was to provide
an analysis of the storage cost for maintaining data items, by relying on the evalua-
tion/prediction of the space occupancy for the different versions of the data items vs,
e.g., the data update frequency.

3.2 Software Transactional Memories

As concerns STMs, the wide majority of existing performancestudies focus on the
evaluation of STMs implementations. Among these, some studies compare different
STMs prototypes (e.g., [12, 24, 31]), while other studies focus on the assessment of
alternative design choices [25]. Some studies are aimed to evaluate adaptive policies
[57], and finally, other studies use STMs implementations toevaluate alternative con-
flict detection and validation strategies (e.g. [30]). A very limited number of studies
rely on model-based approaches. A simulation study has beenpresented in [58]. The
authors propose a simulation model to analyze the performance with three protocols,
namely a pessimistic protocol and two optimistic ones, withwrite buffering and with
in-place memory updates, respectively. The pessimistic protocol relies on the typi-
cal shared/exclusive lock mechanism and transactions are aborted on lock conflict.
Conversely, with the optimistic protocols transactions can perform write operations
without checking if a concurrent transaction has already read the accessed data item,
and read operations require data validation. With write buffering, when a transaction
executes a write operation, it stores the new value locally,and the value is made vis-
ible at commit time. With in-place memory update, the new value is immediately
stored in shared memory, and an undo log is used to restore theprevious value of
the updated data item if the transaction gets aborted. By using the simulation model
and synthetic workloads, the study encompasses the evaluation of three performance
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indicators, i.e. the mean number of restarts per transaction, the mean number of steps
executed and the mean number of locks held by a transaction. The authors show as
in their tests optimistic protocols perform better in termsof mean number of restarts.

The studies based on analytical are presented below. The same authors of the
above-mentioned simulation study also proposed an analytical approach [59]. They
provide an analytical framework for STM systems where the same protocols as in
the simulation study are considered. Subsequently, they extended the framework for
the case of optimistic protocol with lazy locking [60]. The framework is based on an
absorbing discrete-time Markov Chain [61] which models theexecution of a trans-
action. The system model assumes a fixed numberk of active transactions in the
system, each one executingN read/write accesses uniformly distributed onL data
items, withPw as probability for an access to be a write. Given a protocol, the out-
come of the analytical model depends exclusively on the aforesaid four parameters.
The framework allows to evaluate the same performance indicators as the simula-
tion model proposed by the authors. The analytical models have been validated by
performing comparative tests with the output of a discrete event simulator. In these
studies the performance indicators are evaluated with respect to the probabilityPw

and the number of concurrent transactionsN. Further, the authors present some re-
sults calculated by means of the analytical model. They confirm the advantages of
the optimistic protocols, unlessPw assumes very large or very small values. The
study presented in [62] proposes two analytical models to compare the performance
of the typical lock-based approach for the execution of a critical section and of a sim-
ple version of the CTL protocol (see Section 2.5). In the caseof the CTL protocol,
the authors consider transactions which speculatively access the critical section. At
commit-time, if a concurrent transaction has committed, then the committing transac-
tion aborts and restarts, otherwise successfully commits.The system model consists
of N processors witch executeN threads, each one repeatedly issuing critical sec-
tions/transactions. All critical section/transaction executions are assumed to access
to the same memory location protected by a unique global lock. The duration of a
critical section/transaction is exponentially distributed. Concerning thetransaction
model, the durations of the abort phase and the commit phase are not considered. A
queuing based model have been used for both critical sections and transactions. Both
the models have been validated by simulation. According to the results obtained with
models, the typical critical section approach generally outperforms the transaction
approach, while with low contention they are comparable. The same authors sub-
sequently proposed other two works. Also in these works theyuse a queuing-based
approach. In the first work [63] they consider a system with a fixed number of treads,
each one executing on a processor. Threads execute a number of different transaction
types according to a given distribution probability. The transaction types differ in the
number of checkpoints executed. While executing a checkpoint, a transaction may
be aborted. The execution of transactions is modeled by means of a continuous-time
Markov Chain [61], where a state is represented by the numberof active transac-
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tions and by the number of checkpoints executed by the first transaction that will
commit. A transition occurs when a new transaction starts, commits, aborts or ex-
ecutes a checkpoint. The conflict detection is simply assumed to be lazy or eager
(see Section 2.5) depending on the number of checkpoints of transactions. Read and
write accesses are not differentiated and the conflicting probability between transac-
tions is considered to be fixed and to be an input parameter forthe model. In the
tests performed by the authors, the conflict probability hasbeen evaluated by experi-
mental measurements on a real system. The model has been validated against a real
system by using STAMP benchmark [11] and by comparing the average transaction
response time predicted by the analytical model. In the second work [64] the authors
propose a similar approach. Unlike the previous approach, in this model a state of the
Markov Chain is represented by the number of active transactions and by the number
of transactions that will commit. A transition occurs when anew transaction starts,
commits or aborts. Also in this work read and write accesses are not differentiated.
The conflict detection relies on checkpoints and the conflictprobability is calculated
according to the size of the overlapped sets of data items accessed by concurrent
transactions. Also this model has been validated by using STAMP benchmark.
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Chapter 4

Performance Modeling of

MultiVersion Concurrency

Control Protocols

4.1 Introduction

Several DBMS rely on MVCC protocols (Section 2.2). These protocols are also
largely used in other data management systems (as JBossChache [65]), and are gain-
ing ground in STMs (e.g. JVSTM [33]). The exploitation of multiple data versions
allows the system to immediately serve, via a version of the accessed data item, a
read operation, which with other protocols could entail a delay or an abort of the
reading transaction in case of conflict. This approach improves the level of concur-
rency between transactions and, mainly, it makes multiversion protocols especially
suitable for a read-intensive workload. Such a kind of workload is representative of
several applications, as most of the Web-based ones.

In Section 2.2 we also discussed the most widely used MVCC protocol in DBMS.
This protocol provide the snapshot-isolation level and it has been adopted in both
mainstream proprietary and open source DBMS (e.g. Oracle Database [16] and Post-
greSQL [66]). In this chapter we address the performance modeling of the MVCC
and we present an analytical performance model tailored forthe aforesaid protocol.
The model we propose is able to capture the transaction execution dynamics due to
the mix of mechanisms used by this protocol and allows to evaluate both the main per-
formance indicators (e.g. average transaction response) and other specific indicators
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for this protocol (e.g. the version check failure probability, the frequency of creation
of versions, the lock holding time). In our analysis we consider a level of abstraction
which makes the model independent of some specific aspects ofsystems. In particu-
lar, the model is independent of the specific policy adopted by the system to retrieve
data item versions (e.g. explicit storing, as in PostgreSQL, or dynamic regeneration
of the required version via rollback segments, as in Oracle Database). This makes the
model suitable for a variety of version management mechanism implementations.

The model has been validated via a simulation study. The usedsimulation model
explicitly mimics the dynamics of the transaction executions in a database system
where the transction execution is regulated by the considered MVCC protocol.

The remainder of this chapter is structured as follows. In Section 4.2 we provide
a description of the protocol rules. The analytical model ispresented in Section
4.3, where we first provide a basic version of the model, and after we present an
extended version copying with multiple transaction classes and non-uniform data
access. Finally, we present a model validation study in Section 4.6.

4.2 An Overview of MultiVersion Concurrency Control Pro-

tocol Ensuring Snapshot-Isolation

The protocol we are analyzing combines different concurrency control techniques,
namely data versioning, transaction blocking and transaction restart. In the follow
we describe more in depth the protocol and the basic implementation mechanisms.

Each transaction in the system is associated with a so-called Start-Timestamp,
whose value is set when the transaction starts. This value isused to determine the
set of transactions that are concurrent withT. In particular, this set is formed by the
transactions that are active when Start-Timestamp is set for T, plus the transactions
with timestamp greater than Start-Timestamp. When a transaction T tries to write a
data itemx that has not yet been accessed by this same transaction,version checkis
performed to determine whether no concurrent transaction that wrotex has already
been committed. In the positive case, version check is said to have failed, andT is
immediately aborted. Otherwise,T tries to acquire an lock onx, which can lead to a
wait phase in case the lock is currently held by any other active transactionT′. In the
latter case, ifT′ is eventually committed, thenT gets aborted in order to avoid the so
calledlost update phenomenon[18]. After the lock acquisition,T is allowed to create
a new version ofx. If T wants to read/write a data itemx previously written during
its execution, the version ofx just created byT is immediately supplied. Instead, a
read operation on a data itemx not previously written byT is served by accessing the
version ofx that has been committed by the most recent transaction not concurrent
with T. In this way all read operations are never blocked and do not cause transaction
abort. WhenT commits or aborts, all the acquired locks are released. In case of
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commit, all the data item versions created byT become visible to other transactions.

4.3 The Analytical Model

4.4 System Model

We consider an open system model where transactions arrive according to a Poisson
Process. A transaction consists of a begin operation, whichis followed by a number
of read or write operations, each one accessing a single dataitem, and finally by
a commit operation. Begin, write and commit operations are assumed to require a
mean number of CPU instructions denoted withnIb, nIw andnIc, respectively. CPU
instructions to support read accesses are modeled in a slightly more complex way, as
a reflection of the fact that a read access can require traversing the history of data item
versions to retrieve the correct one. This is modeled by assuming for a read access a
baseline of a mean number ofnIF

r CPU instructions, plus a mean number ofnIV
r CPU

instructions for each traversed version. In the case of transaction abort, we assume
the execution of a mean number ofnIa CPU instructions. Also, the transaction is
rerun after a randomly distributed back-off time with mean valueTbacko f f. When a
read or write operation is performed, if the accessed data item is not in the buffer then
a disk access occurs. Each disk access is assumed to require afixed latencytI/O. The
CPU is modeled as an M/M/k queue, where k is the number of CPUs, each of which
is assumed to have a processing speed denoted asMIPS.

We first present a basic version of the analytical model, relying on the following
additional assumptions: (1) transactions belong to a unique class with a mean number
of Nw write operations andNr read operations per transaction and with an arrival rate
λ, (2) transactions perform accesses uniformly distributedover the whole set ofD
data items. These assumptions will be then removed while presenting an extended
version of the analytical model.

From this point onwards, all the assumptions we make in this chapter are finalized
only to the construction of the analytical model. They are not considered in the
simulation model we used in the validation study.

In our analytical model we ignore the effects on performance of transaction aborts
and restarts due to deadlocks. Previous studies on locking protocols (e.g., [67], [42])
have shown that these effects are negligible with respect to the data contention effects.
Furthermore, given that the above-mentioned studies deal with the 2PL protocol,
assuming that deadlock does not occur reveals even more realistic in case of MVCC
since it does not use locks on read operations, hence furtherreducing the deadlock
probability.

Finally, we assume that the system is stable and ergodic.
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4.4.1 Basic Analytical Model

Transaction Execution Model

We assume that each transaction is formed by an interleavingof read/write operations
such that the areNr reads uniformly mixed withNw writes. This choice is motivated
by the fact that a transaction never aborts while executing aread operation. Thus,
in order to evaluate the average transaction response time,it is important the aver-
age number of read operations executed by a transaction, including the operations
executed by the aborted runs of the transaction. The execution of a transaction is
modeled through a directed graph. Figure 4.1 shows an example for a transaction
with Nw = 2. Each node represents a state of a transaction execution corresponding
to a specific phase of the transaction lifetime. The label of an arc from a nodep to
a nodeq represents the transition probability from statep to stateq. If the label is
omitted, than the transition probability is intended to be 1. Obviously, the sum of
all transition probability values for outgoing arcs from a node must be 1. The states
labelled withbegin, commitandabort are used to model the execution of the respec-
tive operations. Instead, as for read/write accesses to data items, we use a different
state labelling approach to denote the corresponding phases. Considering that the
sequence ofNr read operations performed by a transaction is uniformly distributed
across theNw write operations, we assume to have a write operation after executing
NS

r = Nr/(Nw + 1) read operations (see Figure 4.1). According to this rule,state0̂
represents the phase in which the initialNS

r read operations are performed before the
first write access, and statesî (with 1 ≤ i ≤ Nw) represent phases in which a write
operation has been issued, followed by a mean number ofNS

r read operations.
According to the MVCC description provided in Section 4.2, when a write oper-

ation needs to be carried out, version check is performed. Ifversion check for thei-th
write fails, the transaction is aborted. The correspondingstate transition probability
is denoted asPI

A,i. (The related arc starts from statêi − 1 and ends to stateabort.)
On the other hand, if version check succeeds (this occurs with probability 1− PI

A,i)
a wait phase for lock acquisition occurs with probabilityPcont, corresponding to the
probability that a lock is being held by another transaction.

Note that, by assumption (2) in Section 4.4,Pcont is independent of the accessed
data item. Thus, the probability of transition from statêi − 1 to statẽi can be ex-
pressed asPw,i = (1 − PI

A,i)Pcont. On the other hand, the probability that a lock is
immediately granted after version check is 1− Pcont. Thus, the probability of transi-
tion from statêi − 1 to statêi is PE,i = (1−PI

A,i)(1−Pcont). A transaction in a waiting
statẽi gets aborted with probabilityPC

A,i, which we will subsequently evaluate. When
a read/write operation is executed, the accessed data item might bealready available
in the buffer pool, otherwise a disk access is needed. We denote withPBH1 the ex-
pected buffer hit probability. However, as suggested in [9], in order toprovide a more
accurate evaluation of the effects of buffer hits in case of transaction restart, a differ-
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Figure 4.1: Base Transaction Execution Model.

ent value of the expected buffer hit probabilityPBH2 is considered when, in a rerun,
the transaction accesses a data item already accessed priorto the abort. BothPBH1

and PBH2 are intended as input parameter for our model, whose value will reflect
specific choices for what concern buffer pool size and related replacement policies.

According to the previous considerations, the graph modeling transaction execu-
tion is extended as in Figure 4.2. Specifically, the graph is partitioned intoNw + 1
subgraphsG0, G1, . . . , Gw. SubgraphG0 represents the first transaction run, for
which we considerPBH1 as the buffer hit probability for all read/write operations.
SubgraphGk (with 1 ≤ k ≤ Nw) represents reruns of the transaction executed when
a previous run has already accessed all data items before thek-th write, and then has
been aborted. Hence, in the subgraphGk we usePBH2 as the buffer hit probability
before the k-th write, while PBH1 is used as the buffer hit probability for subsequent
data accesses. For example, referring to Figure 4.2, if the transaction aborts in state
1̃ of subgraphG0, the subsequent run is represented by subgraphG1, wherePBH2 is
the buffer hit probability for all read operations occurring up to the 1-st write.

In the extended graph, we use the subscript ‘ki’ to label arcs of subgraphGk.
Hence, we havePW,ki = (1− PI

A,ki)Pcont andPE,ki = (1− PI
A,ki)(1− Pcont).

Transaction Response Time

When a new transaction starts it will require a numberN of (re)runs, depending on the
number of experienced aborts, to commit. We denote withNGk the expected number
of times that a run described by subgraphGk is (re)started before the transaction
commits. For a run associated with a generic subgraphGk, we denote withP̂k(i) the
probability to reach statêi (i.e. the transaction does not abort before). This probability
value iteratively depends on the probability to reach statêi − 1, thus

P̂k(0) = 1,
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P̂k(1) = P̂k(0)(1− (PI
A,k1 + PW,k1PC

A,k1)),

and, for a generic statêi,

P̂k(i) = P̂k(i − 1)(1− (PI
A,ki + PW,kiP

C
A,ki)).

Finally, by construction,̂Pk(commit) = P̂k(Nw).
NGk can be calculated considering that it iteratively depends on the number of

runs described by subgraphsG j, with j < k, and, for each run, on the probability to
reach stateŝj or j̃ and that the transaction is subsequently aborted. Further,it depends
on the probability for the transaction to be aborted before to reach the statêk during
the execution of a run described by the subgraphGk. Hence, we haveNG0 = 1 and,
for 1 ≤ k ≤ Nw, NGk can be calculate as
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NGk = P̂k(k)
k−1∑

j=0

NG j P̂ j(k− 1)(PI
A, jk + PW, jkPC

A, jk) + NGk(1− P̂k(k)).

Simplifying previous equation we get

NGk =
1

P̂k(k)

k−1∑

j=0

NG j P̂ j(k− 1)(PI
A, jk + PW, jkPC

A, jk).

We denote withRbegin, Rk̂i , Rk̃i , Rcom andRabt, respectively, the mean residence
time for statesbegin, î, ĩ, commitandabort. On average, runs represented by sub-
graphGk spend,Rbegin time in statebegin, plus time in other states, according to the
probability for these states to be reached. Hence we get

R̂ki = P̂k(i)Rk̂i ,

R̃ki = P̂k(i − 1)PW,kiRk̃i ,

Rk com= P̂k(commit)Rcom,

Rk abt = (1− P̂k(commit))Rabt.

State0̂ of each subgraph is always visited in each run, thusR̂k0 = Rk0̂. Therefore, the
mean run execution time, for a run represented by subgraphNGk, is

RGk = Rbegin+ R̂k0 +

Nw∑

i=1

(R̂ki + R̃ki) + Rk com+ Rk abt.

The mean transaction response time is

Rtx =

Nw∑

k=0

NGkRGk.

Lock Holding Time

A lock is acquired when visiting each stateî (with 1 ≤ i ≤ Nw), and is released at
end of the run. If the run terminates with transaction commit, then all its locks are
released upon completion of the phase associated with the statecommit. Instead, if
the run terminates with transaction abort, then the locks are released upon entering
the stateabort. To simplify, as in other models for locking protocols [9], we assume
lock release in case of abort as an instantaneous action, which does not contribute to
lock holding time. Hence, locks are held by a transaction in the time interval between
the acquisition and either the start of the abort phase, or the end of the commit phase.
Using the expressions previously defined for the mean time spent in each state, the
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mean lock holding time for the i-th acquired lock in a generic run represented by
subgraphGk can be expressed as

TH,ki =

Nw∑

j=i

R̂ki +

Nw∑

j=i+1

R̃ki + Rk com.

Hence, the mean lock holding time for the i-th acquired lock, evaluated across all the
(re)runs of the transaction, can be expressed as

TH,i =

Nw∑

k=0

NGkTH,ki,

and the mean lock holding time is

TH =
1

Nw

Nw∑

i=1

TH,i .

Lock Contention Probability

As already hinted, due to assumption (2) in Section 4.4, the lock contention probabil-
ity Pcont is uniform across all the data items, thus being independentof the specific
accessed data. Given that transactions arrive according toa Poisson Process, we also
use this assumpion for the lock arrivals. Hence, the lock contention probability can
be expressed as the expected data utilization factor, namely

Pcont =
λNwTH

D
.

Lock Waiting Time

Now we evaluateRk̃i , namely the average wait time experienced by a transaction
T when tries to acquire a lock held by any other active transaction T′. We remark
that if T′ successfully commits thenT gets aborted.Rk̃i corresponds to the average
residence time in statẽi of subgraphGk. We consider the approximation in which
at most one transaction is queued for lock acquisition on whichever data item. This
assumption is considered also in other studies on 2PL protocol (e.g. [53]). Note
that in our case this approximation is further supported by the fact that, differently
from 2PL, in this MVCC protocol if a transactionT′ commits, then any transaction
T waiting for a lock held byT′ gets immediately aborted. Hence, ifT′ commits,
T needs to wait for the completion of at most one transaction. We approximateRk̃i
as the mean residual time required byT′ to terminate the current run (with either
commit or abort), evaluated at the time of conflict occurrence, namely whenT enters
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stateRk̃i . The probability that, at the time of conflict occurrence,T′ is executing a
run modeled by subgraphGk is

Pcont,k =
NGkT

Tot
H,k

TTot
H

,

where

TTot
H,k =

Nw∑

i=1

TH,k,i ,

and

TTot
H =

Nw∑

k=0

NGkT
Tot
H,k .

Thus, at conflict time, the probability values forT′ to be in stateŝi and ĩ (with 1 ≤
i ≤ Nw) within subgraphGk are

Pcont,k̂i =
R̂ki

TTot
H,k

i,

Pcont,k̃i =
R̃ki

TTot
H,k

(i − 1),

and, finally, the probability forT′ to be in statecommitis

Pcont,k com=
Rk,com

TTot
H,k

Nw.

Now we introduce the conditional probabilitŷPk( j|i) to reach statêj during a (re)run
associated with subgraphGk, given that statêi (with i ≤ j) has already been reached
during that same run. Forj = i we have

P̂k( j|i) = 1,

and, for j > i, we have the following iterative expression

P̂k( j|i) = P̂k( j − 1|i)(1− (PI
A,k i+1 + PW,k,i+1PC

A,k,i+1)).

If, at conflict time,T′ was executing in statêi (with 1 ≤ i ≤ Nw), then we calculate
the residual lock holding time as

R̃k̂i = ak̂iR̂k,i + Bk̂i .

In the above equationak̂iR̂k,i is the average residual time ofT′ in the statêi (remember
that the mean residence time isR̂k,i) and Bk̂i is the additional time to terminate the
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current run given thatT′ has reached stateî. Note thatak̂i depends on the distribution
of the residence time in the stateî. This distribution is affected by the buffer hit
probability. In fact, if the accessed data item is not in the buffer then the I/O time
predominates over the CPU time. Conversely, if the data itemis in the buffer then
the distribution depends on the distribution of the CPU service time. We remember
that the I/O time is assumed to be fixed. Hence, as proposed in [9], we approximate
the residual time by settingak̂i = 2(1− PBH1) for 1 ≤ k ≤ Nw and 1≤ i < k, and
ak̂i = 2(1− PBH2) for 1 ≤ k ≤ Nw andk < i ≤ Nw.

As concernsBk̂i, we have

Bk̂i =

Nw∑

j=i+1

P̂k( j|i)(Rk̂i + PW,kiRk̃i) + P̂k(Nw|i)Rcom.

Similarly, if at conflict timeT′ is in statẽi (with 2 ≤ i ≤ Nw) we have

R̃k̃i = bR̃+ Bk̃i ,

where

Bk̃i =

Nw∑

j=i

P̂k( j|i)Rk̂i +

Nw∑

j=i+1

P̂k( j|i)(PW,kiRk̃i)

+P̂k(Nw|i)Rcom.

In this case we approximate the average residual timebBk̃i by usingb = 1 (as in the
case of exponential distribution service time).
Finally, if at conflict timeT′ is executing in statecommit, we have

R̃com= cRcom.

Also in this case we approximatẽRcom by usingc = 1
Overall, we expressRk̃i as

Rk̃i =

Nw∑

k=0

Pcont,k(
Nw∑

i=1

Pcont,k̂iR̃k̂i +

Nw∑

i=2

Pcont,k̃iR̃k̃i+

Pcont,k comR̃com).

Version Check Failure Probability

Version check for transactionT upon write access to data itemx fails if a concurrent
transaction wrotex and committed. As we assumed the system to be stable, the
rate of commit events is equal to the transaction arrival rate λ. By approximating
commit events occurrence as a Poisson Process, for assumption (2) in Section 4.4,
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we have that version check failure probability correspondsto the probability that the
requested data item has been updated by at least one concurrent transaction during
the time period from the startup of transactionT and the data access instant. Hence,
the version check failure probabilityPI

A,ki while performing the i-th write during an
run modeled by subgraphGk can be expressed as

PI
A,ki = (1− exp(−

λNw

D
~Rki)),

where~Rki is time between the startup ofT and version check occurrence. This time
can be evaluated as

~Rki =

i−1∑

j=0

(Rk̂i + PW,kiRk ĩ+1).

Version Access Cost Model

Existing implementations of multiversion concurrency control rely on different ap-
proaches for the management of data item versions. Some products (e.g. Oracle
Database [68]), explicitly store only the most recent committed data item versions,
so to reduce space usage, and exploit the information storedin the DBMS log to
reconstruct data pages when an older data item version is required. Instead, other
products use explicit version storing (e.g. PostgreSQL [66]). Given that our aim is to
provide an analytical model independent of specific implementation issues, we model
the cost of a read operation asnIF

r +nIV
r NV

read, whereNV
read is the number of backward

traversed data item versions in order to retrieve the correct one. With this approach,
further implementation dependent management costs (e.g. garbage collection cost)
could be modeled as additional workload on hardware resources, which we neglect
in the present analysis for simplicity.

In order to solve the previous read cost model, we now evaluate the average num-
ber of backward traversed versions for each read operation in stateî of whichever
subgraphGk, namelyNV

read,ki.
Given assumption (2) in Section 4.4, committed versions of adata item are born

with an approximated rateσ = λNw/D. Denoting with∆Ts,ki the time interval be-
tween transaction startup and the arrival in stateî of subgraphGk, we can then ap-
proximateNV

read,ki as

NV
read,ki = ∆Ts,ki σ.

Note that this value corresponds to the average number of versions committed during
the time interval∆Ts,ki. Using~Rki previously introduced, we approximate∆Ts,ki as

∆Ts,ki = ~Rki + Rk̂i/2.
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Hardware Resource Model

The CPU load (number of instructions) due to the execution ofa run represented by
subgraphGk is

Ck = nIb + NS
r (nIF

r + nIV
r NV

read,k0) + nIvc+

+P̂k(i)
Nw−1∑

i=1

(nIw + NS
r (nIF

r + nIV
r NV

read,ki) + nIvc)+

+P̂k(Nw)(nIw + NS
r (nIF

r + nIV
r NV

read,k Nw
))+

+P̂k(commit)nIc + (1− P̂k(commit))nIa.

where we denote withnIvc the average number of CPU instructions to perform ver-
sion check. Note that version check occurs in statesî (with 0 ≤ i ≤ Nw − 1). The
CPU utilization can be expressed as

ρ =
λ
∑Nw

k=0(NGkCk)

k MIPS
We denote withp[queuing] the wait probability for CPU requests, which can be
easily computed by leveraging classical queuing theory results on M/M/k queues
[69]. Then, definingγ = 1 + p[queuing]/(k(1 − ρ)), we can evaluate the average
response time for each state of the graph as

Rb = γ
nIb

MIPS
,

Rcom= γ
nIc

MIPS
,

Rabt = γ
nIa

MIPS
,

Rk̂i = γ
NS

r (nIF
r + nIV

r NV
read,ki) + nIw + nIvc

MIPS
+ TIOGki

wherenIw = 0 for i = 0, nIvc = 0 for i = Nw, andGki is expressed as

Gki = NS
r PBH1

for k=0 and i=0,
Gki = NS

r PBH2

for 1 ≤ k ≤ Nw andi = 0,
Gki = NS

r PBH2 + PBH2

for 1 ≤ k ≤ Nw andi = k,
Gki = (NS

r + 1)PBH2

for 1 ≤ k ≤ Nw and 1≤ i < k,

Gki = (NS
r + 1)PBH1

for 1 ≤ k ≤ Nw andk < i ≤ Nw.
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4.4.2 Numerical Resolution

The proposed model, analogously to, e.g., those in [70, 52, 9], can be solved via
an iterative approach. Once assigned numerical values to all parameters described
in Section 4.4 and tonIvc, PBH1 and PBH2, and once the initial values of all other
probabilities are set equal to 0, all model parameters can beevaluated via the provided
equations, and can be used as the input for the next iteration. We have experimentally
observed that, if the chosen initial values define a stable system, then the computation
converges in a few iterations.

4.4.3 Extended Analytical Model

We provide in this section an extension of the model, which isable to handle both
variable length transactions and non-uniform data access.In practice, this means
removing assumptions (1) and (2) in Section 4.4.

Variable Length Transactions

We adopt a transaction clustering approach based on the average number of opera-
tions executed by transactions within a same class. Specifically, transactions with a
similar number of read and write operations are grouped intoa classCrw, wherer
andw identify the corresponding number of expected reads and writes.

Further we denote withR andW two sets of integers, which are used to list the
average number of read and write operations of different classes. Thus, for eachCrw,
r ∈ Randw ∈W. We denote withX = {(r,w)} the set of all (r,w) pairs characterizing
the workload, hence|X| is the total number of classes. A transaction belongs to class
Crw with probability Prw

TC, thus the average arrival rate of transactions of classCrw is
λrw = λPrw

TC. Now we redefine some parameters appearing in the basic modelin order
to capture the presence of transaction classes. To this end,we use the superscript ’rw’
to denote the parameter redefinition for each classCrw. We have

Prw
W,ki = (1− PI ,rw

A,ki )Pcont,

wherePI ,rw
A,ki is version check failure probability for a transaction of classCrw, and

P̂rw
k (i) = P̂rw

k (i − 1)(1− (PI ,rw
A,ki + Prw

W,kiP
C
A,ki)).

The expected number of runs whose execution is represented by subgraphGk for a
transaction of classCrw is

Nrw
Gk
=

1

P̂rw
k (k)

×
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×

k−1∑

j=0

Nrw
G j

P̂rw
j (k − i)(PI ,rw

A, jk + Prw
W, jkPC

A, jk).

The mean times spent in the different states by a transaction of classCrw in a run
are the following

R̂rw
ki = P̂rw

k (i)Rrw
k̂i
,

R̃rw
ki = P̂rw

k (i − 1)PW,kiRk̃i ,

Rrw
k com= P̂rw

k (commit)Rrw
com

and
Rrw

k abt = (1− P̂rw
k (commit))Rrw

abt.

The mean execution time for a run modeled by subgraphGk is

Rrw
Gk
= Rbegin+ R̂rw

k0 +

w∑

i=1

(R̂rw
ki + R̃rw

ki ) + Rrw
k com+ Rrw

k abt.

and the mean transaction response time for classCrw is

Rrw
tx =

w∑

k=0

Nrw
Gk

Rrw
Gk
.

Concerning lock holding time equations in Section 4.4.1, the corresponding expres-
sions for transactions of classCrw are

Trw
H,ki =

w∑

j=i

R̂rw
ki +

w∑

j=i+1

R̃rw
ki + Rrw

k com,

Trw
H,i =

Nw∑

k=0

Nrw
Gk

Trw
H,ki,

and

Trw
H =

1
w

w∑

i=1

Trw
H,i .

Contention probability against transactions of classCrw can be expressed using
the average transaction arrival rates for the different classes, that is

Prw
cont =

λrwwTrw
H

D
,

thus the average contention probability becomes

Pcont =
∑

(r,w)∈X

Prw
cont.
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Version check failure probability for a transaction of classCrw is therefore

PI ,rw
A,ki = 1− exp(−

λwavg

D
~Rrw

ki ),

where

~Rrw
ki =

i−1∑

j=0

(Rrw
k̂i
+ Prw

W,kiR
rw
k ĩ+1

)

and

wavg =
∑

(r,w)∈X

λrww
|X|
.

The average lock waiting time becomes a weighted average across the waiting times
caused by transactions of different classes. Hence

Rk̃i =
1

Pcont

∑

(r,w)∈X

Prw
contR

rw
k̃i
,

whereRrw
k̃i

is the residual execution time of transactions specializedfor each single
class. Finally, to evaluate the average number of accessed versions for read opera-
tions, since committed versions of a data item are generatedwith an average rate

σ =
∑

(r,w)∈X

λrww
D
,

we have for read operations by a transaction of classCrw the following expression

NV,rw
read,ki = ∆Trw

s,ki σ,

where
Trw

s,ki =
~Rrw

ki + Rrw
k̂i
/2.

Expressions for the hardware resource model in Section 4.4.1 still hold when consid-
ering per class parameters.

Non-uniform Data Access

We now consider non-uniform data access probability. For each data itemx ∈ D
we denote asPD(x) the corresponding data access probability. For simplicity, we
consider in this section fixed length transactions, even though, in a similar manner to
what was done in the previous section, it is possible to consider several transaction
classes characterized by different lengths.
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Differently from the uniform access case, the contention probability depends on
the accessed data item. Data itemx is locked for an approximated average time
fractionλPD(x)NwTH, which we denote withPcont(x). Thus contention probability is

Pcont =
∑

x∈D

PD(x)Pcont(x) =
∑

x∈D

P2
D(x)λNwTH .

To evaluate version check failure probability we note that committed versions of data
item x are born with an average rateσ(x) = λPD(x)Nw/D, thus

PI
A,ki =

∑

x∈D

PD(x)(1− exp(−
σ(x)

D
~Rki)),

where~Rki is the same as in Section 4.4.1. Also, the average number of accessed data
item versions depends on the data access distribution. Hence, similarly to what done
in Section 4.4.1 we have

NV
read,ki(x) = ∆Ts,ki σ(x).

Therefore, the average number of accessed versions for a read operation in statêi of
subgraphGk is

NV
read,ki =

∑

x∈D

PD(x)NV
read,ki(x).

4.5 Simulation Model

The simulation model we used for validating the analitical model has been imple-
mented on a discrete-event simulation platform. It is inspired to a general architec-
ture of a database system and is similar to models used in other simulation studies
(e.g. [46, 71]).

The model simulates an open system. It contains the following simulation ob-
jects:

• Workload Generator (WG);

• Transaction Manager (TM);

• Concurrency Control Manager (CCM);

• Buffer Manager (BM).

• CPU;

• Disk.
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The WG is in charge of generating transactions according to an exponential distri-
bution. In the case of multiple transaction classes, to generate a new transaction,
the WG selects the transaction class on basis of the associated probability. For each
operation of a transaction, it randomly selects the accessed data item and the type
of operation according the read/write probability. The selections rely on a (pseudo)
random number generator. The TM receives transaction execution requests from the
WG and manages the execution of the transaction operations.The CCM acts accord-
ing to the rules of the MVCC protocol as considered in this study. Furthermore, the
CCM keeps a transaction wait-for-graph [5] for detecting transaction deadlocks. A
deadlock is resolved by aborting the arriving transaction,which is resubmitted by
the TM after a back-off phase. The BM is in charge of managing the buffer space.
When an access to a data item is requested, if it is in the buffer space then the request
is immediately served, otherwise the BM sends a request to the DISK. When the
DISK receives the request for a data item, the load entails a fixed delay, whereupon
the DISK notifies the BM of the completion of the request. The BM uses the Least
Recently Used replacement policy. The CPU have k cores with acommon queue.
When a processing request is received it is enqueued, and after a number of instruc-
tions associate with the processing request are executed then the CPU notifies of the
completion of the request .

A transaction is executed according the following model (tosimplify here we
assume that deadlock does not occur). The WG sends atransaction executionrequest
to the TM, together with the sequence of operations to be executed by the transaction.
The TM receives the request and sends abegin processingrequest to the CPU. When
the request has been processed the CPU notifies the TM of the completion. Then
the TM sends anoperation executionrequest for the first operation of the transaction
to the CCM. When the CCM allows to execute the operation, it sends the request to
the BM, where the request is possibly blocked for waiting a page load from the disk.
Hence anoperation executionrequest is sent to the CPU. When the CPU notifies the
BM of the completion of the request, the BM, in turn, notifies if the completion of
the request to the TM. At this point the TM can execute the nextoperation. When all
operations of the transaction have been completed, the TM sends acommit processing
request to the CPU. When the TM is notified of the completion, it sends acommit
request to the CCM, which releases all locks acquired by the transaction and notifies
the completion to the TM.

4.6 Model Validation

In this section we present a simulation study aimed at evaluating the accuracy of the
proposed analysis.

We consider a number of 10000 data items, and a buffer pool having size equal
to the 20% of the data set of the database. Concerning the number of instructions
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Figure 4.3: Latency Results.

required for the different phases of the execution of a transaction (e.g. the begin phase
and the data item read phase), we have used in both the simulator and the analytical
model values compliant with those used in the studies presented in [72, 9]. However,
our experiments are carried out considering more modern hardware. Specifically, for
both simulation and analytical model, the database system is assumed to be hosted
by a 8-CPU machine with processor speed equal to 1GHz.

In a first set of observations, we aimed to verify the accuracyof the basic ana-
lytical model, namely the one relying on the hypotheses of single transaction class
and uniform data access. For this setting, we report in Figure 4.3(a) the transaction
execution latency, the lock waiting time and the lock holding time (lock duration)
vs the transaction arrival rate. Transactions of the uniqueclass perform an expected
amount of 20 data item accesses, with 20% of them being write operations. By the
plotted results, we can see that the model provides a very good accuracy when com-
paring its latency prediction and the simulation outputs. Slight discrepancies between
analytical and simulative data can be observed for transaction workload close to the
system saturation point (i.e. on the order of 2500 transactions per second). To further
observe the behavior of the model, we plot the probability ofversion check failure
and the expected number of transaction (re)runs required for successful completion in
Figure 4.4(a) and in Figure 4.5(a), respectively. By the plotted results we have again
very good compliance between analytical and simulative values, unless for workload
close to the saturation point.

In a second set of experiments, we have considered non-uniform data access,
so to evaluate the accuracy of the model extension provided in Section 4.4.3. We
have focused on a single transaction class, with data accesspattern ruled by a Zipf
distribution function with parameterα. For this setting, we have fixed the transaction
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Figure 4.4: Version Check Failure Probability.

workload (at 300 transactions per second - TPS) and we have varied the value ofα
in between 0.3 and 0.8 (as in the classical range observed fordata access skew in
Web contexts [73, 74]). The results for latencies, version check failure probability
and expected number of (re)runs are reported, respectively, in Figures 4.3(b), 4.4(b)
and 4.5(b). As for the transaction execution latency, compared to the uniform data
access case, it shows a non-monotonic trend in the skewed data access case. This
is due to the mixed effects of both increased buffer hit and increased contention as
the parameterα of the Zipf distribution grows. The effects show different balances
while α gets increased so monotonic behavior is not guaranteed. However, also in
this case the analytical model provides results well matching the simulative data. An
increased discrepancy (compared to the uniform data accesscase) is observed near
the saturation point (which is reached forα values close to 0.8). This is mainly
due to the fact that, as the skew increases, the probability for a transaction to abort
because of an access to a highly popular data item correspondingly increases. The
subsequent re-execution of such transactions leads, in itsturn, to an overall increase
of the skewness of the initially assumed data access distribution, namelyPD(x). It is
our intention to enable the model to capture this phenomenonin a future work.

Finally, we have considered uniform data access but differentiated transaction
classes. This has been done to evaluate the accuracy of the extension of the analytical
model provided in Section 4.4.3. For this setting, we have considered 8 different
transaction classes, with different length in terms of requested data items, spanning
from about 20 up to 40 accessed data items, and with different percentages of read
vs write operations. In Figure 4.6, we report the expected execution latency for 4 of
the considered classes, as evaluated via both the analytical model and the simulator.
Again, we observe a very good compliance between analyticaland simulative data.
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Chapter 5

Performance Modeling of

Concurrency Control Protocol for

Software Transactional Memories

5.1 Introduction

In Section 2.4 we presented some basic differences between transactions in DBS and
in STMs. These differences have an impact on concurrency control. In fact, the
CCPs commonly adopted in database environments are not likely to fit some typical
requirements of STMs. For example, we discussed the opacity, which is considered
an adequate isolation level for STMs, and is actually provided by many STMs proto-
types. Typical optimistic protocols for DBMS do not preventtransactions doomed to
abort from seeing inconsistent data item values, hence theyare not able to guarantee
opacity. Let us give another example. We said that STMs are characterized by fine
grained volatile memory operations and the transaction execution time is typically
two or three orders of magnitude smaller than in database environments. As a conse-
quence, if database oriented locking protocols, where transactions are tipically forced
to wait on lock conflicts, are blindly ported to STMs environments and are actuated
on top of operating system supported mutex and/or semaphores, they would induce
excessive overhead and non-negligible thread (re-)schedule delay. E.g., if a thread
executing transaction is descheduled on lock conflict, the context-switching cost may
be much larger then the transaction execution cost, hence the transaction may expe-
rience an unacceptable execution time. At the same time, being STMs optimized for
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tightly-coupled multi-core/processor systems, if the thread is not descheduled on lock
conflict, the system performance may be penalized because oflower CPU utilization.

The wide set of database oriented performance analysis results represent an im-
portant reference point for the performance modeling of STMs. However, according
to the aforesaid observations, they can not be representative of a comprehensive per-
formance study for the STMs.

So far, the field of STMs has been very little explored by the performance mod-
eling community. In Chapter 3 we discussed the analytical performance models pro-
posed in the literature. Some of these models suffer from some limitations, while
others do not focus on the concurrency control. In the work presented in [62] a sim-
ple scenario is assumed, where transactions execute the commit operation serially by
acquiring a unique global lock. Read and write operations, as well as interleaved
operations, are not considered. The analytical framework proposed in [59] assumes
a fixed number of active transactions in the system. Actually, in real STM-based ap-
plications, threads alternate the execution of transactions and non-transactional code.
Furthermore, the framework abstracts over time by describing the execution of a
transaction as a sequence of steps whose duration is left unspecified. For these rea-
sons it is not aimed to evaluate the time-related performance metrics, such as the sys-
tem throughput and the transaction response time. The analytical models presented
in [63] and [64] are targeted to the prediction of time-related performance metrics,
but they do not focus on the CCP. In fact these works do not consider a specific
protocol. In the former work, the transaction conflict probability is assumed as input
to the model. In the latter, the conflict probability is simply estimated on the basis of
the overlapping sets of data items accessed by transactions.

In this chapter we focus on the concurrency control in STMs. We propose a new
modeling approach well-suited for STMs applications. In particular, we provide a
general modeling framework which overcomes the main lacks of the previous works
we discussed above. We use a two-layered modeling approach.A thread-level model
predicts the system performance as a function of the degree of concurrency within the
system, independently of the specific CCP adopted by the system. The latter aspect is
instead assigned to the transaction-level model, which canbe specialized on the basis
of a specific protocol. We provide an instantiation of the transaction-level model for
the case of the Commit-Time Locking (CTL) protocol. We presented this protocol
in Section 2.5, when we spoke about TL2 Software Transactional Memory (STM)
[12]. In Section 5.3.3 we provide a more detailed description of the protocol and
of the implementation mechanisms. The complete instantiation of the model allows
to evaluate the main performance metrics, as the system throughput and the average
transaction execution time, and additional specific metrics, as the abort probability
for a transaction for each transaction execution phase. Allthe metrics can be evalu-
ated with respect to various parameters, as the number of concurrent threads, the size
of the data item set, and different workload configuration parameters. The model has
been validated against simulation results obtained considering workloads configura-
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tions inspired to the widely used STAMP benchmark [11].
The remainder of this chapter is structured as follows. The analytical modeling

methodology, with the specific model instantiation for the CTL protocol, are pro-
vided in Section 5.3. In the same section, we describe an extension of the model to
cope with multiple transaction classes, and, further, we provide some hints to extend
the model to cope with non-uniform data access. In Section 5.4 we describe the sim-
ulation model. The evaluation study is presented in Section5.5. Finally, in Section
5.6 we provide some hints on how to relax some modeling assumptions.

5.2 System Model and Considerations

We consider an STM application with a number ofk active threads. Each thread
executes on a distinct CPU-core. This choice is motivated bythe fact that gener-
ally in STM applications, as concerns the parallelism, preventing the execution of a
number of transactions larger than the number of available cores is an effectiveness
approach to boost performance [36]. In fact, this can minimize the number of context
switchings and reduce the frequency of conflicts, keeping the high CPU utilization1.

Threads alternate the execution of transactions and non-transactional code blocks.
A non-transactional code block is formed by a sequence of machine instructions
which we denote asntcb. While executing a non-transactional code block a thread
performs only local computation, namely it does not access the shared data. Each
transaction starts with abeginoperation, then executes a number of transactional op-
erations (namely, eitherread or write operations) on shared data items and finally
ends by issuing acommitoperation. Overall, after thebeginoperation and after each
transactional operation the thread executes a code block, denoted astcb. Also in this
code block the thread does not access shared data. The threadmodel a the transaction
model are depicted in Figure 5.1.

We denote the expected time required by a thread to execute the begin, read,
write andcommitoperations withtbegin, tread, twrite andtcommit, respectively. Further-
more, we denote the expected duration oftcb andntcbasttcb andtntcb, respectively.
Whenever a transaction is aborted, anabort operation is executed, whose handling
has an expected durationtabort. After experiencing an abort, a transaction is tem-
porarily held in a back-off state for a time interval whose average value is denoted as
tbacko f f, at the end of which a new run of the transaction starts. We assume thatntcb
and the back-off interval have an exponentially distributed duration. Possible exten-
sions of the model to cope with cases wheretntcb andtbacko f f represent the mean of
generic distributions will be discussed in Section 5.6.

1We remark that in STMs, when a conflict occurs, tipically it ispreferable that the transaction

restarts, instead of descheduling the executing thread to free up the CPU-core.



46 CHAPTER 5

Figure 5.1: Thread model and transaction model.

All the durations defined above are assumed as input to the model. Note that, all
of them, excepttbacko f f, are affected by both the speed of the underlying hardware
platform and the internals of the underlying STM system. Thechoice of capturing the
above times through ad-hoc input parameters enhances the flexibility of our model for
two main reasons. (i) It allows the model to be employed for what-if analysis aimed at
forecasting the performance for diverse scenarios and/or workloads. As an example,
the model can be used to assess the performance of STM-based applications when
deployed on different hardware platforms (which might give rise to different machine
instruction patterns) or when changing the internals of theunderlying STM system.
(ii) It allows the model to be easily coupled with an hardwareresource model by
resolving the final model through iteration (in the same fashion that we did in the
models presented in chapters 3 and 4). Due to the latter reason, in this work we do
not care of the hardware resource model.
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5.3 The Analytical Model

5.3.1 Modeling Approach Overview

As discussed above, we logically structure our model in two distinct parts, each one
capturing complementary aspects of the execution dynamicsof STM-based applica-
tions. The first part of the model, which we name thread-levelmodel, is presented in
Section 5.3.2. It allows to determine how the various threads in the system alternate
among the following three phases (see figure 5.1) :

(i) execution of a non-transactional code block,

(ii) execution of an STM transaction,

(iii) blocked in back-off.

By allowing the determination of the probability distribution of the number of
threads in each of these three phases, this layer of the modelcan be used to output
standard performance metrics such as throughput and the average transaction execu-
tion time. This part of the model is de-facto oblivious of thespecific algorithm used
by the STM to regulate concurrency, over which it abstracts via two key input pa-
rameters: (a) the mean run execution time of a transaction (independently of its final
outcome) and (b) the commit probability for a run of a transaction, given a number
i ∈ [1, k] of threads concurrently executing transactions. Instead, these parameters are
computed by what we refer to as transaction-level model. Thelatter modeling com-
ponent is focused on capturing proper dynamics associated with the specific conflict
detection and resolution schemes adopted by the STMs, assuming a constant, albeit
parametric, number of threads simultaneously executing transactions.

By decoupling the modeling of the dynamics associated with thread alternation
among the various phases from the modeling of the concurrency control algorithm,
our two-layered modeling methodology provides the below reported benefits:

1. It simplifies the modeling stage of the concurrency control algorithm, dele-
gated to the transaction-level model. In fact with this approach, as we will
show, the transaction-level model does not require to explicitly consider dy-
namic variations of the number of threads concurrently executing transactions,
but it only requires to provide performance predictions under the assumption
that exactlyi threads are concurrently executing transactions. Then, itwill be
the responsibility of the thread-level model to exploit theindependent perfor-
mance forecasts associated with different values ofi in order to generate the
final performance predictions.

2. It allows seamless replacement of the model of the CCP withalternative ones,
either targeting different protocols and/or relying on different modeling ap-
proaches.
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Figure 5.2: State transition diagram of the CTMC fork = 3.

5.3.2 Thread-level Model

We model the execution of all threads via a Continuous Time Markov Chain (CTMC)
[69]. Each state of the CTMC is marked and identified by a couple of integers (i, j)
representing, respectively, the number of threads runningtransactions and the number
of threads in back-off. Since the total number of threads in the system is equal tok,
the only admissible states in the CTMC are those for which thecorresponding (i, j)
pair respects the constrainti + j ≤ k. Note that in each statek − i − j threads are
executing non-transactional code block.

We denote withλ = 1
tntcb

the rate according to which a thread executes a non-
transactional code block (in between two transactions). Furthermore we denote with
µi andpc,i , respectively, the execution rate of the runs of transactions (independently
of whether a run gets aborted or committed) and the probability for a run of a trans-
action to successfully commit, assuming that there arei threads concurrently running
transactions (namely when the system is in the state (i, j), with 0 ≤ j ≤ k). Note
that give a state (i, j), µi andpc,i depend only on the running transactions in the state.
For eachi, the thread-level model takesµi and pc,i as input parameters from the
transaction-level model.

We can now list the rules defining the transition rates of the CTMC:

- for i + j < k, the transition rate from state (i, j) to state (i + 1, j), associated
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with the run of a new transaction after a thread completed a non-transactional
code block, is equal toλ · (k− i − j);

- for i > 0, the transition rate from state (i, j) to state (i − 1, j), associated with
the commit event of a run of a transaction and the subsequent activation of a
non-transactional code block, is equal toi · µi · pc,i ;

- for i > 0, the transition rate from state (i, j) to state (i−1, j+1), associated with
the abort event of a run of a transaction and the start of the back-off period, is
equal toi · µi · pa,i ;

- for j > 0, the transition rate from state (i, j) to state (i+1, j−1), associated with
the termination of back-off periods and a new run of a transaction, is equal to
j · γ, whereγ = 1

tbacko f f
.

We exclude state (0, k) as a possible one since, (i) the CTMC characterizing our
model does not express state transitions where multiple transactions get simultane-
ously aborted due to (mutual) conflicts, and (ii) adopting whichever literature STM
concurrency control algorithm, if a single thread is currently executing a transaction
then it cannot be aborted. An example of the CTMC for the case of three threads
(namelyk = 3) is depicted in Figure 5.2.

As typically expected in any real system, assuming for any state wherei ∈ [1, k]
that µi > 0, pc,i , 0 and pc,i , 1 (the cases ofpc,i = 0 or pc,i = 1 express, re-
spectively, a pathological scenario with no possibility oftransaction progress and a
trivial scenario entailing no data contention), the CTMC isirreducible [61]. Thus the
steady-state probability vectorv can be computed by using following equations:

v · Q = 0 (5.1)

∑

(i, j)∈S

v(i, j) = 1 (5.2)

whereQ is the infinitesimal generator matrix of the CTMC andS is the set of states
of the CTMC. Assuming that we are provided withµi andpc,i values (∀i ∈ [1, k]), we
can evaluate the system throughputτ as the sum of the transaction commit rates in
the different states, weighted according to the probability for thesystem to be in each
state (i, j)

τ =
∑

(i, j)∈S′
v(i, j) · i · µi · pc,i (5.3)

(whereS′ is the subset ofS containing any state wherei > 0). The overall transaction
commit and abort probabilities, denoted aspc andpa, can be accordingly evaluated,
using the expressions
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pc =

∑
(i, j)∈S′ v(i, j) · pc,i∑

(i, j)∈S′ v(i, j)
(5.4)

and

pa = (1− pc) (5.5)

5.3.3 Transaction-level model: The Commit-Time Locking Case

In this section we introduce an analytical model of CTL protocol, focusing on the
version implemented within the TL2 STM layer [12]. This version is considered as
one of the best performing concurrency control algorithms for typical STM work-
loads. We start by overviewing such a target version of the CTL protocol, and then
we move to the presentation of its analytical model.

Algorithm Overview

CTL protocol acquires locks at commit-time, and locks only involves written data
items. This choice enhances concurrency with respect to conventional lock-based
schemes by, e.g., avoiding to block transactions issuing a write operation on a data
item that has already been read/written by a concurrent transaction. Given the ab-
sence of read-locks, consistency is ensured via a validation mechanism used to no-
tify transactionT, which speculatively read a data itemx, about the fact thatx was
overwritten by some concurrent transactionT′ precedingT in the commit order. To
this end, a versioning scheme is employed which associates atimestamp value with
each data item, referred to as Write-Version-Clock (WVC). The generation of WVC
values relies on a unique Global-Version-Clock (GVC), which is read by any transac-
tion upon startup, and is atomically increased upon transaction commit. The updated
value is used as the new WVC value for all the data items written by the committing
transaction. Manipulation of the GVC typically relies on a Compare-and-Swap (CaS)
operation directly exploiting atomic sequences of machineinstructions (e.g., via the
LOCK prefix in IA-32 compliant processors). In other words, each transaction up-
dates the GVC as an acyclic, one shot operation, which does not require software
spin-locking for accessing the corresponding critical section. Hence, any delay in the
access to the GVC is only related to the underlying firmware protocol used to sup-
port the atomicity of the machine instruction pattern implementing the CaS. When
validating a transaction against a read data itemx, two actions are performed:

1) it is checked whether there is a write-lock being held onx (which implies that
another transaction has writtenx and is currently within its commit phase);
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2) it is checked whether the current timestamp associated with x is greater than the
timestamp read by the transaction upon starting up (which indicates that some
concurrent transaction has overwrittenx and has already been committed).

If one of the previous checks fails, the transaction gets aborted. This validation
scheme is used upon read operations and, as we shall discuss below, also at com-
mit time. Accordingly, theopacityproperty [29] is guaranteed, which ensures that
the snapshot observed by any transaction (including transactions that are eventually
aborted), is equivalent to the one that would have been observed according to some
serial execution history. As discussed in [29], this property is crucial since for several
categories of STM-based applications, transactions observing an inconsistent snap-
shot may be trapped within infinite loops, or may even cause the application program
to crash (e.g., due to an invalid memory reference). As far aswrite operations are
concerned, in CTL they are buffered within a private workspace until the commit
phase. When a transaction attempts to commit, it first acquires the write-locks for
all the data items within its write-set. If any of these lock acquisitions fails (due to
lock holding by some other transaction), the transaction isaborted. Otherwise, the
transaction increments the GVC and tries to validate all thedata items it has within
its read-set (according to the aforementioned validation procedure). If the validation
fails for at least one item within the read set, the transaction gets aborted. If no abort
occurs, the data within the write-set are copied back to their original memory loca-
tions, updating their WVCs with the value of the GVC. All the acquired locks are
released at the end of the commit phase, or upon the abort. By the above descrip-
tion, we have that a read operation on a data item that was previously written by the
transaction gives rise to an access to the transaction private workspace. Thus it is not
subject to the previously depicted read validation mechanism. In other words, the
validation mechanism is used for read operations associated with any data item that
has not already been accessed in write mode by the transaction.

Analytical Model

In order to simplify the discussion, we present the analytical model in an incremental
fashion. We start by presenting the model considering that:

• all the transactions encompass the same amountn of operations;

• the accesses (both in read or write mode) to the shared data items are uniformly
distributed.

Model extensions to cope with multiple transaction profilesand non-uniform accesses
will then be discussed in Section 5.3.4 and Section 5.3.5.

In our analytical model, we rely on the following assumptions:
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• the sequence of read operations issued on shared data items form a Poisson
process;

• the arrival of transaction commit events form a Poisson process.

A discussion on how to relax the above assumptions will then be provided in
Sections 5.6

As already discussed, the transaction-level model computes the rate of the runs
of transactionsµi = 1/rt,i (wherert,i is the average run execution time) and the trans-
action commit probabilitypc,i under the assumption that there arei threads simulta-
neously processing transactions, with 1≤ i ≤ k. We analyze the casei = 1 andi , i
separately.

If i = 1, a single thread is currently executing transactional code, thus no data
conflict can arise. This also means that the currently executed transaction can not be
aborted and it follows thatpc,1 = 1. Therefore, for the average transaction execution
time we have that

rt,1 = tbegin+ n · top+ (n+ 1)ttcb + tcommit (5.6)

wheretop, namely the average time to execute an access operation on a shared data
item, is equal to

top = tread(1− pwrite) + twrite · pwrite (5.7)

where we denote withn the number of transactional operations on shared data items
within a transaction, withpwrite the probability that the access is in write mode, and
with (1− Pwrite) the probability that the access is in read mode.

As already discussed in Section 5.3.3, if the transaction accesses a data itemx in
write mode, producing a new version, any subsequent read onx by the same trans-
action will return the previously written version, retrieving it from the transaction
private workspace. Analogous considerations apply for subsequent writes over the
same data itemx, which will simply update the copy ofx buffered within the private
workspace. Hence read/write operations issued on previously updated data items are
simply not taken into account by the parametern. On the other hand the cost of the
corresponding accesses within the private workspace is encapsulated inttcb.

By the previous notation, we have that

nwrite = n · pwrite (5.8)

is the average number of shared data items accessed by the transaction in write mode,
and

nread = n · (1− pwrite) (5.9)

is the average number of read operations occurring on distinct shared data items that
were not already accessed by the transaction in write mode.
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For i , 1 we proceed as follows. Once fixedi, we use a procedure that iteratively
recalculates the values ofpc,i andrt,i . Upon starting the iterative procedure, the initial
values can be selected aspc,i = pc,i−1 and rt,i = rt,i−1 for commodity. The output
values by an iteration step are used as the input values for the next step. We conclude
the iterative procedure as soon as the corresponding input and output values forpc,i

andrc,i differ by at most anǫ. In all the configurations that we have experimented,
usingǫ=1%, the procedure has always converged in at most fifteen iterations.

In each iteration step the following set of parameters, captured by our model, are
re-evaluated:

- po
a,l , namely the probability for a transaction to abort while executing itslth op-

eration due to validation fail (recall that a transaction can abort while executing
an operation only if the operation is a read);

- palc, namely the probability for a transaction to abort at committime due to
lock contention experienced in the commit-time lock acquisition phase;

- pav f, namely the probability for a transaction to abort at committime due to
validation failure of its read-set.

In order to model these parameters, we consider that the expected system state
seenby any of thei active transactions is determined by the activities associated with
the otheri − 1 transactions currently within the system. Thus we use the following
approach.

When a transaction successfully commits, an average numbernwrite of write-locks
are first acquired, and then released after read-set validation and write-back phases.
Actually, the duration of the lock acquisition and release phases are typically negligi-
ble with respect to the duration of validation and write-back phases (recall that, dur-
ing lock acquisition, transactions do never block, even if they experience contention).
Hence, for simplicity, we assume lock acquisition and release to be instantaneous and
to occur, respectively, at the beginning and at the end of thecommit phase. Also, if
a transaction is aborted, no real rollback operation is required for undoing the ef-
fects of the corresponding write operations since transaction write-sets are reflected
to memory only in case of succesful commit attempts. Thus, tosimplify, we ignore
the cost of aborts when we evaluate the average lock holding time, by assuming that
if a transaction successfully completes the lock acquisition phase, it holds the locks
for an average time equal totcommit.

Let us now compute the probability for a transaction to abortwhile executing a
read operation on a shared data itemx, given that it finds the corresponding write-lock
currently busy. For this case to be possible, there must exist another transaction that
has writtenx, that is currently in its commit phase and that has successfully acquired
the write-locks for all the data items in its write-set. Given that we are assuming
uniformly distributed accesses to distinct data items within a transaction, it follows
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that the probability for a committing transaction to have a specific data item within its
write-set isnwrite/d. Exploiting the aforementioned assumption of Poissonianity of
the arrival process of read operations, we can rely on the PASTA property (Poisson
Arrivals See Time Averages) [75] to compute the probabilityto incur in a raised
write-lock during a read operation as

plock = lr · tcommit ·
nwrite

d
(5.10)

wherelr is the rate according to which the remainingi − 1 transactions in the system
successfully execute the write-lock acquisition phase. This rate can be evaluated as
follows

lr =
1
rt,i
· (pc,i + pav f) · (i − 1) (5.11)

wherepav f is the probability for a transaction to abort during the read-set validation
phase. Such a transaction contributes anyway to the lock-acquisition rate since read
set validation occurs after write-locks are acquired at commit time over any written
data item. We will evaluatepav f later in this subsection.

Now we determine the probabilitypo
a,l for a transactionT to abort while executing

the l-th operation. The rateur at which a data item is updated by transactions is equal
to

ur = cr ·
nwrite

d
(5.12)

wherecr expresses the rate at which the otheri − 1 transactions successfully commit,
and can be evaluated as

cr =
1
rt,i
· pc,i · (i − 1) (5.13)

Upon thel-th operation by transactionT, the average timetb,l elapsed sinceT
started its execution can be expressed astbegin + ttcb · l + top · (l − 1). As we are
assuming that the arrival of transactions to the commit phase forms a Poisson process,
the probabilitypo

u,l for a read (executed as thel-th operation ofT) to access a shared
data item that has been updated by some successfully committing transaction afterT
started can be expressed as

po
u,l = 1− e−ur ·tb,l (5.14)

In the above expression, in order to avoid overcomplicate the model, we decided
not to capture the case of repeated transactional read operations on the same data
item. In this case, in fact, the invalidation window for a data itemx would no longer
correspond to the time elapsed since the beginning of the transaction (namelytb,l),
but would be equal to the (average) time elapsed since the last occurrence of a read
on x. Clearly, the error introduced by this modeling choice depends on the actual
frequency of occurrence of repeated read operations on the same data item during the
same transaction. On the other hand, the model captures faithfully the effects of a
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frequent optimization technique (possibly implemented atthe compiler level), which
allows sparing subsequent read operations issued within the same transaction on the
same data item from the cost of validation. To this end, it is sufficient to copy the
values read from the shared transactional memory to thread local variables, and to
redirect subsequent reads on these data items (within the same transaction) towards
the thread local variables. Note that, since with this optimization subsequent read
operations on a data item do not target the shared transactional memory, they do not
even need to be accounted for while computing the value of theparametern.

We can now evaluate the probability for a transaction to abort during the execu-
tion of its first operation (i.e., whenl=1), namelypo

a,1 as

po
a,1 = (1− pwrite) · (plock + (1− plock) · p

o
u,1) (5.15)

Since the abort of a transactionT during itsl-th operation (where 2≤ l ≤ n) implies
thatT did not abort during its previousl − 1 operations, it follows that

po
a,l = po

na,l · (1− pwrite) · (plock + (1− plock) · p
o
u,l) (5.16)

where po
na,l is the probability of not aborting until the completion of the (l − 1)th

operation. For this last probability we have

po
na,1 = 1 (5.17)

and
po

na,l = (1− po
a,l−1) · po

na,l−1 (5.18)

In equations (5.15)-(5.16) we have assumed that the event offinding a write-lock
raised on the shared data item by a concurrent transaction currently attempting to
commit, and the event that the same data item was previously updated by a different
(already committed) concurrent transaction are independent. Overall, independence
is related to that these events belong to commit time activities across distinct transac-
tions.

The probabilitypalc for a transactionT to abort at commit time due to lock con-
tention while acquiring the write-locks can be evaluated asfollow. T can experience
contention while requesting the lock on a data itemx only if, at the time in which
T starts its commit phase, some other transaction that has written x has successfully
completed its lock acquisition phase, and is still executing the commit procedure.
Considering thatT aborts only ifat least oneof the data items in its write-set is
locked, then, as in [9], we approximate this last probability, namelypwlc, with an
upper bound value, that is

pwlc = 1− (1− plock)
nwrite (5.19)

Thus we have
palc = po

na,n+1 · pwlc (5.20)
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where we recall thatpo
na,n+1 is the probability for a transaction not to be aborted until

the completion of itsnth operation, that is until it enters its commit phase. Conse-
quently, the probabilitypla

na for a transaction not to be aborted during its execution
and to succeed in its commit-time lock acquisition phase is equal to

pla
na = po

na,n+1 · (1− pwlc) (5.21)

Let us now show how we can evaluatepav f, namely the probability for a transac-
tion T to abort at commit time due to validation failure for its read-set. The validation
fails if at least one data itemx belonging to the read-set ofT has the corresponding
write-lock raised by another transaction, or if a new version of x has been committed
after the validation executed byT during its last read operation onx. We denote with
pr

u,l the probability that the shared data item accessed in read mode at thelth operation
by T has been updated after the last validation (occurred upon the corresponding last
read operation onx). We calculate this probability as follows

pr
u,l = 1− e−ur ·tv,l (5.22)

wheretv,l is the elapsed time since the original validation, that is

tv,l = (ttcb + top) · (n− l + 1)+ tcommit (5.23)

Analogously to what we did in equation (5.16), we evaluate the abort probability
due to failure in the validation of the data item associated with the lth transactional
access ofT as follows

pr
a,l = pr

na,l · (1− pwrite) · (plock + (1− plock) · p
r
u,l) (5.24)

wherepr
na,1 = 1 and, forl > 1, pr

na,l = (1− pr
a,l−1) · pr

na,l−1. Then, we can expresspav f

as
pav f = pla

na · prv f (5.25)

where

prv f =

n∑

l=1

pr
a,l (5.26)

Finally, successful commit probability for the case ofi active threads can be evaluated
as

pc,i = pla
na(1− prv f ) (5.27)

The average execution time of a transactionrt,i can now be computed as the sum
of the average time for a transaction to reach a different execution phase, weighted
with the probability for the transaction to abort exactly during that phase. Let us
denote with
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- ta,l the average duration of a transaction that aborts during itsl-th operation,
that is:

ta,l = tbegin+ l · (ttcb + top) + tabort (5.28)

- t1 = tb + ttcb + tabort the average duration of a transaction that aborts during its
commit phase due to contention while acquiring locks for thedata items in its
write-set, where

tb = tbegin+ n · (ttcb + top) (5.29)

- t2 = tb + ttcb + tcommit+ tabort the average duration of a transaction that aborts
during its commit phase due to failure in validating its read-set;

- t3 = tb + ttcb + tcommit the average duration of a transaction that successfully
commits.

Overall, the average transaction execution time can be expressed as

rt,i =

n∑

l=1

(po
a,l · ta,l) + palc · t1 + pav f · t2 + pc · t3 (5.30)

Now let us evaluate the timetGVC spent by any committing transaction while
updating the GVC. We consider this time logically included in tcommit, thustcommit is
the sum of two terms, namelyt′commit andtGVC, wheret′commit is the time to execute
all the other operations, distinct from GVC manipulation, during the commit phase.
As explained in Section 5.3.3, the atomic operations required for the update of GVC
typically rely on firmware level protocols offered by modern SMP and/or multi-core
machines. Assuming fairness by these protocols vs different CPU/core requests, we
model the delay for performing an atomic increment of the GVC, denoted astGVC,
by means of an M/D/1 queue [69] with service rateµ = 1

tinc
GVC

(wheretinc
GVC expresses

latency for the updating machine instructions, once the firmware has granted access
to the corresponding critical section) and arrival rateβ = lr (note that the increment of
the GVC is performed by any transaction that successfully acquired all the requested
locks). According to this modeling approach,tGVC corresponds to the residence time
within the M/D/1 queue, namely

tGVC = (1+
ρ

2 · (1− ρ)
) · tinc

GVC, (5.31)

whereρ = β
µ
.

5.3.4 Coping with Multiple Transaction Classes

In this section we extend the analytical model by considering the case ofq different
transactional classes, associated with different transaction profiles. The number of
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operations executed by a transaction of classm, with m ∈ [1, q], is denoted bynm,
and each operation is a write operation with probabilitypm

write. Hencenm · (1− pm
write)

expresses the total amount of distinct transactional read accesses. A thread executes
a transaction of classm with probability Pm. Also, tmcommit andtmabort are the expected
commit time and abort time for a transaction of classm, respectively.

Multi-class Thread-level Model

For q transactional classes, the state of the CTMC can be identified by 2q integers
(i1, .., iq, j1, .., jq) whereim and jm (with m ∈ [1, q]) represent the number of threads
running transactions of classm and the number of threads in backoff due to an abort
of a transaction of classm, respectively. Note thati1 + .. + iq + j1 + .. + jq ≤ k for
each state of the CTMC.

For any state (i1, .., iq, j1, .., jq), the average transaction execution rate and the
transaction commit probability for a transaction of classm depend on the mix of
active transactions in that state. Thus we denote them asµm

i1,..,iq
and pm

c,i1,..,iq
, respec-

tively. Also, the abort probability for a transaction of classm while residing in state
(i1, .., iq, j1, .., jq) is denoted aspa,i1,..,iq = 1− pc,i1,..,iq.

The rate according to which a thread executes a new transaction of classm is
λm = Pm/tntcb. The rules defining the transition rates from any two states of the
CTMC are the following:

- for i1+...+iq+ j1+...+ jq < k, the transition rate from state (i1, ..., im, ..., iq, j1, ..., jq)
to state (i1, ..., im + 1, ..., iq, j1, ..., jq), associated with the activation of a run of
a transaction of classm is equal toλm(k− i1 − ... − iq − j1 − ... − jq);

- for im > 0, the transition rate from state (i1, ..., im, ..., iq, j1, ..., jq) to state
(i1, ..., im − 1, ..., iq, j1, .., jq), associated with a successful commit event of a
transaction of classm is equal toimµm

i1,...,iq
pm

c,i1,...,iq

- for i1 + ... + im + ... + iq ≥ 2 and im ≥ 1, the transition rate from state
(i1, ..., im, ..., iq, j1, ..., jm, .., jq) to state (i1, ..., im−1, .., iq, j1, .., im+1, ..., jq), as-
sociated with an abort event of a transaction of classm is equal toimµm

i1,...,iq
pm

a,i1,...,iq

- for jm > 1, the transition rate from state (i1, ..., im, ..., iq, j1, ..., jm, ..., jq) to
state (i1, ..., im+ 1, ..., iq, j1, ..., jm− 1, ..., jq), associated with the termination of
a back-off period of an aborted transaction of classm is equal toγ · jm.

We can evaluate the stead-state probability vectorv for the CTMC as we made in
Section 5.3.2 for the case of single transaction class. Hence, the execution rateτm of
transactions of classmcan be expressed as

τm =
∑

(s′)∈S′
vs′ · im · µ

m
s′′ · p

m
c,s′′ (5.32)
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where we useds′ in place ofi1, .., iq, j1, .., jq ands′′ in place ofi1, .., iq, and whereS′

is the subset ofS containing any state whereim > 0. The overall system throughput
is

τ =

q∑

m=1

τm (5.33)

The commit probability for a transaction of classm is

pm
c =

∑
(s′)∈S′ vs′ · pm

c,s∑
(s′)∈S′ vs′

(5.34)

Multi-class Tread-level Model for CTL

Fixed a configuration of active transactionsi1, .., iq, the thread-level model is in charge
of evaluating for each transactional classm the rate of the runs of transactionsrm

t,i1,..,iq
and the transaction commit probabilitypm

c,i1,..,iq
. As for the single-class models, if

there is just one active transaction, that isim = 1 andiw = 0 for eachw , m, the
average transaction execution time of the transaction of classm is

rm
t,i1,..,iq

= tbegin+ nm · top+ (nm + 1)ttcb + tmcommit (5.35)

wheretmop, namely the average time to execute an access operation on a shared data
item for a transaction of classm, is equal to

tmop = tread(1− pm
write) + twrite · p

m
write (5.36)

When the number of active transactions is greater that one weuse the same iter-
ative approach as in Section 5.3.3, by stopping the iterations when two consecutive
values of the commit probability for transactions of each classm (if im ≥ 1) differ by
at most anǫ. Also, in what follows we use the same assumptions and considerations
as in Section 5.3.3.

When a transaction of classm is active, its concurrent transactions are:

- ix active transactions of each other classx such thatx , mandix ≥ 1;

- im − 1 active transactions of the same classm, if im ≥ 2.

At the start of each iterative step we evaluate the followingparameters. The lock
rate associated with transactions of each classx, expressed as

lxr =
1

rx
t,i1,..,iq

· (px
c,i1,..,iq

+ px
av f) (5.37)

wherepx
av f is the probability for a transaction of classx to abort during the read-set

validation phase. The probability for a transaction of class m to find a write-lock
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raised while issuing a read operation, which is expressed as

pm
lock =

q∑

x=1,x,m

lxr · ix · tcommit
nx · px

write

d
+ lmr · (im − 1) · tcommit

nm · pm
write

d
. (5.38)

The commit rate associated with transactions of classx, which is expressed as

cx
r =

1
rx
t,i1,..,iq

· px
c,i1,..,iq (5.39)

Finally, the update rate by concurrent transactions of a transaction of classm, which
is expressed as

um
r =

q∑

x=1,x,m

cx
r · ix

nx · px
write

d
+ cm

r · (im − 1)
nm · pm

write

d
. (5.40)

After solving the previous equations, we evaluate in each iterative step all the param-
eters we list below. The probabilitypo,m

u,l for a read operation, executed as thel-th
operation of a transactionT of classm, to access a data item that has been updated
by some successfully committing transaction afterT started, which can be expressed
as

po,m
u,l = 1− e−um

r ·t
m
b,l (5.41)

wheretmb,l is the average elapsed time since the validation performed on the data item
upon the read access by the transaction of classm, which can be evaluated the same
way as the single-class case.

The probability to abort while executing the 1-st operationon a shared data item
for a transaction of classm, expressed as

po,m
a,1 = (1− pm

write) · (pm
lock + (1− pm

lock) · p
o,m
u,l ), (5.42)

and the probability to abort while executing thel-th operation withl ≥ 2 for a trans-
action of classm, expressed as

po,m
a,l = po,m

na,l · (1− pm
write) · (pm

lock + (1− pm
lock) · p

o,m
u,l ) (5.43)

where po,m
na,l is the probability of not aborting until the completion of the (l − 1)th

operation, for which we have
po,m

na,1 = 1 (5.44)

and
po,m

na,l = (1− po,m
a,l−1) · po,m

na,l−1 (5.45)

The contention probability during write-lock acquisitionphase for a transaction
of classmcan be then approximated as
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pm
wlc = 1− (1− pm

lock)
nm·pwrite (5.46)

Hence the probability for a transaction of classm to abort at commit time due to
write-lock contention is

pm
alc = po,m

na,nm+1 · p
m
wlc (5.47)

The probability for a transaction of classmnot to be aborted during its execution
and to succeed in its commit-time lock acquisition phase is

pla,m
na = po,m

na,nm+1 · (1− pm
wlc) (5.48)

The probability that a data item in the read-set of a transaction belonging to class
m, which is accessed at thel-th transactional operation, has been updated whenT
executes the read-set validation can be expressed as

pr,m
u,l = 1− e−um

r ·t
m
v,l (5.49)

wheretmv,l is the elapsed time since the original validation, which canagain be com-
puted teh same way as for the single-class case.

Thus the abort probability due to failure in the validation of the lth data item
within the read-set can be evaluated as follows

pr,m
a,l = pr,m

na,l · (1− pm
write) · (pm

lock + (1− pm
lock) · p

r,m
u,l ) (5.50)

wherepr,m
na,1 = 1 and, forl > 1, pr,m

na,l = (1− pr,m
a,l−1) · pr,m

na,l−1. Hence, the probability for
a transaction of classm to abort during the read-set validation phase can be expressed
as

pm
av f = pla,m

na · p
m
rv f (5.51)

where

pm
rv f =

nm∑

l=1

pr,m
a,l (5.52)

Finally we can evaluate the probability of successful commit when residing within
state

(i1, .., iq) as
pm

c,i1,..,iq
= pla,m

na (1− pm
rv f ) (5.53)

For brevity we do not detail the equations for the evaluationof average transaction
execution time andtGVC because they can be simply derived by using the same ap-
proach we have show at the end of Section 5.3.3. In fact, the evaluation of the average
transaction execution time for a transaction of classm can be done by using the al-
ready provided set of equations, by substituting the parameter values that depend on
the specific transactional class with the ones we calculatedin this section. Regarding
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the evaluation oftGVC, by using the approach discussed in Section 5.3.3, we have just
to evaluateλ as the sum of the lock rate due to all the active transactions across the
different classes, namely

λ =

q∑

m=1

lmr · im (5.54)

5.3.5 Hints on Model Extension for Non-uniform Data Access

By relying on the approach in [9], which has been proposed forthe case of concur-
rency control algorithms in database systems, our model could be extended to cope
with non-uniform data accesses. We provide hints on how the extension could be
realized in this section.

The proposed approach considers the whole set ofd shared data items as grouped
in s disjoint subsets, possibly exhibiting different cardinalities. The set ofn opera-
tions executed by a transaction are grouped ins different subsets, possibly exhibit-
ing different cardinalities, where each operation accesses a data item belonging to
a different data subset. The accesses executed on each subset of data items by a
transaction are uniformly distributed over the subset.

Different subsets of data items exhibit different access frequencies. As a conse-
quence, the probability to find a lock raised on a data item andthe data item update
rate are different for each specific subset of data items. To evaluate themfor a given
subset we can use the same equations (5.10) and (5.12) by considering, in place ofn,
only the subset of operations executed by the transactions on that specific subset of
data items. Consequently, the subsequent equations, expressing the abort probability
for a transaction, can be determined by considering the probability of finding the lock
raised and the data item update rate as differentiated for each subset, and then weight-
ing the corresponding effects by the fraction of operations executed on the specific
subset.

5.4 Simulation model

The simulation model has been implemented on a discrete-event simulation plat-
form. It simulates a closed system withk concurrent threads which access shared
data through an STM layer. The model incorporatesk Thread (TH) simulation ob-
jects and an STM simulation object. Each TH simulates a thread which alternates
the execution of transactions and non-transactional code blocks. The STM regulates
the concurrency on basis of the rules of the considered CTL protocol. It keeps a
list of d data items, and for each data item it keeps anupdatetimestamp and a lock.
Furthermore, the STM keeps an integer value to simulate the GVC mechanism.

When a TH has to execute a new transaction, the latter is created by selecting
(relaying on pseudo-random number generation) the transaction class, the data items
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to be accessed and, for each data item, the access mode (writeor read). Then the TH
sends abeginrequest to the STM. Upon abeginrequest the STM reads the value of
the GVC and assigns this value to thebegin timestamp of the transaction. After a
time tbegin the STM notifies the TH of the completion of the request. Then the TH
waits for an exponential time with meanttcb (in order to simulate the execution of a
tbc) and sends to the STM anoperation executionrequest for the first operation of the
transaction. Upon this request the STM checks if the operation is a read or a write.
In the former case it checks if the accessed data item is not locked and if theupdate
timestamp of the requested data item has a value less than thebegintimestamp of the
transaction. If at least one check fails, then the transaction gets aborted. In this case,
the STM, after a timetread+tabort, notifies the TH of the abort event. Otherwise the
STM, after a timetread, notifies the TH of the completion of the operation. In the case
of write operation the STM simply notifies the TH of the completion of the operation
after a timetwrite. When the TH receives the notification of the completion of an
operation, it continues by simulating the execution of the next tbc and after it moves
to the next operation. When all operations of a transaction and the lasttbchave been
executed, the TH sends acommitrequest to the STM. The latter executes the commit
operation as follows. If at least one data items in the write-set of the transaction is
locked by another transaction then the STM notifies, after a time tabort, the TH of the
abort event, otherwise it acquires all locks. In the latter case the STM continues the
commit operation by incrementing the GVC and then by validating the read-set, i.e.
by checking if at least oneupdatetimestamp of the data items in the read-set has a
value greater than thebegintimestamp of the transaction. If the validation fails then
the STM releases all previously acquired locks and notifies the TH of the abort event
after a timetcommit+tabort. Otherwise the STM updates all theupdatetimestamps of
the locked data items with the new value of the GVC, releases all acquired locks and
notifies the TH of the commit event after a timetcommit. When the TH receives such
a notification, it waits for a exponential time with meantntbc (in order to simulate
the execution of antbc) and then it moves to the execution of the next transaction.
When the TH is notified of an abort event, it waits for an exponential time with mean
tbacko f f and then re-executes the aborted transaction by sending to the STM the new
beginrequest.

5.5 Validation

In this section we provide the results of an evaluation studyaimed to verify the accu-
racy of the proposed modeling methodology, and of the presented CTL model. The
study is based on the comparison between some key performance parameters deter-
mined via our analytical model and the corresponding valuesas obtained by means
of the simulation model described in Section 5.4. The simulation results were ob-
tained by repeating a number of independent runs (with different initial seeds for
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the random generators) until the amplitude of the 90% confidence intervals on the
throughput (committed transactions per second) became smaller than 10% of the av-
erage throughput value.

The workload parameters for this study have been selected onthe basis of mea-
surement and tracing activities, carried out for the STAMP benchmark [11]. To this
end, we have exploited an implementation of TL2 which we haveinstrumented to
trace the data access pattern and the costs associated with the corresponding opera-
tions, as well as the internal operations performed by the STM layer. Measurements
have been carried out using a quad-core 2.4 GHz machine equipped with 4 GB of
RAM and running the Suse Linux operating system (kernel 2.6.17).

In our study we focus on two of the applications included in the STAMP bench-
mark, namely Intruder and Vacation. Intruder is a signature-based network intru-
sion detection system which processes network packets in parallel via a user-tunable
number of threads that concurrently update two main data structures, namely a FIFO
queue and a self-balancing tree. In this benchmark, each thread spends around 33%
of the time executing transactional code, and generates relatively short transactions,
belonging to three different classes (capture, reassembly, and detection), the 90% per-
cent of which exhibit a read plus write set made of up ton = 71 items, 30% of which
are accessed in write mode. Based on our measurements, we setttcb = 0.5µsec,
tntcb = 5µsecandtcommit= 2µsec.

Vacation, on the other hand, implements an on-line transaction processing system
emulating a travel reservation system. The system is implemented as a set of trees that
keep track of customers and their reservations for various travel items. Client threads
perform a number of sessions, each one enclosed in a coarse-grained transaction
(compared to Intruder), which are again differentiated into three classes (reservations,
cancellations, and updates), all interacting with the travel system’s data layer. In
this application, client threads spend almost all their execution time (92%) executing
transactions, the 90% percent of which exhibit a read plus write set made of up ton =
200 items, 12% of which are accesses in write mode. Based on our measurements,
we setttcb = 0.2µsec, tntcb = 5µsecandtcommit= 5µsec

In addition to the above parameters, we used our tracing facility to determine also
the following set of parameters:tbegin = 0.2µsec, tread = 0.25µsec, twrite = 0.2µsec,
tabort = 1µsec. Finally, the back-off period,tbacko f f, was set to 2µsec.

By the above description, both the selected benchmark applications entail multi-
class transactions. Hence the tracing process and the related outcomes have been
used in a differentiated manner depending on whether the target is the validation of
the single-class or the multi-class model.

To validate the single-class model, we configured the simulator to generate dura-
tions of the above mentioned timing activities based on exponential distributions. On
the other hand, the validation of the multi-class version ofthe model, which captures
more in detail the execution dynamics of the STM system, has been performed by
replaying within the simulator the exact timing of actions as logged in the execution
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Figure 5.3: Throughput.

traces.

As for data accesses, the simulator generates them according to a uniform distri-
bution across the total number ofd data items/memory words (in compliance with the
assumptions of our analytical model). The parameterd is treated as an independent
parameter of the validation study. Note that, once fixed the number of threads, varia-
tions ofd allow to capture settings with differentiated levels of contention, which, in
their turn, determine different transactions’ abort probabilities. Clearly, higherlevels
of data contention are achieved when the memory is configuredwith lower values
of d, since transactional memory accesses by the threads are distributed on a smaller
number of distinct memory words. We consider different values for the parameterd,
associated, respectively, with reduced and increased values of the benchmarks’ data-
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Figure 5.4: Commit probability.

set size according to the indications provided in [11]. Specifically, for Intruder, we
setd to 1,000 and 10,000, whereas, for Vacation, we setd to 10,000 and 100,000.

5.5.1 Single-class Case

The comparison between analytical and simulation results is based on the following
four parameters: (A) the system throughput (Figure 5.3), (B) the commit probability
(Figure 5.4), (C) the mean execution time evaluated over each single run of transac-
tions, independently of whether the run is committed or aborted (Figure 5.5) and (D)
the likelihood of each of the possible causes of transactionabort (Figure 5.6).

The plots in Figure 5.3 and Figure 5.4 point out the accuracy of the presented



5.5. VALIDATION 67

 30

 35

 40

 45

 50

 55

 60

 65

 70

 2  4  6  8  10  12  14  16

M
ea

n 
R

un
 E

xe
cu

tio
n 

T
im

e 
(µ

se
c)

Threads

Mean Run Execution Time (Intruder Benchmark)

1K Address Space Size - Sim
1K Address Space Size - Model
10K Address Space Size - Sim

10K Address Space Size - Model

 50

 60

 70

 80

 90

 100

 110

 2  4  6  8  10  12  14  16

M
ea

n 
R

un
 E

xe
cu

tio
n 

T
im

e 
(µ

se
c)

Threads

Mean Run Execution Time (Vacation Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model
100K Address Space Size - Sim

100K Address Space Size - Model

Figure 5.5: Mean run execution time.

analytical model, highlighting how analytical and simulation results coincide across
the whole considered region of the parameters space, namelylow vs high number of
threads, as well as large vs small address space. In Figure 5.4, in correspondence
with the lower value ofd, we can appreciate the accuracy of the analytical model
even in high contention scenarios (namely, for very reducedvalues of the transac-
tion commit probability). As for Figure 5.5, we remark how, when considering the
case of smaller address spaces, the relatively high contention probability often leads
transactions to be early aborted (i.e., as soon as the first conflicting memory reference
is issued), thus contributing to a reduction of the mean value for the run execution
time. (Recall that the mean run execution time is evaluated over both committed
and aborted run instances.) On the other hand, we observe an increase of the mean
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run execution time in the configuration with larger address space, where the weight
of aborted run instances becomes lower. Note that, due to theaforementioned early
abort phenomenon, the variance of the mean run execution time grows in high con-
tention scenarios. The above phenomenon, and their effects on the observed mean
value, are correctly captured by our analytical model with very limited error, which
is an additional support of the high accuracy of our analytical approach. The only
exception is represented by the case of the Vacation benchmark when configured to
use the smaller address space. In this case, the accuracy of the analytical model in
predicting the mean run execution time is in fact subject to aslight deterioration as
the number of threads increases. We argue that this is imputable to the fact that the
Vacation benchmark comprises transactions whose execution latency is (on average)
significantly longer than the Intruder benchmark. This leads to an increase of the vari-
ance of the run execution time and to a corresponding amplification of the model’s
prediction error.

In Figure 5.6 we evaluate the accuracy of the analytical model in predicting the
different causes of aborts for the transactions. Specifically, we set the number of
threads to eight and report: (i) the probability for a transaction to abort during its
execution before reaching the commit phase (recall that this can only happen due
to a validation failure during a read operation), denoted aspa,ex = 1 − po

na,n+1 (see
Equations (5.16-5.18)); (ii) the probability for a transaction to abort in the commit
phase during the writeset lock acquisition, namelypwlc (see equation (5.19)); (iii) the
probability for a transaction to abort in the commit phase due to read-set validation
failure, namelyprv f (see equation (5.26)). Also in this case we observe that the ac-
curacy of the proposed analytical model is very good for the scenarios in which the
benchmarks are configured to use the larger datasets. On the other hand, with smaller
datasets, namely the ones associated with very high contention rates (note that the
probability of abort is around 0.7 and 0.8 in these scenarios), there is a slight degra-
dation of the analytical model accuracy. We argue that this is imputable to the fact
that the error introduced by assuming a Poisson Process for the arrival of transac-
tion to the commit phase, which remains negligible at low/medium contention levels,
shows an increasing trend at very high contention levels. This phenomenon is con-
firmed by the plots in Figure 5.7, where we evaluate the goodness of this assumption
in different workload scenarios by contrasting the empirical density functions of the
transaction interarrival time to the commit phase, as computed by the simulator, and
the exponential distribution functions whose average value has been computed via
the analytical model. More in detail, the plots on the left side of Figure 5.7 have
been obtained by considering moderate contention scenarios obtained by selecting,
for each benchmark, the largest address spaces and degree ofconcurrency equal to
eight, that give rise to probability of abort on the order of 20% and 35% for Vacation
and Intruder, respectively. On the other hand, the plots on the right side of Figure
5.7 are associated with a very high (and, arguably, somewhatpathological in prac-
tice) contention scenario, in which we select for each benchmark the smallest address
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Figure 5.6: Abort causes.

spaces and degree of concurrency equal to eight, that give rise to probability of abort
on the order of 70% and 80%, for Vacation and Intruder, respectively. The reported
results clearly highlight that, up to medium contention levels, there is an excellent
match between the empirical and analytical distributions,thus confirming the valid-
ity of the Poissionianity assumption for the commit phase arrival in case the timing
of actions natively associated with the transactions follows exponential distributions.
The right side plots, conversely, highlight a higher discrepancy between the empirical
and analytical density functions in very high contention scenarios.

However, it is interesting to highlight that the degradation of the goodness of the
poissionianity assumption leads to a (slight) increase of the model’s error only when
predicting some internal state variables, such as the likelihood of the various abort
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Figure 5.7: Distribution of the transaction interarrival times to the commit phase.

causes. On the other hand, the model’s accuracy in predicting external performance
metrics, such as throughput and commit probability, remains very high across every
analyzed workload, even those associated with very high contention rate (see Figure
5.3 and Figure 5.4).

5.5.2 Multi-class Case

In this section we validate the variant of the analytical model capturing multi-class
transaction profiles. To this purpose, the timing of accesses to shared memory data
items has been simulated by replaying the execution traces of the Vacation bench-
mark. On the other hand, we used the reduced data set size selected for this bench-
mark (i.e., 10,000 data items) in order to stress the accuracy of the model when
considering non-minimal contention scenarios. The parameters characterizing this
workload are summarized in Table 5.1.

By the results shown in Figure 5.8 and 5.9, we have that the analytical model
again shows a very good match vs simulative results. In particular, for each individual
class the performance indicators are evaluated by the modelin a very accurate manner
while increasing the number of threads.
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Parameter Class 1 Class 2 Class 3

Transaction Class Probability (Pm) 0.898 0.047 0.056

Transaction Class Length (nm) 154 57 121

Write Probability per Class (pm
write) 0.046 0.117 0.080

Table 5.1: Parameters used for the multi-class study (Vacation benchmark)
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Figure 5.8: Analytical vs Simulative Results for the Multi-class Scenario.

5.6 On Removing Exponential Assumptions

In the analytical model presented in this chapter we have exploited the assumption of
exponential distribution of several random variables. In this section we discuss how
our modeling approach could be extended to relax some of these assumptions.

As for the thread-level model in Section 5.3.2, the relianceon a CTMC represen-
tation maps onto exponential assumptions for the times withwhich i) transactions exit
from their back-off period following an abort event, and ii) the execution of a non-
transactional code block is completed. If one want to consider generic, but known,
distributions of these quantities, the CTMC could be replaced with other random
process, e.g. a Semi-Markov process [76] or a Markov Regeneative process [77, 78].
At this point one should rely on solution techniques to calculatate the steady-state
probability vector.

For what concerns the transaction-level model, we exploited the assumption that
the arrivals of the transaction commit events form a Poissonprocess to computepo

u,l
in equation (5.14) andpr

u,l in equation (5.22). Further, we exploited the assumption
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Figure 5.9: Analytical vs Simulative Results for the Multi-class Scenario.

that the arrivals of read operations on shared data items form a Poisson process to
derive the expression ofplock in equation (5.10).

As for equations (5.14) and (5.22), they could be extended toaccount for arbitrary
distributions of the transaction arrivals to the commit phase. We could in fact write
them as

po
u,l = Φ(tb,l , ur) (5.55)

pr
u,l = Φ(tv,l , ur ) (5.56)

whereΦ(t, η), t ∈ (0,∞) expresses the generic cumulative distribution function of the
arrival process to the commit phase, having asη = rt,i = 1/E[Φ(t, η)] its average
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arrival rate, andur could be computed as before using equation (5.12) and equation
(5.13).

More problematic would be, instead, relaxing the assumption that the arrivals of
read operations form a Poisson process. In equation (5.10),in fact, we exploited
directly the PASTA property [75] of Poisson arrival processes to compute the prob-
ability of finding a write-lock busy during a read on a data item x . However, if one
were to assume that the arrival process of read operations onx formed a generic re-
newal process, one should explicitly account for the dynamic of interleaving between
the arrival process of read operations onx and the stochastic process associated with
the arrival of transactions that updatedx to the commit phase. This would require de-
termining the conditioned probability that, given an arbitrarily small interval [t−h, t],
there is a transaction T that is locking the data itemx during its commit phase given
that a transaction T’ issues a read onx in the same time interval, or more formally:

limh→0Pr{X(t − h) = 1|N(t − h) ≥ 1} (5.57)

whereX(t) expresses the number of transactions (that updatedx) to be in the commit
phase at timet andN(t) is the counting process associated with the arrival of read
operations (onx).
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Chapter 6

Performance Modeling of CCPs

With Arbitrary Data Access

Patterns

6.1 Introduction

The development of analytical performance models of CCPs relies on the use of sys-
tem workload models. The workload model strongly affects the performance model
development. As we discussed in Section 3, tipically used workload models represent
the transaction profiles in terms of various parameters, as the number of operations,
the read/write probability and the distribution of accesses on the set of data items.
On the other hand, they abstract from some (more detailed) features which differenti-
ate the profile of workloads of transactional applications.This level of abstraction is
generally considered adequate for the purpose the proposedperformance models are
intended. In fact, mainly, it allows to symplify the construction of effective models
which, simultaneously, do not prevent from both (1) analyzing the dynamics related
to the specific CCPs by allowing a quantitative evaluation ofsystem performance
indicators in a large workload configuration space, and (2) understanding the mo-
tivations behind performance provided by different CCPs under the same workload
profiles. On the other hand, the choice of such a level of abstraction restricts the
range of validity of the performance models. In particular,when the analysis focuses
on more detailed workload profiles, e.g. considering a specific class of applications,
the workload model could be unable to provide an adequate representation of them.

75



76 CHAPTER 6

In this chapter we address the aforesaid issue by considering a tipical assumption
used in workload models which may remarkably affect the accuracy of the analytical
performance models of CCPs. Basically, in previous performance modeling studies
it is assumed that a transaction accesses data items according to some probability
distribution which does not depend on the phase of the transaction execution (i.e. the
probability distribution is considered to be the same for each operation executed by
the transaction). This suggests some observations. In manyapplications, transactions
access the data items, or sets of data items, according to specific patterns. Let’s con-
sider an example. In a warehouse application a transaction which creates an order
of a customer in the database may execute the following actions: reading the list of
products ordered by the customer, checking the customer address, updating the order
information and updating the availability of the products in stock. This could lead to
the execution of the following sequence of operations: reading from the Cart table,
reading from the Customer table, updating the Orders table and, finally, updating the
Products table. We note that this entails a specific data access pattern to be executed
by the transaction, where each database table is accessed depending on the execu-
tion phase of the transaction. This feature is very common inmany transactional
applications (e.g. see TPC-C [3] and TPC-W [13] benchmark applications).

In particular, the question which arises from the aforesaidobservations is the fol-
lowing: If the presence of specific transaction data access patterns is not considered
in performance models of CCPs, can these models be considered reliable when a
more realistic workload is considered?.

The results of a simulation study we conducted, which we showlater in this chap-
ter, clearly showed as the performance provided by locking protocols which acquire
locks before to execute operations can be very sensitive to the variation of transaction
data access patterns. Specifically, if we consider two equalworkloads, except the se-
quence of accessed data items by the transactions, the performance can remarkably
change. As a consequence, performance models which do not take into account such
an aspect could provide unreliable results.

To cope with this problem, we propose an analytical modelingapproach for these
types of locking protocols which allows to build performance models capable to cap-
ture the effects on system performance of the transaction data access patterns. Specif-
ically, we consider the case of the Strong-Strict 2PL (SS2PL) protocol (see Section
2.2), as in our study it showed a high sensitivity to the access patterns, and we pro-
vide a model tailored for it. We recall that the SS2PL is one ofthe most used protocol
in (commercial) database systems. The aforesaid types of protocols are also largely
used in STMs.

The analytical model we present allows to evaluate the main system performance
indicators, as the expected transaction execution time andthe throughput saturation
point. Furthermore, it allows to evaluate other indicatorswhich can be used to study
more in deep the impact of the transaction data access patters, as the mean lock
holding time and the transaction wait time when a lock conflict occurs. The model
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can be coupled with different hardware resource models and can be resolved via an
iterative technique.

The accuracy of model has been evaluated via simulation. Ourvalidation study
relies on both (i) Synthetic workload descriptions (e.g. interms of machine instruc-
tions for specific operations within a transaction), some ofwhich analogous to those
used for the validation of previous analytical results coping with SS2PL, and (ii)
A workload we derived by abstracting the main features of thetransaction profiles
specified by the TPC-C benchmark [3].

The rest of this chapter is structured as follow. In Section 6.2 we present some
results of the simulation study we conducted which show the sensitivity to the trans-
actions data access patterns of the SS2PL protocol. In Section 6.3 we describe the
system model we used to build the analytical model, which is presented in Section
6.4. In Section 6.5, we present a model validation study. Finally, in Section 6.6,
we present further results of our simulation study on sensitivity to the transactions
data access patterns for other protocols, including those we considered in previous
chapters of this dissertation, i.e. the MVCC and the CTL.

6.2 Effects of Data Access Patterns with SS2PL Protocol

Intuitively, in locking protocols as SS2PL, the presence oftrends in the sequence
of data items accessed by the transactions can have a significant impact on the dis-
tribution of locks’ duration. Consider, for instance, two sets of data items, say X
and Y, which are always the first, respectively the last, onesto be accessed within a
transaction. Being the duration of the locks held on the dataitems of set X longer
than the duration of the locks on the tuples of set Y, it follows that the probability of
contention on the data items of set X will be much higher than the probability of con-
tention on the data items belonging to set Y. This may have an impact on the conflict
probability of transactions, hence, consequently, it may lead to a non-minimal impact
on the system performance.

We present the results of a simulation test where we reproduced the workload
used in another performance analysis work for the SS2PL [9].The comparison with
the results of another previous work allowed us also to validate our simulation model.
In this test we considered two different transaction profiles. In the first transaction
profile (which we name phase-independent), the accesses areuniformly distributed
across the whole set of items, independently of the transaction execution phase. Fur-
thermore, transactions execute 15 data accesses in write mode. This profile repro-
duces the transaction profile used in the aforesaid work. In the second transaction
profile (which we name phase-dependent) transactions execute, as in the first one, 15
data accesses in write mode. However the accessed data itemsvaries across different
transaction execution phases. Specifically, the whole set of items is partitioned into
5 equally sized, non-overlapping sets{S1, . . . ,S5} (which might be seen as represen-
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Figure 6.1: Performance comparison with phase-independent and phase-dependent

profiles

tative of, e.g., distinct database tables). In the first phase the transactions perform
three accesses, uniformly distributed in the setS1. In the second phase they perform
three accesses uniformly distributed in the setS2. Hence transactions continue in
this fashion, until they complete 15 data accesses. All the other workload and system
configuration parameters are equal to those used in the referenced work. In Figure
6.1 we plotted the average transaction execution time for the workload composed by
transactions with the phase-independent profile as evaluated by both the simulation
model used in the referenced work and by our simulator. The curves are quite over-
lapped, demonstrating the validity of our simulation modelvs the simulation model
used in the referenced work. Furthermore, in the same figure we plotted the aver-
age transaction execution time evaluated by means of our simulation model for the
workload composed by transactions with phase-dependent profile. The results show
clearly as the difference is remarkable, demonstrating the sensitivity of theSS2PL to
the transaction access patterns.

6.3 System Model

In this section we present the system model we assume to buildthe analytical model.
We consider a transactional system with a set ofI items, each of which represents an
unit of data that can be accessed by an operation within a transaction (e.g a tuple or
a set of tuples in a table of a database). Transactions are processed according to the
SS2PL protocol. We assume an open system model. This choice is motivated by the
fact that open models are more suited for scenarios with a large number of users (like
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in, e.g., transactional applications over the Internet).

6.3.1 Transaction Model

We assume a workload characterized by a single transaction profile. This is specified
in terms of data items accessed and locality of the accesses during the lifetime of the
transaction. Transactions arrive according to a Poisson process with arrival rateλ.
On the basis of these assumptions we present a basic version of the analytical model
with one transaction class. In Section 6.4.7 we present a model extension where
we consider multiple transaction classes to cope with workloads with differentiated
transaction profiles.

Each transaction consists of a begin phase, which is followed by a number ofM
operations, each one accessing in read or write mode a singledata item, and finally
by a commit phase. According to the SS2PL, to execute a read operation, a transac-
tion has to obtain a shared lock on the target data item, while, for write operations,
exclusive locks are needed. Each operation might entail a wait (block) phase in case
the requested lock is currently unavailable. During the initial and commit phases a
mean number ofnIb andnIc CPU instructions, respectively, are executed. Also, the
execution of an operation is assumed to require a mean numberof nIo CPU instruc-
tions. In case the access to a data item causes a buffer miss, a timetI/O is needed to
fetch the data from disk. Finally, for simplicity, we do not explicitly model the I/O
delay associated with the commit phase (e.g. the transaction log write onto stable
storage). Anyway, given our disk model, this delay would only entail an additional
latency term in the expression of the transaction executiontime.

To cope with access patterns executed by the transactions, we represent the trans-
action access pattern by means of aI × M matrix (which we name access matrix)
denoted byA. ElementAi,k expresses the probability that thekth operation of the
transaction accesses theith data item. Note that the sum of each column ofA must
be equal to 1. Further we represent with a vectorW, with |W| = M, the type of the
access, namely read or write, performed by the transaction in the different phases of
its execution. Specifically,Wk (resp. 1−Wk) is probability that thekth operation is a
write (resp. read) operation. The access matrixA and the vectorW are the building
block allowing our model to capture the transaction execution history, and its effects
on performance, in terms of locality variation in different phases of its execution.

For the sake of clarity, let us now consider an example transactionT characterized
by a simple access pattern on a small database consisting solely of I = 4 different
data items. Let us assume thatT carries out 2 data accesses, respectively a read
and a write operation. The read operation accesses to the data item 1, whereas the
write operation is targeted, with equal probability, to thedata item 2 or 3. Based on
these assumptions, we can describe the data access pattern of T through the following
access matrixA and vectorW:
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A =



1 0
0 0.5
0 0.5
0 0



W = (0, 1)

As a further example, the matrix can be instantiated in a way that the access to a
specific itemj is always prevented up to a given phasef of the transaction execution
(this can be done by setting to 0 all the elementsAi,k with i = j andk ≤ f ). This,
in its turn, captures scenarios where, e.g., items inside a given table of a database are
always accessed after operations on other tables have been already executed.

6.3.2 Hardware Resource Model

In accordance with typical assumptions in previous analytical studies (e.g. [79, 9]),
we assume a transactional system with an underling hardwaresystem where the CPU
is modeled as an M/M/k queue. k is the number of CPU-Cores, each of which has
processing speed denoted asMIPS (measured in terms of million instructions per
second). The disk has a fixed I/O delay denoted astI/O. Anyway, we underline that
our focus is on the effects of data accesses and contention on logical resources, not on
physical resources. In fact, the contribution we provide isorthogonal to the assumed
model for the underlying physical system, given that our model for logical resources’
contention can be actually coupled with different models for physical resources.

6.4 The Analytical Model

On the basis of the transaction model described in Section 6.4.1, a transaction can be
modeled through a direct graph (see Figure 6.2), where the nodes represent different
states of the transaction execution and the arcs represent state transitions. A label on
an arc from a nodep to a nodeq represents the transition probability from statep to
stateq. If the label is omitted, then the transition probability isintended to be 1. States
labelled withbeginandcommitrepresent the initial and commit phases respectively,
while the state labelled witĥk represents the execution of thekth operation, and,
finally, the state labelled with̃k represents a waiting phase (due to lock contention)
preceding thekth operation. We denote withPW,k the probability that the requested
data item by thekth operation is currently locked.

In the following we make some assumptions that we consider inour analytical
model. Other assumptions will be made in the next sections. We remark that all the
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Figure 6.2: Transaction model.

assumptions we will make from this point will be considered only for the construction
of the analytical model, but not in the simulation model.

With locking protocols, a transaction can be aborted by the deadlock manager,
however we ignore deadlock related aborts in our analyticalmodel since previous
studies (e.g., [67], [42]) have shown as their effects on the final perceived perfor-
mance are negligible with respect to the data contention effects, therefore they can be
considered not relevant in performance analysis.

We assume a buffer hit probabilityPBH when a data item is accessed. Actually,
we do not explicitly model the buffering policy and the related effects since several
models have already been proposed to cope with the evaluation of hit probability vs
the item popularity, see, e.g. [80], which is orthogonal to our study. Hence,PBH will
be considered as an independent parameter in our study.

Finally, we assume the system to be stable and ergodic.

6.4.1 Transaction Execution Time

According the transaction model we have presented above, wedenote withRbeginand
Rcommit the times spent in statesbeginandcommitrespectively, and witĥRk andR̃k,
where 1≤ k ≤ M, the times spent in statesk̂ andk̃, respectively. The evaluation of
these times is presented in the following sections. The meantransaction execution
time can be evaluated as the sum of the average times spent in each state, that is:

Rtx = Rbegin+

M∑

k=1

(R̃k + R̂k) + Rcommit,

6.4.2 Lock Holding Time

The wait phase experienced by a transaction for lock acquisition on a given data item
depends on the average lock holding times of transactions precedingT in the lock
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access queue on that item. In our model we explicitly capturethe fact that accesses
to data items can occur at different phases of a transaction. Hence, if data itema
is typically the first one to be accessed by transactions, anddata itemb is normally
the last one to be accessed, then the average lock holding time on itema will be
significantly longer than the lock holding time on itemb.

We evaluate the lock holding time for each data item, and how it is affected by
the transaction access pattern, by exploiting the access matrix A. Specifically, if data
item is accessed by a transaction at thekth operation, then it gets locked up to the end
of the execution of the commit phase. Hence, the lock holdingtime for the access to
a data item at thekth phase can be expressed as:

Dk =

M∑

j=k

R̂j +

M∑

j=k+1

R̃j + Rcommit.

We know that the probability to access data itemi at thekth transaction phase
is expressed asAi,k. Hence, the average lock holding time for data itemi can be
evaluated as:

Thi =

∑M
k=1 Ai,kDk∑M

k=1 Ai,k
,

where the sum at denominator is due to the fact that the average lock holding time
must be evaluated by considering only the transactions for which an access to data
item i actually occurs.

6.4.3 Data Contention

The arrival rate of read accesses towards theith data item can be expressed as:

λread,i = λ

M∑

k=1

Ai,k(1−Wk),

while for write accesses we have:

λwrite,i = λ

M∑

k=1

Ai,kWk.

We recall that if the data item is requested by a write operation and it is locked
(in either shared or exclusive mode) then a lock conflict occurs, the transaction is
blocked and the write operation is enqueued. On the other hand, if the data item is
requested by a read operation then a lock conflict occurs onlyif the item is locked
in exclusive mode. Hence only in this case the transaction isblocked and the read
operation is enqueued. To cope with the determination of data contention and trans-
action wait time without overly increasing the complexity of the our model, we built
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Figure 6.3: Markov chain for data itemi.

a simple approximate queue model to capture the read-write lock conflict dynamics.
By the results of the validation study, the used approximations are adequate for our
purpose. We recall that in typical scenarios of database system applications mod-
eled by means of an open system, with protocols which block transactions on lock
conflict, such as the SS2PL, the system reaches the saturation point when the lock
contention probability accessing a data item is still relatively low. E.g., in tests pre-
sented in [9] the saturation point is reached when the lock contention probability is
lower than 10 percent. In all the tests we present in Section 6.5 the saturation point is
reached when the lock contention probability is, on averagefor all data items, lower
than 15 percent. Hence, approximate solutions which provide a good accuracy with
low data contention level are generally considered adequate. For example, in some
studies (e.g. [53]) the proposed analytical models are based on the assumption that
the number of queued transactions waiting for a lock on the same data item is at most
equal to one.

We have modeled the lock contention on each single data itemi as a birth-death
process [69] with fixed arrival rate, equal to

λi = λread,i + λwrite,i

and variable service rateµi, j (see Figure (6.3)), wherej corresponds to the number of
standing requests for data itemi in the corresponding state of the Markov chain. For
each single data itemi the valueµi, j depends on the interleaving of read and write
requests observed in statej. We approximateµi, j with its average value, calculated as
follow. If in state j the top standing request for lock access is a write request, thenµi, j

is equal to 1
Thi

. In fact, since the exclusive write lock delivered to the write request
blocks any other standing request, then the item is reservedfor the write request,
whose expected locking time isThi . On the other hand, if the top standing request is
a read request, all the other standing read requests, if any,can be concurrently served.
In the latter case, if in statej there arel ≤ j standing read requests, then we have

µi, j =
l

Thi
. Overall, denoting withPread,i andPwrite,i the probability that an incoming
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access request is a read request or a write request, respectively, we have

Pread,i =
λread,i

λi

and

Pwrite,i =
λwrite,i

λi
.

We approximate the probability for the top request in statej to be a write request
(respectively a read request) withPwrite,i (respectivelyPread,i).

Thus we have

µi, j =
1

Thi
(Pwrite,i + ((Pread,i

j−1∑

k=1

kPk
read,i) + jP j

read,i))

When a write access occurs, a conflict is raised if the target data itemi is locked either
in shared or in exclusive mode. Thus we can model the contention probability for a
write accessPWwrite,i on data itemi as the sum of the probabilities to stay in any of
the statesj, with j > 0, of the Markov chain, which is equal to 1− P0 (whereP0

is the probability to be in state 0 of the Markov chain). Hence, from queuing theory
[69], we have

PWwrite,i = 1−
1

1+
∑∞

k=1
∏k−1

j=0
λ
µ i, j+1

,

By the formula it can be noted thatPWwrite,i ≤ 1 only if the sum at the denominator
converges to a finite value. Given thatµi, j ≥

1
Thi
∀ j > 0, the condition 1

Thi
> λi for

every data itemi in the transactional system is sufficient to ensure that the contention
probability for any write access is less than 1, thus representing a stability condition
for the system.

To evaluate the contention probability of a read access we recall that a conflict
can occur only if the data item is locked in exclusive mode. Hence, the contention
probability can be evaluated as the fraction of time during which the data item is
locked in exclusive mode. This time fraction corresponds tothe utilization of the
data item vs write accesses. Thus we have

PWread,i = λwrite,iThi .

6.4.4 Wait Time

When an incompatible lock is found on the currently requireddata item, the trans-
action experiences a wait timet, which corresponds to the time spent in statek̃ (see
Figure 6.2), withk being the index of the operation causing the conflicting access.
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The wait time depends on the data being requested (i.e. on theamount of currently
standing access requests for that data item), not on the value of k.

We firstly evaluate the average waiting time for a transaction in case of a conflict
on a specific data itemi, which we denote asRwait,i . After we evaluate the average
waiting time experienced in each statek̃ (with 1 ≤ k ≤ M), which we denote as̃Rk.
The latter value will depend on the transaction access matrix A, which expresses, for
each operation, the likelihood of access to each specific item. Rwait,i can be evaluated
through the aforementioned Markov chain associated with data itemi. In particular,
the average amount of standing accesses is

Ni =

∞∑

j=1

jP j ,

whereP j is probability to stay in statej of the Markov chain. When a conflict occurs
upon data access, if no other access requests to the same itemare currently queued,
the wait time corresponds to residual lock holding time. On the other hand, in case
other access requests are currently queued for lock acquisition, a further delay occurs
due to lock holding on that item by transactions associated with the queued requests,
that is on averageThi for each one. Thus, given that a conflict has occurred, we have

Rwait,i =

(
Ni

1− P0
− 1

)
Thi + Li ,

where:

Li =

∑M
k=1 Ai,kD2

k

2
∑M

k=1 Ai,kDk

and represents the normalized residual lock duration, depending on the different dura-
tions evaluated on the basis of the access pattern. Now, throughRwait,i , by exploiting
the access matrixA, we have

R̃k =

I∑

i=1

Ai,kRwait,i
[
PWread,i(1−Wk) + PWwrite,iWk

]

6.4.5 Operation Execution Time

Times spent by a transaction in statesbegin, k̂, with 1 ≤ k ≤ M, andcommitcan be
evaluated by exploiting the model of the underlying hardware resources, which has
been provided in Section 6.3.2. The CPU load for the execution of a transaction is

Ccpu = nIb + M· nIo + nIc
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and from queuing theory we get for the CPU utilization the following expression:

ρ =
λ·Ccpu

k·MIPS
.

Denoting withp[queuing] the wait probability for a request in an M/M/k queue [69],
and definingγ as

γ = 1+ p[queuing]/(k(1 − ρ)),

we can evaluate the execution timesRbegin andRcommit of statesbeginandcommit
respectively as:

Rbegin= γ
nIb

MIPS
and

Rcommit= γ
nIc

MIPS
.

Execution times of stateŝRk further depend on buffer hit probability and I/O delays.
Using the notation in Section 6.3, we have

R̂k = γ
nIo

MIPS
+ PBH· tI/O

for eachk such that 1≤ k ≤ M.

6.4.6 Numerical Resolution

The model can be solved via an iterative procedure. After assigning the values to
hardware configuration parameters (e.g the CPU power) and transactional system pa-
rameters (e.g. the access matrix) the value 0 has to be assigned to the parameters
Rwait,i , PWread,i and PWwrite,i (with 1 ≤ i ≤ I ). Then the other model parameters
can be evaluated via the provided equations, using the results as the input for the
next iteration. The desired computational accuracy can be fixed by defining a valueǫ
specifying the maximum difference between values obtained by two consecutive iter-
ations (e.g. ifRn is the transaction execution time at iterationn, then the computation
can be stopped when the conditionRn − Rn−1 ≤ ǫ becomes true).

This iterative approach has been used also in other pre-existing studies on perfor-
mance models of CCPs (e.g, [70, 81, 52, 9]). As it has been donein these studies, we
have empirically observed that it converges in a few iterations in all tests we carried
out, provided that the input assignment defines a stable system.

6.4.7 Coping with Multiple Transaction Classes

In this section we show how our model can be employed in scenarios where the work-
load entails different transaction profiles (or classes). We denote asC the number of
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the different transaction classes, each of which can be representedthrough a spe-
cific transaction model featured as the one described in 6.4.1. We use the following
notation:

• VectorM, with |M| = C, for which each element, denoted byMc, with 1≤ c ≤
C, represents the number of operations of a transaction of classc.

• VectorA of matrix elements, with|A| = C, for which each element, denoted by
Ac, with 1 ≤ c ≤ C, is the access matrix of a transaction of classc.

• Vector W, with |W| = C, for which each element, denoted byWc, with 1 ≤
c ≤ C, is the vector representing the write probabilities for operations of a
transaction of classc.

Further the transaction arrival rate for classc is denoted byλc.
The accuracy level while describing a workload with differentiated transaction

profiles according to the previous notation can be tuned in accordance to the require-
ments of the performance analysis the end-user is carrying out. Roughly speaking,
the more the identified transaction classes, the more accurate the workload descrip-
tion. As an extreme, each plausible access pattern could be associated with a specific
class in such a way to describe the variation of the transaction locality over the data
items in a deterministic manner. In this case each access matrix will be character-
ized by columns having a single element equal to 1, and all theother elements equal
to 0. As it will be clear by the below description of the modifications to the model
equations in case of multiple classes, a large number of classes will only entail an
increased amount of computation power for the iterative model solving procedure. In
general, if transactions are composed by a fixed number of predefined statements, as
in, e.g., a lot of three-tier Web based applications, to obtain a good compromise we
suggest to model the workload using a single class for each predefined transaction
pattern.

With more transaction classes, some of the previously introduced equations must
be rewritten in order to consider parameter dependency on the access pattern and the
arrival rate of each class. For simplicity, we only show the final shape of these equa-
tions without explicitly repeating intermediate modelingsteps, which are anyway
intuitive once the model for the case of single transaction class has been analyzed.

The transaction execution time for classc is

Rc
tx = Rc

begin+

Mc∑

k=1

(R̃c
k + R̂c

k) + Rc
commit,

where we added the superscriptc to the parameters introduced in Section 6.4.1 to
emphasize that each of them is related to classc. The average lock holding time for
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data itemi becomes
∑C

c=1 λ
c ∑Mc

k=1 Ac
i,k(

∑Mc

j=k R̂c
j +

∑Mc

j=k+1 R̃c
j + Rc

commit)∑C
c=1 λ

c ∑Mc

k=1 Ac
i,k

,

The arrival rates of read and write accesses towards theith data item become

λread,i =

C∑

c=1

λc
Mc∑

k=1

Ac
i,k(1−Wc

k),

and

λwrite,i =

C∑

c=1

λc
Mc∑

k=1

Ac
i,k(W

c
k).

In the end, we can rewrite the equation ofR̃k for each transaction class as

R̃c
k =

I∑

i=1

Ac
i,kRwait,i [PWread,i(1−W

c
k) + PWwrite,iW

c
k]

6.5 Model Validation

We evaluated the accuracy of the analytical model via a set ofdifferentiated tests
based on output comparison vs the results obtained by using discrete-event simula-
tion. The simulation model we used is similar to the model we presented in section
4.5, except the Concurrency Control Manager, which followsthe rules of the SS2PL,
and the Workload Generator, which generates the operationsof the transactions on
basis of the access pattern of the transaction class.

In this section we present a set of tests we carried out in relation to three scenar-
ios characterized by diverse workload configurations and system parameters. This
section is structured as follow. In Part-A we show the results of a validation test
where we reproduced the test we described in Section 6.2. In Part-B we consider a
synthetic workloads which induces noticeable effects on lock contention across dif-
ferent transaction classes. In Part-C we finally provide validation results for the case
of transaction workloads derived by abstracting the main features of the well known
TPC-C benchmark [3].
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#Items 1000

#CPUs 5

CPU Speed 10 MIPS

tI/O 0.035s

#Accesses x Xact (M) 15

Pwrite 100%

PBH 0.27

nIb 150000

nIo 20000

nIc 250000

Access Distribution - Phasei Unif. in

(Phase Independent Workload) [1,1000]

Access Distribution - Phasei Unif. in

(Phase Dependent Workload) [1+⌊ i−1
3 ⌋·200,(⌊ i−1

3 ⌋ + 1)·200]

Table 6.1: Parameters settings for Part-A (as in [9]).

#Items 100000

#CPUs 8

CPU Speed 2000 MIPS

tI/O 0.004 ms

PBH 0

Pwrite 20%

Table 6.2: Parameters settings for Part-B.

6.5.1 Part-A

We start by showing the results of the validation test where we reproduced the work-
load with the phase-dependent transaction profile describein Section 6.2. All system
configurations parameters have been set according to the original test we inspired to
(i.e. the test in [9]). In Figure 6.4 we plotted the average transaction execution time
as evaluated by our analytical model and by simulation. As wenoted in Section 6.2,
with the phase-dependent profile the transaction response time remarkably changes
due to the effects of access locality variations across different transaction execution
phases. The results show as our model well captures this phenomenon.
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Figure 6.4: Performance comparison for both independent and phase-dependent pro-

files (Part-A).

#Accesses (M) Access Distribution - Phasei ∈[1,M]

ProfileP1 20 Uniform in

[1+ ⌊ i−1
4 ⌋·20000,(⌊ i−1

4 ⌋ + 1)·20000]

ProfileP2 8 Uniform in

[1+ ⌊ i−1
4 ⌋·20000,(⌊ i−1

4 ⌋ + 1)·20000]

ProfileP3 8 Uniform in

[1+ (⌊ i−1
4 ⌋ + 3)·20000,(⌊ i−1

4 ⌋ + 4)·20000]

Table 6.3: Synthetic workload (Part-B).



6.5. MODEL VALIDATION 91

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 7500  7600  7700  7800  7900  8000  8100  8200  8300  8400

A
vg

. T
ra

ns
ac

tio
n 

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Transactions per Second (TPS)

Part B - Synthetic Workload 1

Model -  P1 
Model -  P2 
Model -  P3 

Simulator -  P1
Simulator -  P2
Simulator -  P3

Figure 6.5: Transaction execution time (Part-B).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 7500  7600  7700  7800  7900  8000  8100  8200  8300

Lo
ck

 U
til

iz
at

io
n

Transactions per Second (TPS)

Part B - Synthetic Workload 1

Model -  S1 
Simulator -  S1

Model -  S2
Simulator -  S2

Model -  S3
Simulator -  S3

Model -  S4
Simulator -  S4

Model -  S5
Simulator -  S5

Figure 6.6: Lock utilization (Part-B).



92 CHAPTER 6

6.5.2 Part-B

We now focus our experimental study on the evaluation of the accuracy of our model
in a more complex scenario characterized by multiple transaction profiles and highly
skewed phase-dependent data access distributions. Further, compared to the study in
the previous section, we consider system parameters representative of more modern
platforms (e.g. an increased number of CPUs/Cores and increased processor/disk
speed) and applications (e.g. an increased amount of items inside the transactional
system). The detailed parameter settings adopted for this study are reported in Table
6.2. As the last preliminary consideration, this time the value of PBH (which would
depend on the specific object replacement policy) has been set to 0. (Recall that our
analysis is orthogonal to modeling approaches for buffer replacement policies and
related hit/miss effects vs the item popularity.)

In this study data items are grouped in 5 contiguous sets (logically equivalent to,
e.g., database tables) which we again refer to as{S1, . . . ,S5}. Also, the probability
of access in write mode is set equal to 20%. The workload (see Table 6.3) entails
three different transaction profilesP1, P2 andP3, with identical arrival rates, and the
following access patterns. For classP1, the pattern is similar to the phase-dependent
pattern of Part-A of our study, with the only variation that the number of accesses is
equal to 20, and 4 accesses per set are executed before movingto the subsequent set.
Transactions of classP2 perform 4 accesses to the setS1 and then other 4 accesses
to the setS2 (for a total of 8 accessed items). Similarly, transactions of profile P3

perform 4 accesses to the setS4, and 4 subsequent accesses to the setS5. In every
transaction profile, the 4 accesses in each set are uniformlydistributed over the whole
items in that set. The results for this workload (see Figure 6.5) show a good matching
between simulation and analytical values for all the three transaction classes. For this
same workload, we also show (see Figure 6.6) a comparison between the lock utiliza-
tion values for each of the 5 sets as predicted by both the simulation and the analytical
model. Beyond confirming the matching between simulation and analytical results,
these plots highlight an interesting feature of our model. Specifically, its ability to
capture data contention dynamics with single data item granularity makes it capable
to predict the performance effects due to the specific organization of the transactional
logic (such as the order of the accesses to different data sets within different phases
of a transaction). As an example, Figure 6.6 highlights thatthe accesses to the set of
itemsS1 represent the system bottleneck.

6.5.3 Part-C

We conclude this section by providing the validation results for a test where we used
a workload profile reflecting relevant features of a standardbenchmark for transac-
tional systems, namely TPC-C [3]. The item tables’ population and layout (see Table
6.4) have been configured by setting the number of warehouses(which represent an
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Table Name # Items Table ID

WAREHOUSE 500 tb0

DISTRICT 1000 tb1

CUSTOMER 15000 tb2

STOCK 500000 tb3

ITEM 100000 tb4

ORDER 1000 tb5

NEW-ORDER 1000 tb6

ORDER-LINE 1000 tb7

HISTORY 1000 tb8

Table 6.4: TPC-C tables’ population.

Phase P0 P1 P2 P3

(47%) (45%) (4%) (4%)

0 (R),tb0 (R),tb0 (R),tb2 (R),tb6

1 (R),tb1 (R),tb1 (R),tb5 (W),tb6

2 (W),tb1 (R),tb2 (R),tb7 (R),tb5

3 (R),tb2 (W),tb0 (W),tb5

4 (W),tb5 (W),tb1 (R),tb7

5 (W),tb6 (W),tb2 (W),tb7

6 (R),tb4 (W),tb8 (R),tb2

7 (R),tb3 (W),tb2

8 (W),tb3

9 (W),tb6

Table 6.5: Abstracted TPC-C transaction profiles (classes).
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Figure 6.7: Simulation and analytical results for the abstracted TPC-C workload.

explicit scale parameter for TPC-C) to 500. The only variation is related to the scal-
ing of the size of the tables which are accessed via select statements using intervals of
keys. This choice is motivated by the fact that such select statements would lead toK
read operations, as modeled in our approach. Therefore the scaling has been done in
order to provide a fair modeling approach for select (i.e. read) statements operating
at different granularity values (single key vs interval of keys).

The characterization of the transaction access patterns isbased on the TPC-C
workload modeling carried out in [82]. Table 6.5 reports, for each transaction profile
and for each transaction execution phase, the accessed itemtable and the correspond-
ing access mode (read, denoted as (r), or write, denoted as (w)). We consider only 4
of the 5 different transaction classes identified in [82], since one of them, namely the
Stock-level transaction, does not impose any isolation guarantee, hence not trigger-
ing any concurrency control mechanism at all (whose modeling is the focus of this
work). The remaining model parameters (characterizing, e.g., the available hardware
resources) are not reported as they are unchanged with respect to Section 6.5.2.

By the results in Figure 6.7, we can observe that our model well fits the simu-
lation output. As for previous cases, the matching can be observed for each single
transaction profile included in the workload. These resultsconfirm the high accuracy
of our analytical performance model even in case of complex and diverse workloads.



6.6. ANALYSIS OF THE SENSITIVITY TO DATA ACCESS PATTERNS WITH
OTHER PROTOCOLS 95

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1000  1200  1400  1600  1800  2000  2200  2400

T
ra

ns
ac

tio
n 

re
sp

on
se

 ti
m

e

Transactions per Second (TPS)

Phase-independent profile
Phase-dependent profile

Figure 6.8: Performance comparison with phase-independent and phase-dependent

profiles with the MVCC protocol.

6.6 Analysis of the Sensitivity to Data Access Patterns with

Other Protocols

We conclude this chapter discussing the results of a simulation study we conducted
to evaluate the sensitivity to transaction data access patterns of the other protocols we
deal with in this dissertation, namely the MVCC and the CTL protocols. In addition,
we also consider the results of another test we conducted with a protocol which can be
considered, as concerns the locking mode, the counterpart of the CTL. This protocol
uses the eager-locking. i.e., unlike the CTL protocol, a lock is acquired before to
execute the write operation.

We start with the MVCC protocol. We used the same workload with the phase-
independent transaction profile and the same workload with the phase-dependent
transaction profile as in the test described in Section 6.2. The average transaction
response time with respect to the transaction arrival rate for both workloads is shown
in Figure 6.8. We can see that there is a very slight difference between the transaction
response time of the two different profiles, and it becomes a little pronounced near
the saturation point.

Now we consider the CTL protocol and the protocol which uses the eager-
locking. In all tests we evaluated the throughput with respect to the number of con-
current threads.

In Figure 6.9 we show the results obtained by using the two workloads as in the
tests for the MVCC protocol. The plot on the top side is related to CTL protocol.
The results show as the CTL protocol appears insensitive to the data access patterns
of the phase-dependent transaction profile. The plot on the bottom side is related to
the protocol which uses the eager-locking. The results showas with eager-locking
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the sensitivity grows.
To test the sensitivity of the CTL also in a more complex scenario, we used an-

other workload profile with three transaction classes. In this workload the transac-
tions of classP1 have a profile equal to the transactions of classP1 of the workload
with the phase-independent transaction profile used in the former test. The transac-
tions of classP2 sequentially access the data items belonging to the setsS1 andS2.
The transactions of classP3 sequentially access the data items belonging to the sets
S4 andS5. The throughput obtained with this workload has been compared with the
throughput obtained with a workload with the same transaction classes, except that
the accesses were independent of the transaction phases. The results are shown in
Figure 6.10. On the top side we plotted the throughput for onetransaction class1 for
both workloads. Furthermore, we also plotted the commit probability for all classes
on the bottom side of the same figure. We can note that also in this test the CTL
protocol appeared practically insensitive.

Summarizing the results of the tests we presented above, we can observe that the
sensitivity to the transaction data access patterns mostlydepends on the concurrency
control strategy. Basically, it depends on the locks acquired by the transaction and
by the time when they are acquired during the transaction execution. The sensitivity
of the SS2PL protocol, which uses both exclusive and shared locks, and they are ac-
quired before executing an operation, is remarkable. The sensitivity is less noticeable
with the MVCC protocol. We recall that the MVCC protocol we considered uses
exclusive locks as the SS2PL protocol, but never blocks a read operation. Therefore,
read operations are not affected by the locks held by concurrent transactions. This
aspect can explain the different sensitivity shown by this protocol with respect to the
SS2PL, where, conversely, read operations are affected by exclusive locks acquired
by the concurrent transactions. Finally, the CTL, which is the most optimistic pro-
tocol we considered in our analysis, appeared to be insensitive. We recall that, as
the MVCC protocol, the CTL also uses exclusive locks, but they are acquired only
at the commit phase. For these reasons, the lock holding timeis almost the same for
all locks acquired by a transaction, independently from theacquisition order. This
aspect can explain the insensitivity of the CTL.

In conclusion, the results suggest as the modeling methodology we proposed in
this chapter could also be usefull to improve the accuracy ofpeformance models for
other lock-based protocols. On the other hand, the improvement maily depends on
the locking stategy established by the protocol.

1The throughput is equal for all classes because transactions are generated with the same probability

for all classes.
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Chapter 7

Conclusions

Analytical modeling is an effective approach for building computer system perfor-
mance models. It enables to describe such systems in a quantitative manner and let
us to build valuable tools to analyze and understand complexdynamics characteriz-
ing them. In this dissertation we dealt with the analytical perfomance modeling of
CCPs for transaction processing systems. We focused on two kinds of systems in
which the concurrency control plays a key role, namely the DBS and STMs. With
our work we contributed to both the development of new modelsof CCPs and the
development of new modeling approaches. We addressed the performance modeling
of the MVCC by developing the first analytical model of one of the most used MVCC
protocol in DBS. At the base of this model there is an approachwhich focuses on a
model of transaction execution which allows to capture the transaction execution dy-
namics due to the mix of mechanisms used by the protocol. In the field of STMs we
proposed a new analytical framework for building performance models of STM sys-
tems. This framework overcomes previous proposals as it allows to conduct a more
comprehensive performance study, providing the ability toevaluate various perfor-
mance indicators, including the analysis of both the transaction execution dynamics
and the execution of concurrent threads. This is made possible by the two-layered
structure of the framework, which also symplifies the development of models for dif-
ferent CCPs. Leveraging on this framework, we also built a performance model for
the case of the CTL protocol, currently used by many STMs. Finally, we proposed
a new modeling approach which allows us to analyze the performance of CCPs by
a new perspective. We showed as CCPs have different sensitivity to the sequences
of data items accessed by transactions. In particular, a largely used class of locking
protocols have an high sensitive. This is an aspect which hasnot been considered in
previous performance modeling works, and we showed that analytical models which
do not capture the effects due to such data access patterns can provide unreliable
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results when used for the performance analysis of applications. To cope with this
problem, we proposed a new modeling approach allowing us to capture the effect on
the system performance due to arbitrary transaction data access patterns, including
the cases with multiple transactions profiles.

In all models we proposed, we used a modeling approach which allowed us to
abstract from the specific implementation details of the protocols. Indeed, models we
presented focus on that aspects that can have meaningful implications on the system
performance by the perspective of the concurrency control.At the same time, with
our approach, parameters depending on other factors, e.g. the operation processing
time or the buffer hit probability, can be taken into account by both considering them
as input to the models and coupling the models with performance models of other
system components. This approach provides flexibility, in particular when we want
to use a model for the performance analysis with different implementations of a pro-
tocol, or when a protocol is used in different systems. In addition, it provides high
modularity, allowing us to use a model for building larger system performance mod-
els by means of composition of models. Beyond these motivations, we think that the
previous aspects are also very important because the field ofapplication of the CCPs
is not limited to the systems we considered in this dissertation.

Interesting improvements and extensions of the work we presented are the fol-
lowing.

Concerning the model of the MVCC protocol, we discussed in Section 4.6 the
loss of accuracy of the model when the data access skew increases. This is due to
the modeling assumption according to which the actual data access distribution is
considered the same of data accesses of arriving transactions. When the data access
skew becames very high, the actual mix of data accesses is warped by the restarts
of transactions accessing many highly popular data items. We think that a possible
solution to be evaluated relies on representing workloads with high data access skew
by means of multiple transaction classes, so that the data access skew becames lower
within each transaction class. Then, an approach based on transaction clustering, as
we discussed in Section 4.4.3, could be used.

The STM performance modeling framework we proposed provides an easy way
to build CCPs models, thereby also being an useful tool to conduct performance
comparison studies of STM protocols. Hence, a natural extension of this work is
the development of further models of such protocols. An interesting improvements
concerns the thread-level model according the observations in Section 5.6, where we
discussed the removal of some assumptions used to build the CTMC.

Finally, as regards the modeling approach for arbitrary transaction data access
patterns, it would be interesting to evaluate this approachalso for protocols which
use mixed concurrency control mechanisms. In the simulation study we presented
in 6.6 we showed that also the MVCC protocol we considered in this dissertation
and the protocol which uses the eager-locking are sensitiveto the data access se-
quences. As both these protocols use locking and read validation, they could be a
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further benchmark for this approach.
We conclude observing that in our work we addressed two main issues we con-

sider very important for the current state of art in the field CCPs performance mod-
eling. The first one is associated to the advancement of the state of art in the field of
the concurrency control. Over the time, new CCPs have been proposed in order to
fit even more both the performance requirements of applications and the transaction
processing requirements of new systems. Today, many systems use protocols based
on more complex strategies than those used in the past. Despite the effort made in the
field of performance modeling, existing studies do not always provide performance
analysis tools suitable for new protocols and systems. The second one is associated
to the system models tipically used in CCPs performance modeling studies. Indeed,
they use system models which adequately represent quite generic scenarios, and do
not take into account the implications related to some basicfeatures of applications
which can remarkably affect the system performance. We dealt with the first afore-
said issue in our modeling studies of both the MVCC protocol and the STMs. In
the case of the MVCC protocol, we considered a widely used protocol in modern
DBMS which is based on a mix of concurrency control mechanisms which improves
the performance in read-intensive scenarios. In the case ofthe STMs, we considered
a lock-based protocol which optimistically acquires locks, but it also uses data vali-
dation in order to provide an isolation level which well fits the transaction processing
requirements of the new STM systems. We dealt with the secondaforesaid issue
in the modeling studies of both the STMs and the transaction data access patterns.
In these studies we made further steps towards a more comprehensive performance
analysis of real applications. In the STM modeling framework, we included in the
analysis also the effects due to the variation of the concurrency level in the system
together with the mix of transactions with different profiles. Finally, in the last con-
tribution, we extended the analysis by including the effects due to a tipical feature of
the data access patterns of applications. All these factorsprovide the ability to extend
the field of application of models including the analysis of more realistic scenarios.
We think that the lack of approaches which allow us to performan analysis by a more
realistic, application-oriented, perspective is one of the weaknesses which have to be
further addressed in the field of analytical performance modeling of CCPs. For these
reasons it represents an important direction for the futurework.
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2PL Two-phase locking

DBMS Database Management Systems

CCP Concurrency Control Protocol

CTL Commit-Time Locking

DBS Database Systems
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SS2PL Strong-Strict 2PL

STM Software Transactional Memory


