UNIVERSITA DI ROMA “SAPIENZA”
DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XX Cicro —-2008

Robot Teams for Multi-Objective Tasks

Vittorio Amos Ziparo

UNIVERSITA DI ROMA “SAPIENZA”
DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XX CiIcLo - 2008

Vittorio Amos Ziparo

Robot Teams for Multi-Objective Tasks

Thesis Committee Reviewers
Prof. Daniele Nardi (Advisor) Prof. Manuela Veloso
Prof. Luigia Carlucci Aiello Prof. Peter Stone

Prof. Roberto Baldoni

Copyright (©) 2008
by Vittorio Amos Ziparo

ISBN: 7?

AUTHOR’S ADDRESS:

Vittorio Amos Ziparo

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universita di Roma “Sapienza”

Via Ariosto 25, [-00185 Roma, Italy.

E-MAIL: ziparo@dis.uniromal.it

WWW: http://www.dis.uniromal.it/~ziparo/

A minha esposa e a sua paciéncia.
Alla mia famiglia.

Acknowledgment

I would like to acknowledge all the people that helped me, in various ways, to develop
the ideas presented in this dissertation. Their continuous advise and encouragement
has been fundamental to successfully accomplishing my work.

Let me start from the beginning. The first acknowledgment goes to my family:
Elio, Roberta, Alessandra and Enrico. They strongly supported my PhD studies and,
since my first years of life, showed me the right way to go.

After high school, I decided to apply to the engineering faculty. At the time,
I was convinced that I wanted to study Artificial Intelligence (Al), but had no idea
where to start from. After a small research on the Web, I discovered that a department
of my university hosted an outsanding researcher in Al: Prof. Aiello. Thus, I chose
to contact her. Despite the fact that I was just a first year student, she immediately
replied to me and convinced me that Al was the right choice. Moreover, she outlined
the path I had to follow during my education and has been present to my work up to
know, carefully proof-reading this dissertation.

The first, and probably the most significant, step in my path towards Al (and
robotics) has been to join the RoboCup Legged team at my university (S.P.Q.R.
Legged) in 2001. There, I had the pleasure to work with Prof. Daniele Nardi who
was in charge of the project. Prof. Nardi has advised me since then, guiding me to
this point. His advise has always been extraordinary both in quantity and in quality.
Moreover, he gave me the opportunity to travel and get in contact with many notable
researchers which have been very important to my scientific formation.

When I entered S.P.Q.R. Legged team, I had the privilege to meet Prof. Iocchi
which has always been a precious mentor and colleague. His contribution to my work
has been valuable since the very beginning of my studies, given his deep scientific
and technical knowledge in an astonishingly wide range of research areas.

The participation to the RoboCup competitions considerably improved my per-
sonal and teamwork skills. Furthermore, it allowed me to get in touch with great
people. Just to mentions some: Vincenzo Bonifaci, Fabio Patrizi, Luca Marchetti,
Giorgio Grisetti, Shahram Bahadori, Maria Giannone, Simone Elviretti, Stefano Pel-
legrini. In particular, I am grateful to Daniele Calisi, Francesca Giannone and Pier
Francesco Palamara for the time spent programming and having fun together, not to

il

mention their fundamental contribution to the implementation and testing of the PNP
framework. Moreover, I am grateful to my friends Fabio Cottefoglie and Alessandro
Farinelli who have been valuable study and research companions.

During RoboCup 2002, I had the privilege to know, and later on to work with,
Steffen Gutmann. Steffen suggested me to spend some time in Freiburg, where, he
said, there was an amazing group. Indeed, he was right! In the year I spend there I
was advised by Prof. Bernhard Nebel who, at first, introduced me to Game Theory,
and, then, fostered many of the ideas which I developed into my thesis. I also want to
acknowledge the members of Prof. Nebel’s group, and in particular: Michael Bren-
ner, Malte Helmert, Alexander Kleiner, Sebastian Kupferschmid and my room mate
Dapeng Zhang. These people have been valuable colleagues and, most importantly,
good friends. Among them, Alexander Kleiner deserves a special mention. I spent
plenty of good time with him, working and having fun. Furthermore, our discussions
about robotics and development methodologies have been fundamental to build my
engineering and scientific background.

Probably, the most relevant aspect of my visit to Freiburg is that there I met Katia,
the woman who I married. Her patience and support gave me the strength to complete
this dissertation.

Finally, I would like to acknowledge the reviewers of this dissertation, Prof.
Manuela Veloso and Prof. Peter Stone, for their valuable suggestions and their en-
couraging comments. Special thanks also to my colleagues of the PhD program, in
particular Antonella Chirichiello and Paolo Romano; the best coffee-break compan-
ions ever!

Abstract

Artificial Intelligence research has developed, during the last fifty years, a large va-
riety of tools aimed at establishing rational behaviors for cognitive entities, called
agents. This dissertation addresses the problem of producing rational behaviors for
a team of agents pursuing possibly different objectives. The problem can be decom-
posed into the following two research issues: i) multi-agent behavior and execution
modelling, and, ii) multi-objective problem solving. Our resarch focus on multi-agent
systems has been modelling distributed execution of asynchronous plans composed
of actions of uncertain duration, possibly coordinated through direct communication.
The distributed execution and the communication costs require to model the dynam-
ics of knowledge when asynchronously distributed in the system under the effect of
local and communication actions. The second research focus of this thesis, has been
multi-objective problem solving. The introduction of multiple objectives in planning
domains, allows us to generalize classical multi-agent planning, thus augmenting the
class of solvable problems. Multi-objective formulations allow an incomplete, and
possibly contradictory, description of goals, and are frequent in many practical ap-
plications. For example, consider the case where requests to a system come from a
large community of users or from the members of a research group studying different
aspects of a complex problem.

This thesis provides three main contributions. The first contribution consists of
two formal tools for modelling multi-agent systems. One, for planning, and, one, for
distributed execution. Each model defines a class of languages based on single-agent
action languages and Petri nets, respectively. The second contribution addresses two
multi-objective issues: solution concept and solving techniques. First, we define a
novel solution concept which is, to our knowledge, the first refinement of Pareto op-
timality for any multi-objective problem. Second, we provide a sound and complete
algorithm for solving it. Finally, the third contribution is a case study on the Urban
Search And Rescue (USAR) robotic problem, presented in three formulations of in-
creasing complexity. USAR, in its classical formulation, is a multi-objective problem
where the objectives are: exploration, mapping, and victim detection.

Contents

|Acknowledgment] iii
[Abstract vi
Contents X
(I__Introduction| 1
1. Representation| 5
M27SOMuonl - - -+« v v v et 7
1.3 Experimentation|. 8
M 0ulingo 10
2_Related Work] 11
[2.1 ~Single-Objective Multi-Agent Planning| 12
[2.1.1 Centralized Planning for Distributed Plang|. 12

[2.1.2 Dastributed Planning for Centralized Plans|. 17

[2.1.3 Dastributed Planning for Distributed Plans| 18

[2.1.4 Distributed Planning and Execution| 20

2.2 Multi-Objective Single-Agent Planning| 23
[2.2.1 ~ Mulu-Objective Optimization| 24

[2.2.2 Multi-Objective Heuristic Search| 26

2.3 Multi-Objective Multi-Agent Planningf 27
23.1 GameTheory| 28

2.4 Analysisof Related Work| 39

(I Representation| 43
3 Multi-Agent Planning Games| 45
[3.1 Reasoning about Actions with Uncertain Duration| 48

vii

[3.1.1 The Action Language &of
[3.1.2 Example: The Slotted Blocks World|
............................
3.14 UtlityofPlans|
[3.1.5 'Timed Single Objective Single Agent Planning|
[3.2 Dastributed Knowledge and Asynchronous Execution|
[3.3 Information Share and Synchronization|
3.4 Interaction Among Actions|

3.5.1 Example|

3.6.1 Multi-AgentPlans|
[3.6.2 Game Representation|
3.7 Outcome Uncertainty and Perception|.
[3.7.1 Multi-Agent Plan Evaluation|

4 Petri Net Plans

4.3.1 PNP Execution Algorithm|
4.4 Multu-AgentPlans|. oL
i4.4.1 Action Synchronization|
4.4.2 Extracting Single Agent PNPs|

4.5.1 Multi-Agent Plans Without Communication|
4.5.2 Multi-Agent Plans With Communication|
453 Example|
4.6 Implemented Systems|.

[II_Solution|

I3 Solution Concept|
5.1 Pareto Optimal Games|
5.2 Restricted Correlated Equilibrium|

|6 Solving Methods|
6.1 Algorithmics|,

97

99
100
107
107
109
111
113
116
117
118
119
120
121

125

127
129
131

[6.1.2 Optimal Game Solving|
6.2 Experimental Analysis|

(IIl Experimentation|

{7 Reactive Exploration with Indirect Communication|

7.2 Navigation|.
7.3 Local Exploration|
7.4 Simultaneous Localization And Mapping|

[7.5 Expermments|.

[8 Monitoring and Planning Exploration|
8.1 Problem Modeling|
[8.2 Global Task Assignment and Path Planning|
8.3 Monitoring Agent| Lo
8.4 Expermments|.

9 Multi-Objective Robot Teams|
9.1 Problem Representation|.,
9.1.1 Uulity Functions|
9.1.2 Action Description K 5|
9.2 Experimental Analysts|

IV___Conclusions|

[0 Discussion|

155

157
158
159
161
162
162
163
164

169
170
173
175
176

179
181
183
184
188

193

195
195
200
201

[V Appendix|

[A"MAPG Syntax|

B Slotted Blocks World MAPG

|C_Hanoi Tower MAPG

[D Cleaning Robots MAPG]|

. USAR Robots MAPG!

209

211

215

217

221

225

243

Chapter 1

Introduction

Artificial Intelligence research has developed, during the last fifty years, a large va-
riety of theories and tools, aimed at establishing rational behaviors for cognitive en-
tities, called agents. The problem has been addresses in various formulations, each
investigating different research directions. Nevertheless, there is no complete solu-
tion to the problem, and the current agent technology has not yet found a real killer-
application. Thus, it is natural to ask ourself: Which research direction should the
scientific community take in order to produce a technology with a perceivable im-
pact on applications? A big community of researchers (e.g. [[FAAMAS,)]) believes
that systems composed by multiple agents can effectively overcome the limitations of
current technology. Teams of interacting agents can solve more efficiently complex
tasks due to their distributed nature. Moreover, a multi-agent description seems natu-
ral in all those systems which are inherently distributed. As an example, consider the
Internet which is currently accessed by a an extremely large user community. Despite
this, many multi-agent systems, and in particular the ones based on action planning,
are constrained to have their tasks described in a centralized, complete and consis-
tent way. These constraints are a serious limitation because, in general, users of such
systems are non-coordinated entities, each having possibly conflicting requests. User
requests may represent different views of a common problem to solve, or, in general,
different objectives. As such, objectives represent an incomplete description of the
goals (in the sense that they describe preferences over some features of the result),
which may induce a contradictory description of the goals to pursue.

Consider the case of a large community of users interacting with a system pro-
viding some sort of service. To devise a single, global, objective from all the users’
requests could require a considerable amount of time or, in the worst case, could be
impossible. In particular, this is true, when different expertise come together to solve
a complex problem. Each expert will judge the solutions based on his view (i.e. for-
mulation) of the problem, lacking of the global model (which may be unknown or

2 1. Introduction

too complex to solve) necessary to evaluate the tradeoffs between objectives. The
choice of how to manage such tradeoffs is, in the best case, based on experimental
evaluation and often lacks a formal basis. In this dissertation, we consider systems
whose goals are described by a set of total preference relations over the possible so-
lutions. This definition, on the one hand, generalizes the class of solvable problems;
on the other, it allows interaction with multiple users. The key idea, is that the goal
may be specified by a set of objectives, rather than a single one. In the remainder of
this introduction, and of this dissertation, we investigate the planning problem for a
team of agents pursuing possibly different objectives. The aim of this work is, thus,
to study action planning in two main research directions: the multi-agent and the
multi-objective one.

Multi-agent planning is a key area in Al. Multi-agent systems are, in general,
more efficient T than their single agent counterpart. The parallel execution of actions
allows agents to achieve goals faster, thus, more efficiently. Multi-agent planning
is not only about speeding up the execution (and generation) of plans. Cooperative
acting may allow the system to solve problems that would be unsolvable for a single
agent. Nevertheless, there are two main drawbacks in concurrent execution: local
incomplete knowledge and action interference. In the former case, distributed execu-
tion, local perception and costly communications, force the knowledge to be spread
across the system in a set of local views. For this reason the planning problem has
to explicitly consider communication. In the latter case, the concurrent execution of
actions may produce conflicts. In fact, each agent’s part of a multi-agent plan, while
perfectly effective if considered on its own, may fail when executed concurrently
with the other part of the plan because of interfering actions. How to resolve such
problem in a multi-agent system depends on the assumptions made on time. A com-
mon assumption is that actions are instantaneous and that agents act simultaneously.
This is actually the assumption commonly used in many domains (e.g. [Bernstein
et al., 2002]). In this case, we can consider the space of joint actions, and discard
conflicting elements. For problems where actions have (uncertain) duration, we must
consider synchronization primitives or some form of risk evaluation. In real world
applications, communication is non-instantaneous and has, in most cases, a cost. In
this scenarios, centralized execution of plans is costly and introduces a single point of
failure in the system. Decentralized execution, can thus be used to limit the commu-
nications necessary to control the asynchronous execution of system. Nevertheless,
execution models for asynchronous discrete-event systems, such as multi-agent plans,
are less intuitive than their single-agent counterpart. They must be formally modeled
and provably correct.

"Multi-agent systems are also characterized by many other notable properties which make them
appealing to the research community. General considerations on multi-agent systems are out of the
scope of this work. We suggest the interested reader to consult a survey on the topic [Sycara, 1998},
Veloso & Stone, 2002} [Stone & Veloso, 2000]

Despite few exceptions (e.g. [McMillen & Veloso, 2007; [Hansen, Bernstein, &
/ilberstein, 2004bj [Refanidis & Vlahavas, 2003 |[Bryce, Cushing, & Kambhampati,
2007; Belfares & Guitouni, 2003; Mouaddib, Boussard, & Bouzid, 2007]), agent
and multi-agent planning have focused over the years on finding plans of action
which optimize a scalar value, such as execution time, or utility. Nevertheless, many
real-world problems involve optimizing over multiple quantities and need to trade-
off between many different noncommesurate objectives, whose optimization may be
conflicting [Das, 1997all. For example, aircraft design requires the simultaneous op-
timization of fuel efficiency, payload, and weight. Multi-objective problems raise the
issue of choosing among solutions for which no, unique, total preference relation is
defined and, thus, for which it is not possible to write a global utility function which
orders all the solutions according to an optimality criterion. It is interesting to notice
that, if it is possible to write a global utility function measuring the tradeoffs between
the different objectives, the problem is not a multi-objective one. In fact, in this case,
the problem can be rephrased as a single objective one, where the objective is defined
by the global utility function. Multi-objective problem solving has been addressed
mainly in a general perspective, both as search and as optimization, depending on the
nature of the problem itself. Probably, the most challenging issue in multi-objective
problems, is the definition of a solution concept. Multi-objective problems have to
trade-off between noncommesurate quantities (i.e. different objectives). In general,
for such problems, the utility of a solution is defined as a vector of utilities, one for
each objective. For example, assume that we have two distinct objectives and three
different solutions with the following utilities: (1, 3), (3,1) and (1, 1). In this case,
it is clear that the third solution is the worst (i.e. it has a lower utility than the others
for both objectives). Nevertheless we have no way to choose among the first two.
This reflects the fact that we can write a total preference relation (in this case in the
form of a utility function) w.r.t. a single objective, but we can just define a partial one
among complete solutions. It is commonly agreed (see Section 2.2)) that a solution
for a multi-objective problem must be Pareto optimal. A solution o is Pareto optimal
if there is no other solution which is as good as o for all objectives, and strictly better
for at least one. In the previous example (1, 1) is not Pareto optimal because (1, 3) is,
as good as (1, 1) for the first objective, and strictly better for the second one. In this
example, the Pareto optimal solutions are (1, 3) and (3, 1). Pareto optimality exploits
the partial ordering induced on the solutions to rule out all those instances which
are clearly dominated in performance by another solution. The set of Pareto optimal
solutions, in general, is not a singleton. It is, thus, necessary to devise a method to
further guide our selection. Nevertheless, finding a refinement for Pareto optimality
is still an open problem [Stewart & White, 1991]] and is commonly addressed by as-
suming a measurement between noncommesurate quantities (i.e. by forcing a total
ordering among the Pareto optimal solutions).

The aim of this dissertation is to provide a framework for developping

4 1. Introduction

multi-agent systems composed by teams of agents, concurrently pursuing
possibly different objectives under time constraints.

In particular, we are interested in coordinating teams of heterogeneous agents pursu-
ing multiple objectives through distributed execution of plans. We assume that each
agent is assigned (or designed) to pursue an objective, based on a utility function,
and that actions are uncertain both in their duration and outcome. In general, due
to time constraints or domain constraints, the team will not be able to accomplish
in an optimal way all the objectives, thus rising conflicts in the team. Given some
description of the problem to be solved, a finite set of capabilities of the agents and
time constraints, there will be a finite set of possible multi-agent plans which fullfill,
with some degree of optimality, each objective. Among these plans we want to find
one on which all agents agree, according to some concept of rationality, given that
they are a team. In this work, we consider agents forming a team if they are willing
to maximize the other agents’ objectives, unless it degrades their objective.

This dissertation provides three main contributions to the solution of the multi-
objective multi-agent planning problem, in three key areas which encompass the full
system development process: representation, solution and experimentation.

Example

Consider a set of agents, embedded into Personal Digital Assistants (PDAs) accessing
a common network, which have to organize a schedule for a team of users involved
in a set of common projects. Each agent represents a user, and has the objective to
organize the user’s schedule, according to his preferences and duties, for a period
of time. Unless the team has a hierarchical structure, where a leader decides and
other people adjust to his decisions, there is no clear preference relation between the
objectives. In this example, we assume that the team is composed by peers or that
users agree that no schedule has priority on others.

For example, the agents could be in charge of organizing the weekly schedule
for a research group. Each agent can plan different activities as: organize meetings,
communicate information, subscribe and participate to a meeting, move to a location,
schedule complex production plans or, more preferably, vacations. We assume that
each user will provide his preferences to the system. For example, some users may
prefer to organize meetings in their own office, rather than incurring in the cost of
having to move from an office to an other. Moreover, users may provide, based on
their expertise and opinion, priorities for meetings, or, in general, for the activities
which they assume are most important the for project.

A solution to this problem should have two desirable properties: 1) global op-
timality (e.g. Pareto optimality) and 2) rationality for the users. In particular, this
latter property, ensures that the solution is rationally agreeable (Chapter[3). Roughly,
a solution is agreed on, if no user can propose a variant on his own schedule, such

1.1. Representation 5

that the team schedule is still optimal, but produces an increase of his own utility.
Thus, agents are self-interested, in the sense that they want to maximize the utility of
their user, but having committed to a team, will agree only to optimal solutions. For
example, consider two users, a and b, who agree on having a meeting, but both want
to meet in their own office. They have thee options: meet at a, meet at b, do not meet
at all. The last option is not taken into consideration because, it is the worst case for
both and, thus, not Pareto optimal. The agents will have to agree on one of the first
two options, despite the fact that they have conflicting preferences.

Consider the case of a company which produces web portals, which has different
groups based on their expertise. Usually, customers provide such companies with
deadlines and requirements such as graphic design, efficiency, contents, response
time, and so on. Requirements can be considered as the objectives of the system.
Each expert defines his objective in terms of a utility function based on a set of prop-
erties. Moreover, he provides a list of members of the development team, along with
the possible set of activities each of them can perform in terms of their requirements,
effects and uncertainties. In particular, it is interesting to notice that the modelling of
actions (i.e. activities) as uncertain in the duration and outcomes, reflects the practical
need to model the uncertainty of the software development process. It is very hard to
predict in general how much time it will take to develop a project or what the degree
of satisfaction of the costumer will be. Nevertheless, the expertise of the team mem-
bers, or statistical information, can be used to estimate probability distributions over
the duration and outcome of single sub-activities. All this information can be used to
produce development plans, to be used by the management for estimating the costs
and benefits of the project and by the developers to define a work plan. Commonly,
development plans are represented as Gantt charts and PERT diagrams. PERT is basi-
cally a method to analyze the tasks involved in completing a given project, especially
the time needed to complete each task, and identifying the minimum time needed to
complete the total project. Gantt is a popular type of bar chart that illustrates a project
schedule. Gantt charts illustrate the start and finish dates of the terminal elements and
summary elements of a project. Terminal elements and summary elements comprise
the work breakdown structure of the project. Some Gantt charts also show the de-
pendency (i.e., precedence network) relationships between activities. These models
provide an execution model (see Chapter M) to projects which allows us to monitor
and coordinate the activities of the team.

1.1 Representation

The first contribution of this dissertation is the definition of the syntax and the seman-
tics of two tools for the representation of knowledge and plans in multi-agent systems:
Multi-Agent Planning Games (MAPGs) and Petri Net Plans (PNPs). MAPGs are a
formal tool for representing distributed knowledge and utility, under the effect of mul-

6 1. Introduction

tiple actions, uncertain both in their outcome and duration, concurrently performed
by a team of agents. The core of MAPGs is Ggo+, a multi-agent action language
based on a variant of the single-agent language £+ [locchi ef al., 2007]. In particu-
lar, we extend £+ in order to deal with actions with uncertain duration. Gg(+- is used
to describe the dynamics of a system of communicative agents, which act and acquire
information in a distributed way. We provide the semantics of MAPGs in terms of
a Finite State Automaton (FSA). The finite state automaton describes the evolution
of distributed information available to the agents composing the system though the
performance of asynchronous actions. Each state of the FSA describes a profile of
incomplete views of the world state at different points in time, taking into account
that agents act and acquire knowledge individually, and thus need to communicate,
in order to spread knowledge and safely interleave their actions.

Example Consider the state where John, in the morning, knows that he woke up at
07:00 a.m. and Alice, at noon, knows that she is hungry. Alice performs the action
go to lunch, leading to a new state where John, in the morning, knows that he woke
up at 07:00 a.m. and where Alice, at 2 p.m., knows she is not hungry. Notice that the
local knowledge of John did not change after Alice performed the action go to lunch.
After lunch, at 2:30 p.m., Alice decides to phone John for five minutes, leading to a
new state where both Alice and John, at 2:35 p.m., know that Alice is not hungry and
John woke up at 07:00 a.m..

We prove that the FSA deriving from a MAPG specification is a finite tree, which
allows for identifying plans as paths (or sub-trees) over the FSA. Plans represent the
dynamics of information under the effect of concurrent actions. The task of a plan-
ner is to chose among such plans one which can be identified within some solution
concept. The plans which are produced by the planner are not directly executable.
Multi-agent plans, in our formulation, are a description of the dynamics of informa-
tion, rather than a prescription of action execution.

To describe the execution of plans we provide a formal distributed execution
model. The idea is to produce from a provably correct centralized model, a set of
plans, one for each agent, whose distributed execution is equivalent to the one of the
original plan. Plan execution is modeled as an asynchronous discrete-event system
through Petri nets. In particular, the execution model of MAPGs is provided by map-
ping multi-agent plans to a Petri net based formalism, called Petri Net Plans [Ziparo
& Tocchi, 2006]]. Petri Net Plans have a sound execution model, based on the dy-
namics of Petri nets, which has been implemented and experimented in many robotic
domains.

1.2. Solution 7

1.2 Solution

The second contribution of this dissertation is a solution concept and a provably
sound and complete solving algorithm. The solution concept is based on the idea
that agents which form a team are willing to maximize the performance of the team.
In multi-objective problems this requirement is formally defined as Pareto optimal-
ity. The major drawback of Pareto optimality is that, in general, it defines a space of
possible solutions. It is still an open problem to understand which solution should be
selected among this set. Most approaches in the literature (see Section[2.2)) overcome
this limitation by defining some form of tradeoff between the objectives to evaluate
which Pareto optimal solution is the best. Nevertheless, these approaches are not
sound because they rely on measures between noncommensurate quantities. In this
dissertation, we provide a novel, and to our knowledge the first, refinement of Pareto
optimality which is based on the rationality of agents. In particular, we exploit the
fact that each agent is pursuing a single objective and thus embodies the objective
itself. In this case, the problem of selecting a Pareto optimal solution can be mod-
eled as a non-cooperative game. Indeed, moving from a Pareto optimal solution to
another one, leads, by definition, to a solution where some objectives are penalized
and others are improved. This situation is clearly competitive and can be modeled
through the concept of game. In particular, we define such game as the optimal game
of a MAPG.

Strategic situations involving cooperation and/or competition of rational agents
have been studied intensively by game theorists over the years. Many models (i.e.
games) and solutions (i.e. equilibria) have been proposed to best represent real-life
scenarios. Given that each agent is associated with an objective, the situation we are
modeling can be represented with a non-cooperative model, in particular, a game.
The dynamics of games, under the assumptions of rationality, lead to steady states
called equilibria, where every agent is behaving rationally. Equilibria are steady
states from which no agent can deviate unilaterally increasing his utility.

We define a solution for a MAPG as a multi-agent plan which is an equilibrium
of its optimal game. which models the choice of a Pareto optimal outcome. Optimal
games enforce Pareto optimality on solutions and provide a performance guarantee
by exploiting the preference relations defined on the objectives. Equilibria provide
an account to describe strategically consistent situations based on the rationality of
agents.

The game theoretic literature produced many different variants of equilibria, ex-
pressing different concepts of rationality. In this dissertation, we present a novel
refinement of Correlated Equilibrium, which is a expression of Bayesian rational-
ity [Aumann, 1987]. Some greater detail on Game Theory is provided by Section
2.3.1land the motivation for the choice of Correlated Equilibrium as the basis for our
solution concept is given in Chapter 3

The proposed solution concept is cooperative when cooperation is possible and

8 1. Introduction

non-cooperative when cooperation is not possible. In particular, agents cooperate in
the sense that they agree only on Pareto optimal solutions. Thus, they maximize the
performance of the team whenever the performance metric allows it. Nevertheless,
in multi-objective problems, the performance metric is a partial ordering among so-
lutions. Thus, once identified the set of Pareto optimal solutions there is no more
space for cooperation because there is no further way to assess the goodness of a
plan with respect to the team performance. Selecting the appropriate Pareto optimal
solution is a matter of deciding which agent will take the greatest advantage from it.
In this perspective, the problem is non-cooperative and the agents can be thought as
self-interested. Despite this, the optimality of the process is not in danger because the
non-cooperative model is used to search over the Pareto optimal set and, thus, can not
result in a non-Pareto optimal outcome. The non-cooperative model is based on nor-
mal form games and on a novel solution concept, which we call restricted correlated
equilibrium. The restricted correlated equilibrium provides the means of selecting
the appropriate Pareto optimal solution based on the (Bayesian) rationality of agents.
We can prove that such solution always exists for the class of games we present in
this dissertation, called optimal games. Moreover, restricted correlated equilibrium
is considerably more efficient to compute than correlated equilibrium, under some
reasonable assumptions on the domain.

From a computational perspective, the problem can be considered as composed
of two parts (see Chapter [6)). A first one enumerating all possible Pareto optimal
plans and a second one solving the game built on them. The proposed refinement of
the correlated equilibrium can be solved in polynomial time through a linear program
which has a variable for each Pareto optimal solution. Thus, the proposed refinement
of Pareto optimality does not produce computational overhead to the classical multi-
objective search if the number of optimal plans is “small”. The source of complexity
is, thus, in the number of possible Pareto optimal solutions, which may be exponential
with respect to the problem description. We address this issue, which is the problem
of the input size of the linear program, assuming that the Pareto optimal plans are
exponentially less than all possible plans and we verify it through some experimental
evaluation. This assumption is realistic in many planning domains, and in particular
for those considered in this dissertation.

1.3 Experimentation

Finally, the third contribution of this dissertation, is a case study on Urban Search
and Rescue (USAR). In the Urban Search and Rescue problem, a team of robots is
deployed in a post-disaster scenario, as a partially collapsed building after an earth-
quake. These systems are designed to produce a complete high quality map of the
environment annotated with victim locations and their state. Such map can then be
used by first responders to safely and rapidly rescue victims. The problem is usu-

1.3. Experimentation 9

ally described by three main objectives: exploration, victim detection and mapping.
The exploration objective requires to maximize the coverage of the area, while the
mapping objective to reconstruct the structure of the features of the area. Finally, the
victim detection objective is the task of reporting victims and their status.

Most of the times, it is impossible to solve optimally the problem because of
the limited battery time of robots, which forces the team to trade-off between the
objectives. Moreover, it is very hard to define a global utility function for measuring
such trade-offs. For example, exploration may increase the efficiency of the first
responders saving victims’ lives, while an accurate mapping, highlighting dangerous
areas, would spare first responders’ lives.

The implemented multi-robot system is strongly based on automated environ-
ment engineering [Ziparo ef al., 2007all. Robots release devices in the environment
which can be automatically identified and localized with respect to the robot. These
unique features in the environment allow for exact end efficient data association, and
thus greatly simplify the SLAM problem and the abstraction step for the planner. In
particular, the features and the reachability information from the travelling of robots,
allow us to build a topological representation of the environment. The topological
representation is a graph where nodes represent the released devices (i.e. features)
and, edges, known traversable paths between devices. We will show three multi-robot
systems to solve three different formulations of the problem, incrementally obtained
by dropping restrictive assumptions.

The first formulation assumes that search and rescue can be done just through
exploration and that the environment is either free or not too structured. The problem
is solved with a distributed gradient descent technique. The approach, and the multi-
robot architecture, have been tested against some of the state of the art approaches,
during the Search and Rescue League at the international RoboCup competition. In
particular, our approach won the Virtual Robot Competition 2006 [Balakirsky ez al.,
20071.

The second formulation, removes the constraints on the structure of the environ-
ment. In this case, the first approach may get temporarily blocked into local minima,
substantially reducing the performance of the system. This is mainly caused by the
lack of lookahead. The second system [Ziparo et al., 2007b] solves the problem
introducing a monitoring agent, which through multi-agent (path) planning restarts
when necessary the local search, in new and more convenient locations.

Finally, the third formulation, removes the assumption that USAR can be solved
just through exploration. In particular, we assume that the problem is described
through three objectives: exploration, mapping and victim identification. The ob-
jectives are assigned to robots through task assignment techniques and multi-agent
planning is used to devise plans which fullfill the USAR task. The problem is a
multi-objective one and can not be solved with a single-objective planner. Indeed,
we represent the problem as a Multi-Agent Planning Game (MAPG).

This three step experimentation protocol aims at carefully evaluating the compo-

10 1. Introduction

nents of the robotic system, in order to demonstrate the feasibility of the approach
presented in this dissertation. Moreover, the protocol reflects the chronological path
we followed while trying to solve the USAR problem, highlighting the motivations
for a multi-objective planning approach. In particular, the first system is used to vali-
date basic components such as navigation, SLAM, exploration behaviors and reactive
coordination. The second system studies the feasibility of multi-robot (path-)plan-
ning and analyzes its advantages with respect to the reactive approach. Finally, the
third system implements the complete approach, as presented in this dissertation,
showing the advantages of a multi-objective formulation with respect to the previous
ones. Each system builds on top of the previous and, thus, the presentation shows
how to incrementally build the complete multi-robot multi-objective system.

1.4 Outline

The remainder of this dissertation is structured as follows. The next chapter presents
some related work (Chapter[2)). There are currently two main areas of research which
are in the scope of our work: multi-agent planning and multi-objective problem solv-
ing. We first look at the two problems independently, then focus on their intersection.
Up to now, there is very little work on multi-objective multi-agent planning. Nev-
ertheless, there is a considerable amount of work in Game Theory, which is a set of
mathematical tools aimed at explaining the behavior of rational agents, rather than
generating it. The presentation is then split into three main parts which correspond to
the three main contributions of this work:

e Part [l presents the formalisms for the representation of distributed knowledge
through MAPGs (Chapter [3) and for the representation of execution control
through PNPs (Chapter 4)).

e Part[lladdresses the solution of MAPGs in two parts. First, we present a novel
refinement of Pareto optimality (Chapter[5) which provides a solution concept
for MAPGs. Second, we provide a sound and complete algorithm for solving
MAPGs (Chapter[6).

e Part [[TTl presents the USAR case study based on three different approaches of
increasing complexity. The first approach is based on distributed gradient de-
scend (Chapter [7)), the second, on multi-robot path planning (Chapter [8]) and,
the third, on MAPGs (Chapter [9)).

We, then, conclude with a discussion (Chapter[10) and an outline of future work
(Chapter [LT).

Chapter 2

Related Work

In order to put our work in a proper perspective with respect to the scientific litera-
ture, we present in this section some related work on action planning based on two
features: number of agents and objectives. Figure 2.l summarizes the related work
showing the different research areas involved when these features vary. In particular,
when the definition of the planning problem involves a single agent pursuing a single
objective, we call the problem SOSA-Planning (e.g. [Fikes & Nilsson, 1971]). This
problem has been deeply studied [ICAPS,|] and, given its foundational value to our
work, we do not not further discus it here. Despite this, the problem becomes inter-
esting for our purposes when the number of either objectives or agents increases. To
this end we consider, at first, the case of multiple agents pursuing a single objective
(SOMA-Planning), often called multi-agent planning. The problem is double faced
and has to address both the issues of representing and reasoning about distributed
knowledge and of concurrent execution of distributed plans. We, then, consider the
case of a single agent pursuing multiple objectives (MOSA-Planning). In this case,
the major issues are to define an appropriate solution concept for the problem and
devise appropriate algorithmic solutions for solving it. Finally, we consider the case
where there are multiple agents pursuing multiple goals (MOMA-Planning). There is

Single-Objective ~ Multi-Objective
Single-Agent | SOSA-Planning | MOSA-Planning
Multi-Agent | SOMA-Planning | MOMA-Planning

Figure 2.1: Summary Of Related Work

11

12 2. Related Work

little work explicitly addressing the general case of multi-objective multi-agent plan-
ning. Nevertheless, there exists, since many years, a set of mathematical tools aimed
to describe, rather than generate, models of interaction for self-interested rational
agents, each pursuing a possibly different objective. Such tools are grouped under
the umbrella of Game Theory.

2.1 Single-Objective Multi-Agent Planning

SOMA-Planning can be seen as a distributed problem-solving technique, where the
problem to solve is a planning problem. We often find this problem in the literature
under the names of multi-agent planning or distributed planning, to characterize the
distributed nature of the problem. There are different approaches to distributed plan-
ning. We can roughly distinguish between whether distributed refers to the planning
process, or to the plan type. In the former case, the agents involved in the planning
process cooperate to produce a global plan of action, while in the latter, a centrally
produced plan is decomposed and distributed among them. Finally, a third case can
be identified where both the planning process and the plan are distributed. In this
case, each agent reasons about its local plan, taking into account interactions with the
other agents. Although a global plan is not stored in any part of the system, the local
plans, when executed, are globally coherent. In the following, we report a taxonomy
based on [Durfee, 2000].

2.1.1 Centralized Planning for Distributed Plans

From a classical planning viewpoint, the most straightforward way to produce mul-
tiagent plans is in a centralized fashion. In fact, given a partial order planner, it
is possible to build a plan without a strict ordering between actions and thus have
some degree of parallelism (see Chapter 4)). In general, it may not be trivial to ex-
tend single-agent planning techniques to the multi-agent case if the information in
the system is acquired by each agent independently. In fact, in a distributed system,
an agent may know neither what another agent perceived nor the exact timing of its
actions (see Chapter [3).

A description of distributed knowledge has to represent what each agent knows.
To this end, several logic theories, called epistemic logics, have been introduced. The
predominant approach has been to use modal logics [Wooldridge, 2002]] and, in par-
ticular, normal modal logics with Kripke semantics [Kripke, 1963]]. The model of
epistemic logics has been also characterized [Hintikka, 1962] in terms of the seman-
tics of possible worlds. The main idea is that the incomplete knowledge of an agent
can represent a set of possible world states consistent with the knowledge.

Normal modal logics are ordinary, and possibly propositional, logics extended by
the addition of the operators O (necessarily) and <} (possibly). Given a proposition

2.1. Single-Objective Multi-Agent Planning 13

p, Op represents the fact that, in each possible world corresponding to an agent’s
knowledge, p holds. Moreover, {p represents the fact that there exists a possible
world where p holds.

Based on normal modal logics, we can build a correspondence theory which maps
the structure of possible worlds to a set of axioms which define systems of logics. A
system of logics can be thought as a set of formula vaild in some class of models.
The notation K¥; ... 3, is often used to denote the smallest normal modal logic
containing the axioms X1 ..., In particular, each system must include Kripke’s
axiom, called K, which states:

O(¢ = ¢) = (¢ = DY)

There are four axioms, encoding the reflexive, serial, transitive and Euclidian
properties, which are currently considered the most relevant to describe the epistemic
characterization of knowledge. When combined, they result in 16 systems of logics,
some of which have been proved to be equivalent. Thus, there are 11 distinct systems
which are able to express different properties of distributed knowledge.

To use this logic as epistemic logic O¢ is read as “it is known that ¢””. To deal with
multi-agent knowledge, we can replace the single modal operator “00” by an indexed
set of unary modal operators {K;}, where ¢ € [1,...,n|. The formula K¢ is read
“i knows that ¢”. [Fagin et al., 1993] proposed a grounding of epistemic alternatives
for modeling distributed systems. A system contains an environment wich may be
in any of a set E' of environment states, and a set of n processes {1, ...,n}, each of
which may be in any of a set L of “local states”. At any time a system may be in any
of a set G of global states: ' X L x ... x L. Arunin a system is a function which
assigns a global state to each time point, where time is considered discrete.

Based on this characterization we can develop a language for reasoning about
such systems, using epistemic logics to reason about what each process in the system
knows. These languages can be used to produce multi-agent plans where a third
authority, the planner, considers what each agent knows during execution and what
is the necessary information he needs for performing actions and, in general, for
executing his tasks.

Once we know how to represent knowledge, we must devise a method to pro-
duce safe multi-agent plans and assign them to agents [WeiB, 1999]. Multi-agent
plans can be decomposed into single-agent subplans (see Chapter [)). If the number
of agents is not given in advance, this is an optimization problem, where ordering be-
tween actions is maximized in subplans, and minimized across them [Lansky, 1990].
Furthermore, if after the decomposition there are still ordering constraints between
actions in different subplans, synchronization must be added to ensure correctness.
The local plans can then be assigned to agents, using some task assignment technique
such as, for example, Token Passing [Farinelli ef al., 2005]], Market Based [Dias
& Stentz, 2002; Zlot et al., 2002], Reactive Task Assignment [locchi et al., 2003;

14 2. Related Work

Werger & Mataric, 2000], Iterative Task Assignment [Parker, 1998| or Sequential
Task Assignment [Gerkey & Matari¢, 20005 Dias & Stentz, 2001} |Chaimowicz, Cam-
pos, & Kumar, 2002]. If the task assignment fails, the process returns to one of the
previous steps and tries to find a different plan decomposition or, if necessary, to re-
plan. Here, plan decomposition is a critical task. Since the availability of agents is
hard to devise without first having produced the subplans, it is not guaranteed that,
given the bias to produce the most distributed plan, it will be possible to allocate the
produced subplans in the current context. Moreover, communication issues will have
a big impact on the quality of the solution. In particular, the method will have to take
somehow into account the communication costs and reliability. Furthermore, when
communication channels are slow and unpredictable, it may be convenient to produce
more centralized plans. This means that fewer agents would perform larger tasks. On
the other hand, in tightly coupled systems (or even shared memory) the system may
be biased toward more distributed plans.

Decentralized-Partially Observable Markov Decision Process (Dec-POMDP)

There is a whole line of research which addresses the problem of Multi-Agent plan-
ning modelling explicitly the domain as partially observable and stochastic. This
formalization well relates to real scenarios, as multi robot systems control, where,
due to noisy and limited sensors, the state can not be fully observed. Furthermore,
actions can have uncertain outcomes because of unmodelled characteristics of the
environment and of the actuators. We will focus on Dec-POMDPs [Bernstein et
al., 2002] which generalize previous work for single agents in such domains (i.e
POMDPs [Kaelbling, Littman, & Cassandra, 1998])). In particular we rely on [Gold-
man & Zilberstein, 2004] which tackles the issue of distributed planning for a dis-
tributed plan for the Dec-POMDP model, while taking into account the execution
constraints at the planning level (somehow in a similar way to contingency planning
in Section 2.1.4).

We now present a stochastic process that is cooperatively controlled by a group of
decision-makers who lack a central view of the global state [Goldman & Zilberstein,
2004]. Nevertheless, these agents share a set of objectives and all of them are inter-
ested in maximizing the utility of the system. The process is decentralized because
none of the agents can control the whole process and none of the agents has a full
view of the global state. The formal framework in which we study such decentralized
processes, called Dec-POMDPs, is presented below. For simplicity of exposition, the
formal model is presented for two agents, although it can be extended to any number.

M = <S7A17A27P7R>91192707T>
where:

e S is a finite set of world states with a distinguished initial state s°.

2.1. Single-Objective Multi-Agent Planning 15

e A and Aj are finite sets of control actions. a; denotes an action performed by
agent .

e P is the transition probability function. P(s’|s, a1, az) is the probability of
moving to state s’ from s when actions a1 and a are performed.

e Ris the global reward function. R(s, a1, az, s') represents the reward obtained
by the system as a whole, when moving to state s’ by taking the actions a; ad
a9 1n state s.

e () and {2 are finite sets of observations respectively for each agent.

e O is the observation function. O(o1,02|s, a1, az,s’) is the probability of ob-
serving o1 € £ and 02 € 23 when moving to state s’ by taking the actions a;
ad a9 in state s.

e If a Dec-POMDP has a finite horizon, it is represented by a positive integer 7.

Given the Dec-POMDP model, a local policy of action for a single agent is given by
a mapping from sequences of observations to actions. A joint policy is a tuple com-
posed of these local policies, one for each agent. To solve a decentralized POMDP
problem one must find the optimal joint policy which is, the one withmaximum value
(for example given by the maximum expected accumulated global reward). It has
been shown [Bernstein ef al., 2002] that solving a Dec-POMDP is a NEXP-complete
problem. Nevertheless there exist special sub-classes of this problem which can be
solved more easily. In particular we assume that we can factor the global state .S as
S1 x So where S is the local state of the first agent and S5 is the local state of the
second agent. We refer to S; as the partial view of agent 7.

We can now present some important characteristics of Dec-POMDPs which will
be necessary to identify some particular subclasses (for the formal definitions refer
to [Goldman & Zilberstein, 2004]):

1. Dec-POMDP with Independent Transitions (IT-Dec-POMDPs): An agent’s
actions are independent. In particular we can write P = P; X P» where
Py = Pr(s}|s1,a1) and Py = Pr(sh|sa, az).

2. Dec-POMDP with Independent Observations (10-Dec-POMDPs): The obser-
vations of each agent are independent. That is, each agent’s own observations
are independent of the other agents’ actions.

3. Fully-Observable Dec-POMDP: There is a mapping from each agents own
observations to the current global state.

4. Jointly Fully-Observable Dec-POMDP (Dec-MDPs): There is a mapping from
the observations of both agents to the current state. If the Dec-MDP has inde-
pendent observations and transitions, then it is locally fully observable. In this

16 2. Related Work

Process Class Complexity Class
Dec-POMDP NEXP-complete
Dec-MDP and Dec-POMDP | NEXP-complete

with indirect communication

GO-Dec-MDP NEXP-complete
GO-Dec-POMDP NEXP-complete
IT-IO-Dec-POMDP NP-complete
GO-IT-IO-Dec-POMDP
with single global goal state P-complete

and uniform action cost

Table 2.1: Complexity Results

case, it can be shown that the optimal local policy is a mapping from agent ¢’s
current partial view o; (instead of a sequence of observations) to actions.

5. Locally Fully-Observable Dec-POMDP: There is a mapping from each agent’s
observation to his partial view of the state.

6. Goal Oriented Dec-POMDPs (GO-Dec-POMDPs): Where agents aim to reach
specific global goal states. This class is characterized by having a global re-
ward that is the sum of the (negative) costs of actions taken by agents and an
additional reward that is awarded to the system for reaching a global goal state.

Furthermore, we can characterize communication by being direct or indirect. In
the former case, information can be shared through direct messages. In the latter
case, an agent can communicate through actions. In fact, the actions can change the
observations of another agent that can gather information from this. It may be noticed
that in this way the generalized control problem already includes the problem of what
to communicate and when. Table summarizes some complexity results for Dec-
POMDPs sub-classes (For a complexity analysis and results of Dec-POMDPs with
direct communication refer to [Goldman & Zilberstein, 2004]).

In the last few years, two algorithms for solving optimally decentralized control
problems without information sharing where developed: the generalized version of
dynamic programming for Dec-POMDPs [Hansen, Bernstein, & Zilberstein, 2004l
and the Coverage-set algorithm [Becker ef al., 2003]] for Dec-MDPs with indepen-
dent transitions and observations. The first algorithm solves optimally a general Dec-
POMDP. Its practicality is restricted by the complexity of these problems (NEXP-
complete). The Coverage-set algorithm assumes that the agents’ actions could result

2.1. Single-Objective Multi-Agent Planning 17

in super-additive or sub-additive joint rewards as follows. In the first case, the re-
ward obtained by the system from agents doing certain actions is larger than the
sum of each agent’s local reward for those actions. In the second case, sub-additive
joint rewards will be attained when the agents are penalized for doing redundant
actions. Furthermore, there exists two more algorithms for solving Dec-POMDPs
without information sharing for goal oriented domains. One addresses IT-IO-GO-
Dec-POMDPS with single state goal and actions with uniform cost. The other ex-
tends the previous class accepting multiple goals under the constraint that there is no
benefit to change local goals. These algorithms have a distributed planning for dis-
tributed plans (Section 2.1.3) approach. A group of agents plan off-line assuming no
cost for communication in order to produce a set of local policies which when exe-
cuted result in a global optimal policy. In the single goal problem, the optimal policy
is computed solving single agent MDPs aimed at the corresponding components of
the given global goal state. In the other case, each agent solves iteratively its induced
MDP towards each one of the possible components of each one of the global goal
states. Finally, the optimal joint policies the one with the highest value. It can be no-
ticed that these algorithms exploit the characteristic, of some particular subclasses of
Dec-POMDPs. In particular, they rely on the possibility of decomposing the problem
in different single agent MDP problems.

2.1.2 Distributed Planning for Centralized Plans

In order to take advantage of the computational resources available in a multi-agent
planning system, all the agents should cooperate to produce a plan. This is particu-
larly useful when there is a global plan to be produced which is complex and requires
several planning specialists. For example, this is often the case of problems to be
solved for manufacturing and logistics domains. The overall problem-formulation
task may be thought of as being decomposed and shared among various planning
specialists, each of which will produce their portion of the plan. In particular, for
some problems, partially specified plans may be exchanged by heterogeneous plan-
ners to produce a complete plan. For example, in [Kambhampati e al., 1991] a
general purpose planner has been coupled with specialist planners for geometric rea-
soning and fixturing in a manufacturing domain. The geometric specialist generates
an abstract plan as an ordering of the geometric features to put into the product to
be machined. The general purpose planner then uses this set of constraints to plan
machining operations. Finally, the fixture specialist verifies that the part can be held
for each operation since its shape becomes increasingly irregular every time it is ma-
chined. If any of these planners fail, the system backtracks and new choices are made.
Similar techniques have been used for unmanned vehicles planning [Durfee, Lesser,
& Corkill, 1990] and logistics planning [Wilkins & Myers, 1993].

The approach of passing on (or maybe back if at a dead end) a single plan, which
is then refined by each planner, while taking advantage of the different expertise in

18 2. Related Work

the system, lacks of parallelism and, thus, of efficiency. A more asynchronous and
parallel computation may be obtained by result sharing. This means that each planner
computes in parallel a partial plan and then shares and merges the solutions in a nego-
tiated search mode in order to obtain a complete plan. For example, in the domain of
communication networks, localized agents can tentatively allocate network connec-
tions to particular circuits and share these tentative allocations with neighbors [Conry,
et al., 1991]]. When inconsistent allocations are noticed, some agents try other alloca-
tions, and the process continues until a consistent set of allocations has been found.
In this example, result-sharing amounts to a distributed constraint satisfaction search,
with the usual concerns of completeness and termination.

2.1.3 Distributed Planning for Distributed Plans

Probably, the most challenging version of distributed planning is when both the plan-
ning process and the plans are distributed. In this case, the global plan is not repre-
sented in any part of the system in its entirety, but is the result of the execution of
the local plans of the agents. Each agent reasons on its own local goal, which may
possibly be the same for each agent, taking into account that other agents interact in
the system. Local goals are a consistent, and possibly an implicit, decomposition of
a global goal and are not conflicting with each other. The overall behavior has to be
coherent in the sense that the actions of each single agent do not conflict with each
other and possibly help other agents to achieve their goals when it is rational to do
sO.

Plan Merging

Assume that each agent has been assigned a goal, either through a task assignment
technique or because of the inherent distributivity of the activity. Each agent will then
generate a plan to achieve his goal. The necessary condition for this set of plans to
be coherent is to avoid conflicting actions when executing the plan. In a centralized
coordination approach, there will be an agent which collects these individual plans.
It then has to analyze the plans to discover which sequences of actions might lead to
conflicts, and to modify the plans to remove these conflicts. In general, the former
problem amounts to a reachability analysis: given a set of possible initial states, and
a set of action sequences that can be executed asynchronously, enumerate all possible
states of the world that can be reached. Then, given the set of possible world states,
find the subset to avoid and insert constraints on the sequences of actions to eliminate
them [Durfee, 2000].

In general, enumerating the reachable state space may be intractable. Let us
consider a technique (see [Durfee, 2000]]), adapted from the approach presented
in [Georgeff, 1988], which takes into account limited effects between actions to
reduce the search. Actions are represented similarly to STRIPS operators [Fikes

2.1. Single-Objective Multi-Agent Planning 19

& Nilsson, 1971] with, preconditions which must hold in order for actions to take
place, during conditions which must be ensured during execution and effects which
will hold after execution. Two actions are said to commute if their preconditions,
effects and during conditions may be all satisfied at the same time. Two actions that
commute can be safely executed in parallel. These actions can be dropped from con-
sideration when looking for conflicts. Even though actions do not commute, there
is still a chance that they can be safely executed in a stricter order. If, given two
non-commuting actions a and b, the preconditions of b can be satisfied in conjunc-
tion with the effects of a, a has to precede b. If neither can precede the other, the
actions conflict. The collector agent thus will have to analyze all the single agent
plans, excluding the commuting actions, in order to identify conflicting situations,
and resolve them through synchronization actions. This amounts to supending some
agents activity during regions of their plan where they may conflict with other agents’
actions. There are a host of approaches, which deal with the problem of what to do
when there is not a feasible schedule for all the single agents plans [Ephrati, Pol-
lack, & Rosenschein, 1995 or with maximization of expected performance [Liu &
Sycara, 1996]. Moreover, complex representations of reactive plans and complex
techniques for coordinating them based on model checking and Petri nets have also
been explored [Kabanza, 1995; Seghrouchni & Haddad, 1996]].

Iterative Plan Formation

Plan merging may be very powerful in loosely coupled domains. Unfortunately, it is
often the case that local decisions are dependent on the decisions of others. In this
case, it may not be possible to merge local plans. Plans should be produced with
an eye to coordination issues. In particular, it may be the case that agents should
search in a bigger plan space. For example, in the plan combination search [Ephrati
& Rosenschein, 1994] each agent looks for different ways to achieve its local goal.
All local plans are stored in plan libraries which are used to narrow the search space
for searching a global plan of action. In particular, each agent, based on his local-
plans library, proposes, for every plan step, the set of propositions that it may change
with a single action. This may also include inaction, which, given the assumption of
constant and certain duration of actions, results in synchronization constraints of the
global plan. All the proposals will be considered in order to produce successor states
which are evaluated base on a heuristic. The heuristic consists in summing the local
estimates of the states achievable with the proposed world changes. Every time an
agent selects an action, it narrows down the future choices of action by discarding
local plans which are inconsistent with the selected action.

Alternatively, we may exploit the hierarchical structure of the plan space to per-
form distributed hierarchical planning. The main advantage of this approach is that
conflicts may be detected at more abstract levels, pruning away big portions of the
more detailed search space. For example, an agent may look for conjunctive goals

20 2. Related Work

and decompose them in a set of sub-goals. At this point, it can distribute the subgoals
to other agents with a copy of a plan network which models the relations among the
agents’ goals and plans. This will lead to a plan network with a concurrent planning
node for very agent in charge of a sub-goal. The process can be iterated through
progressive refinements of the goals. During its refinement phase, each agent will
communicate the changes it is willing to make to the world state so that the other
agents can separately detect conflicts and possibly solve them. This process can con-
tinue until a synchronized set of detailed plans is constructed.

A variation to this method is the hierarchical behavior-space search [Durfee &
Montgomery, 1991]l. In this approach every agent plans at multiple abstraction levels,
each which can suffice to resolve all conflicts. The algorithm initializes the current
level to the most abstract one. Agents exchange descriptions of the goals and the
plans at the current level. All the non-conflicting plans are removed. If the remaining
set is empty the process is finished, otherwise, a decision has to be made on whether
or not to resolve the conflicts at the current level. This phase is the most critical one,
because, if on one hand, resolving a conflict at a very abstract level may be fast and
use very little communication, on the other, it may produce very inefficient plans. If
it is chosen to move to a deeper level, the process for detecting conflicts is restarted
at the new current level. In the other case, given a total ordering of agents, the top
agent (current superior) sends to the other agents its plan. The other agents will then
exchange and modify their plans in order to work correctly with the current superior
and the previous superior. At this point, the current superior becomes the previous su-
perior. Furthermore, the next agent in the ordering becomes the current superior. The
process continues until the last agent in the ordering becomes the current superior.

2.1.4 Distributed Planning and Execution

The product of distributed planning has to be executed. The relationships between
planning, coordination and execution have to be addressed when dealing with sys-
tems which may fail or may need to dynamically adapt their behavior to contingen-
cies during execution. The following taxonomy is reported from [Durfee, 2000]. We
first focus on approaches that address the issues of coordination that may arise dur-
ing execution after the planning process (Post-Planning Coordination). On the other
hand, constraints can be imposed to the system before planning, so that undesired
world state are avoided during planning and execution (Pre-Planning Coordination).
Finally, we show how planning, coordination and execution can be interleaved in a
flexible way by means of Partial Global Planning.

Post-Planning Coordination

The sequentialized process of planning, coordinating and executing multiagent plans
assumes that it is likely that plans succeed. If during execution one of these plans

2.1. Single-Objective Multi-Agent Planning 21

fails, the whole system is in danger of failure. There are several approaches which
address this issue. One first solution is contingency planning [Levesque, 1996 [loc-
chi, Nardi, & Rosati, 2003} Iocchi et al., 2004b; locchi et al., 2004aj Tocchi, Nardi,
& Rosati, 2004b}; focchi, Nardi, & Rosati, 2004all. In this case, plans have differ-
ent branches that respond to possible contingencies that may arise during execution.
These larger plans, with their conditional branches, may then be merged and coor-
dinated. Obviously, this is a harder problem than normal plan merging because it
involves merging different possible threads of execution from different plans. By the
way, some of these combinations of contingencies can be pruned because inconsis-
tent. A second way of dealing with dynamics is through monitoring and replanning.
Each agent monitors its progress and, if recognizes a failure, stops all the other agents
and the plan-coordinate-execute cycle starts over. If this happens very often, a big
effort may be required for the planning and coordination, resulting in a poor perfor-
mance of the overall system. Repairing existing plans or using a library of reusable
plans [Sugawara, 1995] may sometime help. Significant overhead can be saved if
deviations are handled locally rather than having to require coordination. If the co-
ordination level is suitably abstract, agents can locally replan details while trying to
maintain current coordination constraints [Kinny ez al., 1994]. This approach well
suits with planning in a hierarchical behavior space and organizational structures.
When stressing this concept, thus moving coordination to the most abstract level,
post-planning reverses to pre-planning coordination.

Pre-Planning Coordination

When coordination restrictions are acceptable, agents can coordinate before they be-
gin planning. Based on this assumption, there are several approaches that address
distributed problem solving through organizational structures. Agents embedded in
an organizational structure can choose to work independently to any part of the prob-
lem as long at it fits within his responsabilities. There is a variation on this theme
which is captured in the work on social laws [Shoham & Tennenholtz, 1992]]. A so-
cial law is a constraint on particular choices of actions in some contexts. For example,
in everyday life, when entering an intersection, we have to stop if there is a red light
and go through if it is green. This is an example of social laws which prevent the sys-
tem from entering in undesirable states (i.e. states where there could be an accident).
Obviously, there is a tradeoff between the coordination quality and constrictivity of
the laws. When trying to avoid undesirable world states, agents could be handcuffed
in achieving desirable ones. There are various techniques to relax overly constricting
laws [Goldman & Rosenschein, 1993dl] without incurring into conflicts. Neverthe-
less, in some other cases avoiding conflicting states is not the key issue. Instead, it is
more interesting to induce agents to take actions, which may be not relevant for their
goals, but may help some other agents in achieving their goals. These behaviors may
be encoded into cooperative state-changing rules [Briggs & Cook, 1995] that require

22 2. Related Work

agents to take such cooperative actions, behalf of their personal interests, as long as
they are not detrimental beyond some threshold.

Interleaved Planning, Coordination and Execution

We now present a third approach to distributed planning and execution which lies
between approaches that require detailed plans of interaction and general purpose
coordination policies that can apply to all planning situations. The key idea is that
the system should be flexible about at what level of abstraction coordination should
be done. The framework we analyze is called PGP [Durfee & Lesser, 1991]] and is
characterized by the fact that planning, coordination and execution are interleaved.
The main assumption of this technique is that the goals of the system are inherently
decomposed so that each agent has its own task but is unaware of what the goals of
the other agents are. Thus, no agent will be aware of the global task, nor of the global
state of the system. In this case, the purpose of coordination is to allow the agents
to develop sufficient global awareness in order to accomplish their task. The agents
will first have to understand which goals they will pursue and, then, formulate local
plans in order to establish the means of achieving them. These plans are abstract,
in the sense that they will only specify the major plan steps that could be of interest
to other agents without committing to a detailed plan of action. Furthermore, agents
will need to know to who and what to communicate about their local abstract plans
in order to build models of the joint activity. This kind of information is contained in
the Meta Level Organization (MLO). MLOs specify who needs to know the plans of
a particular agent, and who has the authority to impose new plans to an agent based
on having a more global view. The exchange of local plans gives agents the oppor-
tunity to identify when the goals of other agents may be considered subgoals of a
global goal. Since agents are unaware of the global goal, this partial view is called
partial global goal. The construction of a partial global goal is an interpretation prob-
lem through a set of operators which can attempt to generate an overall interpretation
(global goal) that explains the component data (local goals). Since the interpretation
is ambiguous, it is possible that a local goal can be seen as contributing to competing
partial global goals. Local plans that seem to concur to a common partial global goal
can be integrated in a partial global plan which can improve coordination. In particu-
lar, in PGP, the bias is towards avoiding redundant task achievement and facilitating
task achievement of other agents by performing related tasks earlier. Furthermore,
communication can be planned by analyzing the partial global plans and identifying
who may be interested in which information. Once a partial global plan and the com-
munication plan for it have been built, these activities can be carried back to the local
level for refinement and execution. This is a dynamic process. The choice of action
is directed from the partial global plan which dynamically changes according to the
coordination issues. On the other hand, it may be the case that some local changes
affect the local plans. If these changes to the local plan don’t fit in the partially global

2.2. Multi-Objective Single-Agent Planning 23

plan, this has to be modified and the changes have to be communicated to the inter-
ested agents. Finally, an agent may be overburdened of activities. In this case, thanks
to the model of the activity that agents have established through the partial global
plans, candidate underburdened agents may be identified. At this point a negotiation
phase may take place in order to assign tasks in a more efficient way.

2.2 Multi-Objective Single-Agent Planning

MOSA-Planning addresses the issue of generating plans of action for a single agent
when pursuing multiple objectives. The problem in many applications (e.g. [Calisi et
al., 2007]) has been delegated to users which, through complex plan representation
languages, would devise appropriate plans representing an appropriate solution. This
kind of approach, although achieving acceptable results, lacks a formal basis and
relies on human planning capabilities. Formal approaches to planning require to
define a solution concept for the problem of satisfying multiple noncommensurate
objectives. In fact, for multi-objective problems, the main assumption is that there is
no function that can globally measure the tradeoffs between different objectives. This
may be because of the lack of modelling knowledge of the global problem, or because
the problem is inherently multi-objective. The commonly accepted solution for such
problems is Pareto optimality. This solution concept, although sound, is weak in the
sense that it provides a set of possible solutions among which a subsequent refinement
is required.

There are two main classes of approaches used to compute the Pareto optimal so-
lutions of a given problem: multi-objective optimization and multi-objective heuristic
search. There are a wide set of tools for solving such problems, but at the moment
not so many applications to action planning. Nevertheless, notable exceptions can
be found both for multi-objective optimization and multi-objective heuristic search.
On the one hand, multi objective optimization, coupled with the use of genetic al-
gorithms, has been applied to planning military courses of actions [Belfares & Gui-
touni, 2003]l. On the other one hand, multi-objective heuristic search has been used
to develop MO-GRT [Refanidis & Vlahavas, 2003], a multi-objective extention of
the heuristic state-space planner GRT [Refanidis & Vlahavas, 2001]]. Furthermore,
multi-objective heuristic search has also been applied to probabilistic planning. The
key idea is that probabilistic planning is an inherently multi-objective problem where
plans must trade-off probability of goal satisfaction with expected plan cost [Bryce,
Cushing, & Kambhampati, 2007].

In the remainder of this section, we review the general solving techniques for
multi-objective problems which are based on Pareto optimality. Many of these ap-
proaches, not only propose algorithms for finding the complete space of Pareto opti-
mal solution, but often try to develop a refinement to select a single solution. Nev-
ertheless, all the approaches we are aware of, to develop the refinement relax the

24 2. Related Work

constraint of noncommensurate objectives by assuming that there is a global utility
function. It is still an open problem to find an adequate refinement to the set of Pareto
optimal solutions for multi-objective problems, without relying on tradeoffs among
the objectives.

2.2.1 Multi-Objective Optimization

Multi-objective problems have been deeply studied by the optimization community
[H. Eschenauer & Osyczka, 1990; Das, 1997bl. Multi-objective optimization is
mostly used in design problems which require the simultaneous optimization of more
than one objective function. For example, in bridge construction, a good design is
characterized by low total mass and high stiffness. Multi-objective optimization has
its roots in late-nineteenth-century welfare economics, in the works of Edgeworth
and Pareto. The problem is formally modeled as finding a set of Pareto optimal
points with respect to a set of objective functions. Typically, there is an entire curve,
or surface, of Pareto points, whose shape indicates the nature of the tradeoff between
different objectives. Formally, the Multi-objective optimization problem can be for-
mulated as a minimization (or maximization) problem as follows:

fi(z)

1 F g .
min F(z) :

fn(2)

where n > 2 and
C={z: h(z)=0, g(z) <0, a <z < b}

denotes the feasible set constrained by equality and inequality constraints and ex-
plicit variable bounds. The space in which the objective vector belongs is called the
objective space and image of the feasible set under F' is called the attained set.

As previously stated, the solution to the problem is a surface of points defining
a Pareto surface. The problem of which point of the Pareto surface to chose is com-
monly solved by forcing a preference relation among solutions. This solution is not
sound but offers a concrete method for engineers which can bias the solution based
on some intuition of which should be the desired outcome.

The solving techniques can be grouped into five categories [Das, 1997all:

1. Maximizing Weighted Sums of Functions [Das & Dennis, 1996]: where the
utility is a linear combination of the objective functions. In this case it is easy
to prove that the solution is Pareto optimal. However, this method suffers from
two drawbacks. First, the relationship between the vector of weights and the
Pareto curve is such that a uniform spread of weight parameters rarely pro-
duces a uniform spread of points on the Pareto set. Often, all the points found

2.2. Multi-Objective Single-Agent Planning 25

are clustered in certain parts of the Pareto set with no point in the interesting
“middle part” of the set, thereby providing little insight into the shape of the
trade-off curve. The second drawback is that non-convex parts of the Pareto set
can not be obtained by minimizing convex combinations of the objectives (note
though that non-convex Pareto sets are seldom found in actual applications).

2. Homotopy Techniques [Rakowska, T., & Watson, 1991}, [Lin, 1975]]: which aim
to trace the complete Pareto curve in the bi-objective case. The main problem
with this approach is that it can not be generalized to cases with more than two
objectives.

3. Goal Programming lIgnizio, 1976} [Schniederjans, 2003]: which maximizes
one objective function while constraining the remaining objectives to be greater
than given thresholds. This method is especially useful if the user can afford to
solve just one optimization problem. However, it is not always easy to choose
appropriate “goals” for the constraints. Goal programming can not be used to
generate the Pareto set effectively, particularly if the number of objectives is
greater than two.

4. Normal-Boundary Intersection [Das & Dennis, 1998|: The normal-boundary
intersection (NBI) method uses a geometrically intuitive parameterization to
produce an even spread of points on the Pareto surface, giving an accurate
picture of the whole surface. Even for poorly scaled problems (for which the
relative scalings on the objectives are vastly different), the spread of Pareto
points remains uniform. Given any point generated by NBI, it is usually pos-
sible to find a set of weights such that this point minimizes a weighted sum of
objectives, as described above. Similarly, it is usually possible to define a goal
programming problem for which the NBI point is a solution. NBI can also han-
dle problems where the Pareto surface is discontinuous or non-smooth, unlike
homotopy techniques. Unfortunately, a point generated by NBI may not be a
Pareto point if the boundary of the attained set in the objective space containing
the Pareto points is nonconvex or ‘folded’.

5. Multilevel Programming [Vicente & Calamai, 1994]: The first step in mul-
tilevel programming involves ordering the objectives in terms of importance.
Next, the set of points for which the minimum value of the first objective func-
tion is attained must be found. Then, the points in this set that minimize the
second most important objective are found. The method proceeds recursively
until all objectives have been optimized on successively smaller sets. Mul-
tilevel programming is a useful approach if the hierarchical order among the
objectives is of prime importance and the user is not interested in the contin-
uous trade-off among the functions. However, problems lower down in the
hierarchy become very tightly constrained and often become numerically in-

26 2. Related Work

feasible, so that the less important objectives have no influence on the final
result. Hence, multilevel programming should surely be avoided by users who
desire a sensible compromise solution among the various objectives.

2.2.2 Multi-Objective Heuristic Search

In many cases of interest, as for the problem addressed in this work, the space of pos-
sible solutions is not a continuous but a discrete space, and has to be build incremen-
tally through the application of operators. These problems are formulated as graph
search problems where the goal is to find a set of preferred paths from a start node to
a set of goal nodes. The Al community has studied the problem from an algorithmic
perspective, in particular extending heuristic search methods as A* [Hart ez al., 1968
Peter, Nils, & Bertram, 1972] to the multi-objective case. The first notable result was
MO A* [Stewart & White, 1991]], an extention of A*, able to find the set of Pareto op-
timal solutions through a heuristic guided search. M O A* inherits from A*, not only
the beautiful properties which made this approach famous, but also its drawbacks. In
particular, M O A* suffers from exponential memory requirements which prevent its
application to real problems. Many different approaches have been devised to extend
MO A* and can be categorized based on the different research goals they pursue: 1)
improve the computational efficiency of the solving technique and 2) generalize the
class of solvable problems.

The first issue can be addressed following the intuition used to develop I D A*
[Korf, 1983]l, a depth first variant of A*, which has linear memory requirements.
Based this intuition, it was possible to develop a depth first variant of M OA*, called
IDMOA* [Harikumar & Kumar, 1996]. In [Mandow & de-la Cruz, 2003], the au-
thors propose another extention of A* to the multi-objective case, which reduces the
space complexity by preserving path, rather than node, expansion and selection. In
this way, it is possible to rule out many unnecessary reexpansion of nodes. Recently,
an extention to frontier search was proposed [Mandow & de-la Cruz, 2007] for ad-
dressing the memory requirement of the known approaches, based on the assumptions
that: the algorithm was interested only in solution costs (ignoring the paths that lead
to the solution), the search graph is undirected and the heuristics are monotone. In this
case, the approach provides great benefits in memory saving. MO A** [Dasgupta,
Chakrabarti, & DeSakar, 1999, generalizes to the case of non-monotone heuristics
allowing to solve problems of considerable size such as VLSI design. A different
approach is to develop a search method for compromise solutions [Galand & Perny,
2006]. Instead of focusing on finding the whole set of Pareto optimal solutions they
focus on finding one such solutions which exhibits a “well-balanced” compromise
between the conflicting solutions. Although the approach is very efficient, it heavily
relies on a measurement among noncommesurate quantities.

To solve the second issue, there has been a trend of research focused on general-
izing M O A* in order to solve a wider class of problems. In particular, the approach

2.3. Multi-Objective Multi-Agent Planning 27

presented in [Dasgupta, Chakrabarti, & DeSarkar, 1996]] generalizes to the case of
AND/OR graphs, where most approaches solved problems which could be modeled
as OR-graphs. Furthermore, search in AND/OR graphs has been considered in the
case where loops in the search graph are presented by extending LAO™* [Hansen
& Zilberstein, 2001]] to the multi-objective case. The resulting approach is called
MOLAO* [Bryce, Cushing, & Kambhampati, 2007]]. It is also possible to general-
ize the multi-objective problem itself by taking into account different structures of the
preference relations. In particular, PBA* [Perny & Spanjaard, 2002] generalizes to
a wider class of preference based relations with respect to previous methods (which
assume the particular partial order preference relation induced by the multi-objective
case).

2.3 Multi-Objective Multi-Agent Planning

MOMA-Planning is the most general case of planning we consider in this chapter. In
this case, we must devise a plan for multiple agents each of which pursues multiple
objectives. This case, as far as we know, has not been addressed by research, except
for the restricted case where each agent pursues a single objective. This particular
problem is, nevertheless, a multi-objective one. In fact, even if each agent is pursuing
a single objective, the multi-agent system as a whole can be considered as pursuing
multiple objectives. Although this is a simplified problem with respect to the more
general one, there is little literature on the topic.

In such setting, the problem is to address the conflicts between the agents (i.e.
the objectives) while trying to cooperate when possible. If some form of group in-
terest is defined (as social welfare), the problem can be simplified by considering
the conflicts between individual agents’ interests and group’s interest [Shen, Zhang,
& Lesser, 2004; |Stirling, Goodrich, & Packard, 2002]. This approach has been
used to model multi-agent multi-objective problems as Vector-Valued Decentralized
MDPs [Mouaddib, 2006; Mouaddib, Boussard, & Bouzid, 2007]. In this case, there
are two values which each agent takes into account when planning. One represent-
ing its own interest and another one representing the group interest. Based on this
model, the authors developed a regret-based technique to tradeoff between group and
individual interest. The main drawback in using sociological constraints, as for the
function measuring the tradeoffs MOSA-Planning, is that they are a form of total
preference relation among objectives. Although in these approaches there is a global
performance gain in the system, there is the risk that such global measurement among
the objectives is not correct. Actually, in a pure multi-objective problems, objectives
may be conflicting and there is no guarantee (from a modelling viewpoint) that a
global function measuring the objectives exists at all.

Despite the fact that there is not much literature for such problems, there exists
a broad range of modelling tools that consider the problem in a non-cooperative set-

28 2. Related Work

tings where there is no notion of “team” and agents are considered selfish.

2.3.1 Game Theory

Opposed to the Al community, which through multi-agent planning, defines gener-
ative mechanisms to produce rational behaviors for rational agents, economists and
mathematicians, developed a set of modelling tools, called Game Theory, to analyze
the behavior of interacting self-interested rational agents. These models assume that
agents are self-interested, in the sense that they pursue each a well defined objective
which they are willing to maximize despite the effect on the other agents’ ones. In
this case, agents have to perform strategic reasoning in order to perform the best,
whatever the other agents are rationally willing to do.

Basics of Game Theory

A well-known mathematical tool modelling scenario where rational agents pursue
different objectives, among which no global preference relation is defined, is game
theory [Von-Neumann & O.Morgenstern, 1947, originally developed for economi-
cal analysis and nowadays also used for multi-agent systems (e.g. [Rosenschein &
Zlotkin, 1994]). The main idea is to develop models of interaction among rational
agents and to define fixed points, called equilibria, which describe a situation where
no agent (embodying each an objective) has an incentive to unilaterally deviate, given
what the other agents are doing. Although some more detail on the Game Theoretic
concepts will be given in the following, this is not intended to be a complete survey.
The interested reader is referred to [Osborne & Rubinstein, 1994].

Game theory may be categorized in two main classes of models: non-cooperative
and cooperative. The first class of approaches, models agents as rational entities
which, individually, try to maximize their own utility based on strategic considera-
tions on the possible moves of other agents. As such, game theorists try to find some
fixed point, called equilibrium, where no agent is unilaterally incentivated to deviate,
given what the other agents do. The second class, enlarges the space of possible solu-
tions to the case where a subgroup of agents may commit to deviate. In fact, even if in
a given situation no agent may individually have an incentive to deviate, it may be the
case that a group of agents, by committing to a joint action, may improve their util-
ity. In this thesis we are mainly concerned with non-cooperative game theory, which,
despite of being a simplified model with respect to cooperative game theory, is at the
current state of affairs, more established and computationally more appealing.

Game theory is based on two main concepts: models and solution concepts. Mod-
els are formal definitions of the possible interactions of rational agents, while solu-
tion concepts are interactions (courses of actions) which are considered “stable”, in
the sense that no agent will be unilaterally willing to deviate from them. Although
there are many different game models, based on different assumptions of the scenario

2.3. Multi-Objective Multi-Agent Planning 29

Don’t Confess Confess
Don’t Confess 3,3 0,4
Confess 4,0 1,1

Figure 2.2: The Prisoner’s Dilemma

to model, we can identify two main classes of models: normal and extensive form
games. The first models situations for which all players play their strategy simulta-
neously, while the second describes situation where agents interleave sequentially the
choice of action.

In general, a game in normal form can be defined as: a set of players Ag =
{1...n}, a set of strategies .S; for each player 7, which define the actions the player
can perform (called pure strategies). A strategy profile is a selection of action for
each player and the space of strategy profiles is defined as S = ILS;. If each set .S;
is finite we say that the game is finite. For each agent ¢ we define a utility function
ul defined over the space of strategy profiles. We define, for a profile of variables
s = (s1,...,8k), S—; as the set of variables of s excluding s; and (s’, s_;) as the
profile s where the i-th component has been substituted with s'.

Two players finite games in normal form can be conveniently represented as a
table. Figure 2.2l represents the, so called, Prisoner’s Dilemma. In this game, the two
players can perform the same actions S;={Confess, Don’t Confess} and represent a
situation where two suspect of crime are put into separate cells. If they both Confess
their crime, they will be sentenced to three years in prison. If only one Confesses, he
will be freed and used as a witness against the other, who will receive a sentence of
four years. If neither one Confesses, they will both be convicted of a minor offense
and spend one year in prison. By convention, the moves on the left of the table are the
ones performed by the first agent, while the ones on the top by the second. For each
profile of moves, identified by a cell of the tables, two utility values are provided: the
left one is for the first agent, the right one for the second agent.

Definition 2.1 Nash Equilibrium
A Nash equilibrium of a strategic game (Ag, (S;), (u;)) is a strategy profile s € S
such that for every player i € Ag:

wi({5—i,8i)) > wi((s—i, 7)) Vs € S;

'In general, game theorists use preference relations rather than utility functions which are a more
general concept. In this work, for the sake of simplicity, we use utility functions to define preference

relations.

30 2. Related Work

Thus, for a strategy profile s to be a Nash equilibrium [Nash, 19501, any agent i
must not have an action which yields to a better outcome than s;, given that all the
other agents perform s_;. For example, in the Prisoner’s Dilemma, (Confess, Confess)
is a Nash equilibrium. If player one Confesses, then player two would get 1 if he
Confesses and 0 if he Don’t Confess. Thus, player two prefers to Confess. The
same applies to player one, if two Confess. Intuitively, a good solution could be
(Don’t Confess, Don’t Confess), but we can show that this is not a Nash Equilibrium.
If one player Don’t Confess, the other player always performs better if he Confesses,
because in this case he would get an utility of 4.

Head Tail
Head | 1,—-1 | —1,1
Tail | —1,1 | 1,-1

Figure 2.3: Matching Pennies

Consider now the game in Figure 2.3 called Matching Pennies. This game be-
longs to a particular class of strictly competitive games, called zero-sum games. In
such games the utility of one player is opposite to the one of the other, and, thus, their
sum is always zero. In the Matching Pennies games, each players can independently
choose the face of a Pennie (i.e. Heads or Tails). If the faces match the first player
wins, otherwise the second player wins. It is interesting to notice that in this game
there is no Nash Equilibrium in pure strategies. In fact, for each strategy profile there
is a winning player and a loosing one which has always an incentive to deviate. For
example, if the strategy profile is (Tail, Tail), player one wins and, thus, player two
is incentivated to change his move to Head.

Theorem 2.1 The strategic game (Ag, (S;), (u;)) has a Nash equilibrium (in pure
strategies) if for all i € Ag

o the set S; of actions of player i is a nonempty compact convex subset of a

Euclidian space
and the preference relation for player i is
e continuous

® quasi-concave on S;

We can define a more general concept of equilibrium, called mixed strategy Nash
equilibrium, where agents select probability distributions over actions, rather than

2.3. Multi-Objective Multi-Agent Planning 31

pure strategies. For example, in the matching pennies example, a player could choose
to select Tail with probability .2, and Head with .8. More formally:

Definition 2.2 The mixed extention of the strategic game (Ag, (S;), (w;)) is the strate

gic game (Ag, (A(S;)), (Us)), where A(S;) is the set of probability distributions over
S; and U; a function which assigns the expected value to o € TIA(S;) under u; (i.e.

220 - ui(s))

Definition 2.3 Mixed Strategy Nash Equilibrium
A mixed strategy Nash Equilibrium of a strategic game is a Nash Equilibrium of

its mixed extention.

The main result for mixed strategy Nash equilibrium, is an existence proof:

Theorem 2.2 Every finite strategic game has a mixed strategy Nash equilibrium.

Mixed strategy Nash equilibrium are a powerful tool but have the major drawback
of incurring in uncorrelated randomizations. Effectively, given that each player se-
lects independently and randomly his strategy, the final outcome could be, with some
probability, undesirable for all players. To solve this problem, we need to introduce
a new concept of equilibrium, called correlated equilibrium [Aumann, 1987

Definition 2.4 Correlated Equilibrium

A Correlated Equilibrium (c-equilibrium) is a probability distribution m € A(S)
such that, for all players i € Ag and for any pair of strategies s;, s; € S; the fol-
lowing is true: Conditioned on the i-th component of a strategy profile drawn from ©

being s;, the expected utility for i playing s; is not smaller than that of playing s.:

Z [ui(<5ivr>) - u1(<s;,r>)] * T {(s4,1) >0 (2.1)

reS_;

A correlated equilibrium is a probability distribution 7 over strategy profiles such
that: if a trusted authority would randomly select a profile s from S, according to T,
and communicate privately to each agent its strategy s; of .S, no agent ¢ would have
an incentive to deviate from the recommended strategy s;. In fact, s; is the best
response in expectation for 7 given 7 (Definition 2.4, formula 2.I). A correlated
equilibrium is a (mixed) Nash Equilibrium if the probability distribution is a product
distribution (i.e. if for each player 7 there is a distribution 7% on S; such that for all
seSms= H?:lﬂ';i). It is interesting to notice that every finite strategic game has

32 2. Related Work

a correlated equilibrium, trivially because any mixed strategy Nash equilibrium is a
correlated equilibrium.

The other major class of models in game theory is extensive form games (EFGs)
[Osborne & Rubinstein, 1994]. Opposed to normal form games, where agents select
simultaneously one action each, EFGs describe games where agents select sequences
of interleaved actions and can choose to deviate from them during execution. Such
games are usually modelled as graphs with a tree structure (see Figure[2.4). Each leaf
node of the tree is labeled with an n-tuple of utilities (one for each player), while the
other nodes (decision nodes) are labeled with the player who plays at that node. An
edge between nodes v and v’ represents an action performed by the agent playing at
v and leading to v". The set of nodes of the tree is partitioned into information sets.
Each information set belongs to exactly one player 7 and summarizes the knowledge
of the agent in terms of sequences of actions (e.g. histories) he is aware were per-
formed before the information set was reached. A pure strategy for an agent ¢ is a
mapping from information sets to actions. Notice that a strategy may not prescribe
different actions in different nodes of the same information set because at execution
time the agent would not be able to distinguish between them. Finally, extensive
games are said to be of perfect recall if each agent “remembers” all the actions he
performed.

A Finite Extensive Game with Imperfect Information (incomplete information in
Al terminology) is a detailed description of the sequential structure of the decision
problems encountered by the players in a strategic situation. In these games, agents
are not informed about the moves the other players will perform. Furthermore, play-
ers may be imperfectly informed about some of the choices that have already been
made and about the other players’ private information.

Definition 2.5 [Osborne & Rubinstein, 1994)] An Extensive Game has the following

components.
e A finite set Ag (the set of players).

o A set H of sequences (finite or infinite) that satisfies the following three prop-

erties.

— The empty sequence () is a member of H.

- If(a1,...,ax) € H (where K may be infinite) and L < K then (a1, ...,ar) €
H.

— If an infinite sequence (a1, . .., a~) satisfies (a1, ...,ar) € H for every

positive integer L then (a1, ...,a) € H.

2.3. Multi-Objective Multi-Agent Planning 33

Each member of H is a history, each component of a history is an action taken
by a player. A history (a1, ...,ax) € H is terminal if it is infinite or if there is
no{(ay,...,ax+1) such that {ai,...,ax+1) € H. The set of actions available
after the nonterminal history h is denoted by A(h) = {a : (h,a) € H} and

the set of terminal histories is denoted by Z.

e A function P that assigns a member of Ag U c to each nonterminal history
(each member of H\Z). P is the player function, P(h) being the player who
takes an action after history h. If P(h) = c then chance determines the action

taken after the history h.

e A function f. that associates after every history h for which P(h) = c a prob-
ability measure f.(- | h) on A(h), where each such probability measure is
independent of every other such measure. f.(a | h) is the probability that a
occurs after the history h.

e For each player i € Ag a partition Z; of h € H : P(h) = i with the property
that A(h) = A(h') whenever h and I are in the same member of the partition.
For I; € I; we denote by A(1;) the set A(h) and by P(1;) the the player P(h)
for any h € I;. 1; is the information partition of player i; a set I; € Z; is an

information set of player 1i.

e For each player i € Ag a preference relation =; on lotteries over Z (the
preference relation of player i) that can be represented as the expected value

of a payoff function defined on Z.

We will now show a simple example from the Urban Search and Rescue domain
introduced previously. Moreover, in this example a tree representation for Extensive
Games, called game tree, will be presented and used to build the model.

Example Consider two heterogeneous robots which have to verify if there is a victim
behind an open door, thus sense two potential evidences (el and e2) for it. The first
robot can close the door and sense evidence el. The second one can only sense e2
and needs the victim to be visible in order to correctly perform the action. We can
build the game as a tree as shown in Fig. 2.4l The color of non-terminal nodes of
this tree represents the player who moves at that turn. We will use red for player
one, blue for player two, and green for chance (nature). The mapping from nodes to
players that we define for this game is the player function. At the root node, given our

34 2. Related Work

close_door

sense_el=F [.5]| sense_el=T [.5]
(-1,0) (-31,-31)

sense_e?

sense_e2=F [.5] sense e2=T [.5]

(-1-1) (29,29)

Figure 2.4: The game tree of a simple game from the rescue domain

implementation of the player function, player one moves. He may choose between
closing the door and sensing property el. In the latter case, the next move will be
performed by chance, which will determine with equal probability if the property
is true or false. If the property el is false, the game will end because there is no
victim. Each agent will be awarded with an utility. In this case, agent one has a
negative utility because of the cost of performing the action. Since agent two can not
perceive the actions of the other agent, from its viewpoint, the two nodes at which
it is its turn to play are indistinguishable and thus are in the same information set.
This is represented by the number one in the node, which is a unique identifier of the
information set for the player. The constraint that the agent must be able to perform
the same actions at all the nodes in the same information set is trivially satisfied
for any strategy. In fact, player two’s only option is to sense €2 in both nodes at is
information set. If agent two tries to sense e2 after the door has been closed, it will
fail and both agents will get an utility which is the result of a negative reward (for
the failure) plus the cost of performing the actions. In the other case, after its move,
nature plays and determines if the agents reached the goal (i.e. if they effectively
identified a victim).

Based on extensive games agents can select strategies, that are choices of actions
for each information set. These are the counterpart of pure strategies for normal form

2.3. Multi-Objective Multi-Agent Planning 35

games:

Definition 2.6 A pure strategy of player i € N in an Extensive Game
<Na H7 P7 f07 (Il)? (tl»
is a function that assigns an action in A(I;) to each information set I; € ;.

A player may also randomize over the actions in a strategy or over pure strategies
[Osborne & Rubinstein, 1994]:

Definition 2.7 A mixed strategy of player i € N in an Extensive Game
<Na H7 P7 fC7 (Il)? (tl)>

is a probability measure over the set of player i’s pure strategies. A behavioral strat-
egy of player i is a collection [3;(1;)1,e1, of independent probability measures, where

Bi(I;) is a probability measure over A(I;).

Thus, agents must strategically reason on which strategy to choose. Although
many solution concepts in the Game Theoretic literature exist for Extensive Games
with Imperfect Information (e.g. sub-game perfect [Osborne & Rubinstein, 1994],
sequential [Kreps & Wilson, 1982]] and trembling hand [Selten, 1975]] equilibrium),
here we present just Nash Equilibria. The other solution concepts are subsets of Nash
equilibria and aim to rule out those equilibria which are not credible from a strategic
viewpoint [Osborne & Rubinstein, 1994].

Thus, we can now define a Nash equilibrium for an Extensive Game [Osborne &
Rubinstein, 1994] as:

Definition 2.8 A Nash equilibrium in mixed strategies of an Extensive Game is a

profile ox of mixed strategies with the property that for every player i € N we have:

O(c*;,07) =i O(c*,, 0;) for every mixed strategy o; of player i.

1) =

where O is a function returning the expected value of the utility for each agent, when
all commit to a profile o* of mixed strategies.

36 2. Related Work

Computational Game Theory

From a computer science perspective, game theory has been studied most strongly
through complexity theory [Halpern, 2004]]. In fact the complexity of computing
equilibrium is fundamental for game theory, since its intractability would make it im-
plausible as a model of behavior. We agree with [Papadimitriou, 2005] when quoting
Kamal Jaim: “If you PC can not find it, then neither can the market”. The compu-
tational complexity of equilibria is one of the most challenging problems of modern
computer science as, for example, the problem of finding a polynomial algorithm
for mixed Nash Equilibria in a two player game is famously still open [Papadim-
itriou, 2001}; [Savani & von Stengel, 2004]. Here, given the scope of this thesis we
will review computational game theory for normal form games. Nevertheless, it is
interesting to notice that extensive games can be transformed to normal form games
although information on the sequential structure of the game, which can be exploited
for computation, may be lost. In general, it can be shown [Conitzer & Sandholm,
20031 that it is: 1) N P-hard to find if a Nash equilibrium with certain natural prop-
erties (as maximum social welfare) exists, 2) # P-hard to count Nash equilibria, 3)
N P-hard to determine weather a Bayes-Nash equilibrium exists and 5) PSPACE-
hard to determine wether a pure strategy Nash Equilibrium exists in a Stochastic
(Markov) game. Moreover, some efficient solving techniques have been found for
particular classes of games such as zero-sum ones (e.g. [McMillen & Veloso, 2007])
or two-player (e.g. [Miltersen & Sgrensen, 2006; [Finzi & Lukasiewicz, 2004]), but
nevertheless efficiently solving general classes of multi-player games is still an open
problem.

Recently, a particular type of equilibrium, namely correlated equilibrium [Au-
mann, 1987]], has gained, thanks to tractability results [Papadimitriou, 2005/, increas-
ing interest. In general, the problem of finding the best correlated equilibrium (ac-
cording to some metric) can be represented as a Linear Programming problem, and
thus solved in polynomial time. The real problem is that such a linear program has an
exponential number of variables because of the combinatorially many outcomes that
can result from combining agents strategies. The exponential nature of Correlated
equilibrium can be overcome in some cases by a succinct representation [Papadim-
itriou, 2005] where interactions among agents are limited and explicitly represented.
The most famous classes of succinct games are:

1. symmetric games [Papadimitriou, 2005]] are games where all agents are iden-
tical and the utility of agents depend on the player’s choice (but not identity)
and the number of agents who made particular choices.

2. polymatrix games [Eaves, 1973 [J. T. Howson, 1972] are games where each
player plays once with each other player, playing always the same strategy.
His utility is then the sum of the utilities of each such two player game.

3. graphical games [Eaves, 1973;J. T. Howson, 1972] are represended as a graph

2.3. Multi-Objective Multi-Agent Planning 37

where nodes are agents and edges strategic interactions. The main idea is that
the choice for a player (e.g. node) depends on the choices of it’s neighbors (in-
cluding itself), but not on the choices of the other players. The global n player
game is thus viewed as being composed of interacting local games, each in-
volving (perhaps many) fewer players. Each player’s action may have a global
impact, but it occurs as through the propagation of local effects.

4. congestion games [Rosenthal, 1973]]: are games where a set of resources are
defined and the strategies for each player are subsets of these resources. Each
resource has a delay which is a function of the players using the resource. The
(negative) utility of each agent is the sum of the delays of the resources he uses.

It was recently shown [Papadimitriou, 2005]] that a correlated equilibrium can
be found in polynomial time for most known succinct game representations (rep-
resenting normal form games). In general, finding the best correlated equilibrium
(according to a social welfare concept) is a harder problem. It has been shown [Pa-
padimitriou & Roughgarden, 2005] that the problem of finding the optimal corre-
lated equilibrium is N P-hard for polymatrix games, some simple non-tree graphical
games and congestion games. Moreover, congestion games are guaranteed to have
pure Nash Equilibria although the problem of finding them is P LS-complete [Fab-
rikant, Papadimitriou, & Talwar, 2004]]. Another interesting structured representation
for games are Multi-Agent Influence Diagrams (MAIDs) [Blum, Shelton, & Koller,
20061, which are a extention of Influence Diagrams. For such games the authors
found an interesting property (s-separation), similar to d-separation for Bayesian net-
woks and developed a continuation method for solving them. The method performed
well in experimental tests but yet suffers from the fact that the model must be written
by hand by a human operator.

Partially observable stochastic games (POSGs)

Partially observable stochastic games (POSGs) [Hansen, Bernstein, & Zilberstein,
2004b; [Emery-Montemerlo, 2005] generalize the notions of single-stage games and
Markov decision processes to both multiple agents and partially observable worlds.
The main advantage of using a game theoretic approach in this case is that a policy
for each agent can be found without the need to do any sort of infinite reasoning or
deduction over an infinite belief hierarchy.

A POSG is defined as a tuple:

(1,S,Z,T,R,O)
where

e [={1,..,n} is the set of agents.

38 2. Related Work

S is the set of states. It is interesting to note that S is not just the cross-product
of the states of individual agents, but can include additional information.

A is the cross-product of the action space of each agent i.e A = Ay X... X Ap).

Z 1is the cross-product of the observation space of each agent (i.e Z7 = Z; X
e X).

T is the transition function 7" : S x A — S.

R is the reward function R : S x A — R.

O defines the observation emission probabilities O : S x A x Z — [0, 1].

At each timestep of a POSG, agents simultaneously chose actions and receive, a
reward and an observation. These actions are given by the solution to the POSG,
which is a set of conditional policies 7 = {1, ..., m,}.

The focus of this work is on finite-horizon POSGs with common payoffs. In this
case, agents share a common reward. This setting is the most basic model of cooper-
ative game theory. Several results have been found for this case, which is equivalent
to a Dec-POMDP. While a powerful model of decentralized teams, POSGs are com-
putationally intractable for all but the smallest problems. In fact, it has been shown
[Bernstein ef al., 2002] that the problem of solving finite-horizon POSGs with com-
mon payoffs is NEXP-hard. In [Emery-Montemerlo ez al., 2004], a Bayesian game
approximation to POSGs is proposed in which game-theoretic reasoning about action
selection is retained, but agents reason only a limited time ahead about uncertainty in
world state and the experiences of their teammates. Planning and execution are in-
terleaved to further reduce computational burdens: at each timestep, agents perform
a step of full game-theoretic reasoning about their current action selection given any
possible history of observations and a heuristic evaluation of the expected future value
of those decisions. The Bayesian game approximation algorithm (BaGA) is able to
find solutions to much larger problems than previously solved. Further computa-
tional savings are gained by reasoning about groups of similar observation histories
rather than single histories. Finally, efficiency and performance are also improved
through the use of run-time communication policies that trade off expected gains in
performance with the costs of using bandwidth.

For the more general case, the solution concept used is the mixed Nash equilib-
rium. Few work has been devoted to devise algorithms for efficiently finding equilib-
ria in such games, due to the complexity of the problem. A notable exception is this
direction is the work by [Hansen, Bernstein, & Zilberstein, 2004b]], which presents a
dynamic programming algorithm for the elimination of dominated strategies.

2.4. Analysis of Related Work 39

2.4 Analysis of Related Work

This thesis aims at developing a novel approach to the MOMA problem representa-
tion and solving. In particular, we propose a centralized planner for distributed plans
and, thus, devise modeling tools and algorithms for building a central agent, the plan-
ner, able to produce multi-agent plans of actions which can be executed by a system
of agents without the need of a central coordinator. In order to allow distributed ex-
ecution, the planning process considers the distributed and incomplete information
in the system as a collection of incomplete views of the word state. In particular,
each incomplete view is represented through the knowledge available to each agent
in terms of epistemic-states. The formalism for epistemic states is defined in terms
of possible worlds and is similar to the epistemic logics previously presented.

Epistemic states are used to define the action language £+ [Iocchi et al., 2004b;
Tocchi et al., 2007]. £+ is syntactically similar to the action language A [Gelfond &
Lifschitz, 1993]| and its variants including the recent C+ [Giunchiglia ez al., 2004],
but it has a formal semantics in description logics. More precisely, it is equivalent to a
fragment of the autoepistemic description logic ALC/K z;r [Donini, Nardi, & Rosati,
2002l for modeling dynamic systems (see [locchi ez al., 2006] for the proof that £+
is semantically founded on ALCK xr), which has been successfully implemented
and used for a robotic soccer team [Iocchi, Nardi, & Rosati, 2000b].

At first, we enrich £+ in order to deal with uncertain duration of actions and,
then, extend it to the case of multi-agent systems. The extention to the multi-agent
case is based on the model for distributed system presented in [Fagin ez al., 1995].
In particular, we represent the information available to the system as a collection
of epistemic states (i.e. global states). The main difference with respect to Fagin’s
approach is that we represent the information available to processes as epistemic
states and we model the dynamics of global states based on actions which are uncer-
tain in their outcome and duration. Moreover, agents can acquire knowledge locally
through action effects and sensing, and globally through communication. To this end,
we provide a semantics of communication and provide operational procedures for re-
constructing epistemic states after communication actions. Finally, we ensure that
actions performed by different agents do not have negative interactions by reasoning
on their limited effects [Georgeff, 1988] and synchronization constraints imposed by
communication. We call the resulting action language Gg+.

We, thus, adopt a post-planning coordination approach, based on conditional
planning which allows the planner to consider the possible contingencies and the
appropriate courses of actions. The dynamic nature of the system is represented based
on an action language whose semantics is defined through a finite state automaton
(FSA) whose nodes are global states and edges are actions performed by agents. In
particular, the semantics of the language consists of all the sink nodes of the FSA
which represent all the possible outcomes of valid plans and which we call strategy
outcome space. The strategy outcome space is used to build a normal form game,

40 2. Related Work

which we call normal form of a MAPG.

Although there are representations of games which are succinct (e.g. [Papadim-
itriou, 2005; [Blum, Shelton, & Koller, 2006]]), in the sense that they describe only
the necessary constraints in the system and allow fast solving methods, this does not
mean that their representation is compact. Actually, writing down by hand a MAID or
a graphical game for a real problem may be unfeasible for a human operator and prone
to errors because of its dimension. In this work, we provide a compact representation
of a particular class of games, called Multi-Agent Planning Games (MAPGs), which
are based on the action language Gg(+. In particular, we can prove that the MAPG
representation is exponentially smaller than its normal form representation. This is
positive result from the representation point of view, considering that one of the major
drawbacks of games is the size of their representation [Papadimitriou, 2003].

van Benthem has studied [Johan van Benthem, 2002]] the problem of which are
the formal languages for describing games and which are appropriate semantic sim-
ulations for them. His work deals mainly with finite two-player games, but provides
the intuition that action languages, combined with semantic state automata, are appro-
priate to model a large variety of games. On the one hand, there are many single-agent
action languages available, e.g.: Situation Calculus [Reiter, 2001]] and A [Gelfond &
Lifschitz, 1993]l. On the other hand, there are not many which generalize to a multi-
agent game theoretic scenario. A notable exception is GC+ [Finzi & Lukasiewicz,
2003, a language for reasoning about actions under probabilistic uncertainty and
partial observability. GC+is an extension of the action language C+[Giunchiglia et
al., 2004]] and is inspired by partially observable stochastic games, PO.SG's [Hansen,
Bernstein, & Zilberstein, 2004b]. The main assumption is that there must be a cen-
tral agent, which knows the local belief state of every other agent, computes and
sends them their optimal local actions, and thereafter receives their local observa-
tions. However, no explicit communication among the agents, distributed knowledge
or distributed execution are considered.

Although we consider the uncertainty of actions, we assume perfect perception
and incomplete, yet certain, knowledge. In many domains, such as in robotics, per-
ception may be noisy and unreliable. Some approaches, such as Dec-POMDPs [?]
(see Section [2.1.1)), address the problem of noisy perception directly at the planning
level. Dec-POMDPs are very complex to solve (i.e. NEXP-complete) and to describe
for users. Instead, we rely on approaches which represent explicitly uncertainty at
a numerical level and that are embedded into an heterogeneous hybrid architecture
(Chapter M)). This allows us to abstract from uncertainty and represent knowledge at
a symbolic level. As an example, in the case study in Part[IIIl we rely on standard
SLAM approaches to handle the uncertainty of the robot’s location and of the recon-
structed map. Despite this, due to the lack of uncertainty of knowledge modeling at
planning time, the system does not scale well with the increase of noise in the percep-
tions. Nevertheless, this approach allows to produce distributed plans. The plans we
produce are distributed in the sense that, once they are produced, they can be executed

2.4. Analysis of Related Work 41

in a distributed way without the need of a central coordinator. The main advantage
of this approach is that there is no single point of failure during execution, thus, the
system is more robust, and the communication can be restricted to occasional point
to point messages rather than a continuous broadcast of information to and from a
central executor agent.

One of the main issues for multi-objective problems is the definition of the so-
lution concepts. In our case, we present a novel, and to our knowledge the first,
refinement of Pareto optimality, for the special case of multi-agent systems, where
each agent is pursuing a single objective which may, in general, be different from
the ones of the other agents. The main advantage with respect to other approaches
(see Section2.2)) is that we do not need to define preferences over the objectives (e.g.
[Vicente & Calamai, 1994]) nor to reformulate the problem as a single objective one
(e.g. [Refanidis & Vlahavas, 2003;[Das & Dennis, 1996])), thus violating the assump-
tion that utilities for different objectives are noncommensurate quantities. In contrast,
we select the Pareto optimal solution taking into account strategic considerations im-
plied by the rationality of agents. The main idea is that since agents form a team, they
will agree in selecting plans which are Pareto optimal, but may conflict in the choice
of which Pareto optimal plan to select. We, thus, model the problem as a game over
Pareto optimal solutions (i.e. optimal game), which is the normal form of a MAPG
where only Pareto optimal outcomes are considered. We use normal form games as a
base model, and not extensive games, mainly because of the lack of efficient solving
techniques for extensive games.

The solution concept we propose for optimal games is a novel refinement of cor-
related equilibrium. The main advantage in using correlated equilibrium as a basis
for our solution concept is that a) it is guaranteed to exist [Aumann, 1987] (opposed
to pure Nash Equilibrium), b) it can be computed in polynomial time [Papadimitriou,
2005, ¢) it avoids uncorrelated randomizations (opposed to mixed Nash equilibrium),
which could yield to undesired outcomes, increasing the solution space [Osborne &
Rubinstein, 1994]]. Solving correlated equilibrium is polynomial, but its descrip-
tion is exponential in the usual normal form game representation. Such problem
is usually addressed by representing games in a succinct form (e.g. [Eaves, 1973}
J. T. Howson, 1972} [Eaves, 1973} J. T. Howson, 1972; [Rosenthal, 1973]l) which al-
lows us to drastically reduce the complexity of the problem. Despite this, succinct
games are a small class of games and many problems are probably not representable
in such form. In particular, it is still an open problem to find succinct representa-
tions for where strategies are represented in paths in a graph [Papadimitriou, 2005]],
which corresponds to our definition of strategies in MAPGs. In our work, we present
a novel refinement of correlated equilibrium, called restricted correlated equilibrium,
which can be represented as linear program with one variable for each Pareto optimal
solution. We can prove that a restricted correlated equilibrium always exists and that
it is a correlated equilibrium of the optimal game. Under the assumption that Pareto
optimal plans are exponentially less than all possible plans, we can obtain a linear

42 2. Related Work

program (i.e. the description of correlated equilibrium) which has a linear number
of variables with respect to the problem description and, thus, can be resolved in
polynomial time.

Part I

Representation

43

Chapter 3

Multi-Agent Planning Games

In this chapter, we define the representation of knowledge for our multi-agent system
as Multi-Agent Planning Games (MAPGs). MAPGs represent a framework for rea-
soning about distributed knowledge in a system of agents, which asynchronously act
and acquire information, under time constraints.

At first (Section [3.1]), we present a single-objective single-agent planning prob-
lem where the agent has a constraint on the duration of plans (Timed-SOSA). The
formalism is used to introduce three basic concepts that are used in the presentation
of MAPGs:

1. We show how incomplete knowledge can be represented through epistemic
states, which encode sets of possible states [Tocchi ef al., 2007]. For example,
consider an agent moving blocks on a table (Figure 3.1(a)). The agent knows
that block A is on the table (i.e. On(A, Table)), and B is on top of A (i.e.
On(B, A)). Intuitively, we can represent this fact by saying that the agent’s
epistemic state is composed by all the world states where the following formula
is true: On(B, A) A On(A, Table). For example, the world state where there
is a third block G on the table, represented as On(B, A) A On(A, Table) N
On(G, Table) is one of the possible states composing its epistemic state.

2. We introduce non-instantaneous actions which have a uncertain duration, where
uncertainty about time is represented as probability distributions.

3. We provide a mechanism to evaluate the goodness of plans, considering both
the degree of satisfaction of objectives and the probability of execution com-
pletion within time constraints.

These three considerations lead to a definition of the semantics of Timed-SOSAs as
the set of sink nodes of a finite state automaton (FSA), where nodes are epistemic
states and edges are actions. The FSA describes the dynamics of epistemic states

45

46 3. Multi-Agent Planning Games

under the effects of non-instantaneous actions. We define plans as paths over the
FSA and characterize solutions for Timed-SOSAs.

Next (Section 3.2), we introduce MAPGs, which can be roughly defined as a
collection of Timed-SOSAs, one for each agent composing the multi-agent system.
The semantics of MAPGs, as for Timed-SOSAs, can be expressed based on a FSA.
Despite this, the semantics is considerably different because nodes are collections of
epistemic states, one for each agent, and edges are labeled with actions and with the
identifier of the agent who performed it. This distinction is fundamental because,
in a system where execution is distributed, the information available to each agent
is possibly different with respect to the information available to others. Moreover,
information of one agent is not directly accessible to other agents. To stress this
concept, we call the epistemic state encoding the information of each agent local
state and the collection of local states describing the information available to the
system, global state. For a first intuitive characterization of MAPGs we assume that
each action performed by an agent depends on, and affects, only its local state.

Local state of the first agent Local state of the second agent
""""""""""""""""""""""" [T
! !
B i D i
i i
A G j c i
i i
(a)
Local state of the first agent Local state of the second agent
""""""""""""""""""""""""" e
! !
! b !
! !
A B G i C i
i i
(b)

Figure 3.1: Local states for a Blocks World example

For example, consider two agents moving blocks on a table (Figure 3.1(a)). The
first agent” knows that block A is on the table (i.e. On(A, T'able)), and B is on top of
A (i.e. On(B, A)), thus, its local state can be described as On(B, A)AOn(A, Table).
Moreover, the second agent knows that block C' is on the table (i.e. On(C, T'able)),
and that D is on top of C (i.e. On(D, C)). Thus, its local state represents all the world
states where On(D, C') A On(C, T'able). The two local states represent two possible

47

incomplete views of the world state. The global state of the multi-agent system, is
the collection of the two local states, and can be represented as the pair (On(B, A) A
On(A,Table), On(D,C) N On(C,Table)). If agent one decides to move block
B from C to the table, we obtain a new global state. Assuming that agents can
not perceive the actions of other agents, its action affects only its own local state. In
particular, we obtain a new global state (On(B, T'able) A\On (A, Table), On(D, C)A
On(C,Table)) where only the first local state has been changed (Figure 3.1(b)). In
this example, local states describe different properties of the world state, nevertheless,
in general, the epistemic states could overlap over some features of the world state.

The assumption that each agent can affect just its local state is somehow restric-
tive in a multi-agent system. In particular, agents should be able to communicate
and share information when this is relevant for the performance of the team. For this
reason, we introduce (Section[3.3)) communication actions which allow two different
agents to exchange their information and synchronize their actions. In particular, our
model of communication requires an agreement to communicate and does not allow
an agent to forcedly inform another agent nor directly access its information.

The parallel execution of actions represented through the FSA does not take into
account that actions performed by agents can interfere. To solve this problem we
provide the semantics of interaction among actions (Section 3.4) based on limited
effects of actions [Georgeff, 1988, and devise a method to enforce safe interleavings
exploiting synchronization constraints achieved through communication.

All these considerations are, then (Section [3.3)), used to formally define the se-
mantics of MAPGs as the sets of sink nodes of the FSA which we can prove to be a
finite tree. The set of leaf nodes of this tree is called strategy profile outcome space
and encodes the possible outcomes for a given MAPG.

We can characterize (Section[3.6) each node of the strategy profile outcome space
through a plan which acheives it. These plans represent the parallel execution of ac-
tions performed by each agent and are used to build a representation of the MAPG in
terms of normal form games. This representation is called the normal form represen-
tation of MAPGs. We can prove that the MAPG description is exponentially smaller
than its normal form. This is a positive characterization from a representational point
of view, given that one of the main issues of normal form games is the size of their de-
scription. Nevertheless, this can have a considerable impact on the solving methods.
This issue is explicitly addressed in Part [Tl

Finally, we extend our approach (Section[3.7) by allowing the agents to perform
direct perception through sensing actions and to reason about actions with uncertain
outcomes. The former extention requires us to introduce multi-agent conditional
plans, while the latter to generalize the mechanism for plan evaluation.

48 3. Multi-Agent Planning Games

3.1 Reasoning about Actions with Uncertain Duration

We now define the basic single-agent action language, called G¢(, which we use as
a building block for defining MAPGs. There are three fundamental issues involved
in defining G¢o. First, we must provide a representation of incomplete knowledge
along with its semantics. In particular, we describe knowledge in terms of literal
conjunctions, which are semantically interpreted as epistemic states (e-states).

Second, we must consider how the uncertainty of action duration affects the tim-
ing of knowledge and its consequences when time constraints are imposed. We rep-
resent the timing of knowledge, and duration of actions, through probability distri-
butions. We consider how the utility of a single agent plan can be evaluated based
on the knowledge acquired by the agent during execution and the probability that
such execution terminates within the time constraints. Finally, we provide the overall
problem definition and show how it can be solved.

In general, we define the planning problem as: a timed description of the initial
state, a description K B of the actions the agent is capable of, a utility function defin-
ing the agent’s objective and a time constraint. The dynamic nature of the system is
described through actions encoded into the knowledge base K B. In fact, we assume
at a planning level that the environment changes just by the performance of actions.
Moreover, we assume that (occasional) exogenous events are handled by the executor
module (Chapter) through monitoring and replanning.

3.1.1 The Action Language &,

We introduce the action language &, which is based on & [locchi et al., 2004bj
Tocchi et al., 2007] and which we use for the presentation of our framework. & is
syntactically similar to the action language A and its variants including the recent C+,
but it has a formal semantics in description logics. More precisely, it is equivalent to a
fragment of the autoepistemic description logic ALC/K zzr [Donini, Nardi, & Rosati,
2002] for modeling dynamic systems (see [Iocchi et al., 2006] for the proof that & is
semantically founded on ALCK nr), which has been successfully implemented and
used for a robotic soccer team [locchi, Nardi, & Rosati, 2000b].

As a central feature, the action language &y allows for modeling the epistemic
state (e-state) of an agent, which is the set of all world states that the agent considers
possible in a given situation. Intuitively, the epistemic state encodes what the agent
knows about the world, in contrast to what is true in the world [Levesque, 1996
Son, 2001]]. Reasoning about actions is then done by modeling the dynamics of the
agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified in &y through an initial state description and an
action description, which express what an agent knows about the initial properties
of the world and how this knowledge changes through the execution of actions, re-
spectively. We now describe the syntax and the semantics of initial state and action

3.1. Reasoning about Actions with Uncertain Duration 49

descriptions.

Syntax

An action description in & consists of a set of formulas that encode dynamic knowl-
edge about the preconditions and effects of actions. The states and properties of the
world are described through fluent formulas, which are Boolean combinations of el-
ementary propositions, called fluents. Fluents may change through the execution of
actions.

We first define fluents, actions, and fluent formulas. We assume a nonempty finite
set of fluents F and a nonempty finite set of ordinary actions A. We use L and T
to denote the constants false and true, respectively. The set of fluent formulas is the
closure of 7 U{_L, T} under the Boolean operators — and A (that is, if ¢ and v are
fluent formulas, then also —¢ and (¢ A)). A fluent literal ¢ is either a fluent f or the
negation of a fluent = f. A fluent conjunction ¢ is either L, or T, or a fluent formula
of the form ¢1 A --- A/, where f1,...,¢, are fluent literals and n > 1. Given a
fluent conjunction ¢, we define L(¢) the set of literals in ¢.

The initial state description ¢! is the initial knowledge about the environment
and is represented as a fluent conjunction. A K B is a description of actions that the
agent can perform, represented through a finite set of axioms. An ordinary action
« is represented in the K B as the axiom (¢, b f>. The two components of the
axiom are formulas, in particular fluent conjunctions, which must respectively hold
before and after the execution of «. Informally, the axiom encodes that the action
« is executable in every state that satisfies ¢)... In particular, if L(¢y,..) =T, then
« is always executable. Moreover, the axiom encodes that the successor state after
executing the action « satisfies qﬁgf - Notice that, in general we could assume pre-
conditions to be represented by any formula, rather than by fluent conjunctions, since
to verify if a condition holds in a given state is computationally cheap. Nevertheless,
we restrict our attention to fluent conjunctions because, as we will show later on, this
allows for an efficient method to analyze the interaction among actions in multi-agent
scenarios. Finally, we assume that any agent is able to perform the end_activity ac-
tion formally defined as (T, T), where T denotes the fluent whose interpretation is
always true. Informally, the end_activity action idles the agent preventing it from
performing any further operation.

Semantics

An initial state description ¢! represents an epistemic state, which is a set of possible
states of the world, while an action description K B encodes a system of transitions
between epistemic states (which forms a directed graph where the nodes represent
epistemic states and the arrows encode transitions between epistemic states through
actions).

50 3. Multi-Agent Planning Games

We first define states, which are truth assignments to the fluents, and epistemic
states as sets of states, that are representable by a fluent conjunction. Formally, a
state s of an action description K B is a truth assignment to the fluents in F. A set
of states S satisfies a fluent formula ¢, denoted S |= ¢, iff every s € S satisfies ¢. An
epistemic state (or e-state) S of K B is a nonempty set of states s of K B such that
there exists a fluent conjunction ¢g such that Sy is the set of all states s of KB that
satisfy ¢g. The literals L(¢g) of the formula represent the knowledge of the agent
about the world, while the missing ones F — L(¢g) are properties of the environment
unknown to the agent.

We next define the executability of actions in e-states and the transitions between
e-states through the execution of actions. An action o = (¢ bey f> is executable

pre»

in an e-state Sy of KB iff Sy |=¢5,.. Operationally this means that L(¢,..) C
L(¢). We define the successor state of S under the effects of an ordinary action
a in terms of a successor function succ(S, «). The suce(-) function for epistemic
states assumes that all properties are inertial in a similar way to the STRIPS action
language. Given an e-state S of KB and an ordinary action «, executable in .S,
we build the successor e-state S* = succ(S, o), such that S* is conjunction of the
literals in the effects ¢, and the ones in S which are consistent w.r.t. the effects (i.e.
L(5™) = L(¢gy;) U(L(S) = L'(¢gy) where L'(¢7;) = {~f | f € L(¢g},)} and
-—f=h.

We are now ready to define the formal semantics of action and initial state de-
scriptions as follows. An action description K B encodes the directed graph Mg p =
(Var, Enr), where V) is the set of all e-states of KB, and E,,, C Vj; x Vi are la-
beled edges which contain S — ,S” iff (i) « is a ordinary action that is executable in
S, and (ii) S” = succ(S,). Aninitial state description ¢ encodes the greatest e-state
of K B that satisfies gbl , denoted S¢1, if it exists (if there is an e-state that satisfies
¢’, then there is also a greatest such e-state). We denote by M - B,¢! the subgraph of
M g consisting of all successors of S, along with their incident arrows.

We finally define the notion of consistency for action and initial state descrip-
tions. An action description is consistent iff it has at least one e-state and each action
execution is defined. Formally, an action description K B is consistent iff (i) K B has
at least one e-state .S and (ii) succ(S, «) is defined for each e-state S of K B and each
physical action « that is executable in S. An initial state description ¢! is consistent
if Syr is defined. In the sequel, we implicitly assume that all action and initial state
descriptions are consistentD

Based on this definition of the problem we can introduce the notion of plan for
our representation:

!This definition of consistency is, thus stronger, than simply requiring the existence of a model. This
is analogous to other approaches in reasoning about actions, e.g., [Pirri & Reiter, 1999} [Zhang, Chopra,
& Foo, 2002} [Cang & Marquis, 2003].

3.1. Reasoning about Actions with Uncertain Duration 51

Definition 3.1 A single-agent plan is a sequence of actions (a1; . . .; ak), with K >

1, such that:
o (Ppre; D 7p) EKBVjEl,... K]
i S¢I): ¢§7}e
o IfK > 1, succ(Syr, 1) = ¢p2

o ifK >2

succ(succ(. .. succ(Syr, 1)), aj-1) = bpie Vi €[3,..., K]

From now on, S$* = succ(S, a) is written as S — S* and S* = succ(succ(. . . succ(S, a1)), a;)
as § S, gx

3.1.2 Example: The Slotted Blocks World

G
Y ?
S1 S2 S3 S4

Figure 3.2: An example of Slotted Blocks World

In the following, we exemplify the concepts presented up to now, and in particular
the concept of epistemic state. We describe the slotted blocks world domain, where
there are a set of blocks on a table. The table is composed of slots. Each slot can be
occupied by a block. Blocks can be stacked to form towers and only one block can
fit on top of the other. The agent is a robotic arm which can move single blocks.

52 3. Multi-Agent Planning Games

EGI?E G
i I £ Sy T I A
S1 S2 S1 S2
(a) (b)

S1 S2 S1 S2

(c) (d)

Figure 3.3: An epistemic state (a) represents many possible world states (b,c,d).

3.1. Reasoning about Actions with Uncertain Duration 53

An epistemic state

Before providing the complete description of the problem we provide some intuition
of an epistemic state and its effect on the reasoning process through a simplified
example. Assume that the environment is the same as above but there are only two
slots S1 and S2. To describe the environment we use the fluent On(b, z) to denote
that a block b is on top of x. We can represent an epistemic state of an agent as
a conjunction of fluent literals. For example, the epistemic state depicted in Figure
[3.3(a) can be represented by the formula:

On(Y, S1) A ~On(Y, §2) A -On(Y, G) A -On(G, S1) A 3.1)

N\ (=(S1,a) A(52,0) A (a,a)). (3.2)
ae{Y,51,52,G}

Depending on wether the fluent On (G, Y) and On(G, S2) hold, many possible states
may exist. For example, we have one state where On(G,Y') and -On(G, S2) hold
(Figure 3.3[b)), one state where ~On(G,Y’) and On(G, S2) hold (Figure 3.3l¢)),
and one state where -On(G,Y') and -On(G, S2) hold (Figure[3.3(d)). Furthermore,
there is a fourth state where On(G,Y') and On(G, S2) hold. This last state is undesir-
able because we want to model that a block can not be in two places simultaneously.
In general, we can avoid these kind of states through static domain axioms which are
formulas that must hold in every possible state. For example, we could add the fol-
lowing two axioms to our description of the problem: On(G,Y) — —-On(G, S2)
and On(G,S2) = -On(G,Y). These axioms state that if block G is on Y it
can not be on S2 and viceversa, respectively. Thus, if we know On(G, S2) we can
infer -On(G,Y’). But what happens if we do not know if G is on Y or S2? In this
case, we can not infer anything using epistemic states, although reasoning by cases
we could exclude any state where On(G,Y') and On(G, S2) both hold.

The epistemic state representation of knowledge allows for a more compact rep-
resentation of a domain with respect to other formalisms, but it is not able to deal
with some specific representation of planning domains (namely the ones that require
reasoning by cases). The reason for this limitation is that epistemic states allow us to
reason about what is known and not about what is unknown. However, this limitation
in the representation power is not very restrictive from a representational viewpoint,
while providing substantial computational advantages, by ruling out such forms of
reasoning by cases. In particular, in the following we do not define static domain
axioms for our language.

5-Slotted Blocks World

We now provide a complete description of a the problem in the case of four slots: S1,
S2, S3 and S4. We also provide a simple incomplete description of the initial state
and show a possible plan. In order to maintain a propositional representation, we

54 3. Multi-Agent Planning Games

use the fluent Clear(x) to denote that nothing is on top of x. Moreover, we use the
fluent Block(b) to denote that b is a block.To represent more compactly the domain
we use variables, represented as lower case letters. Variables are defined over finite
domains and the K B without variables can be obtained by replacing variables with
all possible instances of the variables over their domains. In this example, we have
one domain Dom = {G,Y, S1, 52,53, S4}.

The knowledge of initial state, depicted in Figure is represented as:

¢! = Block(G) A Block(Y') A On(Y, S1)A
On(G,Y) A Clear(S3) A Clear(S4) A
Clear(G) N =Clear(S1) AN =Clear(Y)

Moreover, we assume that the initial state is enriched with the unique name assump-
tion axiom which states that instances of variables with different names are different
and instances with the same names are identical. Formally, given that Dom(z) is the
domain of the variable x, we assume the planner to consider the initial description as:

¢ A X#Y A X=Y.

XeDom(x),YeDom(y) | X#£Y XeDom(x),YeDom(y) | X=Y

The agent can perform the actions resulting from the possible instances of:

TMove ¢move>

move(b, z,y) = (dpre s e f
where:
oo = Block(b) A Clear(b) A Clear(y) ANOn(b,z) A (b # z) A (b # y) Ay #)

move = On(b,y) A Clear(z) A =On(b, z) A =Clear(y)

A possible plan for this description is:
p = (move(G,Y, S3); move(Y, S1, 54); move(G, S3,Y))

Let us now verify that this is a plan according to Definition First of all, the
actions of the plan are composed by possible instances of the action description
we provided above. Clearly, the initial epistemic state .Sy: = ¢$ZUE(G’Y’S3), since
any possible world for the initial state description verifies the preconditions of move

move(G,Y, S3) :

L(move(G,Y,S3)) —

pEeBlock‘(G), Clear(G),Clear(S3),0n(G,Y), (G #Y),(G # S3), (Y # S3)}
C L(¢")

3.1. Reasoning about Actions with Uncertain Duration 55

move(G,Y,S3)
_—

The successor state S' such that Sgr S1, is represented as:

S' = Block(G)A
Block(Y') AOn(Y,S1) A =On(G,Y) A =Clear(S3) A
Clear(S4) A Clear(G) A —~Clear(S1) A Clear(Y') A On(G, S3)

Also in this case, L(gzﬁz;bféve(y’&"%)) C L(¢g1), thus, we can execute move(Y, S1,.54)

g1 move(Y,51,54)

which leads to the successor state S2, such that S2 and repre-

sented as:

5% = Block(G)A
Block(Y) A =On(Y,S1) A On(Y,S4) A =On(G,Y) A =Clear(S3) A
=Clear(S4) A Clear(G) N On(G, S3) A Clear(S1) A Clear(Y) A On(G, S3)

Finally, L(;T:%W(G’SS’Y)) C L(¢g2), thus, we can execute move(G, S3,Y) which

g2 move(G,53,Y)

leads to the successor state S3, such that 53, and represented as:

S3 = Block(G)A
Block(Y') A =0n(Y, S1) A On(Y, S4) A On(G,Y) A Clear(G)A
Clear(S3) A =Clear(S4) A =On(G, S3) A Clear(S1) A =Clear(Y')

3.1.3 Timing

We now introduce a novel timing model for non-instantaneous actions with uncertain
durations, which we use both for mapping e-states to execution time and for limiting
the sequence of actions an agent can perform. The problem of representing and
reasoning about durative actions has been considered by other approaches, although
not many are able to deal with uncertain durations. In particular, there has been
some work in modeling durative actions with continuous change (e.g. [ClaBen, Hu,
& Lakemeyer, 2007]), but in these cases the duration of actions has been considered
deterministic. The only work we are aware of, which deals with uncertain durative
actions, has been developed in the frame of MDPs (e.g. [Marecki, Topol, & Tambe,
2006; Boyan & Littman, 2000; [Li & Littman, 2003]]), but does not provide a semantic
characterization of the resulting languages.

We assume that agents act under the constraint of having a maximum execution
time of 7. Furthermore, we assume that agents are uncertain both about the exact
time they start acting and about the duration of their actions. These assumptions are
suitable in many domains such as robotics. In fact, especially in multi-robot systems,
it is very hard to start robots exactly at the same time or to synchronize their clocks to
a common reference. Moreover, it is almost impossible to predict the exact timing of

56 3. Multi-Agent Planning Games

actions for robots because these depend on many factors such as exogenous events,
ability to perform actions in different environments or even consumption of actuators.
This uncertainty has a perceivable impact on knowledge since it is hard to devise a
priori when some information will be known.

Syntax

In this dissertation, we represent uncertainty about time through probability distribu-
tions. We assume that the time distributions can be described by a finite number of
parameters as, for example, the Gaussian distributions (i.e. by mean and variance) or
the exponential distributions. In particular, a Gaussian distribution which has mean
of 5 and a variance of 2 (Figure (a)) is represented as N'{5, 2}.

We represent through time distributions the uncertainty of the time an agent starts
to execute, denoted D', and the duration of actions. Formally, we have to add a third
component to our action descriptions in K B, namely df¥, describing, through a finite
number of parameters, the probabilistic duration of an action . Thus, an ordinary
action « is represented in the K B as a triple (¢, erf ds).

Semantics

A probability distribution over time is a function which assigns a probability to time
values, such that the sum of all the probabilities over time is one. The execution tim-
ing is a mapping ¢ from epistemic states to probability distributions, which represent
the probability of reaching an e-state at a given time during execution. For example,
given an epistemic state .S, its execution timing ¢(.5) could be a Gaussian distribution
which has mean 5 and variance of 2 (i.e. t(S) = N'{5,2}). We denote with #(.S) the
mean of the time distribution (). In the previous example, £(S) = 5. The probabil-
ity that an epistemic state holds before the time limit 7', can be found easily through
integral calculation. In fact, the probability that a time distribution p(7) is less than a

given value, say 7', is:
=T
/ p(T) dr.
T=—00

Given that we want to allow agents to act for at maximum 7" time units, we char-

acterize all e-states that have a positive probability to respect the time constraints:

Definition 3.2 An e-state S is time-admissible if TT::_TOO p(7) dT > 0. Given a time-
admissible initial e-state S,1 and a time constraint T, a plan p = (o1, ..., ak) is

time-admissible iff:

3.1. Reasoning about Actions with Uncertain Duration 57

° S¢1 is time-admissible

o Vje[l,..., K]S, such that Sy 2, S, is time-admissible

Depending on the type of time distributions, the actions available to the agent and
the initial state description, the set of possible time-admissible plans may be infinite.
To limit the possible sequences of actions to be finite we define e-time-admissible
states as those states which have a probability to hold before 7' greater than € (i.e.
f:::_TOO p(T)dT > €). The definition easily generalizes to e-time-admissible plans.
In the following we denote e-time-admissibility simply as time admissibility, and use
for our examples .5-time-admissibility which, for a generic epistemic state S results
in £(S) < T. All the results presented in the remainder of this dissertation are still
valid if the general time-admissible concept is used, except for the finiteness result for
the FSA representing the semantics of MAPGs which require e-time-admissibility.

The initial epistemic state S,r must be time-admissible and is associated with the
time distribution D’. Given an executable action o executed at an epistemic state .S,
we can compute the distribution of the successor state S* = succ(S, «) by cumu-
lating the two time distributions associated with S and «, through the convolution
operator *. Formally, the successor e-state of .S, after the agent performs an exe-
cutable action ¢, has a time distribution equal to ¢(.5) * df'. The convolution of two
time distributions f and g is written f x g. It is defined as the integral of the product
of the two functions after one is reversed and shifted. As such, it is a particular kind
of integral transform:

(f 9)(t /f gt —) dr

We require that the time distributions are closed with respect to convolution?
That is, for example, if we convolute two Gaussian distributions we still obtain a
Gaussian distribution. This property is important because, in this case, we are guar-
anteed to maintain a closed form solution, if it exists, to integral calculation (used for
the utility) which is computationally cheap. Nevertheless, there are nowadays fast
computational tools for convolution such as fast convolution, which for the discrete
case, take O(N log N) arithmetical operations, where N is the number of elements
of the series.

Example

Consider the Slotted Blocks World problem previously described. We now enrich this
description with timing and assume that the agent is allowed to act until T'equals 40

In general, we also requite, for modelling soundness, time distributions to be positive since they
represent duration of actions (or sequences of actions). For the sake of readability we do not enforce

this requirement and use Gaussian distributions for our examples.

Probability

Probability

Probability

0.1

58

3. Multi-Agent Planning Games

Action Duration Time Distribution

')
‘ ‘ ‘ ‘
0 5 10 15 20 25
Time
S_1 Time Distribution
; ; :
S1(x)
‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
Time
S_3 Time Distribution
; ; ‘
S3(x)
‘ ‘ ‘ ‘ ‘)
0 10 20 30 40 50 60 70

(e)

Figure 3.4: An example of the dynamics of local state timing under the effect of an

action with uncertain duration.

Probability

Probability

03

02

0.1

01

S Time Distribution

T T T
S1(x)
.
10 20 30 40 50 60 70
Time
S_2 Time Distribution
T T T
S2(0)
.
10 20 30 40 50 60 70

3.1. Reasoning about Actions with Uncertain Duration 59

time units. Assume that £(S,r) = N'{5,2} (Figure 3.4(b)) representing the fact that
the uncertainty is Gaussian and the expected timing of the initial e-state is 5 with a
variance of 2. The actions available to the agent are the same as previously described
except that their description explicitly represents the uncertainty of their duration:

move(b, z,y) = (move,¢2}0fe,/\/{15a4}>

pre

Thus, in this example, all the actions have the same duration which is Gaussian
with expected duration of 15 and a variance of 4 (Figure 3.4(a)). Gpre < and QSZ}Of”e
are the same as in the previous examples. Consider now the plan:

p = (move(G,Y, S3); move(Y, S1,54); move(G, S3,Y))

We already showed that this plan is correct, and now we verify if it is time-admissible.
For the sake of readability, we call the sequence of e-states deriving from the ordered
application of actions in p, starting from Syr: S 1,82, and S® respectively. In par-

_ G.,Y,S3 Y,51,54 G,S3,Y
ticular, Sy —>move() st 61 4>move() S1 and 52 movel) S3. The
timing for these e-states can be compute through the convolution operator and results

m:
o t(S1) = N{20,6} depicted in Figure 3. 4(c)
e t(S?) = N'{35,10} depicted in Figure 3.4(d)
o 1(S93) = N'{50, 14} depicted in Figure 3.4(e)

Notice that every time we apply an action the uncertainty of the timing of the
successor state increases. Indeed, this phenomenon is due to the cumulation of the
uncertainties in the duration of each action performed. The plan p is not .5-time-
admissible because S® is not .5-time-admissible. Actually, recalling the condition of
admissibility for an e-state S: #(S) < T, #(S®) = 50 < 40 does not hold. A time
admissible plan could be:

p' = (move(G,Y, S3); move(Y, S1,54))

Effectively, for p’ both S' and S? are time-admissible.

3.1.4 Utility of Plans

In order to assess the goodness of a plan we need to define a metric which takes
into consideration both the performance with respect to the agent’s objective and the
probability of terminating execution within the time constraints. The main idea is to
evaluate a plan based on the achievements the agent will be aware of once the plan
is executed, weighted by the probability that the plan is terminated within the time

60 3. Multi-Agent Planning Games

constraints. The evaluation of the achievements is based on a utility function which
defines an ordering relation among epistemic states assigning them a numerical value.
For example, we could evaluate 2 the state represented by a/Ab, 1 the state represented
by —a A b and zero all the others. This definition is a generalization of the concept
of goal. Indeed, we can represent the fact that a A b is a goal, by assigning to it the
utility of one, and assigning the utility of zero to all the other states.

Syntax

At first, we need to define a utility function u(-) which can measure the goodness of
knowledge ¢ of an agent. The utility function can be represented as a linear combina-
tion of fluent literals /, thatis) ;. L(o) 0; - I, where (3; is a real number giving a value
to each literal. The model of utility is quite simple since it assumes that the value of a
property is independent of the value of other properties. We generalize, this concept
by weighting formulas rather than literals (e.g. as for weighted MAX-SAT). In this
case, given a set of formulas f € F°% we define the utility function > feFobi Bt - f.
Notice that, this definition corresponds to the previous one when F°% is the set of
literal conjunctions composed of one literal.

Semantics

The utility of a plan p, ignoring time considerations, is defined in terms of the last
epistemic state it reaches S/. Formally, the utility of a plan p = (a1;. . .; ax), where
Syt LUK, 67 is defined as pu(p) = u(¢gr). The u(-) function is a weighted
sum of formulas which are interpreted as true. Given a formula ¢ which represents
an epistemic state Sy, we define the evaluation function eval(-) as:

Lif Sy = f
0 otherwise

eval(p, f) = {
Thus, the utility function can be defined as:

u(@)= Y By eval(¢,f)

feFObj

Example Consider the utility function described by the following weighted sum of
literals: u = 3-a+ 2-b— 3 - —c. If the agent is currently in the epistemic state
represented by the formula ¢ = a A —¢ we can compute its utility u(¢) as 3 -1+ 2 -
0 — 31 = 0. Consider now the case where the utility function is represented as a
weighted sum of conjunctions: u =3 - (a A =¢) +2- (a A —b) + 3 - —c. In this case
u(¢p) =3-1+2-0+3-1=6.

3.1. Reasoning about Actions with Uncertain Duration 61

Despite the fact that a plan p leads to an epistemic state S/ with a high utility,
it may be of no use if this happens after a robot runs out of batteries, or in general
after the agent exceeds the time constraints. Considering the proability that an e-state
holds within a given time 7', we can compute the probability of the final state of a
plan holds within T'. This value can then be used to compute the expected utility of

the plan pu(p):
T=T

pulp) =u(s) [plr)ar

T=—00

where p = t(S7).

Example

Consider the slotted blocks world example and the time-admissible plan
p' = (move(G,Y, S3); move(Y, S1,54))
from the previous examples. Assume that the utility function is defined as:
6-0On(Y,G)—1-0n(Y,S4)+ 3 Clear(S2) +4-On(G, S3)

In this case, recalling the time limit 7' = 40, the utility for p/ is:

7=40
pu() = ulés)- [N{35.10}dr

T=—00

Notice that for a Gaussian with mean y and variance o2:

5_2 Time Derbution

By ——

01z -

"R of

008 -

Probabiliy

0.0

0.04

oog |

Tima

Figure 3.5: Probability of execution timing less than 40.

62 3. Multi-Agent Planning Games

1 (z —)
exp | ———12
oV 2w P 202

the integral computing the probability that the random variable has a value smaller
of equal to x (see Figure for £(S%) with z = 40) is known as the cumulative

distribution function (cdf):
1 T — U
—(1+erf
2 (ov2)

The erf(+) is a primitive in many programming languages and is implemented as a
lookup table, allowing for fast computation.
Thus, we can compute pu(p’) as:

6:0-1-0+3-0+4-1)-

(1+ar=5)
10v2

1
2
4-0.6914625 = 2.76585

3.1.5 Timed Single Objective Single Agent Planning

We now provide a formal description of the single agent planning problem with ac-
tions with uncertain duration when acting under time constraints. We call this a timed

single objective single agent specification (Timed-SOSA):
Definition 3.3 A Timed-SOSA is 5-tuple
(¢!, KB, T, D], u(-))
where:
1. ¢! is the representation of the initial knowledge.
2. KB is a set of action descriptions of the form (¢, orprdi).
3. T is the time value within which execution of plans must be terminated.

4. D! is an initial time distribution.

5. u(+) is a utility function evaluating knowledge.

The semantics of the system is defined by the reachable sink nodes of the closure
of the transition system implicitly defined by the problem specification. In particular,
the transition system My p 41 = (Var, Ear) may be inductively defined as the biggest
graph, where nodes are e-states and edges actions performed by the agent, such that:

3.2. Distributed Knowledge and Asynchronous Execution 63

o Sy € Vi where t(S,r) = D!

e Given an action « defined in K B, an e-state S € V), , if « is executable in
S and S* = suce(S, a) (where t(S*) = ¢(S) * df) is time-admissible, then
S* € Vi and (S —4 S*) € Eypy.

The resulting transition system characterizes the semantics of the Timed-SOSA through
its sink nodes which represet possible epistemic outcomes of plans.

Such definition has an immediate operational counterpart and can be used to al-
gorithmically solve the problem. We can search in this graph all the possible paths
and extract the associated plans from them. Actually, given a path in My g 41 from
the source node S gl 02 sink node, we can extract the associated plan by consid-
ering the ordered sequence of labels from the edges of the path. For example, the

plan associated with the path S/ LK, ST s (s ... ;a). We define the set
of possible plans PI, as the set of all the sequences of actions {(«a1;...;ak)}, with

K > 1, associated with paths of My p .1 from the source node Sy to a sink node.
The solution to a Timed-SOSA is, thus, defined as a plan of PI which maximizes

the expected utility of the agent:

Definition 3.4 The solution to a Timed-SOSA (¢!, K B, T, D, u(-)) is a time-admissible
plan p such that

p = argmax pu(p’).
Example Consider a graph Mg 41— (v) as follows:
o V= {S¢£,5’1,SQ,S3,S4}
o F — {S¢>{ oy SL, ST g, 82,81 g, 83,83 ., %)

There are only two possible plans which are associated with the paths from S, gl 1O
S? and S*. These two plans are p; = (a1; o) and ps = (aq; ag; o), respectively.
Thus, Pl = {p1,p2}. Assume that the utilities of the plans are pu(p;) = 4 and
pu(p2) = 3. In this case the solution to the Timed-SOSA is p; since it has the
highest utility in PJ.

3.2 Distributed Knowledge and Asynchronous Execution

In this section, we generalize the concepts presented in the previous section to the
case of multiple agents pursuing possibly different objectives. We, thus, need to
address the issue of how a distributed set of epistemic states interact and present the
semantics of the system. The latter issue, is addresses by providing the semantics in

64 3. Multi-Agent Planning Games

terms of reachable sink nodes of a finite state automaton representing the system. The
nodes of the automaton are considerably different with respect to the single agent case
because, instead of representing a timed e-state, they represent a collection of timed
e-states, one for each agent. This characterization allows us to model the semantics
of distributed knowledge as the dynamics of collections of e-states.

The separate representation of the knowledge available to each agent is necessary
to allow plans for distributed execution. Indeed, if each agent is executing its plan
independently of other agents, without the aid of a central coordinator, he can not
base its decisions on the information available to other agents.

Syntax

Roughly, the syntax of the multi-objective multi-agent problem, called MAPG, is a
collection of Timed-SOSA, one for each agent composing the system, with the same
initial state description. Notice that we assume that agents are heterogeneous, in the
sense that they can possibly be capable of different actions or, of the same actions,
but with different timing performance. Despite the fact that the system could be
characterized as a set of Timed-SOSA descriptions, we provide, for ease of notation,

a global description:

Definition 3.5 A Multi-Agent Planning Game (MAPG) is a 6-tuple

(Ag, @', KB, U, D!, T)
such that:
1. Ag=A{1,...,n} is the set of agents.

2. &1 = {¢! | i € Ag} is the set of descriptions of the initial knowledge, where
o] = ¢lvi, j € Ag.

3. KB={KB,|i¢€ Ag} is a set of action descriptions.

4. T ={T; | i € Ag} is a set of the time values within which execution of plans

must be terminated.
5. DI = {D! |i € Ag} is a set of initial time distributions.

6. U ={ui(-) | i € Ag} is a set of utility functions.

3.2. Distributed Knowledge and Asynchronous Execution 65

The syntax of the elements of a MAPG is exactly as for Timed-SOSAsE However,
the semantics is considerably different because of the distributed nature of knowledge
and the asynchronous execution of actions.

Semantics

The major difference with respect to the single-agent case is that, in a distributed
context, each agent has its own local view of the world, which he evolves during
execution and which may be different from the views of other agents. To this end,
we denote an e-state, for agent ¢, as .S;, and we call it local state, to stress the fact
that the e-state refers to the local view of agent . From a global point of view we
consider profiles of local states, called global states. Moreover, with each global
state we associate a history of actions which leads to that state. The history is used
to distinguish global states which have the same sets of local states, but which were
reached trough different sequences of actions. This distinction is necessary, as we
will see in Chapter[3] because different paths have a different strategic value despite
the fact that they lead to the same outcome. This concept of history is also used for
extensive games and we suggest the reader who is interested on a detailed discussion
in the strategic relevance of histories to read a survey on the topic in [Osborne &
Rubinstein, 1994].

Formally, a global state S, for a system of n agents, is a tuple (Si,...,S,),
where 5; is the local state of agent 4, and a function ~(,S), which returns the history
of the global state .S. A history for a global state S is defined as a sequence of pairs
h(S) = ({(a1,51); - .; (anfk)) where each pair (a;, 3;) is composed by an action
B; and the agent who performed it a;. We say that two global states, S and S’, are
equivalent (i.e. S =5") if they have the same history (i.e. h(S) = h(S5")).

We describe the semantics of MAPGs, as for Timed-SOSAs, as the set of sinks
of a graph (Section 3.3 encoded by K B, where nodes are global states and edges
are labeled with a pair denoting an action and the agent who performed the action.
The executability of an action is, thus, defined over global states and its performance
results in a successor global state. As a first approximation, we can assume that an
action of an agent ¢, depends on (and affects) only the i-th local component of a
global state. In particular, this means that for an action to be executable by agent ¢ in
a global state S, it is sufficient to verify if the preconditions are satisfied for S;. In the
same way, the effects of actions performed by ¢ will affect just the i-th component of
the global state.

Given that agents may change their local components of a global state through
actions with different (uncertain) durations, the timing of local states for a global
state may be not aligned. For example, a global state for two agents could have a

3Some minor variants of the syntax of the description of actions will be be presented later on and

can be ignored here.

66 3. Multi-Agent Planning Games

local state for Alice at 17:00, knowing that it is rainy, and one for Paul at 18:00,
knowing that it is sunny. Thus, global states are profiles of local states scattered in
time. This leads to an interesting characterization of the execution of a sequence of
actions. Indeed, a sequence (a1, 31);...; (an0k) represents actions as if they were
executed in sequence by the agents. Nevertheless, each action for a given agent ¢
affects its own local state and increases its estimated execution timing, while leaving
unchanged the one of other agents’ local states. Thus, each action performed by an
agent is asynchronous with respect to other agents’ actions. Intuitively, the resulting
execution model is distributed because actions are asynchronous and information is
gathered independently by each agent. Some more detail on the distributed nature
of MAPGs is given in Section while a formal model of distributed execution is
defined in Chapter @4l

We now provide the definitions of executable actions and successor states for
global states. Recall that (see page[29), when referring to a generic tuple of elements
t = (t1,...,tn), we denote (t¥,t_;) the tuple ¢t where ¢; has been replaced by ¢.
In particular, ¢; is the i-th element of ¢, while ¢_; are all the remaining elements. A
global state .S models a formula ¢ for agent i (S |=; ¢) iff S; = ¢.

We say that an action a = (¢p;., 9¢yy, df) is executable by agent i in a global
state S, if (¢}, 9gp, df) € KBjand S | ¢,

Given a global state S and an action «, executable in .S by agent i, we denote the
successor global state Successor (S, a, i) = (succ(S;,), S—;), where t(succ(S;,) =
t(S;) * df. Moreover, assuming, without loss of generality, that the history of S
is h(S) = ((a1,01);-.-; (anPk)), the successor global state’s history is defined as
h(S*) = ({a1,B1); - - -; (an, Br); (i,).

The initial global state for a MAPG is the n-tuple <S¢{, ... Sy1) where t(Sd){) =
DiI Vi € [1,...,n]. Moreover, the history for the initial global state is an empty
sequence of actions (i.e. h(S ¢>{) =0).

We extend the notion of time-admissibility, presented for local states, also to
global states. A global state is time-admissible if each local state composing it is

time-admissible:

Definition 3.6 A global state (S, ..., Sy) is time admissible iff

Vi e [1,...,n|S; is time-admissible

From now on we assume that all global states are time-admissible.

Agents are able to locally reason about their actions, thus, leading to independent
evolutions of local states which are loosely coupled by the notion of global state. This
interpretation must, nevertheless, be extended for in two main directions: i) agents
can communicate affecting other agents’ local states and ii) even though agents may

3.2. Distributed Knowledge and Asynchronous Execution 67

not be completely aware of each others’ actions, their actions may damage or aid
other agents, and this has to be taken explicitly into consideration.

Example

ar ab
R1 B2
B1 R2
L C R

Figure 3.6: Example of a Multi-Agent Hanoi Tower problem

To better explain the described approach, we formalize a version of a Multi-
Agent Hanoi Tower problem. Figure[3.6]shows the initial state for our problem. Two
agents ap and a, have to stack blocks in a given order (i.e. smaller blocks on top
of larger ones). Moreover, blocks have a color, and agent a; can move only blue
blocks while agent a, can move only red blocks. The table is composed by three
slots R, C' and L. The actions agent a,., resp. ap, can perform are moveR(b, x,y),
resp. moveB(b, x,y), that moves a block b (respectively red or blue) from x to y.
We do not report here the complete formalization of the problem which is similar
to the previous slotted blocks world example. Assume that the initial global state
ST = (S, , Sa,) is composed by the two local states S, and S,,, where:

Sa, = Sa, = BlueBlock(B1) A\ BlueBlock(B2) A RedBlock(R1)A

RedBlock(R2) A On(B1, L) A On(R1, B1) A Clear(R1) A Clear(R)
ANOn(R2,C) A On(B2, R2) A Clear(B2)

r

The description of the initial state is incomplete because it does not describe
some of properties such as, for example, =On(R1, B2). The initial time distribution
is N'{0, 2} for both local states, and both actions have a duration of A'{5,3}. Both
agents are allowed to act at most for T,, = T,, = 5. The action move(R1, B1, R)
is executable for agent a, and results in the successor global state S* = (S; , S5 =

68 3. Multi-Agent Planning Games

Sa,). The new local state S;; for a, can be represented as

S, = BlueBlock(B1) A\ BlueBlock(B2) A RedBlock(R1) A On(R1, R)A
RedBlock(R2) A On(B1, L) AN =On(R1, B1) A Clear(R1)
ANOn(R2,C) A On(B2, R2) A Clear(B2)

AClear(B1) A ~Clear(R)

while the local state of a is unchanged by the action of a,:

Sg, = Sa, = BlueBlock(B1) A BlueBlock(B2) A RedBlock(R1)A
RedBlock(R2) A On(B1,L) A On(R1, B1) A Clear(R1) A Clear(R)
ANOn(R2,C) A On(B2, R2) A Clear(B2)

The new time distributions for S* are t(S;) = N {5,5} and ¢(S;,) = N{0,2},
and thus S™* is time-admissible.

3.3 Information Share and Synchronization

In multi-agent systems, where the information is distributed among the agents, com-
munication is a fundamental issue. The plan based theory of speech acts [Searle,
19701, usually defines communication actions (i.e. speech acts) as requests to an
agent to perform some action. Nevertheless, the focus of our work is on information
share and, thus, we analyze the problem in terms of communication and on its effects
on knowledge. Notice that, communicating some information to another agent may
lead it to perform some action given its current knowledge and its objectives.

In this dissertation, we consider point to point (opposed to broadcast) commu-
nication, because in many problems the information share requirements are minimal
with respect to the overall information, and, thus, agents need to reason when and to
whom to communicate. Moreover, point to point communication allows us to model
a system whose synchronization in time is loosely coupled, and, thus, which allows
asynchronous and distributed execution.

We can identify two fundamental paradigms for point to point communication
policies: push and pull. A push is an explicit communication which “pushes” in-
formation into an agent, while a pull “pulls” information from another agent. The
paradigm we use can be defined as a push-pull because no agent can unilaterally
choose to pull or push information from/to other agents. In particular, the agents
must agree to share information. We model this concept through two primitives,
request_sync and accept_sync which both agents must perform to establish a com-
munication. The communication process, then, exchanges the information available
to the two agents synchronizing their local states. After the synchronization process

3.3. Information Share and Synchronization 69

the two agents will have identical local states, in particular, with the same execu-
tion time distribution. Thus, synchronization can be used both to synchronize joint
activity and to share information.

Syntax

We have to enrich the syntax of MAPGs to represent communication. In particular,
assuming that some agents may not able to communicate, we denote the set of agents
able to communicate Ag. C Ag. Furthermore, we provide the communication prim-
itives necessary to represent the request of information and direct communication.
Formally, we enlarge K B;, with i € Ag. with the action descriptions:

o request_sync(i,s) Vs € Ag.\{i}
o accept_sync(i,r) Vr € Ag.\{i}

The first action is a request for synchronization with s performed by 7, while
the second is an acceptance of synchronization with r performed by ¢ which starts
a process of information share between ¢ and r. Furthermore, we add a description
of the duration of a synchronization between agents s and r in terms of a probability

distribution d:¥"“(*"):

(sync(s,r), dfync(s’r)> Vs,r € Agest.s #r

Semantics

We assume that an accept_sync(s,r) action performed by s when r did not explic-
itly perform a request_sync(r, s) (or did perform a request_sync(r, s), but already
received the relative accept_sync(s,r)), has no effect, because the recipient drops
the information as unsolicited. Whenever an agent r performs a request_sync(r, s)
action, it stops from further acting until s performs a accept_sync(s,r). This event,
not only enables the agent to continue acting, but also merges the local states of s and
r, enriching each agent’s local state with the information available to the other agent.

Thus, we need to define a procedure (i.e. merge(-)) to reconstruct the local states
of the agents after a synchronization operation. When two agents s and r synchronize,
we could simply reconstruct the new local states as the conjunction of the literals
in their local states (i.e. L(S,) U L(Ss)). In this case, L(S,) and L(Ss) could be
inconsistent. For example, consider if s obtained a, before agent r acts changing a
to —a. If the two agents synchronize they would obtain a local state where both a
and —a hold. In order to avoid such problems, we need to reason about how actions
interact. In the next section, we present a model of interaction among actions and
provide a formal specification of the merge function in terms of the succ(-) function.
For the time being, we can assume the merge function to be suitably defined.

70 3. Multi-Agent Planning Games

The accept_sync(s,r) action is the only action which can change the local state
of another agent. The successor global state of S, after an accept_sync(s, r) action,
is the global state (S, S*, S_,) such that: S = S* = merge(S,, Ss).

The timing behavior of synchronization actions is different from other actions.
Their definition reflects the fact that communication enforces synchronization con-
straints among different local states. In particular, after a request_sync(r, s) is exe-
cuted by 7, the successor local state of 7 has an undefined time distribution reflecting
the fact that the agent can not predict how much it has to wait until s accepts the syn-
chronization. In particular, the action ends when agent r is sent an accept_sync(s,)
by the agent s or when the game has finished. The new time distributions labelling
the successor local states of S and S, computed after an action accept_sync(s,r)
by s (i.e. S* = Successor({Ss, Sy, S_sr), accept_sync(s,r), s)), are:

1. #(S%) = t(Sq) * ¥,
2. 1(S7) = H(S%)

Note that, to enforce the timing constraints induced by the synchronization process,
the time distributions of the local states of both agents are synchronized (i.e. t(S)) =
HS)).

Timing and communication require to extend the notion of executability of ac-
tions. We require that an action of agent ¢, in order to be executable at a global state
S, has to be executable and the local state of 7 must have the smallest execution tim-
ing mean (i.e. £(S;)) among the local states of the agents which are not waiting for an
accept_sync or performed a end_activity action. Given a global state S, we denote
with Active(S) the set of agents which:

e are not waiting for an accept_syncin S,
e did not perform a end_activity action in h(.S),

e and have at least an executable action in S.

Definition 3.7 An action « is time-executable by agent i at global state S if:

1. «is executable in g,

2. 1 €arg min{jeActive(S')} tA(SJ)

Property 1 states that the action can be executed in the current global state. Moreover,
Property 2 is necessary for the consistency of the synchronization process. In particu-
lar, Property 2 avoids “time travelling” phenomena. Assume that a request_sync(r, s)
action is performed by r at time ¢, and a accept_sync(s,r) action with duration

dfym(s’r) at time ¢(S;). Given the successor global state S*, if t(S7) = t(Ss) *

3.3. Information Share and Synchronization 71

dfync(s’r) is such that #(S¥) < #(S,.), the recipient agent would travel back in time
(i.e. the time when he finishes the synchronization process ¢(.5;) is before its request
t(.Sy)). This problem is avoided because of Property 2 in Definition[3.7lwhich guaran-
tees that £(S;) > £(S,). Actually, given that time monotonically increases when ac-
tions are performed (i.e. £(S}) > #(Ss)), we are sure that the synchronization process
will end after the request for synchronization (i.e. £(S;) = #(S¥) > £(Ss) > #(S,)).

Example

Consider the case of the previous Multi-Agent Hanoi Tower problem, where Ag =
Age = {a,, ap} and where the agents are at the global state S = (S, Sy,):

Sa, = BlueBlock(B1) A BlueBlock(B2) N Red Block(R1)A
RedBlock(R2) N On(B1,L) AN On(R1, B1) A Clear(R1) A Clear(R)

Sa, = BlueBlock(B1) A BlueBlock(B2) A RedBlock(R1)A
RedBlock(R2) AN On(R2,C) A On(B2, R2) A\ Clear(B2) A Clear(R)

where both local states have an execution timing of N'{0, 2}

Assume that agent a, performs a request_sync(a,,ap) in S and, then, ap an
accept_sync(ap, ar). The sync duration is N'{1,1}. The request_sync(a,, ap) is
time-executable because:

o request_sync(a,,ap) is always executable
e a, € Active(S)
® a, € arg mianActive(S’) tA(S]) = {GT,CL(,}

The successor global state S is exactly as S' except that t(S},) is undefined.
Due to the fact that ¢(S’a,) is undefined, agent a, ¢ Active(S) and, thus, has no
time-executable actions in S’. Next, agent a;, performs a accept_sync(ay, a,), which
is time executable because:

e accept_sync(ap, a,) is executable because a, requested a sync from a;,
e a; € Active(S’)

® ap € arg minjeActive(S’) E(Sé) = {ab}'

72 3. Multi-Agent Planning Games

The successor global state S” is computed updating a,’s and ap’s local states
through the merge function:

Sy =S, = BlueBlock(B1) A BlueBlock(B2) A RedBlock(R1)A
RedBlock(R2) A On(B1,L) A On(R1, B1) A Clear(R1) A Clear(R)
ANOn(R2,C) A On(B2, R2) A Clear(B2)

The timing for the local states is now aligned and is t(S;,) = t(S;,) = N{0,2} *
NA{1,1} = N{1,3}.

The purpose of sync actions is double faced. On the one hand, the synchroniza-
tion process allows us to synchronize the operations among two asynchronous plans.
On the other one hand, this process allows us to spread knowledge among any two
agents through a point to point communication. In this simple example, the merge
function is the union of the literals of the local states, because there are no inconsis-
tencies between S, and Sy, .

3.4 Interaction Among Actions

Up to this point, we have ignored that there can be negative interactions among ac-
tions. In fact, agents act independently of other agents’ actions except for communi-
cations. Nevertheless actions can conflict.

Example Consider the slotted blocks world domain previously described. There are
two agents a1 and ao knowing that the table is composed of four slots S1, .52, 53, 54
and there are two blocks B1 and B2, sitting on slot S1 and 52, respectively. More-
over, the two agents know that B1, B2, S3, and S4 are clear. Agent a; decides
to perform the sequence of actions move(B1, S1, 53); move(B1, 53, 51) and agent
asy the sequence move(B2,52,.53); move(B2,53,54). Each plan is a valid plan if
considered on its own, but if we execute them in parallel there is th risk that both
agents try to put a block on S3 at the same time violating the condition of 53 being
clear.

Intuitively, we can understand if any two actions interfere, by looking at their
preconditions and effects. For example, if the effects of two actions are satisfiable
together, there is no risk to end them at the same time. Despite this, during asyn-
chronous execution of actions, we do not have any control among the rates of actions.
For example, an action could end before the other starts or they could end together.
In general, if any pair of conditions defining two actions is jointly satisfiable, we say
that the two actions commute. Commuting actions can safely be executed in parallel.
Thus, to ensure that in a plan two non commuting actions do not interfere, we have
to make sure that they are separated in time and that the agent which performs the

3.4. Interaction Among Actions 73

second action is aware that the possibly negative effects of the first action have been
canceled by some other action. We solve this issue by using synchronization actions.

In the previous example move(B2, 52,53) and move(B1, S1,.53) are clearly
not commuting, because they try to put a block on the same slot, and thus the pre-
condition of each action (i.e. Clear(S3)) conflicts with the effect of the other (i.e.
—Clear(S53)). Nevertheless, if we enforce a synchronization between the two agents
which enforces to execute move(B1, S1, S3); move(B1, 53, 51) before the sequence
move(B2,52,53); move(B2,53,54), the overall sequence is safe (i.e. the actions
do not interfere). Actually, move(B2, 52, 53) is executed before move(B1, S1, S3),
and the second agents knows, based on the communication he received, that the ac-
tion move(B1, 53, S1) cleared slot S3 from B2.

This theory is then used to develop a technique (i.e. the merge(-) procedure) to
reconstruct the local states of agents involved into a synchronization process. In
particular, we look at the history of actions leading to the global state where an
accept_sync is performed. From this histoy we select the actions which each agent
is aware were performed. These actions include the actions performed by each agent
and the ones of agents which communicated with them, directly or indirectly before
the synchronization (i.e. agents which communicated to an agent which is involved
in a synchronization, agents which communicated to an agent which communicated
to another agent which is involved in a synchronization, and so on ...). We can,
then, find a linearization of these actions and compute the merged local state through
the successor function for local states, as if it was only one agent to perform it. The
approach is consistent with the assumption that in each synchronization the agents
share all the information available to them up to that moment. This procedure is pos-
sible because the agents have the same initial local state and the sequence is, as we
will see in the following, to be safe. Actually, in this case, we are guaranteed that the
actions in the sub-sequence are executable and, thus, that we can correctly compute
the resulting local state.

Syntax

To characterize the fact that some properties must hold during the execution of non-
instantaneous actions, we need to add a new syntactic element to the description of
actions, which we call execution conditions. Formally, an action with execution con-
dition is a 4-tuple (¢5,.., d2,, o di) where ¢¢, is the execution condition repre-
sented as a literal conjunction. Informally, execution conditions are properties which

must hold during the execution of actions.

74 3. Multi-Agent Planning Games

Semantics

We characterize the semantics of interaction among actions, in a similar way to the

limited effect of actions theory [Georgeff, 1988], in terms of a binary relation ~:

Definition 3.8 Two actions «; and o (which are not synchronization actions) are

said to be commuting (a; ~ o) iff

Ve, d e {pre,ex,ef f} S¢§‘Z’A¢>°,¥,j ~ L

If two actions are commuting they allow any interleaving because they are inde-
pendent of one other. We assume that synchronization actions are always commuting
because they do not affect the world state and the conflicts can always be solved by
the merge procedure. Nevertheless, two agents may both perform a request_sync(+)
to each other, leading to a deadlock situation. We consider this situation admissible
because it will lead to plans where the agents can not perform further actions and is
equivalent to the case where both agents perform an end_activity action.

We denote a sequence of actions for a MAPGs as a sequence of pairs p =
({(i,01);...; (J,) where each pair (i,«) denotes an action « performed by a
agent 7. The definition is equivalent to the one of histories. This representation of
a sequence of action is not informative about the temporal constraints enforced dur-
ing execution. Actually, we recall that a sequence of actions when performed by the
system is parallel and not strictly sequential. We, thus, provide the executable repre-
sentation of such sequence which explicits the distributed nature of the execution of
the sequence. The executable representation is a n — tuple of sets (p1, ..., py,) of ac-
tions and a precedence relation <. The n sets (p1, . .., p,) group actions performed
by the same agent. Each p; represents the ’s part of the sequence p, and <, repre-
sents temporal constraints on actions. The semantics of MAPGs induces an ordering
=<p which is total among the actions in the same set p;, and partial between sets of
different agents. In particular, actions executed by the same agent must be executed
in a strict order, while actions performed by different agents can be performed asyn-
chronously unless they are explicitly sequenced through a synchronization process.
Roughly, the actions of two agents performed before a synchronization process must
be executed before the actions performed after the synchronization.

Definition 3.9 An executable representation for a sequence p = ({i,c1);...; (J, ax))
is a pair
((P1s- -5)y =p) (3.3)

where p; are actions performed by i.:

a€p; < Ii,a)€EDp (3.4)

3.4. Interaction Among Actions 75

and <, is a transitive binary relation such that:

g <p ;= ((3.5)
(FieAg| o, o5 €pi Nk <j) V (3.6)
(3s,r € Ag | oy, = accept_sync(s,r) € ps, aj € pr Ups A (3.7)
Ja, = request_sync(s,r) €Ep, |[v <k <j)V (3.8)
(3s,r € Ag | oy = request_sync(s,r) € pr, aj € psUp, A (3.9)
Ja, = accept_sync(s,r) €Eps |k <v <j)) (3.10)

Formula 3.4 defines each set p; as the set composed by all, and only, the actions of
p performed by 7. Formula represents the fact that actions for an agent in the
sequence must be executed in a strict order. Nevertheless, actions performed by dif-
ferent agents have no execution ordering constraints, unless there is a synchronization
constraint. These constraints synchronize two plans at a given point in time and thus
define the precedence relation <, between the actions of two different agents s and r
(Formulas[3.73.10). This means that p represents n asynchronous ordered sequences
of actions, possibly synchronized by communications. If <, does not hold between
the two actions oy, and «,, we write oy, A, ap,.

We now provide a definition of a safe sequence of actions (i.e. without negative
interactions). Safeness states that if two actions of different agents have no temporal

constraints they must commute (otherwise they could possibly incur in a conflict).

Definition 3.10 A sequence p, given its executable representation ((p1, . ..,Dn), <p),

is safe iff Yoy, € pi, ap € pj it # j:
(ak 74:0 ap N\ ap 74p Oék) — (Oéh ~ ak)

Note that, given the uncertainty of timing, we choose to provide a strong safeness
concept for our plans. In particular, we rely on explicit synchronization through com-

munication, rather than minimizing the probability that conflicting actions overlap.

Definition 3.11 Given a global state S, with a history h(S) = ((a1, a1); .. .; (ag, K)),

we say that action 3 is safely time-executable by i in S iff

o (3 is time-executable by i in S and

76 3. Multi-Agent Planning Games

o ((a1,00);...; (ak, ak); (i, 3)) is safe.

In the following, for the sake of readability, we refer to safely time-executable actions,
simply as time-executable actions.

Merge

Based on the above considerations on interactions among actions, we can define the
merge(-) function in terms of the suce(-) function as follows. Consider a history p
for a global state S and its executable representation ((ps, py, p—sr), <p). Consider,
without loss of generality, that the next action performed is a accept_sync(s,r). The
merge function to compute the successor state can be obtained by choosing any total
ordering of the actions p, U p, consistent with <, say: a1;...; ak. In this case, the
merge function can simply return S* such that:

G, QAR g
o

This definition ignores the fact that s or r could have synchronized with other agents

Algorithm 3.1 Extract relevant actions for communication

Input: an action sequence (a1, a1);...; (ax,ax) and a set of agents Ag
Output:the set of relevant actions Act

function get Relevant Actions()

1: fori = K toldo

2. ifay = accept_sync(v,) N (v € AgNl € Ag) VvV (I € Ag Av € Ag)) then
3 P =(a,01);. .5 {ai-1, 1)

4 Ag = AgU{v,l}

5: return Act U get RelevantActions(p’, Ag’)

6: ifa; € Ag N a; # request_sync(s,r) then

7 Act = Act U {ay}

8: return Act

before the merge and, thus, any exchanged information would get lost. In order to
solve this problem we consider an enlarged set of actions which takes into account
also the actions performed by other agents that are relevant to the merge procedure.
For example, if agents s and r are synchronizing their knowledge, but s previously
performed a synchronization with a third agent o, the merge procedure will not only
have to consider the actions of s and r, but also the actions o performed before syn-
chronizing with s.

3.4. Interaction Among Actions 77

Algorithm [3.1] describes the function get Relevant Actions() which returns all
the relevant actions necessary to reconstruct the updated local state of two agents
which perform a synchronization operation. The algorithm iterates from the end of
the plan adding actions which are performed by the agents involved in the synchro-
nization (Lines [6H7). If the algorithm encounters a synchronization between two
agents v and [, and at least one of them is relevant for the merge procedure, it recur-
sively computes an enlarged action set on the remaining part of the plan considering
the set of relevant agents enlarged with v and [(Lines[23). The merge(s, r, p), where
s and r are the agents who synchronize and p is the history of the global state up to
that moment, can be computed by choosing an ordering among the actions returned
by getRelevantActions(p, {s,r}) which is consistent with <,,. This sequence can
then be used to compute the updated local states as previously described.

We can generalize the merge procedure to take into account all the agents Ag
in the system (i.e. merge(Ag,p)), rather than just two, in order to reconstruct the
information available to the system after the performance of a sequence of actions.
If the executable representation of the history of a final global state of a sequence
is ((p1,...,Pn), <p), choose arbitrarily a total ordering among actions ;.. .; o
consistent with <, and such that a; € U’_,p;. The reconstructed information is a
local state S*, such that:

Sy XSO g

We can prove that the merge procedure is independent of the total ordering cho-

sen:
Theorem 3.1 Given a safe sequence p = ((p1, ..., Pn), <p), and two total orderings
at;...;a and By .. .5 B of the actions in p, consistent with <, the result of the

merge procedure is independent from the total ordering chosen.

Proof {Sketch}

Both orderings are consistent with <, and, thus, both of them respect the execu-
tion constraint orderings imposed by the semantics of MAPGs. The two orderings
differ for those pairs of actions for which <, is not defined. This means that the
orderings change by swaps of commuting actions (see Definition 3.10). In this case,
the swaps do not affect the outcome because commuting actions either depend on
different properties of the state or have the same effects. |

Example

Consider the action sequence

({ar, moveR(R1, B1, R)); (ay, move B(B2, R2, R)))

78 3. Multi-Agent Planning Games

ar ab
R1 B2
B1 R2 B3
L C R S1 S2
(@
ar ab
B2
Bl R2 R B3
L C R S1 S2
(b)
ar ab
R1
B1 R2 B2 B3
L C R S1 S2
(©)

Figure 3.7: (a) Example of a Multi-Agent Hanoi Tower problem state. (b) The new

state after moving blocks R1 and B3. (c¢) The new state after moving from (b) blocks

R1 and B3 again.

3.4. Interaction Among Actions 79

from the Multi-Agent Hanoi Tower problem depicted in Figure[3.7((a). The sequence
is not safe because there is no precedence relation among the two actions and they do
not commute. The two actions do not commute because they both require Clear(R)
as a precondition and have ~Clear(R) as an effect. Now consider the more complex
action sequence leading to the states in Figure 3. 7(b,c):

({ar,moveR(R1, B1, R)); (ay, move B(B3, 51, 52)); (ap, request_sync(ap, a,));
(ar,moveR(R1, R, B1)); {(a,, accept_sync(ar, ap)); {(ap, move B(B2, R2, R)))

Notice that actions moveR(R1, B1, R) and move B(B2, R2, R). Nevertheless, we
can show that, in this case, the action sequence is safe.
The executable representation for this sequence is:
((Pas Pay)s <p)
where:
Pa, = {moveR(R1, B1, R), moveR(R1, R, B1), accept_sync(a,, ap)}
Pa, = {moveB(B3, 51, 52), request_sync(ay, a,), moveB(B2, R2, R)}
and <, is transitive closure of:
moveR(R1, B1, R) <, moveR(R1, R, B1) <,
accept_sync(ar, ap) <p moveB(B2, R2, R)
and
moveB(B3, 51, 52) <, request_sync(ay, a,) <, moveB(B2, R2, R)
The only pairs of actions for which <, is not defined are
(moveB(B3, S1,52), moveR(R1, B1, R))
and
(moveB(B3,51,52), moveR(R1, R, B1))

but since they are both commuting the sequence is safe.

We can now show how to reconstruct the merged local state assuming that the
agents started to execute in the local state after the synchronization process. At first,
we have to consider the actions performed before the synchronization:

{moveR(R1, B1, R), moveR(R1, R, B1), moveB(B3, 51, 52)}

and, then, chose a total ordering among them. We know that moveR(R1, B1, R) <,
moveR(R1, R, B1) and, thus, we can choose any ordering where move R(R1, B1, R)
precedes moveR(R1, R, B1). In particular, we choose to have all actions precede
action move B(B3, 51, 52). Thus, we can compute the updated state S* as:

moveR(R1,B1,R);moveR(R1,R,B1);moveB(B3,51,52)

S(I;.I S*

80 3. Multi-Agent Planning Games

3.5 Semantics of MAPGs

We now describe the semantics of MAPGs through the sink nodes of the closure of
the transition system encoded by the MAPG. We call these sink nodes strategy profile
outcome space. The closure of the transition system is described by a finite state
automaton which is represented as a graph M = (V,,, E,,,), where nodes are global
states and edges are labelled with a pair composed by an action and an agent. M
describes the dynamics of global states when a partially ordered sequence of actions
is executed. We can prove that M is a finite tree, and, thus, that the strategy profile
outcome space can be identified by its leafs.

Let Sy denote the initial global state (S¢{, s Spr) | t(Sd){) = D! Vi €
[1,...,n]. Let TimeExecutable(K B, S,i) denote the set of time-executable ac-
tions for agent ¢ in the global state S. Finally, let Player(S) denote the function
(defined as for extensive games) which selects a player for the global state S. If the
function returns the special symbol { there is no player which can play. The selection
of the player is only a search strategy and does not influence the asynchronicity of
the process, although it encodes a sequential representation of the problem. In fact,
the temporal constraints imposed for the execution for a sequence of actions is the
one described by its executable representation through <.

Definition 3.12 The transition system closure for a MAPG M = (Vr, Epy) is the
biggest graph inductively defined as:

o Ser eV

oif S e Vyy AN Player(S) =i N i #1 N a € KB, N «a €
TimeEzecutable(KB, S,i) N S* = Successor(9,i,a) then S* € Vjy A

s o c By

We now show that the graph M is a finite tree, based on the following three
results.

First, we show that that M is a finite graph:

Theorem 3.2 A MAPG encodes a graph M which is finite, under the assumption of

e-time-admissibility.

Proof {Sketch}

We sketch this proof for the case of .5-time-admissibility. The result can be
easily extended to e-time-admissibility by showing that the probability of terminating
within a given time monotonically decreases after the application of actions with a
positive duration. Assume (without loss of generality) that the transition from vY

3.5. Semantics of MAPGs 81

to v* is v¥ —; oy v*. Given that actions have a positive duration (i.e. d; > 0):
t(v?) > t(v¥) A Vpsit(vl) = t(v¥). Thus, after applying an action the mean of
the successor grows for at least one component (two in the case of communication
actions), and all the others are unchanged. Given that the mean of the time function is
monotonically increasing, execution time is limited by a time horizon and the number
of action applicable at a global state is finite, we can deduce that the possible number
of nodes of the graph is finite. [

Second, that M has no cycles and, in particular, is a directed acyclic graph:

Theorem 3.3 A MAPG encodes a graph M which is a directed acyclic graph (DAG).

Proof {By Contradiction}
We have to show that there are no cycles in M, an thus that M is a directed
acyclic graph (DAG).
The proof is by contradiction. Assume that there exists a cycle in the graph M.
(a1,01);.3{ak o)

This means that there is a path in M of the form S S*, where
S = S*. Assume, without loss of generality, that the history of S is h(S) =
(b1, B1); .. ;5 (by, By). The history of S* is, thus,

h(S