
UNIVERSITÀ DI ROMA “SAPIENZA”

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XX CICLO – 2008

Robot Teams for Multi-Objective Tasks

Vittorio Amos Ziparo

UNIVERSITÀ DI ROMA “SAPIENZA”

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XX CICLO - 2008

Vittorio Amos Ziparo

Robot Teams for Multi-Objective Tasks

Thesis Committee

Prof. Daniele Nardi (Advisor)
Prof. Luigia Carlucci Aiello
Prof. Roberto Baldoni

Reviewers

Prof. Manuela Veloso
Prof. Peter Stone

Copyright c© 2008
by Vittorio Amos Ziparo

ISBN: ??

AUTHOR’S ADDRESS:
Vittorio Amos Ziparo
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Università di Roma “Sapienza”
Via Ariosto 25, I-00185 Roma, Italy.
E-MAIL: ziparo@dis.uniroma1.it
WWW: http://www.dis.uniroma1.it/∼ziparo/

À minha esposa e à sua paciência.
Alla mia famiglia.

Acknowledgment

I would like to acknowledge all the people that helped me, in various ways, to develop
the ideas presented in this dissertation. Their continuous advise and encouragement
has been fundamental to successfully accomplishing my work.

Let me start from the beginning. The first acknowledgment goes to my family:
Elio, Roberta, Alessandra and Enrico. They strongly supported my PhD studies and,
since my first years of life, showed me the right way to go.

After high school, I decided to apply to the engineering faculty. At the time,
I was convinced that I wanted to study Artificial Intelligence (AI), but had no idea
where to start from. After a small research on the Web, I discovered that a department
of my university hosted an outsanding researcher in AI: Prof. Aiello. Thus, I chose
to contact her. Despite the fact that I was just a first year student, she immediately
replied to me and convinced me that AI was the right choice. Moreover, she outlined
the path I had to follow during my education and has been present to my work up to
know, carefully proof-reading this dissertation.

The first, and probably the most significant, step in my path towards AI (and
robotics) has been to join the RoboCup Legged team at my university (S.P.Q.R.
Legged) in 2001. There, I had the pleasure to work with Prof. Daniele Nardi who
was in charge of the project. Prof. Nardi has advised me since then, guiding me to
this point. His advise has always been extraordinary both in quantity and in quality.
Moreover, he gave me the opportunity to travel and get in contact with many notable
researchers which have been very important to my scientific formation.

When I entered S.P.Q.R. Legged team, I had the privilege to meet Prof. Iocchi
which has always been a precious mentor and colleague. His contribution to my work
has been valuable since the very beginning of my studies, given his deep scientific
and technical knowledge in an astonishingly wide range of research areas.

The participation to the RoboCup competitions considerably improved my per-
sonal and teamwork skills. Furthermore, it allowed me to get in touch with great
people. Just to mentions some: Vincenzo Bonifaci, Fabio Patrizi, Luca Marchetti,
Giorgio Grisetti, Shahram Bahadori, Maria Giannone, Simone Elviretti, Stefano Pel-
legrini. In particular, I am grateful to Daniele Calisi, Francesca Giannone and Pier
Francesco Palamara for the time spent programming and having fun together, not to

iii

mention their fundamental contribution to the implementation and testing of the PNP
framework. Moreover, I am grateful to my friends Fabio Cottefoglie and Alessandro
Farinelli who have been valuable study and research companions.

During RoboCup 2002, I had the privilege to know, and later on to work with,
Steffen Gutmann. Steffen suggested me to spend some time in Freiburg, where, he
said, there was an amazing group. Indeed, he was right! In the year I spend there I
was advised by Prof. Bernhard Nebel who, at first, introduced me to Game Theory,
and, then, fostered many of the ideas which I developed into my thesis. I also want to
acknowledge the members of Prof. Nebel’s group, and in particular: Michael Bren-
ner, Malte Helmert, Alexander Kleiner, Sebastian Kupferschmid and my room mate
Dapeng Zhang. These people have been valuable colleagues and, most importantly,
good friends. Among them, Alexander Kleiner deserves a special mention. I spent
plenty of good time with him, working and having fun. Furthermore, our discussions
about robotics and development methodologies have been fundamental to build my
engineering and scientific background.

Probably, the most relevant aspect of my visit to Freiburg is that there I met Katia,
the woman who I married. Her patience and support gave me the strength to complete
this dissertation.

Finally, I would like to acknowledge the reviewers of this dissertation, Prof.
Manuela Veloso and Prof. Peter Stone, for their valuable suggestions and their en-
couraging comments. Special thanks also to my colleagues of the PhD program, in
particular Antonella Chirichiello and Paolo Romano; the best coffee-break compan-
ions ever!

Abstract

Artificial Intelligence research has developed, during the last fifty years, a large va-
riety of tools aimed at establishing rational behaviors for cognitive entities, called
agents. This dissertation addresses the problem of producing rational behaviors for
a team of agents pursuing possibly different objectives. The problem can be decom-
posed into the following two research issues: i) multi-agent behavior and execution
modelling, and, ii) multi-objective problem solving. Our resarch focus on multi-agent
systems has been modelling distributed execution of asynchronous plans composed
of actions of uncertain duration, possibly coordinated through direct communication.
The distributed execution and the communication costs require to model the dynam-
ics of knowledge when asynchronously distributed in the system under the effect of
local and communication actions. The second research focus of this thesis, has been
multi-objective problem solving. The introduction of multiple objectives in planning
domains, allows us to generalize classical multi-agent planning, thus augmenting the
class of solvable problems. Multi-objective formulations allow an incomplete, and
possibly contradictory, description of goals, and are frequent in many practical ap-
plications. For example, consider the case where requests to a system come from a
large community of users or from the members of a research group studying different
aspects of a complex problem.

This thesis provides three main contributions. The first contribution consists of
two formal tools for modelling multi-agent systems. One, for planning, and, one, for
distributed execution. Each model defines a class of languages based on single-agent
action languages and Petri nets, respectively. The second contribution addresses two
multi-objective issues: solution concept and solving techniques. First, we define a
novel solution concept which is, to our knowledge, the first refinement of Pareto op-
timality for any multi-objective problem. Second, we provide a sound and complete
algorithm for solving it. Finally, the third contribution is a case study on the Urban
Search And Rescue (USAR) robotic problem, presented in three formulations of in-
creasing complexity. USAR, in its classical formulation, is a multi-objective problem
where the objectives are: exploration, mapping, and victim detection.

v

Contents

Acknowledgment iii

Abstract vi

Contents x

1 Introduction 1
1.1 Representation . 5
1.2 Solution . 7
1.3 Experimentation . 8
1.4 Outline . 10

2 Related Work 11
2.1 Single-Objective Multi-Agent Planning 12

2.1.1 Centralized Planning for Distributed Plans 12
2.1.2 Distributed Planning for Centralized Plans 17
2.1.3 Distributed Planning for Distributed Plans 18
2.1.4 Distributed Planning and Execution 20

2.2 Multi-Objective Single-Agent Planning 23
2.2.1 Multi-Objective Optimization 24
2.2.2 Multi-Objective Heuristic Search 26

2.3 Multi-Objective Multi-Agent Planning 27
2.3.1 Game Theory . 28

2.4 Analysis of Related Work . 39

I Representation 43

3 Multi-Agent Planning Games 45
3.1 Reasoning about Actions with Uncertain Duration 48

vii

3.1.1 The Action Language E0 48
3.1.2 Example: The Slotted Blocks World 51
3.1.3 Timing . 55
3.1.4 Utility of Plans . 59
3.1.5 Timed Single Objective Single Agent Planning 62

3.2 Distributed Knowledge and Asynchronous Execution 63
3.3 Information Share and Synchronization 68
3.4 Interaction Among Actions . 72
3.5 Semantics of MAPGs . 80

3.5.1 Example . 84
3.6 Game Model . 85

3.6.1 Multi-Agent Plans . 86
3.6.2 Game Representation . 89

3.7 Outcome Uncertainty and Perception 90
3.7.1 Multi-Agent Plan Evaluation 94

4 Petri Net Plans 97
4.1 Petri Nets . 99
4.2 Syntax . 100

4.2.1 Example: A simple Robocup 4Legged Striker 107
4.3 Semantics . 107

4.3.1 PNP Execution Algorithm 109
4.4 Multi-Agent Plans . 111

4.4.1 Action Synchronization 113
4.4.2 Extracting Single Agent PNPs 116

4.5 Execution Model for MAPGs . 117
4.5.1 Multi-Agent Plans Without Communication 118
4.5.2 Multi-Agent Plans With Communication 119
4.5.3 Example . 120

4.6 Implemented Systems . 121

II Solution 125

5 Solution Concept 127
5.1 Pareto Optimal Games . 129
5.2 Restricted Correlated Equilibrium 131

6 Solving Methods 141
6.1 Algorithmics . 141

6.1.1 Generation of Conditional Plans 141

6.1.2 Optimal Game Solving . 146
6.2 Experimental Analysis . 149

III Experimentation 155

7 Reactive Exploration with Indirect Communication 157
7.1 Robotic Platform . 158
7.2 Navigation . 159
7.3 Local Exploration . 161
7.4 Simultaneous Localization And Mapping 162

7.4.1 RFID sensor model . 162
7.4.2 RFID SLAM . 163

7.5 Experiments . 164

8 Monitoring and Planning Exploration 169
8.1 Problem Modeling . 170
8.2 Global Task Assignment and Path Planning 173
8.3 Monitoring Agent . 175
8.4 Experiments . 176

9 Multi-Objective Robot Teams 179
9.1 Problem Representation . 181

9.1.1 Utility Functions . 183
9.1.2 Action Description KB 184

9.2 Experimental Analysis . 188

IV Conclusions 193

10 Discussion 195
10.1 Representation . 195
10.2 Solution . 200
10.3 Experimentation . 201

11 Future work 205
11.1 Representation and Solution Concept 205
11.2 Solution . 207
11.3 Experimentation . 207

V Appendix 209

A MAPG Syntax 211

B Slotted Blocks World MAPG 215

C Hanoi Tower MAPG 217

D Cleaning Robots MAPG 221

E USAR Robots MAPG 225

Bibliography 243

Chapter 1

Introduction

Artificial Intelligence research has developed, during the last fifty years, a large va-
riety of theories and tools, aimed at establishing rational behaviors for cognitive en-
tities, called agents. The problem has been addresses in various formulations, each
investigating different research directions. Nevertheless, there is no complete solu-
tion to the problem, and the current agent technology has not yet found a real killer-
application. Thus, it is natural to ask ourself: Which research direction should the
scientific community take in order to produce a technology with a perceivable im-
pact on applications? A big community of researchers (e.g. [IFAAMAS,]) believes
that systems composed by multiple agents can effectively overcome the limitations of
current technology. Teams of interacting agents can solve more efficiently complex
tasks due to their distributed nature. Moreover, a multi-agent description seems natu-
ral in all those systems which are inherently distributed. As an example, consider the
Internet which is currently accessed by a an extremely large user community. Despite
this, many multi-agent systems, and in particular the ones based on action planning,
are constrained to have their tasks described in a centralized, complete and consis-
tent way. These constraints are a serious limitation because, in general, users of such
systems are non-coordinated entities, each having possibly conflicting requests. User
requests may represent different views of a common problem to solve, or, in general,
different objectives. As such, objectives represent an incomplete description of the
goals (in the sense that they describe preferences over some features of the result),
which may induce a contradictory description of the goals to pursue.

Consider the case of a large community of users interacting with a system pro-
viding some sort of service. To devise a single, global, objective from all the users’
requests could require a considerable amount of time or, in the worst case, could be
impossible. In particular, this is true, when different expertise come together to solve
a complex problem. Each expert will judge the solutions based on his view (i.e. for-
mulation) of the problem, lacking of the global model (which may be unknown or

1

2 1. Introduction

too complex to solve) necessary to evaluate the tradeoffs between objectives. The
choice of how to manage such tradeoffs is, in the best case, based on experimental
evaluation and often lacks a formal basis. In this dissertation, we consider systems
whose goals are described by a set of total preference relations over the possible so-
lutions. This definition, on the one hand, generalizes the class of solvable problems;
on the other, it allows interaction with multiple users. The key idea, is that the goal
may be specified by a set of objectives, rather than a single one. In the remainder of
this introduction, and of this dissertation, we investigate the planning problem for a
team of agents pursuing possibly different objectives. The aim of this work is, thus,
to study action planning in two main research directions: the multi-agent and the
multi-objective one.

Multi-agent planning is a key area in AI. Multi-agent systems are, in general,
more efficient 1 than their single agent counterpart. The parallel execution of actions
allows agents to achieve goals faster, thus, more efficiently. Multi-agent planning
is not only about speeding up the execution (and generation) of plans. Cooperative
acting may allow the system to solve problems that would be unsolvable for a single
agent. Nevertheless, there are two main drawbacks in concurrent execution: local
incomplete knowledge and action interference. In the former case, distributed execu-
tion, local perception and costly communications, force the knowledge to be spread
across the system in a set of local views. For this reason the planning problem has
to explicitly consider communication. In the latter case, the concurrent execution of
actions may produce conflicts. In fact, each agent’s part of a multi-agent plan, while
perfectly effective if considered on its own, may fail when executed concurrently
with the other part of the plan because of interfering actions. How to resolve such
problem in a multi-agent system depends on the assumptions made on time. A com-
mon assumption is that actions are instantaneous and that agents act simultaneously.
This is actually the assumption commonly used in many domains (e.g. [Bernstein
et al., 2002]). In this case, we can consider the space of joint actions, and discard
conflicting elements. For problems where actions have (uncertain) duration, we must
consider synchronization primitives or some form of risk evaluation. In real world
applications, communication is non-instantaneous and has, in most cases, a cost. In
this scenarios, centralized execution of plans is costly and introduces a single point of
failure in the system. Decentralized execution, can thus be used to limit the commu-
nications necessary to control the asynchronous execution of system. Nevertheless,
execution models for asynchronous discrete-event systems, such as multi-agent plans,
are less intuitive than their single-agent counterpart. They must be formally modeled
and provably correct.

1Multi-agent systems are also characterized by many other notable properties which make them

appealing to the research community. General considerations on multi-agent systems are out of the

scope of this work. We suggest the interested reader to consult a survey on the topic [Sycara, 1998;

Veloso & Stone, 2002; Stone & Veloso, 2000]

3

Despite few exceptions (e.g. [McMillen & Veloso, 2007; Hansen, Bernstein, &
Zilberstein, 2004b; Refanidis & Vlahavas, 2003; Bryce, Cushing, & Kambhampati,
2007; Belfares & Guitouni, 2003; Mouaddib, Boussard, & Bouzid, 2007]), agent
and multi-agent planning have focused over the years on finding plans of action
which optimize a scalar value, such as execution time, or utility. Nevertheless, many
real-world problems involve optimizing over multiple quantities and need to trade-
off between many different noncommesurate objectives, whose optimization may be
conflicting [Das, 1997a]. For example, aircraft design requires the simultaneous op-
timization of fuel efficiency, payload, and weight. Multi-objective problems raise the
issue of choosing among solutions for which no, unique, total preference relation is
defined and, thus, for which it is not possible to write a global utility function which
orders all the solutions according to an optimality criterion. It is interesting to notice
that, if it is possible to write a global utility function measuring the tradeoffs between
the different objectives, the problem is not a multi-objective one. In fact, in this case,
the problem can be rephrased as a single objective one, where the objective is defined
by the global utility function. Multi-objective problem solving has been addressed
mainly in a general perspective, both as search and as optimization, depending on the
nature of the problem itself. Probably, the most challenging issue in multi-objective
problems, is the definition of a solution concept. Multi-objective problems have to
trade-off between noncommesurate quantities (i.e. different objectives). In general,
for such problems, the utility of a solution is defined as a vector of utilities, one for
each objective. For example, assume that we have two distinct objectives and three
different solutions with the following utilities: 〈1, 3〉, 〈3, 1〉 and 〈1, 1〉. In this case,
it is clear that the third solution is the worst (i.e. it has a lower utility than the others
for both objectives). Nevertheless we have no way to choose among the first two.
This reflects the fact that we can write a total preference relation (in this case in the
form of a utility function) w.r.t. a single objective, but we can just define a partial one
among complete solutions. It is commonly agreed (see Section 2.2) that a solution
for a multi-objective problem must be Pareto optimal. A solution o is Pareto optimal
if there is no other solution which is as good as o for all objectives, and strictly better
for at least one. In the previous example 〈1, 1〉 is not Pareto optimal because 〈1, 3〉 is,
as good as 〈1, 1〉 for the first objective, and strictly better for the second one. In this
example, the Pareto optimal solutions are 〈1, 3〉 and 〈3, 1〉. Pareto optimality exploits
the partial ordering induced on the solutions to rule out all those instances which
are clearly dominated in performance by another solution. The set of Pareto optimal
solutions, in general, is not a singleton. It is, thus, necessary to devise a method to
further guide our selection. Nevertheless, finding a refinement for Pareto optimality
is still an open problem [Stewart & White, 1991] and is commonly addressed by as-
suming a measurement between noncommesurate quantities (i.e. by forcing a total
ordering among the Pareto optimal solutions).

The aim of this dissertation is to provide a framework for developping

4 1. Introduction

multi-agent systems composed by teams of agents, concurrently pursuing
possibly different objectives under time constraints.

In particular, we are interested in coordinating teams of heterogeneous agents pursu-
ing multiple objectives through distributed execution of plans. We assume that each
agent is assigned (or designed) to pursue an objective, based on a utility function,
and that actions are uncertain both in their duration and outcome. In general, due
to time constraints or domain constraints, the team will not be able to accomplish
in an optimal way all the objectives, thus rising conflicts in the team. Given some
description of the problem to be solved, a finite set of capabilities of the agents and
time constraints, there will be a finite set of possible multi-agent plans which fullfill,
with some degree of optimality, each objective. Among these plans we want to find
one on which all agents agree, according to some concept of rationality, given that
they are a team. In this work, we consider agents forming a team if they are willing
to maximize the other agents’ objectives, unless it degrades their objective.

This dissertation provides three main contributions to the solution of the multi-
objective multi-agent planning problem, in three key areas which encompass the full
system development process: representation, solution and experimentation.

Example

Consider a set of agents, embedded into Personal Digital Assistants (PDAs) accessing
a common network, which have to organize a schedule for a team of users involved
in a set of common projects. Each agent represents a user, and has the objective to
organize the user’s schedule, according to his preferences and duties, for a period
of time. Unless the team has a hierarchical structure, where a leader decides and
other people adjust to his decisions, there is no clear preference relation between the
objectives. In this example, we assume that the team is composed by peers or that
users agree that no schedule has priority on others.

For example, the agents could be in charge of organizing the weekly schedule
for a research group. Each agent can plan different activities as: organize meetings,
communicate information, subscribe and participate to a meeting, move to a location,
schedule complex production plans or, more preferably, vacations. We assume that
each user will provide his preferences to the system. For example, some users may
prefer to organize meetings in their own office, rather than incurring in the cost of
having to move from an office to an other. Moreover, users may provide, based on
their expertise and opinion, priorities for meetings, or, in general, for the activities
which they assume are most important the for project.

A solution to this problem should have two desirable properties: 1) global op-
timality (e.g. Pareto optimality) and 2) rationality for the users. In particular, this
latter property, ensures that the solution is rationally agreeable (Chapter 5). Roughly,
a solution is agreed on, if no user can propose a variant on his own schedule, such

1.1. Representation 5

that the team schedule is still optimal, but produces an increase of his own utility.
Thus, agents are self-interested, in the sense that they want to maximize the utility of
their user, but having committed to a team, will agree only to optimal solutions. For
example, consider two users, a and b, who agree on having a meeting, but both want
to meet in their own office. They have thee options: meet at a, meet at b, do not meet
at all. The last option is not taken into consideration because, it is the worst case for
both and, thus, not Pareto optimal. The agents will have to agree on one of the first
two options, despite the fact that they have conflicting preferences.

Consider the case of a company which produces web portals, which has different
groups based on their expertise. Usually, customers provide such companies with
deadlines and requirements such as graphic design, efficiency, contents, response
time, and so on. Requirements can be considered as the objectives of the system.
Each expert defines his objective in terms of a utility function based on a set of prop-
erties. Moreover, he provides a list of members of the development team, along with
the possible set of activities each of them can perform in terms of their requirements,
effects and uncertainties. In particular, it is interesting to notice that the modelling of
actions (i.e. activities) as uncertain in the duration and outcomes, reflects the practical
need to model the uncertainty of the software development process. It is very hard to
predict in general how much time it will take to develop a project or what the degree
of satisfaction of the costumer will be. Nevertheless, the expertise of the team mem-
bers, or statistical information, can be used to estimate probability distributions over
the duration and outcome of single sub-activities. All this information can be used to
produce development plans, to be used by the management for estimating the costs
and benefits of the project and by the developers to define a work plan. Commonly,
development plans are represented as Gantt charts and PERT diagrams. PERT is basi-
cally a method to analyze the tasks involved in completing a given project, especially
the time needed to complete each task, and identifying the minimum time needed to
complete the total project. Gantt is a popular type of bar chart that illustrates a project
schedule. Gantt charts illustrate the start and finish dates of the terminal elements and
summary elements of a project. Terminal elements and summary elements comprise
the work breakdown structure of the project. Some Gantt charts also show the de-
pendency (i.e., precedence network) relationships between activities. These models
provide an execution model (see Chapter 4) to projects which allows us to monitor
and coordinate the activities of the team.

1.1 Representation

The first contribution of this dissertation is the definition of the syntax and the seman-
tics of two tools for the representation of knowledge and plans in multi-agent systems:
Multi-Agent Planning Games (MAPGs) and Petri Net Plans (PNPs). MAPGs are a
formal tool for representing distributed knowledge and utility, under the effect of mul-

6 1. Introduction

tiple actions, uncertain both in their outcome and duration, concurrently performed
by a team of agents. The core of MAPGs is GE0+, a multi-agent action language
based on a variant of the single-agent language E+ [Iocchi et al., 2007]. In particu-
lar, we extend E+ in order to deal with actions with uncertain duration. GE0+ is used
to describe the dynamics of a system of communicative agents, which act and acquire
information in a distributed way. We provide the semantics of MAPGs in terms of
a Finite State Automaton (FSA). The finite state automaton describes the evolution
of distributed information available to the agents composing the system though the
performance of asynchronous actions. Each state of the FSA describes a profile of
incomplete views of the world state at different points in time, taking into account
that agents act and acquire knowledge individually, and thus need to communicate,
in order to spread knowledge and safely interleave their actions.

Example Consider the state where John, in the morning, knows that he woke up at
07:00 a.m. and Alice, at noon, knows that she is hungry. Alice performs the action
go to lunch, leading to a new state where John, in the morning, knows that he woke
up at 07:00 a.m. and where Alice, at 2 p.m., knows she is not hungry. Notice that the
local knowledge of John did not change after Alice performed the action go to lunch.
After lunch, at 2:30 p.m., Alice decides to phone John for five minutes, leading to a
new state where both Alice and John, at 2:35 p.m., know that Alice is not hungry and
John woke up at 07:00 a.m..

We prove that the FSA deriving from a MAPG specification is a finite tree, which
allows for identifying plans as paths (or sub-trees) over the FSA. Plans represent the
dynamics of information under the effect of concurrent actions. The task of a plan-
ner is to chose among such plans one which can be identified within some solution
concept. The plans which are produced by the planner are not directly executable.
Multi-agent plans, in our formulation, are a description of the dynamics of informa-
tion, rather than a prescription of action execution.

To describe the execution of plans we provide a formal distributed execution
model. The idea is to produce from a provably correct centralized model, a set of
plans, one for each agent, whose distributed execution is equivalent to the one of the
original plan. Plan execution is modeled as an asynchronous discrete-event system
through Petri nets. In particular, the execution model of MAPGs is provided by map-
ping multi-agent plans to a Petri net based formalism, called Petri Net Plans [Ziparo
& Iocchi, 2006]. Petri Net Plans have a sound execution model, based on the dy-
namics of Petri nets, which has been implemented and experimented in many robotic
domains.

1.2. Solution 7

1.2 Solution

The second contribution of this dissertation is a solution concept and a provably
sound and complete solving algorithm. The solution concept is based on the idea
that agents which form a team are willing to maximize the performance of the team.
In multi-objective problems this requirement is formally defined as Pareto optimal-
ity. The major drawback of Pareto optimality is that, in general, it defines a space of
possible solutions. It is still an open problem to understand which solution should be
selected among this set. Most approaches in the literature (see Section 2.2) overcome
this limitation by defining some form of tradeoff between the objectives to evaluate
which Pareto optimal solution is the best. Nevertheless, these approaches are not
sound because they rely on measures between noncommensurate quantities. In this
dissertation, we provide a novel, and to our knowledge the first, refinement of Pareto
optimality which is based on the rationality of agents. In particular, we exploit the
fact that each agent is pursuing a single objective and thus embodies the objective
itself. In this case, the problem of selecting a Pareto optimal solution can be mod-
eled as a non-cooperative game. Indeed, moving from a Pareto optimal solution to
another one, leads, by definition, to a solution where some objectives are penalized
and others are improved. This situation is clearly competitive and can be modeled
through the concept of game. In particular, we define such game as the optimal game
of a MAPG.

Strategic situations involving cooperation and/or competition of rational agents
have been studied intensively by game theorists over the years. Many models (i.e.
games) and solutions (i.e. equilibria) have been proposed to best represent real-life
scenarios. Given that each agent is associated with an objective, the situation we are
modeling can be represented with a non-cooperative model, in particular, a game.
The dynamics of games, under the assumptions of rationality, lead to steady states
called equilibria, where every agent is behaving rationally. Equilibria are steady
states from which no agent can deviate unilaterally increasing his utility.

We define a solution for a MAPG as a multi-agent plan which is an equilibrium
of its optimal game. which models the choice of a Pareto optimal outcome. Optimal
games enforce Pareto optimality on solutions and provide a performance guarantee
by exploiting the preference relations defined on the objectives. Equilibria provide
an account to describe strategically consistent situations based on the rationality of
agents.

The game theoretic literature produced many different variants of equilibria, ex-
pressing different concepts of rationality. In this dissertation, we present a novel
refinement of Correlated Equilibrium, which is a expression of Bayesian rational-
ity [Aumann, 1987]. Some greater detail on Game Theory is provided by Section
2.3.1 and the motivation for the choice of Correlated Equilibrium as the basis for our
solution concept is given in Chapter 5.

The proposed solution concept is cooperative when cooperation is possible and

8 1. Introduction

non-cooperative when cooperation is not possible. In particular, agents cooperate in
the sense that they agree only on Pareto optimal solutions. Thus, they maximize the
performance of the team whenever the performance metric allows it. Nevertheless,
in multi-objective problems, the performance metric is a partial ordering among so-
lutions. Thus, once identified the set of Pareto optimal solutions there is no more
space for cooperation because there is no further way to assess the goodness of a
plan with respect to the team performance. Selecting the appropriate Pareto optimal
solution is a matter of deciding which agent will take the greatest advantage from it.
In this perspective, the problem is non-cooperative and the agents can be thought as
self-interested. Despite this, the optimality of the process is not in danger because the
non-cooperative model is used to search over the Pareto optimal set and, thus, can not
result in a non-Pareto optimal outcome. The non-cooperative model is based on nor-
mal form games and on a novel solution concept, which we call restricted correlated
equilibrium. The restricted correlated equilibrium provides the means of selecting
the appropriate Pareto optimal solution based on the (Bayesian) rationality of agents.
We can prove that such solution always exists for the class of games we present in
this dissertation, called optimal games. Moreover, restricted correlated equilibrium
is considerably more efficient to compute than correlated equilibrium, under some
reasonable assumptions on the domain.

From a computational perspective, the problem can be considered as composed
of two parts (see Chapter 6). A first one enumerating all possible Pareto optimal
plans and a second one solving the game built on them. The proposed refinement of
the correlated equilibrium can be solved in polynomial time through a linear program
which has a variable for each Pareto optimal solution. Thus, the proposed refinement
of Pareto optimality does not produce computational overhead to the classical multi-
objective search if the number of optimal plans is “small”. The source of complexity
is, thus, in the number of possible Pareto optimal solutions, which may be exponential
with respect to the problem description. We address this issue, which is the problem
of the input size of the linear program, assuming that the Pareto optimal plans are
exponentially less than all possible plans and we verify it through some experimental
evaluation. This assumption is realistic in many planning domains, and in particular
for those considered in this dissertation.

1.3 Experimentation

Finally, the third contribution of this dissertation, is a case study on Urban Search
and Rescue (USAR). In the Urban Search and Rescue problem, a team of robots is
deployed in a post-disaster scenario, as a partially collapsed building after an earth-
quake. These systems are designed to produce a complete high quality map of the
environment annotated with victim locations and their state. Such map can then be
used by first responders to safely and rapidly rescue victims. The problem is usu-

1.3. Experimentation 9

ally described by three main objectives: exploration, victim detection and mapping.
The exploration objective requires to maximize the coverage of the area, while the
mapping objective to reconstruct the structure of the features of the area. Finally, the
victim detection objective is the task of reporting victims and their status.

Most of the times, it is impossible to solve optimally the problem because of
the limited battery time of robots, which forces the team to trade-off between the
objectives. Moreover, it is very hard to define a global utility function for measuring
such trade-offs. For example, exploration may increase the efficiency of the first
responders saving victims’ lives, while an accurate mapping, highlighting dangerous
areas, would spare first responders’ lives.

The implemented multi-robot system is strongly based on automated environ-
ment engineering [Ziparo et al., 2007a]. Robots release devices in the environment
which can be automatically identified and localized with respect to the robot. These
unique features in the environment allow for exact end efficient data association, and
thus greatly simplify the SLAM problem and the abstraction step for the planner. In
particular, the features and the reachability information from the travelling of robots,
allow us to build a topological representation of the environment. The topological
representation is a graph where nodes represent the released devices (i.e. features)
and, edges, known traversable paths between devices. We will show three multi-robot
systems to solve three different formulations of the problem, incrementally obtained
by dropping restrictive assumptions.

The first formulation assumes that search and rescue can be done just through
exploration and that the environment is either free or not too structured. The problem
is solved with a distributed gradient descent technique. The approach, and the multi-
robot architecture, have been tested against some of the state of the art approaches,
during the Search and Rescue League at the international RoboCup competition. In
particular, our approach won the Virtual Robot Competition 2006 [Balakirsky et al.,
2007].

The second formulation, removes the constraints on the structure of the environ-
ment. In this case, the first approach may get temporarily blocked into local minima,
substantially reducing the performance of the system. This is mainly caused by the
lack of lookahead. The second system [Ziparo et al., 2007b] solves the problem
introducing a monitoring agent, which through multi-agent (path) planning restarts
when necessary the local search, in new and more convenient locations.

Finally, the third formulation, removes the assumption that USAR can be solved
just through exploration. In particular, we assume that the problem is described
through three objectives: exploration, mapping and victim identification. The ob-
jectives are assigned to robots through task assignment techniques and multi-agent
planning is used to devise plans which fullfill the USAR task. The problem is a
multi-objective one and can not be solved with a single-objective planner. Indeed,
we represent the problem as a Multi-Agent Planning Game (MAPG).

This three step experimentation protocol aims at carefully evaluating the compo-

10 1. Introduction

nents of the robotic system, in order to demonstrate the feasibility of the approach
presented in this dissertation. Moreover, the protocol reflects the chronological path
we followed while trying to solve the USAR problem, highlighting the motivations
for a multi-objective planning approach. In particular, the first system is used to vali-
date basic components such as navigation, SLAM, exploration behaviors and reactive
coordination. The second system studies the feasibility of multi-robot (path-)plan-
ning and analyzes its advantages with respect to the reactive approach. Finally, the
third system implements the complete approach, as presented in this dissertation,
showing the advantages of a multi-objective formulation with respect to the previous
ones. Each system builds on top of the previous and, thus, the presentation shows
how to incrementally build the complete multi-robot multi-objective system.

1.4 Outline

The remainder of this dissertation is structured as follows. The next chapter presents
some related work (Chapter 2). There are currently two main areas of research which
are in the scope of our work: multi-agent planning and multi-objective problem solv-
ing. We first look at the two problems independently, then focus on their intersection.
Up to now, there is very little work on multi-objective multi-agent planning. Nev-
ertheless, there is a considerable amount of work in Game Theory, which is a set of
mathematical tools aimed at explaining the behavior of rational agents, rather than
generating it. The presentation is then split into three main parts which correspond to
the three main contributions of this work:

• Part I presents the formalisms for the representation of distributed knowledge
through MAPGs (Chapter 3) and for the representation of execution control
through PNPs (Chapter 4).

• Part II addresses the solution of MAPGs in two parts. First, we present a novel
refinement of Pareto optimality (Chapter 5) which provides a solution concept
for MAPGs. Second, we provide a sound and complete algorithm for solving
MAPGs (Chapter 6).

• Part III presents the USAR case study based on three different approaches of
increasing complexity. The first approach is based on distributed gradient de-
scend (Chapter 7), the second, on multi-robot path planning (Chapter 8) and,
the third, on MAPGs (Chapter 9).

We, then, conclude with a discussion (Chapter 10) and an outline of future work
(Chapter 11).

Chapter 2

Related Work

In order to put our work in a proper perspective with respect to the scientific litera-
ture, we present in this section some related work on action planning based on two
features: number of agents and objectives. Figure 2.1, summarizes the related work
showing the different research areas involved when these features vary. In particular,
when the definition of the planning problem involves a single agent pursuing a single
objective, we call the problem SOSA-Planning (e.g. [Fikes & Nilsson, 1971]). This
problem has been deeply studied [ICAPS,] and, given its foundational value to our
work, we do not not further discus it here. Despite this, the problem becomes inter-
esting for our purposes when the number of either objectives or agents increases. To
this end we consider, at first, the case of multiple agents pursuing a single objective
(SOMA-Planning), often called multi-agent planning. The problem is double faced
and has to address both the issues of representing and reasoning about distributed
knowledge and of concurrent execution of distributed plans. We, then, consider the
case of a single agent pursuing multiple objectives (MOSA-Planning). In this case,
the major issues are to define an appropriate solution concept for the problem and
devise appropriate algorithmic solutions for solving it. Finally, we consider the case
where there are multiple agents pursuing multiple goals (MOMA-Planning). There is

Single-Objective Multi-Objective

Single-Agent SOSA-Planning MOSA-Planning

Multi-Agent SOMA-Planning MOMA-Planning

Figure 2.1: Summary Of Related Work

11

12 2. Related Work

little work explicitly addressing the general case of multi-objective multi-agent plan-
ning. Nevertheless, there exists, since many years, a set of mathematical tools aimed
to describe, rather than generate, models of interaction for self-interested rational
agents, each pursuing a possibly different objective. Such tools are grouped under
the umbrella of Game Theory.

2.1 Single-Objective Multi-Agent Planning

SOMA-Planning can be seen as a distributed problem-solving technique, where the
problem to solve is a planning problem. We often find this problem in the literature
under the names of multi-agent planning or distributed planning, to characterize the
distributed nature of the problem. There are different approaches to distributed plan-
ning. We can roughly distinguish between whether distributed refers to the planning
process, or to the plan type. In the former case, the agents involved in the planning
process cooperate to produce a global plan of action, while in the latter, a centrally
produced plan is decomposed and distributed among them. Finally, a third case can
be identified where both the planning process and the plan are distributed. In this
case, each agent reasons about its local plan, taking into account interactions with the
other agents. Although a global plan is not stored in any part of the system, the local
plans, when executed, are globally coherent. In the following, we report a taxonomy
based on [Durfee, 2000].

2.1.1 Centralized Planning for Distributed Plans

From a classical planning viewpoint, the most straightforward way to produce mul-
tiagent plans is in a centralized fashion. In fact, given a partial order planner, it
is possible to build a plan without a strict ordering between actions and thus have
some degree of parallelism (see Chapter 4). In general, it may not be trivial to ex-
tend single-agent planning techniques to the multi-agent case if the information in
the system is acquired by each agent independently. In fact, in a distributed system,
an agent may know neither what another agent perceived nor the exact timing of its
actions (see Chapter 3).

A description of distributed knowledge has to represent what each agent knows.
To this end, several logic theories, called epistemic logics, have been introduced. The
predominant approach has been to use modal logics [Wooldridge, 2002] and, in par-
ticular, normal modal logics with Kripke semantics [Kripke, 1963]. The model of
epistemic logics has been also characterized [Hintikka, 1962] in terms of the seman-
tics of possible worlds. The main idea is that the incomplete knowledge of an agent
can represent a set of possible world states consistent with the knowledge.

Normal modal logics are ordinary, and possibly propositional, logics extended by
the addition of the operators 2 (necessarily) and ♦ (possibly). Given a proposition

2.1. Single-Objective Multi-Agent Planning 13

p, 2p represents the fact that, in each possible world corresponding to an agent’s
knowledge, p holds. Moreover, ♦p represents the fact that there exists a possible
world where p holds.

Based on normal modal logics, we can build a correspondence theory which maps
the structure of possible worlds to a set of axioms which define systems of logics. A
system of logics can be thought as a set of formula vaild in some class of models.
The notation KΣ1 . . .Σn is often used to denote the smallest normal modal logic
containing the axioms Σ1 . . .Σn In particular, each system must include Kripke’s
axiom, called K, which states:

2(φ =⇒ ψ) =⇒ (2φ =⇒ 2ψ)

There are four axioms, encoding the reflexive, serial, transitive and Euclidian
properties, which are currently considered the most relevant to describe the epistemic
characterization of knowledge. When combined, they result in 16 systems of logics,
some of which have been proved to be equivalent. Thus, there are 11 distinct systems
which are able to express different properties of distributed knowledge.

To use this logic as epistemic logic 2φ is read as “it is known that φ”. To deal with
multi-agent knowledge, we can replace the single modal operator “2” by an indexed
set of unary modal operators {Ki}, where i ∈ [1, . . . , n]. The formula Kiφ is read
“i knows that φ”. [Fagin et al., 1995] proposed a grounding of epistemic alternatives
for modeling distributed systems. A system contains an environment wich may be
in any of a set E of environment states, and a set of n processes {1, . . . , n}, each of
which may be in any of a set L of “local states”. At any time a system may be in any
of a set G of global states: E × L × . . . × L. A run in a system is a function which
assigns a global state to each time point, where time is considered discrete.

Based on this characterization we can develop a language for reasoning about
such systems, using epistemic logics to reason about what each process in the system
knows. These languages can be used to produce multi-agent plans where a third
authority, the planner, considers what each agent knows during execution and what
is the necessary information he needs for performing actions and, in general, for
executing his tasks.

Once we know how to represent knowledge, we must devise a method to pro-
duce safe multi-agent plans and assign them to agents [Weiß, 1999]. Multi-agent
plans can be decomposed into single-agent subplans (see Chapter 4). If the number
of agents is not given in advance, this is an optimization problem, where ordering be-
tween actions is maximized in subplans, and minimized across them [Lansky, 1990].
Furthermore, if after the decomposition there are still ordering constraints between
actions in different subplans, synchronization must be added to ensure correctness.
The local plans can then be assigned to agents, using some task assignment technique
such as, for example, Token Passing [Farinelli et al., 2005], Market Based [Dias
& Stentz, 2002; Zlot et al., 2002], Reactive Task Assignment [Iocchi et al., 2003;

14 2. Related Work

Werger & Mataric, 2000], Iterative Task Assignment [Parker, 1998] or Sequential
Task Assignment [Gerkey & Matarić, 2000; Dias & Stentz, 2001; Chaimowicz, Cam-
pos, & Kumar, 2002]. If the task assignment fails, the process returns to one of the
previous steps and tries to find a different plan decomposition or, if necessary, to re-
plan. Here, plan decomposition is a critical task. Since the availability of agents is
hard to devise without first having produced the subplans, it is not guaranteed that,
given the bias to produce the most distributed plan, it will be possible to allocate the
produced subplans in the current context. Moreover, communication issues will have
a big impact on the quality of the solution. In particular, the method will have to take
somehow into account the communication costs and reliability. Furthermore, when
communication channels are slow and unpredictable, it may be convenient to produce
more centralized plans. This means that fewer agents would perform larger tasks. On
the other hand, in tightly coupled systems (or even shared memory) the system may
be biased toward more distributed plans.

Decentralized-Partially Observable Markov Decision Process (Dec-POMDP)

There is a whole line of research which addresses the problem of Multi-Agent plan-
ning modelling explicitly the domain as partially observable and stochastic. This
formalization well relates to real scenarios, as multi robot systems control, where,
due to noisy and limited sensors, the state can not be fully observed. Furthermore,
actions can have uncertain outcomes because of unmodelled characteristics of the
environment and of the actuators. We will focus on Dec-POMDPs [Bernstein et
al., 2002] which generalize previous work for single agents in such domains (i.e
POMDPs [Kaelbling, Littman, & Cassandra, 1998]). In particular we rely on [Gold-
man & Zilberstein, 2004] which tackles the issue of distributed planning for a dis-
tributed plan for the Dec-POMDP model, while taking into account the execution
constraints at the planning level (somehow in a similar way to contingency planning
in Section 2.1.4).

We now present a stochastic process that is cooperatively controlled by a group of
decision-makers who lack a central view of the global state [Goldman & Zilberstein,
2004]. Nevertheless, these agents share a set of objectives and all of them are inter-
ested in maximizing the utility of the system. The process is decentralized because
none of the agents can control the whole process and none of the agents has a full
view of the global state. The formal framework in which we study such decentralized
processes, called Dec-POMDPs, is presented below. For simplicity of exposition, the
formal model is presented for two agents, although it can be extended to any number.

M = 〈S,A1, A2, P,R,Ω1,Ω2, O, T 〉

where:

• S is a finite set of world states with a distinguished initial state s0.

2.1. Single-Objective Multi-Agent Planning 15

• A1 and A2 are finite sets of control actions. ai denotes an action performed by
agent i.

• P is the transition probability function. P (s′|s, a1, a2) is the probability of
moving to state s′ from s when actions a1 and a2 are performed.

• R is the global reward function. R(s, a1, a2, s
′) represents the reward obtained

by the system as a whole, when moving to state s′ by taking the actions a1 ad
a2 in state s.

• Ω1 and Ω2 are finite sets of observations respectively for each agent.

• O is the observation function. O(o1, o2|s, a1, a2, s
′) is the probability of ob-

serving o1 ∈ Ω1 and o2 ∈ Ω2 when moving to state s′ by taking the actions a1

ad a2 in state s.

• If a Dec-POMDP has a finite horizon, it is represented by a positive integer T .

Given the Dec-POMDP model, a local policy of action for a single agent is given by
a mapping from sequences of observations to actions. A joint policy is a tuple com-
posed of these local policies, one for each agent. To solve a decentralized POMDP
problem one must find the optimal joint policy which is, the one withmaximum value
(for example given by the maximum expected accumulated global reward). It has
been shown [Bernstein et al., 2002] that solving a Dec-POMDP is a NEXP-complete
problem. Nevertheless there exist special sub-classes of this problem which can be
solved more easily. In particular we assume that we can factor the global state S as
S1 × S2 where S1 is the local state of the first agent and S2 is the local state of the
second agent. We refer to Si as the partial view of agent i.

We can now present some important characteristics of Dec-POMDPs which will
be necessary to identify some particular subclasses (for the formal definitions refer
to [Goldman & Zilberstein, 2004]):

1. Dec-POMDP with Independent Transitions (IT-Dec-POMDPs): An agent’s
actions are independent. In particular we can write P = P1 × P2 where
P1 = Pr(s′1|s1, a1) and P2 = Pr(s′2|s2, a2).

2. Dec-POMDP with Independent Observations (IO-Dec-POMDPs): The obser-
vations of each agent are independent. That is, each agent’s own observations
are independent of the other agents’ actions.

3. Fully-Observable Dec-POMDP: There is a mapping from each agents own
observations to the current global state.

4. Jointly Fully-Observable Dec-POMDP (Dec-MDPs): There is a mapping from
the observations of both agents to the current state. If the Dec-MDP has inde-
pendent observations and transitions, then it is locally fully observable. In this

16 2. Related Work

Process Class Complexity Class

Dec-POMDP NEXP-complete

Dec-MDP and Dec-POMDP NEXP-complete

with indirect communication

GO-Dec-MDP NEXP-complete

GO-Dec-POMDP NEXP-complete

IT-IO-Dec-POMDP NP-complete

GO-IT-IO-Dec-POMDP

with single global goal state P-complete

and uniform action cost

Table 2.1: Complexity Results

case, it can be shown that the optimal local policy is a mapping from agent i’s
current partial view oi (instead of a sequence of observations) to actions.

5. Locally Fully-Observable Dec-POMDP: There is a mapping from each agent’s
observation to his partial view of the state.

6. Goal Oriented Dec-POMDPs (GO-Dec-POMDPs): Where agents aim to reach
specific global goal states. This class is characterized by having a global re-
ward that is the sum of the (negative) costs of actions taken by agents and an
additional reward that is awarded to the system for reaching a global goal state.

Furthermore, we can characterize communication by being direct or indirect. In
the former case, information can be shared through direct messages. In the latter
case, an agent can communicate through actions. In fact, the actions can change the
observations of another agent that can gather information from this. It may be noticed
that in this way the generalized control problem already includes the problem of what
to communicate and when. Table 2.1 summarizes some complexity results for Dec-
POMDPs sub-classes (For a complexity analysis and results of Dec-POMDPs with
direct communication refer to [Goldman & Zilberstein, 2004]).

In the last few years, two algorithms for solving optimally decentralized control
problems without information sharing where developed: the generalized version of
dynamic programming for Dec-POMDPs [Hansen, Bernstein, & Zilberstein, 2004a]
and the Coverage-set algorithm [Becker et al., 2003] for Dec-MDPs with indepen-
dent transitions and observations. The first algorithm solves optimally a general Dec-
POMDP. Its practicality is restricted by the complexity of these problems (NEXP-
complete). The Coverage-set algorithm assumes that the agents’ actions could result

2.1. Single-Objective Multi-Agent Planning 17

in super-additive or sub-additive joint rewards as follows. In the first case, the re-
ward obtained by the system from agents doing certain actions is larger than the
sum of each agent’s local reward for those actions. In the second case, sub-additive
joint rewards will be attained when the agents are penalized for doing redundant
actions. Furthermore, there exists two more algorithms for solving Dec-POMDPs
without information sharing for goal oriented domains. One addresses IT-IO-GO-
Dec-POMDPS with single state goal and actions with uniform cost. The other ex-
tends the previous class accepting multiple goals under the constraint that there is no
benefit to change local goals. These algorithms have a distributed planning for dis-
tributed plans (Section 2.1.3) approach. A group of agents plan off-line assuming no
cost for communication in order to produce a set of local policies which when exe-
cuted result in a global optimal policy. In the single goal problem, the optimal policy
is computed solving single agent MDPs aimed at the corresponding components of
the given global goal state. In the other case, each agent solves iteratively its induced
MDP towards each one of the possible components of each one of the global goal
states. Finally, the optimal joint policies the one with the highest value. It can be no-
ticed that these algorithms exploit the characteristic, of some particular subclasses of
Dec-POMDPs. In particular, they rely on the possibility of decomposing the problem
in different single agent MDP problems.

2.1.2 Distributed Planning for Centralized Plans

In order to take advantage of the computational resources available in a multi-agent
planning system, all the agents should cooperate to produce a plan. This is particu-
larly useful when there is a global plan to be produced which is complex and requires
several planning specialists. For example, this is often the case of problems to be
solved for manufacturing and logistics domains. The overall problem-formulation
task may be thought of as being decomposed and shared among various planning
specialists, each of which will produce their portion of the plan. In particular, for
some problems, partially specified plans may be exchanged by heterogeneous plan-
ners to produce a complete plan. For example, in [Kambhampati et al., 1991] a
general purpose planner has been coupled with specialist planners for geometric rea-
soning and fixturing in a manufacturing domain. The geometric specialist generates
an abstract plan as an ordering of the geometric features to put into the product to
be machined. The general purpose planner then uses this set of constraints to plan
machining operations. Finally, the fixture specialist verifies that the part can be held
for each operation since its shape becomes increasingly irregular every time it is ma-
chined. If any of these planners fail, the system backtracks and new choices are made.
Similar techniques have been used for unmanned vehicles planning [Durfee, Lesser,
& Corkill, 1990] and logistics planning [Wilkins & Myers, 1995].

The approach of passing on (or maybe back if at a dead end) a single plan, which
is then refined by each planner, while taking advantage of the different expertise in

18 2. Related Work

the system, lacks of parallelism and, thus, of efficiency. A more asynchronous and
parallel computation may be obtained by result sharing. This means that each planner
computes in parallel a partial plan and then shares and merges the solutions in a nego-
tiated search mode in order to obtain a complete plan. For example, in the domain of
communication networks, localized agents can tentatively allocate network connec-
tions to particular circuits and share these tentative allocations with neighbors [Conry
et al., 1991]. When inconsistent allocations are noticed, some agents try other alloca-
tions, and the process continues until a consistent set of allocations has been found.
In this example, result-sharing amounts to a distributed constraint satisfaction search,
with the usual concerns of completeness and termination.

2.1.3 Distributed Planning for Distributed Plans

Probably, the most challenging version of distributed planning is when both the plan-
ning process and the plans are distributed. In this case, the global plan is not repre-
sented in any part of the system in its entirety, but is the result of the execution of
the local plans of the agents. Each agent reasons on its own local goal, which may
possibly be the same for each agent, taking into account that other agents interact in
the system. Local goals are a consistent, and possibly an implicit, decomposition of
a global goal and are not conflicting with each other. The overall behavior has to be
coherent in the sense that the actions of each single agent do not conflict with each
other and possibly help other agents to achieve their goals when it is rational to do
so.

Plan Merging

Assume that each agent has been assigned a goal, either through a task assignment
technique or because of the inherent distributivity of the activity. Each agent will then
generate a plan to achieve his goal. The necessary condition for this set of plans to
be coherent is to avoid conflicting actions when executing the plan. In a centralized
coordination approach, there will be an agent which collects these individual plans.
It then has to analyze the plans to discover which sequences of actions might lead to
conflicts, and to modify the plans to remove these conflicts. In general, the former
problem amounts to a reachability analysis: given a set of possible initial states, and
a set of action sequences that can be executed asynchronously, enumerate all possible
states of the world that can be reached. Then, given the set of possible world states,
find the subset to avoid and insert constraints on the sequences of actions to eliminate
them [Durfee, 2000].

In general, enumerating the reachable state space may be intractable. Let us
consider a technique (see [Durfee, 2000]), adapted from the approach presented
in [Georgeff, 1988], which takes into account limited effects between actions to
reduce the search. Actions are represented similarly to STRIPS operators [Fikes

2.1. Single-Objective Multi-Agent Planning 19

& Nilsson, 1971] with, preconditions which must hold in order for actions to take
place, during conditions which must be ensured during execution and effects which
will hold after execution. Two actions are said to commute if their preconditions,
effects and during conditions may be all satisfied at the same time. Two actions that
commute can be safely executed in parallel. These actions can be dropped from con-
sideration when looking for conflicts. Even though actions do not commute, there
is still a chance that they can be safely executed in a stricter order. If, given two
non-commuting actions a and b, the preconditions of b can be satisfied in conjunc-
tion with the effects of a, a has to precede b. If neither can precede the other, the
actions conflict. The collector agent thus will have to analyze all the single agent
plans, excluding the commuting actions, in order to identify conflicting situations,
and resolve them through synchronization actions. This amounts to supending some
agents activity during regions of their plan where they may conflict with other agents’
actions. There are a host of approaches, which deal with the problem of what to do
when there is not a feasible schedule for all the single agents plans [Ephrati, Pol-
lack, & Rosenschein, 1995] or with maximization of expected performance [Liu &
Sycara, 1996]. Moreover, complex representations of reactive plans and complex
techniques for coordinating them based on model checking and Petri nets have also
been explored [Kabanza, 1995; Seghrouchni & Haddad, 1996].

Iterative Plan Formation

Plan merging may be very powerful in loosely coupled domains. Unfortunately, it is
often the case that local decisions are dependent on the decisions of others. In this
case, it may not be possible to merge local plans. Plans should be produced with
an eye to coordination issues. In particular, it may be the case that agents should
search in a bigger plan space. For example, in the plan combination search [Ephrati
& Rosenschein, 1994] each agent looks for different ways to achieve its local goal.
All local plans are stored in plan libraries which are used to narrow the search space
for searching a global plan of action. In particular, each agent, based on his local-
plans library, proposes, for every plan step, the set of propositions that it may change
with a single action. This may also include inaction, which, given the assumption of
constant and certain duration of actions, results in synchronization constraints of the
global plan. All the proposals will be considered in order to produce successor states
which are evaluated base on a heuristic. The heuristic consists in summing the local
estimates of the states achievable with the proposed world changes. Every time an
agent selects an action, it narrows down the future choices of action by discarding
local plans which are inconsistent with the selected action.

Alternatively, we may exploit the hierarchical structure of the plan space to per-
form distributed hierarchical planning. The main advantage of this approach is that
conflicts may be detected at more abstract levels, pruning away big portions of the
more detailed search space. For example, an agent may look for conjunctive goals

20 2. Related Work

and decompose them in a set of sub-goals. At this point, it can distribute the subgoals
to other agents with a copy of a plan network which models the relations among the
agents’ goals and plans. This will lead to a plan network with a concurrent planning
node for very agent in charge of a sub-goal. The process can be iterated through
progressive refinements of the goals. During its refinement phase, each agent will
communicate the changes it is willing to make to the world state so that the other
agents can separately detect conflicts and possibly solve them. This process can con-
tinue until a synchronized set of detailed plans is constructed.

A variation to this method is the hierarchical behavior-space search [Durfee &
Montgomery, 1991]. In this approach every agent plans at multiple abstraction levels,
each which can suffice to resolve all conflicts. The algorithm initializes the current
level to the most abstract one. Agents exchange descriptions of the goals and the
plans at the current level. All the non-conflicting plans are removed. If the remaining
set is empty the process is finished, otherwise, a decision has to be made on whether
or not to resolve the conflicts at the current level. This phase is the most critical one,
because, if on one hand, resolving a conflict at a very abstract level may be fast and
use very little communication, on the other, it may produce very inefficient plans. If
it is chosen to move to a deeper level, the process for detecting conflicts is restarted
at the new current level. In the other case, given a total ordering of agents, the top
agent (current superior) sends to the other agents its plan. The other agents will then
exchange and modify their plans in order to work correctly with the current superior
and the previous superior. At this point, the current superior becomes the previous su-
perior. Furthermore, the next agent in the ordering becomes the current superior. The
process continues until the last agent in the ordering becomes the current superior.

2.1.4 Distributed Planning and Execution

The product of distributed planning has to be executed. The relationships between
planning, coordination and execution have to be addressed when dealing with sys-
tems which may fail or may need to dynamically adapt their behavior to contingen-
cies during execution. The following taxonomy is reported from [Durfee, 2000]. We
first focus on approaches that address the issues of coordination that may arise dur-
ing execution after the planning process (Post-Planning Coordination). On the other
hand, constraints can be imposed to the system before planning, so that undesired
world state are avoided during planning and execution (Pre-Planning Coordination).
Finally, we show how planning, coordination and execution can be interleaved in a
flexible way by means of Partial Global Planning.

Post-Planning Coordination

The sequentialized process of planning, coordinating and executing multiagent plans
assumes that it is likely that plans succeed. If during execution one of these plans

2.1. Single-Objective Multi-Agent Planning 21

fails, the whole system is in danger of failure. There are several approaches which
address this issue. One first solution is contingency planning [Levesque, 1996; Ioc-
chi, Nardi, & Rosati, 2003; Iocchi et al., 2004b; Iocchi et al., 2004a; Iocchi, Nardi,
& Rosati, 2004b; Iocchi, Nardi, & Rosati, 2004a]. In this case, plans have differ-
ent branches that respond to possible contingencies that may arise during execution.
These larger plans, with their conditional branches, may then be merged and coor-
dinated. Obviously, this is a harder problem than normal plan merging because it
involves merging different possible threads of execution from different plans. By the
way, some of these combinations of contingencies can be pruned because inconsis-
tent. A second way of dealing with dynamics is through monitoring and replanning.
Each agent monitors its progress and, if recognizes a failure, stops all the other agents
and the plan-coordinate-execute cycle starts over. If this happens very often, a big
effort may be required for the planning and coordination, resulting in a poor perfor-
mance of the overall system. Repairing existing plans or using a library of reusable
plans [Sugawara, 1995] may sometime help. Significant overhead can be saved if
deviations are handled locally rather than having to require coordination. If the co-
ordination level is suitably abstract, agents can locally replan details while trying to
maintain current coordination constraints [Kinny et al., 1994]. This approach well
suits with planning in a hierarchical behavior space and organizational structures.
When stressing this concept, thus moving coordination to the most abstract level,
post-planning reverses to pre-planning coordination.

Pre-Planning Coordination

When coordination restrictions are acceptable, agents can coordinate before they be-
gin planning. Based on this assumption, there are several approaches that address
distributed problem solving through organizational structures. Agents embedded in
an organizational structure can choose to work independently to any part of the prob-
lem as long at it fits within his responsabilities. There is a variation on this theme
which is captured in the work on social laws [Shoham & Tennenholtz, 1992]. A so-
cial law is a constraint on particular choices of actions in some contexts. For example,
in everyday life, when entering an intersection, we have to stop if there is a red light
and go through if it is green. This is an example of social laws which prevent the sys-
tem from entering in undesirable states (i.e. states where there could be an accident).
Obviously, there is a tradeoff between the coordination quality and constrictivity of
the laws. When trying to avoid undesirable world states, agents could be handcuffed
in achieving desirable ones. There are various techniques to relax overly constricting
laws [Goldman & Rosenschein, 1993d] without incurring into conflicts. Neverthe-
less, in some other cases avoiding conflicting states is not the key issue. Instead, it is
more interesting to induce agents to take actions, which may be not relevant for their
goals, but may help some other agents in achieving their goals. These behaviors may
be encoded into cooperative state-changing rules [Briggs & Cook, 1995] that require

22 2. Related Work

agents to take such cooperative actions, behalf of their personal interests, as long as
they are not detrimental beyond some threshold.

Interleaved Planning, Coordination and Execution

We now present a third approach to distributed planning and execution which lies
between approaches that require detailed plans of interaction and general purpose
coordination policies that can apply to all planning situations. The key idea is that
the system should be flexible about at what level of abstraction coordination should
be done. The framework we analyze is called PGP [Durfee & Lesser, 1991] and is
characterized by the fact that planning, coordination and execution are interleaved.
The main assumption of this technique is that the goals of the system are inherently
decomposed so that each agent has its own task but is unaware of what the goals of
the other agents are. Thus, no agent will be aware of the global task, nor of the global
state of the system. In this case, the purpose of coordination is to allow the agents
to develop sufficient global awareness in order to accomplish their task. The agents
will first have to understand which goals they will pursue and, then, formulate local
plans in order to establish the means of achieving them. These plans are abstract,
in the sense that they will only specify the major plan steps that could be of interest
to other agents without committing to a detailed plan of action. Furthermore, agents
will need to know to who and what to communicate about their local abstract plans
in order to build models of the joint activity. This kind of information is contained in
the Meta Level Organization (MLO). MLOs specify who needs to know the plans of
a particular agent, and who has the authority to impose new plans to an agent based
on having a more global view. The exchange of local plans gives agents the oppor-
tunity to identify when the goals of other agents may be considered subgoals of a
global goal. Since agents are unaware of the global goal, this partial view is called
partial global goal. The construction of a partial global goal is an interpretation prob-
lem through a set of operators which can attempt to generate an overall interpretation
(global goal) that explains the component data (local goals). Since the interpretation
is ambiguous, it is possible that a local goal can be seen as contributing to competing
partial global goals. Local plans that seem to concur to a common partial global goal
can be integrated in a partial global plan which can improve coordination. In particu-
lar, in PGP, the bias is towards avoiding redundant task achievement and facilitating
task achievement of other agents by performing related tasks earlier. Furthermore,
communication can be planned by analyzing the partial global plans and identifying
who may be interested in which information. Once a partial global plan and the com-
munication plan for it have been built, these activities can be carried back to the local
level for refinement and execution. This is a dynamic process. The choice of action
is directed from the partial global plan which dynamically changes according to the
coordination issues. On the other hand, it may be the case that some local changes
affect the local plans. If these changes to the local plan don’t fit in the partially global

2.2. Multi-Objective Single-Agent Planning 23

plan, this has to be modified and the changes have to be communicated to the inter-
ested agents. Finally, an agent may be overburdened of activities. In this case, thanks
to the model of the activity that agents have established through the partial global
plans, candidate underburdened agents may be identified. At this point a negotiation
phase may take place in order to assign tasks in a more efficient way.

2.2 Multi-Objective Single-Agent Planning

MOSA-Planning addresses the issue of generating plans of action for a single agent
when pursuing multiple objectives. The problem in many applications (e.g. [Calisi et
al., 2007]) has been delegated to users which, through complex plan representation
languages, would devise appropriate plans representing an appropriate solution. This
kind of approach, although achieving acceptable results, lacks a formal basis and
relies on human planning capabilities. Formal approaches to planning require to
define a solution concept for the problem of satisfying multiple noncommensurate
objectives. In fact, for multi-objective problems, the main assumption is that there is
no function that can globally measure the tradeoffs between different objectives. This
may be because of the lack of modelling knowledge of the global problem, or because
the problem is inherently multi-objective. The commonly accepted solution for such
problems is Pareto optimality. This solution concept, although sound, is weak in the
sense that it provides a set of possible solutions among which a subsequent refinement
is required.

There are two main classes of approaches used to compute the Pareto optimal so-
lutions of a given problem: multi-objective optimization and multi-objective heuristic
search. There are a wide set of tools for solving such problems, but at the moment
not so many applications to action planning. Nevertheless, notable exceptions can
be found both for multi-objective optimization and multi-objective heuristic search.
On the one hand, multi objective optimization, coupled with the use of genetic al-
gorithms, has been applied to planning military courses of actions [Belfares & Gui-
touni, 2003]. On the other one hand, multi-objective heuristic search has been used
to develop MO-GRT [Refanidis & Vlahavas, 2003], a multi-objective extention of
the heuristic state-space planner GRT [Refanidis & Vlahavas, 2001]. Furthermore,
multi-objective heuristic search has also been applied to probabilistic planning. The
key idea is that probabilistic planning is an inherently multi-objective problem where
plans must trade-off probability of goal satisfaction with expected plan cost [Bryce,
Cushing, & Kambhampati, 2007].

In the remainder of this section, we review the general solving techniques for
multi-objective problems which are based on Pareto optimality. Many of these ap-
proaches, not only propose algorithms for finding the complete space of Pareto opti-
mal solution, but often try to develop a refinement to select a single solution. Nev-
ertheless, all the approaches we are aware of, to develop the refinement relax the

24 2. Related Work

constraint of noncommensurate objectives by assuming that there is a global utility
function. It is still an open problem to find an adequate refinement to the set of Pareto
optimal solutions for multi-objective problems, without relying on tradeoffs among
the objectives.

2.2.1 Multi-Objective Optimization

Multi-objective problems have been deeply studied by the optimization community
[H. Eschenauer & Osyczka, 1990; Das, 1997b]. Multi-objective optimization is
mostly used in design problems which require the simultaneous optimization of more
than one objective function. For example, in bridge construction, a good design is
characterized by low total mass and high stiffness. Multi-objective optimization has
its roots in late-nineteenth-century welfare economics, in the works of Edgeworth
and Pareto. The problem is formally modeled as finding a set of Pareto optimal
points with respect to a set of objective functions. Typically, there is an entire curve,
or surface, of Pareto points, whose shape indicates the nature of the tradeoff between
different objectives. Formally, the Multi-objective optimization problem can be for-
mulated as a minimization (or maximization) problem as follows:

min
x∈C

F (x) =



f1(x)

...
fn(x)




where n ≥ 2 and

C = {x : h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b}

denotes the feasible set constrained by equality and inequality constraints and ex-
plicit variable bounds. The space in which the objective vector belongs is called the
objective space and image of the feasible set under F is called the attained set.

As previously stated, the solution to the problem is a surface of points defining
a Pareto surface. The problem of which point of the Pareto surface to chose is com-
monly solved by forcing a preference relation among solutions. This solution is not
sound but offers a concrete method for engineers which can bias the solution based
on some intuition of which should be the desired outcome.

The solving techniques can be grouped into five categories [Das, 1997a]:

1. Maximizing Weighted Sums of Functions [Das & Dennis, 1996]: where the
utility is a linear combination of the objective functions. In this case it is easy
to prove that the solution is Pareto optimal. However, this method suffers from
two drawbacks. First, the relationship between the vector of weights and the
Pareto curve is such that a uniform spread of weight parameters rarely pro-
duces a uniform spread of points on the Pareto set. Often, all the points found

2.2. Multi-Objective Single-Agent Planning 25

are clustered in certain parts of the Pareto set with no point in the interesting
“middle part” of the set, thereby providing little insight into the shape of the
trade-off curve. The second drawback is that non-convex parts of the Pareto set
can not be obtained by minimizing convex combinations of the objectives (note
though that non-convex Pareto sets are seldom found in actual applications).

2. Homotopy Techniques [Rakowska, T., & Watson, 1991; Lin, 1975]: which aim
to trace the complete Pareto curve in the bi-objective case. The main problem
with this approach is that it can not be generalized to cases with more than two
objectives.

3. Goal Programming [Ignizio, 1976; Schniederjans, 2003]: which maximizes
one objective function while constraining the remaining objectives to be greater
than given thresholds. This method is especially useful if the user can afford to
solve just one optimization problem. However, it is not always easy to choose
appropriate “goals” for the constraints. Goal programming can not be used to
generate the Pareto set effectively, particularly if the number of objectives is
greater than two.

4. Normal-Boundary Intersection [Das & Dennis, 1998]: The normal-boundary
intersection (NBI) method uses a geometrically intuitive parameterization to
produce an even spread of points on the Pareto surface, giving an accurate
picture of the whole surface. Even for poorly scaled problems (for which the
relative scalings on the objectives are vastly different), the spread of Pareto
points remains uniform. Given any point generated by NBI, it is usually pos-
sible to find a set of weights such that this point minimizes a weighted sum of
objectives, as described above. Similarly, it is usually possible to define a goal
programming problem for which the NBI point is a solution. NBI can also han-
dle problems where the Pareto surface is discontinuous or non-smooth, unlike
homotopy techniques. Unfortunately, a point generated by NBI may not be a
Pareto point if the boundary of the attained set in the objective space containing
the Pareto points is nonconvex or ‘folded’.

5. Multilevel Programming [Vicente & Calamai, 1994]: The first step in mul-
tilevel programming involves ordering the objectives in terms of importance.
Next, the set of points for which the minimum value of the first objective func-
tion is attained must be found. Then, the points in this set that minimize the
second most important objective are found. The method proceeds recursively
until all objectives have been optimized on successively smaller sets. Mul-
tilevel programming is a useful approach if the hierarchical order among the
objectives is of prime importance and the user is not interested in the contin-
uous trade-off among the functions. However, problems lower down in the
hierarchy become very tightly constrained and often become numerically in-

26 2. Related Work

feasible, so that the less important objectives have no influence on the final
result. Hence, multilevel programming should surely be avoided by users who
desire a sensible compromise solution among the various objectives.

2.2.2 Multi-Objective Heuristic Search

In many cases of interest, as for the problem addressed in this work, the space of pos-
sible solutions is not a continuous but a discrete space, and has to be build incremen-
tally through the application of operators. These problems are formulated as graph
search problems where the goal is to find a set of preferred paths from a start node to
a set of goal nodes. The AI community has studied the problem from an algorithmic
perspective, in particular extending heuristic search methods asA∗ [Hart et al., 1968;
Peter, Nils, & Bertram, 1972] to the multi-objective case. The first notable result was
MOA∗ [Stewart & White, 1991], an extention ofA∗, able to find the set of Pareto op-
timal solutions through a heuristic guided search. MOA∗ inherits from A∗, not only
the beautiful properties which made this approach famous, but also its drawbacks. In
particular, MOA∗ suffers from exponential memory requirements which prevent its
application to real problems. Many different approaches have been devised to extend
MOA∗ and can be categorized based on the different research goals they pursue: 1)
improve the computational efficiency of the solving technique and 2) generalize the
class of solvable problems.

The first issue can be addressed following the intuition used to develop IDA∗
[Korf, 1985], a depth first variant of A∗, which has linear memory requirements.
Based this intuition, it was possible to develop a depth first variant of MOA∗, called
IDMOA∗ [Harikumar & Kumar, 1996]. In [Mandow & de-la Cruz, 2005], the au-
thors propose another extention of A∗ to the multi-objective case, which reduces the
space complexity by preserving path, rather than node, expansion and selection. In
this way, it is possible to rule out many unnecessary reexpansion of nodes. Recently,
an extention to frontier search was proposed [Mandow & de-la Cruz, 2007] for ad-
dressing the memory requirement of the known approaches, based on the assumptions
that: the algorithm was interested only in solution costs (ignoring the paths that lead
to the solution), the search graph is undirected and the heuristics are monotone. In this
case, the approach provides great benefits in memory saving. MOA∗∗ [Dasgupta,
Chakrabarti, & DeSakar, 1999], generalizes to the case of non-monotone heuristics
allowing to solve problems of considerable size such as VLSI design. A different
approach is to develop a search method for compromise solutions [Galand & Perny,
2006]. Instead of focusing on finding the whole set of Pareto optimal solutions they
focus on finding one such solutions which exhibits a ”well-balanced” compromise
between the conflicting solutions. Although the approach is very efficient, it heavily
relies on a measurement among noncommesurate quantities.

To solve the second issue, there has been a trend of research focused on general-
izing MOA∗ in order to solve a wider class of problems. In particular, the approach

2.3. Multi-Objective Multi-Agent Planning 27

presented in [Dasgupta, Chakrabarti, & DeSarkar, 1996] generalizes to the case of
AND/OR graphs, where most approaches solved problems which could be modeled
as OR-graphs. Furthermore, search in AND/OR graphs has been considered in the
case where loops in the search graph are presented by extending LAO∗ [Hansen
& Zilberstein, 2001] to the multi-objective case. The resulting approach is called
MOLAO∗ [Bryce, Cushing, & Kambhampati, 2007]. It is also possible to general-
ize the multi-objective problem itself by taking into account different structures of the
preference relations. In particular, PBA∗ [Perny & Spanjaard, 2002] generalizes to
a wider class of preference based relations with respect to previous methods (which
assume the particular partial order preference relation induced by the multi-objective
case).

2.3 Multi-Objective Multi-Agent Planning

MOMA-Planning is the most general case of planning we consider in this chapter. In
this case, we must devise a plan for multiple agents each of which pursues multiple
objectives. This case, as far as we know, has not been addressed by research, except
for the restricted case where each agent pursues a single objective. This particular
problem is, nevertheless, a multi-objective one. In fact, even if each agent is pursuing
a single objective, the multi-agent system as a whole can be considered as pursuing
multiple objectives. Although this is a simplified problem with respect to the more
general one, there is little literature on the topic.

In such setting, the problem is to address the conflicts between the agents (i.e.
the objectives) while trying to cooperate when possible. If some form of group in-
terest is defined (as social welfare), the problem can be simplified by considering
the conflicts between individual agents’ interests and group’s interest [Shen, Zhang,
& Lesser, 2004; Stirling, Goodrich, & Packard, 2002]. This approach has been
used to model multi-agent multi-objective problems as Vector-Valued Decentralized
MDPs [Mouaddib, 2006; Mouaddib, Boussard, & Bouzid, 2007]. In this case, there
are two values which each agent takes into account when planning. One represent-
ing its own interest and another one representing the group interest. Based on this
model, the authors developed a regret-based technique to tradeoff between group and
individual interest. The main drawback in using sociological constraints, as for the
function measuring the tradeoffs MOSA-Planning, is that they are a form of total
preference relation among objectives. Although in these approaches there is a global
performance gain in the system, there is the risk that such global measurement among
the objectives is not correct. Actually, in a pure multi-objective problems, objectives
may be conflicting and there is no guarantee (from a modelling viewpoint) that a
global function measuring the objectives exists at all.

Despite the fact that there is not much literature for such problems, there exists
a broad range of modelling tools that consider the problem in a non-cooperative set-

28 2. Related Work

tings where there is no notion of “team” and agents are considered selfish.

2.3.1 Game Theory

Opposed to the AI community, which through multi-agent planning, defines gener-
ative mechanisms to produce rational behaviors for rational agents, economists and
mathematicians, developed a set of modelling tools, called Game Theory, to analyze
the behavior of interacting self-interested rational agents. These models assume that
agents are self-interested, in the sense that they pursue each a well defined objective
which they are willing to maximize despite the effect on the other agents’ ones. In
this case, agents have to perform strategic reasoning in order to perform the best,
whatever the other agents are rationally willing to do.

Basics of Game Theory

A well-known mathematical tool modelling scenario where rational agents pursue
different objectives, among which no global preference relation is defined, is game
theory [Von-Neumann & O.Morgenstern, 1947], originally developed for economi-
cal analysis and nowadays also used for multi-agent systems (e.g. [Rosenschein &
Zlotkin, 1994]). The main idea is to develop models of interaction among rational
agents and to define fixed points, called equilibria, which describe a situation where
no agent (embodying each an objective) has an incentive to unilaterally deviate, given
what the other agents are doing. Although some more detail on the Game Theoretic
concepts will be given in the following, this is not intended to be a complete survey.
The interested reader is referred to [Osborne & Rubinstein, 1994].

Game theory may be categorized in two main classes of models: non-cooperative
and cooperative. The first class of approaches, models agents as rational entities
which, individually, try to maximize their own utility based on strategic considera-
tions on the possible moves of other agents. As such, game theorists try to find some
fixed point, called equilibrium, where no agent is unilaterally incentivated to deviate,
given what the other agents do. The second class, enlarges the space of possible solu-
tions to the case where a subgroup of agents may commit to deviate. In fact, even if in
a given situation no agent may individually have an incentive to deviate, it may be the
case that a group of agents, by committing to a joint action, may improve their util-
ity. In this thesis we are mainly concerned with non-cooperative game theory, which,
despite of being a simplified model with respect to cooperative game theory, is at the
current state of affairs, more established and computationally more appealing.

Game theory is based on two main concepts: models and solution concepts. Mod-
els are formal definitions of the possible interactions of rational agents, while solu-
tion concepts are interactions (courses of actions) which are considered “stable”, in
the sense that no agent will be unilaterally willing to deviate from them. Although
there are many different game models, based on different assumptions of the scenario

2.3. Multi-Objective Multi-Agent Planning 29

Don’t Confess Confess

Don’t Confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 2.2: The Prisoner’s Dilemma

to model, we can identify two main classes of models: normal and extensive form
games. The first models situations for which all players play their strategy simulta-
neously, while the second describes situation where agents interleave sequentially the
choice of action.

In general, a game in normal form can be defined as: a set of players Ag =
{1 . . . n}, a set of strategies Si for each player i, which define the actions the player
can perform (called pure strategies). A strategy profile is a selection of action for
each player and the space of strategy profiles is defined as S = ΠSi. If each set Si

is finite we say that the game is finite. For each agent i we define a utility function
ui

1 defined over the space of strategy profiles. We define, for a profile of variables
s = 〈s1, . . . , sk〉, s−i as the set of variables of s excluding si and 〈s′, s−i〉 as the
profile s where the i-th component has been substituted with s′.

Two players finite games in normal form can be conveniently represented as a
table. Figure 2.2 represents the, so called, Prisoner’s Dilemma. In this game, the two
players can perform the same actions Si={Confess, Don’t Confess} and represent a
situation where two suspect of crime are put into separate cells. If they both Confess
their crime, they will be sentenced to three years in prison. If only one Confesses, he
will be freed and used as a witness against the other, who will receive a sentence of
four years. If neither one Confesses, they will both be convicted of a minor offense
and spend one year in prison. By convention, the moves on the left of the table are the
ones performed by the first agent, while the ones on the top by the second. For each
profile of moves, identified by a cell of the tables, two utility values are provided: the
left one is for the first agent, the right one for the second agent.

Definition 2.1 Nash Equilibrium

A Nash equilibrium of a strategic game 〈Ag, (Si), (ui)〉 is a strategy profile s ∈ S
such that for every player i ∈ Ag:

ui(〈s−i, si〉) ≥ ui(〈s−i, s
′
i〉) ∀s′i ∈ Si

1In general, game theorists use preference relations rather than utility functions which are a more

general concept. In this work, for the sake of simplicity, we use utility functions to define preference

relations.

30 2. Related Work

Thus, for a strategy profile s to be a Nash equilibrium [Nash, 1950], any agent i
must not have an action which yields to a better outcome than si, given that all the
other agents perform s−i. For example, in the Prisoner’s Dilemma, 〈Confess, Confess〉
is a Nash equilibrium. If player one Confesses, then player two would get 1 if he
Confesses and 0 if he Don’t Confess. Thus, player two prefers to Confess. The
same applies to player one, if two Confess. Intuitively, a good solution could be
〈Don’t Confess, Don’t Confess〉, but we can show that this is not a Nash Equilibrium.
If one player Don’t Confess, the other player always performs better if he Confesses,
because in this case he would get an utility of 4.

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

Figure 2.3: Matching Pennies

Consider now the game in Figure 2.3 called Matching Pennies. This game be-
longs to a particular class of strictly competitive games, called zero-sum games. In
such games the utility of one player is opposite to the one of the other, and, thus, their
sum is always zero. In the Matching Pennies games, each players can independently
choose the face of a Pennie (i.e. Heads or Tails). If the faces match the first player
wins, otherwise the second player wins. It is interesting to notice that in this game
there is no Nash Equilibrium in pure strategies. In fact, for each strategy profile there
is a winning player and a loosing one which has always an incentive to deviate. For
example, if the strategy profile is 〈 Tail, Tail 〉, player one wins and, thus, player two
is incentivated to change his move to Head.

Theorem 2.1 The strategic game 〈Ag, (Si), (ui)〉 has a Nash equilibrium (in pure

strategies) if for all i ∈ Ag

• the set Si of actions of player i is a nonempty compact convex subset of a

Euclidian space

and the preference relation for player i is

• continuous

• quasi-concave on Si

We can define a more general concept of equilibrium, called mixed strategy Nash
equilibrium, where agents select probability distributions over actions, rather than

2.3. Multi-Objective Multi-Agent Planning 31

pure strategies. For example, in the matching pennies example, a player could choose
to select Tail with probability .2, and Head with .8. More formally:

Definition 2.2 The mixed extention of the strategic game 〈Ag, (Si), (ui)〉 is the strate-

gic game 〈Ag, (∆(Si)), (Ui)〉, where ∆(Si) is the set of probability distributions over

Si and Ui a function which assigns the expected value to α ∈ Π∆(Si) under ui (i.e.
∑
αs · ui(s))

Definition 2.3 Mixed Strategy Nash Equilibrium

A mixed strategy Nash Equilibrium of a strategic game is a Nash Equilibrium of

its mixed extention.

The main result for mixed strategy Nash equilibrium, is an existence proof:

Theorem 2.2 Every finite strategic game has a mixed strategy Nash equilibrium.

Mixed strategy Nash equilibrium are a powerful tool but have the major drawback
of incurring in uncorrelated randomizations. Effectively, given that each player se-
lects independently and randomly his strategy, the final outcome could be, with some
probability, undesirable for all players. To solve this problem, we need to introduce
a new concept of equilibrium, called correlated equilibrium [Aumann, 1987]:

Definition 2.4 Correlated Equilibrium

A Correlated Equilibrium (c-equilibrium) is a probability distribution π ∈ ∆(S)

such that, for all players i ∈ Ag and for any pair of strategies si, s
′
i ∈ Si the fol-

lowing is true: Conditioned on the i-th component of a strategy profile drawn from π

being si, the expected utility for i playing si is not smaller than that of playing s′i:

∑

r∈S−i

[ui(〈si, r〉)− ui(〈s′i, r〉)] · π〈si,r〉 ≥ 0 (2.1)

A correlated equilibrium is a probability distribution π over strategy profiles such
that: if a trusted authority would randomly select a profile s from S, according to π,
and communicate privately to each agent its strategy si of S, no agent i would have
an incentive to deviate from the recommended strategy si. In fact, si is the best
response in expectation for i given π (Definition 2.4, formula 2.1). A correlated
equilibrium is a (mixed) Nash Equilibrium if the probability distribution is a product
distribution (i.e. if for each player i there is a distribution πi on Si such that for all
s ∈ S πs = Πn

i=1π
i
si

). It is interesting to notice that every finite strategic game has

32 2. Related Work

a correlated equilibrium, trivially because any mixed strategy Nash equilibrium is a
correlated equilibrium.

The other major class of models in game theory is extensive form games (EFGs)
[Osborne & Rubinstein, 1994]. Opposed to normal form games, where agents select
simultaneously one action each, EFGs describe games where agents select sequences
of interleaved actions and can choose to deviate from them during execution. Such
games are usually modelled as graphs with a tree structure (see Figure 2.4). Each leaf
node of the tree is labeled with an n-tuple of utilities (one for each player), while the
other nodes (decision nodes) are labeled with the player who plays at that node. An
edge between nodes v and v′ represents an action performed by the agent playing at
v and leading to v′. The set of nodes of the tree is partitioned into information sets.
Each information set belongs to exactly one player i and summarizes the knowledge
of the agent in terms of sequences of actions (e.g. histories) he is aware were per-
formed before the information set was reached. A pure strategy for an agent i is a
mapping from information sets to actions. Notice that a strategy may not prescribe
different actions in different nodes of the same information set because at execution
time the agent would not be able to distinguish between them. Finally, extensive
games are said to be of perfect recall if each agent “remembers” all the actions he
performed.

A Finite Extensive Game with Imperfect Information (incomplete information in
AI terminology) is a detailed description of the sequential structure of the decision
problems encountered by the players in a strategic situation. In these games, agents
are not informed about the moves the other players will perform. Furthermore, play-
ers may be imperfectly informed about some of the choices that have already been
made and about the other players’ private information.

Definition 2.5 [Osborne & Rubinstein, 1994] An Extensive Game has the following

components.

• A finite set Ag (the set of players).

• A set H of sequences (finite or infinite) that satisfies the following three prop-

erties.

– The empty sequence ∅ is a member of H .

– If 〈a1, . . . , aK〉 ∈ H (where K may be infinite) andL < K then 〈a1, . . . , aL〉 ∈
H .

– If an infinite sequence 〈a1, . . . , a∞〉 satisfies 〈a1, . . . , aL〉 ∈ H for every

positive integer L then 〈a1, . . . , a∞〉 ∈ H .

2.3. Multi-Objective Multi-Agent Planning 33

Each member of H is a history; each component of a history is an action taken

by a player. A history 〈a1, . . . , aK〉 ∈ H is terminal if it is infinite or if there is

no 〈a1, . . . , aK+1〉 such that 〈a1, . . . , aK+1〉 ∈ H . The set of actions available

after the nonterminal history h is denoted by A(h) = {a : (h, a) ∈ H} and

the set of terminal histories is denoted by Z.

• A function P that assigns a member of Ag ∪ c to each nonterminal history

(each member of H\Z). P is the player function, P (h) being the player who

takes an action after history h. If P (h) = c then chance determines the action

taken after the history h.

• A function fc that associates after every history h for which P (h) = c a prob-

ability measure fc(· | h) on A(h), where each such probability measure is

independent of every other such measure. fc(a | h) is the probability that a

occurs after the history h.

• For each player i ∈ Ag a partition Ii of h ∈ H : P (h) = i with the property

thatA(h) = A(h′) whenever h and h′ are in the same member of the partition.

For Ii ∈ Ii we denote by A(Ii) the set A(h) and by P (Ii) the the player P (h)

for any h ∈ Ii. Ii is the information partition of player i; a set Ii ∈ Ii is an

information set of player i.

• For each player i ∈ Ag a preference relation ºi on lotteries over Z (the

preference relation of player i) that can be represented as the expected value

of a payoff function defined on Z.

We will now show a simple example from the Urban Search and Rescue domain
introduced previously. Moreover, in this example a tree representation for Extensive
Games, called game tree, will be presented and used to build the model.

Example Consider two heterogeneous robots which have to verify if there is a victim
behind an open door, thus sense two potential evidences (e1 and e2) for it. The first
robot can close the door and sense evidence e1. The second one can only sense e2
and needs the victim to be visible in order to correctly perform the action. We can
build the game as a tree as shown in Fig. 2.4. The color of non-terminal nodes of
this tree represents the player who moves at that turn. We will use red for player
one, blue for player two, and green for chance (nature). The mapping from nodes to
players that we define for this game is the player function. At the root node, given our

34 2. Related Work

1

sense_e1

1

close_door

(-1,0)

sense_e1=F [.5]

1

sense_e1=T [.5]

(-31,-31)

sense_e2

sense_e2

(-1,-1)

sense_e2=F [.5]

(29,29)

sense_e2=T [.5]

Figure 2.4: The game tree of a simple game from the rescue domain

implementation of the player function, player one moves. He may choose between
closing the door and sensing property e1. In the latter case, the next move will be
performed by chance, which will determine with equal probability if the property
is true or false. If the property e1 is false, the game will end because there is no
victim. Each agent will be awarded with an utility. In this case, agent one has a
negative utility because of the cost of performing the action. Since agent two can not
perceive the actions of the other agent, from its viewpoint, the two nodes at which
it is its turn to play are indistinguishable and thus are in the same information set.
This is represented by the number one in the node, which is a unique identifier of the
information set for the player. The constraint that the agent must be able to perform
the same actions at all the nodes in the same information set is trivially satisfied
for any strategy. In fact, player two’s only option is to sense e2 in both nodes at is
information set. If agent two tries to sense e2 after the door has been closed, it will
fail and both agents will get an utility which is the result of a negative reward (for
the failure) plus the cost of performing the actions. In the other case, after its move,
nature plays and determines if the agents reached the goal (i.e. if they effectively
identified a victim).

Based on extensive games agents can select strategies, that are choices of actions
for each information set. These are the counterpart of pure strategies for normal form

2.3. Multi-Objective Multi-Agent Planning 35

games:

Definition 2.6 A pure strategy of player i ∈ N in an Extensive Game

〈N,H,P, fc, (Ii), (ºi)〉

is a function that assigns an action in A(Ii) to each information set Ii ∈ Ii.

A player may also randomize over the actions in a strategy or over pure strategies

[Osborne & Rubinstein, 1994]:

Definition 2.7 A mixed strategy of player i ∈ N in an Extensive Game

〈N,H,P, fc, (Ii), (ºi)〉

is a probability measure over the set of player i’s pure strategies. A behavioral strat-

egy of player i is a collection βi(Ii)Ii∈Ii of independent probability measures, where

βi(Ii) is a probability measure over A(Ii).

Thus, agents must strategically reason on which strategy to choose. Although
many solution concepts in the Game Theoretic literature exist for Extensive Games
with Imperfect Information (e.g. sub-game perfect [Osborne & Rubinstein, 1994],
sequential [Kreps & Wilson, 1982] and trembling hand [Selten, 1975] equilibrium),
here we present just Nash Equilibria. The other solution concepts are subsets of Nash
equilibria and aim to rule out those equilibria which are not credible from a strategic
viewpoint [Osborne & Rubinstein, 1994].

Thus, we can now define a Nash equilibrium for an Extensive Game [Osborne &

Rubinstein, 1994] as:

Definition 2.8 A Nash equilibrium in mixed strategies of an Extensive Game is a

profile σ∗ of mixed strategies with the property that for every player i ∈ N we have:

O(σ∗−i, σ
∗
i) ºi O(σ∗−i, σi) for every mixed strategy σi of player i.

where O is a function returning the expected value of the utility for each agent, when
all commit to a profile σ∗ of mixed strategies.

36 2. Related Work

Computational Game Theory

From a computer science perspective, game theory has been studied most strongly
through complexity theory [Halpern, 2004]. In fact the complexity of computing
equilibrium is fundamental for game theory, since its intractability would make it im-
plausible as a model of behavior. We agree with [Papadimitriou, 2005] when quoting
Kamal Jaim: “If you PC can not find it, then neither can the market”. The compu-
tational complexity of equilibria is one of the most challenging problems of modern
computer science as, for example, the problem of finding a polynomial algorithm
for mixed Nash Equilibria in a two player game is famously still open [Papadim-
itriou, 2001; Savani & von Stengel, 2004]. Here, given the scope of this thesis we
will review computational game theory for normal form games. Nevertheless, it is
interesting to notice that extensive games can be transformed to normal form games
although information on the sequential structure of the game, which can be exploited
for computation, may be lost. In general, it can be shown [Conitzer & Sandholm,
2003] that it is: 1) NP -hard to find if a Nash equilibrium with certain natural prop-
erties (as maximum social welfare) exists, 2) #P -hard to count Nash equilibria, 3)
NP -hard to determine weather a Bayes-Nash equilibrium exists and 5) PSPACE-
hard to determine wether a pure strategy Nash Equilibrium exists in a Stochastic
(Markov) game. Moreover, some efficient solving techniques have been found for
particular classes of games such as zero-sum ones (e.g. [McMillen & Veloso, 2007])
or two-player (e.g. [Miltersen & Sørensen, 2006; Finzi & Lukasiewicz, 2004]), but
nevertheless efficiently solving general classes of multi-player games is still an open
problem.

Recently, a particular type of equilibrium, namely correlated equilibrium [Au-
mann, 1987], has gained, thanks to tractability results [Papadimitriou, 2005], increas-
ing interest. In general, the problem of finding the best correlated equilibrium (ac-
cording to some metric) can be represented as a Linear Programming problem, and
thus solved in polynomial time. The real problem is that such a linear program has an
exponential number of variables because of the combinatorially many outcomes that
can result from combining agents strategies. The exponential nature of Correlated
equilibrium can be overcome in some cases by a succinct representation [Papadim-
itriou, 2005] where interactions among agents are limited and explicitly represented.
The most famous classes of succinct games are:

1. symmetric games [Papadimitriou, 2005] are games where all agents are iden-
tical and the utility of agents depend on the player’s choice (but not identity)
and the number of agents who made particular choices.

2. polymatrix games [Eaves, 1973; J. T. Howson, 1972] are games where each
player plays once with each other player, playing always the same strategy.
His utility is then the sum of the utilities of each such two player game.

3. graphical games [Eaves, 1973; J. T. Howson, 1972] are represended as a graph

2.3. Multi-Objective Multi-Agent Planning 37

where nodes are agents and edges strategic interactions. The main idea is that
the choice for a player (e.g. node) depends on the choices of it’s neighbors (in-
cluding itself), but not on the choices of the other players. The global n player
game is thus viewed as being composed of interacting local games, each in-
volving (perhaps many) fewer players. Each player’s action may have a global
impact, but it occurs as through the propagation of local effects.

4. congestion games [Rosenthal, 1973]: are games where a set of resources are
defined and the strategies for each player are subsets of these resources. Each
resource has a delay which is a function of the players using the resource. The
(negative) utility of each agent is the sum of the delays of the resources he uses.

It was recently shown [Papadimitriou, 2005] that a correlated equilibrium can
be found in polynomial time for most known succinct game representations (rep-
resenting normal form games). In general, finding the best correlated equilibrium
(according to a social welfare concept) is a harder problem. It has been shown [Pa-
padimitriou & Roughgarden, 2005] that the problem of finding the optimal corre-
lated equilibrium is NP -hard for polymatrix games, some simple non-tree graphical
games and congestion games. Moreover, congestion games are guaranteed to have
pure Nash Equilibria although the problem of finding them is PLS-complete [Fab-
rikant, Papadimitriou, & Talwar, 2004]. Another interesting structured representation
for games are Multi-Agent Influence Diagrams (MAIDs) [Blum, Shelton, & Koller,
2006], which are a extention of Influence Diagrams. For such games the authors
found an interesting property (s-separation), similar to d-separation for Bayesian net-
woks and developed a continuation method for solving them. The method performed
well in experimental tests but yet suffers from the fact that the model must be written
by hand by a human operator.

Partially observable stochastic games (POSGs)

Partially observable stochastic games (POSGs) [Hansen, Bernstein, & Zilberstein,
2004b; Emery-Montemerlo, 2005] generalize the notions of single-stage games and
Markov decision processes to both multiple agents and partially observable worlds.
The main advantage of using a game theoretic approach in this case is that a policy
for each agent can be found without the need to do any sort of infinite reasoning or
deduction over an infinite belief hierarchy.

A POSG is defined as a tuple:

〈I, S, Z, T,R,O〉

where

• I = {1, .., n} is the set of agents.

38 2. Related Work

• S is the set of states. It is interesting to note that S is not just the cross-product
of the states of individual agents, but can include additional information.

• A is the cross-product of the action space of each agent (i.eA = A1×. . .×An).

• Z is the cross-product of the observation space of each agent (i.e Z = Z1 ×
. . .× Zn).

• T is the transition function T : S ×A→ S.

• R is the reward function R : S ×A→ <.

• O defines the observation emission probabilities O : S ×A× Z → [0, 1].

At each timestep of a POSG, agents simultaneously chose actions and receive, a
reward and an observation. These actions are given by the solution to the POSG,
which is a set of conditional policies π = {π1, . . . , πn}.

The focus of this work is on finite-horizon POSGs with common payoffs. In this
case, agents share a common reward. This setting is the most basic model of cooper-
ative game theory. Several results have been found for this case, which is equivalent
to a Dec-POMDP. While a powerful model of decentralized teams, POSGs are com-
putationally intractable for all but the smallest problems. In fact, it has been shown
[Bernstein et al., 2002] that the problem of solving finite-horizon POSGs with com-
mon payoffs is NEXP-hard. In [Emery-Montemerlo et al., 2004], a Bayesian game
approximation to POSGs is proposed in which game-theoretic reasoning about action
selection is retained, but agents reason only a limited time ahead about uncertainty in
world state and the experiences of their teammates. Planning and execution are in-
terleaved to further reduce computational burdens: at each timestep, agents perform
a step of full game-theoretic reasoning about their current action selection given any
possible history of observations and a heuristic evaluation of the expected future value
of those decisions. The Bayesian game approximation algorithm (BaGA) is able to
find solutions to much larger problems than previously solved. Further computa-
tional savings are gained by reasoning about groups of similar observation histories
rather than single histories. Finally, efficiency and performance are also improved
through the use of run-time communication policies that trade off expected gains in
performance with the costs of using bandwidth.

For the more general case, the solution concept used is the mixed Nash equilib-
rium. Few work has been devoted to devise algorithms for efficiently finding equilib-
ria in such games, due to the complexity of the problem. A notable exception is this
direction is the work by [Hansen, Bernstein, & Zilberstein, 2004b], which presents a
dynamic programming algorithm for the elimination of dominated strategies.

2.4. Analysis of Related Work 39

2.4 Analysis of Related Work

This thesis aims at developing a novel approach to the MOMA problem representa-
tion and solving. In particular, we propose a centralized planner for distributed plans
and, thus, devise modeling tools and algorithms for building a central agent, the plan-
ner, able to produce multi-agent plans of actions which can be executed by a system
of agents without the need of a central coordinator. In order to allow distributed ex-
ecution, the planning process considers the distributed and incomplete information
in the system as a collection of incomplete views of the word state. In particular,
each incomplete view is represented through the knowledge available to each agent
in terms of epistemic-states. The formalism for epistemic states is defined in terms
of possible worlds and is similar to the epistemic logics previously presented.

Epistemic states are used to define the action language E+ [Iocchi et al., 2004b;
Iocchi et al., 2007]. E+ is syntactically similar to the action language A [Gelfond &
Lifschitz, 1993] and its variants including the recent C+ [Giunchiglia et al., 2004],
but it has a formal semantics in description logics. More precisely, it is equivalent to a
fragment of the autoepistemic description logic ALCKNF [Donini, Nardi, & Rosati,
2002] for modeling dynamic systems (see [Iocchi et al., 2006] for the proof that E+
is semantically founded on ALCKNF), which has been successfully implemented
and used for a robotic soccer team [Iocchi, Nardi, & Rosati, 2000b].

At first, we enrich E+ in order to deal with uncertain duration of actions and,
then, extend it to the case of multi-agent systems. The extention to the multi-agent
case is based on the model for distributed system presented in [Fagin et al., 1995].
In particular, we represent the information available to the system as a collection
of epistemic states (i.e. global states). The main difference with respect to Fagin’s
approach is that we represent the information available to processes as epistemic
states and we model the dynamics of global states based on actions which are uncer-
tain in their outcome and duration. Moreover, agents can acquire knowledge locally
through action effects and sensing, and globally through communication. To this end,
we provide a semantics of communication and provide operational procedures for re-
constructing epistemic states after communication actions. Finally, we ensure that
actions performed by different agents do not have negative interactions by reasoning
on their limited effects [Georgeff, 1988] and synchronization constraints imposed by
communication. We call the resulting action language GE0+.

We, thus, adopt a post-planning coordination approach, based on conditional
planning which allows the planner to consider the possible contingencies and the
appropriate courses of actions. The dynamic nature of the system is represented based
on an action language whose semantics is defined through a finite state automaton
(FSA) whose nodes are global states and edges are actions performed by agents. In
particular, the semantics of the language consists of all the sink nodes of the FSA
which represent all the possible outcomes of valid plans and which we call strategy
outcome space. The strategy outcome space is used to build a normal form game,

40 2. Related Work

which we call normal form of a MAPG.
Although there are representations of games which are succinct (e.g. [Papadim-

itriou, 2005; Blum, Shelton, & Koller, 2006]), in the sense that they describe only
the necessary constraints in the system and allow fast solving methods, this does not
mean that their representation is compact. Actually, writing down by hand a MAID or
a graphical game for a real problem may be unfeasible for a human operator and prone
to errors because of its dimension. In this work, we provide a compact representation
of a particular class of games, called Multi-Agent Planning Games (MAPGs), which
are based on the action language GE0+. In particular, we can prove that the MAPG
representation is exponentially smaller than its normal form representation. This is
positive result from the representation point of view, considering that one of the major
drawbacks of games is the size of their representation [Papadimitriou, 2005].

van Benthem has studied [Johan van Benthem, 2002] the problem of which are
the formal languages for describing games and which are appropriate semantic sim-
ulations for them. His work deals mainly with finite two-player games, but provides
the intuition that action languages, combined with semantic state automata, are appro-
priate to model a large variety of games. On the one hand, there are many single-agent
action languages available, e.g.: Situation Calculus [Reiter, 2001] and A [Gelfond &
Lifschitz, 1993]. On the other hand, there are not many which generalize to a multi-
agent game theoretic scenario. A notable exception is GC+ [Finzi & Lukasiewicz,
2005], a language for reasoning about actions under probabilistic uncertainty and
partial observability. GC+is an extension of the action language C+[Giunchiglia et
al., 2004] and is inspired by partially observable stochastic games, POSGs [Hansen,
Bernstein, & Zilberstein, 2004b]. The main assumption is that there must be a cen-
tral agent, which knows the local belief state of every other agent, computes and
sends them their optimal local actions, and thereafter receives their local observa-
tions. However, no explicit communication among the agents, distributed knowledge
or distributed execution are considered.

Although we consider the uncertainty of actions, we assume perfect perception
and incomplete, yet certain, knowledge. In many domains, such as in robotics, per-
ception may be noisy and unreliable. Some approaches, such as Dec-POMDPs [?]
(see Section 2.1.1), address the problem of noisy perception directly at the planning
level. Dec-POMDPs are very complex to solve (i.e. NEXP-complete) and to describe
for users. Instead, we rely on approaches which represent explicitly uncertainty at
a numerical level and that are embedded into an heterogeneous hybrid architecture
(Chapter 4). This allows us to abstract from uncertainty and represent knowledge at
a symbolic level. As an example, in the case study in Part III, we rely on standard
SLAM approaches to handle the uncertainty of the robot’s location and of the recon-
structed map. Despite this, due to the lack of uncertainty of knowledge modeling at
planning time, the system does not scale well with the increase of noise in the percep-
tions. Nevertheless, this approach allows to produce distributed plans. The plans we
produce are distributed in the sense that, once they are produced, they can be executed

2.4. Analysis of Related Work 41

in a distributed way without the need of a central coordinator. The main advantage
of this approach is that there is no single point of failure during execution, thus, the
system is more robust, and the communication can be restricted to occasional point
to point messages rather than a continuous broadcast of information to and from a
central executor agent.

One of the main issues for multi-objective problems is the definition of the so-
lution concepts. In our case, we present a novel, and to our knowledge the first,
refinement of Pareto optimality, for the special case of multi-agent systems, where
each agent is pursuing a single objective which may, in general, be different from
the ones of the other agents. The main advantage with respect to other approaches
(see Section2.2) is that we do not need to define preferences over the objectives (e.g.
[Vicente & Calamai, 1994]) nor to reformulate the problem as a single objective one
(e.g. [Refanidis & Vlahavas, 2003; Das & Dennis, 1996]), thus violating the assump-
tion that utilities for different objectives are noncommensurate quantities. In contrast,
we select the Pareto optimal solution taking into account strategic considerations im-
plied by the rationality of agents. The main idea is that since agents form a team, they
will agree in selecting plans which are Pareto optimal, but may conflict in the choice
of which Pareto optimal plan to select. We, thus, model the problem as a game over
Pareto optimal solutions (i.e. optimal game), which is the normal form of a MAPG
where only Pareto optimal outcomes are considered. We use normal form games as a
base model, and not extensive games, mainly because of the lack of efficient solving
techniques for extensive games.

The solution concept we propose for optimal games is a novel refinement of cor-
related equilibrium. The main advantage in using correlated equilibrium as a basis
for our solution concept is that a) it is guaranteed to exist [Aumann, 1987] (opposed
to pure Nash Equilibrium), b) it can be computed in polynomial time [Papadimitriou,
2005], c) it avoids uncorrelated randomizations (opposed to mixed Nash equilibrium),
which could yield to undesired outcomes, increasing the solution space [Osborne &
Rubinstein, 1994]. Solving correlated equilibrium is polynomial, but its descrip-
tion is exponential in the usual normal form game representation. Such problem
is usually addressed by representing games in a succinct form (e.g. [Eaves, 1973;
J. T. Howson, 1972; Eaves, 1973; J. T. Howson, 1972; Rosenthal, 1973]) which al-
lows us to drastically reduce the complexity of the problem. Despite this, succinct
games are a small class of games and many problems are probably not representable
in such form. In particular, it is still an open problem to find succinct representa-
tions for where strategies are represented in paths in a graph [Papadimitriou, 2005],
which corresponds to our definition of strategies in MAPGs. In our work, we present
a novel refinement of correlated equilibrium, called restricted correlated equilibrium,
which can be represented as linear program with one variable for each Pareto optimal
solution. We can prove that a restricted correlated equilibrium always exists and that
it is a correlated equilibrium of the optimal game. Under the assumption that Pareto
optimal plans are exponentially less than all possible plans, we can obtain a linear

42 2. Related Work

program (i.e. the description of correlated equilibrium) which has a linear number
of variables with respect to the problem description and, thus, can be resolved in
polynomial time.

Part I

Representation

43

Chapter 3

Multi-Agent Planning Games

In this chapter, we define the representation of knowledge for our multi-agent system
as Multi-Agent Planning Games (MAPGs). MAPGs represent a framework for rea-
soning about distributed knowledge in a system of agents, which asynchronously act
and acquire information, under time constraints.

At first (Section 3.1), we present a single-objective single-agent planning prob-
lem where the agent has a constraint on the duration of plans (Timed-SOSA). The
formalism is used to introduce three basic concepts that are used in the presentation
of MAPGs:

1. We show how incomplete knowledge can be represented through epistemic
states, which encode sets of possible states [Iocchi et al., 2007]. For example,
consider an agent moving blocks on a table (Figure 3.1(a)). The agent knows
that block A is on the table (i.e. On(A, Table)), and B is on top of A (i.e.
On(B,A)). Intuitively, we can represent this fact by saying that the agent’s
epistemic state is composed by all the world states where the following formula
is true: On(B,A) ∧ On(A, Table). For example, the world state where there
is a third block G on the table, represented as On(B,A) ∧ On(A, Table) ∧
On(G,Table) is one of the possible states composing its epistemic state.

2. We introduce non-instantaneous actions which have a uncertain duration, where
uncertainty about time is represented as probability distributions.

3. We provide a mechanism to evaluate the goodness of plans, considering both
the degree of satisfaction of objectives and the probability of execution com-
pletion within time constraints.

These three considerations lead to a definition of the semantics of Timed-SOSAs as
the set of sink nodes of a finite state automaton (FSA), where nodes are epistemic
states and edges are actions. The FSA describes the dynamics of epistemic states

45

46 3. Multi-Agent Planning Games

under the effects of non-instantaneous actions. We define plans as paths over the
FSA and characterize solutions for Timed-SOSAs.

Next (Section 3.2), we introduce MAPGs, which can be roughly defined as a
collection of Timed-SOSAs, one for each agent composing the multi-agent system.
The semantics of MAPGs, as for Timed-SOSAs, can be expressed based on a FSA.
Despite this, the semantics is considerably different because nodes are collections of
epistemic states, one for each agent, and edges are labeled with actions and with the
identifier of the agent who performed it. This distinction is fundamental because,
in a system where execution is distributed, the information available to each agent
is possibly different with respect to the information available to others. Moreover,
information of one agent is not directly accessible to other agents. To stress this
concept, we call the epistemic state encoding the information of each agent local
state and the collection of local states describing the information available to the
system, global state. For a first intuitive characterization of MAPGs we assume that
each action performed by an agent depends on, and affects, only its local state.

BA G

D

C

B

A G

D

C

(a)

(b)

Local state of the f irst agent

Local state of the f irst agent

Local state of the second agent

Local state of the second agent

Figure 3.1: Local states for a Blocks World example

For example, consider two agents moving blocks on a table (Figure 3.1(a)). The
first agent’ knows that blockA is on the table (i.e.On(A, Table)), andB is on top of
A (i.e.On(B,A)), thus, its local state can be described asOn(B,A)∧On(A, Table).
Moreover, the second agent knows that block C is on the table (i.e. On(C, Table)),
and thatD is on top ofC (i.e.On(D,C)). Thus, its local state represents all the world
states where On(D,C)∧On(C, Table). The two local states represent two possible

47

incomplete views of the world state. The global state of the multi-agent system, is
the collection of the two local states, and can be represented as the pair 〈On(B,A)∧
On(A, Table), On(D,C) ∧ On(C, Table)〉. If agent one decides to move block
B from C to the table, we obtain a new global state. Assuming that agents can
not perceive the actions of other agents, its action affects only its own local state. In
particular, we obtain a new global state 〈On(B, Table)∧On(A, Table), On(D,C)∧
On(C, Table)〉 where only the first local state has been changed (Figure 3.1(b)). In
this example, local states describe different properties of the world state, nevertheless,
in general, the epistemic states could overlap over some features of the world state.

The assumption that each agent can affect just its local state is somehow restric-
tive in a multi-agent system. In particular, agents should be able to communicate
and share information when this is relevant for the performance of the team. For this
reason, we introduce (Section 3.3) communication actions which allow two different
agents to exchange their information and synchronize their actions. In particular, our
model of communication requires an agreement to communicate and does not allow
an agent to forcedly inform another agent nor directly access its information.

The parallel execution of actions represented through the FSA does not take into
account that actions performed by agents can interfere. To solve this problem we
provide the semantics of interaction among actions (Section 3.4) based on limited
effects of actions [Georgeff, 1988], and devise a method to enforce safe interleavings
exploiting synchronization constraints achieved through communication.

All these considerations are, then (Section 3.5), used to formally define the se-
mantics of MAPGs as the sets of sink nodes of the FSA which we can prove to be a
finite tree. The set of leaf nodes of this tree is called strategy profile outcome space
and encodes the possible outcomes for a given MAPG.

We can characterize (Section 3.6) each node of the strategy profile outcome space
through a plan which acheives it. These plans represent the parallel execution of ac-
tions performed by each agent and are used to build a representation of the MAPG in
terms of normal form games. This representation is called the normal form represen-
tation of MAPGs. We can prove that the MAPG description is exponentially smaller
than its normal form. This is a positive characterization from a representational point
of view, given that one of the main issues of normal form games is the size of their de-
scription. Nevertheless, this can have a considerable impact on the solving methods.
This issue is explicitly addressed in Part II.

Finally, we extend our approach (Section 3.7) by allowing the agents to perform
direct perception through sensing actions and to reason about actions with uncertain
outcomes. The former extention requires us to introduce multi-agent conditional
plans, while the latter to generalize the mechanism for plan evaluation.

48 3. Multi-Agent Planning Games

3.1 Reasoning about Actions with Uncertain Duration

We now define the basic single-agent action language, called GE0, which we use as
a building block for defining MAPGs. There are three fundamental issues involved
in defining GE0. First, we must provide a representation of incomplete knowledge
along with its semantics. In particular, we describe knowledge in terms of literal
conjunctions, which are semantically interpreted as epistemic states (e-states).

Second, we must consider how the uncertainty of action duration affects the tim-
ing of knowledge and its consequences when time constraints are imposed. We rep-
resent the timing of knowledge, and duration of actions, through probability distri-
butions. We consider how the utility of a single agent plan can be evaluated based
on the knowledge acquired by the agent during execution and the probability that
such execution terminates within the time constraints. Finally, we provide the overall
problem definition and show how it can be solved.

In general, we define the planning problem as: a timed description of the initial
state, a description KB of the actions the agent is capable of, a utility function defin-
ing the agent’s objective and a time constraint. The dynamic nature of the system is
described through actions encoded into the knowledge base KB. In fact, we assume
at a planning level that the environment changes just by the performance of actions.
Moreover, we assume that (occasional) exogenous events are handled by the executor
module (Chapter 4) through monitoring and replanning.

3.1.1 The Action Language E0

We introduce the action language E0, which is based on E [Iocchi et al., 2004b;
Iocchi et al., 2007] and which we use for the presentation of our framework. E is
syntactically similar to the action languageA and its variants including the recent C+,
but it has a formal semantics in description logics. More precisely, it is equivalent to a
fragment of the autoepistemic description logic ALCKNF [Donini, Nardi, & Rosati,
2002] for modeling dynamic systems (see [Iocchi et al., 2006] for the proof that E is
semantically founded on ALCKNF), which has been successfully implemented and
used for a robotic soccer team [Iocchi, Nardi, & Rosati, 2000b].

As a central feature, the action language E0 allows for modeling the epistemic
state (e-state) of an agent, which is the set of all world states that the agent considers
possible in a given situation. Intuitively, the epistemic state encodes what the agent
knows about the world, in contrast to what is true in the world [Levesque, 1996;
Son, 2001]. Reasoning about actions is then done by modeling the dynamics of the
agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified in E0 through an initial state description and an
action description, which express what an agent knows about the initial properties
of the world and how this knowledge changes through the execution of actions, re-
spectively. We now describe the syntax and the semantics of initial state and action

3.1. Reasoning about Actions with Uncertain Duration 49

descriptions.

Syntax

An action description in E0 consists of a set of formulas that encode dynamic knowl-
edge about the preconditions and effects of actions. The states and properties of the
world are described through fluent formulas, which are Boolean combinations of el-
ementary propositions, called fluents. Fluents may change through the execution of
actions.

We first define fluents, actions, and fluent formulas. We assume a nonempty finite
set of fluents F and a nonempty finite set of ordinary actions A. We use ⊥ and >
to denote the constants false and true, respectively. The set of fluent formulas is the
closure of F ∪{⊥,>} under the Boolean operators ¬ and ∧ (that is, if φ and ψ are
fluent formulas, then also ¬φ and (φ∧ψ)). A fluent literal ` is either a fluent f or the
negation of a fluent ¬f . A fluent conjunction φ is either ⊥, or >, or a fluent formula
of the form `1 ∧ · · · ∧ `n, where `1, . . . , `n are fluent literals and n> 1. Given a
fluent conjunction φ, we define L(φ) the set of literals in φ.

The initial state description φI is the initial knowledge about the environment
and is represented as a fluent conjunction. A KB is a description of actions that the
agent can perform, represented through a finite set of axioms. An ordinary action
α is represented in the KB as the axiom 〈φα

pre, φ
α
eff 〉. The two components of the

axiom are formulas, in particular fluent conjunctions, which must respectively hold
before and after the execution of α. Informally, the axiom encodes that the action
α is executable in every state that satisfies φα

pre. In particular, if L(φα
pre)=>, then

α is always executable. Moreover, the axiom encodes that the successor state after
executing the action α satisfies φα

eff . Notice that, in general we could assume pre-
conditions to be represented by any formula, rather than by fluent conjunctions, since
to verify if a condition holds in a given state is computationally cheap. Nevertheless,
we restrict our attention to fluent conjunctions because, as we will show later on, this
allows for an efficient method to analyze the interaction among actions in multi-agent
scenarios. Finally, we assume that any agent is able to perform the end activity ac-
tion formally defined as 〈>,>〉, where > denotes the fluent whose interpretation is
always true. Informally, the end activity action idles the agent preventing it from
performing any further operation.

Semantics

An initial state description φI represents an epistemic state, which is a set of possible
states of the world, while an action description KB encodes a system of transitions
between epistemic states (which forms a directed graph where the nodes represent
epistemic states and the arrows encode transitions between epistemic states through
actions).

50 3. Multi-Agent Planning Games

We first define states, which are truth assignments to the fluents, and epistemic
states as sets of states, that are representable by a fluent conjunction. Formally, a
state s of an action description KB is a truth assignment to the fluents in F . A set
of states S satisfies a fluent formula φ, denoted S |=φ, iff every s∈S satisfies φ. An
epistemic state (or e-state) S of KB is a nonempty set of states s of KB such that
there exists a fluent conjunction φS such that Sφ is the set of all states s of KB that
satisfy φS . The literals L(φS) of the formula represent the knowledge of the agent
about the world, while the missing onesF−L(φS) are properties of the environment
unknown to the agent.

We next define the executability of actions in e-states and the transitions between
e-states through the execution of actions. An action α = 〈φα

pre, φ
α
eff 〉 is executable

in an e-state Sφ of KB iff Sφ |=φα
pre. Operationally this means that L(φα

pre) ⊆
L(φ). We define the successor state of S under the effects of an ordinary action
α in terms of a successor function succ(S, α). The succ(·) function for epistemic
states assumes that all properties are inertial in a similar way to the STRIPS action
language. Given an e-state S of KB and an ordinary action α, executable in S,
we build the successor e-state S∗ = succ(S, α), such that S∗ is conjunction of the
literals in the effects φα

eff and the ones in S which are consistent w.r.t. the effects (i.e.
L(S∗) = L(φα

eff)∪ (L(S)−L′(φα
eff)) where L′(φα

eff) = {¬f | f ∈ L(φα
eff)} and

¬¬f = f).
We are now ready to define the formal semantics of action and initial state de-

scriptions as follows. An action description KB encodes the directed graph MKB =
(VM , EM), where VM is the set of all e-states of KB, and Em⊆VM ×VM are la-
beled edges which contain S→ αS

′ iff (i) α is a ordinary action that is executable in
S, and (ii) S′= succ(S, α). An initial state description φI encodes the greatest e-state
of KB that satisfies φI , denoted SφI , if it exists (if there is an e-state that satisfies
φI , then there is also a greatest such e-state). We denote by MKB,φI the subgraph of
MKB consisting of all successors of SφI along with their incident arrows.

We finally define the notion of consistency for action and initial state descrip-
tions. An action description is consistent iff it has at least one e-state and each action
execution is defined. Formally, an action descriptionKB is consistent iff (i) KB has
at least one e-state S and (ii) succ(S, α) is defined for each e-state S ofKB and each
physical action α that is executable in S. An initial state description φI is consistent
if SφI is defined. In the sequel, we implicitly assume that all action and initial state
descriptions are consistent.1

Based on this definition of the problem we can introduce the notion of plan for
our representation:

1This definition of consistency is, thus stronger, than simply requiring the existence of a model. This

is analogous to other approaches in reasoning about actions, e.g., [Pirri & Reiter, 1999; Zhang, Chopra,

& Foo, 2002; Lang & Marquis, 2003].

3.1. Reasoning about Actions with Uncertain Duration 51

Definition 3.1 A single-agent plan is a sequence of actions 〈α1; . . . ;αK〉, with K ≥
1, such that:

• 〈φαj
pre, φ

αj

eff 〉 ∈ KB ∀j ∈ [1, . . . ,K]

• SφI |= φα1
pre

• If K > 1, succ(SφI , α1) |= φα2
pre

• if K > 2

succ(succ(. . . succ(SφI , α1)), αj−1) |= φ
αj
pre ∀j ∈ [3, . . . ,K]

From now on, S∗ = succ(S, α) is written as S α−→ S∗ and S∗ = succ(succ(. . . succ(S, α1)), αj)
as S

α1;...;αj−−−−−→ S∗.

3.1.2 Example: The Slotted Blocks World

S1 S2 S3

G

Y ?

S4

Figure 3.2: An example of Slotted Blocks World

In the following, we exemplify the concepts presented up to now, and in particular
the concept of epistemic state. We describe the slotted blocks world domain, where
there are a set of blocks on a table. The table is composed of slots. Each slot can be
occupied by a block. Blocks can be stacked to form towers and only one block can
fit on top of the other. The agent is a robotic arm which can move single blocks.

52 3. Multi-Agent Planning Games

S1 S2

Y

S1 S2

G

Y

S1 S2

GY

S1 S2

Y

G?
?

?
?

G?
?

?
?

(a) (b)

(c) (d)

Figure 3.3: An epistemic state (a) represents many possible world states (b,c,d).

3.1. Reasoning about Actions with Uncertain Duration 53

An epistemic state

Before providing the complete description of the problem we provide some intuition
of an epistemic state and its effect on the reasoning process through a simplified
example. Assume that the environment is the same as above but there are only two
slots S1 and S2. To describe the environment we use the fluent On(b, x) to denote
that a block b is on top of x. We can represent an epistemic state of an agent as
a conjunction of fluent literals. For example, the epistemic state depicted in Figure
3.3(a) can be represented by the formula:

On(Y, S1) ∧ ¬On(Y, S2) ∧ ¬On(Y,G) ∧ ¬On(G,S1) ∧ (3.1)∧

a∈{Y,S1,S2,G}
(¬(S1, a) ∧ ¬(S2, a) ∧ ¬(a, a)). (3.2)

Depending on wether the fluentOn(G,Y) andOn(G,S2) hold, many possible states
may exist. For example, we have one state where On(G,Y) and ¬On(G,S2) hold
(Figure 3.3(b)), one state where ¬On(G, Y) and On(G,S2) hold (Figure 3.3(c)),
and one state where¬On(G,Y) and¬On(G,S2) hold (Figure 3.3(d)). Furthermore,
there is a fourth state whereOn(G,Y) andOn(G,S2) hold. This last state is undesir-
able because we want to model that a block can not be in two places simultaneously.
In general, we can avoid these kind of states through static domain axioms which are
formulas that must hold in every possible state. For example, we could add the fol-
lowing two axioms to our description of the problem: On(G,Y) =⇒ ¬On(G,S2)
and On(G,S2) =⇒ ¬On(G, Y). These axioms state that if block G is on Y it
can not be on S2 and viceversa, respectively. Thus, if we know On(G,S2) we can
infer ¬On(G,Y). But what happens if we do not know if G is on Y or S2? In this
case, we can not infer anything using epistemic states, although reasoning by cases
we could exclude any state where On(G, Y) and On(G,S2) both hold.

The epistemic state representation of knowledge allows for a more compact rep-
resentation of a domain with respect to other formalisms, but it is not able to deal
with some specific representation of planning domains (namely the ones that require
reasoning by cases). The reason for this limitation is that epistemic states allow us to
reason about what is known and not about what is unknown. However, this limitation
in the representation power is not very restrictive from a representational viewpoint,
while providing substantial computational advantages, by ruling out such forms of
reasoning by cases. In particular, in the following we do not define static domain
axioms for our language.

5-Slotted Blocks World

We now provide a complete description of a the problem in the case of four slots: S1,
S2, S3 and S4. We also provide a simple incomplete description of the initial state
and show a possible plan. In order to maintain a propositional representation, we

54 3. Multi-Agent Planning Games

use the fluent Clear(x) to denote that nothing is on top of x. Moreover, we use the
fluent Block(b) to denote that b is a block.To represent more compactly the domain
we use variables, represented as lower case letters. Variables are defined over finite
domains and the KB without variables can be obtained by replacing variables with
all possible instances of the variables over their domains. In this example, we have
one domain Dom = {G,Y, S1, S2, S3, S4}.

The knowledge of initial state, depicted in Figure 3.2, is represented as:

φI = Block(G) ∧Block(Y) ∧On(Y, S1)∧
On(G,Y) ∧ Clear(S3) ∧ Clear(S4) ∧
Clear(G) ∧ ¬Clear(S1) ∧ ¬Clear(Y)

Moreover, we assume that the initial state is enriched with the unique name assump-
tion axiom which states that instances of variables with different names are different
and instances with the same names are identical. Formally, given that Dom(x) is the
domain of the variable x, we assume the planner to consider the initial description as:

φI
∧

X∈Dom(x),Y ∈Dom(y) | X 6=Y

X 6= Y
∧

X∈Dom(x),Y ∈Dom(y) | X=Y

X = Y.

The agent can perform the actions resulting from the possible instances of:

move(b, x, y) = 〈φmove
pre , φmove

eff 〉

where:

φmove
pre = Block(b)∧Clear(b)∧Clear(y)∧On(b, x)∧ (b 6= x)∧ (b 6= y)∧ (y 6= x)

φmove
eff = On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)

A possible plan for this description is:

p = 〈move(G,Y, S3);move(Y, S1, S4);move(G,S3, Y)〉

Let us now verify that this is a plan according to Definition 3.1. First of all, the
actions of the plan are composed by possible instances of the action description
we provided above. Clearly, the initial epistemic state SφI |= φ

move(G,Y,S3)
pre , since

any possible world for the initial state description verifies the preconditions of move
move(G,Y, S3) :

L(φmove(G,Y,S3)
pre) =
{Block(G), Clear(G), Clear(S3), On(G,Y), (G 6= Y), (G 6= S3), (Y 6= S3)}
⊆ L(φI)

3.1. Reasoning about Actions with Uncertain Duration 55

The successor state S1 such that SφI

move(G,Y,S3)−−−−−−−−−→ S1, is represented as:

S1 = Block(G)∧
Block(Y) ∧On(Y, S1) ∧ ¬On(G,Y) ∧ ¬Clear(S3) ∧
Clear(S4) ∧ Clear(G) ∧ ¬Clear(S1) ∧ Clear(Y) ∧On(G,S3)

Also in this case,L(φmove(Y,S1,S4)
pre) ⊆ L(φS1), thus, we can executemove(Y, S1, S4)

which leads to the successor state S2, such that S1 move(Y,S1,S4)−−−−−−−−−→ S2, and repre-
sented as:

S2 = Block(G)∧
Block(Y) ∧ ¬On(Y, S1) ∧On(Y, S4) ∧ ¬On(G,Y) ∧ ¬Clear(S3) ∧
¬Clear(S4) ∧ Clear(G) ∧On(G,S3) ∧ Clear(S1) ∧ Clear(Y) ∧On(G,S3)

Finally, L(φmove(G,S3,Y)
pre) ⊆ L(φS2), thus, we can execute move(G,S3, Y) which

leads to the successor state S3, such that S2 move(G,S3,Y)−−−−−−−−−→ S3, and represented as:

S3 = Block(G)∧
Block(Y) ∧ ¬On(Y, S1) ∧On(Y, S4) ∧On(G,Y) ∧ Clear(G)∧

Clear(S3) ∧ ¬Clear(S4) ∧ ¬On(G,S3) ∧ Clear(S1) ∧ ¬Clear(Y)

3.1.3 Timing

We now introduce a novel timing model for non-instantaneous actions with uncertain
durations, which we use both for mapping e-states to execution time and for limiting
the sequence of actions an agent can perform. The problem of representing and
reasoning about durative actions has been considered by other approaches, although
not many are able to deal with uncertain durations. In particular, there has been
some work in modeling durative actions with continuous change (e.g. [Claßen, Hu,
& Lakemeyer, 2007]), but in these cases the duration of actions has been considered
deterministic. The only work we are aware of, which deals with uncertain durative
actions, has been developed in the frame of MDPs (e.g. [Marecki, Topol, & Tambe,
2006; Boyan & Littman, 2000; Li & Littman, 2005]), but does not provide a semantic
characterization of the resulting languages.

We assume that agents act under the constraint of having a maximum execution
time of T . Furthermore, we assume that agents are uncertain both about the exact
time they start acting and about the duration of their actions. These assumptions are
suitable in many domains such as robotics. In fact, especially in multi-robot systems,
it is very hard to start robots exactly at the same time or to synchronize their clocks to
a common reference. Moreover, it is almost impossible to predict the exact timing of

56 3. Multi-Agent Planning Games

actions for robots because these depend on many factors such as exogenous events,
ability to perform actions in different environments or even consumption of actuators.
This uncertainty has a perceivable impact on knowledge since it is hard to devise a
priori when some information will be known.

Syntax

In this dissertation, we represent uncertainty about time through probability distribu-
tions. We assume that the time distributions can be described by a finite number of
parameters as, for example, the Gaussian distributions (i.e. by mean and variance) or
the exponential distributions. In particular, a Gaussian distribution which has mean
of 5 and a variance of 2 (Figure 3.4 (a)) is represented as N{5, 2}.

We represent through time distributions the uncertainty of the time an agent starts
to execute, denoted DI , and the duration of actions. Formally, we have to add a third
component to our action descriptions in KB, namely dα

t , describing, through a finite
number of parameters, the probabilistic duration of an action α. Thus, an ordinary
action α is represented in the KB as a triple 〈φα

pre, φ
α
eff , d

α
t 〉.

Semantics

A probability distribution over time is a function which assigns a probability to time
values, such that the sum of all the probabilities over time is one. The execution tim-
ing is a mapping t from epistemic states to probability distributions, which represent
the probability of reaching an e-state at a given time during execution. For example,
given an epistemic state S, its execution timing t(S) could be a Gaussian distribution
which has mean 5 and variance of 2 (i.e. t(S) = N{5, 2}). We denote with t̂(S) the
mean of the time distribution t(S). In the previous example, t̂(S) = 5. The probabil-
ity that an epistemic state holds before the time limit T , can be found easily through
integral calculation. In fact, the probability that a time distribution p(τ) is less than a
given value, say T , is: ∫ τ=T

τ=−∞
p(τ) dτ.

Given that we want to allow agents to act for at maximum T time units, we char-

acterize all e-states that have a positive probability to respect the time constraints:

Definition 3.2 An e-state S is time-admissible if
∫ τ=T
τ=−∞ p(τ) dτ > 0. Given a time-

admissible initial e-state SφI and a time constraint T , a plan p = 〈α1, . . . , αK〉 is

time-admissible iff:

3.1. Reasoning about Actions with Uncertain Duration 57

• SφI is time-admissible

• ∀j ∈ [1, . . . ,K] Sj , such that SφI

α1;...;αj−−−−−→ Sj , is time-admissible

Depending on the type of time distributions, the actions available to the agent and
the initial state description, the set of possible time-admissible plans may be infinite.
To limit the possible sequences of actions to be finite we define ε-time-admissible
states as those states which have a probability to hold before T greater than ε (i.e.∫ τ=T
τ=−∞ p(τ) dτ > ε). The definition easily generalizes to ε-time-admissible plans.

In the following we denote ε-time-admissibility simply as time admissibility, and use
for our examples .5-time-admissibility which, for a generic epistemic state S results
in t̂(S) ≤ T . All the results presented in the remainder of this dissertation are still
valid if the general time-admissible concept is used, except for the finiteness result for
the FSA representing the semantics of MAPGs which require ε-time-admissibility.

The initial epistemic state SφI must be time-admissible and is associated with the
time distribution DI . Given an executable action α executed at an epistemic state S,
we can compute the distribution of the successor state S∗ = succ(S, α) by cumu-
lating the two time distributions associated with S and α, through the convolution
operator ∗. Formally, the successor e-state of S, after the agent performs an exe-
cutable action α, has a time distribution equal to t(S) ∗ dα

t . The convolution of two
time distributions f and g is written f ∗ g. It is defined as the integral of the product
of the two functions after one is reversed and shifted. As such, it is a particular kind
of integral transform:

(f ∗ g)(t) =
∫ b

a
f(τ)g(t− τ) dτ

We require that the time distributions are closed with respect to convolution.2

That is, for example, if we convolute two Gaussian distributions we still obtain a
Gaussian distribution. This property is important because, in this case, we are guar-
anteed to maintain a closed form solution, if it exists, to integral calculation (used for
the utility) which is computationally cheap. Nevertheless, there are nowadays fast
computational tools for convolution such as fast convolution, which for the discrete
case, take O(N logN) arithmetical operations, where N is the number of elements
of the series.

Example

Consider the Slotted Blocks World problem previously described. We now enrich this
description with timing and assume that the agent is allowed to act until T equals 40

2In general, we also requite, for modelling soundness, time distributions to be positive since they

represent duration of actions (or sequences of actions). For the sake of readability we do not enforce

this requirement and use Gaussian distributions for our examples.

58 3. Multi-Agent Planning Games

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Time

Action Duration Time Distribution

d(x)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70

P
ro

ba
bi

lit
y

Time

S Time Distribution

S1(x)

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70

P
ro

ba
bi

lit
y

Time

S_1 Time Distribution

S1(x)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70

P
ro

ba
bi

lit
y

Time

S_2 Time Distribution

S2(x)

(c) (d)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70

P
ro

ba
bi

lit
y

Time

S_3 Time Distribution

S3(x)

(e)

Figure 3.4: An example of the dynamics of local state timing under the effect of an

action with uncertain duration.

3.1. Reasoning about Actions with Uncertain Duration 59

time units. Assume that t(SφI) = N{5, 2} (Figure 3.4(b)) representing the fact that
the uncertainty is Gaussian and the expected timing of the initial e-state is 5 with a
variance of 2. The actions available to the agent are the same as previously described
except that their description explicitly represents the uncertainty of their duration:

move(b, x, y) = 〈φmove
pre , φmove

eff ,N{15, 4}〉

Thus, in this example, all the actions have the same duration which is Gaussian
with expected duration of 15 and a variance of 4 (Figure 3.4(a)). φmove

pre and φmove
eff

are the same as in the previous examples. Consider now the plan:

p = 〈move(G,Y, S3);move(Y, S1, S4);move(G,S3, Y)〉

We already showed that this plan is correct, and now we verify if it is time-admissible.
For the sake of readability, we call the sequence of e-states deriving from the ordered
application of actions in p, starting from SφI : S1, S2, and S3 respectively. In par-

ticular, SφI

move(G,Y,S3)−−−−−−−−−→ S1, S1 move(Y,S1,S4)−−−−−−−−−→ S1 and S2 move(G,S3,Y)−−−−−−−−−→ S3. The
timing for these e-states can be compute through the convolution operator and results
in:

• t(S1) = N{20, 6} depicted in Figure 3.4(c)

• t(S2) = N{35, 10} depicted in Figure 3.4(d)

• t(S3) = N{50, 14} depicted in Figure 3.4(e)

Notice that every time we apply an action the uncertainty of the timing of the
successor state increases. Indeed, this phenomenon is due to the cumulation of the
uncertainties in the duration of each action performed. The plan p is not .5-time-
admissible because S3 is not .5-time-admissible. Actually, recalling the condition of
admissibility for an e-state S: t̂(S) ≤ T , t̂(S3) = 50 ≤ 40 does not hold. A time
admissible plan could be:

p′ = 〈move(G,Y, S3);move(Y, S1, S4)〉

Effectively, for p′ both S1 and S2 are time-admissible.

3.1.4 Utility of Plans

In order to assess the goodness of a plan we need to define a metric which takes
into consideration both the performance with respect to the agent’s objective and the
probability of terminating execution within the time constraints. The main idea is to
evaluate a plan based on the achievements the agent will be aware of once the plan
is executed, weighted by the probability that the plan is terminated within the time

60 3. Multi-Agent Planning Games

constraints. The evaluation of the achievements is based on a utility function which
defines an ordering relation among epistemic states assigning them a numerical value.
For example, we could evaluate 2 the state represented by a∧b, 1 the state represented
by ¬a ∧ b and zero all the others. This definition is a generalization of the concept
of goal. Indeed, we can represent the fact that a ∧ b is a goal, by assigning to it the
utility of one, and assigning the utility of zero to all the other states.

Syntax

At first, we need to define a utility function u(·) which can measure the goodness of
knowledge φ of an agent. The utility function can be represented as a linear combina-
tion of fluent literals l, that is

∑
l∈L(φ) βl · l, where βl is a real number giving a value

to each literal. The model of utility is quite simple since it assumes that the value of a
property is independent of the value of other properties. We generalize, this concept
by weighting formulas rather than literals (e.g. as for weighted MAX-SAT). In this
case, given a set of formulas f ∈ F obj we define the utility function

∑
f∈F obj βf · f .

Notice that, this definition corresponds to the previous one when F obj is the set of
literal conjunctions composed of one literal.

Semantics

The utility of a plan p, ignoring time considerations, is defined in terms of the last
epistemic state it reaches Sf . Formally, the utility of a plan p = 〈α1; . . . ;αK〉, where
SφI

α1;...;αK−−−−−→ Sf , is defined as pu(p) = u(φSf). The u(·) function is a weighted
sum of formulas which are interpreted as true. Given a formula φ which represents
an epistemic state Sφ, we define the evaluation function eval(·) as:

eval(φ, f) =
{ 1 if Sφ |= f

0 otherwise

Thus, the utility function can be defined as:

u(φ) =
∑

f∈F obj

βf · eval(φ, f)

Example Consider the utility function described by the following weighted sum of
literals: u = 3 · a + 2 · b − 3 · ¬c. If the agent is currently in the epistemic state
represented by the formula φ = a ∧ ¬c we can compute its utility u(φ) as 3 · 1 + 2 ·
0 − 3 · 1 = 0. Consider now the case where the utility function is represented as a
weighted sum of conjunctions: u = 3 · (a ∧ ¬c) + 2 · (a ∧ ¬b) + 3 · ¬c. In this case
u(φ) = 3 · 1 + 2 · 0 + 3 · 1 = 6.

3.1. Reasoning about Actions with Uncertain Duration 61

Despite the fact that a plan p leads to an epistemic state Sf with a high utility,
it may be of no use if this happens after a robot runs out of batteries, or in general
after the agent exceeds the time constraints. Considering the proability that an e-state
holds within a given time T , we can compute the probability of the final state of a
plan holds within T . This value can then be used to compute the expected utility of
the plan pu(p):

pu(p) = u(Sf) ·
∫ τ=T

τ=−∞
p(τ) dτ.

where p = t(Sf).

Example

Consider the slotted blocks world example and the time-admissible plan

p′ = 〈move(G,Y, S3);move(Y, S1, S4)〉

from the previous examples. Assume that the utility function is defined as:

6 ·On(Y,G)− 1 ·On(Y, S4) + 3 · Clear(S2) + 4 ·On(G,S3)

In this case, recalling the time limit T = 40, the utility for p′ is:

pu(p′) = u(φS2) ·
∫ τ=40

τ=−∞
N{35, 10} dτ

Notice that for a Gaussian with mean µ and variance σ2:

Figure 3.5: Probability of execution timing less than 40.

62 3. Multi-Agent Planning Games

1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)

the integral computing the probability that the random variable has a value smaller
of equal to x (see Figure 3.5 for t(S2) with x = 40) is known as the cumulative
distribution function (cdf):

1
2

(
1 + erf

x− µ

σ
√

2

)

The erf(·) is a primitive in many programming languages and is implemented as a
lookup table, allowing for fast computation.

Thus, we can compute pu(p′) as:

(6 · 0− 1 · 0 + 3 · 0 + 4 · 1) · 1
2

(
1 + erf

40− 35
10
√

2

)
=

4 · 0.6914625 = 2.76585

3.1.5 Timed Single Objective Single Agent Planning

We now provide a formal description of the single agent planning problem with ac-

tions with uncertain duration when acting under time constraints. We call this a timed

single objective single agent specification (Timed-SOSA):

Definition 3.3 A Timed-SOSA is 5-tuple

〈φI ,KB, T,DI
i , u(·)〉

where:

1. φI is the representation of the initial knowledge.

2. KB is a set of action descriptions of the form 〈φα
pre, φ

α
eff , d

α
t 〉.

3. T is the time value within which execution of plans must be terminated.

4. DI is an initial time distribution.

5. u(·) is a utility function evaluating knowledge.

The semantics of the system is defined by the reachable sink nodes of the closure
of the transition system implicitly defined by the problem specification. In particular,
the transition systemMKB,φI = (VM , EM) may be inductively defined as the biggest
graph, where nodes are e-states and edges actions performed by the agent, such that:

3.2. Distributed Knowledge and Asynchronous Execution 63

• SφI
i
∈ VM where t(SφI

i
) = DI

i

• Given an action α defined in KB, an e-state S ∈ VM , if α is executable in
S and S∗ = succ(S, α) (where t(S∗) = t(S) ∗ dα

t) is time-admissible, then
S∗ ∈ VM and (S →α S

∗) ∈ EM .

The resulting transition system characterizes the semantics of the Timed-SOSA through
its sink nodes which represet possible epistemic outcomes of plans.

Such definition has an immediate operational counterpart and can be used to al-
gorithmically solve the problem. We can search in this graph all the possible paths
and extract the associated plans from them. Actually, given a path in MKB,φI from
the source node SφI

i
to a sink node, we can extract the associated plan by consid-

ering the ordered sequence of labels from the edges of the path. For example, the
plan associated with the path SφI

i

α1;...;αK−−−−−→ Sf is 〈α1; . . . ;αK〉. We define the set
of possible plans Pl, as the set of all the sequences of actions {〈α1; . . . ;αK〉}, with
K > 1, associated with paths of MKB,φI from the source node SφI to a sink node.

The solution to a Timed-SOSA is, thus, defined as a plan of Pl which maximizes

the expected utility of the agent:

Definition 3.4 The solution to a Timed-SOSA 〈φI ,KB, T,DI
i , u(·)〉 is a time-admissible

plan p such that

p = arg max
p′∈Pl

pu(p′).

Example Consider a graph MKB,φI=(V,E) as follows:

• V = {SφI
i
, S1, S2, S3, S4}

• E = {SφI
i
→α1 S

1, S1 →α2 S
2, S1 →α3 S

3, S3 →α4 S
4}

There are only two possible plans which are associated with the paths from SφI
i

to
S2 and S4. These two plans are p1 = 〈α1;α2〉 and p2 = 〈α1;α3;α4〉, respectively.
Thus, Pl = {p1, p2}. Assume that the utilities of the plans are pu(p1) = 4 and
pu(p2) = 3. In this case the solution to the Timed-SOSA is p1 since it has the
highest utility in Pl.

3.2 Distributed Knowledge and Asynchronous Execution

In this section, we generalize the concepts presented in the previous section to the
case of multiple agents pursuing possibly different objectives. We, thus, need to
address the issue of how a distributed set of epistemic states interact and present the
semantics of the system. The latter issue, is addresses by providing the semantics in

64 3. Multi-Agent Planning Games

terms of reachable sink nodes of a finite state automaton representing the system. The
nodes of the automaton are considerably different with respect to the single agent case
because, instead of representing a timed e-state, they represent a collection of timed
e-states, one for each agent. This characterization allows us to model the semantics
of distributed knowledge as the dynamics of collections of e-states.

The separate representation of the knowledge available to each agent is necessary
to allow plans for distributed execution. Indeed, if each agent is executing its plan
independently of other agents, without the aid of a central coordinator, he can not
base its decisions on the information available to other agents.

Syntax

Roughly, the syntax of the multi-objective multi-agent problem, called MAPG, is a

collection of Timed-SOSA, one for each agent composing the system, with the same

initial state description. Notice that we assume that agents are heterogeneous, in the

sense that they can possibly be capable of different actions or, of the same actions,

but with different timing performance. Despite the fact that the system could be

characterized as a set of Timed-SOSA descriptions, we provide, for ease of notation,

a global description:

Definition 3.5 A Multi-Agent Planning Game (MAPG) is a 6-tuple

〈Ag, ΦI , KB, U , DI , T 〉

such that:

1. Ag = {1, . . . , n} is the set of agents.

2. ΦI = {φI
i | i ∈ Ag} is the set of descriptions of the initial knowledge, where

φI
i = φI

j∀i, j ∈ Ag.

3. KB = {KBi | i ∈ Ag} is a set of action descriptions.

4. T = {Ti | i ∈ Ag} is a set of the time values within which execution of plans

must be terminated.

5. DI = {DI
i | i ∈ Ag} is a set of initial time distributions.

6. U = {ui(·) | i ∈ Ag} is a set of utility functions.

3.2. Distributed Knowledge and Asynchronous Execution 65

The syntax of the elements of a MAPG is exactly as for Timed-SOSAs.3 However,
the semantics is considerably different because of the distributed nature of knowledge
and the asynchronous execution of actions.

Semantics

The major difference with respect to the single-agent case is that, in a distributed
context, each agent has its own local view of the world, which he evolves during
execution and which may be different from the views of other agents. To this end,
we denote an e-state, for agent i, as Si, and we call it local state, to stress the fact
that the e-state refers to the local view of agent i. From a global point of view we
consider profiles of local states, called global states. Moreover, with each global
state we associate a history of actions which leads to that state. The history is used
to distinguish global states which have the same sets of local states, but which were
reached trough different sequences of actions. This distinction is necessary, as we
will see in Chapter 5, because different paths have a different strategic value despite
the fact that they lead to the same outcome. This concept of history is also used for
extensive games and we suggest the reader who is interested on a detailed discussion
in the strategic relevance of histories to read a survey on the topic in [Osborne &
Rubinstein, 1994].

Formally, a global state S, for a system of n agents, is a tuple 〈S1, . . . , Sn〉,
where Si is the local state of agent i, and a function h(S), which returns the history
of the global state S. A history for a global state S is defined as a sequence of pairs
h(S) = (〈a1, β1〉; . . . ; 〈anβk〉) where each pair 〈ai, βi〉 is composed by an action
βi and the agent who performed it ai. We say that two global states, S and S′, are
equivalent (i.e. S=S′) if they have the same history (i.e. h(S) = h(S′)).

We describe the semantics of MAPGs, as for Timed-SOSAs, as the set of sinks
of a graph (Section 3.5) encoded by KB, where nodes are global states and edges
are labeled with a pair denoting an action and the agent who performed the action.
The executability of an action is, thus, defined over global states and its performance
results in a successor global state. As a first approximation, we can assume that an
action of an agent i, depends on (and affects) only the i-th local component of a
global state. In particular, this means that for an action to be executable by agent i in
a global state S, it is sufficient to verify if the preconditions are satisfied for Si. In the
same way, the effects of actions performed by i will affect just the i-th component of
the global state.

Given that agents may change their local components of a global state through
actions with different (uncertain) durations, the timing of local states for a global
state may be not aligned. For example, a global state for two agents could have a

3Some minor variants of the syntax of the description of actions will be be presented later on and

can be ignored here.

66 3. Multi-Agent Planning Games

local state for Alice at 17:00, knowing that it is rainy, and one for Paul at 18:00,
knowing that it is sunny. Thus, global states are profiles of local states scattered in
time. This leads to an interesting characterization of the execution of a sequence of
actions. Indeed, a sequence 〈a1, β1〉; . . . ; 〈anβk〉 represents actions as if they were
executed in sequence by the agents. Nevertheless, each action for a given agent i
affects its own local state and increases its estimated execution timing, while leaving
unchanged the one of other agents’ local states. Thus, each action performed by an
agent is asynchronous with respect to other agents’ actions. Intuitively, the resulting
execution model is distributed because actions are asynchronous and information is
gathered independently by each agent. Some more detail on the distributed nature
of MAPGs is given in Section 3.4, while a formal model of distributed execution is
defined in Chapter 4.

We now provide the definitions of executable actions and successor states for
global states. Recall that (see page 29), when referring to a generic tuple of elements
t = 〈t1, . . . , tn〉, we denote 〈t∗i , t−i〉 the tuple t where ti has been replaced by t∗i .
In particular, ti is the i-th element of t, while t−i are all the remaining elements. A
global state S models a formula φ for agent i (S |=i φ) iff Si |= φ.

We say that an action α = 〈φα
pre, φ

α
eff , d

α
t 〉 is executable by agent i in a global

state S, if 〈φα
pre, φ

α
eff , d

α
t 〉 ∈ KBi and S |=i φ

α
pre.

Given a global state S and an action α, executable in S by agent i, we denote the
successor global state Successor(S, α, i) = 〈succ(Si, α), S−i〉, where t(succ(Si, α)) =
t(Si) ∗ dα

t . Moreover, assuming, without loss of generality, that the history of S
is h(S) = (〈a1, β1〉; . . . ; 〈anβk〉), the successor global state’s history is defined as
h(S∗) = (〈a1, β1〉; . . . ; 〈an, βk〉; 〈i, α〉).

The initial global state for a MAPG is the n-tuple 〈SφI
1
, . . . SφI

n
〉 where t(SφI

i
) =

DI
i ∀i ∈ [1, . . . , n]. Moreover, the history for the initial global state is an empty

sequence of actions (i.e. h(SφI
1
) = ∅).

We extend the notion of time-admissibility, presented for local states, also to

global states. A global state is time-admissible if each local state composing it is

time-admissible:

Definition 3.6 A global state 〈S1, . . . , Sn〉 is time admissible iff

∀i ∈ [1, . . . , n] Si is time-admissible

From now on we assume that all global states are time-admissible.
Agents are able to locally reason about their actions, thus, leading to independent

evolutions of local states which are loosely coupled by the notion of global state. This
interpretation must, nevertheless, be extended for in two main directions: i) agents
can communicate affecting other agents’ local states and ii) even though agents may

3.2. Distributed Knowledge and Asynchronous Execution 67

not be completely aware of each others’ actions, their actions may damage or aid
other agents, and this has to be taken explicitly into consideration.

Example

RC

B2
R2

L
B1
R1

a_r a_b

Figure 3.6: Example of a Multi-Agent Hanoi Tower problem

To better explain the described approach, we formalize a version of a Multi-
Agent Hanoi Tower problem. Figure 3.6 shows the initial state for our problem. Two
agents ab and ar have to stack blocks in a given order (i.e. smaller blocks on top
of larger ones). Moreover, blocks have a color, and agent ab can move only blue
blocks while agent ar can move only red blocks. The table is composed by three
slots R, C and L. The actions agent ar, resp. ab, can perform are moveR(b, x, y),
resp. moveB(b, x, y), that moves a block b (respectively red or blue) from x to y.
We do not report here the complete formalization of the problem which is similar
to the previous slotted blocks world example. Assume that the initial global state
SI = 〈Sar , Sab

〉 is composed by the two local states Sar and Sab
, where:

Sar = Sab
= BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1)∧

RedBlock(R2) ∧On(B1, L) ∧On(R1, B1) ∧ Clear(R1) ∧ Clear(R)
∧On(R2, C) ∧On(B2, R2) ∧ Clear(B2)

The description of the initial state is incomplete because it does not describe
some of properties such as, for example, ¬On(R1, B2). The initial time distribution
is N{0, 2} for both local states, and both actions have a duration of N{5, 3}. Both
agents are allowed to act at most for Tar = Tab

= 5. The action move(R1, B1, R)
is executable for agent ar and results in the successor global state S∗ = 〈S∗ar

, S∗ab
=

68 3. Multi-Agent Planning Games

Sab
〉. The new local state S∗ar

for ar can be represented as

S∗ar
= BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1) ∧On(R1, R)∧
RedBlock(R2) ∧On(B1, L) ∧ ¬On(R1, B1) ∧ Clear(R1)
∧On(R2, C) ∧On(B2, R2) ∧ Clear(B2)
∧Clear(B1) ∧ ¬Clear(R)

while the local state of ab is unchanged by the action of ar:

S∗ab
= Sab

= BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1)∧
RedBlock(R2) ∧On(B1, L) ∧On(R1, B1) ∧ Clear(R1) ∧ Clear(R)
∧On(R2, C) ∧On(B2, R2) ∧ Clear(B2)

The new time distributions for S∗ are t(S∗ar
) = N{5, 5} and t(S∗ab

) = N{0, 2},
and thus S∗ is time-admissible.

3.3 Information Share and Synchronization

In multi-agent systems, where the information is distributed among the agents, com-
munication is a fundamental issue. The plan based theory of speech acts [Searle,
1970], usually defines communication actions (i.e. speech acts) as requests to an
agent to perform some action. Nevertheless, the focus of our work is on information
share and, thus, we analyze the problem in terms of communication and on its effects
on knowledge. Notice that, communicating some information to another agent may
lead it to perform some action given its current knowledge and its objectives.

In this dissertation, we consider point to point (opposed to broadcast) commu-
nication, because in many problems the information share requirements are minimal
with respect to the overall information, and, thus, agents need to reason when and to
whom to communicate. Moreover, point to point communication allows us to model
a system whose synchronization in time is loosely coupled, and, thus, which allows
asynchronous and distributed execution.

We can identify two fundamental paradigms for point to point communication
policies: push and pull. A push is an explicit communication which “pushes” in-
formation into an agent, while a pull “pulls” information from another agent. The
paradigm we use can be defined as a push-pull because no agent can unilaterally
choose to pull or push information from/to other agents. In particular, the agents
must agree to share information. We model this concept through two primitives,
request sync and accept sync which both agents must perform to establish a com-
munication. The communication process, then, exchanges the information available
to the two agents synchronizing their local states. After the synchronization process

3.3. Information Share and Synchronization 69

the two agents will have identical local states, in particular, with the same execu-
tion time distribution. Thus, synchronization can be used both to synchronize joint
activity and to share information.

Syntax

We have to enrich the syntax of MAPGs to represent communication. In particular,
assuming that some agents may not able to communicate, we denote the set of agents
able to communicate Agc ⊆ Ag. Furthermore, we provide the communication prim-
itives necessary to represent the request of information and direct communication.
Formally, we enlarge KBi, with i ∈ Agc with the action descriptions:

• request sync(i, s) ∀s ∈ Agc\{i}
• accept sync(i, r) ∀r ∈ Agc\{i}
The first action is a request for synchronization with s performed by i, while

the second is an acceptance of synchronization with r performed by i which starts
a process of information share between i and r. Furthermore, we add a description
of the duration of a synchronization between agents s and r in terms of a probability
distribution dsync(s,r)

t :

〈sync(s, r), dsync(s,r)
t 〉 ∀s, r ∈ Agc s.t. s 6= r

Semantics

We assume that an accept sync(s, r) action performed by s when r did not explic-
itly perform a request sync(r, s) (or did perform a request sync(r, s), but already
received the relative accept sync(s, r)), has no effect, because the recipient drops
the information as unsolicited. Whenever an agent r performs a request sync(r, s)
action, it stops from further acting until s performs a accept sync(s, r). This event,
not only enables the agent to continue acting, but also merges the local states of s and
r, enriching each agent’s local state with the information available to the other agent.

Thus, we need to define a procedure (i.e.merge(·)) to reconstruct the local states
of the agents after a synchronization operation. When two agents s and r synchronize,
we could simply reconstruct the new local states as the conjunction of the literals
in their local states (i.e. L(Sr) ∪ L(Ss)). In this case, L(Sr) and L(Ss) could be
inconsistent. For example, consider if s obtained a, before agent r acts changing a
to ¬a. If the two agents synchronize they would obtain a local state where both a
and ¬a hold. In order to avoid such problems, we need to reason about how actions
interact. In the next section, we present a model of interaction among actions and
provide a formal specification of the merge function in terms of the succ(·) function.
For the time being, we can assume the merge function to be suitably defined.

70 3. Multi-Agent Planning Games

The accept sync(s, r) action is the only action which can change the local state
of another agent. The successor global state of S, after an accept sync(s, r) action,
is the global state 〈S∗r , S∗s , S−sr〉 such that: S∗r = S∗s = merge(Sr, Ss).

The timing behavior of synchronization actions is different from other actions.
Their definition reflects the fact that communication enforces synchronization con-
straints among different local states. In particular, after a request sync(r, s) is exe-
cuted by r, the successor local state of r has an undefined time distribution reflecting
the fact that the agent can not predict how much it has to wait until s accepts the syn-
chronization. In particular, the action ends when agent r is sent an accept sync(s, r)
by the agent s or when the game has finished. The new time distributions labelling
the successor local states of S∗r and S∗s , computed after an action accept sync(s, r)
by s (i.e. S∗ = Successor(〈Ss, Sr, S−sr〉, accept sync(s, r), s)), are:

1. t(S∗s) = t(Ss) ∗ dsync(s,r)
t .

2. t(S∗r) = t(S∗s)

Note that, to enforce the timing constraints induced by the synchronization process,
the time distributions of the local states of both agents are synchronized (i.e. t(S∗r) =
t(S∗s)).

Timing and communication require to extend the notion of executability of ac-
tions. We require that an action of agent i, in order to be executable at a global state
S, has to be executable and the local state of i must have the smallest execution tim-
ing mean (i.e. t̂(Si)) among the local states of the agents which are not waiting for an
accept sync or performed a end activity action. Given a global state S, we denote
with Active(S) the set of agents which:

• are not waiting for an accept sync in S,

• did not perform a end activity action in h(S),

• and have at least an executable action in S.

Definition 3.7 An action α is time-executable by agent i at global state S if:

1. α is executable in g,

2. i ∈ arg min{j∈Active(S)} t̂(Sj).

Property 1 states that the action can be executed in the current global state. Moreover,
Property 2 is necessary for the consistency of the synchronization process. In particu-
lar, Property 2 avoids “time travelling” phenomena. Assume that a request sync(r, s)
action is performed by r at time tr and a accept sync(s, r) action with duration
d

sync(s,r)
t at time t(Ss). Given the successor global state S∗, if t(S∗s) = t(Ss) ∗

3.3. Information Share and Synchronization 71

d
sync(s,r)
t is such that t̂(S∗s) < t̂(Sr), the recipient agent would travel back in time

(i.e. the time when he finishes the synchronization process t(S∗r) is before its request
t(Sr)). This problem is avoided because of Property 2 in Definition 3.7 which guaran-
tees that t̂(Ss) ≥ t̂(Sr). Actually, given that time monotonically increases when ac-
tions are performed (i.e. t̂(S∗s) ≥ t̂(Ss)), we are sure that the synchronization process
will end after the request for synchronization (i.e. t̂(S∗r) = t̂(S∗s) ≥ t̂(Ss) ≥ t̂(Sr)).

Example

Consider the case of the previous Multi-Agent Hanoi Tower problem, where Ag =
Agc = {ar, ab} and where the agents are at the global state S = 〈Sar , Sab

〉:

Sar = BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1)∧
RedBlock(R2) ∧On(B1, L) ∧On(R1, B1) ∧ Clear(R1) ∧ Clear(R)

Sab
= BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1)∧
RedBlock(R2) ∧On(R2, C) ∧On(B2, R2) ∧ Clear(B2) ∧ Clear(R)

where both local states have an execution timing of N{0, 2}
Assume that agent ar performs a request sync(ar, ab) in S and, then, ab an

accept sync(ab, ar). The sync duration is N{1, 1}. The request sync(ar, ab) is
time-executable because:

• request sync(ar, ab) is always executable

• ar ∈ Active(S)

• ar ∈ arg min
j∈Active(S) t̂(Sj) = {ar, ab}

The successor global state S′ is exactly as SI except that t(S′ar
) is undefined.

Due to the fact that t(S′ar) is undefined, agent ar 6∈ Active(S) and, thus, has no
time-executable actions in S′. Next, agent ab performs a accept sync(ab, ar), which
is time executable because:

• accept sync(ab, ar) is executable because ar requested a sync from ab

• ab ∈ Active(S′)

• ab ∈ arg min
j∈Active(S′) t̂(S′j) = {ab}.

72 3. Multi-Agent Planning Games

The successor global state S′′ is computed updating ar’s and ab’s local states
through the merge function:

S′′ar
= S′′ab

= BlueBlock(B1) ∧BlueBlock(B2) ∧RedBlock(R1)∧
RedBlock(R2) ∧On(B1, L) ∧On(R1, B1) ∧ Clear(R1) ∧ Clear(R)
∧On(R2, C) ∧On(B2, R2) ∧ Clear(B2)

The timing for the local states is now aligned and is t(S′′ar
) = t(S′′ab

) = N{0, 2} ∗
N{1, 1} = N{1, 3}.

The purpose of sync actions is double faced. On the one hand, the synchroniza-
tion process allows us to synchronize the operations among two asynchronous plans.
On the other one hand, this process allows us to spread knowledge among any two
agents through a point to point communication. In this simple example, the merge
function is the union of the literals of the local states, because there are no inconsis-
tencies between S′ar

and S′ab
.

3.4 Interaction Among Actions

Up to this point, we have ignored that there can be negative interactions among ac-
tions. In fact, agents act independently of other agents’ actions except for communi-
cations. Nevertheless actions can conflict.

Example Consider the slotted blocks world domain previously described. There are
two agents a1 and a2 knowing that the table is composed of four slots S1, S2, S3, S4
and there are two blocks B1 and B2, sitting on slot S1 and S2, respectively. More-
over, the two agents know that B1, B2, S3, and S4 are clear. Agent a1 decides
to perform the sequence of actions move(B1, S1, S3);move(B1, S3, S1) and agent
a2 the sequence move(B2, S2, S3);move(B2, S3, S4). Each plan is a valid plan if
considered on its own, but if we execute them in parallel there is th risk that both
agents try to put a block on S3 at the same time violating the condition of S3 being
clear.

Intuitively, we can understand if any two actions interfere, by looking at their
preconditions and effects. For example, if the effects of two actions are satisfiable
together, there is no risk to end them at the same time. Despite this, during asyn-
chronous execution of actions, we do not have any control among the rates of actions.
For example, an action could end before the other starts or they could end together.
In general, if any pair of conditions defining two actions is jointly satisfiable, we say
that the two actions commute. Commuting actions can safely be executed in parallel.
Thus, to ensure that in a plan two non commuting actions do not interfere, we have
to make sure that they are separated in time and that the agent which performs the

3.4. Interaction Among Actions 73

second action is aware that the possibly negative effects of the first action have been
canceled by some other action. We solve this issue by using synchronization actions.

In the previous example move(B2, S2, S3) and move(B1, S1, S3) are clearly
not commuting, because they try to put a block on the same slot, and thus the pre-
condition of each action (i.e. Clear(S3)) conflicts with the effect of the other (i.e.
¬Clear(S3)). Nevertheless, if we enforce a synchronization between the two agents
which enforces to executemove(B1, S1, S3);move(B1, S3, S1) before the sequence
move(B2, S2, S3);move(B2, S3, S4), the overall sequence is safe (i.e. the actions
do not interfere). Actually,move(B2, S2, S3) is executed beforemove(B1, S1, S3),
and the second agents knows, based on the communication he received, that the ac-
tion move(B1, S3, S1) cleared slot S3 from B2.

This theory is then used to develop a technique (i.e. the merge(·) procedure) to
reconstruct the local states of agents involved into a synchronization process. In
particular, we look at the history of actions leading to the global state where an
accept sync is performed. From this histoy we select the actions which each agent
is aware were performed. These actions include the actions performed by each agent
and the ones of agents which communicated with them, directly or indirectly before
the synchronization (i.e. agents which communicated to an agent which is involved
in a synchronization, agents which communicated to an agent which communicated
to another agent which is involved in a synchronization, and so on . . .). We can,
then, find a linearization of these actions and compute the merged local state through
the successor function for local states, as if it was only one agent to perform it. The
approach is consistent with the assumption that in each synchronization the agents
share all the information available to them up to that moment. This procedure is pos-
sible because the agents have the same initial local state and the sequence is, as we
will see in the following, to be safe. Actually, in this case, we are guaranteed that the
actions in the sub-sequence are executable and, thus, that we can correctly compute
the resulting local state.

Syntax

To characterize the fact that some properties must hold during the execution of non-
instantaneous actions, we need to add a new syntactic element to the description of
actions, which we call execution conditions. Formally, an action with execution con-
dition is a 4-tuple 〈φα

pre, φ
α
ex, φ

α
eff , d

α
t 〉 where φα

ex is the execution condition repre-
sented as a literal conjunction. Informally, execution conditions are properties which
must hold during the execution of actions.

74 3. Multi-Agent Planning Games

Semantics

We characterize the semantics of interaction among actions, in a similar way to the

limited effect of actions theory [Georgeff, 1988], in terms of a binary relation ∼:

Definition 3.8 Two actions αi and αj (which are not synchronization actions) are

said to be commuting (αi ∼ αj) iff

∀c, c′ ∈ {pre, ex, eff} S
φ

αi
c ∧φ

αj

c′
6|= ⊥

If two actions are commuting they allow any interleaving because they are inde-
pendent of one other. We assume that synchronization actions are always commuting
because they do not affect the world state and the conflicts can always be solved by
themerge procedure. Nevertheless, two agents may both perform a request sync(·)
to each other, leading to a deadlock situation. We consider this situation admissible
because it will lead to plans where the agents can not perform further actions and is
equivalent to the case where both agents perform an end activity action.

We denote a sequence of actions for a MAPGs as a sequence of pairs p =
(〈i, α1〉; . . . ; 〈j, αK〉) where each pair 〈i, α〉 denotes an action α performed by a
agent i. The definition is equivalent to the one of histories. This representation of
a sequence of action is not informative about the temporal constraints enforced dur-
ing execution. Actually, we recall that a sequence of actions when performed by the
system is parallel and not strictly sequential. We, thus, provide the executable repre-
sentation of such sequence which explicits the distributed nature of the execution of
the sequence. The executable representation is a n− tuple of sets 〈p1, . . . , pn〉 of ac-
tions and a precedence relation ≺p. The n sets 〈p1, . . . , pn〉 group actions performed
by the same agent. Each pi represents the i’s part of the sequence p, and ≺p repre-
sents temporal constraints on actions. The semantics of MAPGs induces an ordering
≺p which is total among the actions in the same set pi, and partial between sets of
different agents. In particular, actions executed by the same agent must be executed
in a strict order, while actions performed by different agents can be performed asyn-
chronously unless they are explicitly sequenced through a synchronization process.
Roughly, the actions of two agents performed before a synchronization process must
be executed before the actions performed after the synchronization.

Definition 3.9 An executable representation for a sequence p = (〈i, α1〉; . . . ; 〈j, αK〉)
is a pair

(〈p1, . . . , pn〉,≺p) (3.3)

where pi are actions performed by i:

α ∈ pi ⇐⇒ ∃〈i, α〉 ∈ p (3.4)

3.4. Interaction Among Actions 75

and ≺p is a transitive binary relation such that:

αk ≺p αj ⇐⇒ ((3.5)

(∃i ∈ Ag | αk, αj ∈ pi ∧ k < j) ∨ (3.6)

(∃s, r ∈ Ag | αk = accept sync(s, r) ∈ ps, αj ∈ pr ∪ ps ∧ (3.7)

∃αv = request sync(s, r) ∈ pr | v < k < j) ∨ (3.8)

(∃s, r ∈ Ag | αk = request sync(s, r) ∈ pr, αj ∈ ps ∪ pr ∧ (3.9)

∃αv = accept sync(s, r) ∈ ps | k < v < j)) (3.10)

Formula 3.4 defines each set pi as the set composed by all, and only, the actions of
p performed by i. Formula 3.6 represents the fact that actions for an agent in the
sequence must be executed in a strict order. Nevertheless, actions performed by dif-
ferent agents have no execution ordering constraints, unless there is a synchronization
constraint. These constraints synchronize two plans at a given point in time and thus
define the precedence relation≺p between the actions of two different agents s and r
(Formulas 3.7-3.10). This means that p represents n asynchronous ordered sequences
of actions, possibly synchronized by communications. If ≺p does not hold between
the two actions αk and αh, we write αk 6≺p αh.

We now provide a definition of a safe sequence of actions (i.e. without negative

interactions). Safeness states that if two actions of different agents have no temporal

constraints they must commute (otherwise they could possibly incur in a conflict).

Definition 3.10 A sequence p, given its executable representation (〈p1, . . . , pn〉,≺p),

is safe iff ∀αk ∈ pi, αh ∈ pj i 6= j:

(αk 6≺p αh ∧ αh 6≺p αk) =⇒ (αh ∼ αk)

Note that, given the uncertainty of timing, we choose to provide a strong safeness

concept for our plans. In particular, we rely on explicit synchronization through com-

munication, rather than minimizing the probability that conflicting actions overlap.

Definition 3.11 Given a global state S, with a history h(S) = (〈a1, α1〉; . . . ; 〈ak, αK〉),
we say that action β is safely time-executable by i in S iff

• β is time-executable by i in S and

76 3. Multi-Agent Planning Games

• (〈a1, α1〉; . . . ; 〈ak, αK〉; 〈i, β〉) is safe.

In the following, for the sake of readability, we refer to safely time-executable actions,
simply as time-executable actions.

Merge

Based on the above considerations on interactions among actions, we can define the
merge(·) function in terms of the succ(·) function as follows. Consider a history p
for a global state S and its executable representation (〈ps, pr, p−sr〉,≺p). Consider,
without loss of generality, that the next action performed is a accept sync(s, r). The
merge function to compute the successor state can be obtained by choosing any total
ordering of the actions ps ∪ pr consistent with ≺p, say: α1; . . . ;αK . In this case, the
merge function can simply return S∗ such that:

SφI
r

α1;...;αK−−−−−→ S∗

This definition ignores the fact that s or r could have synchronized with other agents

Algorithm 3.1 Extract relevant actions for communication
Input: an action sequence 〈a1, α1〉; . . . ; 〈aK , αK〉 and a set of agents Ag

Output:the set of relevant actions Act

function getRelevantActions()

1: for i = K to 1 do
2: if αi ≡ accept sync(v, l) ∧ ((v 6∈ Ag ∧ l ∈ Ag) ∨ (l 6∈ Ag ∧ v ∈ Ag)) then
3: p′ = 〈a1, α1〉; . . . ; 〈ai−1, αi−1〉
4: Ag′ = Ag ∪ {v, l}
5: return Act ∪ getRelevantActions(p′, Ag′)
6: if ai ∈ Ag ∧ αi 6≡ request sync(s, r) then
7: Act = Act ∪ {αi}
8: return Act

before the merge and, thus, any exchanged information would get lost. In order to
solve this problem we consider an enlarged set of actions which takes into account
also the actions performed by other agents that are relevant to the merge procedure.
For example, if agents s and r are synchronizing their knowledge, but s previously
performed a synchronization with a third agent o, the merge procedure will not only
have to consider the actions of s and r, but also the actions o performed before syn-
chronizing with s.

3.4. Interaction Among Actions 77

Algorithm 3.1 describes the function getRelevantActions() which returns all
the relevant actions necessary to reconstruct the updated local state of two agents
which perform a synchronization operation. The algorithm iterates from the end of
the plan adding actions which are performed by the agents involved in the synchro-
nization (Lines 6-7). If the algorithm encounters a synchronization between two
agents v and l, and at least one of them is relevant for the merge procedure, it recur-
sively computes an enlarged action set on the remaining part of the plan considering
the set of relevant agents enlarged with v and l (Lines 2-5). Themerge(s, r, p), where
s and r are the agents who synchronize and p is the history of the global state up to
that moment, can be computed by choosing an ordering among the actions returned
by getRelevantActions(p, {s, r}) which is consistent with ≺p. This sequence can
then be used to compute the updated local states as previously described.

We can generalize the merge procedure to take into account all the agents Ag
in the system (i.e. merge(Ag, p)), rather than just two, in order to reconstruct the
information available to the system after the performance of a sequence of actions.
If the executable representation of the history of a final global state of a sequence
is (〈p1, . . . , pn〉,≺p), choose arbitrarily a total ordering among actions α1; . . . ;αK

consistent with ≺p and such that αi ∈ ∪n
j=1pj . The reconstructed information is a

local state S∗, such that:
SφI

r

α1;...;αK−−−−−→ S∗

We can prove that the merge procedure is independent of the total ordering cho-

sen:

Theorem 3.1 Given a safe sequence p = (〈p1, . . . , pn〉,≺p), and two total orderings

α1; . . . ;αK and β1; . . . ;βK of the actions in p, consistent with ≺p, the result of the

merge procedure is independent from the total ordering chosen.

Proof {Sketch}
Both orderings are consistent with ≺p and, thus, both of them respect the execu-

tion constraint orderings imposed by the semantics of MAPGs. The two orderings
differ for those pairs of actions for which ≺p is not defined. This means that the
orderings change by swaps of commuting actions (see Definition 3.10). In this case,
the swaps do not affect the outcome because commuting actions either depend on
different properties of the state or have the same effects.

Example

Consider the action sequence

(〈ar,moveR(R1, B1, R)〉; 〈ab,moveB(B2, R2, R)〉)

78 3. Multi-Agent Planning Games

C

B2
R2

L
B1
R1

a_r a_b

R S1 S2
B3

C

B2
R2

L
B1

a_r a_b

R S1 S2
R1 B3

C
R2

L
B1
R1

a_r a_b

R S1 S2
B3B2

(a)

(b)

(c)

Figure 3.7: (a) Example of a Multi-Agent Hanoi Tower problem state. (b) The new

state after moving blocksR1 andB3. (c) The new state after moving from (b) blocks

R1 and B3 again.

3.4. Interaction Among Actions 79

from the Multi-Agent Hanoi Tower problem depicted in Figure 3.7(a). The sequence
is not safe because there is no precedence relation among the two actions and they do
not commute. The two actions do not commute because they both require Clear(R)
as a precondition and have ¬Clear(R) as an effect. Now consider the more complex
action sequence leading to the states in Figure 3.7(b,c):

(〈ar,moveR(R1, B1, R)〉; 〈ab,moveB(B3, S1, S2)〉; 〈ab, request sync(ab, ar)〉;
〈ar,moveR(R1, R,B1)〉; 〈ar, accept sync(ar, ab)〉; 〈ab,moveB(B2, R2, R)〉)

Notice that actions moveR(R1, B1, R) and moveB(B2, R2, R). Nevertheless, we
can show that, in this case, the action sequence is safe.

The executable representation for this sequence is:

(〈par , pab
〉,≺p)

where:

par = {moveR(R1, B1, R),moveR(R1, R,B1), accept sync(ar, ab)}
pab

= {moveB(B3, S1, S2), request sync(ab, ar),moveB(B2, R2, R)}
and ≺p is transitive closure of:

moveR(R1, B1, R) ≺p moveR(R1, R,B1) ≺p

accept sync(ar, ab) ≺p moveB(B2, R2, R)

and

moveB(B3, S1, S2) ≺p request sync(ab, ar) ≺p moveB(B2, R2, R)

The only pairs of actions for which ≺p is not defined are

(moveB(B3, S1, S2),moveR(R1, B1, R))

and
(moveB(B3, S1, S2),moveR(R1, R,B1))

but since they are both commuting the sequence is safe.
We can now show how to reconstruct the merged local state assuming that the

agents started to execute in the local state after the synchronization process. At first,
we have to consider the actions performed before the synchronization:

{moveR(R1, B1, R),moveR(R1, R,B1),moveB(B3, S1, S2)}
and, then, chose a total ordering among them. We know thatmoveR(R1, B1, R) ≺p

moveR(R1, R,B1) and, thus, we can choose any ordering wheremoveR(R1, B1, R)
precedes moveR(R1, R,B1). In particular, we choose to have all actions precede
action moveB(B3, S1, S2). Thus, we can compute the updated state S∗ as:

SΦI

moveR(R1,B1,R);moveR(R1,R,B1);moveB(B3,S1,S2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S∗

80 3. Multi-Agent Planning Games

3.5 Semantics of MAPGs

We now describe the semantics of MAPGs through the sink nodes of the closure of
the transition system encoded by the MAPG. We call these sink nodes strategy profile
outcome space. The closure of the transition system is described by a finite state
automaton which is represented as a graph M = (Vm, Em), where nodes are global
states and edges are labelled with a pair composed by an action and an agent. M
describes the dynamics of global states when a partially ordered sequence of actions
is executed. We can prove that M is a finite tree, and, thus, that the strategy profile
outcome space can be identified by its leafs.

Let SΦI denote the initial global state 〈SφI
1
, . . . , SφI

n
〉 | t(SφI

i
) = DI

i ∀i ∈
[1, . . . , n]. Let TimeExecutable(KB,S, i) denote the set of time-executable ac-
tions for agent i in the global state S. Finally, let Player(S) denote the function
(defined as for extensive games) which selects a player for the global state S. If the
function returns the special symbol † there is no player which can play. The selection
of the player is only a search strategy and does not influence the asynchronicity of
the process, although it encodes a sequential representation of the problem. In fact,
the temporal constraints imposed for the execution for a sequence of actions is the
one described by its executable representation through ≺p.

Definition 3.12 The transition system closure for a MAPG M = (VM , EM) is the

biggest graph inductively defined as:

• SΦI ∈ VM

• if S ∈ VM ∧ Player(S) = i ∧ i 6= † ∧ α ∈ KBi ∧ α ∈
TimeExecutable(KB,S, i) ∧ S∗ = Successor(S, i, α) then S∗ ∈ VM ∧
S

〈i,α〉−−−→ S∗ ∈ EM

We now show that the graph M is a finite tree, based on the following three
results.

First, we show that that M is a finite graph:

Theorem 3.2 A MAPG encodes a graphM which is finite, under the assumption of

ε-time-admissibility.

Proof {Sketch}
We sketch this proof for the case of .5-time-admissibility. The result can be

easily extended to ε-time-admissibility by showing that the probability of terminating
within a given time monotonically decreases after the application of actions with a
positive duration. Assume (without loss of generality) that the transition from vy

3.5. Semantics of MAPGs 81

to vx is vy →〈i,α〉 vx. Given that actions have a positive duration (i.e. d̂t > 0):
t̂(vy

i) > t̂(vx
i) ∧ ∀h6=it̂(v

y
h) = t̂(vx

h). Thus, after applying an action the mean of
the successor grows for at least one component (two in the case of communication
actions), and all the others are unchanged. Given that the mean of the time function is
monotonically increasing, execution time is limited by a time horizon and the number
of action applicable at a global state is finite, we can deduce that the possible number
of nodes of the graph is finite.

Second, that M has no cycles and, in particular, is a directed acyclic graph:

Theorem 3.3 AMAPG encodes a graphM which is a directed acyclic graph (DAG).

Proof {By Contradiction}
We have to show that there are no cycles in M , an thus that M is a directed

acyclic graph (DAG).
The proof is by contradiction. Assume that there exists a cycle in the graph M .

This means that there is a path in M of the form S
〈a1,α1〉;...;〈ak,αk〉−−−−−−−−−−−→ S∗, where

S ≡ S∗. Assume, without loss of generality, that the history of S is h(S) =
〈b1, β1〉; . . . ; 〈bv, βv〉. The history of S∗ is, thus,

h(S∗) = 〈b1, β1〉; . . . ; 〈bv, βv〉; 〈a1, α1〉; . . . ; 〈ak, αk〉.

Recalling that two global states are the same if they have the same history (i.e. S ≡
S∗ =⇒ h(S) ≡ h(S∗)), we can infer that h(S) ≡ h(S∗). But this is impossible.

Finally, we show that M has a tree structure.

Theorem 3.4 A MAPG encodes a graph M which has a tree structure.

Proof {By Contradiction}
We have already shown that M is a DAG (Theorem 3.3). To show that M has a

tree structure we have to show that any two distinct sequences of actions applied to
the same global state lead to different global states.

The proof is by contradiction. Assume that two different paths applied to the
same global state S lead to the same global state inM . Consider now that two distinct
sequences of actions 〈a1, α1〉; . . . ; 〈ak, αk〉 and 〈b1, β1〉; . . . ; 〈bv, βv〉 applied to the
same global state S:

S
〈a1,α1〉;...;〈ak,αk〉−−−−−−−−−−−→ Sk

S
〈b1,β1〉;...;〈bv,βv〉−−−−−−−−−−→ Sv.

82 3. Multi-Agent Planning Games

Given the previous assumption that Sv ≡ Sk we can infer that h(Sv) ≡ h(Sk).
Without loss of generality, assume that h(S) ≡ ∅. In this case, h(Sv) ≡ h(Sk) is
equivalent to

〈b1, β1〉; . . . ; 〈bv, βv〉 ≡ 〈a1, α1〉; . . . ; 〈ak, αk〉.
But this is impossible because we assumed that the two sequences of actions were
distinct.

The definition of the player function does not lead to a unique implementation
and allows us, for example, to define player functions which select an agent to play
at a global state S, even if he has no executable actions to perform in S. In this
dissertation, we restrict our attention to a sub-class of player functions which are said
to be “fair”.

Definition 3.13 A Player() function is fair iff for any global state S:

1. Player(S) = i =⇒ TimeExecutable(KB,S, i) 6= ∅.

2. ∀i ∈ Ag TimeExecutable(KB,S, i)= ∅ =⇒ Player(S) = †.
Property 1 enforces to select agents which are able to perform actions at the cur-

rent global state but does not prescribe which one. Thus, different implementations
of the Player function are possible. We can prove that the implementation Player
function does not affect the uniqueness of a MAPG, as long as it is fair. We say that
two MAPGs are equivalent if they produce the same strategy profile outcome space.
Actually, we are interested to evaluate the outcome of a sequence of actions based on
the reachable final global states, which are sinks in M . These sink nodes represent
situations where no agent can further play because there are no time-executable ac-
tions available. Thus, it is sufficient to prove that two sequences of actions p and p′,
obtained by changing the order of players of p, lead to the same global state.

In order to prove this property we have to explicit the notion of equivalent histo-
ries, which we used intuitively in the previous proofs. In particular, we considered
two histories equivalent if they represented the same sequence of actions. Neverthe-
less, two different histories may have an equivalent execution if they differ by swaps
of actions performed by different agents, but yet respect the execution constraint≺p.
Clearly, the previous results still hold with this new notion of equivalence because,
we proved that two plans were different based on their size.

Definition 3.14 Two histories p and p′ are equivalent (i.e. p ≡ p′) it they have the

same executable representation: ∀i ∈ Ag pi ≡ p′i and ≺p≡≺p′

This notion of equivalence takes explicitly into account the distributed execution of
the plan, by using the executable representation of the sequence. Despite the fact that

3.5. Semantics of MAPGs 83

histories represented as a sequence of actions describe the problem as a sequential
problem, the executable representation takes into account the distributed nature of
the plan, by representing only the ordering of actions which are enforced during
execution.

For ease of notation, we denote, S∗ = Successor(S, i, α) as S
〈i,α〉−−−→ S∗, and,

S∗ = Successor(Successor(. . . Successor(S1, a1, α1), ak−1, αk−1), ak, αk)

as
S1 〈a1,α1〉;...;〈ak,αk〉−−−−−−−−−−−→ S∗.

Theorem 3.5 Given a MAPG, and two fair player functions Player′ and Player′′,

the strategy profile outcome space does not depend on the player function used to

build it.

Proof Sketch
Consider, without loss of generality the two paths overM obtained with Player′

and Player′′, respectively, and resulting in a swap of actions of two different agents:

S1 〈a1,α1〉;...;〈aj ,αj〉;...;〈av,αv〉;...;〈ak,αk〉−−−−−−−−−−−−−−−−−−−−−−−−→ Sk′

S1 〈a1,α1〉;...;〈av ,αv〉;...;〈aj ,αj〉;...;〈ak,αk〉−−−−−−−−−−−−−−−−−−−−−−−−→ Sk′′

where, av 6= aj . We denote the sequence of actions for the first and the second path
p′ and p′′, i.e.:

p′ = 〈a1, α1〉; . . . ; 〈aj , αj〉; . . . ; 〈av, αv〉; . . . ; 〈ak, αk〉

p′′ = 〈a1, α1〉; . . . ; 〈av, αv〉; . . . ; 〈aj , αj〉; . . . ; 〈ak, αk〉
The proof is by contradiction. Assume that h(Sk′) 6≡ h(Sk′′). This means that

∃i ∈ Ag s.t. p′i 6≡ p′′j or ≺p′ 6≡≺p′′ . The former case is impossible because the actions
and, the agents which perform them, do not change in the two sequences. The latter
case is also impossible. The order of the actions of any agent does not depend on
the player function which affects only the order of actions among different agents.
The precedence relation among actions of different agents is defined in presence of
request sync(av, aj) and accept sync(aj , av) actions. Consider the case where the
player function Player′ selects av to play first request sync(av, aj) and then aj to
play accept sync(aj , av), and the case where the player function Player′′ selects aj

to play first request sync(aj , av) and then av to play accept sync(av, aj). These
two sequences produce the same ordering constraints because the sync operation is
symmetric. Thus, ≺p′≡≺p′′ .

84 3. Multi-Agent Planning Games

<a_b , move(B2 ,R2 ,R)>

<a_r, request_sync(a_r, a_b)>

<a_b, accept_sync(a_b,a_r)>

<a_r , move(R1 ,B1 ,R2)>

<a_b, end_act iv i ty>

Pr

B B B B B

R R R R
R

Pr

t

t

Pr Pr Pr

?

R

B
t

t R

B t

t R

B t

t R

B t

t R

B

G1 G2 G3 G4 G5

Figure 3.8: A path over M from the Multi-Agent Hanoi Tower problem.

3.5.1 Example

Figure 3.8 shows an example of a possible path over the state automatonM produced
from a MAPG of the Multi-Agent Hanoi Tower problem. The big circles (labeled
G1, G2,G3, G4 and G5) represent global states and the smaller ones, the local states
of each agent. Transitions between global states are represented as edges labeled with
an action and the agent performing the action. In the lower part of the picture, we
show the evolution of generic time distributions associated with each global state.

At first, starting from the initial global state G1 where both agents have the same
initial time distributions, agent ab moves block B2 to location R. Since agent ar

can not observe its action, only agent’s ab local state is updated along with its time
distribution, which is shifted in time and more uncertain. The resulting global state
G2 is composed by the updated state of ab and the old local state of ar. Notice that,
G2 is composed by the local states of ab and ar which are at different points in time
(the first is earlier than the second one). Actually, the time distribution for agent ar

is unchanged (he did not act and did not receive any communication), while the one
for ab has been shifted in time and is more uncertain after being convoluted with the
distribution representing the duration of move(B2, R2, R). Agent ar then moves
requesting a synchronization through a request sync(ar, as) action and its time dis-
tribution is set to undefined (the question mark in the figure). At this point, agent
ab accepts the synchronization request and ar is now aware that the block R2 is free
and can thus fulfil its objective moving R1 on R2. Notice that, after the commu-
nication action, the time distributions of ar and ab are synchronized. Finally, agent
ab performs a end activity action (dotted arrow) which does not cause a transition
between global states. This action is necessary to inform the system that ab is not
willing to play anymore.

3.6. Game Model 85

In particular, the path is

G1
〈ab, move(B2,R2,R)〉−−−−−−−−−−−−−→ G2

〈ar, request sync(ar,br)〉−−−−−−−−−−−−−−−→ G3

G3
〈ab, accept sync(ab,ar)〉−−−−−−−−−−−−−−→ G4

〈ar, move(R1,B1,R2)〉−−−−−−−−−−−−−→ G5

The history of G5 is:

h(G5) = p = 〈ab, move(B2, R2, R)〉; 〈ar, request sync(ar, br)〉;
〈ab, accept sync(ab, ar)〉; 〈ar, move(R1, B1, R2)〉

and its executable representation is:

• par = {move(R1, B1, R2), request sync(ar, br)}

• pab
= {accept sync(ab, ar),move(B2, R2, R)}

• The relation ≺p is defined by the transitive closure of

move(B2, R2, R) ≺p request sync(ar, br) ≺p move(R1, B1, R2)

and

move(R1, B1, R2) ≺p accept sync(ab, ar) ≺p move(B2, R2, R)

3.6 Game Model

In this section, we provide a representation of the strategy profile outcome space in
terms of a normal form game. As we will see later on (Chapter 5), this representation
is used to define the solution concept for MAPGs. A normal form game is represented
as a set of agents, a set of strategies for each agent and a utility function evaluating
the goodness of each combination of strategies for each agent.

At first, we define what a multi-agent plan is and how its utility can be computed.
Then, we show how each multi-agent plan can be decomposed into a set of strategies
representing each agent’s part of the plan. Considering the set of all possible plans,
we build the strategy set of each agent. We then compute the utility deriving from
each combination of strategies, called strategy profile, by mapping strategy profiles to
multi-agent plans. Clearly, we have no guarantee that any strategy profile corresponds
to a multi-agent plan. In this case, we consider such strategy profiles leading to
failure.

86 3. Multi-Agent Planning Games

3.6.1 Multi-Agent Plans

Formally, a multi-agent plan for a MAPG is:

Definition 3.15 A multi-agent plan for a MAPG is a sequence of actions

p = (〈a1, α1〉; . . . ; 〈aK , αK〉)

with K ≥ 1, such that ∀k ∈ [1 . . .K]:

1. 〈φαk
pre, φ

αk
ex , φ

αk
eff , d

αk
t 〉 ∈ KBak

2. ak ∈ Ag

3. S0 ≡ SΦI

4. Sk−1 〈ak,αk〉−−−−→ Sk

5. Player(Sk−1) = ak

6. αk ∈ TimeExecutable(KB,Sk−1, ak)

7. Player(SK) = †

Property 1 enforces that every agent which performs an action must be able to
perform it, while Property 2 that the agent which plays must be a valid one. Properties
3 − 7 enforce that the plan corresponds to a path from the source node (Property 3)
to a sink node (Property 7). In particular, we require that each agent performing an
action must have been selected by the player function (Property 5) and that the action
he performs is time-executable (Property 6).

Given that a plan is a sequence of actions, a plan is associated with an executable
representation. This representation of a plan will be used in Chapter 4 to provide a
distributed execution model for our plans.

All possible plans for a MAPG can be found searching all paths from the source
SΦI to sink nodes in M (see Chapter 6). The plans are then identified as the histories
of all the sink nodes (i.e. the strategy profile outcome space). We denote the set of
the plans relative to the strategy profile outcome space of the MAPG with Pl.

As for the single-agent case, we characterize the goodness of plans in terms of
expected utility. In particular, the expectation is based on the probability that the plan
is executed within the time constraints and utility on the information of the degree of
satisfaction of the objectives. The main differences with respect to the single agent
case are that for each plan: i) there are multiple time constraints for multiple parallel

3.6. Game Model 87

executions and ii) that the degree of satisfaction of a plan must be evaluated with
respect to a global state, rather than a local state.

The first issue is addressed by considering the lowest probability of finishing
within the time constraints among all the agents. Indeed, if a single agent fails the
whole multiagent plan could fail. The idea is similar to critical paths used for schedul-
ing problems [Russell & Norvig, 2003], which denotes the length of the longest path
in a schedule (critical path), as the length of the schedule. The second issue is solved
through the merge procedure. Recall that the aim of this work is to produce a cen-
tralized planner for distributed plans. Although the agents execute their part of the
plan independently, without needing to know the entire information available to the
system, the (centralized) planner can reconstruct the entire information available to
the system after the execution of the plan. The procedure uses the merge function
which simulates the multi-agent plan (through one of its possible linearizations) as
if it was executed by a single agent and returns the local knowledge of such agent.
These information are used to compute the utility pui(·) of the plan for each agent i
(which is associated with an objective).

Definition 3.16 The utility of an agent i for a multi-agent plan p, pui(p), is the prod-

uct of the utility at the sink node S and the probability of finishing within the time

constraints:

pui(p) = ui(merge(S1, . . . , Sn)) · min
i∈Ag

∫ τ=Ti

τ=0
pi(τ) dτ. (3.11)

where pi = t(Si) and τ represents time.

Example

Consider the following multi-agent plan from the multi-agent Hanoi tower problem:

p = 〈ar,moveR(R1, B1, R)〉; 〈ab,move(B2, R2, S2)〉; 〈ab,move(B3, S1, B2)〉

when the initial state, depicted in Figure 3.7(a). Consider now the executable repre-
sentation:

par = {moveR(R1, B1, R)}
pab

= {move(B2, R2, S2),move(B3, S1, B2)}
move(B2, R2, S2) ≺p move(B3, S1, B2)

Intuitively, the agents can execute this plan as two independent plans without the
need for a central coordinator. The first one moveR(R1, B1, R) performed by ar

and the second one move(B2, R2, S2),move(B3, S1, B2) performed by ab. This
is a simple example of distributed plan. More complex ones could require, as shown

88 3. Multi-Agent Planning Games

previously, point to point communications. Nevertheless, they would not require any
central coordinator.

Assume that both agents have an initial time distribution N{0, 0} and all actions
have a duration of N{10, 2}. If the time limit is 20 time units for both agents, we
can compute that the probability of terminating within the time constraints is .5 and
approximately 1 for ab and ar, respectively. Thus, the probability for the entire plan
of finishing within the time constraints is .5 (i.e. min(.5, 1)). Consider the initial state
description:

On(R1, B1) ∧ Clear(R) ∧ Clear(R1) ∧On(B2, R2)∧

Clear(S2) ∧ Clear(B2).

In this case, the plan leads to the global state S:

Sar = On(R1, R) ∧ Clear(B1) ∧ Clear(R1) ∧On(B2, R2)∧

Clear(S2) ∧ Clear(B2) ∧ ¬Clear(S2) ∧ ¬Clear(B2)

Sab
= On(R1, B1) ∧ Clear(R) ∧ Clear(S1) ∧ Clear(R1)∧

On(B3, B2) ∧ Clear(R2) ∧ Clear(B3).

The merge({ar, ab}, p) procedure returns:

¬Clear(R) ∧ Clear(S1) ∧ Clear(R1) ∧On(B3, B2) ∧ Clear(R2)∧

Clear(B3) ∧ Clear(B1) ∧On(R1, R) ∧ ¬Clear(S2) ∧ ¬Clear(B2).

Assume that the objective of ab is represented by the utility function

uab
= On(R1, R) + 2 · ¬Clear(B2)

and the objective of ar is represented by:

uar = 2 ·On(B1, B2) + ¬Clear(S2).

The utility of this plan for ab is:

puab
(p) = (1 + 2) · 0.5 = 1.5

and for ar:
puar(p) = (0 + 2) · 0.5 = 1

3.6. Game Model 89

3.6.2 Game Representation

We now define the game model underlying the dynamic model of the MAPG. Recall
that, in general, a game in normal form can be defined as: a set of players, a set of
strategies for each player and a utility value for strategy profiles (i.e. a collection of
strategies, one for each players). In our case, the set of players is Ag = {1 . . . n} and
the set of strategies Ki for i are the set of all possible multi-agent plans Pl, dropping
form each plan the actions not performed by i. In particular, given the executable
representation of a multi-agent p = (〈p1, . . . , pn〉,≺p), we denote i’s single-agent
plan of p as:

〈α1; . . . ;αK〉
where αj ∈ pi ∀j ∈ [1, . . . ,K] and

∀αv, αj ∈ pi v < j =⇒ αv ≺p αj .

Notice, that for the single-agent case ≺p defines a total ordering. In general, for
a game, K = Πn

i=1Ki is the set space of strategy profiles and denotes the size of
a game. In our case, the space of strategy profiles is Pl and has the size of the
strategy profile outcome space. Finally, the utility of a strategy profile p ∈ Pl can be
computed through pui(p) (Definition 3.16). Note that, in our case, not every strategy
profile is a valid multiagent plan. We assume that a strategy profile that is not a valid
multi-agent plan has a utility of F (the utility of failure). We assume that

F < min
i∈Ag p∈Pl

pui(p).

We denote this class of normal form games the normal form of a MAPG.

β1 β2

α1 3, 3 0, 4

α2 4, 0 F, F

Figure 3.9: The normal form of a MAPG

Example Consider the set Pl composed of three plans:

p1 = 〈1, α1〉; 〈2, β1〉 with pu1(p1) = 3 and pu2(p1) = 3

p2 = 〈1, α2〉; 〈2, β1〉 with pu1(p2) = 4 and pu2(p2) = 0

p3 = 〈1, α1〉; 〈2, β2〉 with pu1(p3) = 0 and pu2(p2) = 4

The strategies K1, for agent 1, are {α1, α2}, while the ones for, for agent 1, are
K2 = {β1, β2}. The normal form is depicted in Figure 3.9. Notice that the plan
〈1, α2〉; 〈2, β2〉 6∈ Pl and thus has a utility of F = −1 for each agent.

90 3. Multi-Agent Planning Games

Theorem 3.6 The MAPG representation of a game is exponentially smaller than its

normal form.

Proof We characterize the size of a MAPG by the size of itsKB and a size of a game
by its space of strategy profiles. The size of the normal form game of a MAPGS is
exponential in the description of the actions. In fact, the graph M , in the worst case,
has a number of global states bounded by: O(|Act||Ag|·maxi(Ti/mi)), where mi is the
smallest execution time (i.e. the mean of its time-distribution) of an action for i. In
this complexity characterization we assume the parameters of the time-distributions
are simple enough to be encoded in unary. Thus, the set of all possible plans Pl, in
the worst case, is exponential.

The above result is positive characterization from a representational viepoint
since it states that the MAPG representation is exponentially more compact than a
normal form game. Note that this result applies just for those games which can be
represented through MAPGs, while, normal form games can represent a wider range
of problems. The drawback is that any solving method which takes into consider-
ation the normal form game representation of the game will have to deal with an
exponential input. We address this issue in Chapters 5 and 6.

3.7 Outcome Uncertainty and Perception

The representation of MAPGs presented up to know assumed that agents were blind
(i.e. could not acquire knowledge at execution time) and used deterministic actions
(i.e. were certain about the outcomes of their actions). In this section, we remove
these assumptions and introduce more complex types of actions for dealing with par-
tially observable and uncertain environments, defining the action language GE0+.

To this end, we consider four new types of actions for GE0: probabilistic, non-
deterministic, sensing and probabilistic sensing actions. The former two action types
address two different types of uncertainty about action outcomes, while the latter two
are used to model direct perception.

Syntax

Probabilistic actions are used when there is uncertainty about the outcome of actions,
but a probabilistic distribution is available over the outcomes. The action KB can
be extended with probabilistic actions by adding descriptions of the same form as
ordinary actions except that the formula φα

eff is replaced with: φα
1 : p1, . . . , φ

α
k : pk.

These axioms state that, after the execution of action α, φα
i holds with probability pi.

Note that
∑
pi = 1 and 0 ≤ pi ≤ 1.

3.7. Outcome Uncertainty and Perception 91

Non-deterministic actions are used when nothing is known about the outcomes
of the actions. The action KB can be extended to deal with non-deterministic effects
by adding descriptions of the same form as ordinary actions except that the formula
φα

eff is replaced with: φα
1 , . . . , φ

α
k . These axioms state that after the execution of

action α, nondeterministically φα
i holds.

Sensing actions are a particular case of non-deterministic actions, where there are
only two outcomes. The outcomes are observable at execution time allowing agents
to make decisions conditional to observations. Sensing actions are used to gather
knowledge at execution time and are explicitly represented with two outcomes in the
plan. Such plans, called conditional plans [Levesque, 1996], are represented as a
binary tree over M . The action KB can be extended to deal with sensing actions by
adding descriptions of the same form as ordinary actions except that the formula φα

eff

is replaced with: φα,¬φα. These axioms state that, after executing the sensing action
α, the agent will know whether φα or ¬φα holds.

Probabilistic sensing actions are a particular case of probabilistic actions, where
there are only two outcomes. As for ordinary sensing actions, the outcomes are
observable at execution time allowing agents to make decisions conditional to obser-
vations. The action KB can be extended to deal with probabilistic sensing actions
by adding descriptions of the same form as ordinary actions except that the formula
φα

eff is replaced with: φα : π,¬φα : 1 − π. These axioms state that, after execut-
ing the sensing action α, the agent, with probability π knows that φα holds or, with
probability 1 − π, that ¬φα holds. Notice that, differently from POMDPs (see Ap-
pendix 2.1.1), the agent is not uncertain of the perception he received, but rather has
an expectation on what he will perceive when he performs the sensing action.

These new action types can be used independently or all together, depending on
the application domain. If all actions are used and the formalism for incomplete
knowledge is the epistemic state, we have GE0+, which is based on a variant of the
single-agent action language E+ [Iocchi et al., 2004b] enriched with probabilistic
sensing actions and without domain constraints. To extend GE0 for dealing with these
new types of actions we have to generalize two concepts: 1) the relations among
actions, plans and M and 2) the multi-agent plan evaluation.

Semantics

The definition of new action types requires to provide a new procedure to build M
and to generalize the notion of multi-agent plan.

The new types of actions all have more then one possible outcome. If an ac-
tion α has more than one outcome o1, . . . , ok, we denote the action when the out-
come is oi with αoi . We represent the graph M as the previous except that paths
in M are sequences of action outcomes rather than actions. The graph can be cre-
ated as previously shown by using a new KB, where the actions with multiple out-
comes α are replaced with a new set of actions αoi , one for each outcome oi of α.

92 3. Multi-Agent Planning Games

These actions have the same preconditions and executing conditions as the generat-
ing one but have only one outcome. For example, given the non-deterministic action
〈φα

pre, φ
α
ex, φ

α
eff1, φ

α
eff2, d

α
t 〉 we would obtain the new actions 〈φα

pre, φ
α
ex, φ

α
eff1, d

α
t 〉

and 〈φα
pre, φ

α
ex, φ

α
eff2, d

α
t 〉.

Once we know how to build M , we must define a generalization of multi-agent
plans called conditional multi-agent plans. Despite the fact that the new types of
actions have a common way to be interpreted, they describe very different situations.
Probabilistic and non-deterministic uncertainty describes what the agent does not
know, while sensing actions describe what the agent may know. This reflects on the
way plans are represented. In the former case, a path inM , represented by a sequence
of action outcomes can be transformed into the equivalent plan, where each action
outcome αoi is replaced by its generating action α. In this case, we abstract from the
outcomes, which are used mainly to evaluate the quality of a plan, and consider the
sequence of actions which generated those outcomes. This approach does not apply
to sensing actions, since their outcomes are observed at execution time and different
sequences of actions may be selected based on this observation.

In particular, the labels of edges in M are pairs 〈pl, α〉, where α is an action and
pl an agent. The actions α can be classified in two groups. The first group consists
of:

1. ordinary actions,

2. sensing actions along with one of their outcomes,

3. probabilistic sensing actions along with one of their outcomes and probability
values.

The second group consists of:

1. nondeterministic actions with one of their outcomes,

2. probabilistic actions with one of their outcomes and probability value.

We denote p? the sequence of actions 〈pl1, α′1, 〉; . . . ; 〈plK , α′K〉) where

1. α′i = αi if αi is an ordinary action, a sensing action along with one of its
outcomes, or a probabilistic sensing action along with one of its outcomes
removing the probability value, and

2. α′i is obtained αi by removing the outcome (resp. the outcome and the proba-
bility value) if αi belongs to a nondeterministic (resp. probabilistic) action.

We call multi-agent plans with sensing actions conditional plans. Intuitively, a
conditional plan (see especially [Levesque, 1996; Lobo, Mendez, & Taylor, 1997;
Son, Tu, & Baral, 2004]) is a binary directed tree where every arrow represents an

3.7. Outcome Uncertainty and Perception 93

action, and every branching expresses the two outcomes of a sensing action, which
can thus be used to select the proper actions. We recall that a directed tree is a directed
acyclic graph in which every node has exactly one parent, except for the root, which
has no parents; nodes without children are called leaves. Each path from the root to a
leaf of the conditional plan cp is said to be a linearization of cp and Lin(cp) denotes
the set of all possible linearizations of cp.

Formally, a conditional plan cp has one of the following three forms:

1. the empty conditional plan, denoted λ,

2. α ; cp′,

3. β ; if ω then {cpω} else {cp¬ω},

where α is an ordinary action, β is a sensing action with outcomes ω and ¬ω, and
cp′, cpω, and cp¬ω are conditional plans.

For sensing actions α with outcome o∈{ω,¬ω} (i.e. αo), we write ¬¬ω to de-
note ω. For fragments of conditional plans cp, we denote by pn cp that p is a prefix
of a linearization of cp (and 6 n if it is not).

We say that two sequences,

l = (S1 〈pl1,α1〉−−−−−→ S2 . . . SK−1 〈plK ,αK〉−−−−−−→ SK)

and

l′ = (G1 〈pl1,α1〉−−−−−→ G2 . . . GZ−1 〈plZ ,αZ〉−−−−−→ GZ),

are information consistent (denoted InformationConsistent(l, l′)) iff:

∀i ∈ Ag, ∀Sj 〈i,α′〉−−−→ Sj+1 ∈ l, ∀Sv 〈i,α′′〉−−−→ Sv+1 ∈ l′

Sj
i = Sv

i =⇒ α′ = α′′.

Definition 3.17 A multi-agent conditional plan cp? for a MAPG is a conditional

plan such that:

1. ∀l ∈ Lin(cp) l ∈ Pl, and

2. ∀l ∈ Lin(cp) rαonl =⇒ ∃l′ ∈ Lin(cp) rα¬onl′, and

3. ∀l, l′ ∈ Lin(cp) InformationConsistent(l, l′).

94 3. Multi-Agent Planning Games

Property 1 ensures that whichever is the outcome of sensing actions at execution time,
the resulting sequence of action is a correct multi-agent plan. Property 2 ensures
that every possible contingency is taken into account by the plan. Finally, Property
3 ensures that the agents can select actions solely based on their local knowledge
acquired at execution time (through sensing, acting and communication) in order to
have plans which allow distributed execution. This requirement is one of the main
differences between the usual single-agent conditional plans and our representation of
multi-agent conditional plans. In particular, we ensure that a strategy for i prescribes
the same action at global states with same local state for i, because at execution time
an agent can not distinguish between different world states for which he has the same
local knowledge. This requirement is mainly necessary because of the structure of
conditional plans. For example, if an agent i senses a property at a given point of the
plan, the path will branch leading to two possible paths. At execution time, only i
knows (unless he communicates) if the sensed property is true or not, and thus which
branch of the tree is executed. For the other agents, it is not possible to distinguish in
which branch of the tree they are executing and, thus, they should perform the same
action whatever the outcome of the sensing action is. Notice that conditional plans
are encoded by labels of subgraphs of M with a tree structure, which has as root and
leaves, the source and sinks of M , respectively.

From now on we call multi-agent conditional plans, simply conditional plans.
Conditional plans are extracted fromM by grouping sequences of actions which have
common sensing actions and where agents perform the same actions at the same local
states. A detailed description of such procedure is provided in Chapter 6, Section 6.1.

3.7.1 Multi-Agent Plan Evaluation

We generalize the evaluation of a multi-agent plan by introducing an auxiliary struc-
ture called belief graph, which represents all the possible outcomes of a multi-agent
plan. A multi-agent belief graph Bp = 〈V,E, Pr〉 of a plan p is composed by a
directed acyclic graph G = (V,E), where nodes are global states and edges action
outcomes. Pr is a mapping from edges to real numbers. The belief graph Bp for
deterministic actions can be inductively defined as:

• The graph composed by the source node r, such that r = ΦI and t(r) = DI ,
is a belief graph.

• If Bp is a belief graph, and S are sink nodes for G such that α is the first
time-executable action in p, then B ◦ α is a belief graph and p = p\{α}.

B ◦ α is obtained by extending V with a layer of nodes vs
o (one for each outcome o

and for each s ∈ S), such that vs
o is the successor global state.

The utility of a multi-agent plan p is the utility at source r of Bp defined as:
pui(p) = butili(r), where r is the root node of Bp. Given that h(v) is the history of

3.7. Outcome Uncertainty and Perception 95

v and Ag is the set of agents of the MAPg, the function butil is inductively defined
as follows:

a) butili(v) = ui(merge(Ag, h(v))) ·mini∈Ag

∫ τ=Ti

τ=0 p(τ) dτ for every sink v ∈
V , where p(τ) = t(vi),

b) butili(v) = butili(v′) for every v ∈ V where Pr(v → v′) is undefined.

This definition is equivalent to the evaluation criterion of plans, shown in Definition
3.16 (page 87), because it propagates the utility of the leaf node to the root, where the
utility is actually computed. In the case of deterministic actions (i.e. with only one
outcome), is the same sequence of actions as the plan p and thus the entire procedure
is equivalent to computing the utility at the sink of a plan.

Nevertheless, the belief tree has the property of being easily extendable to the
case of actions with multiple outcomes. In this case, the belief tree has multiple sinks,
and we provide, depending on the type of action, a way to summarize the values of
the possible outcomes of the plan in a root node of the belief tree. In the case of
probabilistic actions or probabilistic sensing actions, we add, for each edge s → vs

o

representing a probabilistic outcome, the probability Pr(s → vs
o) of the outcome o.

The utility is then computed by the following rule:

c) butili(v) =
∑

v′ Pr(v → v′) · butili(v′) for every v ∈ V
when Pr(v → v′) is defined.

This procedure computes at the root node an expected value of the outcomes of the
plan, by weighting the outcomes of the plans by their probability. This procedure can
be generalized to non-deterministic or sensing actions replacing rule b) with b′):

b’) butili(v) = minPr(v→v′) butili(v′) if Pr(v → v′) is undefined.

This is a pessimistic estimate because it considers a worst case scenario by selecting
the outcome with the smallest utility. In a similar way we could define an optimistic
estimate (using max operator in b’)) or a weighted combination of them.

96 3. Multi-Agent Planning Games

Chapter 4

Petri Net Plans

The aim of this chapter is to describe a novel representation framework for high level
robot and multi-robot programming that allows for representing all the action features
that are needed for describing complex plans in dynamic environments. Moreover,
we aim to provide a formal (distributed) execution model for MAPGs by mapping
multi-agent plans into the proposed framework, called Petri Net Plans (PNP) [Ziparo
& Iocchi, 2006].

PNPs are able to represent many features such as sensing, loops, concurrency,
non-instantaneous actions, action failures, and action synchronization in a multi-
agent context. PNPs are based on Petri nets [Murata, 1989], a graphical modeling lan-
guage for dynamic systems. PNPs have been used for describing effective plans for
actual robotic agents which inhabit dynamic, partially observable and unpredictable
environments, and experimented in different application scenarios, including robotic
soccer and rescue competitions.

Although the presented formalism can be applied in general to high level agent
programming, in this work we focus on its application to cognitive robots that are
based on a heterogeneous hybrid architecture. These kind of architectures are capa-
ble of integrating reactiveness and proactiveness. In particular, they are structured in
two layers: a deliberative and an operational one. The former maintains a high level
representation of the environment which is used to choose actions; the latter main-
tains a low level representation which is used to evaluate conditions and to execute
basic behaviors (which we call actions). Hybrid architectures can further be classified
based on how the knowledge is represented. A hybrid architecture may be homoge-
neous if the knowledge is represented in the same way both at the deliberative level
and the operational one, heterogeneous otherwise. Our approach follows the hetero-
geneous one where the deliberative layer is obtained by specifying high level plans
(in fact, the Petri Net Plans that we are describing in this chapter), while the oper-
ative level maintains numeric information about the state of the robots, integrating

97

98 4. Petri Net Plans

different techniques (such as probabilistic localization, dynamic control, etc.).
The proposed modeling language is one of the many extensions to transition

graphs existing in the literature. As a difference with such other approaches, e.g.
XABSL [Lötzsch et al., 2004], we clearly distinguish action specification and imple-
mentation, obtaining a framework which permits programming and easier debugging:
first, the semantic is well defined and easily verifiable by automated verification pro-
grams; second, we have a high granularity of actions which are grouped by functional
properties and physical resources used. Moreover, we provide a rich set of operators
for handling complex behaviors.

There exist other languages capable of handling synchronization constraints (e.g.,
[Simmons & Apfelbaum, 1998; Pell, Christian, & Richard, 1998; Firby, 1989]) or
knowledge acquisition (e.g., [Georgeff & Lansky, 1986; Konolige, 1997]), but not
many which can handle both. One such language is ConGolog [DeGiacomo, Les-
perance, & Levesque, 2000] which extends Golog for handling concurrent execution
but fails in modeling reactive behaviors. For this reason, Golog was further extended
introducing interrupts. The resulting language is called RGolog [Reiter, 2001]. Our
formalism is very rich and includes all of the above mentioned features. It differs
from these languages mainly in the way in which the knowledge of the agent is used
to represent the properties in the environment and in the higher efficiency of plan ex-
ecution, due to the absence of computational expensive reasoning procedures during
this process. More detailed analysis and comparison with these languages are given
in Chapter 10.

The proposed framework has been implemented and used to control robotic sys-
tems in three domains: (i) the RoboCup 4Legged soccer competitions [Iocchi &
Nardi, 2004], (ii) the RoboCup Rescue competitions [Calisi et al., 2007], and (iii) a
multi robot foraging testbed for task assignment experiments [Farinelli et al., 2006].

The remainder of the chapter is structured as follows: we first define the syntax
for our language using Petri nets in terms of operators (i.e., actions) and possible
interactions among them. Two types of models for non-instantaneous actions are
given:

1. ordinary non-instantaneous actions, which allow complex constructs for action
synchronization and failure recovery.

2. sensing non-instantaneous actions, which allow for dynamically sensing prop-
erties at execution time and thus for knowledge acquisition [Scherl & Levesque,
1993; De Giacomo et al., 1997].

We then provide a set of operators for handling concurrency, conditionals and
iterations. In order to give a clear operational semantics to our modeling language
we provide an execution algorithm. After defining what is a correct execution for a
plan, we prove that, if a correct execution is possible, then the algorithm will achieve
it. The extension of the framework to deal with Multi-Agent planning in provided in

4.1. Petri Nets 99

Section 4.4. Finally, we show how a distributed execution model for conditional the
multiagent plans defined in Chapter 3 can be provided in terms of PNPs. Implemen-
tation issues are provided in Section 4.6.

4.1 Petri Nets

Petri nets are a graphical and mathematical modeling tool [. . .] for describing and
studying information processing systems that are characterized as being concur-
rent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic.[Mu-
rata, 1989]

(a) (b) (c)

Figure 4.1: (a) A place. (b) A Transition. (c) A Place with one token.

Petri nets, as a modeling language, graphically depict the structure of a distributed
system as a directed, weighted and bipartite graph. As such, a Petri net has two types
of nodes connected by directed weighted arcs (if not labeled we assume a weight of
one). The first type is called place (Fig. 4.1a) and may contain zero or more tokens
(Fig. 4.1c). The number of tokens in each place (i.e. marking) denotes the state of
the system.

The other type of nodes, called transitions (Fig. 4.1b), represent the events mod-
eled by the system. Transitions can consume or produce tokens from places according
to the rules defining the dynamic behavior of the Petri net (i.e. the firing rule).

More formally, a Petri net can be defined as a tuple

PN = 〈P, T, F,W,M0〉
where:

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions.

• F ⊆ (P × T) ∪ (T × P) is a set of edges.

• W : F → {1, 2, 3, . . .} is a weight function and w(ns, nd) denotes
the weight of the edge from ns to nd.

• M0 : P → {0, 1, 2, 3, . . .} is the initial marking.

• P ∪ T 6= ∅ and P ∩ T = ∅

100 4. Petri Net Plans

Petri nets are used to model complex systems that can be described in terms of
states and their changes. We can define the state changing behavior (i.e. the marking
evolution) in a Petri net by the following firing rule:

1. A transition t is enabled, if each input place pi (i.e. (pi, t) ∈ F) is marked
with at least w(pi, t) tokens.

2. An enabled transition may or may not fire, depending on whether related event
occurs or not.

3. If an enabled transition t fires, w(pi, t) tokens are removed for each input place
pi and w(t, po) are added to each output place po such that (t, po) ∈ F .

There exists another type of arc called inhibitor arc. This arc is represented as a
dashed segment with a small circle (Fig. 4.7). This connects a place to a transition
and enables it when there are no tokens in the place. Obviously no tokens are moved
when the transition fires.

Petri Nets with inhibitor arcs are called Extended Petri Nets. The use of this con-
nector enables the net to test for the zero and gives to these nets the same modelling
power as Turing machines [Peterson, 1981].

4.2 Syntax

Programming high level behaviors for a mobile robot executing complex tasks in
dynamic, partially observable and unpredictable environments requires a powerful
description language.

The reference scenario in this chapter is the cognitive control of a four-legged
robot (AIBO) involved in robotic soccer. Such complex scenario requires to deal with
non-instantaneous actions, sensing and conditional actions, action failures. More-
over, since the AIBO robot can independently move its legs and its head execution of
concurrent actions is also needed.

In this section we formally introduce a modeling language for describing robotic
behaviors based on Petri nets. The proposed language allows for specifying plans,
called Petri Net Plans (PNP), describing complex behaviors of a mobile robot. These
plans are defined by combining different kinds of actions (ordinary actions and sens-
ing actions) using control structures, such as if-then-else, while, concurrent execution
and interrupts.

A Petri Net Plan 〈P, T, F,W,M0, G〉 is a Petri net 〈P, T, F,W,M0〉 augmented
with a set of goal markings G such that:

1. Places pi represent the execution phases of actions; each action α is described
by a place corresponding to its initiation (we call it initial place of α), one

4.2. Syntax 101

corresponding to its execution (we call it execution place of α), and one corre-
sponding to its termination (we call it termination place of α);

2. Transitions ti represent events and are grouped in categories: action starting
transitions, action terminating transitions, action interrupts and control transi-
tions (i.e. transitions that are part of an operator). Transitions may be labeled
with conditions that control their firing.

3. w(fi, fj) = 1, for each (fi, fj) ∈ F .

4. M0 is the initial marking representing a description of the initial state of the
robot.

5. G is the set of desired markings for the agent and is a proper subset of the
possible markings that the PNP may reach.

In the following we will focus on the structure of a PNP (i.e. considering only the
terms 〈P, T, F 〉).

A Petri Net Plan is formally defined by a set of elementary structures (i.e. no-
action, ordinary action, sensing action) and constructs for combining PNP (i.e. se-
quences, loops, concurrent execution, interrupts).

Elementary structures. Elementary PNPs are defined as follows:

1. no-action is a PNP defined by a single place and no transitions, i.e. 〈{p0}, ∅, ∅〉
(see Fig.4.1a), where p0 is both an initial and a terminating place.

Figure 4.2: An ordinary non-instantaneous action.

2. ordinary-action is a PNP defined by 3 places and 2 transitions (see Fig. 4.2):

〈{pi, po, pe}, {ts, te}, {(pi, ts), (ts, pe), (pe, te), (te, po)}}〉

where:

• pi is the initial place.
• po is the terminating place.
• pe is the execution place.

102 4. Petri Net Plans

• ts the transition starting the action.
• te the transition terminating the action.

In order to model those actions which may be considered instantaneous, we
introduce the instantaneous variant of the above PNP: 〈{pi, po}, {ta}, {(pi, ta),
(ta, po)}}〉 where ta is the transition representing the event of executing an
instantaneous action.

Figure 4.3: An non-instantaneous sensing action.

3. sensing-action is a PNP defined by places and transitions as described in Fig.
4.3:

〈{pi, pe, pot , pof
}, {ts, tet , tef

}, {(pi, ts),

(ts, pe), (pe, tet), (pe, tef
), (tet , pot), (tef

, pof
)}〉

where transitions and places are the same as the previous example except for:

• tet and tef
are, respectively, the transitions ending the action

when the sensed property is true and when it is false.
• pof

and pof
are, respectively, the places terminating the action

when the sensed property is true and when it is false.

As for the ordinary-action, we define the instantaneous variant of the sensing-
action as: 〈{pi, pot , pof

}, {tet , tef
}, {(pi, tet), (pi, tef

), (tet , pot), (tef
, pof

)}〉.

Operators. PNPs can be combined by using the operators sequence, conditional,
loops, concurrent execution and interrupts.

The sequence of two PNPs is defined as follows: given two PNPs Γ1 = 〈P1, T1, F1〉,
Γ2 = 〈P2, T2, F2〉 and two places po1 ∈ P1 and pi2 ∈ P2, such that po1 is a terminat-
ing state for an action α1 in Γ1 and pi2 is an initial state for an action α2 in Γ2, a new
PNP Γ = 〈P, T, F 〉 is obtained by joining the places po1 and pi2 as follows: (i) P ′2 =

4.2. Syntax 103

Figure 4.4: Sequence of two PNPs.

P2\{pi2}, is the set of places excluding pi2 , (ii) τ(pi2) = {ti|(pi2 , ti) ∈ F2} is the
set of transitions following the place pi2 , (iii) F ′2 = F2\{(pi2 , t

′)|t′ ∈ τ(pi2)} is the
set of edges of Γ2 excluding the ones coming from pi2 , (iv) F ′1 = F1 ∪ {(po1 , t

′)|t′ ∈
τ(pi2)} is the set of edges of Γ1 augmented by those obtained connecting the place
po1 to the successors of pi2 , (v) P = P1 ∪P ′2, T = T1 ∪ T2, F = F1 ∪F ′2, define the
new PNP.

The above formulation actually allows for merging two PNPs choosing a termi-
nating place for an action, an initial place for another action and join the two nets
making such places to be the same. A graphical representation of this operator is
given in Figure 4.4.

Conditional structures are implemented though sensing actions: given a sensing
action α, three PNPs Γ1, Γ2, Γ3, and three places: po1 a terminating place in Γ1, and
pi2 , pi3 initial places in Γ2, Γ3, a new PNP Γ is obtained by joining the initial place of
the sensing action α with po1 and the two terminating places for α with pi2 and pi3 .
The joining operation is similar to the one described for the sequence operator and,
for maintaining an easy notation, we present it here only in graphical form in Figure
4.5.

Loop structures are also implemented through sensing actions: given a sensing
action α, two PNPs Γ1, Γ2, and three places: po1 a terminating place in Γ1, pi1 an
initial place in Γ1, pi2 an initial places in Γ2, a new PNP is obtained by joining the
initial place of the action α with pt1 and the two terminating places for α with pi1

and pi2 . The graphical representation of this operator is given in Figure 4.6.
By adding to this structure a control place marked with n tokens (Fig. 4.7), we

obtain a definite iteration operator. In this way we can execute n + 1 times a given
net.

Concurrent execution is defined by the fork and join operators. The fork operator
is obtained combining three PNPs: Γ1, Γ2, Γ3. Given a terminating place po1 in
Γ1, and two initial places pi2 , pi3 , respectively in Γ2, Γ3, the new PNP is obtained

104 4. Petri Net Plans

�
�
�

�
�
�

ip

t s1

pe1

1
t e

po1

�
�
�
�

�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�

�
�
�

�
�
�

�
�
�

t s

p
e

te t
t e f

�
�
�
�

�
�
�

�
�
�

p
to

�
�
�
�

�
�
�
�

f
p
o

po3

3
t s

3
pe

3
t e

2
t s

2
pe

2
t e

po 2

Figure 4.5: Conditional structure.

by adding one transition tfork and three edges (po1 , tfork), (tfork, pi2), (tfork, pi3)
to the union of the sets specifying Γ1, Γ2, Γ3. The graphical representation of this
operator is given in Figure 4.8(a).

In a similar way we can define the join operator: given three PNPs Γ1, Γ2, Γ3,
an initial place pi1 in Γ1, and two terminating places po2 , po3 , respectively in Γ2, Γ3,
a new PNP is obtained by adding one transition tjoin and three edges (po2 , tjoin),
(po3 , tjoin), (tjoin, pi1) to the union of the sets specifying Γ1, Γ2, Γ3. The graphical
representation of this operator is given in Figure 4.8(b).

Finally, we introduce interrupt constructs which are a very powerful tool for han-

4.2. Syntax 105

Figure 4.6: An indefinite iteration which executes the PNP Γ1 while the sensed prop-

erty is true.

Figure 4.7: A definite iteration which executes the PNP Γ1 n+ 1 times.

dling action failures. In fact, they can interrupt actions upon failure events and acti-
vate recovery procedures. Interrupts are defined by adding a new transition and edges
to the execution place of an action: given two PNPs Γ1, Γ2, an execution place pe1

in Γ1, an initial place pi2 in Γ2, a new PNP is obtained by adding a new transition
tinterr and new edges (pe1 , tinterr), (tinterr, pi2) to the union of the sets specifying
Γ1, Γ2. The graphical representation of this operator is given in Figure 4.9.

Labeling transitions. In order to specify external events occurring during task ex-
ecution, we define a labeling mechanism for transitions in the net. In particular, all
transitions may be labeled with conditions which must be verified in order to be fired
when enabled. A condition φ on the transition t is denoted with t.φ. If no condition
is specified for a transition, we will assume that it is the condition True. Some-
times it is useful to set such condition to False in the ending transitions to model
non-terminating actions. These are usually supporting actions (see for example, the

106 4. Petri Net Plans

Figure 4.8: (a) The fork structure. (b) The join structure.

Figure 4.9: Interrupt structure where possibly Γ1 is interrupted and then Γ2 executed.

4.3. Semantics 107

action trackBall in the following example) that are executed concurrently with a
main action that actually determines plan transitions.

4.2.1 Example: A simple Robocup 4Legged Striker

We will show a simple plan for a Robocup 4Legged Striker. The following example
consists of a PNP for a robot which must seek for the ball and possibly reach it. We
have the following primitive behaviors:

1. approachBall which is a behavior for approaching the ball controlling the
leg actuators. This action is modeled as a non-instantaneous action.

2. trackBall which is a behavior for tracking the movement of the ball with
the camera positioned on the robot’s head. This action is modeled as a non-
instantaneous action.

3. seekBall which is a behavior for seeking the ball and that is modeled as a
non-instantaneous action.

In Figure 4.10 we show a plan for this task. The robot seeks for the ball which
we assume is not seen. When it finds it, the current state will move to the one where
the ball is seen. In this case, the robot will concurrently move the legs to approach
the ball and track its position with the camera positioned on the head. When the
robot is sufficiently near the ball, the actions approachBall and trackBall
will terminate their execution at the same time, thus reaching the goal state.

Moreover, if while approaching the ball the robot looses visual contact with the
ball, an interrupt will trigger the system to abort the current actions and move to the
state where the ball is not seen. This loop continues until the robot reaches the ball.

4.3 Semantics

In this section, we provide an operational semantics for the execution of PNPs and
present an algorithm that correctly executes a PNP, in the sense that it correctly per-
forms transitions reaching a final state according with the occurrence of external
events.

The state of an agent during the execution of a PNP is given by its marking.
Transitions between the agent states are thus modelled by transitions in the PNP, i.e.
by evolution of its markings.

During the execution of a plan, and thus during the transitions we are defining,
we assume that the robot is provided with a set of functions that are able to evaluate
its internal state. These functions are used to evaluate the conditions labelling the
transitions of the PNP by querying a knowledge base KB and thus determine when
and how it is possible to perform such transitions.

108 4. Petri Net Plans

Figure 4.10: A simple attacker from the Robocup Soccer domain.

We thus give the definitions for executable transitions of a PNP, that allows for
defining the notion of execution of a PNP and of correct execution of a PNP.

Definition 4.1 Possible Transitions in a PNP. Given two markingsMi,Mi+1, a tran-

sition from Mi to Mi+1 is possible iff ∃t ∈ T , such that (i) ∀p′ ∈ P , s.t. (p′, t) ∈ F ,

then Mi(p′) > 0; (ii) Mi+1(p′) = Mi(p′) − 1 for each p′ ∈ P , s.t. (p′, t) ∈ F ; (iii)

Mi+1(p′′) = 1 for each p′′ ∈ P , s.t. (t, p′′) ∈ F .

A possible transition from Mi to Mi+1 is denoted by Mi →Mi+1.

Definition 4.2 Executable transition in a PNP. Given two markings Mi, Mi+1 and

a Ki at time i, a transition from Mi to Mi+1 is executable iff ∃t ∈ T , such that

a transition from Mi to Mi+1 is possible and the event condition φ labelling the

transition t (denoted with t.φ) holds in Ki (i.e. Ki |= φ).

4.3. Semantics 109

An executable transition from Mi to Mi+1 is denoted by Mi ⇒Mi+1.

Definition 4.3 Executable PNP. A PNP P is executable iff it exists a finite sequence

of markings {M0, ...,Mn}, such thatM0 is the initial marking,Mn is a goal marking

(i.e. Mn ∈ G) and Mi →Mi+1, for each i = 0, ..., n− 1.

Definition 4.4 Correct execution of a PNP. An executable PNP P can be correctly

executed iff there exist a finite sequence of markings {M0, ...,Mn}, such that M0 is

the initial marking, Mn is a goal marking (i.e. Mn ∈ G) and Mi ⇒ Mi+1, for each

i = 0, ..., n− 1.

4.3.1 PNP Execution Algorithm

In the following, we present an algorithm which correctly executes a PNP. Algo-
rithm 4.1 assumes the availability of a set of implemented actionsA = {a1, . . . , ak}.
Each action considered here is an abstraction for the implementation of a specific be-
havior that the robots can execute: we assume the action can be accessed by the three
functions start, end and interrupt, that, respectively, start, terminate and suspend the
execution of such a behavior. We also assume that actual behavior execution will be
performed in a separate thread with respect to the execution of Algorithm 4.11. This
means that after an action is started, it will remain active until either end or interrupt
will be invoked.

Moreover, since we can not assume that the agent has complete knowledge about
all the properties of the environment at each point in time, the evolution of the plan
must be controlled according to the robot actual knowledge about the environment
(i.e., according to its epistemic state of knowledge). Therefore, we assume that the
robot maintains a knowledge base KB containing information about the environ-
ment. This knowledge base can be implemented in any form with any formalism: for
example, on heterogeneous cognitive robots normally epistemic knowledge is repre-
sented both at an operational level (as data structures) and at a deliberative level (as
predicates) (e.g. the predicate nearBall is interpreted as true if the current distance
from the ball is within a given threshold). Pairwise, queries over the environment Φ
can be represented as terms or formulas in any formalism consistent with the knowl-
edge base. For the purposes of our plan execution method, we only require that the
agent is able to evaluate queries over the current model of the world, i.e., to calculate
KB |= t.φ.

The procedure execute takes as input a PNP 〈P, T, F,W,M0, G〉 and evolves it
producing the control commands for the basic behaviors (which are associated with

1Obviously, this can be easily extended to non-threaded cases.

110 4. Petri Net Plans

Algorithm 4.1 PNP Execution Algorithm
Domains:

A = {a1, . . . , ak} : Set of implemented actions

Φ : Set of terms and formulas about the environment

TransitionType = {start, end, interrupt, standard}

Structures:

Transition : 〈a ∈ A, φ ∈ Φ, t ∈ TransitionType〉
Action : 〈start(), end(), interrupt()〉

Global Variables:

KnowledgeBase : KB

procedure execute(PNP 〈P, T, F,W,M0, G〉)
1: CurrentMarking = M0

2: while CurrentMarking 6∈ G do
3: for all t ∈ T do
4: if enabled(t) ∧KB |= t.φ) then
5: handleTransition(t)

6: CurrentMarking = fire(t)

procedure handleTransition(t)

if t.t = start then
t.a.start()

else if t.t = end then
t.a.end()

else if t.t = interrupt then
t.a.interrupt()

4.4. Multi-Agent Plans 111

the firing of transitions). This process generates a sequence of transitions {M0, ...,Mn}
that evolve the system from the initial marking M0 to a goal marking Mn ∈ G.

In particular, at each step, Algorithm 4.1 checks (line 4) if each transition t ∈
T is enabled (enabled(t)) and if the related event occurs. In our setting, an event
occurs if the formula φ guarding t is satisfied given the current knowledge KB (i.e.
KB |= t.φ). If these two conditions are satisfied the transition t is fired (procedure
(line 6) and the relative procedures for action control are handled within the sub-
procedure handleTransition that takes care of appropriately activating, interrupting
or deactivating the related action. The details of how this is done depend on the actual
implementation of the system.

The algorithm correctly executes a PNP as shown by the following theorem.

Theorem 4.1 If a PNP can be correctly executed, then Algorithm 4.1 computes a

sequence of transitions {M0, ...,Mn}, such that M0 is the initial marking, Mn is a

goal marking, and Mi ⇒Mi+1, for each i = 0, . . . , n− 1.

Proof We want to prove that Algorithm 4.1 computes a sequence of transitions
{M0, ...,Mn}, such that M0 is the initial marking, Mn is a goal marking, and Mi ⇒
Mi+1, for each i = 0, ..., n− 1. Trivially, the first marking M0 is the initial marking
(Algorithm 4.1, line 1). Furthermore, in order for the algorithm to halt, the final mark-
ing must be a goal marking (Algorithm 4.1, line 2). Thus, Mn ∈ GoalMarkings.

The transition from a marking Mi to a marking Mi+1 is obtained firing (Al-
gorithm 4.1, line 6)a transition ti. A necessary condition for firing is that ti is
enabled (Algorithm 4.1, line 4). If ti is enabled this means that each input place
pi (i.e. (pi, t) ∈ F) is marked with at least w(pi, t) tokens. Since we assume
0 ≤ w(pi, t) ≤ 1 this implies that ∀p′ ∈ P , s.t. (p′, t) ∈ F , then Mi(p′) > 0.

When an enabled transition t fires according to the firing rule, w(pi, t) tokens
are removed for each input place pi and w(t, po) are added to each output place po

such that (t, po) ∈ F . Thus given the assumption that 0 ≤ w(pi, t) ≤ 1, we have
Mi+1(p′) = Mi(p′) − 1 for each p′ ∈ P , s.t. (p′, t) ∈ F and Mi+1(p′′) = 1 for
each p′′ ∈ P , s.t. (t, p′′) ∈ F . Thus, each transition performed by the algorithm is a
possible transition.

Finally, the algorithm ensures executable transitions checking that t.φ holds in
Ki before firing t (Algorithm 4.1, line 4).

4.4 Multi-Agent Plans

Describing multi-agent plans has been considered either as plan sharing (or central-
ized planning), where the objective is to distribute a global plan to agents executing
them, or as plan merging, where individual plans are merged into a multiagent plan

112 4. Petri Net Plans

(see [Durfee, 1999] for details). In our work we followed the centralized planning
approach that has been easily implemented in our formalism as described in this
section. In particular, we show how to represent a multi-agent PNP which can be
produced in a centralized manner and we provide a distributed execution model for
it. The distributed execution model allows us to execute a set of single agent PNPs,
derived from the multi-agent PNP, without the need of a central coordinator agent.
The correctness of the distributed execution with respect to the multi-agent PNP is
enforced using the communication primitives send(id), receive(id) and sync(id,id’),
where id and id’ are unique identifiers for the state of execution of single agent plans,
as we show in the following. The primitives are modeled as single-agent ordinary
non-istaneous actions and represent communication primitives.

A multiagent PNP, for agents {1, . . . , n}, can be defined as the union of n single
agent PNPs enriched with synchronization constraints between actions of different
robots. When writing a multiagent plan, the syntax is not very different from the
single robot case, except that actions are labeled with a unique id for the robot. Given
n single agent plans appropriately labeled {PNPi = 〈Pi, Ti, Fi〉}, the simplest way
to define a multiagent plan is:

M PNP = 〈M P,M T,M F 〉

where:

• M P =
⋃n

i=1 Pi

• M T =
⋃n

i=1 Ti

• M F =
⋃n

i=1 Fi

Such a multiagent plan consists simply of n independent plans. When dealing
with multiagent systems, the main issue is how to represent the interactions among
actions performed by different agents (i.e. among plans). The multiagent plan, as
previously defined, fails to capture such interactions and may result in the execution
of conflicting actions. In particular, we want to be able to order actions across plans
so that overall consistency is maintained and conflicting situations are avoided.

For example, in [Farinelli et al., 2006] we consider two robots cooperating in
a foraging task2. They must at first help each other to allow one of the robots to
grab the object, then this robot can transport the object to a collect point, while the
support of the second robot is not necessary anymore, and it should move away for
not interfering with the first robot. Action synchronization is, thus, needed first for
coordinating the grab action, then to communicate that the supporting robot is out of
the way.

2A video is available at:

http://www.dis.uniroma1.it/∼farinell/video/CoopForaging-commentary.wmv

4.4. Multi-Agent Plans 113

4.4.1 Action Synchronization

In our approach, we model multi-agent plans as a collection of single agent plans en-
riched with synchronization constraints to avoid unsafe interactions. We assume that
robots are able to communicate through a reliable channel and, thus, to send and re-
ceive synchronization messages. The synchronization operator h sync(s, r, ids, idr)
(Figure 4.11), among robots s and r, is defined as follows:

〈{pi1, pi2, pc, po1, po2}, {ts, te}, {(pi1, ts), (pi2, ts), (ts, pc), (pc, te),
(te, po1), (te, po2)}〉

The operator synchronizes in time two single agent plans and allows for information
share among them, through the communication of ids and idr which encode the state
of execution for the plan of agent s and agent r, respectively. This operator is similar
in structure to an ordinary non-istantaneous action, except that it does not belong to
any agent and it is labeled with a unique pair (ids, idr).

(b)

(a)

sync(R1,R2,id,id’)

h_sync(id,id’)

sync(R1,R2,id,id’)

R1.gotoLeftSideTable

R2.gotoRightSideTable

R1.lift

R2.lift

l i f t

l i f t

gotoLeftSideTable

gotoRightSideTable

p
c

p
i1

p
i2

p
0 1

p
0 2

t
s t

e

Figure 4.11: (a) A multi-agent PNP for hard synchronization. (b) The single-agent

PNPs obtained from the multi-agent one.

114 4. Petri Net Plans

For example, Figure 4.11(a) shows a multi-agent PNP for two robots which have
to lift a table. The nodes for action structures and synchronization operators are
grouped, for readability, by a common label. In this example R1 and R2 have to
reach the two sides of a table and lift it simultanously. The h sync operator ensures
that the robots start to lift the table when both have reached it. In particular, the
input transition ts acts as a join waiting for both actions R1.gotoLeftSideTable
and R1.gotoRightSideTable to terminate. The place pc represents that the state in
which the communication, necessary for synchronization, is in progress. Finally, the
ending transition of te acts like a fork enabling the performance of the lift actions.

A multiagent plan can be decomposed into two single agent plans (e.g. Figure
4.11(b)) by isolating actions labeled with the same agent id and by decomposing
the sync operator into the two communication primitives sync(s, r, ids, idr) and
sync(s, r, idr, ids). These two (single-robot) primitives, when performed jointly,
establish a communication link between s and r, based on which a protocol for syn-
chronization is started. In particular, each action, for example sync(s, r, ids, idr)
performed by s, at first sends the ids encoding the state of execution its plan to r and,
then, waits for idr from r, which is acknowledged upon reception. Finally, it waits
an acknowledgment of reception of ids by r to terminate. Notice that the exchange
of information is based on the ids which encode the state of execution of each single
plan (e.g. which sensing branches are performed during execution). We call this syn-
chronization model hard synchronization. Note that network delay may affect exact
simultaneous starting of the two actions; however, the formalism ensures that the two
actions are generally executed at the same time by the two robots.

We now provide the formal definition of the hard synchronization operator. Con-
sider, without loss of generality, a sequence of actions, R1.act1 and R1.act2, of
robot R1, and a sequence of actions, R2.act1 and R2.act2, of robot R2. Assume that
por1 and pir1 are the output and input place of R1.act1 and R1.act2, respectively.
Moreover, assume that por2 and pir2 are the output and input place of R2.act1 and
R2.act2, respectively. The multiagent plan, which enforces R1.act2 and R2.act2 to
start simultaneously, is the union of the four actions and the h sync operator, with
the constraint that:

por2 = pi2 ∧ pir2 = po2 ∧ por1 = pi1 ∧ pir1 = po1

We also provide an alternative model of synchronization, called soft synchroniza-
tion, represented through the operator s sync (Figure4.12(a)):

〈{pi, pc, po}, {ts, te}, {(pi, ts), (ts, pc), (pc, te), (te, po)}〉

Intuitively, a soft sync may be considered as composed by two communication prim-
itives: a blocking receive and a non-blocking send.

Figure 4.12(a) shows the representation of a soft synchronization enforcing that
the action of agent R1 must start after the termination of the action of agent R2.

4.4. Multi-Agent Plans 115

(a)

(b)

receive(id)

send(id)

s_sync(id)R2.act3

R1.act1 R1.act2

R2.act4

act1 act2

act3 act4

t
s

t
ep

i
p

c p
o

Figure 4.12: (a) A multi-agent PNP for soft synchronization. (b) The single-agent

PNPs obtained from the multi-agent one.

Consider, without loss of generality, the multiagent plan composed by a sequence of
actions, R1.act1 and R1.act2, of robot R1, and a sequence of actions, R2.act3 and
R2.act4, of robot R2. We want to enforce R1.act1 to be executed before R2.act4.
Assume that ter1 is the ending transition of R1.act1 and that tsr2 is the starting tran-
sition of R2.act4. The synchronized multiagent plan is the original multiagent plan
merged with the s sync operator and the new edges (po, tsr2) and (ter1, pi). Fig-
ure 4.12(b) shows the single agent plans obtained from this synchronized multiagent
plan.

116 4. Petri Net Plans

4.4.2 Extracting Single Agent PNPs

Using the synchronization operator, we can, thus, write multiagent PNPs for which
all the conflicts in the actions are solved. Moreover, given a multiagent PNP, we
can automatically produce the single-agent plans by isolating the portion of the plans
relative to each robot and replacing synchronization operators with communication
actions.

Formally, an operator s sync(id) can be decomposed into the two communica-
tion primitives

send(id) = 〈{ps(id)
i , ps(id)

e , ps(id)
o }, {ts(id)

s , ts(id)
e },

{(ps(id)
i , ts(id)

s), (ts(id)
s , ps(id)

e), (ps(id)
e , ts(id)

e), (ts(id)
e , ps(id)

o)}〉
and

recevie(id) = 〈{pr(id)
i , pr(id)

e , pr(id)
o }, {tr(id)

s , tr(id)
e },

{(pr(id)
i , ts(id)

s), (tr(id)
s , pr(id)

e), (pr(id)
e , tr(id)

e), (tr(id)
e , pr(id)

o)}〉.
while, an operator h sync(id1, id2) can be decomposed into the two primitives:

sync(id1, id2) = 〈{pid1
i , pid1

e , pid1
o }, {tid1

s , tid1
e },

{(pid1
i , tid1

s), (tid1
s , pid1

e), (pid1
e , tid1

e), (tid1
e , pid1

o)}〉
and

sync(id2, id1) = 〈{pid2
i , pid2

e , pid2
o }, {tid2

s , tid2
e },

{(pid2
i , tid2

s), (tid2
s , pid2

e), (pid2
e , tid2

e), (tid2
e , pid2

o)}〉.
We denote with 〈Pi ⊆ M P,Ti ⊆ M T,Fi ⊆ M F 〉 the subset of M PNP

composed by the operators labeled with agent i. Recall that synchronization operators
do not belong to any agent.

Given a multi agent plan M PNP = 〈M P,M T,M F 〉 the single agent plan
for agent i, S PNPi = 〈S Pi, S Ti, S Fi〉, is the minimal net such that:

Pi ⊆ S Pi ∧ Ti ⊆ S Ti ∧ Fi ⊆ S Fi (4.1)

∀t, t′ ∈ Ti ∀p, p′ ∈M P

(p, p′) ∈ h sync(i, r, id1, id2) ∧ (t, p) ∈MF ∧ (p′, t′) ∈MF) =⇒
({pid1

i , pid1
e , pid1

o } ⊆ S Pi ∧ {tid1
s , tid1

e } ⊆ S Ti∧
{(t, pid1

i), (pid1
i , tid1

s), (tid1
s , pid1

e), (pid1
e , tid1

e),

(tid1
e , pid1

o), (pid1
o , t′)} ⊆ S Fi)

(4.2)

4.5. Execution Model for MAPGs 117

∀t, t′ ∈ Ti ∀p, p′ ∈M P

(p, p′) ∈ h sync(S, i, id1, id2) ∧ (t, p) ∈MF ∧ (p′, t′) ∈MF) =⇒
({pid2

i , pid2
e , pid2

o } ⊆ S Pi ∧ {tid2
s , tid2

e } ⊆ S Ti∧
{(t, pid2

i), (pid2
i , tid2

s), (tid2
s , pid2

e), (pid2
e , tid2

e),

(tid2
e , pid2

o), (pid2
o , t′)} ⊆ S Fi)

(4.3)

∀t ∈ Ti ∀p ∈M P

(p ∈ s sync(id)) =⇒
({ps(id)

i , ps(id)
e , ps(id)

o } ⊆ S Pi ∧ {ts(id)
s , ts(id)

e } ⊆ S Ti∧
{(t, ps(id)

i), (ps(id)
i , ts(id)

s), (ts(id)
s , ps(id)

e), (ps(id)
e , ts(id)

e),

(ts(id)
e , ps(id)

o)} ⊆ S Fi)
(4.4)

∀t ∈ Ti ∀p, p′ ∈M P

(p ∈ s sync(id) ∧ (p, t) ∈MF ∧ (p′, t) ∈MF) =⇒
({pr(id)

e , pr(id)
o } ⊆ S Pi ∧ {tr(id)

s , tr(id)
e } ⊆ S Ti∧

(p′, t) 6∈ S F ∧ {(p′, tr(id)
s), (tr(id)

s , ps(id)
e), (pr(id)

e , tr(id)
e),

(tr(id)
e , pr(id)

o), (pr(id)
o , t)} ⊆ S Fi)

(4.5)

Condition 4.1 states that the synchronized plan must include i’s single agent part of
the plan, but does not take into account synchronization. On the one hand, Conditions
4.2 and 4.3 ensure that, respectively, the send and receive primitives are correctly sub-
stituted to each hard synchronization. On the other hand, in a similar way, Conditions
4.2 and 4.3 enforce the correct interpretation of the soft synchronization.

Examples of this process are shown in Figures 4.11 and 4.12. Here the multiagent
PNPs in the first part (Figures 4.11(a) and 4.12(a)) are divided into two PNPs for the
two agents (Figures 4.11(b) and 4.12(b)), where the synchronization operators are
replaced by send, receive and sync actions. The synchronized single agent plans are
then executed as shown in Section 4.3. The communication primitives will guarantee
the consistency of the distributed multiagent plan.

4.5 Execution Model for MAPGs

Solutions for MAPGs are multi-agent plans produced by a planning algorithm. The
multi-agent plan, in order to be executed in a distributed way, must be decomposed

118 4. Petri Net Plans

into n single agent plans, one for each agent. Each agent, thus, must receive its part
of the multi-agent plan (i.e. its single agent plan) which has to be executed by its
executor module.

In this section, we show how multi-agent plans can be represented as multi-agent
PNPs. This representation offers two main advantages. First, there is a procedure
which allows us to decompose a multi-agent PNP into a set of single agent PNPs.
Second, the execution of the single agent PNPs is well defined and offers the means
for the distributed execution of the original multi-agent plan. Thus, in order to define
a distributed execution model for our plans, we show how they can be represented
with a fragment of PNPs.

4.5.1 Multi-Agent Plans Without Communication

Recall that an executable representation of a (conditional) multi-agent plan p is:

(〈p1, . . . , pn〉,≺p) (4.6)

Each set pi is composed by the actions of agent i. Actions in general may be ordinary
actions, sensing outcomes or communication actions. Consider at first the case where
there are no communication actions.

We now show how to build the multi-agent PNP m = 〈P, T, F,W,M0, G〉 from
p. In particular, the weight function W returns one for all the edges. For each agent
i ∈ Ag, we add a place Ii to m, representing their initial no-action. The initial mark-
ing M0 is such that there is one token in each place Ii and zero in all the others. For
each ordinary action in α ∈ pi we build the PNP non-instantaneous action structure
pnp(α, i) where i is the labelling for agent i. For each pair of sensing action out-
come βo ∈ pi and β¬o ∈ pi, referring to the same sensing action β, we build the PNP
non-instantaneous sensing structure pnp(β, i).

For each agent i, we look for an action α ∈ pi such that 6 ∃α′ |α′ ≺p α and we
apply the sequence operator to sequence(pnp(Ii, i), pnp(α, i)) where pnp(Ii, i) is a
no-action structure. Then, for any α1 ∈ pi and α2 ∈ pi for agent i, if α1 ≺p α2 and

6 ∃α3 ∈ pi | α1 ≺p α3 ≺p α2,

we apply the sequence operator sequence(pnp(α1, i), pnp(α2, i)). The same applies
if α2 is a sensing action. If α2 = βo we have to use conditional structures. In
particular, given four actions βo, β¬o, α1, α2 ∈ pi such that

β¬o ≺p α2∧ 6 ∃α3 ∈ pi | β¬o ≺p α3 ≺p α2

and
βo ≺p α1∧ 6 ∃α3 ∈ pi | βo ≺p α3 ≺p α1

we apply the conditional operator conditional(pnp(β, i), pnp(α1, i), pnp(α2, i)).
Finally, we define the goal marking G as the one which has a token for at least

4.5. Execution Model for MAPGs 119

one sink place for each agent. Roughly, this procedure builds n independent single
agent PNPs labeled with the id of the agent performing them. Nevertheless, we need
to characterize multi-agent plans where different single agent plans interact through
communication.

4.5.2 Multi-Agent Plans With Communication

Consider now, the case where the multi-agent plan involves communication actions.
The procedure is the same as before, except the case when the actions to sequence
are request syncs and accept syncs.

Recall that a conditional multi-agent plan can be represented as a binary tree over
M , where nodes are global states and directed edges are labeled with a pair 〈i, α〉,
where i is an agent and α is an action (or sensing outcome). For every branching
there is an agent who performed a sensing action, and who is aware, at execution
time, of which branch he is in. Instead, the agents which did not perform the sensing
action are not aware of which branch of the tree they are in, and, thus, perform the
same action in all the branches relative to sensing actions they did not perform. For
this reason, in the previous characterization of plans, each single agent PNP of agent
i branched only in presence of sensing actions performed by i. Nevertheless, this is
not true in presence of communication. Indeed, when an agent is performing actions
relative to branches of sensing actions he did not perform, a communication may
inform him of which branch he is executing.

In particular, consider a plan p represented as a tree and the set, for any two
agents s and r, of accept sync(s, r) in the plan. We group these actions based on
the local state of s at which they where performed. In particular, for a couple of
agents s and r, we have H sets, {ACCs,r

1 , . . . , ACCs,r
H }. Each set ACCs,r

i is com-
posed by all the accept sync(s, r) actions performed in a given local state Ss. With
each set ACCs,r

i we then associate a unique identifier ids. Similarly, for each pair
of agents r and s, we group the actions request sync(r, s) performed by r in the
same local state, and assigne them an identifyier. In particular, we have K sets,
{RECs,r

1 , . . . , RECs,r
K }. With each request sync(r, s) in RECs,r

i , we associate
ACCrequest sync(r,s) ⊆ {ACCs,r

1 , . . . , ACCs,r
H } such that ∀accept sync(s, r) ∈

ACCs,r
i ∈ ACCrequest sync(r,s):

∃αz ∈ pr | (request sync(r, s) ≺p αz ∧ accept sync(s, r) ≺p αz)∧
(6 ∃request sync′(r, s) ∈ pr | request sync(r, s) ≺p request sync

′(r, s) ≺p αz)∧
(6 ∃accept sync′(s, r) ∈ ps | accept sync(s, r) ≺p accept sync

′(s, r) ≺p αz).

Consider now he case that we encounter a request sync(r, s) ∈ RECs,r
i action to

sequence after an action of agent r. In this case we use the fork operator to produce
∑

request sync(r,s)∈RECs,r
i

|ACCrequest sync(r,s)|

120 4. Petri Net Plans

threads of execution relative to the different information the agent may receive. Then,
we synchronize each of these threads, with a thread of agent s relative to an ele-
ment of ACCrequest sync(r,s). The synchronization is obtained through the operator
h sync(s, r, id1, id2), where idis are the identifyiers relative to the request and ac-
cept synchronization primitives.

4.5.3 Example

< 1 , a c t 1 >

<2,senseT><2,senseF>

<1, request_sync(1,2)>

<2 , ac t1><2, accept_sync(2,1)>

<1 , ac t3>

<1 , ac t2>

<2 , ac t4>

<1, request_sync(1,2)>

<2, accept_sync(2,1)>

Figure 4.13: An example of multi-agent conditional plan.

Consider the multi-agent plan in Figure 4.13. Agent 1 performs the action act1
and agent 2 performs a sensing action with possible outcomes F and T . After the
sensing action the plan branches but agent one can not distinguish in which branch
he is because the sensing action was performed by agent 2. Thus, agent 1 has to
perform the same action in both branches, which in this case is a request for com-
munication to agent 2 (request sync(1, 2)). Next, agent 2 chooses to communicate
to agent 1 and then perform act4, if the outcome of the sensing action is F , and,
perform act1 and then communicate, if the outcome is T . When agent 1 receives the
communication he is able to distinguish in which branch of the tree he is and thus
selects act2, in the branch where the outcome is F and act3, in the branch where
the outcome is T . Figure 4.14(a), shows the corresponding multi-agent PNP. We en-
code the synchronization relative to the accept sync action in the branch where the
sensing outcome is T with the identifier 1 and the one relative to the accept sync

4.6. Implemented Systems 121

action in the branch where the outcome is F with the identifier 2. Notice that a sens-
ing action for agent 1 results in a sensing structure in the part of the PNP relative
to him, while the request sync action of agent 2 results in a fork. In this case, the
accept syncs of agent 2 can be grouped in the two singletons {ACC1,2

> , ACC1,2
⊥ },

containing the accept syncs in the case sensing is true and false, respectively. More-
over, the two request sync actions request sync(1, 2)> and request sync(1, 2)⊥
of agent 1, performed when the sensing outcome is true and false, respectively, are
executed at the same information set and, thus, are grouped into the set of cardi-
nality two, REC1,2

1 = {request sync(1, 2)>, request sync(1, 2)⊥}. We can now
associate the request syncs to the accept syncs: ACCrequest sync(r,s)> = ACC1,2

>
and ACCrequest sync(r,s)⊥ = ACC1,2

⊥ . Thus in this case, agent 1 has two different
threads of execution representing the possibility to receive a communication relative
to the two possible outcomes of the sensing action performed by 2.

The goal marking corresponds to any marking which has at least a token in a
sink node (i.e. Goal1, Goal2 or Goal3) of the net. The multi-agent PNP in Figure
4.14(a) can be decomposed into two single agent PNPs as previously shown. The
PNP for the first agent is depicted in Figure 4.14(b), while the one for the second
agent is depicted in Figure 4.14(c). Notice that, during execution, accept sync and
request sync actions do not transfer the entire e-state of the sender to the recipient,
but just an action id (which must be unique in the multi-agent plan).

4.6 Implemented Systems

The proposed framewok has been implemented and used to control some robotic
systems in various domains. An open source implementation of both the execution
library and the debugging tools can be found at: http://www.dis.uniroma1.it/∼ zi-
paro/pnp.html. A plan executor for our formalism has been implemented with a set
of tools for designing and debugging plans. Plans are executed also according to the
events occurring in the environment and to the state of the robot, which represents the
agent’s knowledge about the environment. During the execution of a PNP, the robot
makes use of a set of functions that can access the internal state of the robot and return
truth values about relevant properties for the execution of the plan, and information
about the state of knowledge about such properties. For example, consider a robotic
soccer domain. A robot may use a function returning whether the position of the ball
is known (i.e. the ball is visible to the robot’s sensors), and another function returning
an evaluation of the fact that the ball is close enough to be kicked.

Plans can be generated by an off-line single-agent planner (currently without
concurrency)[Iocchi, Nardi, & Rosati, 2000a; Iocchi, Nardi, & Rosati, 2004b], by
the multi-agent planner proposed in this work, or edited by hand. In the latter case

122 4. Petri Net Plans

(a)

R1.act1

h_sync(R1,R2,1,1)

h_sync(R1,R2,1,2)

R2.sense

F

T

R2.act1

R1.act3

R1.act2

Goal1

Goal2

(c)

act1 sync(R1,R2,1,1)

sync(R1,R2,1,1)sense

F

T

 act1

act3

 act2

Goal1

Goal2

sync(R1,R2,1,2)

sync(R1,R2,1,2)

(b)

Goal1

Goal2

R2.act4 Goal3

 act4 Goal3

Figure 4.14: The multi-agent PNP of the plan in Figure 4.13 (a) and the relative single

agent PNP of agent R1 (b) and R2 (c).

4.6. Implemented Systems 123

we use an available open-source graphical tool, Jarp3, which can generate an appro-
priate standard XML format (PNML). Moreover, Jarp has been extended in order to
debug plans on-line. During plan execution, the robot can produce (or stream through
a TCP/IP connection) a log containing the information regarding the deliberative pro-
cess. This log can be parsed by our tool to view the evolution of the Petri Net Plans,
allowing for easily identifying deadlocks or wrong behaviors, and providing a quick
and user friendly plan debugging interface.

The Petri Net Plans are used for designing the behaviors of the Robocup 4Legged
team S.P.Q.R. Legged 4 since 2004 [Iocchi & Nardi, 2004]. In this league, two teams
of four autonomous Sony Aibo, play a soccer match on a rectangular field with a
set of landmarks in known positions. The approach has been successful in modeling
behaviors in such a highly dynamic and noisy environment. The robots were able to
handle reactively rapid state changes while demonstrating a proactive behavior allow-
ing for a good performance in the competitions. On the other hand, Petri Net Plans
have been employed to design behaviors for quasi-static environments, where the fo-
cus is on information gathering. This is the case of the Real Robot Rescue competi-
tions where the goal is to explore and seek for victims in an unstructured environment
(i.e a disaster scenario like a building after an earthquake). The S.P.Q.R. Real Rescue
team5 adopts the Petri Net Plans since 2005 to control their rescue robots [Calisi et
al., 2007]. The use of Petri Net Plans to model urban search and rescue scenarios has
been one of the topics of the practical sessions at the Rescue Robotics Camp6.

Finally, we used the Petri Net Plans to design a set of experiments for a task
assignment technique based on token passing7 [Farinelli et al., 2006]. Our application
scenario was formed by a set of robots that need to perform a synchronized operation
on a set of similar objects scattered in the environment. In order to achieve such a
complex foraging task it is necessary to be able to synchronize actions across plans
as shown in Section 4.4. In particular, we implemented the communication through
TCP/IP triggering events based on reception of appropriate sync messages.

3http://jarp.sourceforge.net/
4http://spqr.dis.uniroma1.it/
5http://sied.dis.uniroma1.it/
6http://sied.dis.uniroma1.it/camp/
7A video of the experiment is available at:

http://www.dis.uniroma1.it/∼farinell/video/CoopForaging-commentary.wmv

124 4. Petri Net Plans

Part II

Solution

125

Chapter 5

Solution Concept

One of the fundamental issues in multi-objective problems is the definition of solu-
tion. In this thesis, we want to characterize a solution in terms of a MAPG, which
is rational for the agents composing the system. Each agent pursues a single objec-
tive, which is possibly different from the objectives of the other agents. Although
the problem is single-objective with respect to a single agent, it is multi-objective if
we consider the multi-agent system. The description of the problem is very similar
to the one provided by game theorists although there is a fundamental difference:
the agents are a team. This assumption has a considerable impact on the solution
concept, which we formally define as an optimality requirement on the solutions.

This thesis aims at developing a planner to devise distributed plans for agents
coordinated through a post-planning coordination approach (see Chapter 2). This
means that agents are willing to find an agreed plan to which they commit before
execution. For example, think of a team of firefighters, which are dealing with a
building on fire, organized in two groups: one has to extinguish the fire and the other
one to rescue victims. The first group has to extinguish fire because this could be
propagated to the nearby buildings harming other civilians, while the second has to
rescue as many victims as possible, to save their lives. Each group can define a
performance metric on his task, but none can evaluate the tradeoffs between the two
objectives because they should give a value to life. Thus, they have to agree on a plan
which maximizes the performance of the team, while taking into account the possible
conflicts among the objectives.

Agents which form a team are willing to maximize the performance of the team.
In multi-objective problems this requirement is formally defined as Pareto optimality
(e.g. [H. Eschenauer & Osyczka, 1990; Das, 1997b; Das & Dennis, 1996; Rakowska,
T., & Watson, 1991; Lin, 1975; Ignizio, 1976; Schniederjans, 2003; Das & Den-
nis, 1998; Vicente & Calamai, 1994] or [Stewart & White, 1991; Harikumar & Ku-
mar, 1996; Mandow & de-la Cruz, 2007; Dasgupta, Chakrabarti, & DeSakar, 1999;

127

128 5. Solution Concept

Galand & Perny, 2006; Bryce, Cushing, & Kambhampati, 2007]). The major draw-
back of Pareto optimality is that, in general, it defines a space of possible solu-
tions. It is still an open problem to understand which solution should be selected
among this set [Stewart & White, 1991]. Most approaches in the literature over-
come this limitation by defining some form of tradeoff between the objectives to
evaluate which Pareto optimal solution is the best (see Section2.2). For example,
they define preferences over the objectives (e.g. [Vicente & Calamai, 1994]), they
reformulate the problem as a single objective one (e.g. [Refanidis & Vlahavas, 2003;
Das & Dennis, 1996]) or they tradeoff each agent’s utility with respect to the team’s
interest1 [Mouaddib, 2006; Mouaddib, Boussard, & Bouzid, 2007; Shen, Zhang, &
Lesser, 2004; Stirling, Goodrich, & Packard, 2002]. Nevertheless, this approach is
not sound because it relies on a measure between noncommensurate quantities. In
this chapter, we provide a novel refinement of Pareto optimality. In particular, we
exploit the fact that each agent is pursuing a single objective and thus embodies the
objective itself. In this case, the problem of selecting a Pareto optimal solution can be
modeled as a non-cooperative game [Osborne & Rubinstein, 1994]. Indeed, moving
from a Pareto optimal solution to another, leads, by definition, to a solution where
some objectives are penalized and others are improved. This situation is clearly com-
petitive and can be modeled through the game theoretic concept of game.

It is worth noticing that our solution concept is cooperative when cooperation is
possible and non-cooperative when cooperation is not possible. In particular, agents
cooperate in the sense that they agree only on Pareto optimal solutions. Thus, they
maximize the performance of the team whenever the performance metric allows it.
Nevertheless, in multi-objective problem the performance metric is a partial ordering
among solutions. Thus, once identified the set of Pareto optimal solutions there is no
more space for cooperation because there is no further way to assess the goodness of
a plan with respect to the team performance. Selecting the appropriate Pareto optimal
solution is a matter of deciding which agent will take the greatest advantage from it.
In this perspective, the problem is non-cooperative and the agents can be thought as
self-interested. Despite this, the optimality of the process is not in danger because
the non-cooperative model is used to search over the Pareto optimal set and, thus,
can not result in a non Pareto optimal outcome. The non-cooperative model is based
on normal form games and on a novel solution concept, which we call restricted
correlated equilibrium. The restricted correlated equilibrium provides the means of
selecting the appropriate Pareto optimal solution based on the (Bayesian) rationality
of agents. We can prove that such solution always exists for the class of games
we present in this thesis, called optimal games. Moreover, as we show in the next
chapter, restricted correlated equilibrium is considerably more efficient to compute

1Team interest is a measure on tradeoffs among the objectives and can be represented as social

welfare [Mouaddib, 2006; Mouaddib, Boussard, & Bouzid, 2007] (i.e. weighted sums of the utilities of

objectives).

5.1. Pareto Optimal Games 129

than correlated equilibrium, under some reasonable assumptions on the domain.
The solution concept we provide has a relevant impact on the quality of solutions

and its contribution is not solely limited to soundness purposes. Indeed, it can model,
and improve the quality of solutions, of many real problems. In particular, we will
show in the following experimental analysis (Section 6.2) and, later on, in the case
study on the USAR problem (Chapter 9), that defining “a priori” preferences over the
objectives can seriously penalize some objectives, depending on the initial descrip-
tion of the problem. This phenomenon is avoided by our solution concept because
the agents, which embody the penalized objectives, will not agree to such solutions
and will deviate to a new Pareto optimal solution which can provide better guarantees
to their objectives.

Example Consider the USAR domain where the robots have the objective to explore
and to detect victims. Consider a selection among Pareto optimal solutions which
tradeoffs among objectives. Assume that we prefer to detect victims rather than to
explore, and that we encode this by saying that the utility of detected victims is double
with respect to the utility explored locations. During the rescue task we are faced
with a problem where there are, for example, 3 locations which have to be inspected
to detect victims and 7 which must be explored. If the problem can not be completely
solved because of time constraints, the system will select a solution which uses all the
robots to explore and will ignore possible victims, because this maximizes the sum
of utilities. However we define the preferences over the two objectives, we can find
an instance of the problem which penalizes the victim detection objective. Instead,
our approach would avoid such solution because the victim detection robots would
not agree on such plan, deviating to one where they can detect some victims. Indeed,
to ignore the victims would not be rational given their objectives.

5.1 Pareto Optimal Games

Don’t Confess Confess

Don’t Confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 5.1: The Prisoner’s Dilemma

Example Consider the Prisoner’s Dilemma from Chapter 2, which we report here for
ease of readability in Figure 5.1. The only equilibrium in this game is 〈Confess, Confess〉

130 5. Solution Concept

with a utility profile of 〈1, 1〉. Nevertheless, this solution is not desirable from an
optimality perspective because, 〈Don’t Confess, Don’t Confess〉, which has a utility
profile of 〈3, 3〉 is clearly better for both objectives. In particular, we say that the
solution 〈Confess, Confess〉 is not Pareto optimal.

Recall that MAPGs can be represented as normal form games, that is: a set of
players, a set of strategies for each player and a set of utility values for strategy
profiles (i.e. a collection of strategies, one for each players). In our case, the set of
players is Ag = {1 . . . n} and the set of strategies Ki for i are the set of single-agent
plans Pli, obtained by the set of multi-agent plans Pl dropping from each plan the
actions not performed by i. In particular, given the executable representation of a
multi-agent p = (〈p1, . . . , pn〉,≺p), we denote i’s single-agent plan of p as:

〈α1; . . . ;αK〉

where αj ∈ pi ∀j ∈ [1, . . . ,K] and

∀αv, αj ∈ pi v < j =⇒ αv ≺p αj .

Notice, that for the single-agent case ≺p defines a total ordering. Finally, the utilities
of a strategy profile p ∈ Pl can be computed through the functions pui(p) (Definition
3.16). Note that, in our case, not every combination of strategies is a valid multiagent
plan. Recall that, a strategy profile that is not a valid multi-agent plan has a utility of
F (the utility of failure) for each agent.

The basic idea is to define a solution concept, based on this representation, which
is Pareto optimal, and is rational for the agents (i.e. is an equilibrium). The first
concern a game theorist would have on such a solution is that the Pareto optimal set
and the set of equilibria of a game may be disjoint. Thus, a solution is not guaranteed
to exist. For example, in the prisoner’s dilemma the Pareto optimal set is

{〈Don’t Confess, Don’t Confess〉, 〈 Confess, Don’t Confess〉,
〈Don’t Confess, Confess〉},

while the only Nash equilibrium in pure strategies2 is 〈Confess, Confess〉, which is
not Pareto optimal.

Nevertheless, we are addressing a different problem with respect to game theo-
rists. Game theory develops empirical models of scenarios which are observed and is
mainly used for predictive purposes. Our problem is generative and aims in finding
solutions with some desirable properties such as optimality and rationality. The idea
is, thus, to build a game with a space of strategy profiles which is Pareto optimal and

2This is also the only correlated equilibrium (i.e. the only solution in the correlated equilibrium’s

support).

5.2. Restricted Correlated Equilibrium 131

then solve this problem using equilibria as an expression of rationality. In this case
we can prove that a solution always exists.

For example, think of a team of two researchers building a robotic system for
urban search and rescue, one expert in SLAM (Simultaneous Localization and Map-
ping) and one in exploration and path planning techniques. They devised three pos-
sible solutions to the problem: one which has good performance in SLAM and poor
in exploration, one which has good performance in in exploration and poor SLAM,
and finally one which is poor in both. Clearly, the third solution would be discarded
while their effort would be on choosing one of the first two solutions (e.g. by flipping
a coin).

The idea behind our approach is to generate a game whose strategy profile space
is composed uniquely by Pareto optimal plans. Intuitively, we discard all those plans
in Pl for which there is a plan which is better for all agents. Formally, we reduce the
set of possible multi-agent plans Pl to the set of Pareto optimal ones Plpo defined as:

{p ∈ Pl | 6 ∃p∗ ∈ Pl s.t. ∀i ∈ Ag pui(p∗) ≥ pui(p) ∧∃j ∈ Ag puj(p∗) > puj(p)}.

Clearly, invalid multi-agent plans are not Pareto optimal, because their utility is worst
than the utility of a valid plan for each objective.

The new game, called Pareto optimal game, corresponds to the normal form of
the MAPG considering when only Pareto optimal outcomes are considered. In par-
ticular, the game is defined as:

• set of players Ag,

• the set of pure strategies Plpo
i , for each agent i, obtained by the set multi-agent

plans Plpo, as previously described, and

• the function pui(·) describing the utility for each agent i of a given plan.

We, now, need to identify the most appropriate type of equilibrium, for the Pareto
optimal game of a MAPG, to express the rationality of agents when choosing a solu-
tion among noncommensurate objectives.

5.2 Restricted Correlated Equilibrium

Example Consider the following example, known as the Battle of Sexes. The Battle
of the Sexes is a two player coordination game used in game theory. Imagine a couple,
Kelly and Chris. Kelly would most prefer to go to the football game. Chris would
like to go to the opera. Both would prefer to go to the same place rather than different
ones. The payoff matrix labeled in Figure 5.2 is an example of Battle of the Sexes,
where Chris chooses a row and Kelly chooses a column. This representation does
not account for the additional harm that might come from going to different locations

132 5. Solution Concept

Opera Football

Opera 3, 2 0, 0

Football 0, 0 2, 3

Figure 5.2: Battle of Sexes 1

Opera Football

Opera 3, 2 1, 1

Football 0, 0 2, 3

Figure 5.3: Battle of Sexes 2

and going to the wrong one (i.e. Chris goes to the opera while Kelly goes to the
football game, satisfying neither). In order to account for this, the game is sometimes
represented as in Figure 5.3. This game has two pure strategy Nash equilibria, one
where both go to the opera and another where both go to the football game. For
the first game, there is also a Nash equilibrium in mixed strategies, where Kelly and
Chris go to their preferred event more often than the other. For the payoffs listed
above, each player attends their preferred event with probability 3/5. This presents
an interesting case for game theory since each of the Nash equilibria is deficient in
some way. The two pure strategy Nash equilibria are unfair, one player consistently
does better than the other. The mixed strategy Nash equilibrium (when it exists)
is inefficient. The players will miscoordinate with probability 13/25, leaving each
player with an expected return of 6/5 (less than the return one would receive from
constantly going to one’s less favored event). One possible resolution of the difficulty
involves the use of a correlated equilibrium. In its simplest form, if the players of
the game have access to a commonly observed randomizing device, then they might
decide to correlate their strategies in the game based on the outcome of the device.
For example, if Kelly and Chris could flip a coin before choosing their strategies,
they might agree to correlate their strategies based on the coin flip by, say, choosing
football in the event of heads and opera in the event of tails. Notice that once the
results of the coin flip are revealed neither Kelly nor Chris have any incentives to alter
their proposed actions (this would result in miscoordination and a lower payoff than
simply adhering to the agreed upon strategies). The result is that perfect coordination
is always achieved and, prior to the coin flip, the expected payoffs of Kelly and Chris
are exactly equal.

5.2. Restricted Correlated Equilibrium 133

In general, Plpo may be composed of many different plans, each being more
convenient for some set of objectives with respect to others. In order to select a plan
among these different choices, we look for the game theoretic notion of equilibria,
which is a well defined and agreed solution concept. In particular, we use a refine-
ment of correlated equilibrium. The main advantage in using correlated equilibrium
is that

• it is guaranteed to exist [Aumann, 1987] (opposed to pure Nash Equilibrium),

• it can be computed in polynomial time [Papadimitriou, 2005],

• it avoids uncorrelated randomizations (opposed to mixed Nash equilibrium),
which could yield to undesired outcomes, increasing the solution space [Os-
borne & Rubinstein, 1994],

• and it is an expression of Bayesian rationality [Aumann, 1987].

It is worth noticing, that, in general, the number of Pareto optimal plans Plpo, may
be considerably less than the number of possible plans Pl. In these cases the optimal
game for a MAPG is considerably smaller than its normal form. This consideration
is formalized by Assumption 6.1.1 and discussed in some detail in the next chapter.

In the following we provide a definition of correlated equilibrium for the optimal
game of a MAPG. We recall, that a distribution on a set P is a vector of nonnegative
real numbers, one for each element in P , adding up to one. Moreover, we denote

Plpo
−i = {〈p1, . . . , pi−1, pi+1, . . . , pn〉,≺p) | (〈p1, . . . , pn〉,≺p) ∈ Plpo}

the set of strategy profiles of Plpo ignoring i’s strategies.

Definition 5.1 A Correlated Equilibrium (c-equilibrium) for an optimal game Plpo

is a probability distribution π on Πi∈AgPl
po
i such that, for all players i ∈ Ag and

for any pair of strategies pi, p
′
i ∈ Plpo

i the following is true: Conditioned on the

i-th component of a strategy profile drawn from π being pi, the expected utility for i

playing pi is not smaller than that of playing p′i:

∑

r∈Plpo
−i

[pui(〈pi, r〉)− pui(〈p′i, r〉)] · π〈pi,r〉 ≥ 0 (5.1)

A correlated equilibrium is a probability distribution π over plans such that: if
a trusted authority would randomly select a plan p from Πi∈AgPl

po
i according to π,

and communicate privately each agent its strategy pi of p, no agent i would have
an incentive to deviate from the recommended strategy pi. In fact, pi is the best

134 5. Solution Concept

response in expectation for i given π (Definition 5.1, formula 5.1). A correlated
equilibrium is a (mixed) Nash Equilibrium if the probability distribution is a product
distribution (i.e. if for each player i there is a distribution πi on Plpo

i such that for all
p ∈ Πi∈AgPl

po
i πp = Πn

i=1π
i
pi

).
Although, possible combinations of single agent plans that are not in Plpo have

a low utility (i.e. F), we have no guarantee that they will not be selected with some
probability by a correlated equilibrium of the optimal game. This contradicts the
requirement that any solution to the problem must be Pareto optimal.

To address this issue, we present a novel refinement of correlated equilibrium,
called restricted correlated equilibrium to represent the fact that we restrict our at-
tention only to Pareto optimal solutions. In particular, we explicitly enforce that
∀p 6∈ Plpo πp = 0

Before defining restricted correlated equilibrium, we introduce the set Plpo(i, pi)
which is used to discard those combinations of plans which are not in Plpo. We
denote the set of multi-agent plans for n − 1 (not including i) agents that, when
completed by pi, form a multi-agent plan of Plpo as:

Plpo(i, pi) = {r ∈ Plpo
−i | 〈pi, r〉 ∈ Plpo}.

Definition 5.2 A Restricted Correlated Equilibrium for an optimal game Plpo is a

probability distribution π on Plpo such that, for all players i ∈ Ag and for any pair

of strategies pi, p
′
i ∈ Plpo

i the following is true: Conditioned on the i-th component

of a strategy profile drawn from π being pi, the expected utility for i playing pi is not

smaller than that of playing p′i:

∑

r∈Plpo(i,pi)

[pui(〈pi, r〉)− pui(〈p′i, r〉)] · π〈pi,r〉 ≥ 0 (5.2)

This definition is equivalent to Definition 5.1 when ∀p 6∈ Plpo πp = 0. Thus, a

restricted correlated equilibrium is a linear program with one variable for each Pareto

optimal plan in Plpo. We can prove that a restricted correlated equilibrium as in

Definition 5.2 always exists, and that it corresponds to a correlated equilibrium of

Definition 5.1.

Theorem 5.1 A restricted correlated equilibrium for non-empty optimal game (Defi-

nition 5.2) always exists and, in particular, it corresponds to a correlated equilibrium

of its optimal game (Definition 5.1), where all probabilities for plans which are not

Pareto optimal are set to zero.

5.2. Restricted Correlated Equilibrium 135

Proof Consider the optimal game in Definition 5.1. We know that for this game a
correlated equilibrium π? exists. This means that, for all i,p and p′ the following
inequality (Equations 5.1)holds:

∑

r∈Plpo
−i

[pui(〈pi, r〉)− pui(〈p′i, r〉)] · π?
〈pi,r〉 ≥ 0 (5.3)

We now show that a restricted correlated equilibrium, where we set to zero all π?
p | p 6∈

Plpo, is a correlated equilibrium for the optimal game. Assume, without loss of gen-
erality, that 〈pi, r

′〉 6∈ Plpo and, thus, that:

[F − pui(〈p′i, r′〉)] · π?
〈pi,r′〉 +

∑

{r∈Plpo
−i | r 6=r′}

[pui(〈pi, r〉)− pui(〈p′i, r〉)] · π?
〈pi,r〉 ≥ 0

(5.4)
Consider now the two cases: 1) 〈p′i, r′〉 6∈ Plpo and 2) 〈p′i, r′〉 ∈ Plpo. In the first
case, [F − pui(〈p′i, r′〉)] = 0, thus, Equation 5.4 holds for any value of π?

〈pi,r′〉, and,
in particular, for 0. In the second case, knowing that [F − pui(〈p′i, r′〉)] < 0 (recall
that F < mini∈Ag p∈Pl pui(p)), if we set π?

〈pi,r′〉 = 0, then Equation 5.4 still holds.
Indeed, a sum of terms which is positive, remains positive after we remove a negative
term. Finally, the restricted correlated equilibrium can be obtained normalizing the
remaining non-zero probabilities such that they sum to one.

To complete the proof we need to show that the probabilities of Pareto optimal
solutions in a correlated equilibrium can not be all zero. To this end consider the
generic constraint (where cp are the coefficients computed as previously shown) :

∑

{p∈Pl−Plpo}
cp · π?

p +
∑

po∈Plpo

cpo · π?
po ≥ 0 (5.5)

As previously shown, the term
∑
{p∈Pl−Plpo} cp · π?

p is negative. Thus to verify the
Constraint 5.5, we need to have all probabilities π to zero or have some probabil-
ities π?

po > 0. The former, case can not hold for all constraints because πs repre-
sent probabilities, and any correlated equilibrium requires that they sum to one (i.e.∑

p∈Pl πp = 1).

The solution we provide for MAPGs is thus a randomized strategy which has the
property of expressing Bayesian rationality. The randomized nature of plans can be
very usefull in adversial domains [Paruchuri et al., 2006]:

In many adversarial domains, it is crucial for agent and agent teams [. . .]
to randomize policies in order to avoid action predictability. Such policy
randomization is crucial for security in domains, where we can not ex-
plicitly model our adversaryies’ actions and capabilities or their payoffs,
but the adversary observes our agents actions and exploits any action

136 5. Solution Concept

predictability in some unknown fashion. Consider agents that sched-
ule security inspections, maintenance or refueling at seaports or airports.
Adversaries may be unobserved terrorists with unknown capabilities and
actions, who can learn the schedule from observations. If the schedule is
deterministic, then these adversaries may exploit schedule predictability
to intrude or attack and cause tremendous unanticipated sabotage.

A restricted correlated equilibrium of an optimal game is guaranteed to exist,
but not to be unique. In this thesis, we consider restricted correlated equilibrium of
Pareto optimal games a necessary and sufficient solution, and, thus, any such solution
is correct. Nevertheless, negotiation techniques (see [Rosenschein & Zlotkin, 1994])
may be used to further select among the possibly many equilibria, which may be
solution of the MAPG.

Example

We provide a simple example of the solution concept based on the prisoner’s dilemma.
We first compute the correlated equilibrium of the Prisoner’s Dilemma considering
all the possible outcomes and, then, considering only the Pareto optimal outcomes,
the restricted correlated equilibrium of the optimal game. We will see that the two
solutions differ. In particular, the first solution is not Pareto optimal, while the second
is a probability distribution over Pareto optimal solutions.

Correlated Equilibrium of the Prisoner’s Dilemma

Consider two agents 1 and 2 who can perform the following set of plans:

Pl = {
pdd = (〈1, Don’t Confess〉, 〈2, Don’t Confess〉)
pdc = (〈1, Don’t Confess〉, 〈2, Confess〉)
pcd = (〈1, Confess〉, 〈2, Don’t Confess〉)
pcc = (〈1, Confess〉, 〈2, Confess〉)}

We now compute correlated equilibrium for the complete game Pl (which in-
cludes also solutions which are not Pareto optimal). Considering agent 1:

[pu1(〈Confess,Don’t Confess〉)− pu1(〈Don’t Confess, Don’t Confess〉)] · πpcd+
[pu1(〈Confess, Confess〉)− pu1(〈Don’t Confess, Confess〉)] · πpcc =
[4− 3] · πpcd + [1− 0] · πpcc ≥ 0

5.2. Restricted Correlated Equilibrium 137

[pu1(〈Don’t Confess,Don’t Confess〉)− pu1(〈 Confess, Don’t Confess〉)] · πpdd+
[pu1(〈Don’t Confess, Confess〉)− pu1(〈Confess, Confess〉)] · πpdc =
[3− 4] · πpdd + [0− 1] · πpdc ≥ 0

and considering agent 2:

[pu2(〈Confess, Don’t Confess〉)− pu2(〈Confess, Confess〉)] · πpcd+
[pu2(〈Don’t Confess, Confess〉)− pu2(〈Don’t Confess, Don’t Confess〉)] · πpdc =
[0− 1] · πpcd + [4− 3] · πpdc ≥ 0

[pu2(〈Don’t Confess,Don’t Confess〉)− pu2(〈Don’t Confess, Confess〉)] · πpdd+
[pu2(〈Confess, Confess〉)− pu2(〈Confess, Don’t Confess〉)] · πpcc =
[3− 4] · πpdd + [1 + 0] · πpcc ≥ 0

We, thus, have to solve the set of inequalities:

1 · πpcd + 1 · πpcc ≥ 0 (5.6)

−1 · πpdd − 1 · πpdc ≥ 0 (5.7)

−1 · πpcd + 1 · πpdc ≥ 0 (5.8)

−1 · πpdd + 1 · πpcc ≥ 0 (5.9)

Recalling that probabilities are positive, we can derive:

πpdd = πpdc = πpcd = 0

and, recalling that probabilities must sum to one, πpcc = 1. Thus, in this case, the
only correlated equilibrium is the Nash equilibrium in pure strategies.

Restricted Correlated Equilibrium of the Optimal Prisoner’s Dilemma

We now consider the optimal game defined on Plpo. Clearly, given the utility values
previously described, (〈1, Confess〉, 〈2, Confess〉) is not Pareto optimal:

Plpo = {
pdd = (〈1, Don’t Confess〉, 〈2, Don’t Confess〉)
pdc = (〈1, Don’t Confess〉, 〈2, Confess〉)
pcd = (〈1, Confess〉, 〈2, Don’t Confess〉)}

138 5. Solution Concept

and, thus, ∀i ∈ Ag pui(〈1, Confess〉, 〈2, Confess〉) = F , where F = −1 <
mini∈Ag p∈Pl pui(p) = 0. We now compute the restricted correlated equilibrium
(Definition 5.2) for the optimal game Plpo (which includes only solutions which are
Pareto optimal) is:

Considering agent 1:

[pu1(〈Confess,Don’t Confess〉)− pu1(〈Don’t Confess, Don’t Confess〉)] · πpcd =

[4− 3] · πpcd ≥ 0

[pu1(〈Don’t Confess,Don’t Confess〉)− pu1(〈 Confess, Don’t Confess〉)] · πpdd+

[pu1(〈Don’t Confess, Confess〉)− pu1(〈Confess, Confess〉)] · πpdc =

[3− 4] · πpdd + [0− F] · πpdc ≥ 0

and considering agent 2:

[pu2(〈Confess, Don’t Confess〉)− pu2(〈Confess, Confess〉)] · πpcd+

[pu2(〈Don’t Confess,Don’t Confess〉)− pu2(〈Don’t Confess, Confess〉)] · πpdd =

[0− F] · πpcd + [3− 4] · πpdd ≥ 0

[pu2(〈Don’t Confess, Confess〉)− pu2(〈Don’t Confess, Don’t Confess〉)] · πpdc =

[4− 3] · πpdd ≥ 0

We, thus, have to solve the set of inequalities:

1 · πpcd ≥ 0 (5.10)

−1 · πpdd + 1 · πpdc ≥ 0 (5.11)

1 · πpcd − 1 · πpdd ≥ 0 (5.12)

+1 · πpdc ≥ 0 (5.13)

(5.14)

which, considering the constraint on the πs being probabilities, is equivalent to:

πpdc ≥ πpdd (5.15)

πpcd ≥ πpdd (5.16)

(5.17)

5.2. Restricted Correlated Equilibrium 139

Thus, according to Bayesian rationality, the players should play with greater
probabilities those solutions where an agent is freed from jail. All restricted cor-
related equilibria are positive real values assigned to πpcd , πpdc and πpdd such πpcd +
πpdc +πpdd = 1 and the constraints in Equation 5.15. For example, a restricted corre-
lated equilibrium for the optimal game could be to perform 〈Confess, Don’t Confess〉
with probability .35, 〈Don’t Confess, Confess〉 with probability .35. Finally, they
would perform 〈Don’t Confess, Don’t Confess〉 with probability .3.

140 5. Solution Concept

Chapter 6

Solving Methods

6.1 Algorithmics

In this chapter, we provide a sound and complete algorithm to solve MAPGs and
sketch some of the complexity issues underlying this method. The solving technique
is presented through two algorithms. A first one, Algorithm 6.1, which finds the set
of all conditional plans Pl, consistent with a MAPG specification, and a second one,
Algorithm 6.3, which finds the Pareto optimal subset of Pl and solves the associated
optimal game.

6.1.1 Generation of Conditional Plans

Algorithm 6.1 describes the procedure find all plans() which, given a MAPG
I describing a problem, produced the set of all conditional plans which may be
derived from I . First, it explores M with a depth first search (Line 5-13). Then
(Line 14), it extracts all possible conditional plans from M , through the procedure
conditionalP lans(Pl) (Algorithm 6.2).

More specifically, Algorithm 6.1 explores the global state space starting at the
initial global state source (Line 1). The procedure, based on a depth first search, ex-
plores every path from the source to a sink node. These paths, obtained as the history
of the sink nodes (Line 13) are stored into the set Pl which is used by the function
conditionalP lans() (Line 14) to compute the set of conditional plans obtained from
Pl.

Algorithm 6.2 implements the function conditionalP lans() which is in charge
of reconstructing the conditional plans from the set of possible safe sequences of
actions of a MAPG.

We recall from Section 3.7, page 91, that a path of M , (S1 〈pl1,α1,〉;...;〈plK ,αK〉−−−−−−−−−−−−−→
SK), where {Si | i ∈ [1, . . . ,K]} are global states, represents, through the labels

141

142 6. Solving Methods

Algorithm 6.1 Explores M and builds the set of plans Pl
Input: a MAPG 〈Ag, ΦI , KB, U , DI , T 〉.
Output: the set of plans Pl.

procedure find all plans()

1: source = 〈φI ,DI〉;
2: h(source) = ∅;

3: Pl = ∅;

4: stack.Insert(source);

5: while stack 6= ∅ do
6: S = stack.Pop();

7: pl = Player(S);

8: if pl 6= † then
9: for all α ∈ TimeExecutable(KBpl, S, pl) do

10: S∗ = Successor(S, pl, α);

11: stack.Insert(S∗);

12: else
13: Pl = Pl ∪ {h(S)}
14: return conditionalP lans(Pl)

6.1. Algorithmics 143

Algorithm 6.2 Reconstruct conditional plans set
Input: a set of action sequences Pl

Output:the set of conditional plans

function conditionalPlans()

1: Plc = Pl;

2: while ∃cp ∈ Plc | rαoncp ∧ rα¬o 6 ncp do
3: Plaux = {l ∈ PL | rα¬onl ∧ InformationConsistent(l, cp)}
4: Plc = Plc − {cp}
5: for all p ∈ Plaux do
6: cpnew = unify(cp, p)

7: Plc = Plc ∪ {cpnew};
8: for all e ∈ Plc | rαone ∧ rα¬o 6 ne do
9: Plc = Plc − {e}

10: Pl = ∅
11: for all p ∈ Plc do
12: Pl = Pl ∪ {p?}

return Pl

of edges, a sequence of actions (〈pl1, α1, 〉; . . . ; 〈plK , αK〉). Each element of the
sequence is a pair 〈pl, α〉, where α is an action and pl an agent. In general, α can be:

1. an ordinary action or a sensing action along with one of it outcomes,

2. or a nondeterministic (resp. probabilistic) action with one of its outcomes (resp.
one of its outcomes and probability value)

We then write p? to denote the sequence of actions 〈pl1, α′1, 〉; . . . ; 〈plK , α′K〉) where

1. α′i = αi if αi is an ordinary action or a sensing action along with one of its
outcomes, and

2. α′i is obtained αi by removing the outcome (resp. the outcome and the proba-
bility value) if αi belongs to a nondeterministic (resp. probabilistic) action.

For sensing actions α with outcome o∈{ω,¬ω} (i.e. αo), we write ¬¬ω to
denote ω. For fragments of conditional plans cp, we denote by p n cp that p is
a prefix of a linearization of cp (and 6 n if it is not). We define unify(cp, l) by
unify(α; cp′, α; l′) = α; unify(cp′, l′) and

unify(αo; cp′, α¬o; l′)=α; if o then {cp′}else{l′}.

144 6. Solving Methods

Finally, we say that two sequences

l = (S1 〈pl1,α1〉;...〈plK ,αK〉−−−−−−−−−−−−→ SK)

and
l′ = (G1 〈pl1,α1〉〈plZ ,αZ〉−−−−−−−−−−→ GZ),

are information consistent (denoted InformationConsistent(l, l′)) iff:

∀i ∈ Ag, Sj 〈i,α′〉−−−→ Sj+1 ∈ l, Sv 〈i,α′′〉−−−→ Sv+1 ∈ l′

Sj
i = Sv

i =⇒ α′ = α′′.

Algorithm 6.2 iteratively tries to build, from the single agent plans Pl, the largest
set of conditional plans Plc. This procedure involves iteratively unifying sequences
(or conditional sequences) as long as it is possible (Lines 2-7) and, then, selecting
from the set of unified sequences the set of candidates for complete conditional plans
(Lines 8-9). These candidates are then transformed to conditional plans through the
? operator (Lines 11-12).

We prove that Algorithm 6.2, used to reconstruct conditional plans, is sound and
complete. The following proofs assume that the input to the algorithm Pl is a set of
unconditional multia-gent plans.

Theorem 6.1 Algorithm 6.2, to reconstruct conditional plans, is sound.

Proof Assume that Algorithm 6.2 returns a plan e ∈ Plc which is not a conditional
plan. This can be, according to Definition 3.17, because:

1. there is a linearization of e which is not a valid multi-agent plan, or

2. ∃e ∈ Plc | rαone ∧ rα¬o 6 ne, or

3. there are two linearizations of e which are not information consistent.

Since we assume that the input Pl is correct Condition 1 can not hold. Condi-
tion 2 does not hold because plans which do not satisfy this condition are explicitly
removed (Lines 8-9). Finally, Condition 3 can arise when two sequences are unified
producing conditional branches. In this case, the property is explicitly enforced by
the algorithm (Line 3).

Theorem 6.2 Algorithm 6.2, to reconstruct conditional plans, is complete.

Proof The completeness of the algorithm can be easily proven by observing that
the algorithm tries to complete any possible multi-agent plan which does not have a
branch for each sensing outcome with the original set of multiagent plans Pl.

6.1. Algorithmics 145

We can prove that also Algorithm 6.1 is sound. Given that conditionalP lans()
is sound, we have to show every global state, and every edge, generated by Algorithm
6.1, is in VM and EM , respectively.

Theorem 6.3 Algorithm 6.1 is sound.

Proof {by Contradiction}
Assume that Algorithm 6.1 generates a global state that is not in VM and an edge

that is not in EM . According to Definition 3.12 this means that one of the following
conditions hold:

1. SΦI 6∈ VM

2. (S 6∈ VM ∨ Player(S) 6= i ∨ i = † ∨ α 6∈ TimeExecutable(KB,S, i) ∨
S∗ 6= Successor(S, i, α)) ∧ (S∗ ∈ VM ∧ S →〈i,α〉 S∗ ∈ EM)

Clearly, Condition 1 does not hold because the initial global state is the first added to
VM (Lines 4 and 1). Condition 2 holds if both:

(S 6∈ VM ∨ Player(S) 6= i ∨ i = † ∨
α 6∈ TimeExecutable(KB,S, i) ∨ S∗ 6= Successor(S, i, α))

(6.1)

and
(S∗ ∈ VM ∧ S

〈i,α〉−−−→ S∗ ∈ EM) (6.2)

hold. The only part of Algorithm 6.1 which can satisfy Formula 6.1, is the one where
the successor nodes are computed (Lines 7-11). S∗ 6= Successor(S, i, α)) is not
satisfied, because the successor is explicitly generated according to the semantics of
MAPGs (Line 10). Moreover, the block is executed only if: a) S ∈∈ VM Line 6, b)
Player(S) = i Line 7, c) i 6= † Line 8, and d) α ∈ TimeExecutable(KB,S, i)
Line 9. Thus, Formula 6.1 is not satisfiable in conjunction with Formula 6.2, and the
assumption is false.

To show that the output is correct, we have to show that the conditional plans
are correctly resconstructed from the set Pl. This statement follows from Theorem
6.1.

Theorem 6.4 Algorithm 6.1 is complete.

Proof {Sketch}
We have to prove that: 1) the generation of Pl is complete and 2) the procedure

to find all possible conditional plans is complete. The former proof follows from
the completeness of depth first search for finite trees, while the latter, from Theorem
6.2.

146 6. Solving Methods

Algorithm 6.3 Planning Algorithm
Input: a MAPG I

Output: a correlated equilibrium.

1: Plpo = Pl = find all plans(I)

2: for all p ∈ Pl do
3: for all paux ∈ Pl do
4: if ∀i ∈ Ag pui(paux) ≥ pui(p) ∧ ∃i ∈ Ag pui(paux) > pui(p) then
5: Plpo = Plpo − {p}
6: break;

7: return corr equilibrium(Plpo)

6.1.2 Optimal Game Solving

Algorithm 6.3, presented above, solves the problem of finding a correlated equi-
librium of the optimal game defined by a MAPG I . The algorithm first computes the
set of all possible conditional plans (Line 1) with Algorithm 6.1. Then it discards
from this set all plans which are not Pareto optimal (Lines 2-6). Finally, it computes
the correlated equilibrium (Line 7). The correlated equilibrium is found through a
linear program which contains all the constraints 5.1 in Definition 5.2 and the con-
straints for πp being a probability distribution (i.e. πp ∈ [0, 1] and πps sum to one).

Theorem 6.5 Algorithm 6.3 is sound and complete.

Proof {Sketch}
The function corr equilibrium(Plpo) (Line 7) is sound and complete because

linear programming is sound and complete and find all plans() (Line 1) is sound
and complete because of Theorem 6.4 and Theorem 6.3. Thus, we have to prove that
the algorithm which computes the set of Pareto optimal plans is sound and complete.
Recall that a Pareto optimal plan is a plan p such that:

{p ∈ Pl | 6 ∃p∗ ∈ Pl s.t. ∀i ∈ Ag pui(p∗) ≥ pui(p) ∧∃j ∈ Ag puj(p∗) > puj(p)}.

The procedure at first sets Plpo equal to Pl (Line 1). Then, using the definition of
Pareto optimality, it looks for all the plans which are not Pareto optimal (Lines 2-4)
and removes them from Plpo (Line 5).

Theorem 6.6 Restricted correlated equilibrium can be computed in polynomial time

given the set Plpo.

6.1. Algorithmics 147

Proof We have seen that restricted correlated equilibrium can be represented as a lin-
ear program with one variable for each Pareto optimal plan (Definition 5.2). From the
fact that linear programming can be solved in polynomial time, the proof follows.

It is worth noticing that, since the linear program can be encoded through a set of
inequalities, engineers can, without any computational overhead, bias the system to
correlated equilibria with some desirable properties, such as maximizing social wel-
fare (i.e. the sum of expected utilities). In particular, for social welfare, the objective
function of the linear program is:

max
∑

i∈Ag

∑

p∈Pl

πp · (pui(p)).

This approach is different from selecting directly the Pareto optimal solution with
highest welfare, because it requires a solution to be a correlated equilibrium. In
this case, solutions which maximize social welfare, but are not rational because they
penalize some objective (i.e. do not respect the inequalities 5.2 at page 134) are not
selected.

Theorem 6.7 Algorithm 6.3 generates the set of Pareto optimal plans, given a MAPG,

requiring, in the worst case, exponential space and time.

Proof Consider Algorithm 6.3. The procedure find all plans(M) (Line 1) ex-
plores the graph M which is exponential. In fact, the graph M , in the worst case,
has a number of global states which is: O(|Act||Ag|·maxi(Ti/mi)), where mi is the
smallest execution time (i.e. the mean of its time-distribution) of an action for i. We
assume the parameters of the time-distributions are simple enough to be encoded in
unary. This means that the length of each path is polynomial in the description of
time durations. Thus, global state has to store a history composed by a polynomial
number of actions. Moreover, we assume that each global state stores a description
of |Ag| local states which is polynomial in the MAPG description. Again, this is
true for e-states which represent local states as a conjunction of literals which are at
most two times (i.e. f and ¬f) the number of fluents. The strategy outcome space
is composed by the leaves of the tree M which has an exponential number of nodes.
The set Pl is composed by the exponential number of histories corresponding to each
element of the strategy outcome space and each history is composed by a polynomial
number of actions. Thus the space complexity is in the worst case exponential in the
MAPG description.

Regarding time complexity, we assume that the primitive operations |= and succ(·)
can be computed in polynomial time. This assumption is true for epistemic states [Ioc-
chi et al., 2007]. The procedure to verify if a sequence of actions is safe, used
by TimeExecutable (Line 9), is polynomial because it has to perform a polyno-
mial number of SAT instances over literal conjunctions. This implies that also the

148 6. Solving Methods

merge(·) can be computed in polynomial time since it has to perform a polynomial
number of |= and succ(·) operations. The procedure to reconstruct conditional plans
(Line 14), described by Algorithm 6.2, is also polynomial [Iocchi et al., 2007]. Next
the algorithm selects, among the possible plans, those which are not Pareto optimal
(Lines 2-6). This procedure requires two iterations over the set of possible plans and
one over the agents (i.e. O(|Pl|2 · |Ag|) and thus is polynomial. Finally, also the
restricted correlated equilibrium can be computed in polynomial time (Theorem 6.6).
Thus, the generation of the exponential set of all possible plans Pl, in the worst case,
is exponential.

We, thus, have an exponential number of plans which result from the many pos-
sible combinations of actions. In many domains, most of these plans will not have
desirable outcomes and, thus, it is reasonable to assume that the set of Pareto optimal
plans will be a small subset w.r.t. all possible plans. In the next section, we will show
some experimental evidence for this assumption.

Assumption 6.1.1 We assume that the number of Pareto optimal plans is exponen-

tially smaller than the number of possible plans.

This assumption implies that the number of variables of the linear program nec-

essary to find correlated equilibrium is polynomial in the input MAPG.

Theorem 6.8 Algorithm 6.3 builds, under Assumption 6.1.1, a linear program (i.e.

restricted correlated equilibrium) with a polynomial number of variables with respect

to the description of the MAPG.

Proof The number of variables Plpo is the subset of Pareto optimal plans for Pl.
As previously shown we can prove that O(|Act||Ag|·maxi(Ti/mi)) is a upper bound to
|Pl|. Considering the Assumption 6.1.1, O(|Ag| ·maxi(Ti/mi)) is a upper bound of
|Plpo|.

Lemma 6.1 The planning Algorithm 6.3 for MAPGs is, in the worst case, exponen-

tial both in memory and time.

We can, thus, infer from Theorem 6.8 that the main computational task in solving
MAPGs is the generation of the Pareto optimal set. Thus, the refinement of Pareto
optimality proposed in this work does not add computational complexity to the multi-
objective problem. This is mainly because the restricted correlated equilibrium con-
siders only Pareto optimal solution, solving the problem the exponential size of the
linear program describing correlated equilibrium which arises from the many possi-
ble combinations of the players’ strategies [Papadimitriou, 2005]. This consideration

6.2. Experimental Analysis 149

provides the insight that, a possible way to tackle the complexity of the problem is to
use multi-objective heuristic search techniques to speed up the generation of Pareto
optimal solutions (see Chapter 11, Section 11.2).

6.2 Experimental Analysis

The presented planning method has been experimentally evaluated in two directions:

1. to provide experimental evidence of the assumption that the number of Pareto
optimal plans are exponentially less than all possible plans (Assumption 6.1.1),

2. to evaluate the quality of the restricted correlated equilibrium with respect to
refinements which select the solution based on measures of noncommesurate
quantities.

In particular, we show that, although it is possible to find a tradeoff among objectives
which performs well for a given a problem, such tradeoff depends strongly on the
configuration of the input. In particular, assume that we use a weighted sum of the
utility of the objectives to choose which is the best Pareto optimal solution to select.
The choice of the parameters may lead to good performance for all the objectives
given a configuration of the input, but may degrade with different configurations of
the input. This means that, for the same domain, the choice of parameters has to be
revised for each instance of the input. For example, given a cleaning domain, which
will be shown later, the choice of the parameters has to change depending on the
areas to be cleaned. Moreover, the choice of such paremeters is not obvious and may
require preliminary experimental evaluation. Instead, our approach is parameter free
and allows us to use the planner with different instances of the problem.

We tested the approach for the previously presented example and on a cleaning
domain. The cleaning domain describes a team of robots which have to clean a
common structure, as for example a university department. Each user is assigned a
set of robots, possibly through task assignment techniques, which can be requested to
clean several locations. Due to the limited amount of robots and time, the system may
not be able to satisfy all the requests of the users and will have to trade-off among
the objectives. The problem can be represented as a graph modeling the topological
structure of the area, labeled with robot locations and nodes to be cleaned for each
user.

The sound and complete algorithm for solving the MAPG problem, presented in
the previous section, addresses the problem in two steps: i) it generates the set of
Pareto optimal plans and ii) it finds a restricted correlated equilibrium of the optimal
game. The first step is based on a brute force approach which is computationally
expensive both in terms of memory and time. Nevertheless, the second step is effi-
cient and has polynomial requirements in the MAPG description (under Assumption

150 6. Solving Methods

6.1.1). Thus, the overall approach is computationally expensive and its implementa-
tion is used for a qualitative experimental analysis. In order to provide a quantitative
analysis we need to provide efficient algorithms for generating the Pareto optimal
set, as for example heuristic multi-objective search on graph structures (e.g. [Stewart
& White, 1991]). Section 11.2 provides some insight on which approaches may be
most appropriate in our case.

The algorithms presented in the previous section were implemented inC++1 and,
in particular, we used the glpk library2 to solve the linear program representing the
restricted correlated equilibrium. All experiments were run on computer with a 64-bit
processor by AMD, operating at a frequency of 2.2GHz, with 2GB of RAM.

The syntax of MAPGs provided to our planner is slightly different from the one
presented previously, to simplify the parsing process. Appendix A illustrates this
syntax and shows the description of the MAPGs used for the following experiments.
We used for the experimentation .5-time-admissible e-states to represent local states
and Gaussian distributions for timing. Moreover, we assume in this experimentation
that all agents are able to communicate. Given that the duration of the sync process
is generally smaller than the one of ordinary actions we implemented a domain inde-
pendent heuristic to avoid unnecessary chains of synchronization. In particular, we
allow robots to perform a request sync(s, r) in a global state S, if the knowledge
representing the two e-states Ss and Sr is different. This amounts to request synchro-
nizations only if they are informative, in the sense that they provide new information
to at least one of the two agents.

Number of Pareto Optimal Solutions

The first set of experiments have been performed to provide some evidence for the
assumption that the Pareto optimal plans are exponentially less than all possible plans
(Assumption 6.1.1).

We have run several experiments on the slotted blocks world domain (Appendix
B), the multi-agent Hanoi tower problem domain (Appendix C) and cleaning domain
(Appendix D). Figure 6.1 shows how the number of plans (y-axis) varies with respect
to time constraints (x-axis). The two curves show the trend of the number of Pareto
optimal plans (i.e. the size of Plpo) and of all possible plans (i.e. the set size of Pl).
The y-axis has a logarithmic scale, thus a linear increase in the distance between the
two curves corresponds to an exponential difference between the size of the two sets.

In particular, we performed experiments for the multi agent Hanoi tower problem
(Figure 6.1(a,c)), the slotted blocks domain (Figure 6.1(b,d)). We varied the time
constraints (set equal for each agent) from 22 to 50 time units and the number of
agents from 2 to 3. Moreover, we performed some experiments for the cleaning

1The open source implementation is available at: www.dis.uniroma1.it/∼ziparo
2Available at: http://www.gnu.org/software/glpk/

6.2. Experimental Analysis 151

domain with two agents (Figure6.1(e)).
The qualitative experimental results summarized in Figure 6.1 show that for all

the domains considered the Pareto optimal plans are exponentially less than the pos-
sible plans, because the distance between the two curves linearly increases with time
on a logarithmic scaled axis (i.e. y-axis).

Quality of Solutions

We provide some experimental evidence on the implications of using a correct solu-
tion method, instead of one which tries to tradeoff noncommensurate quantities. In
particular, we compare our method with one which selects the Pareto optimal solution
based on a utility function which is a weighted function of the utilities of the objec-
tive. The aim of these experiments is to show that the resticted correlated equilibrium
is “fair” with respect to the objectives, while approaches using tradeoffs among the
objectives can seriously penalize some objective.

Example Consider the graph from the cleaning domain depicted in Figure 6.2 repre-
senting a floor of a university department, which is composed of a laboratory (dotted
circles) and two offices (black circles). Assume there are two users, the first one,
who wants to clean his laboratory and, the second one, who wants to clean the of-
fices. Some task assignment technique allocated the first objective to robot R1 and
the second to robot R2. In particular, the utility for the first objective is the number
of dotted circles cleaned, while for the second one is the number of black circles
cleaned. Assume that robots need 5 units of time to move from a node to another
one, 10 to clean a node and both have a battery duration of 30 time units (i.e. maxi-
mum time for execution of plans). Clearly, there is not enough time to clean all the
requested locations. If we were to use a method to select a solution which maximizes
the sum of utilities we would have both agents clean the laboratory which would al-
low the robots to clean 4 nodes. This solution is not acceptable because the second
user would have no service. If we were to use restricted correlated equilibrium as a
solution concept, this solution would have been discarded, because robot R2 would
always prefer to deviate from this plan and go to clean at least one office. One pos-
sible solution to the sum of utilities approach would be to use a weighted sum of
utilities which weights more nodes corresponding to the second user. The problem
is that if the requests change, because the first user asks for cleaning the lab or there
are more offices to clean, the weights of the sum must be changed. Thus restricted
correlated equilibrium, opposed to approaches which measure tradeoffs among ob-
jectives, is parameter free and provides solutions which are “fair” whatever is the
input, because it represents explicitly the fact that an agent will not agree with plans
which penalize excessively his objective, as long as there are better solutions which
he can choose.

152 6. Solving Methods

 100

 1000

 10000

 100000

 1e+06

 1e+07

 22 24 26 28 30 32

P
la

ns

Time

2 Agent MA Hanoi Tower

Pareto Optimal
All

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 22 24 26 28 30 32

P
la

ns

Time

3 Agent MA Hanoi Tower

Pareto Optimal
All

(a) (b)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 25 30 35 40 45 50

P
la

ns

Time

2 Agent Slotted Blocks World

Pareto Optimal
All

 100

 1000

 10000

 100000

 1e+06

 22 23 24 25 26 27

P
la

ns

Time

3 Agent Slotted Blocks World

Pareto Optimal
All

(c) (d)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 21 22 23 24 25

P
la

ns

Time

2 Agent Cleaning Domain

Pareto Optimal
All

(e)

Figure 6.1: Ratio between possible plans and Pareto optimal plans.

6.2. Experimental Analysis 153

R1

R2

Figure 6.2: An example from the cleaning domain

-1

 0

 1

 2

 3

 4

 20 21 22 23 24 25

C
or

re
la

te
d

E
q.

 U
til

ity

Time

2 Agent Cleaning Domain

"../logs/cleaning2ag.gnuplot" using 3:4
"../logs/cleaning2ag.gnuplot" using 3:5

-1

 0

 1

 2

 3

 4

 20 21 22 23 24 25

M
ax

 S
um

 U
til

ity

Time

2 Agent Cleaning Domain

"../logs/cleaning2ag.gnuplot" using 3:7
"../logs/cleaning2ag.gnuplot" using 3:8

(a) (b)

Figure 6.3: Comparing restricted correlated equilibrium (a) with the sum of utilities

approach (b)

154 6. Solving Methods

Figure 6.2 (a) shows the trend of utilities for the cleaning example previously
presented when increasing time in the case of correlated equilibrium, while Figure
6.2 (b) shows the same trend for the sum of utilities approach. As we can see the
distance between the curves representing the utilities of the two agents is smaller in
the case of correlated equilibrium than in the one of max sum of utilities. In particular,
in the second case one agent has constantly a utility of zero.

The experimental analysis, for the multi-agent Hanoi tower problem and the slot-
ted blocks world domain, shows that correlated equilibrium and the approach which
selects the Pareto optimal solution based on the sum of utilities produce the same
results. This can be explained by the fact that the domain requires complex plans
with a high degree of cooperation and any deviation from the main plans produces
a failure. Probably, the problem could be overcome by allowing agents to execute
for longer time, but in this case our brute force implementation of the search of Plpo

runs quickly out of memory because of the exponential number of plans it has to store.
Further experimental results, showing the quality of restricted correlated equilibrium
will be provided in Chapter 9.

Part III

Experimentation

155

Chapter 7

Reactive Exploration with Indirect
Communication

In the following chapters, we provide a case study on Urban Search and Rescue
(USAR). In the Urban Search and Rescue problem, a team of robots is deployed in
a post-disaster scenario, as a partially collapsed building after an earthquake. These
systems are designed to produce a complete high quality map of an unknown envi-
ronment annotated with victim locations and their state. Such map can then be used
by first responders to safely and rapidly rescue victims. The problem is usually de-
scribed by three main objectives: exploration, victim detection and mapping. The
exploration objective requires to maximize the coverage of the area, while the map-
ping objective to reconstruct the structure of the features of the area. Finally, the
victim detection objective is the task of reporting victims and their status.

The case study is developed based on three approaches of increasing complexity.
In this chapter, we provide the first approach, which is a reactive exploration method
based on indirect communication. This approach is based on two simplifying as-
sumptions:

1. the USAR problem can be formulated just in terms of exploration (while victim
detection and mapping are passive processes) and

2. the environment is free or not too structured,

These two assumptions are clearly restrictive and will be removed, incrementally,
in the following chapters. Nevertheless, the approach presented in this chapter has
proved to be effective. The approach, and the multi-robot architecture, have been
tested against some of the state of the art approaches, during the Search and Rescue
League at the international RoboCup competition. In particular, our approach won
the Virtual Robot Competition 2006 [Balakirsky et al., 2007; Ziparo et al., 2007a].

157

158 7. Reactive Exploration with Indirect Communication

In the remainder of this chapter, we present a coordination mechanism which
allows robots to explore an environment with low computational overhead and com-
munication constraints. In particular, the computational costs do not increase with
the number of robots. The key idea is that the robots plan their path and explore
the area based on a local view of the environment, where consistency is maintained
through the use of indirect communication, i.e. RFIDs. The approach is a local gra-
dient descend tecnique based on RFIDs autonomously deployed in the environment,
which store the paths of the robots. Robots then locally try to avoid areas already
explored by descending the gradient of the paths distribution. Methods for local ex-
ploration have already been successfully applied in the past [Balch & Arkin, 1994;
Svennebring & Koenig, 2004]. It has basically been shown that multi-robot terrain
coverage is feasible without robot localization and an exchange of maps. Experi-
ments in this work have been carried out in the USARSim [Balakirsky et al., 2006]
simulation environment, which serves as basis for the Virtual Robots competition at
RoboCup. Moreover, previous experimental analysis [Kleiner, Prediger, & Nebel,
2006] was conducted on real robots in order to evaluate whether it is feasible to
autonomously deploy and detect RFID tags in a structured environment. The exper-
iments were conducted in two phases. In the first, the robot autonomously explored
an unknown cellar environment while deploying successfully 50 RFID tags with its
deploy device. In the second, the robot’s mission was again to explore the same
environment, however, to identify tags previously deployed in the environment (see
[Kleiner & Ziparo, 2006] for a video). Furthermore, the number of retrieved tags was
sufficient to reasonably correct the robot’s noisy odometry trajectory. Our results
show that the RFID tag-based exploration works for large robot teams, particularly if
there are limited computational resources.

7.1 Robotic Platform

The test platform utilized for experiments presented in this work is based on a four
wheel drive (4WD) differentially steered robot, as depicted in Figure 7.1(a). The
robot is equipped with a Hokuyo URG-X003 Laser Range Finder (LRF), and an In-
ertial Measurement Unit (IMU) from XSense providing measurements of the robot’s
orientation by the three Euler angles yaw, roll, and pitch. We utilized Ario RFID
chips from Tagsys (see Figure 7.1(b)) with a size of 1.4 × 1.4cm, 2048Bit RAM,
and a response frequency of 13.56MHz. They implement an anti-collision protocol,
which allows the simultaneous detection of multiple RFIDs within range. For the
reading and writing of the tags we employed a Medio S002 reader, likewise from
Tagsys, which allows robots to detect the tags within a range of approximately 30cm
while consuming less than 200mA. The antenna of the reader is mounted in parallel
to the ground. This allows the robot to detect any RFID tag lying beneath it. The
active distribution of the tags is carried out by a self-constructed actuator, realized by

7.2. Navigation 159

(a) (b)

(c) (d)

Figure 7.1: The 4WD rescue robot (a) and RFID tags utilized with this robot (b) with

a hand crafted deploy device (c). A model of this robot simulated in the USARSim

simulator within an office-like environment (d).

a magazine, maximally holding 100 tags, and a metal slider that can be moved by a
conventional servo. Each time the mechanism is triggered, the slider moves back and
forth while dropping a single tag from the magazine.

A realistic model of the robot, including the RFID tag release device, is simulated
with the USARSim simulator developed at the University of Pittsburgh [Carpin et
al., 2006; Balakirsky et al., 2006]. USARSim allows a real-robot simulation of raw
sensor data, which can directly be accessed via a TCP/IP interface. The sensors of
the robot model are simulated with the same parameters as the real sensors, expect
the real RFID reading and writing range. Without loss of generality, we set this range
to two meters, since this parameter mainly depends on the communication frequency
and size of the transmitter’s antenna, which both can be replaced.

7.2 Navigation

To efficiently and reactively navigate, each robot continuously path plans based on
its local information of the environment, which is maintained within an occupancy
grid. This representation of the environment, for allowing fast computation, is lim-
ited in size. In particular, in our implementation, we restricted it to a four meter side
square with forty mm resolution. The occupancy grid is shifted based on the odom-
etry and continuously updated based on new scans. This avoids the accumulation of
the odometry errors when moving, while having some memory of the past. We peri-
odically select a target, as shown in the next subsection, and produce for it plans at

160 7. Reactive Exploration with Indirect Communication

high frequency. The continuous re-planning allows robots to reactively avoid newly
perceived obstacles or unforeseen situations caused by errors in path following.

The path planning algorithm is based on A∗ [Hart et al., 1968; Peter, Nils, &
Bertram, 1972] with the Euclidean distance heuristic. We expand all the neighbors
of a cell which are not obstructed (i.e. have an occupancy value lower than a given
threshold). The cost function c takes into account the length of the path and the
vicinity of the obstacles to the path in the following way:

c(si+1) = c(si) + d(si+1, si) ∗ (1 + α ∗ occ(si+1)) (7.1)

where occ(s) is the current value of the occupancy grid in cell s, d(.) is the distance,
and α is a factor for varying the cost for passing nearby obstacles. Before planning,
the grid is convoluted with a Gaussian kernel, which allows robots to keep as far as
possible from obstacles.

While navigating in the environment, robots maintain a local RFIDs set (LRS),
which contains all the perceived RFIDs which are in the range of the occupancy grid.
On the basis of this information, new RFIDs are released in the environment by the
robots in order to maintain a predefined density of the tags (in our implementation we
take care of having the RFIDs at one meter distance from each other). Note that nowa-
days most of the RFID tags available on the market do implement an anti-collision
protocol, and hence the detection of multiple RFIDs is possible at the same time.
We utilize the local knowledge that robots have on RFID tags for avoiding collisions
between them. Each robot tracks its own pose by integrating measurements from the
wheel odometry and IMU sensor with a Kalman filter. As commonly known, the ac-
curacy of this estimate decreases due to the accumulation of positioning errors, which
can, for example, be prevented by performing data association with visual features.
However, since our goal is to save computation time, we do not globally improve
the pose estimate during runtime, instead we synchronize the local displacement be-
tween robots via RFID tags. If two robots have visited the same RFID tag in the past,
the estimates of their mutual displacement dR1R2 ≈ lR1 − lR1 can be synchronized
by utilizing their local pose estimates at this RFID tag: Let lR1(t1) and lR2(t2) de-
note the individual pose estimates of robot R1 and R2 while visiting the same RFID
tag at time t1 and time t2, respectively. Then, the new displacement between both
robots can be calculated by dR1R2 = lR1(t1) − lR1(t2). Furthermore, each robot
can estimate poses within the reference frame of other robots by utilizing the latest
displacement and the individual pose estimate of the other robot at time t. For exam-
ple, R2’s pose estimate of R1 is given by: l̂R1(t) = lR1(t) − dR1R2 . Note that this
procedure assumes the existence of a synchronized clock and requires the robots to
keep their trajectory in memory.

The knowledge on the poses of other robots enables to avoid collisions among
teammates. This is carried out by labeling occupancy grid cells within a given range
from the teammate as penalized, which will be taken into account at the planning

7.3. Local Exploration 161

level by adding an extra cost for going through such locations. If a robot detects
that a teammate with a higher priority (which is predefined) is closer than a security
distance it stops until this has moved out of the way.

7.3 Local Exploration

The fundamental problem in the local exploration task is how to select targets for
the path planner in order to minimize overlapping of explored areas. This involves:
i) choosing a set of target locations F = {fj}, ii) computing an utility value u(fj)
for each target location fj ∈ F and iii) selecting the best target, based on the utility
value, for which the path planner can find a trajectory.

We first identify a set of targets F by extracting frontiers F [Yamauchi, 1997]
from the occupancy grid. We then order the set based on the following utility calcu-
lation:

u(fj) = −γ1 ∗ angle(fj)− γ2 ∗ visited(fj) (7.2)

where angle(fj) is a value which grows quadratically with the angle of the target
with respect to the current heading of the robot. The angle factor can be thought as
an inertial term, which prevents the robot from changing too often direction (which
would result in an inefficient behavior). If the robot would have full memory of his
perceptions (i.e. a global occupancy grid), the angle factor would be enough to allow
a single robot to explore successfully. Due to the limitation of the occupancy grid,
the robot will forget the areas previously explored and thus will possibly go through
already explored ones.

In order to maintain a memory of the previously explored areas the robots store
in the nearest RFID at writing distance poses p from their trajectory (discretized at
a lower resolution respect to the occupancy grid). The influence radius, e.g. the
maximal distance in which poses are added, depends mainly on the memory capac-
ity of the RFID tag. In our implementation, poses where added within a radius of
4 meters. Moreover, a value count(p) [Svennebring & Koenig, 2004] is associated
with each pose p in the memory of the RFID and is incremented by the robots ev-
ery time the pose is added. These poses p are then used to compute visited(fj) as∑

r∈LRS

∑
p∈Pr

(1/d(fj , p))∗count(p), where Pr is the set of poses associated with
the RFID r.

Finally, γ1 and γ2 are two parameters which control the trade-off between direc-
tion persistence and exploration. It is worth noticing that robots writing and reading
from RFIDs, not only maintain memory of their own past but also of the other robots
implementing a form of indirect communication. Thus, both multi-robot navigation
and exploration, do not require direct communication. This feature is very useful in
all those scenarios (e.g. disaster scenarios) where wireless communication may be
limited or unavailable.

162 7. Reactive Exploration with Indirect Communication

The most important feature of the approach, as presented up to now, is that the
computation costs do not increase with the number of robots. Thus, in principle, there
is no limit, other than the physical one, to the number of robots composing the team.

7.4 Simultaneous Localization And Mapping

In this section, we present the approach used by our system to simutaneous localiza-
tion and mapping (SLAM). The SLAM problem tackles the issues of reconstructing
the map of the environment and the pose of the robot in the map, when perception is
noisy. In particular, SLAM represents the map of the environment as a set of features.
These features may be walls detected trough laser range finders or beacons detected
trough other sensors. One of the main problems addresses by SLAM is a data asso-
ciation problem known as loop closure. In fact, when a robot returns to a previosly
visited location it has to be able to associate perceived features with the ones already
stored into the map.

Our approach uses as features of the map the RFIDs autonomously deployed by
the robots. This provides two main advantages. First, we are guaranteed to have
features also where the environment lacks structure, such as open space environ-
ments. Second, we can trivially solve the data association problem because RFIDs
are provided with unique identifyiers. In the remainder of this section, we first pro-
vide a sensor model for the RFID antenna and then present an RFID SLAM based
approach.

7.4.1 RFID sensor model

The Transceiver-Receiver (TR) separation, i.e. the distance between a detected RFID
and the detector, can generally be estimated from the power of the signal. However,
signal propagation in an indoor environment is perturbed by damping and reflections
of the radio waves. Since these perturbations depend on the layout of the building, the
construction material used, and the number and type of objects in the building, mod-
eling the relation between signal path attenuation and TR separation is a challenging
problem.

Seidel and Rapport introduced a model for path attenuation prediction that can
also be parameterized for different building types and the number of floors between
transceiver and receiver (see [Seidel & Rapport, 1992] for details). This model has
been evaluated for frequencies in the UHF domain, e.g. 914MHz, which is also the
frequency domain of the examined RFID system (see Section 7.1). RFID implemen-
tations operating in this domain are requiring a line of sight between the tag and the
detector. This allows us to adopt a simpler version of the model from Seidel and Rap-
port, based on the assumption that RFID detections are not possible through walls.

7.4. Simultaneous Localization And Mapping 163

The utilized model relates the signal power P to distance d in the following way:

P (d)[dBm] = p(d0)[dBm]− 10n log
d

d0
, (7.3)

whereas P (d0) is the signal power at reference distance d0 and n denotes the mean
path loss exponent that depends on the structure of the environment. Seidel and Rap-
port determined for transmissions at 914MHz a path loss of 31.7dB at a reference
distance of 1 meter. Furthermore, they determined for different building types char-
acteristic values for n and the standard deviation σ of the signal. This model has been
used with varying values for n and σ for evaluating the method described in the next
section.

7.4.2 RFID SLAM

We utilize EKF-based SLAM [Durrant-Whyte, Rye, & Nebot, 1996] in order to com-
pute simultaneously the locations of the robot and of the RFIDs. Hence, the pose of
the robot and RFID locations are denoted by a single state vector. It is assumed that
each RFID observation is composed of a range measurement r and bearing measure-
ment φ, relative to the center of the receiving antenna. We compute range r from
the signal strength according to the model described in Section 7.4.1, while consid-
ering the spatial displacement of the specific antenna. From the arrangement of the
antennas described in Section 7.1, we estimate the bearing φ of the detection within
a 60◦ cone. Furthermore, within each discrete time interval t, the traveled distance dt

and the traveled angle αt of the robot are measured by the wheel encoder odometry
and the Inertial Measurement Unit (IMU), respectively. Given the pose of the robot
by the vector l = (x, y, θ)T with 3 × 3 covariance matrix Σl, and the locations of n
RFIDs by the vectorm = (x1, y1, x2, y2, · · · , xn, yn)T with n×n covariance matrix
Σm, the single state vector s is defined by:

s =
(

l
m

)
(7.4)

Σs =
(

Σl Σlm

Σml Σm

)
. (7.5)

The single state vector is updated, based on the input vector ut = (dt, αt) (repre-
senting the module and the angle of the motion displacement, respectively from the
odometry and IMU) along with covariance matrix Σu, according to the following
model [Durrant-Whyte, Rye, & Nebot, 1996]:

lt = F (lt−1, ut) =




xt−1 + cos(θt−1)dt

yt−1 + sin(θt−1)dt

θt−1 + αt


 (7.6)

164 7. Reactive Exploration with Indirect Communication

From a single RFID observation, given by the vector z = (r, φ) with 2 × 2 co-
variance matrix Σz , the state vector is updated as follows: If the RFID is unknown,
i.e. has not been observed before, the state vector is augmented with the new obser-
vation. Otherwise, the observation is associated with the correct RFID by utilizing
the unique ID number transmitted by the RFID. Note that this is a clear advantage
of RFID technology if comparing the method to other techniques that perform data
association by validation gating. Based on the current estimates of associated RFID
mi = (xi, yi) and robot pose l = (x, y, θ), the observation is predicted by the fol-
lowing measurement function:

Hi (s) =




√
(xi − x)2 + (yi − y)2

tan−1
(

yi−y
xi−x

)
− θ


 . (7.7)

Finally, the state vector is updated from the observation according to [Durrant-
Whyte, Rye, & Nebot, 1996].

7.5 Experiments

The coordinated exploration approach has been tested in various simulated environ-
ments generated by the National Institute of Standards and Technology (NIST) on
the USARSim platform. They provide both indoor and outdoor scenarios of the
size bigger than 1000m2, reconstructing the situation after a real disaster. On these
maps, we competed against other teams, during the RoboCup’06 [rob, 2006] Vir-
tual Robots competition, where our team won the first prize [Balakirsky et al., 2007;
Kleiner & Ziparo, 2006]. In this competition, virtual teams of autonomous or tele-
operated robots have to find victims within 20 minutes while exploring an unknown
environment. The current version of USARSim is capable of simulating up to 12
robots at the same time.

Most of the teams applied frontier cell-based exploration on global occupancy
grids. In particular: selfish exploration and map merging was used by IUB [Nevatia
et al., 2006] and UVA [Pfingsthorn et al., 2006], operator-based frontier selection
and task assignment by SPQR, and tele-operation by STEEL [Scerri et al., 2004;
Tambe, 1997] and GROK. A description of the competition at Robocup’06, along
with a description of the best performing teams and a discussion of the results can be
found in previous work [Balakirsky et al., 2007].

Table 7.1 gives an overview on the number of deployed robots, and area explored
by each team. As can clearly be seen, we (i.e. team RrFr) were able to deploy the
largest robot team, while exploring an area bigger up to a magnitude than any other
team. Due to the modest computational resources needed by the local approach, we
were able to run 12 robots on a single Pentium4, 3GHz.

7.5. Experiments 165

(a) (b)

(c) (d)

Figure 7.2: Exploration trajectories recorded during the semi-finals: (a) Compari-

son between our approach (red line) and the other semi-finalist (other colors). (c)

Coordinated exploration of our robots, whereas each robot is represent by a different

color. Exploration trajectories recorded during the finals: (b) Comparison between

our approach (red line) and the other finalist (blue line). (d) Coordinated exploration

of our robots, whereas each robot is represent by a different color.

166 7. Reactive Exploration with Indirect Communication

RRFr GROKIUB SPQRSTEELUVA

PREL1 # Robots 12 1 6 4 6 1

Area [m2] 902 31 70 197 353 46

PREL2 # Robots 12 1 4 4 6 8

Area [m2] 550 61 105 191 174 104

PREL3 # Robots 10 1 5 7 6 7

Area [m2] 310 59 164 44 124 120

SEMI1 # Robots 8 1 6 4 6 6

Area [m2] 579 27 227 96 134 262

SEMI2 # Robots 8 1 6 5 6 7

Area [m2] 1276 82 139 123 139 286

FINAL1 # Robots 8 - 8 - - -

Area [m2] 1203 - 210 - - -

FINAL2 # Robots 8 - 6 - - -

Area [m2] 350 - 136 - - -

Table 7.1: Exploration results from RoboCup ’06

Figure 7.2(a)-(b) depicts the joint trajectory of each team generated during the
semi-final and final, whereas Figure 7.2 (c)-(d) shows the single trajectory of each
robot of our team on the same map, respectively. The efficiency of the RFID-based
coordination is documented by the differently colored trajectories of each single
robot.

We tested the RFID-SLAM approach by collecting data from the USARSim maps
from the competitions. The sensor model was simulated accordingly to the model
presented in Section 7.4.1. The experiments were conducted over multiple runs, and
simulated for four types of environments according to real data [Seidel & Rapport,
1992]. Table 7.2 summarizes the cross-Track error (XTE), measuring the error or-
thogonal to the true robot path, and the along-Track error (ATE), measuring the error
tangential to the path. The columns in the table represent four environments, with
varying values of the mean path loss exponent n and the standard deviation σ for the
signal power measurements, which both have been chosen from [Seidel & Rapport,
1992]. During the experiments the robot explored areas of approximately 500m2,
driving through heterogeneous surfaces and overcoming small obstacles.

7.5. Experiments 167

B1 B2 B3 B4

XTE Mean 0.2767 0.3605 0.4235 0.2796

XTE Std. 0.1595 0.2204 0.2947 0.1758

XTE Max. 1.0522 1.0039 1.1681 0.6633

ATE Mean 0.2865 0.3558 0.3899 0.2623

ATE Std. 0.1894 0.2419 0.3320 0.2149

ATE Max. 1.1201 0.9178 1.3034 0.7515

Cart. Mean 0.4269 0.5504 0.6524 0.4301

Cart. Std. 0.1941 0.2463 0.3206 0.1976

Cart. Max, 1.1704 1.1728 1.3316 0.7740

Table 7.2: Cross-Track Error (XTE), Along-Track Error (ATE), and Cartesian Error

from EKF-based SLAM with varying model parameters n and σ. All values are in

meters.

168 7. Reactive Exploration with Indirect Communication

Chapter 8

Monitoring and Planning
Exploration

In this chapter, we remove the assumption that the environment is free of not too
structured. Nevertheless, we continue to assume that USAR can be modeled just
as an exploration problem. The former assumption allowed agents (Chapter 7) to
look for solutions which did not require lookahead, because of the low probability
of incurring in dead ends. If this assumption falls, due to the lack of lookahead
of the local exploration, robots may spend too long in local minima, resulting in
useless coverage of already explored areas. In order to avoid such a phenomenon, a
novel monitoring approach has been developed, which periodically restarts the local
exploration in more convenient locations. The monitornig approach is based on a
planner which finds, according to known structure of the environment, goal locations
and a multirobot path to reach them. This method requires direct communication
and a computational overhead, which grows with the number of agents. However, it
greatly improves the exploration ability of the robots and it is robust to failures. In
fact, if the communication links fail or the monitoring process itself fails, the robots
can fall back to the local exploration previously described.

To coordinate a team of robots for exploration is a challenging problem, particu-
larly in large areas as for example the devastated area after a disaster. This problem
can generally be decomposed into task assignment and multi-agent path planning.
Whereas in the context of exploration the task assignment problem has been inten-
sively studied, there has been only little attention on avoiding conflicts in paths for
large robot teams. This is mainly due to the fact that the joint state space of the plan-
ning problem grows enormously in the number of robots. However, particularly in
destructed environments, where robots have to overcome narrow passages and obsta-
cles, path coordination is essential in order to avoid collisions. The basic approach

169

170 8. Monitoring and Planning Exploration

proposed in our work is to reduce significantly the size of the search space by uti-
lizing RFID tags as coordination points. Robots deploy autonomously tags in the
environment, in order to build a network of reachable locations. Hence, global path
planning can be carried out on a graph structure, which is computationally cheaper
than planning on global grid maps, as it is usually the case.

Our systems [Ziparo et al., 2007b] solves the problem of task assignment and
path planning simultaneously. This is carried out by a two-layered approach.

1. A local layer (Chapter 7), where robots are coordinated via RFID chips and
perform a local search. The local approach has the properties that the compu-
tational costs do not grow with the number of robots and that it does not need
direct communication.

2. A global layer which is in charge of monitoring the local exploration, possibly
restarting it in more convenient locations significantly improving its perfor-
mance. The locations where to move the robots, and the multi-robot plan to
reach them, are found solving a task assignment and planning problem.

Burgard and colleagues [Burgard et al., 2005] contributed a method for greedy
task assignment, based on grid mapping and frontier cell exploration [Yamauchi,
1997]. Their method does not consider conflicts between single robot plans, and
requires robots to start their mission close to each other with knowledge about their
initial displacement. The work by Bennewitz and colleagues [Bennewitz, Burgard,
& Thrun, 2001] focuses on the optimization of plans taken by multiple robots at the
same time. They select priority schemes by a hill-climbing method that decides in
which order robots plan to their targets [Erdmann & Lozano-Perez, 1987]. Plans are
generated in the configuration time space by applying A* search on grid maps. The
coordinated movement of a set of vehicles has also been addressed in other domains,
such as in the context of operational traffic control [Hatzack & Nebel, 2001], and the
cleaning task problem [Jaeger & Nebel, 2001].

We evaluated the global approach on RFID graphs of different complexity and
size. Finally, we evaluated the full system in qualitative experiments on USARSim.
Our results show that the number of conflicts can be reduced by sequence optimiza-
tion, and that this global coordination mechanism combined with the local approach,
increases significantly the explored area.

8.1 Problem Modeling

Basically, the problem is to find a target RFID location for each robot and a multi-
robot path for them. We assume that an RFID graph G = (V,E), where V is the
set of RFID positions and E passable links between them, is available. Each node
consists of a unique identifier for the RFID and its estimated position. Moreover, a

8.1. Problem Modeling 171

set of frontier nodes U ⊂ V and a set of current robot (RFID) positions SL ⊂ V is
defined. In general, |U | > |R|, where R is the set of available robots. A robot path
(i.e plan) is defined as a set of couples composed by a node v ∈ V and a time-step t:

Definition 8.1 A single-robot plan is a set

Pi = {〈v, t〉 | v ∈ V ∧ t ∈ T}

where T = {0, . . . , |Pi| − 1}. Pi must satisfy the following properties:

a) ∀vi, vj , k 〈vi, k〉 ∈ Pi ∧ 〈vj , k + 1〉 ∈ Pi ⇒ (vi, vj) ∈ E,

b) 〈v, 0〉 ∈ Pi ⇒ v = sli ∈ SL

c) 〈v, |Pi| − 1〉 ∈ Pi ⇒ v ∈ U
Property a) states that each edge of the plan must correspond to an edge of the

graph G. Properties b) and c) enforce that the first and the last node of a plan must
be the location of a robot and a goal node respectively. For example, the single-
robot plan going from RFID R1 to RFID G1, depicted in Figure 8.1 is represented as
P1 = (〈R1, 0〉, 〈N1, 1〉, 〈N2, 2〉, 〈G1, 3〉).

0.8

1

0.8 0.8

1

1.4

R2

N1 N2 G1R1

G2

1.2

Figure 8.1: A simple graph showing a plan from R1 to G1 (bold edges).

The previous definition implies that passing any two nodes, which are connected
by an edge in the graph G, takes approximately the same amount of time. Recall
that nodes represent RFIDs which are deployed approximately at the same distance
one from the other, and edges represent shortest connection between them. Thus,
the difference of time required for traveling between any two connected RFIDs is
negligible small, if robots drive at the same speed.

Definition 8.2 A multi-robot plan P is a n-tuple of single-robot plans (P1, . . . , Pn)

such that:

172 8. Monitoring and Planning Exploration

a) the plan with index i belongs to robot i,

b) ∀i, j ∈ R 〈v′, |Pi| − 1〉 ∈ Pi ∧ 〈v′′, |Pj | − 1〉 ∈ Pj ⇒ v′ 6= v′′

c) ∀i, j ∈ R 〈v′, 0〉 ∈ Pi ∧ 〈v′′, 0〉 ∈ Pj ⇒ v′ 6= v′′

Thus, a multi-robot plan is a collection of single-robot plans for each robot such
that they all have different goals and different starting positions. A distinguishing
feature of multi-robot plans with respect to single-agent ones is interaction. In fact,
single-robot plans can interfere with each other leading to inefficiencies or even fail-
ures:

Definition 8.3 Two single-robot plans Pi and Pj of a multi-robot plan P are said to

be in conflict if Pi ∩Pj 6= ∅. The set of states CPi =
⋃

i6=j Pi ∩Pj are the conflicting

states for Pi.

Moreover, deadlocks can occur in the system. In our setting, a deadlock can arise
if there is a circular wait or if a robot is willing to move to an already achieved goal
of another robot. Consequently, the cost measure c(.) for a multi-robot plan P is
defined as follows:

c(P) =




∞ if deadlock
max
i∈R

cost(P, i) else
(8.1)

where cost(P, i) is the cost of executing i’s part of the multi-robot planP . We assume
that the agents execute the plans in parallel, thus the score of the multi-robot plan is
the maximum among the single-robot ones. Let Pj(t) be a function that returns the
RFID node of a plan Pj at a time index t, and d(.) the Euclidean distance between two
RFIDs. Then, cost(P, i) can be computed from the sum of the Euclidean distances
between the RFIDs of the plan plus the conflicts cost:

cost(P, i) =
|Pi|−2∑

t=0

d(Pi(t), Pi(t+ 1)) + confl(P, i) (8.2)

where
confl(P, i) =

∑

j 6=i

∑

〈v,t〉∈Pi∩Pj

wait(Pj , t), (8.3)

and
wait(Pj , t) = d(Pj(t− 1), Pj(t)) + d(Pj(t), Pj(t+ 1)), (8.4)

whereas the wait cost wait(Pj , t) reflects the time necessary for robot j to move
away from the conflict node. By Equation 8.3 costs for waiting are added if at least

8.2. Global Task Assignment and Path Planning 173

two robots share the same RFID node at the same time. This is a worst case assump-
tion, since conflicts in the final multi-robot plan are solved by the local coordination
mechanism which forces robots only to wait if there are other robots with higher
priority. We abstract this feature from our model since the priority ordering is peri-
odically randomized in order to solve existing dead-locks, making it impossible to
predict whether a robot will have to wait or not. Finally, the Task Assignment and
Path Planning problem can be formulated as an optimization problem of finding a
plan P ∗ that minimizes the cost function c(P).

8.2 Global Task Assignment and Path Planning

We experimented with three different techniques in order to solve the Task Assign-
ment and Path Planning problem. The first two approaches are inspired by Burgard
et al. [Burgard et al., 2005]. The third approach, can be seen as an extension of
Bennewitz et al.[Bennewitz, Burgard, & Thrun, 2001]. All of the previously cited
approaches rely on a grid based representation while our approach is graph-based.
The experimental results show that the third approach outperforms the first and the
second ones, and is actually the one we adopted in the implementation of the full sys-
tem. For this reason, we just give a brief overview of the first approaches and detail
more carefully the third one.

All the approaches have a common pre-calculation. We compute the Dijkstra
graph [Dijkstra, 1959] for each node in U . This is a fast computation (i.e. O((|E|+
|V |log(|V |))|U |)) which speeds up the plan generation processes presented in the
following.

Greedy Approach

Given the information produced by the Dijkstra algorithm and an empty multi-robot
plan, we identify the robot rbest ∈ R which has the shortest path to reach a goal
gbest ∈ U . The path computed by the Dijkstra algorithm from rbest to gbest, with its
time values, is added to the multi-robot plan. We then update the setsR = R−{rbest}
and U = U −{gbest}. The process is iterated untilR = ∅ (see [Burgard et al., 2005]
for more details).

Assignment Approach

A common approach in multi-robot systems is task assignment. Here we utilize a
genetic algorithm permuting over possible goal assignments to robots and use the
plans computed by the Dijkstra algorithm. We then use the previously defined cost
function as the fitness function (see [Bennewitz, Burgard, & Thrun, 2001] for more
details).

174 8. Monitoring and Planning Exploration

Sequential Approach

The last approach we present is based on sequential planning. We use, in a similar
way to the assignment approach, a genetic algorithm to permute possible orderings of
agents O = o1, . . . , on. We then plan for the ordering and use the previously defined
cost function as the fitness function.

The sequential planning is based onA∗ [Hart et al., 1968; Peter, Nils, & Bertram,
1972] and is done individually, following the given ordering, for each agent in order
to achieve the most convenient of the available goals U . Every time an agent oi

plans, the selected goal is removed from U and the computed plan added to the set of
known plans P . The planning tries to avoid conflicts with the set of known plans P
by searching through time/space, whereas the state space S is defined as S = V ×T .
This huge state space can be greatly simplified, since for our purposes we are only
interested in the time of the conflicting statesCPj (Definition 8.3). From the planning
point of view the information relative to the time of non-conflicting states is irrelevant
and thus all these states can be grouped by time using the special symbol none. The
resulting set of non-conflicting states NC is defined as NC = {〈v, none〉|v ∈ V }
and has the cardinality of V (i.e. |NC| = |V |). Thus, the reduced search space is
ST = CPj ∪NC.

During the search, the nodes are expanded in the following way: we look for the
neighboring nodes of the current one given the set E of edges in G. For each of them
we check if there is a conflict. If this is the case, we return the corresponding node
from CPj , otherwise the one from NC.

In order to implement A∗ we have to provide a cost function g and a heuristic
function h defined over ST . We define the cost function g(s) for agent i as the
single-robot plan cost function cost(P, i). The multi-robot plan P consists of the
plans already computed augmented with the path found up to s. Obviously the agent
oj will be able to detect conflicts at planning time only for those agents oi with i < j
for which a plan has already been produced. Finally, the heuristic h (i.e. Dijkstra
heuristic) is defined as follows:

h(〈s, t〉) = min
g∈G

ddij(s, g) (8.5)

where ddij(s, g) is the distance from s to g pre-computed by the Dijkstra algo-

rithm.

Theorem 8.1 The Dijkstra heuristic is admissible.

Proof {By contradiction.}
Let us assume that the theorem is false and, thus, that ∃s ∈ S | ming∈G ddij(s, g) >

cost(P, i). P is the multi-robot plan composed by plans already computed plus a
path Pi from s to a goal gbetter. Assuming that sc is the state which verifies the

8.3. Monitoring Agent 175

property and that gmin is the closet goal to sc, we can rewrite the previous inequal-
ity as ddij(sc, gmin) > cost(P, i). Applying the definition of cost(P, i), we can
rewrite the inequality as ddij(sc, gmin) > dplan(sc, gbetter) + confl(P, i); where
dplan(sc, gbetter) =

∑|Pi|−2
t=0 d(Pi(t), Pi(t + 1)). confl(P, i) is the sum of val-

ues which are distances calculated in the Euclidean space which are alway values
greater or equal to zero. This implies ddij(sc, gmin) > dplan(sc, gbetter). Since
ddij(sc, gmin) < ddij(sc, gbetter) we can rewrite the inequality as ddij(sc, gbetter) >
dplan(sc, gbetter). This means that there exists a path on the graph from sc to gbetter

shorter than the one the Dijkstra algorithm found, but this is impossible [Dijkstra,
1959].

It is important to notice that A∗ will finds an optimal solution, since the heuristic
is admissible, of an approximated problem. In fact, it solves the problem avoiding
the paths of robots computed up to that moment.

For example, let us consider the simple weighted graph depicted in Figure 8.1.
R1 and R2 are respectively the location of two robots r1 and r2. G1 and G2 are the
goals. In this example, the sequence 〈r1, r2〉 has been selected and r1 has already
produced the following plan: (〈R1, 0〉, 〈N1, 1〉, 〈N2, 2〉, 〈G1, 3〉). Now r2 has to
plan. The only remaining goal is G2, since G1 has already been selected by r1. At
first, according to the topology and the already defined plan for r1, from 〈R2, none〉
the nodes 〈R1, none〉 and 〈N1, 1〉 can be reached. In fact, if we simulate the plan of
r1, moving to R1 will incur in no conflict and would have just the cost of travelling
the distance; thus g(〈R1, none〉) = 1.2. In the other case, moving to R2 at time 1,
will conflict with r1 who is moving there at the same time. In this case, our model
tells us that we have to wait for r1 to first reach the N1 (with a cost of 0.8) and
then leave it (with a cost of 0.8). Then, we would be able to reach N1 with a cost
of 1. Thus the total cost of reaching N1 at time 1 will be g(〈N1, 1〉) = 2.6 (i.e.
0.8 + 0.8 + 1).

Moreover, the heuristic values for these states (obtained by pre-computing the
Dijkstra algorithm) are: h(〈R1, none〉) = 1.4 and h(〈N1, 1〉) = 1. Thus, accord-
ing to the well known formula f(n) = g(n) + h(n), 〈R1, none〉 will be selected.
Similarly, nodes 〈N1, none〉 and 〈G2, none〉 will be expanded next and the planning
process will continue until the plan (〈R2, 0〉, 〈R1, 1〉, 〈G2, 2〉) is found. Notice that,
〈N1, none〉 is different from 〈N1, 1〉 since r2 will already have moved away from
N1 at time-step 2.

8.3 Monitoring Agent

The monitoring agent MA constructs online the map represented as the graph G
and identifies the frontier RFIDs. Moreover, MA will monitor the local exploration
and possibly identify, with one of the previously described techniques, a multi-robot

176 8. Monitoring and Planning Exploration

plan in order to move the robots to a location where the local exploration has better
performance expectations.

At execution time the robots send their RFID locations (i.e. the nearest RFID
they can perceive) to MA. Every time a robot changes its RFID position from ri
to ri+i, MA updates the set SL of current robot locations and updates the graph as
follows: E = E ∪ {(ri, ri+1)} and V = V ∪ {ri} ∪ {ri+1}. The monitoring process
collects continuously information regarding the unexplored area in the vicinity of the
RFIDs based on the local occupancy grid to identify the frontier RFIDs U . Roughly,
the robot knows how many RFIDs, given the defined deployment density, should be
placed per square meter and which the number perceived. Thus, can compute an
estimate on how much the area is explored in the proximity of his RFID position.

MA periodically evaluates the position of the robots on the graph and their dis-
tance from the frontier nodes U . If this value exceeds a given threshold, it stops the
robots and computes a new multi-robot plan. Once a valid plan has been produced,
MA starts to drive the robots by assigning the next RFID prescribed by their plans
to each of them. The robots path-plan from one RFID to the other using the A* path-
planner on the occupancy grid and the teammate avoidance previously mentioned. If
the occupancy grid path planner fails to find a plan because he can not perceive the
RFID (e.g. it was destructed) or the way is obstructed, the robot sends a failure mes-
sage to the agent. The agent will consequently remove the node and its edges from the
graph G and re-plan. When the target RFID is reached, a task accomplished message
is sent to the agent, which will assign another task or send a global plan termination
message. In the latter case, the robots will start again the local exploration.

During the multi-robot plan execution, the planner monitors for unforeseen sit-
uations. For example, if a robot does not send an accomplished task message or an
RFID position for a long time, it is considered lost and removed from the robot list.
Moreover, plans can incur in deadlocks and, although we check for them at planning
time, there is no guarantee of a deadlock-free execution because we can not predict
the exact order in which the tasks will be accomplished. If a deadlock occurs at a
given time, MA re-plans. Finally, any time a planning phase fails, the local explo-
ration is reactivated.

8.4 Experiments

Efficiency in terms of conflict detection and joint path length optimization has been
evaluated on both artificially generated, and by a robot team generated RFID graphs.
The artificially generated graphs, consisting of approx. 100 nodes, are weakly con-
nected in order to increase the difficulty for the planning problem, whereas the graph
generated by the robots, consisting of approx. 600 nodes, represents a structure nat-
urally arising from an office-like environment.

Figure 8.2 depicts the result from evaluating greedy assignment, genetic opti-

8.4. Experiments 177

(a) (b)

(c) (d)

(e) (f)

Figure 8.2: Comparing the number of conflicts (a-c) and travel costs (d-f) of the three

approaches on different RFID graphs: (a,d) narrow office-like environment, (b,e)

narrow outdoor area, (c,f) graph generated from RFIDs deployed by the robots on a

USARSim map.

mized assignment, and sequence optimization on these graphs. Each method has
been applied with a fixed number of randomized goals and starting positions, 10
times. We experimented different sizes of the robot teams, ranging from 2 to 20. The

178 8. Monitoring and Planning Exploration

abrupt ending of the curves indicates the size of the agent team, at which no more
solutions could be found, i.e. the scoring function returned infinity. Note that for
all the experiments, the algorithm was constrained to compute for no more than one
second.

The result makes clear that sequence optimization helps to decrease both the over-
all path costs and the number of conflicts between single robot plans. Moreover, the
method yields solutions with nearly no conflicts on the graph dynamically generated
by the robot team (see Figure 8.2 (c)). In order to compare the global and local ap-

(a) (b)

Figure 8.3: Comparing the locally and globally coordinated exploration. During local

exploration (a) robots get stuck in a local minima. The global approach (b) allows

the robots to leave the local minima and to explore a larger area

proach in terms of the explored area, we conducted two qualitative experiments on a
large map, for 40 minutes each (see [Kleiner & Ziparo, 2006] for a video). Due to
the global approach, the robots were able to explore 2093m2 of the map, in contrast
to the team executing the local approach, exploring only 1381m2 of the area. As can
be seen by the trajectories in Figure 8.3, this was mainly because the robots running
the local approach were not able to overcome the local minima in the long hall. With
the global approach, the robots discovered the passage leading to the big area beneath
the hall.

Chapter 9

Multi-Objective Robot Teams

In this chapter, we, finally remove the last assumption and model USAR as a multi-
objective problem. The problem is described by three main objectives: exploration,
victim detection and mapping. The exploration objective requires to maximize the
coverage of the area, while the mapping objective to reconstruct the structure of the
features of the area. Finally, the victim detection objective is the task of reporting
victims and their status.

We assume that the robots are designed to fullfill a specific objectives and thus
have different sensors to prove evidences (e.g. recognize human form or sound sig-
nals) and different actuator capabilities (e.g climbing stairs or opening doors). This
suits well to real scenarios where it is very hard to build robots which have both
many sensing capabilities and a good mobility. In fact, from a technological point
of view, it is more efficient and effective to design a team of heterogeneous robots
for fullfilling specific objectives, than to design an omni-capable homogeneous team.
In our case, we assume that exploration robots are fast and can, for example, cover
the area releasing artificial features, as RFIDs, for coordination [Ziparo et al., 2007b]
and detect thermal signals. Also other robots can explore by releasing artificial fea-
ture but are in general slower. Victim robots, are slow robots equipped with complex
sensors for victim detection, while mapping robots are also slow but have complex
sensors for map building (i.e. 3D range finders, stereo cameras, etc. . .). These latter
robots, can map or look for victims in already explored areas exploiting the artificial
features released during exploration. Features are required both for simplifying data
association in mapping and as a reference frame for victim locations.

Thus, cooperation and coordination are necessary because robots can achieve
their objectives more efficiently. For example, exploration robots can communi-
cate areas with thermal signals corresponding to human temperature to victim robots
which can exploit this information to improve their performance or communicate ex-
plored areas to mapping robots which can map them. Furthermore, agents may con-

179

180 9. Multi-Objective Robot Teams

flict while taking actions (i.e. two robots may want to go through the same narrow
passage) or may have conflicting interests. For example, exploration robots would
prefer mapping robots to explore, rather than mapping already expored locations.
Most of the times, it is impossible to optimally solve the problem for limited battery
time of robots, which forces the team to trade-off between the objectives. Moreover,
it is very hard to define a global utility function for measuring such trade-offs. For
example, exploration may increase the efficiency of the first responders saving vic-
tims’ lives, while an accurate mapping, highlighting dangerous areas, would spare
first responders’ lives. The problem can be modeled as a multi-objective planning
problem for a team of robots where, explorer robots have the objective to explore,
victim robots have the objective to detect victims, and mapping robots have the ob-
jective to map the area.

The previously described approaches are not applicable to this formulation of the
problem because they are developed to maximize a single objective: terrain cover-
age (i.e. exploration). Nevertheless, previous approaches could be used “incorrectly”
in the sense that the objective function could take into account the mapping, explo-
ration and victim detection returning a unique measure (e.g. a linear combination of
the utilities). The approach is incorrect because it tries to define tradeoffs between
noncommensurate quantities. Instead, we represent the problem as a MAPG (Chap-
ter 3) and consequently, use correlated equilibria of the associated optimal game, as
the solution concept (Chapter 5). Thus, the main advantage in using MAPGs is that
they are capable to solve “correctly” multi-objective problems. Indeed, as we have
seen in the cleaning domain (Chapter 6), defining a utility function which measures
tradeoffs between objectives can penalize some obejctive depending on the instance
of the problem to solve.

Moreover, MAPGs have several other advantages with respect to the previous
approaches. First, they can describe, and take advantage, of the heterogeneity of the
robots. The different capabilities of the robots are represented through different ac-
tions, sensing capabilities, action durations and outcome uncertainties. In particular,
the capability to model the uncertain duration of action provides a more accurate
prediction of timing with respect to the planning approach presented in the previous
chapter (which assumed all actions to have the same deterministic duration). The
simple assumption of deterministic duration of actions in the previous planning for-
mulation has another drawback. The conflict and deadlock detection used action
duration and given that robots, in general have unpredictable action durations, could
incur into conflicts during execution which required replanning. MAPGs guarantee
conflict-free plans by enforcing synchronization through communication. Moreover,
communication and sensing can be used to achieve complex forms of cooperation and
coordination. Finally, the previous planning approach used a centralized execution
model, while MAPGs allow for distributed execution (Chapter 4). In particular, if
the planner failed, the robots had to rollback to local search whatever their execution
state was, while if the MAPG planner fails, the robots can still continue to execute

9.1. Problem Representation 181

their plan.

9.1 Problem Representation

We now provide the formalization of the USAR problem in terms of MAPGs. We
assume, as the previous approaches, that the map is represented at a numerical level
as a labeled graph (RFID,E) (Figure 9.1) where nodes are autonomously deployed
devices (i.e. RFIDs) and edges are traversable passages. We have already seen in the
previous chapter that this abstraction step allows us to greatly simplify the planning
process with respect to grid based approaches. Labels in the graph denote known
properties of the environment and define subclasses of nodes in RFID. Given a
property p, we define Sp ⊆ RFID to be the set of nodes where the property is
known to be true and S¬p ⊆ RFID the set where the property is known to be false.
Clearly, these sets must be disjoint (i.e. Sp ∩ S¬p = ∅). We denote with:

• Sat ⊆ RFID the set of locations where there is a robot,

• Smap ⊆ RFID the set of mapped locations,

• Sexplo ⊆ RFID the set of explored locations and

• Svict ⊆ RFID the set of locations where it is known to be a victim.

• Stherm ⊆ RFID the set of locations where it is thermal signal in the range of
human temperatures.

Moreover, we denote the set of robots Ag as {r1, . . . , rn}, and their initial locations
as s1, . . . , sn, respectively. We assume that all robots are able to communicate.

Example Figure 9.1 represents a possible labeled graph representing the initial state
of the system. The nodes s of the graph represent locations (i.e. s ∈ RFID). In
particular, nodes represented with dotted lines u represent unexplored locations (i.e.
u ∈ S¬explo ∧ u ∈ S¬map ∧ u 6∈ S¬vict ∧ u 6∈ Svict) and the others e explored ones
(i.e. e ∈ Sexplo). Explored locations are associated with an RFID. In this example, we
assume all explored nodes ew which are filled in white to have have no victims, to be
mapped and not to be occupied by robots (i.e. ew ∈ S¬at∧ew ∈ Smap∧ew ∈ S¬vict).
Explored nodes filled with black eb represent nodes where it is not known to be a
victim (i.e. eb ∈ S¬at ∧ eb ∈ Smap ∧ eb 6∈ S¬vict ∧ eb 6∈ Svict). Similarly, explored
nodes filled with green eg represent nodes which are not mapped (i.e. eg ∈ S¬at∧eg ∈
S¬map ∧ eg ∈ S¬vict). Edges between nodes e, e′ represent traversable paths (i.e.
(e, e′) ∈ E) annotated with a distance and, in the case that one of the two nodes is
unexplored, are also associated with a value p, representing the probability that the
edge is traversable. Finally, nodes n can be labeled with a robot ri, representing the
fact that the current location of the robot is n (i.e. n ∈ Sat ∧ n 6∈ S¬at).

182 9. Multi-Objective Robot Teams

rv
re

rm

p
=

0
.8

p
=

0
.7

p
=

0
.3

p
=

0
.6

p
=

0
.2

1
m

1
m

0
.8

5
m

0
.7

5
m1
m

0
.5

m

1
m

0
.5

m

0
.5

m
0

.5
m

1
m

0
.2

5
m

0
.5

m

1
.3

m

1
.3

m

0
.5

m
0

.7
5

m

1
m 1
m

0
.7

5
m

0
.7

5
m

0
.7

5
m

Figure 9.1: An example of the numerical representation of the state.

9.1. Problem Representation 183

Fluents RFID(s), and Traversable(s, s′), denote that s is an RFID location
and that the path between s and s′ is traversable, respectively. Moreover, we denote
with V ictim(s), Mapped(s), Explored(s) and Thermal(s), that there is a victim
in s, that s has been mapped, that s has been explored and that there is a thermal
signal in s, respectively. Unexplored nodes are hypothetical locations, which may
be reachable with some probability, extrapolated from the occupancy grid at frontier
nodes (see Chapter 8). At(r, s) and Free(s) denote that robot r is, and that no robot
is, at the RFID location s, respectively.

The representation of the environment is maintained at a numerical level, while
the MAPG representation at the symbolic one. This is consistent with the hypothe-
sis that robots use a heterogeneous hybrid architecture (Chapter 4). The description
of the mapg can be easily produced automatically from the numerical representation.
Before planning, robots merge their maps with the annotated information [Balakirsky
et al., 2007]. The merged map is communicated to the planner which can automati-
cally describe the initial state ΦI and instantiate the variables of the actions described
in the following. In particular, for any i ∈ Ag :

φI
i =

∧

{s∈RFID}
RFID(s)

∧

{(s,s′)∈E}
Traversable(s, s′)

∧

{s∈S¬explo}
¬Explored(s)

∧

{s∈Sexplo}
Explored(s)

∧

{s∈S¬map}
¬Mapped(s)

∧

{s∈Smap}
Mapped(s)

∧

{s∈S¬vict}
¬V ictim(s)

∧

{s∈Svict}
V ictim(s)

∧

{s∈S¬therm}
¬Thermal(s)

∧

{s∈Sterm}
Thermal(s)

∧

{s∈Sat}
¬Free(s)

∧

{s∈S¬at}
Free(s)

∧

{si∈Sat}
At(ri, si)

(9.1)

9.1.1 Utility Functions

We define three utility functions uv, ue and um evaluating the three objectives of
USAR: Victim Detection, Exploration and Mapping, respectively. The objectives
can be assigned dynamically to the robots based on their capabilities and their cur-
rent state, through task assignment techniques (e.g. Token Passing [Farinelli et al.,
2005], Market Based [Dias & Stentz, 2002; Zlot et al., 2002], Reactive Task Assign-
ment [Iocchi et al., 2003; Werger & Mataric, 2000], Iterative Task Assignment [Parker,

184 9. Multi-Objective Robot Teams

1998] or Sequential Task Assignment [Gerkey & Matarić, 2000; Dias & Stentz, 2001;
Chaimowicz, Campos, & Kumar, 2002]).

The utility for the the Victim Detection objective is measured based on the num-
ber of victims found and on the number of RFIDs which have no victim within a
given radius. Indeed, the information that a location is victim free, is a precious
information which can be used by first responders to avoid unnecessary operations.
Formally, the utility for the Victim Detection objective is:

uv =
∑

r∈RFID

V ictim(r) + α · ¬V ictim(r) (9.2)

where α ∈ R+ is a parameter the tradeoff between finding victims and identifying
victim free areas. In our representation, we assume that finding victims is the most
important issue (e.g. α = 0.5). Nevertheless, the designers of the system do not
agree on a tradeoff, the objective can be decomposed into two different objectives:
one for finding victims and one for identifying victim free areas. The utility for the
Exploration objective is simply based on the number of explored locations:

uv =
∑

r∈RFID

Explored(r) (9.3)

Finally, the Mapping objective is based on the mapped area with a preference on
areas where a victim has been found (to provide better situation awareness to the
firefighters):

um =
∑

r∈RFID

Mapped(r) + α · (V ictim(r) ∧Mapped(r)) (9.4)

where α ∈ R+ is a parameter which defines the entity of the preference over locations
with victims (e.g. α = 0.5). Notice that, in this case, we use a linear combination of
formulas.

9.1.2 Action Description KB

We assume the robots to be grouped by homogeneity into three function classes
Rv, Re and Rm which include, respectively, the Victim Detector V D, Explorer
Ex and Mapper MP robots described above. We will now define their capabilities
KB as a set of action descriptions KBi. The action description {KBv|v ∈ V D},
{KBe ∈ E} and {KBm ∈ MP} are three sets of action descriptions grouped by
functional classes. We assume that all robots in the same functional class has the
same capabilities (i.e. ∀KBi,KBj ∈ MP KBi = KBj), although this is not a
strict requirement and is used just for the sake of simplicity. In the following we
assume that x, y ∈ RFID.

9.1. Problem Representation 185

KBe

The action description KBe, for each robot r ∈ Ex, is composed by the following
action descriptions:

• actions to move among explored RFID locations:

move(r, x, y) = 〈φmove
pre , φmove

ex , φmove
eff , dmove

t 〉

where:

φmove
pre = Free(y) ∧At(r, x) ∧ Explored(y) ∧ Traversable(x, y)∧

(r 6= x) ∧ (r 6= y) ∧ (y 6= x)

φmove
ex = Free(y) ∧ Free(x)

φmove
eff = ¬Free(y) ∧ Free(x) ∧ ¬At(r, x) ∧At(r, y)

where, dmove
t is a Gaussian distribution N (t, σ), where the mean and the vari-

ance depend on estimated distances d (labeling the edge (x, y)) travelled from
x to y. In particular, if we assume that robots move at a given speed s and has
to move d, the estimated completition time t = d · s, and the variance cubic
in the expected duration σ = α · (d · speed)2 (i.e. dmove

t = N (t, α · t2)). In
general, these parameters should be learned or empirically deduced.

• actions to move to an unexplored node, or between two unexplored nodes,
which, thus, can fail because no one has ever tried it:

try move(r, x, y) = 〈φtry move
pre , φtry move

ex , φtry move
eff ′ : π, φtry move

fail : (1−π),

dtry move
t 〉

where:

φtry move
pre = Free(y) ∧At(r, x) ∧ ¬Explored(y) ∧ Traversable(x, y)∧

(r 6= x) ∧ (r 6= y) ∧ (y 6= x)

φtry move
ex = Free(y) ∧ Free(x)

φtry move
eff = ¬Free(y) ∧ Free(x) ∧ ¬At(r, x) ∧At(r, y)

φtry move
fail = Free(y) ∧At(r, x) ∧On(b, x) ∧ ¬Explored(y)

where, dmove
t is a Gaussian distributionN (t, σ) similar to the one ofmove(r, x, y)

and the probability value π is the label p of the edge (x, y).

186 9. Multi-Objective Robot Teams

• an action to explore an area by releasing an artificial beacon (i.e. RFID) and
computing the unexplored nodes representing the frontiers of that area:

explore(r, x) = 〈φexplore
pre , φexplore

ex , φexplore
eff , dexplore

t 〉

where:
φexplore

pre = ∧At(r, x) ∧ ¬Explored(x) ∧ (r 6= x)

φexplore
ex = >

φexplore
eff = Explored(x)

where, dmove
t is a Gaussian distribution N (t, σ), where the mean and the vari-

ance depend mainly on the hardware to deploy RFIDs.

• an action to sense for thermal signals within the human thermal range:

senseTh(r, x) = 〈φsenseTh
pre , φsenseTh

ex , φsenseTh
t , φsenseTh

¬t , dsenseTh
t 〉

where:
φsenseTh

pre = At(r, x) ∧ (r 6= x)

φsenseTh
ex = >

φsenseTh
v = Thermal(x)

φsenseTh
¬v = ¬Thermal(x)

where, dsenseTh
t is a Gaussian distribution N (t, σ), where the mean and the

variance depend mainly on the sensors and algorithms used. Moreover, the
robot has to seek for victims within a certain range, and, in the worst case,
needs to clear the whole area.

KBv

The action description KBv, for each robot r ∈ V D, is composed by the same
actions in KBe but with different, possibly longer, action durations. Moreover, the
robot can explicitly sense for victims in a given radius from its location:

• a action to sense for victims where there is no previous evidence:

senseForV ictimNoEvid(r, x) = 〈φsense
pre , φsense

ex , φsense
v , φsense

¬v , dsense
t 〉

where:
φsense

pre = At(r, x) ∧ ¬Thermal(x) ∧ (r 6= x)

φsense
ex = >

9.1. Problem Representation 187

φsense
v = V ictim(x)

φsense
¬v = ¬V ictim(x)

where, dsense
t is a Gaussian distribution N (t, σ), where the mean and the vari-

ance depend mainly on the sensors and algorithms used. Moreover, the robot
will have to seek for victims within a certain range, and will in the worst case,
need to clear the whole area.

• a action to sense for victims where there is a thermal evidence:

senseForV ictimEvid(r, x) = 〈φsense
pre , φsense

ex , φsense
v : π, φsense

¬v : 1− π, dsense
t 〉

where:
φsense

pre = At(r, x) ∧ Thermal(x) ∧ (r 6= x)

φsense
ex = >

φsense
v = V ictim(x)

φsense
¬v = ¬V ictim(x)

where, dsense
t is a Gaussian distribution N (t, σ), where the mean and the vari-

ance depend mainly on the sensors and algorithms used. Moreover, the robot
has to seek for victims within a certain range, and in the worst case, needs to
clear the whole area. Furthermore, π is the probability of finding a victim given
thermal evidence.

KBm

The action description KBm, for each robot r ∈ MP , is composed by the same
actions in KBe but with different, possibly longer, action durations. Moreover, the
robot can build a metric map of an area:

map(r, x) = 〈φmap
pre , φ

map
ex , φmap

eff , d
map
t 〉

where:

φmap
pre = At(r, x) ∧ ¬Mapped(x) ∧ Explored(x) ∧ (r 6= x)

φmap
ex = >

φmap
eff = Mapped(x)

where, dmove
t is a Gaussian distribution N (t, σ), where the mean and the variance

depend mainly on the type of map (e.g. 2D or 3D), range finder used, and mapping
algorithm.

188 9. Multi-Objective Robot Teams

9.2 Experimental Analysis

This section provides qualitative experimental results, based on the algorithms pre-
sented in Chapter 6. In particular, we refer to the same experimental setting intro-
duced in Section 6.2, but with a special focus on the USAR domain. As for the
experiments in Section 6.2, we provide some experimental evidence for:

1. the assumption that the number of Pareto optimal plans are exponentially less
than all possible plans (Assumption 6.1.1),

2. evaluating the quality of the restricted correlated equilibrium with respect to
refinements which select the solution based on measures of noncommesurate
quantities.

We formalize the problem in a simpler version (Appendix E) with respect to
the one presented in the previous section. In particular, we consider the case were
the agents are not capable of sensing and probabilistic actions. We assume that the
exploration robots can move and explore. Mapping robots can move, explore and
map areas, while victim identifier robots can move, explore and check for victims.

The motivation for this simplified approach is that sensing actions and proba-
bilistic actions augment the branching factor of the treeM and, considering the brute
force implementation, require a large amount of memory and time to compute. In
particular, the memory requirements are the most restrictive because the memory
available to computers is a finite resource. The memory requirements are critical also
without sensing and probabilistic actions, but in this case we can address them by
building Plpo incrementally. Actually, if we do not have sensing actions we do not
need to keep memory of all possible plans Pl which are necessary to build condi-
tional plans. In this case, every time we find a new plan we can refine the set of plans
by discarding non Pareto optimal ones from the current plan set.

We experimented the approach based on the graph structure depicted in Figure
9.2, varying the time horizons (i.e. from 20 to 35) and number of robots (i.e. from 2 to
3). Moreover, in order to avoid the unnecessary proliferation of actions, we ground
variables based on the topology of the environment. Actually, grounding variables
for move actions without considering the topology of the environment, would lead to
many actions which can not be executed, but which must be checked for safeness.

The first set of experimental results aims at verifying that the number of Pareto
optimal solutions is exponentially less than the number of possible plans. Figure
9.3(a) summarizes the results for the case of two robots (i.e. Explorer and Victim
Identifier), while Figure 9.3(b) summarizes the results for the case of three robots (i.e.
Explorer, Mapper and Victim Identifier). The results confirm the assumption because
the distance between the two curves linearly increases on a logarithmic scale.

The second set of experimental results aims at comparing the quality of restricted
correlated equilibrium with respect to a selection of Pareto optimal solutions based

9.2. Experimental Analysis 189

N1

N2

N3 N4

N8

N5

N6

N9 N7

Figure 9.2: A topological structure for the USAR domain.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 20 22 24 26 28 30 32 34 36

P
la

ns

Time

2 Agent USAR Domain

Pareto Optimal
All

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 22 24 26 28 30

P
la

ns

Time

3 Agent USAR Domain

Pareto Optimal
All

(a) (b)

Figure 9.3: Pareto optimal plans vs all plans with an explorer robot and a victim

identifier robot

190 9. Multi-Objective Robot Teams

-1

 0

 1

 2

 3

 4

 20 22 24 26 28 30 32 34 36

U
til

ity

Time

2 Agent USAR Domain Maximum Utilities

Explorer
VictimDetect

-1

 0

 1

 2

 3

 4

 20 22 24 26 28 30 32 34 36

U
til

ity

Time

2 Agent USAR Domain restricted Correlated Equilibrium

Explorer
VictimDetect

(a) (b)

-1

 0

 1

 2

 3

 4

 20 21 22 23 24 25 26

U
til

ity

Time

3 Agent USAR Domain Maximum Utilities

Explorer
VictimDetect

Mapper

-1

 0

 1

 2

 3

 4

 20 21 22 23 24 25 26

U
til

ity

Time

3 Agent USAR Domain Restricted Correlated Equilibrium Utilities

Explorer
VictimDetect

Mapper

(c) (d)

Figure 9.4: Comparison of utilities of restricted correlated equilibrium with respect

to sum of utility approach.

9.2. Experimental Analysis 191

on a weighted sum of the utilities for the objectives. Figure 9.4(a,b) summarizes the
case where there are two agents, while Figure 9.4(c,d) the case where there are three
agents. The results show that maximizing the sum of utilities prodeuces benefits only
for the exploration objective (i.e. the other utilities have a constant value of zero).
Nevertheless, the restricted correlated equilibrium is more “fair” distributing utilities
among the objectives.

192 9. Multi-Objective Robot Teams

Part IV

Conclusions

193

Chapter 10

Discussion

In this thesis we presented a multi-robot multi-objective approach to action planning.
The approach is characterized by the capability of modelling distributed knowledge
and, thus, distributed execution of plans for a team of heterogeneous agents pursuing
possibly different goals.

The multi-objective nature of the problem requires to define an appropriate solu-
tion concept, which we provide as a novel, and to our knowledge the first, refinement
of Pareto optimality. The idea is that choosing between Pareto optimal solutions, in a
system where objectives are embodied into agents, is a non-cooperative problem and
can be modeled as a game.

The system was experimented, at first, based on some toy examples, and, then,
through a case study on the USAR domain. In particular, we analyzed the USAR
problem and solved it in three formulations of increasing complexity. In particular,
the third formulation is a multi-objective one, and is represented through a MAPG.

10.1 Representation

The first contribution of the thesis has been the development of tools for representing
distributed knowledge (i.e. MAPGs) and distributed execution (i.e. PNPs).

Multi-Agent Planning Games

MAPGs are a novel approach to multi-agent planning for teams of agents pursuing
multiple objectives. The basic idea is that we can represent the state of the system
through a collection of local states, represented through some form of incomplete
knowledge. Each local state is a collection of possible world states resulting from
the incomplete, yet certain information, available to each agent. The approach is

195

196 10. Discussion

similar to Fagin’s [Fagin et al., 1995] approach for modelling distributed systems,
although the dynamics of global states (i.e. the collection of possible world states) is
defined in terms of actions which are: i) uncertain in their duration, ii) uncertain in
their outcome, iii) capable of representing active perception actions and iv) capable
of modeling communication.

In particular, each ordinary action performed by an agent changes its own compo-
nent of the global state (i.e. the information he knows to hold), while communication
actions change the components of the global state of the agents involved into the
communication process. This interpretation of knowledge as distributed allows us
to define distributed execution mechanisms, opposed to approaches which require a
central coordinator agent (e.g. [Finzi & Lukasiewicz, 2005]).

The approach is based on GE0+, a formalism for reasoning about distributed
knowledge that allows us to represent various types of uncertainty for actions. The
language is an extention of the single agent action language E+ [Iocchi et al., 2004b;
Iocchi et al., 2007]. E+ is syntactically similar to the action language A and its
variants including the recent C+, but it has a formal semantics in description log-
ics. More precisely, it is equivalent to a fragment of the autoepistemic description
logic ALCKNF [Donini, Nardi, & Rosati, 2002] for modeling dynamic systems (see
[Iocchi et al., 2006] for the proof that E+ is semantically founded on ALCKNF),
which has been successfully implemented and used for a robotic soccer team [Iocchi,
Nardi, & Rosati, 2000b]. E+ allows us to reason on nondeterministic and proba-
bilistic action outcomes, and models direct perception through sensing actions with
nondeterministic outcome. In particular, actions can be uncertain in their outcome,
both in a probabilistic and non-deterministic way. The different effects of uncertain
actions are not observable at execution time and thus are used to compute an ex-
pectation on the utility resulting from the performance of plans. Nevertheless, the
outcomes of sensing actions are observable at execution time and can, thus, be used
to produce conditional plans [Levesque, 1996].

The proposed action language, GE0+, extends E+ in two directions:

1. extending the type of uncertainties the single agent language can represent and

2. generalizing to the case of multi-agent systems.

The first contribution, allows GE0+ to deal with action whose duration is uncer-
tain and to deal with probabilistic sensing actions. Actions can have an uncertain
duration, modelling the fact that it is very hard to predict how much time a robot will
require to perform them. This uncertainty is used to compute the expected utility
of plans when the system is constrained to act within a set of time limits (one for
each agent). Non-instantaneous actions have been considered previously, although
there are not many approaches which are able to deal with uncertain durations. In
particular, there has been some work in modeling durative actions with continuous

10.1. Representation 197

change [Claßen, Hu, & Lakemeyer, 2007], although the approach assumes determin-
istic duration of actions. The only work we are aware of which deals with uncertain
durative actions has been developed in the frame of MDPs (e.g. [Marecki, Topol, &
Tambe, 2006; Boyan & Littman, 2000; Li & Littman, 2005]), but does not provide a
semantic characterization of the resulting languages. Moreover, we provide a novel
type of sensing actions, namely probabilistic sensing actions. The main difference
with respect to ordinary sensing actions [Iocchi et al., 2004b; Iocchi et al., 2007;
Levesque, 1996], where outcomes are non-determinisic because agents have no ex-
pectation on which will be the result of sensing, is that we assume that agents have a
probabilistic expectation on what they will perceive.

The extension to multi-agent systems is named MAPG and is based on the intu-
ition, presented in [Fagin et al., 1995], that distributed systems can be modeled in
terms of global states. In particular, the semantics of MAPGs can be characterized
by finite state machine M whose states are global states and transitions are actions
performed by some agent. The semantics is defined in terms of the sink nodes of M ,
called strategy outcome space, which define the possible global states reachable by a
system defined in terms of a MAPG. The strategy outcome space can be used to rep-
resent the problem as a normal form game, based on which the solution to MAPGs
can be computed. We can prove that M is a finite tree, and that the strategy outcome
space is exponential w.r.t the MAPG specification. This is positive result from the
representation point of view, considering that one of the major drawbacks of games
is the size of their representation [Papadimitriou, 2005].

Despite the fact that we represent explicitly time, duration of actions is not used
to coordinate the activity of agents. Given that the duration of actions is uncertain,
and, in our case, modeled through time distributions, we can not enforce, in many
cases, that conflicting actions do not overlap in time with zero probability. Thus, we
rely on a stronger coordination mechanism which uses explicit action synchronization
through communication. The analysis of the interaction among actions is based on
the limited effects of actions [Georgeff, 1988]. The main difference with Georgeff’s
work [Georgeff, 1988] is that instead of using limited effects of action to reason about
how to merge and synchronize single agent plans, we use this theory to understand
when an action inserted into a sequence can induce negative interactions. The role
of communication in our distributed system is not limited to action synchronization,
but can also be conveniently used for cooperation through information share. In
particular, we provide the semantics of communication which allows the planner to
reason on when and with whom to communicate, considering that communication
has a cost in terms of transmission duration. To this end, we show how successor
states of communication actions can be computed by reconstructing the knowledge
available to each agent.

198 10. Discussion

Petri Net Plans

Petri net plans are a modelling language for the representation and execution of
plans of single-robot and multi-robot systems, aimed to design deliberative layers of
agents/robots based on a heterogeneous hybrid architecture which inhabit a dynamic,
partially observable and unpredictable environment. The language can be used on its
own, as a tool for hand-writing plans, or used as a formal framework for representing
execution models for automatically generated plans.

The experience in using Petri Net Plans for programming our robots has been
very effective, providing for many advantages over other techniques, as well as some
difficulties that we have dealt with. In this section we want to analyze the main
advantages and possible drawbacks of this formalism.

The main advantage of the Petri Net Plan framework is the clear definition of the
modeling language and of its semantics in terms of Petri nets. We have chosen to
adopt the Extended Petri nets because it is the simplest model necessary to specify
the constructs we needed to model. Moreover, if the definite iteration operator is not
used, PNPs are a subset of the basic Petri nets. Using this model, rather than one
of its many extensions, guarantees us the possibility to use standard tools to evaluate
properties of the nets such us liveness and reachability of the goal states.

The gain in using Petri nets is that we have a formal method to distinguish action
implementation and specification. Moreover, the graphical representation of Petri
nets allows for an easy understanding and debugging of the plans which speeds up
the development process. High expressiveness of PNPs thus allows for effectively
capturing and dealing with most of the situations encountered when designing au-
tonomous robots.

On the other hand, such high expressiveness is also a limitation when designer is
interested in using plan generation techniques. Therefore, it is necessary for the user
to manually write the plans for the agents or enhance simpler forms of automatically
generated plans. In particular, MAPGs can produce plans without interrupts and
loops which can be used to encode failure monitoring and recovery procedures. At
the moment, we rely on human operators to enrich produced plans with interrupts in
order to monitor and recover from failures.

Nevertheless, fragments of PNPs allow us to represent distributed execution mod-
els for generated plans. This is the approach followed in this dissertation. In partic-
ular, we used Multi-Agent PNPs to composed by ordinary, sensing and synchroniza-
tion actions to provide an execution model to the plans produced by MAPGs. The
multi-agent PNP produced from the plan specification, can easily be decomposed
into a collection of single-agent PNPs which can be executed, in a provably sound
way, by each agent in a distributed fashion.

Although we provide an operational semantics for our plans, in order to have a
clear specification of the behavior of the robots during execution, it may still be very
difficult to debug plans when their size grows. This is especially true for multi-agent

10.1. Representation 199

plans enriched with failure recovery procedures. At the moment we rely on the user
to design correct plans and to solve related problems.

The problem of plan correctness is a common problem in behavior design and
has been addressed in the literature in different ways. In particular, we can roughly
categorize related approaches in three main classes.

1. Hand-written behaviors directly coded in robot program. In this case there is
no explicit representation of actions and plans. It is thus very difficult to design,
write and debug plans.

2. Hand-written behaviors using behavior oriented languages (e.g. Xabsl [Lötzsch
et al., 2004] and Colbert [Konolige, 1997]). These languages consist of behav-
ioral routines, but, although a framework for designing plans is defined, there
is no formal specification and thus it is not possible to verify properties of these
programs/behaviors.

3. Logic-based programming (e.g. Golog [Reiter, 2001]). These are declarative
languages with reasoning abilities. In particular, in these frameworks behav-
iors are specified in a high level programming language based on some formal
system (e.g. Situation Calculus [Reiter, 2001]). Such programs allow users not
to specify all the details of the program which are computed by a reasoning sys-
tem. The main drawback of such approaches is that they are computationally
very expensive and are inadequate to control very complex real time systems.

Our approach lies between the second and the third category. On the one hand, as
for other behavior oriented languages, we provide for an efficient framework for de-
signing, writing, executing, and debugging plans, which explicitly represents actions
and plans. On the other hand, as in logic based programming, we provide a formal
specification of our plans which allows for implementing reasoning and verification
procedures. In fact, we are working on integrating formal action specification in the
PNP in order to verify properties of plans such as correctness and termination.

Our formalism differs from Golog language also in the representation of the prop-
erties in the environment. In PNP it is possible to model only the knowledge (or the
absence of knowledge) of the agent about the environment, while it is not possible to
model what is actually true in the environment. In other words, the agent acts only
on the basis of what it knows about the environment: knowledge is acquired either by
direct perception (i.e., analysis of sensor data) or by the assumption that the effects
of an action hold when this action has been correctly executed.

As already mentioned, this modelling tool has been deeply tested and imple-
mented in different scenarios. We can, thus, enforce the adequacy of the approach
based on experimental evidence. In particular, we have seen that the high flexibility
of the language, the modular development and the easy to use tools help the user in
developing effective high-level programs for mobile robots. In fact, many students

200 10. Discussion

used the tool to write, execute and debug complex behaviors quickly and with a small
effort.

10.2 Solution

The second contribution of the thesis has been the development of a solution concept
for MAPGs and of appropriate algorithmic techniques for solving MAPGs.

Solution Concept

The solution concept for MAPGs is based on the normal form game representation
of the strategy outcome space. From a cooperative perspective, we require solutions
that are Pareto optimal. This requirement can be interpreted as a cooperative attitude
of agents. Consider two solutions s1 and s2 which have the same utility for agent
i. Then if s1 is better than s2 for all other agents, also i will prefer s1 to s2. Thus,
agents prefer to aid other agents if this does not deteriorate their utility.

The concept of Pareto optimality is commonly accepted as a necessary condition
for solutions to multi-objective problems. Nevertheless, Pareto optimal solutions
define a space of solutions. It is still an open problem to define a refinement to such
solution concept [Stewart & White, 1991]. Our work, provides, to our knowledge the
first, refinement of Pareto optimality in the case of a system of agents each embodying
an objective. Intuitively, when moving from a Pareto optimal solution to another one,
there will be some agents that improve their utility, and other agents that deteriorate
their utility. Thus, the problem can be formulated as a non-cooperative game, and in
particular as a variant of the normal form game of the strategy outcome space, called
optimal game.

In order to define an appropriate solution concept for the optimal game we define
a refinement of correlated equilibrium for optimal games, called restricted correlated
equilibrium. The restricted correlated equilibrium is a form of correlated equilib-
rium and as such is an expression of the Bayesian rationality of agents [Aumann,
1987]. In particular, any solution of optimal games which is not a restricted corre-
lated equilibrium is not rational for the agents and should not be selected. Moreover,
(restricted) correlated equilibrium does not incur into uncorrelated randomizations,
as mixed Nash equilibrium [Nash, 1950], and guarantees solutions to be coordinated
outcomes. We can prove restricted coorelated equilibrium to exist for optimal games
and show that it can be solved in polynomial time with respect to the number of
Pareto optimal solutions.

The main advantage with respect to other approaches (see Section2.2) is that
we do not need to define preferences over the objectives (e.g. [Vicente & Calamai,
1994]), nor to reformulate the problem as a single objective one (e.g. [Refanidis &
Vlahavas, 2003; Das & Dennis, 1996]), thus violating the assumption that utilities for

10.3. Experimentation 201

different objectives are noncommensurate quantities. In contrast, we select the Pareto
optimal solution taking into account strategic considerations implied by the rational-
ity of agents. Actually, all those approaches which select Pareto optimal solution
based on an utility function g (e.g. the sum of the utilities of objectives) which mea-
sure tradeoffs among the objectives, are modeling the problem as a single objective
one: the one defined by the maximization of g. This has a practical implication on
the solutions. Experimental analysis shows that these approaches often excessively
penalize an objective and the definition of the function g depends on the input, rather
than on the domain.

Solving Method

We provide the algorithmic solutions for generating the strategy outcome space Pl
and solving the restricted correlated equilibrium. In particular, the strategy outcome
space is generated through a depth first search over M . The set Pl is then discarded
of the elements which are not Pareto optimal, obtaining the Pareto optimal set Plpo.
We can prove that this procedure is, in the worst case, exponential both in memory
and in time. This requirement is typical of multi-objective problem solving when
the problem is represented as a graph search. This issue can be partially overcome
through heuristic search.

The problem is then solved by generating the optimal game form Plpo and by
solving the restricted correlated equilibrium. In particular, the equilibrium can be
represented by a linear program which has a variable for each element in Plpo and
thus can be computed in polynomial time with respect th the set of Pareto optimal
solutions. Assuming that the set Plpo is exponentially smaller than Pl, we can prove
that finding restricted correlated equilibrium is a task exponentially easier than find-
ing the set of Pareto optimal plans. Thus, the refinement does not add any compu-
tational overhead to the multi-objective problem. Moreover, the complexity of the
restricted correlated equilibrium is polynomial in the description of the MAPG and,
thus, the complexity of the problem is bounded to the search of the Pareto optimal
solutions.

The assumption of having exponentially less Pareto optimal solutions with re-
spect to all possible plans has been validated through some experimental analysis for
domains which are in the scope of his thesis. This assumption holds on the intuition
that, among all the exponentially many combinations of actions, just a small subset
will be relevant for the achievement of the objectives.

10.3 Experimentation

Finally, the third contribution of this thesis, has been a case study on the urban search
and rescue (USAR) robotic task. The implemented multi-robot system is strongly

202 10. Discussion

based on automated environment engineering. Robots release devices in the environ-
ment which can be automatically identified and localized with respect to the robot.
These unique features in the environment allow for exact end efficient data associ-
ation, and thus greatly simplify the SLAM problem and the abstraction step for the
planner. In particular, the features and the reachability information from the travel-
ling of robots, allows us to build a topological representation of the environment. The
topological representation is a graph where nodes represent the released devices (i.e.
features) and, edges, known traversable paths between devices. Based on the sim-
ulator and scenarios of the RoboCup’07 Virtual Robot Competition, we performed
experiments for the RFID-SLAM approach simulating a realistic sensor model for the
RFID reader. The results show that robots, using RFIDs as features, can correct noisy
odometry in presence of bumps, obstacles to overcome, and heterogeneous surfaces.
RFIDs greatly simplify the task of multi-robot SLAM in two ways: i) features can be
uniquely identified, trivially solving data association problems and ii) the number of
features is low w.r.t. visual features and thus the SLAM problem is tractable even for
large areas

We presented three solutions based on three different formulations of the prob-
lem, incrementally obtained by dropping restrictive assumptions. The first formula-
tion assumes that search and rescue can be done just through exploration and that
the environment is free or not too structured. The problem is solved with a dis-
tributed gradient descent technique. In particular, robots store poses from their paths
in the nearest RFID, which can then be read by other robots achieving a form of in-
direct communication. The robots, then, locally try to follow paths which lead to a
decrease of pose density. This RFID-based approach allows teams of robots to ex-
plore efficiently large areas under severe communication and operational constraints.
Experimental results for the exploration where obtained using the USARSim simula-
tor during the RoboCup’07 Virtual Robot Competition. In the competition, our team
outperformed other approaches, and won the first prize, showing that RFID-based ex-
ploration can efficiently and effectively coordinate large teams of robots [Balakirsky
et al., 2007; Ziparo et al., 2007a].

The second formulation, removes the constraints on the structure of the environ-
ment. In this case, the first approach may get temporarily blocked into local minima,
substantially reducing the performance of the system. This is mainly caused by the
lack of lookahead of the approach. The second system [Ziparo et al., 2007b], solves
the problem introducing a monitoring agent, which through multi-agent (path) plan-
ning restarts when necessary the local search, in new, and more efficient locations.
Experimental results where based on RFID graph structures from the scenarios of
RoboCup’07 Virtual Robot Competition, based on which we compared three differ-
ent approaches to planning. Experimental evidence, shows that the sequential op-
timization approach is clearly better than the greedy and the task assignment based
approach. Moreover, the monitoring and planning approach produces a considerable
improvement to the performance of the RFID-based local exploration.

10.3. Experimentation 203

Finally, the third formulation, removes the assumption that USAR can be solved
just through exploration. The full problem, as commonly formulated, is a multi-
objective one and can not be solved with a single-objective planner. Indeed, we rep-
resent the problem as a Multi-Agent Planning Game (MAPG) where the objectives
are to explore, map the environment and search for victims. Our experimental results,
show that this approach does not penalize any objective, independently of the con-
figuration of the environment; while alternative approaches which select the Pareto
optimal solution based on some form of objective tradeoff evaluation, can penalize
drastically some objective depending on the configuration of the environment.

204 10. Discussion

Chapter 11

Future work

We conclude our presentation with an outlook on future work, for the three main con-
tributions provided by this dissertation. We first provide a possible extention to the
game model and the solution concept in terms of extensive games. We, then, address
the complexity of the solving methods for the presented approach by considering
heuristic search for generating the Pareto optimal plans. We, then, conclude with an
outlook on possible implementations of the framework on a real multi-robot system.

11.1 Representation and Solution Concept

The most critical problem we faced when specifying PNPs was to define a seman-
tics in order for the user to have a clear specification of the behavior of the robots
during execution. This problem was solved by defining an operational semantics
and proving the correctness of PNP execution. Nevertheless, it may still be the
case that conflicts arise when executing parallel plans with a high degree of con-
currency (i.e. using interrupts) produced by human operators. As future work, we
are planning to implement plan verification and plan assistant tools in order to guar-
antee the safeness of plans. In order to do this, we need to provide a formal de-
scription of actions using some action specification language. In particular, we are
studying a more formal relationship between the presented modelling language and
logic-based formalisms for reasoning about actions (such as, ConGolog [DeGiacomo,
Lesperance, & Levesque, 2000]). In this direction, we are currently investigating a
possible extension of a formalism for reasoning about actions based on Description
Logic [Baader et al., 2003], that has been previously used for generating high-level
programs for mobile robots [Iocchi, Nardi, & Rosati, 2000a; Iocchi et al., 2004b;
Iocchi, Nardi, & Rosati, 2004b].

Regarding the representation through MAPGs, the first possible extention in-

205

206 11. Future work

volves the representation of the game model based on which we provided the re-
stricted correlated equilibrium as a solution concept. As highlighted in the experi-
mental analysis of Chapter 6, the proposed refinement lacks grip in all those domains
where there is little space for deviations. In this case, given a plan, there are not many
possible deviations which still are a valid plan. A possible solution to this problem
consists in representing the game as an extensive game where strategies are proba-
bility distributions over actions at histories, rather than over complete plans. This
characterization may allow many possible deviations which maintain the consistency
of plans. Indeed, the graph M is an extensive game, with the additional feature of
representing non-deterministic choices (for sensing and non-deterministic actions).

The representation of games in normal form is somehow restrictive compared to
the extensive game representation which can take into account the sequential nature
of the process. Although the solution concepts for normal form games apply to ex-
tensive games, many others have been defined (e.g. sub-game perfect [Osborne &
Rubinstein, 1994], sequential [Kreps & Wilson, 1982] and trembling hand [Selten,
1975] equilibrium). Such concepts, refine the ones defined for normal form games in
order to rule out those equilibria which are somehow unreasonable in a sequential sit-
uation (i.e. they rely on threats which are not credible). In particular, these concepts
are defined to explain some real life scenarios and by reducing the number of possible
equilibria in a game, they increase the predictive power of the model. Nevertheless,
these models are not appropriate to our formulation of the problem because agents
forming a team commit not to deviate from the plan at execution time.

Roughly, the problem is that in such games, during execution, the local state de-
scribing the knowledge of an agent, may be a component of many different global
states among which the agent may not distinguish. Thus a solution for such games,
should be an action selection (or probability distribution over actions) for each lo-
cal state which may be reached during the execution. A possible generalization for
correlated equilibrium in such games is the agent strategic form correlated equilib-
rium [Forges, 2006]. An agent strategic form game is a normal form game, obtained
from an extensive games, where the original players are split in a number of new
players, one for each local state (i.e. information set) in the original game. This is
consistent since the available actions at each global state depend on the applicabil-
ity in the local state. Each new player can choose an action from the ones available
at that local state and receives the same utility of the original player. A correlated
equilibrium computed on the agent strategic form game representation is an agent
strategic form correlated equilibrium.

Nevertheless, it is still an open problem to find efficient solving techniques to
such solution concepts for extensive games.

11.2. Solution 207

11.2 Solution

As previously seen, the computational complexity of our problem is into the genera-
tion of Plpo. This problem is a graph search problem overM where we are interested
in finding the paths which lead to Pareto Optimal solutions. This problem has been
intensively studied in the literature, leading to many approaches (Chapter 2, Section
2.2). As future work, we would like to develop a variant ofMOA∗ [Stewart & White,
1991] for applying heuristic search to the generation of Plpo.

In our case, we are looking for the complete set of Pareto optimal plans and thus
all those approaches which directly look for a compromise solution during the search
[Galand & Perny, 2006; Refanidis & Vlahavas, 2003] or that do not return paths (i.e.
plans) [Mandow & de-la Cruz, 2007], can not be applied. Nevertheless, enhance-
ments of MOA∗ aimed at memory gains obtained by path preserving [Mandow &
de-la Cruz, 2005] could apply to our case. Moreover, when we use sensing action,
we have to use [Dasgupta, Chakrabarti, & DeSarkar, 1996] heuristic search for Pareto
optimal paths in AND/OR graphs, because the AND constraints hold for both out-
comes of sensing actions (both cases must be addressed by a solution).

Under the assumption that the number of Pareto Optimal solutions is exponen-
tially smaller than all the possible paths, the heuristic search, which is proven to be
sound, complete and admissible, can help to treat problems more efficiently. In some
particular domains, the number of Pareto optimal solutions may be exponential in
the KB and, thus, it may be necessary to look for approximate solutions. Sampling
techniques allow us to address this problem by analyzing the set of Pareto optimal
solutions through a sampled subset of its population.

11.3 Experimentation

The USAR case study has been tested mainly in the simulation environment USAR-
Sim. As future work, we aim to validate our approach on real robotic platforms. A
major issue, is to validate the RFID perception model used in this work and to mea-
sure the effect of the uncertain observations on the coordination methods. To this end
we are planning to extend the SLAM approach to omnidirectional antennas (group-
ing perceptions for triangulation) to reduce the noise of the single RFID perception.
Moreover, since rescue environment are usually not-planar, an extension to 3D en-
vironment is needed. While the method seems to be applicable to 3D environments,
the performance that can be obtained needs to be carefully evaluated along with the
technological issues relative to localizing RFID tags in 3D.

Moreover, we are currently experimenting a new type of devices, called zigbee 1,
which are similar so RFIDs, but have some computing power on board. Zigbees are

1http://www.zigbee.org

208 11. Future work

capable of establishing automatically meshed networks for maintaining communica-
tion links in environments with constraints on communications and are able to create
sensor networks based on embedded sensors (e.g. thermal sensors). We are planning
to autonomously deploy this devices, which also have hardware localization capabil-
ities and are thus easier to localize with respect to RFIDs.

Part V

Appendix

209

Appendix A

MAPG Syntax

In the following appendices, we provide the complete MAPG description of some
instances of the problems presented in this thesis that were fed to our implementa-
tion of the planner to provide some experimental analysis. The descriptions have a
different syntax with respect to the one previously described to simplify the parsing
process.

In particular, a Gaussian distribution N{x̂, σ} is represented through the string
mean x̂ var σ, where x̂ and σ are two real positive numbers. Literal conjunctions are
represented as sequence of literlas separated by spaces composing the conjunction.
Each literal is a fluent, represented as a string f , possibly preceded by the character !
to denote ¬f . A MAPG description is composed of the following elements:

1. Number of agents.

The number of agents corresponds to a line starting with the special symbol
:agents followed by a positive integer num representing the number of
agents. We assume that names of agents are the integers from 0 to num− 1.

2. Domain declarations

The domain declarations are a set of lines, one for each domain, starting with
the special symbol :variable followed by a string Domain identifying the
domain name and a sequence of elements in the domain.

3. Sync duration.

Synchronization duration represents the time required to synchronize between
two robots, and is a line starting with the special symbol :sync duration
followed by a description of a Gaussian Distribution. We assume, in this im-
plementation, that all agents are able to communicate and the sync duration is
the same for each pair of agents.

211

212 A. MAPG Syntax

4. Initial epistemic state.

The initial epistemic state is a line starting with the special symbol :initial state
followed by a literal conjunction describing the initial epistemic state. The
planner automatically adds to the initial state description literals encoding the
unique name assumption for elements in the domains.

5. Initial time distributions.

The initial time distributions are a set of lines, one for each agent, starting with
the special symbol :initial time, followed by the id of the agent and a
description of a Gaussian distribution.

6. Time constraints.

The time constraints are a set of lines, one for each agent, describing the max-
imum time each agent is allowed to execute. Each line starts with the special
symbol :max time followed by the id of the agent, the symbol time and a
positive real number representing the time constraint.

7. Utility functions.

Utility functions are a set of lines, one for each agent, describing utilities of
epistemic states. Each lines starts with the special symbol :utility fol-
lowed by the identifier of an agent and a linear combination of literals. Linear
combinations of literals are of the form

∑
β ∗ l, where β is a real number and

l a literal.

8. Action descriptions.

Action descriptions are collections of actions, one for each agent, starting with
the special symbol :start kb followed by the identifier of an agent, and
ending with the special symbol :end kb. Each action description is of the
form:

(a) Action name.
Each action name is a line starting with the special symbol :action
followed by an action name of the form

name(Domain1 ?x1, . . . , Domainn ?xn)

where Domaini represents a domain and ?xi a variable.

(b) Precondition.
Precondition is a line representing the preconditions of the action and
starting with the special symbol :pre followed by a literal conjunction.

213

(c) Execution Condition.
Execution Condition is a line representing the execution conditions of
the action and starting with the special symbol :ex followed by a literal
conjunction.

(d) Effect.
Effect is a line representing the effects of the action and starting with the
special symbol :eff followed by a literal conjunction.

(e) Duration
Duration is a line representing the duration of the action starting with the
special symbol :time followed by a Gaussian distribution.

(f) End action.
End action is a special symbol :end action representing the end of
the action description.

Finally, lines preceded by the # symbol are comments.

214 A. MAPG Syntax

Appendix B

Slotted Blocks World MAPG

#mapg for Slotted Blocks World

#NUMBER AGENTS

:agents 2

#VARIABLES

:variable Block B1 B2 B3

:variable Slot S1 S2 S3

#SYNC DURATION

:sync_duration mean 1 var 0.5

#INITIAL E_STATES

:initial_state On(B1,S1) On(B2,B1) Clear(B2)

Clear(S2) On(B3,S3) Clear(B3)

#INITIAL TIME DISTRIBUTION

:initial_time 0 mean 0 var 0

:initial_time 1 mean 0 var 0

#TIME CONSTRAINTS

:max_time 0 time 54

215

216 B. Slotted Blocks World MAPG

:max_time 1 time 54

#UTILITY FUNCTION

:utility 0 1*On(B2,S2)+1*On(B1,B2)

:utility 1 1*On(B2,B3)+1*On(B1,S2)

#KB of agent 0

:start_kb 0

:action move(Block ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y) !?b=?x !?b=?y !?y=?x

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:end_kb

#KB of agent 1

:start_kb 1

:action move(Block ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y) !?b=?x !?b=?y !?y=?x

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:end_kb

Appendix C

Hanoi Tower MAPG

#mapg for multi-agent hannoi

#NUMBER AGENTS

:agents 3

#VARIABLES

:variable RedBlock R1 R2

:variable BlueBlock B1 B2

:variable GreenBlock G1 G2

:variable Slot S1 S2 S3 S4 S5

#SYNC DURATION

:sync_duration mean 1 var 0.5

#INITIAL E_STATES

:initial_state On(B1,S1) On(R1,B1) Clear(R1) Clear(S3)

On(R2,S2) On(B2,R2) Clear(B2) On(G2,S4) On(G1,G2)

Clear(G1) Clear(S5) Small(B1) !Big(B1) Small(R1)

!Big(R1) Small(G1) !Big(G1) Big(B2) !Small(B2) Big(R2)

!Small(R2) Big(G2) !Small(G2) !Small(S1) !Small(S2)

!Small(S3) !Small(S4) !Small(S5)

217

218 C. Hanoi Tower MAPG

#INITIAL TIME DISTRIBUTION

:initial_time 0 mean 0 var 0

:initial_time 1 mean 0 var 0

:initial_time 2 mean 0 var 0

#TIME CONSTRAINTS

:max_time 0 time 30

:max_time 1 time 30

:max_time 2 time 30

#UTILITY FUNCTION

:utility 0 1*On(R1,R2)+1*On(R2,S1)+2*On(R2,S2)+

3*On(R2,S3)+4*On(R2,S4)+5*On(R2,S5)

:utility 1 1*On(B1,B2)+1*On(B2,S1)+2*On(B2,S2)+

3*On(B2,S3)+4*On(B2,S4)+5*On(B2,S5)

:utility 2 1*On(G1,G2)+1*On(G2,S1)+2*On(G2,S2)+

3*On(G2,S3)+4*On(G2,S4)+5*On(G2,S5)

#KB of agent 0

:start_kb 0

:action moveBigRed(RedBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x !Small(?y) Big(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:action moveSmallRed(RedBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x Small(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

219

:end_kb

#KB of agent 1

:start_kb 1

:action moveBigBlue(BlueBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x !Small(?y) Big(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:action moveSmallBlue(BlueBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x Small(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:end_kb

#KB of agent 2

:start_kb 2

:action moveBigGreen(GreenBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x !Small(?y) Big(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

:action moveSmallGreen(GreenBlock ?b, ?x, ?y)

:pre Clear(?b) On(?b,?x) Clear(?y)

!?b=?x !?b=?y !?y=?x Small(?b)

:eff On(?b,?y) !On(?b,?x) !Clear(?y) Clear(?x)

:time mean 10 var 2

:end_action

220 C. Hanoi Tower MAPG

:end_kb

Appendix D

Cleaning Robots MAPG

#mapg for cleaning robots

#NUMBER AGENTS

:agents 2

#VARIABLES

:variable Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

N12 N13 N14 N15 N16 N17

#SYNC DURATION

:sync_duration mean 1 var 0.5

#INITIAL E_STATES

:initial_state Edge(N1,N2) Edge(N1,N4) Edge(N4,N3) Edge(N4,N5)

Edge(N5,N6) Edge(N6,N7) Edge(N7,N8) Edge(N8,N9) Edge(N9,N10)

Edge(N10,N11) Edge(N11,N12) Edge(N12,N13) Edge(N11,N14)

Edge(N13,N14) Edge(N14,N15) Edge(N13,N16) Edge(N15,N16)

Edge(N15,N17) Edge(N17,N1) Edge(N2,N1) Edge(N4,N1)

Edge(N3,N4) Edge(N5,N4) Edge(N56,N5) Edge(N7,N6) Edge(N8,N7)

Edge(N9,N8) Edge(N10,N9) Edge(N11,N10) Edge(N12,N11)

Edge(N13,N12) Edge(N14,N11) Edge(N14,N13) Edge(N15,N14)

Edge(N16,N13) Edge(N16,N15) Edge(N17,N15) Edge(N1,N17) !Clean(N1)

221

222 D. Cleaning Robots MAPG

!Clean(N2) !Clean(N3) !Clean(N4) !Clean(N5) !Clean(N6) !Clean(N7)

!Clean(N8) !Clean(N9) !Clean(N10) !Clean(N11) !Clean(N12)

!Clean(N13) !Clean(N14) !Clean(N15) !Clean(N16) !Clean(N17)

At(0,N10) At(1,N17)

#INITIAL TIME DISTRIBUTION

:initial_time 0 mean 0 var 0

:initial_time 1 mean 0 var 0

#TIME CONSTRAINTS

:max_time 0 time 30

:max_time 1 time 30

#UTILITY FUNCTION

:utility 0 1*Clean(N11)+1*Clean(N12)+

1*Clean(N13)+1*Clean(N14)+1*Clean(N15)+1*Clean(N16)

:utility 1 1*Clean(N2)+1*Clean(N3)

#KB of agent 0

:start_kb 0

:action move0(Node ?x, Node ?y)

:pre At(0,?x) Edge(?x,?y) !?x==?y

:eff !At(0,?x) At(0,?y)

:time mean 5 var 2

:end_action

:action Clean0(Node ?x)

:pre At(0,?x) !Clean(?x)

:eff Clean(?x)

:time mean 10 var 2

:end_action

:end_kb

223

#KB of agent 1

:action move1(Node ?x, Node ?y)

:pre At(1,?x) Edge(?x,?y) !?x==?y

:eff !At(1,?x) At(1,?y)

:time mean 5 var 2

:end_action

:action Clean1(Node ?x)

:pre At(1,?x) !Clean(?x)

:eff Clean(?x)

:time mean 10 var 2

:end_action

224 D. Cleaning Robots MAPG

Appendix E

USAR Robots MAPG

These MAPGs descriptions were generated by an algorithm based on the topology of
a graph structure. Here follows an example of generated MAPG for a small graph.

#mapg for USAR robots domain

#NUMBER AGENTS

:agents 3

#VARIABLES

:variable Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14

N15 N16 N17

#INITIAL E_STATES

:initial_state Edge(N1,N2) Edge(N1,N4) Edge(N4,N3) Edge(N4,N5)

Edge(N5,N6) Edge(N6,N7) Edge(N7,N8) Edge(N8,N9) Edge(N9,N10)

Edge(N10,N11) Edge(N11,N12) Edge(N12,N13) Edge(N11,N14)

Edge(N13,N14) Edge(N14,N15) Edge(N13,N16) Edge(N15,N16)

Edge(N15,N17) Edge(N17,N1) Edge(N2,N1) Edge(N4,N1) Edge(N3,N4)

Edge(N5,N4) Edge(N56,N5) Edge(N7,N6) Edge(N8,N7) Edge(N9,N8)

Edge(N10,N9) Edge(N11,N10) Edge(N12,N11) Edge(N13,N12)

Edge(N14,N11) Edge(N14,N13) Edge(N15,N14) Edge(N16,N13)

Edge(N16,N15) Edge(N17,N15) Edge(N1,N17) !Clean(N1) !Mapped(N2)

225

226 E. USAR Robots MAPG

!Mapped(N3) !Mapped(N4) !Mapped(N5) !Mapped(N6) !Mapped(N7)

!Mapped(N8) !Mapped(N9) !Mapped(N10) !Mapped(N11) !Mapped(N12)

!Mapped(N13) !Mapped(N14) !Mapped(N15) !Mapped(N16) !Mapped(N17)

!CheckVictim(N1) !CheckVictim(N2)

!CheckVictim(N3) !CheckVictim(N4) !CheckVictim(N5)

!CheckVictim(N6) !CheckVictim(N7) !CheckVictim(N8)

!CheckVictim(N9) !CheckVictim(N10) !CheckVictim(N11)

!CheckVictim(N12) !CheckVictim(N13) !CheckVictim(N14)

!CheckVictim(N15) !CheckVictim(N16) !CheckVictim(N17)

At(0,N10) At(1,N11) At(2,N17)

!Explored(N1) !Explored(N2) !Explored(N3) !Explored(N4)

!Explored(N5) !Explored(N6) !Explored(N7) !Explored(N8)

!Explored(N9) !Explored(N10) !Explored(N11) !Explored(N12)

!Explored(N13) !Explored(N14) !Explored(N15) !Explored(N16)

!Explored(N17) At(0,N10) At(1,N17)

#SYNC DURATION

:sync_duration mean 1 var 0.5

#INITIAL TIME DISTRIBUTION

:initial_time 0 mean 0 var 0

:initial_time 1 mean 0 var 0

:initial_time 2 mean 0 var 0

#TIME CONSTRAINTS

:max_time 0 time 30

:max_time 1 time 30

:max_time 2 time 30

#UTILITY FUNCTION

:utility 0 1*Explored(N11)+1*Explored(N12)+1*Explored(N13)+

1*Explored(N14)+1*Explored(N15)+1*Explored(N16)

:utility 1 1*Mapped(N2)+1*Mapped(N3)

:utility 2 1*CheckVictim(N4)+1*CheckVictim(N5)+

227

1*CheckVictim(N6)

#KB of explorer robot

:start_kb 0

:action move0(Node ?x, Node ?y)

:pre At(0,?x) Edge(?x,?y) !?x==?y

:eff !At(0,?x) At(0,?y)

:time mean 5 var 2

:end_action

:action Explore0(Node ?x)

:pre At(0,?x) !Explored(?x)

:eff Explored(?x)

:time mean 8 var 2

:end_action

:end_kb

#KB of Mapper robot

:start_kb 1

:action move(Node ?x, Node ?y)

:pre At(1,?x) Edge(?x,?y) !?x==?y

:eff !At(1,?x) At(1,?y)

:time mean 8 var 2

:end_action

:action Explore(Node ?x)

:pre At(1,?x) !Explored(?x)

:eff Explored(?x)

:time mean 10 var 2

:end_action

:action Map(Node ?x)

228 E. USAR Robots MAPG

:pre At(1,?x) !Mapped(?x)

:eff Mapped(?x)

:time mean 10 var 2

:end_action

:end_kb

#KB of Victim Detector robot

:start_kb 2

:action move(Node ?x, Node ?y)

:pre At(2,?x) Edge(?x,?y) !?x==?y

:eff !At(2,?x) At(2,?y)

:time mean 8 var 2

:end_action

:action Explore(Node ?x)

:pre At(2,?x) !Explored(?x)

:eff Explored(?x)

:time mean 10 var 2

:end_action

:action CheckVictim(Node ?x)

:pre At(2,?x) !Mapped(?x)

:eff Mapped(?x)

:time mean 10 var 2

:end_action

:end_kb

Bibliography

[Aumann, 1987] Aumann, R. J. 1987. Correlated Equilibrium as an Expression of Bayesian

Rationality. Econometrica 55(1):1–18.

[Baader et al., 2003] Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and Patel-

Schneider, P. F., eds. 2003. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press.

[Balakirsky et al., 2006] Balakirsky, S.; Scrapper, C.; Carpin, S.; and Lewis., M. 2006. ”US-

ARSim: providing a framework for multi-robot performance evaluation”. In Proceedings

of PerMIS 2006.

[Balakirsky et al., 2007] Balakirsky, S.; Carpin, S.; Kleiner, A.; Lewis, M.; Visser, A.;

Wang, J.; and Ziparo, V. A. 2007. Towards heterogeneous robot teams for disaster miti-

gation: Results and performance metrics from robocup rescue. Journal of Field Robotics

24(11-12):943–967.

[Balch & Arkin, 1994] Balch, T., and Arkin, R. C. 1994. Communication in reactive multi-

agent robotic systems. Autonomous Robots 1(1):27–52.

[Becker et al., 2003] Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V. 2003.

Transition-Independent Decentralized Markov Decision Processes. In Proceedings of the

Second International Joint Conference on Autonomous Agents and Multi Agent Systems,

41–48. Melbourne, Australia: ACM Press.

[Belfares & Guitouni, 2003] Belfares, L., and Guitouni, A. 2003. Multi-objective Genetic

Algorithms for Courses of Action Planning. In Proceedings of the 2003 Congress on Evo-

lutionary Computation (CEC’2003), volume 3, 1543–1551. Canberra, Australia: IEEE

Press.

[Bennewitz, Burgard, & Thrun, 2001] Bennewitz, M.; Burgard, W.; and Thrun, S. 2001.

Optimizing schedules for prioritized path planning of multi-robot systems. In Proc. of the

IEEE International Conference on Robotics and Automation (ICRA).

229

230 BIBLIOGRAPHY

[Bernstein et al., 2002] Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein, S. 2002.

The complexity of decentralized control of markov decision processes. Math. Oper. Res.

27(4):819–840.

[Blum, Shelton, & Koller, 2006] Blum, B.; Shelton, C.; and Koller, D. 2006. A continuation

method for nash equilibria in structured games. Journal of Artificial Intelligence Resarch

25:457–502.

[Boyan & Littman, 2000] Boyan, J. A., and Littman, M. L. 2000. Exact solutions to time-

dependent MDPs. In NIPS, 1026–1032.

[Briggs & Cook, 1995] Briggs, W., and Cook, D. 1995. Flexible social laws. In Proc. of the

14th IJCAI, 688–693.

[Bryce, Cushing, & Kambhampati, 2007] Bryce, D.; Cushing, W.; and Kambhampati, S.

2007. Probabilistic planning is multi-objective! Technical Report TR-07-006, Arizona

State University.

[Burgard et al., 2005] Burgard, W.; Moors, M.; Stachniss, C.; and Schneider, F. 2005. Co-

ordinated multi-robot exploration. IEEE Transactions on Robotics 21(3):376–378.

[Calisi et al., 2007] Calisi, D.; Farinelli, A.; Iocchi, L.; and Nardi, D. 2007. Multi-objective

exploration and search for autonomous rescue robots. Journal of Field Robotics, Special

Issue on Quantitative Performance Evaluation of Robotic and Intelligent Systems 24:763–

777.

[Carpin et al., 2006] Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; and Scrapper., C. 2006.

Bridging the gap between simulation and reality in urban search and rescue. In Robocup

2006: Robot Soccer World Cup X. Springer, LNAI.

[Chaimowicz, Campos, & Kumar, 2002] Chaimowicz, L.; Campos, M. F. M.; and Kumar,

V. 2002. Dynamic role assignment for cooperative robots. In Proc. of the 2002 IEEE Int.

Conf. on Robotics and Automation (ICRA02), 292 – 298.

[Claßen, Hu, & Lakemeyer, 2007] Claßen, J.; Hu, Y.; and Lakemeyer, G. 2007. A situation-

calculus semantics for an expressive fragment of pddl. In Twenty-Second Conference on

Artificial Intelligence (AAAI-07). AAAI Press.

[Conitzer & Sandholm, 2003] Conitzer, V., and Sandholm, T. 2003. Complexity results

about nash equilibria.

[Conry et al., 1991] Conry, S. E.; Kuwabara, K.; Lesser, V. R.; and Meyer, R. A. 1991. Mul-

tistage negotiation for distributed constraint satisfaction. IEEE Transactions on Systems,

Man, and Cybernetics 21(6):1462–1477. (Special Issue on Distributed AI).

BIBLIOGRAPHY 231

[Das & Dennis, 1996] Das, I., and Dennis, J. 1996. A closer look at drawbacks of mini-

mizing weighted sums of objectives for Pareto set generation in multicriteria optimization

problems.

[Das & Dennis, 1998] Das, I., and Dennis, J. E. 1998. Normal-boundary intersection: a new

method for generating Pareto optimal points in multicriteria optimization problems. SIAM

Journal on Optimization 8(3):631–657.

[Das, 1997a] Das, I. 1997a. Multi-objective optimization.

http://www-fp.mcs.anl.gov/otc/guide/OptWeb/multiobj/.

[Das, 1997b] Das, I. 1997b. Nonlinear Multicriteria Optimization and Robust Optimality.

Ph.D. Dissertation, Dept. of Computational and Applied Mathematics, Rice University,

Houston, TX 77251, U.S.A.

[Dasgupta, Chakrabarti, & DeSakar, 1999] Dasgupta, P.; Chakrabarti, P.; and DeSakar, S.

1999. MultiObjective Heuristic Search. GWV-Vieweg.

[Dasgupta, Chakrabarti, & DeSarkar, 1996] Dasgupta, P.; Chakrabarti, P. P.; and DeSarkar,

S. C. 1996. Multiobjective heuristic search in and/or graphs. J. Algorithms 20(2):282–311.

[De Giacomo et al., 1997] De Giacomo, G.; Iocchi, L.; Nardi, D.; and Rosati, R. 1997. Plan-

ning with sensing for a mobile robot. In Proc. of 4th European Conference on Planning

(ECP’97).

[DeGiacomo, Lesperance, & Levesque, 2000] DeGiacomo, G.; Lesperance, Y.; and

Levesque, H. J. 2000. ConGolog, a concurrent programming language based on the

situation calculus. Artificial Intelligence 121(1-2):109–169.

[Dias & Stentz, 2001] Dias, M. B., and Stentz, A. T. 2001. A market approach to multirobot

coordination. Technical Report CMU-RI -TR-01-26, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA.

[Dias & Stentz, 2002] Dias, M. D., and Stentz, A. 2002. Opportunistic optimization for

market-based multirobot control. 2714–2720.

[Dijkstra, 1959] Dijkstra, E. W. 1959. A note on two problems in connexion with graphs.

Numerische Mathematik 1(1):269–271.

[Donini, Nardi, & Rosati, 2002] Donini, F. M.; Nardi, D.; and Rosati, R. 2002. Description

logics of minimal knowledge and negation as failure. ACM Trans. on Computational Logic

3(2):1–49.

232 BIBLIOGRAPHY

[Durfee & Lesser, 1991] Durfee, E., and Lesser, V. 1991. Partial Global Planning: A Coordi-

nation Framework for Distributed Hypothesis Formation. IEEE Transactions on Systems,

Man, and Cybernetics 21(5):1167–1183.

[Durfee & Montgomery, 1991] Durfee, E. H., and Montgomery, T. A. 1991. Coordination as

distributed search in a hierarchical behavior space. IEEE Transactions on Systems, Man,

and Cybernetics 21(6):1363–1378.

[Durfee, Lesser, & Corkill, 1990] Durfee, E.; Lesser, V.; and Corkill, D. 1990. Cooperation

Through Communication in a Distributed Problem-Solving Network. Cognition, Comput-

ing, and Cooperation 159–186.

[Durfee, 1999] Durfee, E. H. 1999. Distributed problem solving and planning. In Weiss, G.,

ed., Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT

Press. 121–164.

[Durfee, 2000] Durfee, E. H. 2000. Multiagent Systems. A Modern Approach to Distributed

Artificial Intelligence. MIT Press. chapter Distributed Problem Solving and Planning.

[Durrant-Whyte, Rye, & Nebot, 1996] Durrant-Whyte, H.; Rye, D.; and Nebot, E. 1996.

Localisation of automatic guided vehicles. In Robotics Research: The 7th International

Symposium (ISRR’95), 613–625. Springer Verlag.

[Eaves, 1973] Eaves, B. C. 1973. Polymatrix games with joint constraints. SIAM Journal

on Applied Mathematics 24(3):418–423.

[Emery-Montemerlo et al., 2004] Emery-Montemerlo, R.; Gordon, G.; Schneider, J.; and

Thrun, S. 2004. Approximate solutions for partially observable stochastic games with

common payoffs. In AAMAS ’04: Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems, 136–143. Washington, DC, USA: IEEE

Computer Society.

[Emery-Montemerlo, 2005] Emery-Montemerlo, R. 2005. Game-Theoretic Control for

Robot Teams. Ph.D. Dissertation, Robotics Institute, Carnegie Mellon University, Pitts-

burgh, PA.

[Ephrati & Rosenschein, 1994] Ephrati, E., and Rosenschein, J. S. 1994. Divide and conquer

in multi–agent planning. In Proceedings of the Twelfth National Conference on Artificial

Intelligence (AAAI-94), 375–380. Menlo Park, CA: AAAI Press.

[Ephrati, Pollack, & Rosenschein, 1995] Ephrati, E.; Pollack, M.; and Rosenschein, J. S.

1995. A tractable heuristic that maximizes global utility through local plan combination.

BIBLIOGRAPHY 233

In Lesser, V., ed., Proceedings of the First International Conference on Multi-Agent Sys-

tems (ICMAS-95), 94–101. San Francisco, CA: AAAI Press, distributed by The MIT

Press.

[Erdmann & Lozano-Perez, 1987] Erdmann, M., and Lozano-Perez, T. 1987. On multiple

moving objects. Algorithmica 2:477–521.

[Fabrikant, Papadimitriou, & Talwar, 2004] Fabrikant, A.; Papadimitriou, C.; and Talwar, K.

2004. The complexity of pure nash equilibria. In STOC ’04: Proceedings of the thirty-

sixth annual ACM symposium on Theory of computing, 604–612. New York, NY, USA:

ACM Press.

[Fagin et al., 1995] Fagin, R.; Halpern, J. Y.; Vardi, M. Y.; and Moses, Y. 1995. Reasoning

about knowledge. Cambridge, MA, USA: MIT Press.

[Farinelli et al., 2005] Farinelli, A.; Iocchi, L.; Nardi, D.; and Ziparo, V. A. 2005. Task

assignment with dynamic perception and constrained tasks in a multi-robot system. In

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1535–1540.

[Farinelli et al., 2006] Farinelli, A.; Iocchi, L.; Nardi, D.; and Ziparo, V. A. 2006. Assign-

ment of dynamically perceived tasks by token passing in multi-robot systems. Proceedings

of the IEEE, Special issue on Multi-Robot Systems 94(7):1271–1288. ISSN:0018-9219.

[Fikes & Nilsson, 1971] Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial Intelligence 2.

[Finzi & Lukasiewicz, 2004] Finzi, A., and Lukasiewicz, T. 2004. Game-theoretic agent

programming in Golog. In de Mántaras, R. L., and Saitta, L., eds., ECAI, 23–27. IOS

Press. ISBN: 1-58603-452-9.

[Finzi & Lukasiewicz, 2005] Finzi, A., and Lukasiewicz, T. 2005. Game-theoretic reasoning

about actions in nonmonotonic causal theories. In Logic Programming and Nonmonotonic

Reasoning, 8th International Conference, LPNMR, 185–197.

[Firby, 1989] Firby, R. J. 1989. Adaptive Execution in Complex Dynamic Worlds. Ph.D.

Dissertation, Yale.

[Forges, 2006] Forges, F. 2006. Correlated equilibrium in games with incomplete informa-

tion revisited. Theory and Decision 61(4):329–344.

[Galand & Perny, 2006] Galand, L., and Perny, P. 2006. Search for compromise solutions in

multiobjective state space graphs. In 17th European Conference on Artificial Intelligence,

93–97.

234 BIBLIOGRAPHY

[Gelfond & Lifschitz, 1993] Gelfond, M., and Lifschitz, V. 1993. Representing action and

change by logic programs. Journal of Logic Programming 17:301–322.

[Georgeff & Lansky, 1986] Georgeff, M. P., and Lansky, A. L. 1986. Procedural knowledge.

In Proceedings of the IEEE Special Issue on Knowledge Representation, volume 74, 1383–

1398.

[Georgeff, 1988] Georgeff, M. P. 1988. Communication and interaction in multi-agent plan-

ning. In Bond, A., and Gasser, L., eds., Readings in Distributed Artificial Intelligence.

San Mateo, CA: Morgan Kaufmann Publishers. 200–204.

[Gerkey & Matarić, 2000] Gerkey, B., and Matarić, M. J. 2000. Principled communica-

tion for dynamic multi-robot task allocation. In Proceedings of the Int. Symposium on

Experimental Robotics, 353–362.

[Giunchiglia et al., 2004] Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner,

H. 2004. Nonmonotonic causal theories. Artifcial Intelligence 153(1-2):49–104. ISSN:

0004-3702.

[Goldman & Rosenschein, 1993d] Goldman, C. V., and Rosenschein, J. S. 1993d. Emergent

coordination through the use of cooperative state-changing rules. In Proceedings of the

Twelfth International Workshop on Distributed Artificial Intelligence, 171–185.

[Goldman & Zilberstein, 2004] Goldman, C. V., and Zilberstein, S. 2004. Decentralized

control of cooperative systems: Categorization and complexity analysis. Journal of Artifi-

cial Intelligence Research (JAIR) 22:143–174.

[H. Eschenauer & Osyczka, 1990] H. Eschenauer, J. K., and Osyczka, A. 1990. Multicrite-

ria Design Optimization. Berlin: Springer-Verlag.

[Halpern, 2004] Halpern, J. Y. 2004. A computer scientist looks at game theory. Game

Theory and Information 0411002, EconWPA.

[Hansen & Zilberstein, 2001] Hansen, E. A., and Zilberstein, S. 2001. LAO * : A heuristic

search algorithm that finds solutions with loops. Artificial Intelligence 129(1-2):35–62.

[Hansen, Bernstein, & Zilberstein, 2004a] Hansen, E.; Bernstein, D.; and Zilberstein, S.

2004a. Dynamic programming for partially observable stochastic games.

[Hansen, Bernstein, & Zilberstein, 2004b] Hansen, E. A.; Bernstein, D. S.; and Zilberstein,

S. 2004b. Dynamic programming for partially observable stochastic games. In Nineteenth

National Conference on Artificial Intelligence, 709–715. AAAI Press / The MIT Press.

ISBN: 0-262-51183-5.

BIBLIOGRAPHY 235

[Harikumar & Kumar, 1996] Harikumar, S., and Kumar, S. 1996. Iterative deepening mul-

tiobjective A*. Inf. Process. Lett. 58(1):11–15.

[Hart et al., 1968] Hart, P. E.; Nilsson, N. J.; ; and Raphael, B. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on Systems, Science,

and Cybernetics SSC-4(2):100–107.

[Hatzack & Nebel, 2001] Hatzack, W., and Nebel, B. 2001. Solving the operational traffic

control problem. In Proceedings of the 6th European Conference on Planning (ECP’01).

[Hintikka, 1962] Hintikka, J. 1962. Knowledge and Belief. Ithaca, New York: Cornell

University Press.

[ICAPS,] ICAPS. International conference on automated planning and scheduling.

http://www.icaps-conference.org/.

[IFAAMAS,] IFAAMAS. International foundation for autonomous agents and multiagent

systems. http://www.ifaamas.org.

[Ignizio, 1976] Ignizio, J. P. 1976. Goal Programming and Extensions. Lexington Books.

[Iocchi & Nardi, 2004] Iocchi, L., and Nardi, D. 2004. SPQR-Legged Team 2004. Proc. of

RoboCup 2004.

[Iocchi et al., 2003] Iocchi, L.; Nardi, D.; Piaggio, M.; and Sgorbissa, A. 2003. Distributed

coordination in heterogeneous multi-robot systems. Autonomous Robots 15(2):155–168.

[Iocchi et al., 2004a] Iocchi, L.; Lukasiewicz, T.; Nardi, D.; and Rosati, R. 2004a. Qualita-

tive and probabilistic uncertainty in reasoning about actions with sensing. In Proc. of 10th

International Workshop on Non-Monotonic Reasoning (NMR’04), 240–248.

[Iocchi et al., 2004b] Iocchi, L.; Lukasiewicz, T.; Nardi, D.; and Rosati, R. 2004b. Reason-

ing about actions with sensing under qualitative and probabilistic uncertainty. In Proc. of

16th European Conference on Artificial Intelligence (ECAI’04), 818–822.

[Iocchi et al., 2006] Iocchi, L.; Lukasiewicz, T.; Nardi, D.; and Rosati, R. 2006. Reasoning

about actions with sensing under qualitative and probabilistic uncertainty. Technical re-

port, Institut für Informationssysteme, Technische Universität Wien. Tech. Rep. INFSYS

RR-1843-03-05.

[Iocchi et al., 2007] Iocchi, L.; Lukasiewicz, T.; Nardi, D.; and Rosati, R. 2007. Reasoning

about actions with sensing under qualitative and probabilistic uncertainty. ACM Transac-

tions on Computational Logics. to appear.

236 BIBLIOGRAPHY

[Iocchi, Nardi, & Rosati, 2000a] Iocchi, L.; Nardi, D.; and Rosati, R. 2000a. Planning with

sensing, concurrency, and exogenous events: logical framework and implementation. In

Proc. of KR’2000.

[Iocchi, Nardi, & Rosati, 2000b] Iocchi, L.; Nardi, D.; and Rosati, R. 2000b. Planning with

sensing, concurrency, and exogenous events: logical framework and implementation. In

Proceedings of the Seventh International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR’2000), 678–689.

[Iocchi, Nardi, & Rosati, 2003] Iocchi, L.; Nardi, D.; and Rosati, R. 2003. Strong cyclic

planning with incomplete information and sensing. Technical Report 16-03, Dipartimento

Informatica e Sistemistica Università di Roma La Sapienza.

[Iocchi, Nardi, & Rosati, 2004a] Iocchi, L.; Nardi, D.; and Rosati, R. 2004a. Generation

of strong cyclic plans with incomplete information and sensing. In Proc. of Workshop on

Planning and Scheduling at the Congress of the Italian Association for Artificial Intelli-

gence (AI*IA).

[Iocchi, Nardi, & Rosati, 2004b] Iocchi, L.; Nardi, D.; and Rosati, R. 2004b. Strong cyclic

planning with incomplete information and sensing. In Proc. of 4th Int. Workshop on Plan-

ning and Scheduling for Space.

[J. T. Howson, 1972] J. T. Howson, J. 1972. Equilibria of polymatrix games. Managment

Science 18(5):312–318.

[Jaeger & Nebel, 2001] Jaeger, M., and Nebel, B. 2001. Decentralized collision avoidance,

deadlock detection, and deadlock resolution for multiple mobile robots. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).

[Johan van Benthem, 2002] Johan van Benthem. 2002. Extensive Games as Process Models.

J. of Logic, Lang. and Inf. 11(3):289–313. ISSN: 0925-8531.

[Kabanza, 1995] Kabanza, F. 1995. Synchronizing multiagent plans using temporal logic

specifications. In Lesser, V., ed., Proceedings of the First International Conference on

Multi-Agent Systems (ICMAS-95), 217–224. San Francisco, CA: AAAI Press, distributed

by The MIT Press.

[Kaelbling, Littman, & Cassandra, 1998] Kaelbling, L. P.; Littman, M. L.; and Cassandra,

A. R. 1998. Planning and acting in partially observable stochastic domains. Artificial

Intelligence 101(1-2):99–134.

[Kambhampati et al., 1991] Kambhampati, S.; Cutkosky, M.; Tenenbaum, M.; and Lee,

S. H. 1991. Combining specialized reasoners and general purpose planners: A case

study. In Proc. of AAAI-91, 199–205.

BIBLIOGRAPHY 237

[Kinny et al., 1994] Kinny, D.; Ljungberg, M.; Rao, A. S.; Sonenberg, L.; Tidhar, G.; and

Werner, E. 1994. Planned team activity. In MAAMAW ’92: Selected papers from the

4th European Workshop on on Modelling Autonomous Agents in a Multi-Agent World,

Artificial Social Systems, 227–256. London, UK: Springer-Verlag.

[Kleiner & Ziparo, 2006] Kleiner, A., and Ziparo, V. 2006. Homepage of virtual rescuer-

obots freiburg. http://gkiweb.informatik.uni-freiburg.de/˜rescue/

virtual/.

[Kleiner, Prediger, & Nebel, 2006] Kleiner, A.; Prediger, J.; and Nebel, B. 2006. Rfid

technology-based exploration and slam for search and rescue. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS).

[Konolige, 1997] Konolige, K. 1997. COLBERT: A language for reactive control in sap-

phira. Lecture Notes in Computer Science 1303:31–50.

[Korf, 1985] Korf, R. E. 1985. Depth-first iterative-deepening: an optimal admissible tree

search. Artificial Intelligence 27(1):97–109.

[Kreps & Wilson, 1982] Kreps, D. M., and Wilson, R. 1982. Sequential equilibria. Econo-

metrica 50(4):863–94.

[Kripke, 1963] Kripke, S. A. 1963. A semantical analysis of modal logic I: Normal modal

propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-

matik 9:67–96.

[Lang & Marquis, 2003] Lang, J. Lin, F., and Marquis, P. 2003. Causal theories of ac-

tion: A computational core. In International Joint Conference on Artificial Intelligence

(IJCAI’03), 1073–1078.

[Lansky, 1990] Lansky, A. L. 1990. Localized search for controlling automated reasoning.

In Proc. of the Workshop on Innovative Approaches to Planning, 115–125.

[Levesque, 1996] Levesque, H. J. 1996. What is planning in presence of sensing? In

Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI’96),

1139–1149.

[Li & Littman, 2005] Li, L., and Littman, M. L. 2005. Lazy approximation for solving

continuous finite-horizon mdps. In Veloso, M. M., and Kambhampati, S., eds., AAAI,

1175–1180. AAAI Press / The MIT Press.

[Lin, 1975] Lin, J. G. 1975. Three methods for determining pareto-optimal solutions of

multiple-objective problems. Directions in Large-Scale Systems 117–138.

http://gkiweb.informatik.uni-freiburg.de/~rescue/virtual/
http://gkiweb.informatik.uni-freiburg.de/~rescue/virtual/

238 BIBLIOGRAPHY

[Liu & Sycara, 1996] Liu, J.-S., and Sycara, K. 1996. Multiagent coordination in tightly

coupled task scheduling. In Proceedings of the Second International Conference on Multi-

Agent Systems (ICMAS-96). Menlo Park, CA: AAAI Press.

[Lobo, Mendez, & Taylor, 1997] Lobo, J.; Mendez, G.; and Taylor, S. R. 1997. Adding

knowledge to the action description language A. In AAAI/IAAI, 454–459.

[Lötzsch et al., 2004] Lötzsch, M.; Bach, J.; Burkhard, H.-D.; and Jüngel, M. 2004. De-

signing agent behavior with the extensible agent behavior specification language XABSL.

In Polani, D.; Browning, B.; and Bonarini, A., eds., RoboCup 2003: Robot Soccer World

Cup VII, volume 3020 of Lecture Notes in Artificial Intelligence, 114–124. Padova, Italy:

Springer.

[Mandow & de-la Cruz, 2005] Mandow, L., and de-la Cruz, J.-L. P. 2005. A new approach to

multiobjective A* search. In Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence (IJCAI-05), 218–223.

[Mandow & de-la Cruz, 2007] Mandow, L., and de-la Cruz, J.-L. P. 2007. A multiobjective

frontier search algorithm. In Veloso, M. M., ed., IJCAI, 2340–2345.

[Marecki, Topol, & Tambe, 2006] Marecki, J.; Topol, Z.; and Tambe, M. 2006. A fast ana-

lytical algorithm for Markov decision process with continuous state spaces. In Proceed-

ings of the Eight Workshop on Game Theoretic and Decision Theoretic Agents (GTDT)

held at the Fifth International Conference on Autonomous Agents and Multi-Agent Sys-

tems (AAMAS’06), 2536–2541.

[McMillen & Veloso, 2007] McMillen, C., and Veloso, M. 2007. Thresholded rewards:

Acting optimally in timed, zero-sum games. In Twenty-Second Conference on Artificial

Intelligence (AAAI-07).

[Miltersen & Sørensen, 2006] Miltersen, P. B., and Sørensen, T. B. 2006. Computing se-

quential equilibria for two-player games. In SODA ’06: Proceedings of the seventeenth

annual ACM-SIAM symposium on Discrete algorithm, 107–116. New York, NY, USA:

ACM Press.

[Mouaddib, Boussard, & Bouzid, 2007] Mouaddib, A.-I.; Boussard, M.; and Bouzid, M.

2007. Towards a formal framework for multi-objective multi-agent planning. In Proc.

of the International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS’07).

[Mouaddib, 2006] Mouaddib, A.-I. 2006. Collective multi-objective planning. In DIS ’06:

Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intel-

BIBLIOGRAPHY 239

ligence and Its Applications (DIS’06), 43–48. Washington, DC, USA: IEEE Computer

Society.

[Murata, 1989] Murata, T. 1989. Petri nets: Properties, analysis and applications. Proceed-

ings of the IEEE 77(4):541–580.

[Nash, 1950] Nash, J. F. 1950. Equilibrium points in n-person games. Proceedings of the

National Academy of Sciences of the United States of America 36:48–49.

[Nevatia et al., 2006] Nevatia, Y.; Mahmudi, M.; Markov, S.; Rathnam, R.; Stoyanov, T.;

and Carpin, S. 2006. Virtual-iub: the 2006 iub virtual robots team. In Proc. Int. RoboCup

Symposium ’06.

[Osborne & Rubinstein, 1994] Osborne, M. J., and Rubinstein, A. 1994. A Course in Game

Theory. The MIT Press. ISBN: 0262650401.

[Papadimitriou & Roughgarden, 2005] Papadimitriou, C. H., and Roughgarden, T. 2005.

Computing equilibria in multiplayer games. In Proc. ACM-SIAM Symposium On Discrete

Algorithms (SODA’05.

[Papadimitriou, 2001] Papadimitriou, C. 2001. Algorithms, games, and the internet. In

STOC ’01: Proceedings of the thirty-third annual ACM symposium on Theory of comput-

ing, 749–753. New York, NY, USA: ACM Press.

[Papadimitriou, 2005] Papadimitriou, C. H. 2005. Computing correlated equilibria in multi-

player games. In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing, 49–56. New York, NY, USA: ACM Press. ISBN: 1-58113-960-8.

[Parker, 1998] Parker, L. E. 1998. ALLIANCE: An architecture for fault tolerant multirobot

cooperation. IEEE Transactions on Robotics and Automation 14(2):220–240.

[Paruchuri et al., 2006] Paruchuri, P.; Tambe, M.; Fernando Ordó n.; and Kraus, S. 2006.

Security in multiagent systems by policy randomization. In AAMAS ’06: Proceedings

of the fifth international joint conference on Autonomous agents and multiagent systems,

273–280. New York, NY, USA: ACM Press.

[Pell, Christian, & Richard, 1998] Pell, B.; Christian, G.; and Richard, P. 1998. The remote

agent executive: Capabilities to support integrated robotic agents. Alan Schultz and David

Kortenkamp, editors, Procs. of the AAAI Spring Symp. on Integrated Robotic Architec-

tures, AAAI Press.

[Perny & Spanjaard, 2002] Perny, P., and Spanjaard, O. 2002. On preference-based search

in state space graphs. In Proc. of the Conf. American Association for Artificial Intelligence

(AAAI), 751–756.

240 BIBLIOGRAPHY

[Peter, Nils, & Bertram, 1972] Peter, E. H.; Nils, J. N.; and Bertram, R. 1972. Correction to

“A Formal Basis for the Heuristic Determination of Minimum Cost Paths”. SIGART Bull.

2(37):28–29.

[Peterson, 1981] Peterson, J. L. 1981. Petri Net Theory and the Modeling of Systems. Upper

Saddle River, NJ, USA: Prentice Hall PTR.

[Pfingsthorn et al., 2006] Pfingsthorn, M.; Slamet, B.; Visser, A.; and Vlassis, N. 2006. Uva

rescue team 2006 robocup rescue - simulation league. In Proc. Int. RoboCup Symposium

’06.

[Pirri & Reiter, 1999] Pirri, F., and Reiter, R. 1999. Some contributions to the metatheory

of the situation calculus. J. ACM (46):325–361.

[Rakowska, T., & Watson, 1991] Rakowska, J.; T., H. R.; and Watson, L. T. 1991. Tracing

the efficient curve for multi-objective control-structure optimization. Comput. Syst. Eng.

2:461–472.

[Refanidis & Vlahavas, 2001] Refanidis, I., and Vlahavas, I. 2001. The GRT planning sys-

tem: Backward heuristic construction in forward state-space planning. Journal of Artificial

Intelligence Research (JAIR) 15:115–161.

[Refanidis & Vlahavas, 2003] Refanidis, I., and Vlahavas, I. 2003. Multiobjective heuristic

state-space planning. Artificial Intelligence 145(1-2):1–32.

[Reiter, 2001] Reiter, R. 2001. Knowledge in action: Logical foundations for describing

and implementing dynamical systems. MIT Press.

[rob, 2006] 2006. Homepage of Robocup. http://www.robocup2006.org.

[Rosenschein & Zlotkin, 1994] Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-

counter: Designing Conventions for Automated Negotiation Among Computers. Cam-

bridge, Massachusetts: MIT Press.

[Rosenthal, 1973] Rosenthal, R. W. 1973. A class of games possessing pure-strategy Nash

equilibria. International Journal of Game Theory V2(1):65–67.

[Russell & Norvig, 2003] Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A

Modern Approach. Pearson Education.

[Savani & von Stengel, 2004] Savani, R., and von Stengel, B. 2004. Exponentially many

steps for finding a nash equilibrium in a bimatrix game. In FOCS ’04: Proceedings of the

45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), 258–267.

Washington, DC, USA: IEEE Computer Society.

http://www.robocup2006.org

BIBLIOGRAPHY 241

[Scerri et al., 2004] Scerri, P.; Xu, Y.; Liao, E.; Lai, G.; Lewis, M.; and Sycara, K. 2004.

Coordinating large groups of wide area search munitions. In Grundel, D.; Murphey, R.;

and Pandalos, P., eds., Recent Developments in Cooperative Control and Optimization.

Singapore: World Scientific. 451–480.

[Scherl & Levesque, 1993] Scherl, R., and Levesque, H. J. 1993. The frame problem and

knowledge producing actions. In Proc. of the 11th Nat. Conf. on Artificial Intelligence

(AAAI’93), 689–695.

[Schniederjans, 2003] Schniederjans, M. J. 2003. Goal programming: Methodology and

applications. Springer.

[Searle, 1970] Searle, J. R. 1970. Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press.

[Seghrouchni & Haddad, 1996] Seghrouchni, A. E. F., and Haddad, S. 1996. A recursive

model for distributed planning. In Lesser, V. R., ed., Proceedings of the Second Interna-

tional Conference on Multi-Agent Systems (ICMAS-96). Menlo Park, CA: AAAI Press.

[Seidel & Rapport, 1992] Seidel, S. Y., and Rapport, T. S. 1992. 914 mhz path loss predic-

tion model for indoor wireless communications in multi-floored buildings. IEEE Trans.

on Antennas and Propagation 40(2):207–217.

[Selten, 1975] Selten, R. 1975. Reexamination of the perfectness concept for equilibrium

points in extensive games. International Journal of Game Theory 4(1):25–55.

[Shen, Zhang, & Lesser, 2004] Shen, J.; Zhang, X.; and Lesser, V. 2004. Degree of local

cooperation and its implication on global utility. In AAMAS ’04: Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems, 546–553.

Washington, DC, USA: IEEE Computer Society.

[Shoham & Tennenholtz, 1992] Shoham, Y., and Tennenholtz, M. 1992. On the synthesis of

useful social laws for artificial agent societies (preliminary report). In Proc. of AAAI-92,

276–281.

[Simmons & Apfelbaum, 1998] Simmons, R., and Apfelbaum, D. 1998. A task descrip-

tion language for robot control. In Proceedings Conference on Intelligent Robotics and

Systems.

[Son, Tu, & Baral, 2004] Son, T. C.; Tu, P. H.; and Baral, C. 2004. Planning with sens-

ing actions and incomplete information using logic programming. In Lifschitz, V., and

Niemelä, I., eds., LPNMR, volume 2923 of Lecture Notes in Computer Science, 261–274.

Springer.

242 BIBLIOGRAPHY

[Son, 2001] Son, T. C.and Baral, C. 2001. Formalizing sensing actions: A transition function

based approach. Artificial Intelligence 125:19–91.

[Stewart & White, 1991] Stewart, B., and White, C. 1991. Multiobjective A*. Journal of

the Association for Computing Machinery 38(4):775–814.

[Stirling, Goodrich, & Packard, 2002] Stirling, W. C.; Goodrich, M. A.; and Packard, D. J.

2002. Satisficing equilibria: A non-classical approach to games and decisions. Game

Theory and Decision Theory in Agent-Based Systems.

[Stone & Veloso, 2000] Stone, P., and Veloso, M. 2000. Multiagent systems: A survey from

a machine learning perspective. Autonomous Robotics 8(3).

[Sugawara, 1995] Sugawara, T. 1995. Reusing past plans in distributed planning. In ICMAS,

360–367.

[Svennebring & Koenig, 2004] Svennebring, J., and Koenig, S. 2004. Building terrain-

covering ant robots: A feasibility study. Auton. Robots 16(3):313–332.

[Sycara, 1998] Sycara, K. 1998. Multiagent systems. AI Magazine 10(2):79–93.

[Tambe, 1997] Tambe, M. 1997. Towards flexible teamwork. Journal of Artificial Intelli-

gence Research 7:88–124.

[Veloso & Stone, 2002] Veloso, M., and Stone, P. 2002. A Survey of Multiagent and Multi-

robot Systems. AK Peters. chapter in Robot Teams: From Diversity to Polymorphism, T.

Balch and L. E. Parker, eds.

[Vicente & Calamai, 1994] Vicente, L., and Calamai, P. 1994. Bilevel and multilevel pro-

gramming: A bibliography review. Journal of Global Optimization 5:291–306.

[Von-Neumann & O.Morgenstern, 1947] Von-Neumann, J., and O.Morgenstern. 1947. The

theory of games and economic behaviour. In Princeton Univ. Press.

[Weiß, 1999] Weiß, G., ed. 1999. Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. San Francisco, CA: The MIT Press.

[Werger & Mataric, 2000] Werger, B. B., and Mataric, M. J. 2000. Broadcast of local eligi-

bility for multi-target observation. In DARS00, 347–356.

[Wilkins & Myers, 1995] Wilkins, D. E., and Myers, K. L. 1995. A common knowledge rep-

resentation for plan generation and reactive execution. Journal of Logic and Computation

5(6):731–761.

[Wooldridge, 2002] Wooldridge, M. 2002. An Introduction to Multi-Agent Systems. New

York, NY, USA: John Wiley & Sons, Inc.

BIBLIOGRAPHY 243

[Yamauchi, 1997] Yamauchi, B. 1997. A frontier-based approach for autonomous explo-

ration. In IEEE International Symposium on Computational Intelligence in Robotics and

Automation (CIRA ’97).

[Zhang, Chopra, & Foo, 2002] Zhang, D.; Chopra, S.; and Foo, N. Y. 2002. Consistency

of action descriptions. In PRICAI ’02: Proceedings of the 7th Pacific Rim International

Conference on Artificial Intelligence, 70–79. London, UK: Springer-Verlag.

[Ziparo & Iocchi, 2006] Ziparo, V. A., and Iocchi, L. 2006. Petri net plans. In Proceed-

ings of Fourth International Workshop on Modelling of Objects, Components, and Agents

(MOCA), 267–290. Bericht 272, FBI-HH-B-272/06.

[Ziparo et al., 2007a] Ziparo, V.; Kleiner, A.; Marchetti, L.; Farinelli, A.; and Nardi, D.

2007a. Cooperative exploration for USAR robots with indirect communication. In Proc.of

6th IFAC Symposium on Intelligent Autonomous Vehicles (IAV ’07).

[Ziparo et al., 2007b] Ziparo, V.; Kleiner, A.; Nebel, B.; and Nardi, D. 2007b. Rfid-based

exploration for large robot teams. In Proc. of the IEEE Int. Conf. on Robotics and Au-

tomation (ICRA). ISBN:1-4244-0602-1, ISSN:1050-4729.

[Zlot et al., 2002] Zlot, R.; Stenz, A.; Dias, M. B.; and Thayer, S. 2002. Multi robot explo-

ration controlled by a market economy. 3016–3023.

	Acknowledgment
	Abstract
	Contents
	Introduction
	Representation
	Solution
	Experimentation
	Outline

	Related Work
	Single-Objective Multi-Agent Planning
	Centralized Planning for Distributed Plans
	Distributed Planning for Centralized Plans
	Distributed Planning for Distributed Plans
	Distributed Planning and Execution

	Multi-Objective Single-Agent Planning
	Multi-Objective Optimization
	Multi-Objective Heuristic Search

	Multi-Objective Multi-Agent Planning
	Game Theory

	Analysis of Related Work

	I Representation
	Multi-Agent Planning Games
	Reasoning about Actions with Uncertain Duration
	The Action Language E0
	Example: The Slotted Blocks World
	Timing
	Utility of Plans
	Timed Single Objective Single Agent Planning

	Distributed Knowledge and Asynchronous Execution
	Information Share and Synchronization
	Interaction Among Actions
	Semantics of MAPGs
	Example

	Game Model
	Multi-Agent Plans
	Game Representation

	Outcome Uncertainty and Perception
	Multi-Agent Plan Evaluation

	Petri Net Plans
	Petri Nets
	Syntax
	Example: A simple Robocup 4Legged Striker

	Semantics
	PNP Execution Algorithm

	Multi-Agent Plans
	Action Synchronization
	Extracting Single Agent PNPs

	Execution Model for MAPGs
	Multi-Agent Plans Without Communication
	Multi-Agent Plans With Communication
	Example

	Implemented Systems

	II Solution
	Solution Concept
	Pareto Optimal Games
	Restricted Correlated Equilibrium

	Solving Methods
	Algorithmics
	Generation of Conditional Plans
	Optimal Game Solving

	Experimental Analysis

	III Experimentation
	Reactive Exploration with Indirect Communication
	Robotic Platform
	Navigation
	Local Exploration
	Simultaneous Localization And Mapping
	RFID sensor model
	RFID SLAM

	Experiments

	Monitoring and Planning Exploration
	Problem Modeling
	Global Task Assignment and Path Planning
	Monitoring Agent
	Experiments

	Multi-Objective Robot Teams
	Problem Representation
	Utility Functions
	Action Description KB

	Experimental Analysis

	IV Conclusions
	Discussion
	Representation
	Solution
	Experimentation

	Future work
	Representation and Solution Concept
	Solution
	Experimentation

	V Appendix
	MAPG Syntax
	Slotted Blocks World MAPG
	Hanoi Tower MAPG
	Cleaning Robots MAPG
	USAR Robots MAPG
	Bibliography

