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Abstract

Methane and Liquefied Natural Gas (LNG) have been recently considered both for
launch and for in-space applications because of several advantages they present if
compared with other commonly used fuels. In particular, several studies are dedi-
cated at the use of methane in liquid rocket engines with turbopumb fed systems. In
this framework, the present study focuses on the use of methane or LNG as coolant
in regenerative cooling systems. The study has two main purposes. The first is to
understand what are the differences between using pure methane or LNG in a cool-
ing system. The second purpose is to investigate on the heat transfer deterioration
which is a thermodynamic phenomenon that could affect methane or LNG in cooling
channels. The idea is to fulfill these objectives by numerical studies. The test cases
that have to be analyzed are straight channels with circular cross section, a length of
the order of the meter and a diameter of the order of the millimeter. The Reynolds
number is of the order of 105 − 106, which implies that the flow is turbulent. The
coolant enters the channels with a supercritical pressure (∼10 MPa) and a subcrit-
ical temperature (∼ 110 K), which correspond to a very low compressibility. As a
consequence, the inlet Mach number are very low (∼ 0.01). High heat fluxes up to
10 MW/m2 are enforced along the channel. The temperature variations along the
channel cause a change in all the thermophysical properties that strongly influence
the coolant behavior.

Thermophysical properties of real fluids and mixtures of real fluids are used to
carry out the present investigations. An equation of state based on the Helmholtz
free energy is used for the thermodynamic properties. Transport property models
are based on the extended corresponding states approach used in combination with
accurate models for the transport properties of each considered species. A numerical
code is developed specifically to deal with the test cases of interest. It is based
on parabolized Navier Stokes equations which can be solved with a space marching
approach. The numerical model, used together with the selected thermophysical
models, is validated against experimental data. Finally the developed code is used
to obtain the desired results. First a comparison between LNG and pure methane
behavior is carried out which permits to emphasize their different properties. In
particular, the influence of the LNG composition on the coolant flow is analyzed.
Subsequently, study of the deterioration of the heat transfer is addressed both with
methane and LNG. Parametric studies permit to understand what are the main
parameters involved in the phenomenon and how it can be handled.
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Chapter 1

Introduction

The history of liquid rocket engines started slightly more than a century ago, in 1903,
when Konstantin Tsiolkovsky published his work “The Exploration of Cosmic Space
by Means of Reaction Devices” [70]. Even though solid rockets were known since the
tenth century a.d., the new idea of using liquid propellants rockets was a fundamental
step towards the beginning of space exploration. The first liquid rocket engine will
be realized by Robert Goddard 28 years later, March 1926, and flew for 2.5 s. A
new era begun, which led to the access to space in 1957, when Sputnik, the first
artificial satellite, was put into an earth orbit by the two stage R7-launcher marking
the start of the space age. Liquid rocket engines have been successfully used since
then for launch and space propulsion, and in the last thirty years rocket propulsion
has become a relatively mature field. Nowadays, research is devoted to a better
understanding of subsystems with the aim to improve overall engine performance and
to find out propellants that could be advantageous for specific goals. For instance,
several studies have been recently carried out on the use of methane, or liquefied
natural gas (LNG), as fuel in liquid rocket engines. Actually, these propellants have
been taken into consideration to be used in the next launcher generation together
with liquid oxygen as oxidizer. Consequently, it is mandatory to understand the
behavior of each subsystem of an engine when using methane based fuels. Focusing
on the use of such fuels in launch system engines, the present study addresses the
regenerative cooling system which is expected to be part of any engine of this class.
In the following a basic description of a generic liquid rocket engine is carried out.
In particular, attention is devoted to the cooling system and to the propellants used
in different types of engines. Then, attention is devoted to methane and LNG. The
goal of the work being to understand the influence of the thermophysical properties
of these fuels on the regenerative cooling system, two more topics are introduced.
One topic is the definition and description of a transcritical fluid, as methane is likely
to be in a regenerative cooling system. The other topic is the description of cooling
channels and of the techniques generally adopted for their study. The chapter ends
with the objectives of the work and with a detailed presentation of each chapter
contents.

1



1. Introduction

1.1 Liquid rocket engines

The basic principle of liquid rocket engines 1 rely in the combustion of liquid propel-
lants at high pressure and on the subsequent acceleration and exhaust of the com-
bustion gas. The gas is ejected at high velocity and as a consequence, by reaction,
the engine is pushed in the opposite direction, providing the thrust required by the
launcher or the spacecraft. Three main subsystems compose a liquid rocket engine
that are the propellant tanks, the feed system and the thrust chamber. The tanks
are needed to store the propellants: in case of bi-propellant systems there are at least
one tank for the oxidizer and one for the fuel. The feed system ensures that the
propellants taken from the tanks are delivered under high pressure to the combustion
chamber. This can be realized either with gas pressure or turbopump feed systems.
The thrust chamber is the assembly of injectors, combustion chamber and nozzle (see
Fig. 1.1). The injectors ensure the correct atomization and mixing of the propellants
so as to permit a efficient combustion. Finally, the nozzle, which has a convergent-
divergent form, provides the expansion of the combustion gas to supersonic exhaust
velocities. Both the combustion efficiency and the nozzle design contribute to the
specific impulse Isp value which is a determinant parameter for engine performance.
An high specific impulse implies a minor propellant consumption for a given thrust
and therefore the specific impulse represents a determinant performance parameter
for an rocket engine.

Several other subsystems can be individuated in a liquid rocket engine. In partic-
ular the present study focuses on bi-propellant engines of large size with tubopump
feed system. In regard to this, one fundamental subsystem for engines of large size
is the cooling system. In fact, in these engines the combustion temperatures can
exceed 3600 K and the heat transfer rate peak value can reach value of the order of
100 MW/m2.2 These huge values demonstrate how the cooling of the combustion
chamber and of the nozzle is a mandatory task. Cooling is necessary to prevent the
walls to warm excessively. In fact, high temperatures could cause a structural weak-
ening, and thus a loss of elasticity or creep problems, and in the worst case a failure
due to the material melting.

Steady-state and unsteady techniques can be used to cool a liquid rocket en-
gine [145]. When a steady state technique is used, a thermal equilibrium is reached.
Therefore, for the operating duration a constant heat transfer rate and a constant
wall temperature are obtained. Differently, if an unsteady method is used, the ther-
mal equilibrium is never reached. Rather, the temperatures increase for the whole
operating duration. Therefore, the system must be designed in such a way that the
structure temperature never exceeds the limit value during that time. Consequently,
the maximum operating duration depends on the heat absorbing capacity of the
hardware. From these techniques four basic cooling approaches can be identified (for
engine of large size that are addressed):

• Radiation cooling. The thrust chamber heats up during the combustion until
the structure gets red or white hot and heat radiates to space thus keeping the

1The aim of this section is to briefly introduce the liquid rocket engines putting the attention
only on some basic concepts that are necessary in the follows. For a complete description see [145].

2For instance the heat flux per unit area reached in the throat region of the SSME is around 160
MW/m2 [107].
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1. Introduction

Figure 1.1: Regeneratively cooled tubular thrust chamber. Taken from [145].

structure at a reasonable temperature.

• Ablative cooling. An inner liner made of ablative material covers the wall
chamber and essentially burns thus protecting the wall.

• Regenerative and dump cooling. One of the propellant flow through pas-
sages in the chamber wall. The cold propellant absorbs the heat coming from
the hot gases thus keeping the wall temperature under the limit. In dump
cooling this is done with a little amount of propellant which is then dumped
overboard. In a regenerative cooling system the propellant remains in the sys-
tem and contributes to the whole engine performance.

3



1. Introduction

• Film and transpiration cooling. Film cooling is usually used in combination
with regenerative cooling and consists in a thin layer of cold propellant injected
near the chamber wall, parallel to the wall, so as to avoid the direct contact
of the hot gases and the wall. Following the same basic idea, in transpiration
cooling liquid or gaseous propellant is introduced in the chamber via a porous
wall.

Radiation, regenerative and film cooling are steady state techniques while ablative
cooling is an unsteady technique. Another common distinction is made between
active cooling (regenerative, film) and passive cooling (radiation, ablative) [32].

Another fundamental aspect in a liquid rocket engine is the propellant. Focusing
on bi-propellant systems, among the most widely used propellants, the combination
of liquid hydrogen and liquid oxygen gives the highest specific impulse followed by hy-
drocarbons/oxygen and other storable propellants like for example the hypergolic pro-
pellant combinations of nitrogen-tetroxide (N2O4) and mixtures of hydrazine (N2H4)
and unsymmetrical dymethylhydrazine (UDMH) or monomethylhydrazine (MMH).3

1.2 Methane and liquefied natural gas (LNG)

For the next launcher generation hydrocarbons/oxygen combinations have been con-
sidered to be used both for first and upper stages. In particular, among the hydro-
carbons there is a large interest in using methane or the liquefied natural gas (from
which methane can be extracted). The reasons of this interest are outlined in the
following.

1.2.1 Methane as a rocket engine fuel

Methane owns several advantages compared to storable propellants, to hydrogen and
to other hydrocarbons, as discussed in numerous works [18,33,64,91,125,139].

Compared to storable propellants methane, used with oxygen, can provide an
higher specific impulse. Moreover, the combination methane/oxygen is cleaner than
common storable propellants which are toxic. Indeed, methane and more in general
hydrocarbons are referred to as “green propellants”. This is one of the aspects making
methane well suited for reusable engines [23, 57].

On another hand, methane has three main advantages if compared with hydrogen.
First, it has a higher density, which implies smaller tanks. Consequently, there is a
positive impact on the structural weight and also a reduction of the low atmosphere
drag (first stages). Second, methane is less cryogenic than hydrogen. In fact, methane
is stored at a temperature of 111 K in the tanks, whereas hydrogen is stored at the
very low temperature of 20 K. This also implies that for methane the production,
operational and management costs are lower. Third, methane is a safer fluid than
hydrogen because the risk of an explosion is lower. This also have an impact on the

3The interest in hypergolic propellant combinations is principally based on their chemical reactiv-
ity which makes unnecessary the ignition system. Moreover, they are storable at room temperature
which is a great advantage. Conversely, they present several drawbacks: they have a comparatively
small specific impulse, are toxic and due to their aggressiveness cause problems during storage and
handling.

4



1. Introduction

cost. For these reasons methane results and interesting alternative to hydrogen to be
used with oxygen, even though at the cost of a lower specific impulse.

Most of the methane advantages listed above are own also by the other hydro-
carbons. However, among the hydrocarbons methane could be preferred because of
several aspects. First of all methane is the most energetic: for instance the spe-
cific impulse with methane is 10 s higher than with RP-14. Besides the energetic
aspect, one of the greater advantages of methane compared to other hydrocarbons is
its higher coking temperature5, due too its lower carbon content [21,34,97]. Methane
coking temperature is Tco = 970 K, which is higher than the temperature typically
reached in an expander cycle. This implies that methane can be considered as a
possible coolant in the regenerative cooling system of an expander cycle [33]. Re-
garding a regenerative cooling system, among hydrocarbons methane has the best
cooling efficiency. For instance, if compared to kerosene, the same heat flux can be
taken away by twice smaller methane flow rate [22,73]. Other important advantages
of methane are its lower cost (three times lower than kerosene for example) and the
higher ecological clearness of combustion products. To summarize, the comparison
of some characteristics of methane, hydrogen and other hydrocarbons when used as
fuels with liquid oxygen, are reported in Tab. 1.1. In particular, in the table are
reported the specific impulse in vacuum (Isp), the normal boiling temperature 6 Ts,
the storage density and the coking temperature Tco.

Besides launchers, methane has also been considered as an interesting option for
in-space applications [150]. In fact, methane is space-storable and less evaporable
in space than hydrogen. Therefore, methane is suitable for a vehicle that travels in
space for a prolonged period, such as an inter-orbit transporter or a planetary probe.
Another attractive feature is that methane is abundant in the outer solar system.
Methane can also be obtained for carbon dioxide and with only a small amount of
hydrogen, for instance via the Sabatier process. Therefore considering, for example,
a possible future mission to Mars, which has an atmosphere rich in CO2, methane
could be produced in-situ, which should allow a great reduction of the propellant to
be carried from earth and hence a reduction of the mission cost [172].

1.2.2 Liquefied natural gas

In nature the major source of methane is the natural gas. Row natural gas is a mixture
composed by more than 80% mole fraction of methane, and for the remaining part by
heavier hydrocarbons (primarily ethane, propane), nitrogen, water, carbon dioxide
and elemental sulfur. Actually the natural gas composition varies with extraction
location. Anyway its liquefaction process requires removal of carbon dioxide, water,
oxygen and sulfur compounds to prevent them from forming solids when the gas is
cooled. As a result commercial LNG is typically made up of 90% or more of methane
and of ethane, propane, butane and nitrogen in different percentages for the remaining
part. Further processing LNG allows to increase methane molar fraction with the

4Rocket propulsion-1. It is a blend of different hydrocarbons (kerosene) that has been widely
used in US for liquid rocket engines. Atomic ratio: CH1.952

5Coking represents one of the main problem in the cooling process of LRE when using hydro-
carbons in cooling channels: it is the carbon deposition after thermal cracking which causes an
insulation of the wall and thus a sharp drop of the heat transfer rate.

6The normal boiling temperature Ts is the boiling temperature at a pressure of p = 1 bar.
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Propellant Formula Isp [s] Ts [K] ρ[kg/m3] Tco [K]

Hydrogen H2 455 20 70 (T=20 K) -
Methane CH4 369 112 422 (T=112 K) 970
Propane C3H8 360 231 584 (T=230 K) 700-730
RP-1 CH1.952 (atomic ratio) 358 450-547 810 (T=293 K) 560

Table 1.1: Comparison between hydrogen and hydrocarbons propellants. Data taken from
[22,50,88,101].

obvious increase of propellant cost. In fact, the cost of the production and handling
technology necessary to yell the desired liquid methane composition up to get pure
methane, must be taken into account [37, 38]. The cheaper LNG has therefore been
considered as a possible rocket engine fuel instead of pure methane [45, 51, 57, 111].
In fact, because of the large amount of methane contained, LNG should have the
same advantages as methane. For this reason in the literature about the liquid rocket
engine field, methane or LNG are often discussed together, or even confused, and
LNG is frequently referred to as methane [31, 57, 73]. However using LNG rather
than methane may affect the behavior of the different subsystems in such a way to
yield changes of the overall rocket performance that have to be correctly predicted.

1.2.3 Methane and LNG liquid rocket engines

The different LRE subsystems can be differently affected by the selected propellants.
As a consequence, focusing on methane and LNG, suitable studies have been carried
out for the different subsystems. Particularly most of the works are devoted to the
combustion chamber (combustion [141], injection [92]) and the cooling system (regen-
erative cooling system, film cooling). Different system analysis can be found [33,139].
To date, none methane/oxygen engine has ever flown, yet several demonstrators have
been built (for example 3M9, 5M12 and 5M15 XCOR first stages, or the JAXA full
size prototype engine: LE-8).

Among the different subsystems the present work focuses on LRE regenerative
cooling system, and in particular attention will be devoted to two main aspects. The
first is to understand what are the differences between pure methane and LNG if they
are used as coolants in a regenerative cooling system. The second is to investigate
on the heat transfer deterioration phenomenon. In fact this phenomenon is likely to
occur in the thermodynamic conditions at which methane and LNG should operate
in cooling channels. An introduction of the deterioration phenomenon is given in the
following section so as to demonstrate the need of its study.
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1.3 Thermodynamic conditions of methane based fuels in
the cooling system: the heat transfer deterioration in
supercritical coolants

The thermodynamic conditions that methane and LNG can encounter in a regenera-
tive cooling system of turbopump fed engines deserve a careful consideration. In fact,
because of the coolant pressure and temperature and of the large amount of heat flux,
the phenomenon of heat transfer deterioration may occur. Typical operating condi-
tions and the phenomenon of heat transfer deterioration are thus shortly described
below.

1.3.1 Transcritical fluid

Critical parameters7 of propellants strongly influence both their storage and their
evolution in the cooling system. For example the critical temperature and pressure
of several LRE propellants are reported in Tab. 1.2.

Propellant Formula Tc [K] pc[MPa]

Ammonia NH3 405 11.3
Fluorine F2 144 5.2
Hydrazine N2H4 654 14.7
Hydrogen H2 33 1.29
RP-1 CH1.952 (atomic ratio) 622 2.2
Nitrogen tetroxide H2O4 432 10.1
Oxygen O2 155 5.04
UDMH (CH3)2NNH2 524 8.9
Methane CH4 190.6 4.6

Table 1.2: Liquid propellants critical parameters from [32] (round off values).

Earth storable fuels like UDMH and RP-1 have high critical temperatures and
hence can be stored in a liquid phase at ambient conditions, whereas cryogenic fuels
like hydrogen or methane, have lower critical temperatures. Therefore to enable their
storage in a liquid phase their temperature must be decreased under their saturation
temperature at the tank pressure, which for a turbopump fed engine is slightly greater
than the atmospheric pressure. Before entering the cooling channel the propellant
passes in the turbopump thus its pressure increases: at the channel inlet the propel-
lant pressure is either subcritical or supercritical depending both on the propellant
critical pressure and on the application. In any case the coolant temperature at the
channel inlet is generally subcritical8. If the coolant has a subcritical pressure, in-
creasing its temperature in the cooling channels can bring to a phase change. This

7see appendix A for the definition of critical point
8Except for hydrogen as it will be pointed out in the following
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can be observed in Fig 1.2, in which a generic (p, T ) phase diagram is reported: if a
liquid is heated up and its temperature exceeds the saturation temperature Ts, then
it undergoes a phase change from liquid to vapor. Conversely, if the coolant has a
supercritical pressure, it cannot undergo phase changes. Nevertheless, at subcriti-
cal temperatures it is much similar to a liquid (high density low compressible fluid),
whereas at supercritical temperatures it is much similar to a gas (low density high
compressible fluid). More precisely for supercritical pressures a pseudocritical tem-
perature Tps is defined for which fluid properties undergo large changes [48, 61, 120].
As an example in Fig. 1.3(a) isobaric curves of the constant pressure specific heat
cp for methane are reported versus temperature, for different supercritical pressures.
For each pressure the temperature at which the cp exhibits a peak is called pseudo-
critical temperature Tps. The pseuodcritical temperature is an increasing function of
pressure as shown in Fig. 1.3(a) and for pressure converging towards the critical pres-
sure, Tps converges towards the critical temperature. Also isobaric curves for density,
viscosity and conductivity are reported in Fig. 1.3. It can observed how passing from
T < Tps to T > Tps the density drops, whereas viscosity and conductivity reach a
minimum and then start to increase. This behavior has some similarity with a phase
passage except that all the variations occur gradually in a temperature range around
the pseudocritical temperature rather than at the constant saturation temperature
of subcritical fluids. From these similarities comes the use to say that a supercritical
fluid with a T < Tps is a liquid-like fluid that undergoes a pseudo phase change when
its temperature exceeds the pseudocritical value thus becoming a gas-like fluid [138].
With analogy with subcritical fluids the term pseudoboiling is sometimes used refer-
ring to the pseudo phase change [76]. Fig. 1.3 also shows that increasing the pressure
the pseudo phase change occurs with milder variations. In the following, a propellant
with a supercritical pressure and a temperature crossing the pseuodcritical value will
be referred to as a “transcritical fluid” flow9.

Having put in evidence the difference in the cooling system between supercritical
or subcritical pressure propellants, Tab. 1.2 is considered again. Liquid hydrogen
has a low critical temperature (Tc = 33 K) and a low critical pressure (pc = 1.3
MPa). Consequently, dealing with engine in the medium-high thrust range, in the
cooling channels its pressure is usually far enough from the critical pressure to undergo
only mild variation during the pseudo phase change. Moreover, because of its very
low critical temperature, the losses in the turbopump are in general sufficient to
make the hydrogen reach a temperature greater than the pseudocritical temperature
at the cooling channel entrance or in a very short distance. A different situation
occurs if methane is used as a coolant because methane has a critical pressure of
pc = 4.6 MPa and a critical temperature of Tc = 190.6 K. This means that, if
compared to hydrogen at a same pressure level, methane will be much closer to its
critical pressure as schematically reported in Fig. 1.2 [125]. Therefore, because the
pseudo phase change occurs at lower pressure, all the property variations are much
stronger for methane and LNG than for hydrogen. It can be concluded that pseudo
phase change in cooling channels is an important aspect if methane is considered and
hence it must be taken into account in the analysis because it may strongly influence

9The term “transcritical“ is used in analogy with the definition introduced in the field of combus-
tion which identifies a “transcritical fluid” as a fluid which is injected in the combustion chamber at
supercritical pressure and subcritical temperature [141]
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Figure 1.2: Schematic of a pressure temperature phase diagram

the coolant heat transfer capability.

1.3.2 Heat transfer deterioration

Dealing with forced convection heat transfer to supercritical pressure fluids in chan-
nels, two characteristics modes of heat transfer can occur [119,131,154]:

• Normal heat transfer: the values of the temperature field always increase in
a monotone trend as heat is enforced along the channel.

• Deteriorated heat transfer: a thermal spike is present at a certain location
along the channel. More precisely the wall temperature exhibits a peak and in
the same axial location the heat transfer coefficient hc has a minimum value10.

Deteriorated heat transfer can occur both at low mass flow rates, where buoyancy
forces are still important despite the forced convection mode, and high mass flow
rates for which buoyancy forces are not relevant [76]. In cooling channel applications
buoyancy forces are not relevant and hence in the following attention is devoted only
to the heat transfer deterioration occurring without buoyancy forces.11

Several experimental works have been carried out trying to understand and ex-
plain the phenomenon of heat transfer deterioration. In particular, most of the works
available in literature use water as fluid because they are related with supercriti-
cal pressure water cooled reactor (SCPR) [27, 119]. However, the deterioration has
been experimentally studied also for other fluids among which, for example, car-
bon dioxide [25, 140], toluene (C7H8) [131], hydrocarbons [68] and the refrigerant

10The convective heat transfer coefficient is a characteristic of the cooling capabilities of a flow
and is defined as: hc = qw/(Tw −Tb). Its definition will be discussed in the following of the chapter.

11Buoyancy effects have to be taken into account if Gr/Re2>10−3 for horizontal tubes and
Gr/Re2.7>10−5 for vertical tubes [83, 142], with Gr/Re = (g(ρb − ρw)D2)/(µbub). For the test
cases of interest, even at sea level (g=9.81 m/s2) Gr ∼ 106 and hence being Re ∼ 106 these limits
are far to be reached, hence buoyancy effect can be neglected.
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(a) constant pressure specific heat (b) density

(c) viscosity (d) conductivity

Figure 1.3: Properties variations of methane passing from T < Tps to T > Tps

HCFC22 [154]. All these experimental works show that the deterioration occurs
when the bulk and wall temperature are respectively lower and higher than the pseu-
docritical value. Moreover, for a given mass flow rate, the heat flux must be higher
than a threshold value which depends on the pressure level. In these works the heat
transfer deterioration is associated with the pseudoboiling occurring near the wall,
where the temperature crosses the pseudocritical value. As a consequence, a thin
layer of low density fluid is created near the wall thus bringing to a drop in the heat
transfer capabilities, which is analogous of the film boiling phenomena occurring at
subcritical pressures. Moreover, the low density layer accelerates while the cold core
of the fluid is still slow.12

12This brings to the formation of M-shaped velocity profiles which are characterized by a flat
gradient near the wall. Consequently the turbulent diffusion is locally deteriorated and this also has
a negative influence over the heat transfer capabilities.

10



1. Introduction

From the modeling point of view, it has to be underlined that the classical semi
empirical correlations for the normal heat transfer do not work in the deteriorated
mode. Therefore several works have been carried out with the purpose of modify
existing correlations, or find out new correlations, for the deteriorated heat transfer
[120,156].

Numerical works focusing on the heat transfer deterioration phenomenon have
also been carried out. Generally RANS approaches, with different closure models, are
used to simulate heated supercritical pressure flows in two dimensional axisymmetric
configurations. Most of these works deals with water [26, 27, 76, 102, 113] or carbon
dioxide [53,102]. Actually, these works focus on the ability to describe the phenomena
with the proposed numerical models and to reproduce experimental data.

Focusing on liquid rocket engines, heat transfer deterioration has been observed
in several experimental investigations on rocket propellants flowing in cooling chan-
nels. In particular, the deterioration has been outlined with hydrogen [55], methane,
propane and LNG [45,88]. However, these studies were not carried out to investigate
the deterioration phenomenon, rather their purpose was to investigate the cooling
capabilities and coking characteristics of the coolant fluid (coking for hydrocarbons).
Nevertheless, these experimental works demonstrate the risk of a deteriorated heat
transfer in regenerative cooling channel configurations. In spite of the above exper-
imental evidences, only a few numerical works on the deterioration in LRE cool-
ing channels can be found in literature, dealing with either methane [123, 163], n-
heptane [61] or hydrogen [60]. These works underline the possible occurrence of heat
transfer deterioration in a regenerative cooling system. In these works parametric
studies are carried out varying the heat flux and the thermodynamic conditions at
the channel entrance with the aim of better understanding the phenomenon peculiar-
ities and find suitable heat transfer correlations.

From the above considerations it comes out that the heat transfer deterioration
is an important phenomenon that has to be investigated if methane or LNG are to
be used in cooling channels. Actually a work which clearly investigate on all the
parameters of interest and give information on the phenomenon onset cannot be
found in the literature, and therefore there is a large interest in carrying out such
study. In particular one of the main aspects that have to be taken into account if
the deterioration heat transfer is to be studied numerically is the correct description
of the thermophysical properties: accurate equations of state and transport property
models have to be used.

1.4 Regenerative cooling channels

Among the different cooling systems the regenerative one is the most efficient in ap-
plications with high chamber pressures and high heat transfer rates and is usually
adopted for the engines in the medium to high thrust range. Other advantages of
the regenerative cooling system, if compared with other cooling systems, include no
changing in wall contour, an indefinite firing duration (except for coking problems)
and a relatively light weight construction. Nevertheless, also some disadvantages
must be considered among which a limited throttling with most coolants, the pressure
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losses13 in the channels and limits due to the maximum allowable coolant tempera-
ture. In the present work cooling channels of regenerative cooling systems are taken
into consideration. Therefore, in the following a general description is given so as to
introduce the problem of heat transfer in cooling channels. Then the methodologies
typically applied to study cooling channels are presented.

1.4.1 General description

In a regeneratively cooled engine one of the propellants passes in cooling channels
surrounding the thrust chamber and the nozzle before entering either the main com-
bustion chamber, a preburner or a turbine depending on the cycle. The internal
energy of the coolant rises along the channels prior to reach the injection plate and
thus the heat absorbed by the coolant is not wasted: from this feature comes the
name regenerative because of similarity to steam regenerators. A steady state condi-
tion is reached for which the temperatures of the structures are kept under the limit
value. Actually, this thermal equilibrium results from a coupled problem between
the forced convective heat transfer from the hot gas flow to the combustion chamber
internal wall, the conductive heat transfer through the solid wall and the forced con-
vection heat transfer from the cooling channel wall to the coolant flow.14 The thermal
problem is schematically represented in Fig. 1.4. The aim of a regenerative cooling
system is to keep the resulting chamber wall temperature at steady state under the
limit value, with a minimum pressure loss. This is why in the system design phase
the main parameters that have to be controlled in the cooling system are the pressure
losses, that influence the turbopump design and hence the whole system, and the heat
transfer capabilities, or rather the ability to keep a low wall temperature with high
heat fluxes15. These requirements influence both the selection of the coolant and the
channels configuration as discussed in the following.

Channels configuration

Historically, the first chambers were made of tubular walls with circular or elliptic
section passages for the coolant. Then with the increasing operating pressures and
heat transfer rates and also the development of fabrication techniques, more robust
configurations have been developed. In more recent configurations the channels, with
a rectangular cross section, are aligned with the chamber axis and in fact constitute
the wall chamber or rather a cooling jacket : they can be either brazed together or
milled in the liner (see Fig. 1.5). The cooling jacket material should have a high
conductivity to facilitate the heat transfer but it should also be sufficiently elastic

13A suitable pressure level must be provided at the channel inlet considering the high pressure
losses in the channels and the requirement at the channel exit. Moreover, the pressure level is linked
to the propellant feed system and high pressure levels are associated with turbopump fed systems.
This is why regenerative cooling systems are applied with turbopums fed systems.

14If a rigorous balance is done the radiative heat transfer to the ambient must also be taken into
account. However in a regenerative cooling system the outer wall of the engine is cold and hence
the radiative heat flux to the space should be very small. Consequently radiative heat flux can be
neglected if compared with the other heat fluxes involved in the thermal balance.

15The pressure losses are caused both by the shear stress and the heat load: in this sense a
minimum pressure loss requirement results in a maximum heat load that can be absorbed by the
coolant. Generally a maximum heat load that the coolant can absorb is identified as a constraint in
the design phase [56,88,101].
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Figure 1.4: coupled thermal problem in a regenerative cooling system

and able to withstand high pressures and high temperature gradients. For these
reasons copper alloy is usually selected for the liner. In the case of milled channels
on the slotted liner, a shell, usually in nickel, is applied to bear hydraulic, thermal
and mechanical loads (see Fig. 1.8).

(a) formed tubes
brazed or soldered together

(b) milled channels

Figure 1.5: Brazed and milled channels configurations. Taken from [145].

In some applications, the channel cross section can be rectangular and in some
cases it also features a high aspect ratio (the ratio between the height and the width),
because of several advantages it provides if compared to circular section. The material
between two channels gives a fin effect which increases with the aspect ratio, the
pressure drops are smaller and vortex are generated with a benefit on the heat transfer
[67, 167]. The fin effect increases with aspect ratio but also the pressure drop hence
an optimal configuration has to be selected depending on the particular application
[116, 165, 166, 168, 169]. In Fig. 1.8 a photography of a cut through a combustion
chamber wall is reported and shows the cooling channels milled in the wall.

The number of channels and their crosswise dimension depend both on the system
requirements (mass flow rate, maximum allowable pressure drop, heat loads) and
on the technological constraints (the channel diameter cannot be too small). The
channels are curved because of the convergent-divergent thrust chamber geometry
and in some configuration U-turn are implemented [74]16. Moreover, the heat flux is

16The curvature increases the pressure drop but brings also to the formation of vortex which

13



1. Introduction

Figure 1.6: Typical axial heat transfer rate distribution for liquid propellant thrust cham-
ber.

not constant along the chamber axis but reaches a maximum at the throat region,
as schematically shown in Fig. 1.6. Therefore, the channel crosswise area usually
changes along the axis with a smaller value in the throat region. In fact, decreasing
the area increases the velocity and hence the cooling capabilities. However, increasing
the velocity also brings an increase of the pressure drop which must be controlled
because it is directly connected with the final chamber pressure, especially for closed
cycle. Another aspect taken into account in the design of the variable cross area
of the channels is that it has to permit the same number of tubes at the throat
and exit diameters as schematically shown in the Fig. 1.7. Even though the design
is strongly related with the particular engine, it can be said that cooling channels
feature hydraulic diameter of the order of the millimeter and length of the order of
the meter (related with the thrust chamber size).

At last, but not least, pressure losses in the channels are strongly influenced by
the wall roughness: attention must be devoted to the manufacturing so as to obtain
a suitable roughness level and at a design level suitable models must be considered
to take roughness into account.

Coolant fluid

Between the two propellants the fuel is usually preferred as a coolant because of
its high heat capacity. Another problem associated with oxidizers is that at high
temperatures they tend to become corrosive. However, also for hydrocarbons fuels
care must be devoted to the corrosion of channel surfaces that deteriorate fuel cooling
capabilities. The corrosion problem is due to the presence of oxygen and sulfur
molecules that can respectively oxidize and sulphurize copper. Therefore the content
of these species in the hydrocarbon fuels must be limited under certain values [88].
A further problem associated with hydrocarbons is the carbon deposition because of
thermal cracking called coking : the phenomenon occurs if the temperature exceeds
a threshold value, the coking temperature, which increases with the hydrogen to
carbon atomic ratio (see Tab. 1.1) [134–136]. Also coking can cause the channel

enhance the heat transfer [100,116,168].
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Figure 1.7: Diagram of a tubular cooling jacket. Taken from [145]

wall corrosion. Actually the main problem with coking is the resulting insulation of
the wall which brings to a drastic drop of the fuel cooling capabilities. Generally,
a maximum heat load that the coolant can absorb is identified as a constraint in
the design phase [56, 88, 101]. Dealing with chemical characterization, coking due to
hydrocarbons thermal cracking limits both the temperature reachable in the channels
and the operational duration. Coking is one of the main reason that prevent the use
kerosene and heavy hydrocarbons in expander cycles.

The coolant thermophysical properties can also strongly affect the heat transfer
capabilities as shown in section 1.3.2. In particular if the coolant is subcritical atten-
tion must be given to the possible phase passage that could occur if the temperature
exceeds the saturation temperature. If the phase passage is controlled and bounded
near the wall it can enhance the heat transfer: small vapor bubbles form at the wall
surface, cause local turbulence, break away from the wall and collapse in the cooler
liquid. This phenomenon is known as nucleate boiling, but if the temperature is fur-
ther increased nucleate boiling can degenerate in film boiling : a vapor film is created
near the wall forming an insulation barrier [145]. Nucleate and film boiling cannot oc-
cur if the coolant is supercritical. Nevertheless, even at supercritical pressures passing
from subcritical to supercritical temperatures the gradients of fluid properties could
affect the heat transfer characteristics and bring to the deterioration, as shown in
section 1.3.2.

1.4.2 Analysis of cooling channels

Regenerative cooling channels have been investigated in a large number of works,
both experimentally and numerically. A large number of experimental works have
been carried out since the sixties on straight channels with circular cross section
electrically heated with the purpose of investigating both the heat transfer capabilities
of the propellants and the pressure losses. Often experimental data are analyzed and
correlated to find suitable coefficients for semi-empirical correlations to be used in
the design phase [31,54,55,125,149]. Circular cross section test cases are also used in
experimental studies dealing with hydrocarbons coking. The aim of these studies is
to find the threshold wall temperature for which the thermal cracking occurs and to
find corrections in standard heat transfer correlations to account for the diminishing
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Figure 1.8: Cut through a combustion chamber wall with CuAgZr liner and galvanic de-
posited Ni outer shell. Taken from [50].

of cooling capabilities [56, 88, 125]. Moreover, when focusing on corrosion, these
studies also investigate on the propellant and material compatibility and eventually
give information over the maximum allowable percentage of hydrogen, sulfur and
oxygen to prevent corrosion [134–136]. On the other hand, geometrical effects have
been considered in a number of works focusing on the channel curvature and on the
rectangular cross section and generally correction factors for empirical correlation are
provided [100,165,166].

Experimental investigations permitted to acquire experience in the problems char-
acterizing cooling channels. Moreover, the obtained semi-empirical correlations are
largely used in the cooling channels analysis. In fact, to carry out a correct cooling
system analysis a coupled problem must be considered between the coolant flow, the
heat transfer in the wall and the hot gas flows in the chamber. Consequently several
iterations are needed until the suitable configuration is found. This is why one di-
mensional numerical approaches are often used to describe the coolant flow evolution
in channels and these approaches need the use of semi-empirical correlations to re-
late the one dimensional variables, which represent the bulk flow behavior, and wall
variables.

More precisely bulk and wall temperatures (Tb and Tw) are correlated to the heat
flux qw by the heat transfer coefficient defined by Newton law:

qw = hc(Tw − Tb) (1.1)

Nusselt number Nu and hc are related by:

Nu =
hcD

kb
(1.2)
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which can be correlated to the Prandtl (Pr) and Reynolds (Re) numbers by correla-
tions which are modifications of the Dittus-Bolter equation [115]:

Nu = KReaPrb

(
Tb

Tw

)c(
µb

µw

)d(
kb

kw

)e(
cp,b

cp

)f (
pc

pb

)g (
1 + 2

L

D

)m
(1.3)

where cp = (hw − hb)/(Tw − Tb). The coefficients K, a, b, d, e, f , g and m are
related to one particular fluid and are determined from a least squares fit of the
experimental data. Several correlations of the type of Eq (1.3) and similar can be
found in literature and a summary of the most used for straight cooling channels
with a circular cross section can be found in [50, 88–90, 155]. To account for three
dimensional effects on heat transfer, efficiencies are introduced which multiply the
right hand side of Eq. (1.3) [100, 109, 139]. In particular curvature terms depend on
the geometry parameters and fin effect terms depend on the aspect ratio.

To correlate the shear stress to the pressure losses in the momentum equation the
cooling passage is considered as a hydraulic pipe and hence the friction loss can be
calculated according to the following expression valid for a straight channel:

∆p

ρb
=

1

2
fu2

b(
L

D
) (1.4)

where ∆p is the pressure drop. Semi-empirical correlations permit to relate the
friction loss coefficient f to the Reynolds number. To account for further local losses
that occur when the flow direction is changed (like in bends) or the cross section
changes, further pressure losses are added [139].

These approaches permit to study the whole system in a coupled manner with a
low computational cost. Nevertheless semi-empirical correlations are known to carry
a high level of uncertainty, around 20%, in particular if the conditions are not in the
range of the experimental data from which correlations are derived. Moreover these
uncertainties become very high in the transcritical thermodynamic region where the
high property variations make the use of semi-empirical relations unacceptable [60].
To obtain more general results (out of the thermodynamic range of the correlations)
and when some three dimensional aspect, physical or geometrical, have to be studied,
three dimensional CFD tools are used. Reynolds Averaged Navier Stokes equations
(RANS) are considered to simulate the turbulent flow in cooling channels either with
pressure-based or density-based approaches with attention to account that propellant
flowing in cooling channel is a high compressible low Mach number flow. Therefore
density-based codes are usually preconditioned [67,110], whereas compressibility cor-
rections are included in the pressure-based approaches [60]. DNS or LES methodolo-
gies have not been applied to investigate on cooling channels, the Reynolds numbers
being too high. Even with RANS approaches the high computational cost does not
permit to carry out parametric studies on a whole engine in a coupled manner. Hence
fully coupled approach between hot gas side, chamber wall heat transfer and coolant
side simulated with a three dimensional CFD code are limited to small regions [99].
Another approach is to consider only the conjugated coolant flow and heat conduction
simulations without the coupling with the hot gas side [110]. Three dimensional CFD
computations are rather used to investigate on some particular aspect like for exam-
ple the effect of the curvature [116, 121], the aspect ratio effect on the heat transfer
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capabilities [67,168]. These geometrical aspects are inherently three dimensional and
moreover induce secondary flows which must be described by the numerical methods
to account for their influence. Other investigated aspects are the wall channel rough-
ness, the thermal stratification due to near-critical property behavior and asymmetry
heating with high heat flux, and in general the effect of the variation of the fluid ther-
modynamic properties on the heat transfer [60, 116]. In particular, when the study
focuses on some peculiar physical aspects, like the effect of thermodynamic property
variations, simpler configurations of the channels are often selected. Often no cou-
pling is considered and a the heat load is given to the coolant flow as a boundary
condition. In particular when the study focuses on the chemical characterization of
the fluid rather than on geometrical aspects, straight channels with a circular cross
section can be suitable test cases [60,123,163].

To summarize, if regenerative cooling channels have to be numerically studied
two possibilities are available: one dimensional semi-empirical approaches with semi-
empirical correlations modified to account for three dimensional effects and others
peculiar aspects (channel roughness, coking, etc...) or three dimensional CFD codes,
based on a RANS approach to account for turbulence. Attempts have also been
made to adopt space marching techniques [11]: it can be demonstrated that with
suitable approximations the problem can be described with a system of equations,
called Parabolized Navier Stokes equations (PNS), well posed for a space marching
solving technique. Applying this technique, investigations on curved cooling channels
with high aspect ratio have been carried out [81], together with a comparison against
experimental data, thus demonstrating the validity of the PNS approach to study
cooling channels flows.

1.5 Objectives

The main objective of the present work is to study the behavior of methane and LNG
in cooling channels. In particular two aspects have to be investigated. Firstly, LNG
being a mixture of hydrocarbons and nitrogen, it is interesting to understand the
influence of each species over its cooling capabilities and the entity of the foreseeable
loss of cooling capabilities if compared to pure methane with respect to the econom-
ical gain (LNG is cheaper than methane). Second, the heat transfer deterioration
phenomenon, which is likely to occur at the thermodynamic conditions that should
characterize methane and LNG used as coolants, is investigated. In fact it is impor-
tant to understand if deterioration is a real risk in cooling channels applications, and
to understand what are its consequences and its onset conditions so as to be able to
handle it. All the aspects that have to be considered to fulfill these objectives are
exposed in the following. Then the contents of each chapter are presented.

1.5.1 Features of the work

The idea is to numerically study the above LNG and methane propellant aspects. To
this aim one of the main challenges is to find suitable thermophysical models able to
accurately describe a mixture of supercritical real fluids, with a particular attention
devoted to the pseudocritical region.

The thermophysical models have to be implemented in a computational fluid dy-
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namic code suitable to do parametric studies either with respect to thermodynamic
conditions and mixture composition or with respect to boundary conditions. 1D ap-
proaches are clearly insufficient to analyze thermodynamic phenomena which cannot
be described by averages but rather induce local effects in a channel cross section,
hence a CFD approach must be used. Among the possibilities the use of a space
marching approach, which should be suitable to describe these channel flows, present
several advantages compared to more common time marching CFD approaches: prin-
cipally a saving of computational time and a facility in carrying out parametric stud-
ies. The numerical problem is further complicated because of the very low Mach
number (of the order of 0.01) that characterizes cooling channels flows hence the
numerical tool has to be able to describe low Mach number compressible flows.

The regenerative system is characterized by several geometrical and physical as-
pects which affect the flow in the cooling channels and make its analysis complicated
if all the aspects are to be taken into account. However, the present study focuses
exclusively on the thermophysical property influence both with respect to the LNG
composition and with respect to the strong property variations in the pseudocritical
region. To deeply study these physical aspects and understand their influence on the
coolant heat transfer capabilities it should be better to investigate simple configura-
tions which permit to understand the influence of each parameter over the coolant
flow. For this reason the present study relies only on straight channels, with smooth
walls, with circular cross section, without any coupling with the hot gas side.

The results have to be analyzed mainly considering the main performance param-
eters of a cooling system, that are the pressure drop17 in the cooling channels and
the temperature fields. The pressure drop is related both to the wall shear stress and
to the heat flux, which also make the temperature increases. The wall temperature,
which is a critical quantity that has to satisfy cooling system constraints, depends
both on the bulk temperature and on the heat transfer capabilities. The limit to
the highest acceptable Tw is set by either structural requirements or coolant ther-
mal cracking temperature, which depend on the wall channel material and on the
selected propellant properties, respectively. The relation between bulk temperature,
wall temperature and the heat transfer capabilities, is described by the convective
heat transfer coefficient hc, as defined in Eq. (1.1). The heat transfer coefficient is
useful to compare the heat transfer efficiency of the coolant in different situations. In
fact, for an assigned temperature difference (Tw − Tb) the greater hc the higher the
heat flux that can be absorbed by the coolant flow, or for an assigned heat flux and
bulk temperature, the higher hc the lower the corresponding Tw.

1.5.2 Outline

The thesis is organized in two main parts: in the the first part physical and math-
ematical models are presented whereas the second part addresses the investigations
carried out implementing the above models.

17In fact, reducing the pressure drop in the cooling channels is mandatory because if target chamber
pressure is assigned, the losses in the cooling channels influence the turbopump design and hence
the whole system.
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First part: mathematical and physical models

In Chapter 2 an overview of the possible suitable EoS and equations for transport
properties to describe mixtures of real fluids is presented. The most accurate models
for the thermodynamic conditions of interest are selected. To demonstrate the ade-
quacy of the selected models, comparisons are carried out with the National Institute
of Standards and Technology data.

The possible numerical approaches available to investigate flows of supercritical
fluids in cooling channels are considered in Chapter 3. In particular, the problem of a
low Mach number compressible flow is taken into consideration. A parabolized form of
the Navier stokes equations (PNS) is chosen to describe the flow in cooling channels,
at very low Mach number, and a mathematical justification of the suitability of the
selected equations to describe the test cases of interest is reported. Then a detailed
demonstration of the hyperbolic nature of the system of equations is carried out. In
fact, the main interest in using the PNS to mathematically describe the problem is
that a space marching approach can be used to numerically solve them, because of
their demonstrated hyperbolic nature. The chapter ends with the development of an
approximate Riemann solver. In particular, it is an extension of the Roe’s Riemann
solver for the PNS with a generic equation of state.

In Chapter 4 a complete description of the mathematical and numerical model is
reported. The flow is turbulent, indeed a Parabolized form of the Reynolds Averaged
Navier-Stokes approach is actually considered with an eddy viscosity model to close
the problem. In particular, the one equation model of Spalart-Allmars is adapted to
fit the PNS hypothesis. The numerical model is based on a finite volume approach
with a Godunov-type scheme which includes the developed approximate Riemann
solver to obtain the Eulerian fluxes.

Before using the numerical code to fulfill the objectives, it has do be validated.
Indeed, in Chapter 5 several numerical studies permit to acquire confidence in the
code. In particular, a grid convergence analysis on a significant test case demonstrate
the second order of accuracy of the code. Moreover, these studies demonstrate that
the code is suitable to describe very low Mach number flows. A validation is then
carried out. First a comparison with a full Navier-Stokes (FNS) solver is carried out
so as to demonstrate that the terms neglected in the PNS equations are of minor
importance in the test cases of interest. Then experimental data are reproduced with
low discrepancies. Furthermore the experimental test case is characterized by the
heat transfer deterioration phenomenon which is very well reproduced numerically.

Second part: results

Parametric investigation are carried out with the numerical code together with the
selected thermophysical models. In Chapter 6 a study on the LNG composition influ-
ence over the coolant capabilities is carried out showing the influence of each species.
Then in Chapter 7 the heat transfer deterioration phenomenon is studied. Parametric
studies are done considering as parameters the inlet pressure, inlet temperature and
the ratio between the heat transfer and the mass flow rate. In particular, a threshold
value of heat flux to specific mass flow rate ratio is found and its dependence over the
pressure is put in evidence. A comparison between LNG and pure methane is also
carried out for a deteriorated heat transfer test case.
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Part I

Physical and mathematical model
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Chapter 2

Thermodynamic and transport
properties

A suitable thermophysical characterization of the propellant flowing in the cooling
channels is mandatory for the purpose of the present study. In fact the aim is to
understand how the variation of the propellant thermophysical properties affect the
performance parameters in cooling channels (that is the cooling capability and pres-
sure losses). In particular we are interested in supercritical fluids with a temperature
varying from low subcritical values (liquid-like region) to high supercritical values
(gas-like region) and thus passing in the transcritical region where all the proper-
ties strongly vary both with temperature and pressure. The requirement is to find a
model that can accurately describe these strong variations. Moreover with the aim of
investigating the influence of LNG composition on the cooling capabilities and even-
tually compare LNG with pure methane, the thermophysical models must permit a
coherent variation of the properties passing from a LNG mixture to pure methane.
This implies that we need a mixture model able to reduce to very accurate models for
each single species. Available models for the characterization of real fluids are first
presented. Then an accurate description of the selected equation of state and trans-
port property models is reported together with a comparison with National Institute
of Standard Technologies (NIST) data [1] as a validation. In Appendix A are given
several basic definitions that are useful for a complete understanding of the present
chapter. Finally a discussion of other models available in the literature which have
been discarded in the present study is carried out for the sake of comparison.

2.1 Overview of the thermophysical characterization of
real fluids and mixtures of real fluids

2.1.1 Equations of state

Before addressing mixtures of real fluids it is worthwhile to remind some aspects that
have brought to the formulation of a wide number of thermal Equations of State (EoS)
for the description of real fluids. A fluid by definition is a thermodynamic system
that in equilibrium conditions can be identified with two independent variables. If
pressure, density and temperature are taken as independent variables for the fluid
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2. Thermodynamic and transport properties

description, a generic thermal EoS can be implicitly expressed by:

f(ρ, p, T ) = 0 (2.1)

The form of Eq. (2.1) is strictly related to the thermodynamic region of interest and in
particular with the distance from the critical point: in fact it is common use to refer
to reduced thermodynamic variables with respect to the critical values to identify
different thermodynamic regions (p/pc and T/Tc). In the present work attention is
devoted to supercritical fluids (p/pc > 1) that are single phase fluids.

It is common use to distinguish between real and ideal fluids. An ideal fluid can
be described with the perfect gas law, which is the simplest thermal equation of state
for a pure substance:

p = ρRT (2.2)

where p is the pressure, ρ is the density, R is the gas constant, with R = </W
, where < = 8.31434 J/K/mol is the universal gas constant and W is the molar
weight, and T is the temperature. This law can be derived from the kinetic theory of
gas and is based on the hypothesis that the molecules are rigid, pointwise particles
that interact with each other only by means of collisions. This hypothesis is verified
for a rarefied gas; in this state the molecules are so far one from each other that no
attractive/repulsive force arises and they interact only by collisions. For a real fluid
this molecular regime occurs at high temperature (i.e., high kinetic energy) and low
pressure (i.e., low intermolecular interaction energy):

p

pc
� 1

T

Tc
� 1 (2.3)

Nevertheless perfect gas equation (Eq. 2.2) can also be suitably applied for supercrit-
ical pressures and high temperatures much greater than the critical, that is where the
kinetic energy is predominant over the intermolecular interaction energy. A different
situation occurs decreasing the temperature, where intermolecular forces become im-
portant and cannot be neglected: perfect gas EoS is not longer valid. To describe
a real fluid the simpler EoS that have been historically proposed are two parame-
ters cubic equations of state. Many of the common equations of this group can be
expressed by:

p =
ρRT

1− ρB
−

ρ2A

1 + ρUB + ρ2V B2
(2.4)

where U and V are integers values, while A and B are two parameters that are chosen
to verify some conditions. The two parameters where selected so as to verify the two
critical point conditions: (

∂p

∂ρ

)
Tc

= 0(
∂2p

∂ρ2

)
Tc

= 0

(2.5)

and then eventually make them function of the temperature and acentric factor ωa
to reproduce vapor pressure.1 Four well-known cubic equations which follow this ap-
proach are the van der Waals, Redlich-Kwong (RK), Soave (SRK) and Peng-Robinson

1The acentric factor ωa gives an indication of the deviation from spherical symmetry in a molecule.
See appendix A for the definition
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2. Thermodynamic and transport properties

(PR) equations [118,130,143]: the corresponding parameters are reported in Tab. 2.1.
Another approach to get the parameters is to assume A and B functions of tempera-
ture suitably set so as to reproduce some selected experimental data. There have been
numerous extensions and modifications of these cubic EoS, most of which introduce a
third parameter, and even nowadays this represents an open research field [39,78,129].
The advantage of these equations is their relative simplicity if compared to other real
fluids EoS but unfortunately they are low accurate in the transcritical region.

Equation U V A B

Van Der Walls (VDW) 0 0
RTc

8pc

27

64

R2T 2
c

pc

Redlich-Kwong (RK) 1 0
0.08664RTc

pc

0.42748R2T 2.5

pcT 1/2

Soave (SRK) 1 0
0.08664RTc

pc

0.42748R2T 2
c

pc
[1 + fω(1− (T/Tc)

1/2]2

fω = 0.48 + 1.574ωa − 0.176ω2
a

Peng-Robinson (PG) 2 -1
0.07780RTc

pc

0.45724R2T 2
c

pc
[1 + fω(1− (T/Tc)

1/2]2

fω = 0.37464 + 1.54226ωa − 0.26992ω2
a

Table 2.1: Parameters for four cubic equations of state [118,130,143]

Another approach to describe real fluids comes from statistical mechanics and
expresses the compressibility factor Z in terms of a series in the density ρ 2 :

Z =
p

ρRT
= 1 + C2ρ+ C3ρ

2 + · · · (2.6)

where the virial coefficients Ci are functions of temperature for a given fluid and are
evaluated from empirical data (Ci is the i− th virial coefficient). An important EoS
derived from this approach is the Benedict-Webb-Rubin equation (BWR) [12] which
is explicit in pressure:

p = ρRT + [B0RT −A0−
C0

T 2
]ρ2 + [bRT − a]ρ3 + [aα]ρ6 +

c

T 2
(1 + γρ2)e−γρ

2
ρ3 (2.7)

with A0, B0, C0, a, b, c, α and γ constant parameters determined from experimental
data and hence related to a particular fluid. Since its introduction in 1940 this
equation has been widely applied and modified increasing the number of parameters to
reach a higher accuracy. In particular Jacobsen et al. [65] introduced the well known

2see appendix A for the definition of the compressibility factor
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Modified Benedict-Webb-Rubin equation (MBWR) for nitrogen, then extended to a
number of fluids among which methane [171]. The MBWR equation has the following
form:

p(ρ, T ) =
N∑
k=1

Ak(T ) · ρk +

(
M∑

k=N+1

Ak(T ) · ρik−j
)
· e−(ρ/ρc)2 (2.8)

where Ak(T ) are simple functions of temperature determined by parameters which
are computed by least-squares interpolation of experimental data. These equations
are known to provide accurate representation of thermodynamic properties even in
proximity of the critical point.

BWR equation has been also used by Lee and Kesler [82] to develop a general-
ized equation based on a three parameters corresponding states theory3. The three
parameters are reduced temperature Tr = T/Tc, reduced pressure pr = p/pc and
acentric factor ωa and the compressibility factor for a generic fluid is given by:

Z = Z0 + ωaZ
1 (2.9)

where Z0 is the compressibility factor of a simple fluid (ωa = 0) and Z1 is the
deviation of the compressibility factor of the real fluid from Z0. Both Z0 and Z1 are
functions of pr and Tr. In the Lee-Kesler equation the compressibility factor of any
fluid is written in terms of a simple fluid and a reference fluid as follows:

Z = Z0 +
ωa

ωRa
(ZR − Z0) (2.10)

where Z0 and ZR are represented as generalized equations of the BWR form (Eq. 2.7)
in terms of reduced temperature and pressure.

Besides cubic and virial equations, other complex EoS have been developed for
the description of real fluids. In particular, the more accurate approaches nowadays,
namely most of the models used by NIST [1], rely on the assumption of a departure
behavior of the real fluid with respect to the perfect gas regime through the definition
of excess thermodynamic properties. An excess property is the difference between
the actual property value of a fluid and the ideal value at the same temperature and
pressure. Following this idea the reduced Helmholtz free energy a, is the Helmholtz
free energy A normalized with respect to the product between the gas constant R
and the temperature T , and is expressed as:

a(δ, τ) =
A

RT
= a0(δ, τ) + ar(δ, τ) (2.11)

where the residual term ar, also referred to as departure function is a correction, in
the real fluid regime of the perfect gas term a0. δ and τ are, respectively, the fluid
reduced density and temperature:

δ =
ρ

ρc
and τ =

Tc

T
(2.12)

A large number of experimental data are used to obtain accurate expressions for ar

which is in general a polynomial of δ and τ .

3see appendix A for the introduction of the corresponding state principle

26



2. Thermodynamic and transport properties

To describe a mixture of fluids the composition has to be considered as a third
variable together with pressure and temperature, hence a generic equation of state
will have the implicit form:

f(ρ, p, T,x) = 0 (2.13)

where x = {x1, · · · , xN} is the composition vector of a N component mixture with
xi molar fraction of the i − th species. Hence the problem of describe a real fluid is
further complicated for mixtures: in fact each species has to be accurately described
as a real fluid and also the interaction between one species and the others differs from
that of a perfect gas mixture. Indeed mixture rules which describe the behavior of
one species with respect to the others are necessary: generally binary parameters,
which relate one species to another, are combined for mixtures with more than two
species (see Appendix A).

Available EoS to describe mixtures of real fluids are extensions of the EoS briefly
described above for pure fluids: cubic, virial equations and their generalized form
through the corresponding states principle and EoS in terms of the Helmholtz free
energy.

Cubic EoS are extended to mixtures through the definition of suitable mixing
rules which permit to consider the mixture as if it was a pure fluid. For all two
parameters cubic EoS the following mixing rules can be applied to evaluate the two
mixture parameters am and bm:

am =
∑
i

∑
j

xixj(aiaj)
1/2(1− kij)

bm =
∑
i

xibi
(2.14)

where xi and xj are the molar fraction of the i − th and j − th species, and kij is a
mixture interaction parameter (see appendix A for more details on the mixing rules).
Once am and bm are evaluated it is possible to proceed as for a pure fluid, except if
derivatives with respect to composition are needed. More complex mixing rules have
also been proposed both for two and three parameters cubic equations: they usually
take into account local composition and require other parameters. Among the cubic
EoS extensions of SRK and PR are widely used for mixtures [157].

Following the same idea virial equations can be extended to mixtures: for example
BWR coefficients in Eq. (2.7) can be evaluated from the coefficients of each species
through suitable mixing rules [14]. Nevertheless these mixing rules have not been
widely developed in recent years. Conversely recent works on generalized virial EoS
for mixtures can be found [40]. Among generalized virial EoS the Lee-Kesler EoS
(Eq. (2.10) for a pure fluid) is extended to mixtures defining pseudocritical properties
from which the necessary reduced mixture properties can be evaluated. In particular
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Lee and Kesler proposed the following mixing rules in their work [82]:

Tcm = ρ1/4
cm

∑
i

∑
j

xixj
Tcij

(ρcij)1/4

1

ρcm
=
∑
i

∑
j

xixj
1

ρcij

ωam =
∑
i

xiωai

pcm = [0.2905− 0.085ωam]ρcmRmTcm

(2.15)

with Tcij and ρcij combining the critical parameters of the components i and j:

Tcij = (TciTcj)
1/2kij

1

ρcij
=

1

8

( 1

ρci

)1/3

+

(
1

ρcj

)1/3
3

(2.16)

Extensions of these mixing rules for LK equation can be found in literature, but with
the same basic formulation.

Helmholtz free energy EoS for mixtures have the same basic form of Eq. (2.11)
with a departure function to take the real gas behavior into account either for any
components and for the different binary mixtures. Each binary mixture is related
to another with binary parameters. These approaches need a very large number
of experimental data. In particular the most accurate models are extensions of the
mixture model developed independently by Tillner-Roth [151] and Lemmon [86] which
expresses Helmholtz free energy of a mixture of N components as:

a =

N∑
j=1

[xj(a
0
j + arj) + xj lnxj ] +

N−1∑
p=1

N∑
q=p+1

xpxqFpqa
excess
pq (2.17)

The first term summation in Eq. (2.17) arises from an ideal mixing: the real fluid
behavior is described for each single species (a = a0 + ar) but the components are
mixed as if they were perfect gas. In fact the term xj lnxj arises from the entropy
of mixing of ideal gases. Hence the second summation account for the interaction
between the different mixture components which bring a departure from the ideal
mixing solution. The excess contribution due the real mixing is accounted for each
binary mixture by the term aexcesspq (for the components p and q), and the different
binary mixtures are related to each other through the generalizing parameters Fpq:
both Fpq and aexcesspq are based on a large number of experimental data. Moreover both
arj and a

excess
pq are evaluated at residual density and temperature, with pseudocritical

values as reducing parameters. It has to be noticed that the mixing rule of Eq. (2.17)
could in general be applied with any EoS: either directly to an Helmholtz EoS or with
BWR, cubic EoS, etc. (with a suitable caloric equation for the perfect gas cp for all
the models except the Helmholtz one). It should be even possible to model different
species with different type of EoS. If composition approaches a mole fraction of unity
the model reduces exactly to the pure component EoS and this represents a great
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advantage. Hence it appears how the accuracy of the final mixture EoS will depend
both on the single species model and on the mixture model.

Either for single species and mixtures it is important to point out that there is
an intrinsic difference between Helmholtz free energy EoS and the other equations
previously discussed. In fact both perfect gas, cubic and virial equations are thermal
equations of state which correlate three thermodynamic variables, namely pressure,
density and temperature. To obtain a complete description of the fluid energetic
quantities (like enthalpy, entropy, Helmholtz free energy) a thermal equation is not
sufficient: rather a caloric equation must be provided to correlate an energetic quan-
tity to two thermodynamic variables. Usually, this is done with an expression for the
specific heat at constant pressure. Conversely, an EoS in terms of the Helmholtz free
energy is a fundamental equation and is self-sufficient to provide all the thermody-
namic variables that are needed. The term fundamental comes for the fact that from
it a number of thermodynamic properties of the fluid can be derived none of which
alone would permit the computation of all the others.

2.1.2 Transport properties

Differently from the case of thermal EoS, all the transport property models to describe
real fluids are based on the same basic assumption of an excess behavior of a real
fluid with respect to perfect gas. Indeed, following the same principle described above
for Helmholtz free energy EoS, excess property models are also used to describe the
transport properties of real fluids, namely, if Λ is either the viscosity µ or the thermal
conductivity k, the real fluid property is expressed as:

Λ(ρ, T ) = Λid(T ) + Λex(ρ, T ) (2.18)

where Λex is the excess property from the dilute gas term Λid. Different terms com-
pose the excess viscosity and conductivity. Excess viscosity is usually the sum of two
terms:

µex = ρµ1(T ) + µr(ρ, T ) (2.19)

where µ1(T ) is the initial density dependence term, accounting for low density real
behavior, and µr is the residual viscosity which becomes important at high densities.
The excess thermal conductivity is given by:

kex = kr(ρ, T ) + ∆kc(ρ, T ) (2.20)

where kr is the residual conductivity and ∆kc is the critical enhancement which is
important only near the critical region. The different models available in the literature
differ in the way the excess property is treated. In particular, for the residual part,
semi empirical correlations are proposed, provided a sufficient number of experimental
data is available. Conversely, when, for a given fluid, only few experimental data are
available, corresponding state models can provide a good approximation. The residual
property of the fluid at a given temperature and density (T and ρ) is considered
equal to the residual property of a reference fluid, for which an accurate correlation
is available, evaluated at a conformal temperature and density (T0 and ρ0) given by
the solution of the following system:

ar(T, ρ) = ar0(T0, ρ0)

Z(T, ρ) = Z0(T0, ρ0)
(2.21)
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where ar is the residual part of the reduced Helmholtz free energy (a = A/RT ) and
Z the compressibility factor of the fluid, whereas ar0 and Z0 are the corresponding
functions for the reference fluid.

2.1.3 Selection of suitable mixture models

In the selection of the models for the present study different aspects have been consid-
ered. First of all the need of high accurate EoS for supercritical pressures and temper-
ature in the whole range from low subcritical to high supercritical temperatures, with
particular attention devoted to the pseudocritical region: this requirement makes in-
adequate cubic EoS, which are known to be highly inaccurate just in the transcritical
region. Moreover, the model has to be able to consider high number of components
and therefore also Lee-Kelser equations are not suitable. Another requirement in the
selection of EoS for the present work is the possbility to compare mixtures and single
species: in this sense a Helmholtz mixture model, which relies on highly accurate EoS
for each single species, reduces to a highly accurate EoS for a pure fluid in case of sin-
gle species. For the description of each single fluid both virial EoS, like the MBWR,
and Helmholtz based EoS should be suitable in terms of accuracy, even though the
most recently developed EoS are of the Helmholtz type. Beyond all these considera-
tions it is important to put the attention on the specific mixtures we are interested
in which are Liquefied Natural Gas mixtures. In this framework, an accurate model
based on a very large number of experimental data has been developed by the Groupe
Européen de Recherche Gazière (GERG) purposely for the description of natural gas
mixtures [79]: the model was first presented in 2004. The mixture model is an exten-
sion of Lemmon model (see Eq.(2.17)) with parameters for the departure functions
based on a large number of experimental data. Moreover, for each species an accurate
Helmholtz based EoS is proposed, with particular attention on the main components
of natural gas, first of all methane. Considering all the aspects previously discussed,
GERG mixture equation together with EoS proposed for the different species have
been selected for the present work.

The selection of transport property mixture models is straightforward the Ex-
tended Corresponding States (ECS) model being the only available accurate option.
Nevertheless, care must be given to the selection of the transport property models for
each single species, whose accuracy strongly influences the accuracy of the mixture
property. Note also that the ECS model relies on the Helmholtz free energy equation
of the mixture (see Eq. 2.21) and of each single species (as it will be pointed out
in the following): also for this reason the selection of EoS based on Helmholtz free
energy have been preferred.

2.2 Equation of state for mixtures

The mixing rules selected are valid for a mixture made of any number of species,
provided data relevant to each species are available. In the present study attention has
been focused only on a limited number of species namely methane, ethane, propane
and nitrogen (which are the main LNG components). However the model can be
extended to any number of components. First the thermodynamic models used in
the perfect gas regimes are presented, which also are used in the real fluid regime
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models that follow.

2.2.1 Perfect gas regime

In the perfect gas regime, each species in the mixture behave according to the perfect
gas law:

pi = ρiRiT (i = 1, . . . N) (2.22)

where subscript i refers to i− th of the N species of the mixture. In particular pi is
the partial pressure of the i− th species. Ri is the gas constant of the species defined
by Ri = </Wi, where < = 8.31434 J/K/mol is the universal gas constant and Wi

is the molar weight of the i− th species. The mixing rule for the perfect gas EoS is
given by Dalton’s law:

p =
N∑
i=1

pi = ρRT (2.23)

where p, ρ and T are values relevant to the mixture.
The perfect gas law is the EoS sufficient to correlate pressure, temperature and

density, whereas to have a complete description of the thermodynamic state a caloric
equation of state is also needed which allows to correlate enthalpy, internal energy,
Helmholtz free energy and Gibbs free energy to other two independent thermody-
namic variables. One of the ways to get a caloric EoS is to provide an expression for
the specific heat at constant pressure, cp. In the general case of a thermally perfect
gas the value of constant pressure specific heat cannot be considered as a constant
(the latter is the simplest case of calorically perfect gas), although as long as a perfect
gas is considered, the cp only depends on temperature. To take into account for the
variation of cp with temperature many studies have been carried out in the past for
the different substances which led to the development of polynomials interpolating
experimental data and which can represent the behavior of the selected substance
in a given temperature range. In the present work the NASA standard polynomials
have been selected [94,95]. In particular, they express constant pressure specific heat
of the mixture as an average of the contribution of each species, weighted with its
molar fraction, as given from perfect gas mixture theory:

cp
R

=
N∑
i=1

xi
cp,i
Ri

=

=
N∑
i=1

xi
(
a1,iT

−2 + a2,iT
−1 + a3,i + a4,iT + a5,iT

2 + a6,iT
3 + a7,iT

4
)

(2.24)

For each species two further integration constants are necessary to provide the values
of the standard-state enthalpy and entropy (the reference state is defined by p =
1.01325 · 105 Pa and T = 298.15 K). Enthalpy and entropy at the reference pressure
are therefore expressed as:

h

RT
=

N∑
i=1

xi

(
−a1,iT

−2 + a2,iT
−1 lnT + a3,i + a4,i

T

2
+

+a5,i
T 2

3
+ a6,i

T 3

4
+ a7,i

T 4

5
+
a8,i

T

)
(2.25)
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s0

R
=

N∑
i=1

xi

(
−a1,i

T−2

2
− a2,iT

−1 + a3,i lnT + a4,iT+

+a5,i
T 2

2
+ a6,i

T 3

3
+ a7,i

T 4

4
+ a9,i

)
(2.26)

The mixture entropy can be computed according to Eq. (2.27):

s

R
=
s0

R
− ln(p)−

N∑
i=1

xi ln(xi) (2.27)

The coefficients for the four species (N = 4) considered are listed in Tables B.1–B.2
in Appendix B. Also enthalpy and entropy at the reference state for each species are
reported in Table B.11.

2.2.2 Real fluid regime

Dealing with methane based mixtures, the most recent and reliable equations of state
are those presented in [79] which have been built especially to describe natural gas
mixtures. They belong to the group based on the Helmholtz free energy, which takes
into account the real behavior of fluids with some kind of departure functions from
the perfect gas solution. In particular, the GERG EoS is based on pure substances
equations of state for each considered mixture component and correlation equations
for binary mixtures consisting of these components. The current number of considered
components is N=18, which include the 4 selected species considered in the present
study, even if the mixture model is obviously valid for a generic N. It is important to
underline that out of the 153 possible combinations of binary mixtures consisting of
the 18 considered natural gas components, data for a total of 98 binary mixtures is
available for the development and evaluation of the presented EoS. Moreover, since
methane is the most important natural gas component, the data situation for mixtures
containing methane is of primary interest for the development of the GERG EoS and
has been largely investigated. The range of validity of GERG EoS covers temperatures
of 60 K≤ T ≤ 700 K and pressures of p ≤ 70 MPa, with an uncertainty in density
lower than 0.5%.

Mixing rules are applied to obtain the reduced Helmholtz free energy a of the
mixture which can be expressed as the sum of the ideal and residual term, as previ-
ously shown in Eq. 2.11 for a single species and in Eq. 2.17 for a mixture 4. For the
sake of clearness the equation is rewritten here in the following form:

a(δ, τ,x) =
A

RT
= a0(ρ, T,x) + ar(δ, τ,x) (2.28)

with ρ and T being respectively the mixture density and temperature, R the gas con-
stant of the mixture, A the mass specific Helmholtz free energy, and x = (x1, x2, . . . , xN )
the molar composition. The residual term ar, which corrects in the real fluid regime
the perfect gas term a0, is expressed in terms of reduced mixture density δ and

4As previously emphasized the present GERG model uses a mixing rule which is an extention of
the Lemmon mixing rule given in Eq. (2.17)
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reduced mixture temperature τ , according to:

δ =
ρ

ρr(x)
and τ =

Tr(x)

T
(2.29)

This fundamental equation is sufficient to provide a complete description of the ther-
modynamic properties of the mixture. It is necessary to provide relationships for the
terms a0, ar, ρr and Tr which appear in Eqs. (2.28)–(2.29).

Perfect gas mixture term

The perfect gas mixture term takes into account the perfect gas behavior of the
mixture. At first, the perfect gas mixture rule for the Helmholtz free energy has to
be considered:

a0(ρ, T,x) =
N∑
i=1

xi[a
0
i (ρ, T ) + ln xi] (2.30)

In this equation the terms a0
i (ρ, T ) are the Helmholtz free energy EoS for each of the

considered species. While in the range of higher temperatures the NASA polynomials
given in Sec. 2.2.1 are considered, in the range of real fluid the following relationship
is assumed:

a0
i =

R∗

R

[
ln

(
ρ

ρc,i

)
+ n0

i,1 + n0
i,2

Tc,i

T
+ n0

i,3 ln

(
Tc,i

T

)
+

+
∑
k=4,6

n0
i,k ln

∣∣∣∣∣sinh

(
θ0
i,k

Tc,i

T

)∣∣∣∣∣− ∑
k=5,7

n0
i,k ln

∣∣∣∣∣cosh

(
θ0
i,k

Tc,i

T

)∣∣∣∣∣
 (2.31)

where ρc,i and Tc,i are the critical values of the pure species given in Table B.12, n0
i,k

and θ0
i,k are the empirical coefficients listed in Table B.3, R is the current interna-

tionally molar gas constant, and R∗ is a former gas constant for which relationships
have been calibrated:

R = 8.314 472 J ·mol−1 ·K−1 R∗ = 8.314 510 J ·mol−1 ·K−1 (2.32)

The perfect gas terms of Eq. (2.31) are obtained combining the perfect gas law and
Jaeschke and Schley [5] equation for the specific heat at constant pressure.

Residual part term

The residual part of the reduced Helmholtz free energy takes into account the depar-
ture from the perfect gas mixture behavior. It includes both the departure Helmholtz
free energy of each species linearly combined using the mole fraction xi and the resid-
ual behavior of the mixture (the double summation is called departure function):

ar(δ, τ, x) =
N∑
i=1

xia
r
i (δ, τ) +

N−1∑
i=1

N∑
j=i+1

xixjFija
r
ij(δ, τ) (2.33)
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Referring to Eq. (2.33) the residual part of the reduced Helmholtz free energy of the
i− th species is given by the pure substance equation of state:

ari (δ, τ) =

KPol,i∑
k=1

ni,kδ
di,kτ ti,k +

KPol,i+KExp,i∑
k=KPol,i+1

ni,kδ
di,kτ ti,ke−δ

ci,k (2.34)

The coefficients ni,k, di,k, ti,k and ci,k for the species of interest are listed in Ta-
bles B.4–B.7. In the departure function (double summation in Eq. (2.33)) Fij is an
adjustable factor which relates the behavior of one binary mixture to the whole which
is reported in Table B.8 for the species of interest in the present work. The remaining
part of the departure term is the function arij(δ, τ) which is given for each specific
binary mixture as:

arij(δ, τ) =

KPol,ij∑
k=1

nij,kδ
dij,kτ tij,k+

+

KPol,ij+KExp,ij∑
k=KPol,ij+1

nij,kδ
dij,kτ tij,ke−ηij,k(δ−εij,k)2−βij,k(δ−γij,k) (2.35)

The values for the coefficients nij,k and the exponents dij,k, tij,k, ηij,k, εij,k, βij,k and
γij,k are also given in Table B.8.

Reduced density and temperature

The reduced density δ and temperature τ are calculated by means of the composition-
dependent reducing functions which do not correspond with the mixture critical pa-
rameters, rather they are combinations of the critical parameters of the single species
and are expressed as follows:

1

ρr(x)
=

N∑
i=1

x2
i

1

ρc,i
+

N−1∑
i=1

N∑
j=i+1

2xixjβν,ijγν,ij
xi + xj

β2
ν,ijxi + xj

1

8

(
1

ρ
1/3
c,i

+
1

ρ
1/3
c,j

)3

Tr(x) =
N∑
i=1

x2
iTc,i +

N−1∑
i=1

N∑
j=i+1

2xixjβT,ijγT,ij
xi + xj

β2
T,ijxi + xj

(Tc,i · Tc,j)0.5

(2.36)

The binary parameters βν,ij , γν,ij , βT,ij and γν,ij are listed in Table B.10.

2.2.3 Other thermodynamic variables

Once the equation of state for the reduced Helmholtz free energy is available, the
other thermodynamic properties of the mixture can be obtained from its derivatives
with respect to reduced temperature and density. In particular, the compressibility
factor Z can be obtained as:

Z(δ, τ, x) = 1 + δ

(
∂ar

∂δ

)
τ,x

(2.37)
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pressure as:
p(T, ρ, x) = ZρRT (2.38)

enthalpy as:

h(δ, τ, x)

RT
= 1 + τ

(∂a0

∂τ

)
δ,x

+

(
∂ar

∂τ

)
δ,x

+ δ

(
∂ar

∂δ

)
τ,x

(2.39)

constant pressure specific heat as:

cp

R
= −τ2

(∂2a0

∂τ2

)
δ,x

+

(
∂2ar

∂τ2

)
δ,x

+

+

1 + δ

(
∂ar

∂δ

)
τ,x

− δτ

(
∂2ar

∂δ∂τ

)
x

2

1 + 2δ

(
∂ar

∂δ

)
τ,x

+ δ2

(
∂2ar

∂δ2

)
τ,x

(2.40)

Further interesting thermodynamic variables, and details on their derivation from the
Helmholtz free energy, can be found in Appendix A.

Figure 2.1: CH4 constant pressure specific heat for p = 13MPa

2.2.4 From real fluid to perfect gas

At high temperatures fluid mixtures can be considered as mixtures of perfect gases
and the perfect gas EoS can be used, whereas at low temperature real fluid mixture
EoS must be used. For pure methane and LNG the passage between the real fluid and
perfect gas regime occurs for temperatures between 600 K and 1000 K. Nevertheless
in this temperature range GERG and perfect gas EoS give slightly different results:
to pass from one equation to another without discontinuities a linear interpolation
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between the two equations has been considered when the temperatures fall in this
range. Moreover, the same reference values for enthalpy and entropy at the standard
state must be used for both EoS: these values are listed in Table B.11 for each of the 4
considered species. To show the smooth passage between the two EoS an example is
given in Fig. 2.1 for the methane cp, at a pressure of p = 13 MPa. The switch between
GERG and perfect gas models takes place at about 900 K without discontinuities.

Figure 2.2: Computed isobaric specific heat and density as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: methane.

Figure 2.3: Computed isobaric specific heat and density as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: ethane.

2.2.5 Validation

First a validation of the pure fluid equations of state used in the proposed mixture
model has been carried out by comparison of thermodynamic properties with those
provided by the National Institute of Standard Technologies (NIST) [1] (obtained
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with the REFPROP software released by NIST), for each of the 4 selected species
considered separately: the comparison is shown in Fig. 2.3-2.5 for the cp and density.

Figure 2.4: Computed isobaric specific heat and density as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: propane.

Figure 2.5: Computed isobaric specific heat and density as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: nitrogen.

The Helmholtz EoS for each pure species is Eq.(2.28) when xi = 1 and xj = 0 for
j 6= i, reduces to ai(δ, τ) = a0

i (ρ, T ) + ari (δ, τ), with a0
i and ari given by Eqs. (2.31)

and (2.34). The reducing parameters for a single species are the critical temperature
Tc and critical density ρc, consistently with Eq. (2.36).

Once asserted that the single pure fluid equations of state are correctly imple-
mented and able to describe the state of the art of thermophysical fluid properties, a
validation of the mixture model presented above has been carried out by a comparison
of the results with those obtained by the NIST software REFPROP. For this purpose
the binary mixtures methane-ethane, methane-propane and methane-nitrogen have
been investigated comparing all the thermodynamic properties at several supercriti-
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cal pressure, in a temperature range containing the pseudocritical value and varying
the species molar fraction. As an example in Figs. (2.6) computed density and spe-
cific heat at constant pressure are shown for a pressure of p = 13 MPa and different
molar fractions: for each binary mixtures 4 values are considered with methane molar
fraction being xCH4 = 0./0.25/0.5/0.75/1 (xα = 1−xCH4 with α either C2H6, C3H8

or N2). In these comparisons the investigated range of temperatures includes the
pseudocritical temperatures, corresponding to the cp peaks. The accordance between
the present model and REFPROP results is satisfactory for all the pressures and
compositions investigated.

Figure 2.6: Computed isobaric specific heat and density as a function of temperature for
p = 13 MPa. Species of the binary mixture: methane and ethane.

Figure 2.7: Computed isobaric specific heat and density as a function of temperature for
p = 13 MPa. Species of the binary mixture: methane and propane.

Finally also a typical LNG composition is investigated with the following molar
fractions: xCH4 = 0.92, xC2H6 = 0.04, xC3H8 = 0.022 and xN2 = 0.018. Computed
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Figure 2.8: Computed isobaric specific heat and density as a function of temperature for
p = 13 MPa. Species of the binary mixture: methane and nitrogen.

cp and density are compared for different supercritical pressures with those obtained
with NIST REFPROP software showing a satisfactory agreement.

Figure 2.9: Computed isobaric specific heat and density as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. LNG composition: xCH4 = 0.92,
xC2H6

= 0.04, xC3H8
= 0.022 and xN2

= 0.018

2.3 Transport properties for mixtures

Transport properties models for mixtures are discussed: models used in the perfect
gas and real fluid regimes are presented and a comparison with NIST data is carried
out.
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2.3.1 Perfect gas regime

A common way to obtain the viscosity and thermal conductivity of a mixture of
perfect gases is to rely on empirical mixture rules which provide the values of the
mixture transport properties as a weighted average of those of the species in the
mixture.

Viscosity and thermal conductivity expressions for methane, ethane and nitrogen
are taken from [94], according to the empirical relations provided in [15, 146]. The
dependence of transport properties on temperature is in the form:

µ0
i (T ) = 10−7 · exp[aµ,1,i log(T ) + aµ,2,iT

−1 + aµ,3,iT
−2 + aµ,4,i] (2.41)

k0
i (T ) = 10−4 · exp[ak,1,i log(T ) + ak,2,iT

−1 + ak,3,iT
−2 + ak,4,i] (2.42)

whose coefficients necessary to get values in the SI for each of considered species are
listed in Table B.13 for viscosity and in Table B.14 for thermal conductivity. Data
for propane are not available in [15, 146]: hence the dilute gas part of the viscosity
model presented in [160] and of the thermal conductivity model presented in [93] have
been considered for propane in the perfect gas regime. Once data for the species are
available, perfect gas mixture viscosity µ0 and thermal conductivity k0 are computed
according to [94,95] as:

µ0(T, x) =

5∑
i=1

xiµ
0
i

xi +

5∑
i=1
j 6=i

xjφij


−1

(2.43)

and

k0(T, x) =
5∑
i=1

xik
0
i

xi +
5∑
i=1
j 6=i

xjψij


−1

(2.44)

where the coefficients φij depends on the values of µi, µj and on the molar weights
of the species:

φij =
1

2
√

2

1 +

(
µi

µj

)1/2(
Wj

Wi

)1/4
2(

1 +
Wi

Wj

)−1/2

(2.45)

and the coefficients ψij necessary to evaluate the thermal conductivity are computed
by a suitable correction of φij :

ψij = φij

[
1 +

2.41 (Wi −Wj)(Wi − 0.142Wj)

(Wi +Wj)2

]
(2.46)

2.3.2 Real fluid regime

In the field of real fluids the most commonly used approach followed in the liter-
ature to get mixture viscosity and thermal conductivity is that of ECS theory. In
the present study, resorting to equations of state given in Sec. 2.2 and on prefect
gas contribution to viscosity and thermal conductivity given in Sec. 2.3.1, transport
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properties have been evaluated according to ECS theory presented in [72,96]. In this
theory viscosity and thermal conductivity are accurately evaluated for reference fluid,
nitrogen, whose properties are taken from [85]. In general, the viscosity of the fluid
mixture is expressed (according to [62]) as:

µ = µ0(T, x) + µr(T, ρ, x) + µm(T, ρ, x) (2.47)

where µ0 is the diluted gas term (that is taken as equal to the perfect gas mixture
viscosity given in Eq. (2.43)), µr is the residual viscosity, and µm is a correction term
for mixtures. The latter term will be neglected in the present study as is usually done
for many of the fluid conditions of interest. The basic assumption of the ECS model
is that:

µr(T, ρ, x) = µr0(T0, ρ0)F rµ (2.48)

namely, the residual viscosity of the mixture is equal to the residual viscosity of the
reference fluid µr0 evaluated at the conformal temperature T0 and density ρ0 and
modified for a correction factor F rµ . Assuming that the residual viscosity of the
reference fluid as a function of temperature and density is known, it is only necessary
to evaluate conformal temperature and density and the reducing factor F rµ which also
depends on the single species residual viscosity µrj . The conformal temperature and
density are defined as such that:

ar(T, ρ, x) = ar0(T0, ρ0)

Z(T, ρ, x) = Z0(T0, ρ0)
(2.49)

where ar is the residual part of the reduced Helmholtz free energy (a = A/RT ) and
Z the compressibility factor of the mixture, whereas ar0 and Z0 are the corresponding
functions for the reference fluid that is nitrogen. Both the mixture and reference fluid
values are obtained by Eq. (2.33) and Eq. (2.37). The system of equations (2.49) is
then solved for T0 and ρ0 and the residual viscosity µr0 is evaluated. On the basis of
the conformal values the following equivalent reducing ratios are defined:

fx =
T

T0
; hx =

ρ0

ρ
(2.50)

Following the same procedure conformal values are calculated also for each species
(i = 1, 2, . . . , 5) from the system:

ar(T, ρ, x) = arj(Tj , ρj)

Z(T, ρ, x) = Zj(Tj , ρj)

(2.51)

which is identical to Eq. (2.49) with the j species considered instead of the reference
fluid. Residual viscosity for each single species µrj are computed at the conformal
values ρj and Tj . Also reducing factors for each species are computed according to:

fj = fx
Tj

T
; hj = hx

ρ

ρj
(2.52)
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Finally the reducing factor F rµ necessary to get the value of viscosity can be
computed. The reducing factor is then expressed as:

F rµ =
gx,µ

h2
x

(2.53)

where gx,µ is an equivalent mass for the mixture:

gx,µ =

N∑
i=1

N∑
j=1

xixjf
1/2
ij h

4/3
ij

(
Wij

W0

)1/2

(2.54)

The latter expression for gx,µ requires the introduction of the three termsWij , fij and
hij . The first term is computed as the following average of equivalent molar weights
gj :

Wij =
2gigj

gi + gj
(2.55)

where gj for each species is given by:

gj =

(
µrj
µr0
h

2/3
j f

−1/2
j

)2

W0 (2.56)

The second and third terms rely only on the species values fi, fj , hi and hj :

fij =
√
fifj (2.57)

hij =
1

8

(
h

1/3
i + h

1/3
j

)3
(2.58)

The evaluation of thermal conductivity follows the same procedure as for viscosity.
In general the thermal conductivity of the fluid mixture will be expressed (according
to [63]) as:

k = k0(T, x) + kr(T, ρ, x) + kc(T, ρ, x) (2.59)

where k0 is the diluted gas term (that is taken as equal to the perfect gas mixture
viscosity given in Eq. (2.44)), kr is the residual viscosity, and kc is the so-called
critical enhancement which allows to predict the thermal conductivity peak in the
vicinity of the critical point.

ECS model is used to compute the residual part kr. The basic assumption of the
ECS model is as in case of viscosity:

kr(T, ρ, x) = kr0(T0, ρ0)F rk (2.60)

namely, the residual thermal conductivity of the mixture is equal to the residual
thermal conductivity of the reference fluid kr0 evaluated at the conformal temperature
T0 and density ρ0 and modified for a correction factor F rk . Because the reference fluid
is the same as for viscosity (nitrogen) conformal temperature and density are those
given by Eqs. (2.49) and already available from the computation of viscosity. Also
conformal temperature and density for each species are those computed for viscosity
from Eqs. (2.51). Therefore, it is only necessary to evaluate the reducing factor F rk .
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The reducing factor has the same expression as Eq. (2.53), except for the value of
gx,k instead of gx,µ:

F rk =
gx,k

h2
x

(2.61)

The reducing ratios fx and hx are those computed for viscosity in Eq. (2.50), whereas
gx,k can be computed by:

gx,k =
N∑
i=1

N∑
j=1

xixjf
1/2
ij h

4/3
ij

(
W0

Wij

)1/2

(2.62)

where fij and hij are evaluated on the basis of species conformal temperatures and
densities according to Eq. (2.51) like for viscosity, and Wij is given by Eq. (2.55) but
each equivalent molar weight gj has a different expression than for viscosity:

gj =

(
kr0
krj
h
−2/3
j f

1/2
j

)2

W0 (2.63)

The critical enhancement is evaluated according to a theoretical model [112,158]
developed for pure fluids:

∆kc = ρcp
R0kbolT

6πµξ
(Ω− Ω0) (2.64)

where

Ω =
2

π

[(
cp − cv
cp

)
arctan(qDξ) +

cv

cp
qDξ

]
(2.65)

and

Ω0 =
2

π

{
1− exp

[
−

1

(qDξ)−1 + 1
3(qDξρc/ρ)2

]}
(2.66)

The correlation length ξ is given by:

ξ = ξ0

χ(T, ρ)− χ(Tref , ρ)
Tref

T
Γ


g/γ

(2.67)

where

χ(T, ρ) =
pcρ

(ρc)2

(
∂ρ

∂p

)
T

(2.68)

In Eq. (2.64)-(2.68) R0, g and γ are theoretically based constants whereas qD, ξ0

and Γ are fluid-specific fitted terms; Tref is a reference temperature greater than the
critical temperature (usually Tref = 1.5Tc); kbol is the Boltzmann constant; µ is the
real fluid viscosity. For mixtures the model is extended considering averages terms
weighted with the molar fractions for R0, g, γ, qD, ξ0, Γ and Tref . As an example
R0,x of the mixture is evaluated by:

R0,x =

5∑
i=1

xiR0,i (2.69)
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with R0,i referring to the i−th species. Mixture critical parameters are approximated
with the reducing density and temperature of Eq. (2.36) used in the thermodynamic
model. Finally the pressure derivative with respect to pressure in Eq. (2.68) and the
specific heats are evaluated with the EoS model presented in Sec. 2.2. The parameters
involved in the critical enhancement model for each of the considered 4 species are
reported in Appendix B.

2.3.3 Single species models

It has been pointed out that it is mandatory to describe accurately the transport
properties of each single species to obtain an accurate description of the mixture
properties. In this framework it is worthwhile to notice that two different kinds of
models have been considered in the description of the excess viscosity and conductiv-
ity for the 4 species, trying to select for each species the most accurate model available
in the open literature. More precisely all the models, except the methane viscosity
one, are rational polynomial in the reduced density (δ = ρ/ρc) and temperature
(τ = Tc/T ) which have an expression of the type:

Λr(τ, δ) =
n∑
i=1

Niτ
tiδdi exp(−γiδli) (2.70)

with Ni, ti, di, li and γi , with i = 1, · · · , n, parameters fitted to experimental data.
More details can be found in the references of Table 2.2

The excess viscosity has been evaluated according to the friction theory presented
by Quiñones-Cisneros et al. [128], which relates the viscosity of a fluid to its EoS. In
this approach the pressure p = p(ρ, T ) is expressed as the sum of a repulsive term pr
and an attractive term pa:

p = pr + pa = p0 + ∆pr + pa (2.71)

where p0 = ρRT is the perfect gas pressure, and ∆pr is the real part of the repulsive
pressure term. Once the pressure and its derivatives are computed the evaluation of
pr, pa and ∆pr is straightforward:

pr = T

(
∂p

∂T

)
ρ

pa = p− pr

∆pr = pr − p0

(2.72)

Once these variables have been evaluated, the excess viscosity is obtained by the
quadratic expression:

µex = cip
0 + cr∆pr + capa + ciip

2
0 + crr∆p

2
r + caap

2
a (2.73)

where the cj and cjj (j being i, a or r) coefficients depend on the reduced temperature
τ = Tc/T and are reported in [128].
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Species Viscosity Conductivity

Methane Quiñones-Cisneros et al. [128] Friend et al. [42]

Nitrogen Lemmon et al. [85] Lemmon et al. [85]

Ethane Friend et al. [43] Friend et al. [43]

Propane Vogel et al. [160] Marsh et al. [93]

Table 2.2: Single species transport property models for the excess viscosity and conductivity

2.3.4 From real fluid to perfect gas

For temperatures between 600 K and 1000 K real and perfect gas transport models
equations give slightly different results: following the same procedure adopted for the
thermodynamic properties, to pass from one equation to another without disconti-
nuities a linear interpolation between the two equations has been considered when
the temperatures fall in this range. An example is given in Fig. 2.10 for the methane
viscosity, for a pressure of p = 13 MPa. The switch between Klein ECS and perfect
gas models takes place at about 900 K without discontinuities.

Figure 2.10: CH4 dynamic viscosity for p = 13 MPa

2.3.5 Validation

To validate the models adopted in the transport property description, comparisons
with REFPROP-NIST data have been carried out. First the pure fluids models are
investigated: in Figs. 2.11-2.14 viscosity and conductivity for each of the 4 species
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considered separately are reported for different supercritical pressures. Then mixtures
are addressed: in particular viscosity and conductivity are compared for the same
mixtures as in the EoS validations. In Figs. 2.15-2.17 results referring to several
binary mixtures at a pressure of 13 MPa can be observed, whereas in Fig. 2.18 the
transport properties are compared at different pressure for a typical LNG mixture.
From the analysis of these figures it can be concluded that the agreement between
the present and REFPROP-NIST data is satisfactory

Figure 2.11: Dynamic viscosity and thermal conductivity as function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: methane.

Figure 2.12: Dynamic viscosity and thermal conductivity as function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: ethane.
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Figure 2.13: Dynamic viscosity and thermal conductivity as function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: propane.

Figure 2.14: Dynamic viscosity and thermal conductivity as function of temperature for
different pressures: 6, 8, 10 and 13 MPa. Species: nitrogen.
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Figure 2.15: Dynamic viscosity and thermal conductivity as a function of temperature for
p = 13 MPa. Binary mixture: methane-ethane.

Figure 2.16: Dynamic viscosity and thermal conductivity as a function of temperature for
p = 13 MPa. Binary mixture: methane-propane.
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Figure 2.17: Dynamic viscosity and thermal conductivity as a function of temperature for
p = 13 MPa. Binary mixture: methane-nitrogen.

Figure 2.18: Dynamic viscosity and thermal conductivity as a function of temperature for
different pressures: 6, 8, 10 and 13 MPa. LNG composition:xCH4 = 0.92,
xC2H6

= 0.04, xC3H8
= 0.022 and xN2

= 0.018
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Chapter 3

Parabolized Navier Stokes
equations

A suitable numerical tool has to be developed to carry out the investigations that
are the objectives of the work and that have been introduced in Chapter 1. Before
developing the numerical code two different aspects have to be analyzed. The first
aspect is that the flow of interest is an highly compressible and low Mach number
flow. Therefore the numerical model has to be able to handle such kind of flows. The
second aspect is the need of a fast but accurate tool to carry out parametric studies.
This need has brought to consider parabolized Navier-Stokes (PNS) equations that
allow the use of a space marching approach.

In the present chapter first the problem of numerically describe low Mach num-
ber flows is introduced. Then attention is devoted to the parabolized Navier-Stokes
equations.

3.1 On the numerical analysis of compressible flows with
low Mach number

To investigate on the behavior of heated turbulent flows of supercritical fluids in liq-
uid rocket engine cooling channels, a suitable numerical model able to manage its
peculiarities has to be found. It is useful therefore to summarize and discuss these
peculiarities. From the thermophysical point of view the fluid to be studied is super-
critical, with a pressure close to the critical pressure (p/pc ∼ 2) and a temperature
varying from T < Tps to T > Tps, thus spanning a thermodynamic region charac-
terized by steep variations of all the thermophysical properties. In particular, the
propellant is a compressed fluid, with a very low compressibility, when it enters the
channels. Then it is heated up along the channel and as its temperature increases its
compressibility is largely increased: in the neighborhood of the pseudocritical tem-
perature density changes respect to temperature and pressure are very high [46, 84].
The high values of the density gradients (∂ρ/∂p)T and (∂ρ/∂T )p in the transcritical
region can be observed in Figs. 3.1(a)-3.1(b) where, for methane, their evolution with
temperature have been computed, with the EOS presented in Chap. 2, for different
supercritical pressures: as a consequence density strongly vary both with temperature
and pressure as shown in Fig. 3.1(c). The high compressibility of the fluid in this
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thermodynamic region can also be observed in Fig. 3.1(d) where methane speed of
sound evolution with temperature is reported for the different supercritical pressures:
a minimum value is reached at the pseudocritical temperature showing that for those
thermodynamic conditions the fluid is either more compressible than in a perfect gas
condition (reached for higher temperatures). Also the transport properties exhibit
strong variations with respect to pressure and density in this region. Even though

(a) (∂ρ/∂T )p (b) (∂ρ/∂p)T

(c) density (d) speed of sound

Figure 3.1: Methane density and speed of sound evolution with temperature for different
pressure in the range 6-13 MPa

the fluid is highly compressible, it flows in cooling channels with a low velocity, of the
order of 10 m/s, and thus is characterized by a low Mach number. It comes out that
for this kind of fluid the Mach number is not a suitable parameter to characterize the
flow compressibility [98]. Moreover along the channels the heated flow accelerates
while the speed of sound decreases thus the Mach number vary along the channel
from M < 0.01 up to M ∼ 0.3. To study the present physical problem the numerical
tool has to be able to describe very low Mach number flows with a high compress-
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ibility which face high density and temperature gradients. Additionally, a desirable
feature of the numerical model is the ability to describe flows with a higher Mach
number. In fact this could be important in a parametric study. Moreover, being able
to investigate a larger range of conditions rather to be limited to a narrow range is a
desirable feature for a numerical tool.

The numerical study of low Mach number flows has been deeply investigated in
the last thirty years and continue to be an intense research field especially in the
case of large density variations. In fact, historically, different computational fluid
dynamics models have been developed to study either incompressible (M = 0) or
high compressible flows (M > 0.3) and this because of the different influence of the
pressure in these two distinct regimes [10]:

• For incompressible flows the pressure influences the velocity via the momentum
equation, whereas the density does not depend on the pressure: following this
characteristic pressure-based numerical models have been developed;

• For high compressible flows the pressure strongly influences the density via the
equation of state: density-based numerical models have been initially created
to deal with these flows.

If for very low and high Mach number the methods are stable and work well, problems
arise in the intermediate Mach number range, that is for 0 < M < 0.3 where pressure
influences both the velocity and the density. This is one of the reasons that has
brought to the extension of density-based solvers for low Mach number flows, and
pressure-based solvers for weakly compressible low Mach number flows. Another
reason that has brought to these attempts is the need of numerical models able to
describe large Mach number range flows and also flows with low and high Mach
number regions. In the following a brief review of these methods is presented.

3.1.1 Pressure based methods

Pressure based models were developed for incompressible flow problems for which
the density is considered constant and hence the continuity equation reduces to the
velocity divergence free equation. Hence only pressure and velocity are coupled with
the momentum equation. The basic idea of pressure based method is to start with an
initial guess for the pressure which permits to find an initial velocity field which will
not satisfy the continuity equation [114]. Hence the pressure is iteratively corrected to
find the correct velocity. A detailed review of pressure-based algorithms can be found
in [10]. The most popular pressure-based method is the pressure-correction SIMPLE
algorithm (Semi-Implicit Methods for the Pressure Linked Equations) initially devel-
oped by Pantakar [114]: the continuity equation is used to find a pressure correction
equation which is solved. The SIMPLE algorithm developed for incompressible flows
have be extended to account for compressibility [52, 66, 69]. Pressure based methods
use a staggered grid to avoid for check-board pressure solutions and are based on
an iterative methodology and this make the algorithm quite complex [126]. Because
pressure is used as a primary variable in these methods pressure variations are always
finite irrespective of the flow Mach number.
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3.1.2 Density based methods

Density based methods have been originally developed to deal with high compressible
flows. The continuity equation is regarded as an evolution equation for the density
which is related to the pressure and temperature with an equation of state. It has
been largely proved in the literature that these methods suffer from accuracy and con-
vergence problems when the Mach number is lowered and cannot be applied (without
some modifications) if M < 0.3. From the accuracy point of view it has been demon-
strated that for a fixed mesh size, the error is proportional to 1/M2 when lowering
the Mach number toward a 0 value [104, 161]: this error can be reduced lowering
the mesh size but this also brings to very long computational time because of the
corresponding reduced iteration time step. Guillard and Viozat [49] explained the
accuracy problem showing that there is a different behavior of the discretized and
continue Navier-Stokes equations in the limit M → 0. In particular while it is well
known that for M → 0 the pressure perturbations are O(M2), the discretized equa-
tions result in pressure perturbations of the order O(M). Differently the convergence
problem arises from the stiffness of the problem which is ill-conditioned because of
the large difference between the eigenvalues: from a physical point of view this re-
flects the presence of high speed acoustic waves traveling with a velocity u + ws,
ws being the sound speed and u the fluid velocity and for low Mach number flows
(M = u/ws � 1) it is u� u+ ws. As a consequence very small iteration time steps
are used with a deterioration of the convergence.

Preconditioning techniques have been largely applied to extend density based
methods to low Mach number problems. The basic idea is to reduce the stiffness:
this is obtained by premultiplying the Jacobian matrix by a preconditioning matrix
so as to obtain all the eigenvalues of the same order. As explained by Turkel [153]
let us consider an ill-conditioned algebraic system:

Av = b (3.1)

where A is positive definite and has a very large condition number k(A) = max
λi

λj
,

with λi eigenvalues of A. If we premultiply left and right hand side of Eq. (3.1) by a
non singular matrix P we obtain the following system:

PAv = Pb (3.2)

which is equivalent to Eq. (3.1) and so have the same solution. If P is chosen so as
to obtain k(PA) << k(A) then the problem will not be stiff anymore: P is called the
preconditioning matrix. To extend density based methods to low compressible flows,
preconditioning is applied to the flux Jacobian matrix [13,153] and the precondition-
ing matrix can be chosen to permit an accurate description both of compressible and
incompressible flows [98, 164]. For stability reasons preconditioning schemes have to
be implicit.

3.1.3 Asymptotic analysis

The asymptotic analysis of the Navier-Stokes equations when M → 0 brings to the
identification of different terms in the pressure. In particular following a single scale
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asymptotic analysis (in time and in space) [104] the pressure can be expressed as:

p(x, t) = p0(t) + M̃2p2(x, t) +O(M̃3) (3.3)

with p0(t) = O(1) and M̃ ∝ M . The leading pressure term p0(t) is called the ther-
modynamic pressure and only depends on the time t whereas p′ = M̃2p2 is the very
low incompressible pressure which varies both with time t and in the space x. Thus
the pressure gradient ∆p in the momentum equation reduces to the incompressible
pressure gradient ∆p′. With the same analysis the conservative variables can be
expressed in the low Mach number limit as the sum of a stagnation term and a per-
turbation term. Following this analysis perturbation techniques to extend density
based methods to low Mach number, have been developed: the Navier-Stokes equa-
tions are reformulated in terms of the perturbed variables thus avoiding the stiffness
problem [29, 71, 152]. Also multi pressure variables methods are developed following
the pressure asymptotic decomposition: the basic idea is that the different pressure
terms are accounted separately, and for example only the incompressible pressure will
appear in the momentum equation [105, 133] whereas the thermodynamic pressure
has to satisfy the equation of state.

3.2 Selection of a space marching technique

Difficulties in dealing with low Mach number flows with compressibility effects, like
transcritical fluids flowing in cooling channels are, have been pointed out in the previ-
ous section. These aspects have to be taken into consideration in the development of
the numerical code. Other aspects characterizing cooling channel flows are presently
considered. Cooling channels have a long length with respect to their section and no
reverse flow is expected because the streamwise velocity is always a positive quantity
and much greater than the crosswise velocity. Moreover, we are interested in steady
state flows. Considering these features reduced forms of the Navier-Stokes equations
can be taken into consideration. In fact streamwise diffusion of momentum and en-
ergy can be neglected for the present cooling channels, so as to obtain the so-called
parabolized Navier-Stokes equations. The interest in considering such reduced system
is that it can be numerically solved with a space marching approach, if the streamwise
pressure gradient is suitably treated, thus alloying a simplification on the problem.
In the following first a literature review on numerical methods for PNS is carried
out. It will come out that the same methods applied for full Navier-Stokes equations
(FNS) are used for PNS. In particular pressure-based methods are usually used for
incompressible flows whereas density based methods are used for compressible flows.
A mathematical formulation of the system of equations presently considered is then
done together with the demonstration of the hyperbolic nature of the system Eulerian
part.

3.2.1 Literature review on PNS numerical methods

Parabolized Navier-Stokes equations have been introduced in the literature since the
seventies to describe both subsonic-incompressible and supersonic-hypersonic flows.
Several methodologies have been developed and all the approaches share three com-
mon characteristics:
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• the steady form of the governing equations is employed;

• streamwise diffusive terms are neglected;

• some assumptions have to be made to treat the streamwise pressure gradient
in the subsonic region.

With these assumptions the solution can be “marched” in space, so that a typical
problem is reduced from four (three space dimensions and time) to three dimensions.
PNS equations are suitable to describe flows with a predominant direction, but for
which crosswise momentum equation is important as for example channel flows with
curvature or high crosswise gradients of the thermodynamic properties, or external
supersonic flows for which the interaction between inviscid flow and boundary layer
is important. For this kind of flows boundary layer equations are not suitable be-
cause they require that the crosswise momentum equation reduces to ∂p/∂y = 0.
PNS equations are intermediate between full Navier-Stokes equations (FNS) and
boundary-layer equation (BL). Nevertheless, BL numerical methods cannot be ap-
plied to PNS, rather FNS methods have to be suitably modified to solve PNS. There-
fore for PNS different approaches have been developed to describe incompressible
and weakly compressible or supersonic-hypersonic flows, as for FNS. Consequently
a first classification can be made between pressure-based PNS solvers developed for
incompressible flows and density-based approaches for highly compressible flows.

Incompressible and subsonic flows

Implicit pressure-based algorithms developed to solve PNS equations for subsonic
flows differ in the way the pressure gradient is treated. As it will be mathematically
pointed out in the following, once the streamwise diffusion terms have been neglected,
the streamwise pressure gradient is the only elliptic term which permits information
to propagate from downstream to upstream and hence must be suitable treated to
permit a space marching approach. If the pressure gradient is somehow assigned,
initial value methods, also referred as fully parabolic methods, are developed for which
the solution is obtained marching from initial values until the end of the domain is
reached. Conversely for global iteration methods referred to as Partially Parabolized
Navier-Stokes (PPNS) the streamwise pressure gradient is an unknown: iteration
algorithms are used for which multiple domain sweeps are necessary until convergence
is reached [77,114,147].

Pantakar and Spalding [117] were among the first to introduce a fully parabolic al-
gorithm to describe laminar incompressible, internal and external flows. They assume
that the streamwise pressure gradient dp/dx is constant in the crosswise direction and
evaluate it separately imposing the mass conservation for internal flows, or from the
inviscid external solution for external flows. Differently none assumption is made on
the crosswise pressure gradients ∂p/∂y and ∂p/∂z, which are included in the equa-
tions and permit a pressure variation in crosswise planes. To allow the description
of curved geometries, Briely [16] further divided the pressure in multiple contribu-
tions: an inviscid pressure field is obtained from a potential flow solution through
the given geometry, which is then corrected with the viscous pressure field. This
last field is calculated with the space marching algorithm in which streamwise and
pressure gradients are treated separately following Pantakar and Spalding approach.
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Starting from this basic idea of dividing the solution in a viscous and inviscid part,
primary-secondary flows algorithms were developed afterward and largely employed
in particular to describe situations with large secondary flows [17,47,77,87].

Global iteration methods have been developed [28, 106]: in these approaches the
equations are only partially parabolized because the elliptic influence has been only
partially eliminated neglecting streamwise diffusion terms while upstream influences
can still be transmitted through the pressure field. Hence in global iterations methods
an initial pressure field is prescribed, and multiple sweeps of a marching integration
method across the domain are carried out until the correct pressure field is reached.

Although simpler than the corresponding FNS, these parabolic pressure based
algorithm are computationally heavy because of the sequential solving of the equa-
tions which are then coupled. Differently, space-marching methods developed for
supersonic flows solve the governing equations in steady form as a coupled system
by marching in space in the streamwise direction. These methods are economical,
elegant and straightforward. For these reasons Pougare and Lakshminarayana [124]
developed a method for incompressible flows based on ideas used in space-marching
methods for supersonic flows with the pressure streamwise gradient treated as a source
term evaluated from an inviscid solution of the flow field.

Regarding LRE cooling channels, Frölich et al [11] developed a suitable code based
on the SIMPLE algorithm adapted to a co-located variable arrangement: numerical
results obtained with this tool were validated against experimental and other nu-
merical results [81] demonstrating the validity of the PNS approach to study cooling
channels configurations.

Supersonic and hypersonic flows

Also for supersonic flows parabolic methods, more often referred as space marching
methods, where developed mostly for external flows: a complete review of these meth-
ods can be found in the work of Rubin at al. [137] and in Chapter 8 of the text by
Tannehill et al. [147]. Initially these methods were introduced to compute supersonic
flows over circular cones at angle of attack, and then have been extended for generic
shapes [159]. For supersonic flows the streamwise pressure gradient problem comes
out only in the confined subsonic regions near the wall. Where the flow is supersonic
neglecting streamwise diffusion is sufficient to the flow to be parabolic and the solu-
tion can be marched in space. Conversely if the flowfield includes subsonic regions
the pressure gradient must be correctly handled. The common applied strategy fol-
lows Vigneron et al. analysis [159] which demonstrates that if only a portion of the
streamwise gradient is retained in the equations the system is still well posed for a
space marching resolution technique. The remaining streamwise pressure gradient is
usually neglected [35,159] or evaluated with a backward difference [44]. However, dif-
ferent studies have demonstrated that a backward difference gives stability problems
unless the space marching step is greater than a minimum value, which is in contrast
with the CFL requirement condition [75, 147]. Because of the hyperbolic-parabolic
nature of PNS equations upwind schemes have been efficiently applied. Initially a
switch between central differences and upwind differences were made passing from
subsonic to supersonic regions [80], then methods based on upwind schemes in all the
flow regions where developed. In particular, schemes based on the Roe’s approximate
Riemann solver for a perfect gas can be found [75,162] as well as the essentially non
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oscillatory (ENO) scheme based on a linearized approximated Riemann solver [35].
Moreover, also finite volume schemes based on unsteady Riemann problems have
been developed [44]: the invariants and characteristics directions are obtained from
unsteady Euler equations, though they are not consistent with the equations that are
actually integrated. Real gas effects have also be taken into account in few works:
Vigneron analysis has been extended to chemically reacting flows [19, 36, 148] and
Gerbsh et al. [44] scheme is based on a general equation of state.

3.3 Parabolized Navier-Stokes equations

Before mathematically approaching the equations let us briefly outline what is meant
by parabolized Navier-Stokes equations (PNS). In appendix C the mathematical def-
initions of the terms elliptic, parabolic, hyperbolic can be found. These concepts
are here applied to the Navier-Stokes equations. The steady state full Navier-Stokes
equations (FNS) for subsonic flows form an elliptic-parabolic system: all the variables
in a certain point depend upon the solution in the whole integration domain. Let
us consider a channel flow with a length much longer than the hydraulic diameter
and a streamwise velocity which is much greater than the crosswise velocity and al-
ways positive. In these conditions the diffusive effect in the streamwise direction is
negligible compared to the convective effect therefore diffusive terms do not influence
the solution and they can be neglected. Because the flow is subsonic, pressure waves
traveling with the speed of sound are faster than the fluid velocity and this permits
the information to travel also upstream. If the evolution of the pressure along the
streamwise direction is supposed to be known then the solution in a point will depend
only on upstream influence and the system is said to be parabolized in the streamwise
direction. Parabolized Navier-Stokes equations are a mixed hyperbolic-parabolic sys-
tem in the streamwise direction. This means that, with suitable initial and boundary
conditions, the mathematical problem is well posed for a space marching solution
methodology in the streamwise direction.

3.3.1 From full Navier-Stokes to parabolized Navier-Stokes equa-
tions

In the following the mathematical passages that permit to obtain the parabolized
Navier-Stokes equations for channel flows are reported. For the sake of clarity the
equation are written considering a Cartesian reference system (x, y, z) but all the
reasoning that follows can be equally carried out in generalized coordinates. The
three dimensional Navier-Stokes equations for a steady state flow can be written in
the following conservative form:

∂Fe

∂x
− ∂Fv

∂y
+
∂Ge

∂y
− ∂Gv

∂y
+
∂He

∂z
− ∂Hv

∂z
= Q (3.4)

where the subscripts ()e and ()v indicate the Eulerian and viscous flux vectors, re-
spectively. A source term vector Q has been emphasized in Eq. (4.1) for the sake of
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generality. The expressions of the flux vectors are:

Fe =


ρu

ρu2 + p
ρuv
ρuw
ρuh0

 Ge =


ρv
ρuv

ρv2 + p
ρvw
ρvh0

 He =


ρw
ρuw
ρvw

ρw2 + p
ρwh0

 (3.5)

Fv =



0

2

3
µ

(
2
∂u

∂x
−
∂v

∂y
−
∂w

∂z

)

µ

(
∂u

∂y
+
∂v

∂x

)

µ

(
∂u

∂z
+
∂w

∂x

)
uFv,2 + vFv,3 + wFv,4 + k

∂T

∂x



(3.6)

Gv =



0

µ

(
∂u

∂y
+
∂v

∂x

)
2

3
µ

(
2
∂v

∂y
−
∂u

∂x
−
∂w

∂z

)

µ

(
∂v

∂z
+
∂w

∂y

)
uGv,2 + vGv,3 + wGv,4 + k

∂T

∂y



Hv =



0

µ

(
∂u

∂z
+
∂w

∂x

)

µ

(
∂v

∂z
+
∂w

∂y

)
2

3
µ

(
2
∂w

∂z
−
∂v

∂y
−
∂w

∂z

)
uHv,2 + vHv,3 + wHv,4 + k

∂T

∂z



(3.7)

In the above flux vectors u,v and w are the components of the velocity in x, y and z
directions respectively; ρ is the density, T is the temperature and p is the pressure;
µ and k are the dynamic viscosity and thermal conductivity; h0 is the total enthalpy
defined by:

h0 = h+
u2

2
+
v2

2
+
w2

2
(3.8)

The Navier-Stokes equations system (3.4) can be used to describe the flow in a cooling
channel. So a straight channel of length L and hydraulic diameterD, with the stream-
wise direction aligned with the x coordinate, is presently taken into consideration. A
schematic of the channel is shown in Fig. 3.2.

Assuming that it is L >> D and u >> v (u always positive) a dimensional
analysis of the equation system (3.4) can be carried out defining the following non
dimensional quantities:

ρ̄ =
ρ

ρr
, ū =

u

ur
, v̄ =

v

vr
, w̄ =

w

wr
, p̄ =

p

ρru2
r

, µ̄ =
µ

µr
, (3.9)

x̄ =
x

L
, ȳ =

y

D
, z̄ =

z

D
(3.10)
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Figure 3.2: Integration domain: straight channel with L >> D and u >> v, u >> v

where the reference quantities have been indicated with subscript r and non dimen-
sional quantities with an overbar. Reference quantities are chosen so as to obtain
non dimensional quantities of order O(1). With this reference quantities let us con-
sider the non dimensional form of the first momentum equation of Eq.(3.4) having

multiplied by the factor
LD

urµr
:

ρrurD

µr

(
∂(ρ̄ū2)

∂x̄
+
∂p̄

∂x̄
+
vr

ur

L

D

∂(ρūv̄)

∂ȳ
+
wr

ur

L

D

∂(ρ̄ūw̄)

∂z̄

)
−

µ

(
4

3

D

L

∂2ū

∂x̄2
+
L

D

∂2ū

∂ȳ2
+
L

D

∂2ū

∂z̄2
+

1

3

vr

ur

∂2v̄

∂x̄∂ȳ
+

1

3

wr

ur

∂2w̄

∂x̄∂z̄

)
= 0

(3.11)

The Reynolds number based on the channel diameter Re =
ρrurD

µ
, appears in the

convective terms: we recall that for the flow of interest we have high Reynolds num-
bers of the order of 105−106. On the other hand we can introduce the little parameter
ε defined as the order of the ratio D/L. Let us analyze the order of the other non
dimensional numbers appearing in Eq. (3.11). We can suppose that the ratio between
crosswise and streamwise velocities is at least of order O(ε) or even smaller. With
this assumption it results that:

•
vr

ur

L

D
= O(1) and

wr

ur

L

D
= O(1)

hence all the convective terms are multiplied by Re

•
D

L
= O(ε)

•
L

D
= O

(
1

ε

)

•
vr

ur
= O(ε) and

wr

ur
= O(ε)

So with the above hypothesis this analysis indicates that the terms of order O(ε),
which are all the diffusive terms that involve a streamwise derivative, can be neglected
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in a first approximation. The same non dimensional analysis can be carried out for all
the equations and leads to similar results. Neglecting all the streamwise derivatives
in the viscous fluxes of Eq. (3.4), the following simplified system is obtained:

∂Fe

∂x
+
∂Ge

∂y
− ∂Gv

∂y
+
∂He

∂z
− ∂Hv

∂z
= Q (3.12)

where Fv is no longer present and the Gv and Hv viscous fluxes are simplified as
follows:

Gv =



0

µ
∂u

∂y
2

3
µ

(
2
∂v

∂y
−
∂w

∂z

)

µ

(
∂v

∂z
+
∂w

∂y

)
uGv,2 + vGv,3 + wGv,4 + k

∂T

∂y



Hv =



0

µ
∂u

∂z

µ

(
∂v

∂z
+
∂w

∂y

)
2

3
µ

(
2
∂w

∂z
−
∂v

∂y

)
uHv,2 + vHv,3 + wHv,4 + k

∂T

∂z



(3.13)

The main question at this point is to understand what is the mathematical nature
of the reduced Navier-Stokes equation system (3.12). As it will be mathematically
demonstrated in the following, system (3.12) is an hyperbolic-parabolic system only
for supersonic flows. For subsonic flows the streamwise pressure gradient permits
information to propagate upstream and therefore the system is elliptic. Nevertheless
Vigneron et al. [159] showed that if only a fraction ω (0 ≤ ω ≤ 1) of the stream-
wise pressure gradient (∂p/∂x) is retained in the equations, the system becomes
hyperbolic-parabolic in the streamwise direction also in the case of subsonic flows.
This is done by splitting the pressure term in the Eulerian flux Fe in two parts:

p = ωp+ (1− ω)p (3.14)

Then ωp is retained in Fe whereas (1−ω)p is considered as a source term thus yielding
to the following system:

∂Fe

∂x
+
∂Ge

∂y
− ∂Gv

∂y
+
∂He

∂z
− ∂Hv

∂z
= Q +

∂P

∂x
(3.15)

The vectors Fe and P are given by:

Fe =


ρu

ρu2 + ωp
ρuv
ρuw
ρuh0

 P =


0

(ω − 1)p
0
0
0

 (3.16)

Vigneron et al. [159] carried out an eigenvalues analysis on system (3.15) with the
simplified assumption of calorically and thermally perfect gas with constant transport
properties and showed that the system is hyperbolic-parabolic if:
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• ω <
γM2

x

1 + (γ − 1)M2
x

< 1 for Mx < 1 and ω = 1 for Mx ≥ 1, with Mx = u/ws.

Hence all the pressure can be included in Fe for supersonic flows (ω = 1)
whereas only a portion can be considered for subsonic flows. Moreover it comes
out that in the incompressible limit (Mx → 0) all the pressure gradient must
be in the source term (ω = 0)

• u > 0 that is no reverse flow occurs. This condition is essential to have non
negative viscous eigenvalues and thus a dumping effect for a positive viscosity.

If these conditions are verified the inviscid eigenvalues are all real, and viscous eigen-
values are real and non negative. This analysis has been extended for chemically
reacting flows [36] and real gas described by a generic equation of state [44]: the re-
sulting constraint on ω is still the same replacing γ by a parameter depending on the
equation of state. In the present work an eigenvalues analysis has also been carried
out to verify what is the constraint on ω for a real gas. In particular the hyperbolic
nature of the PNS system has been addressed considering the Eulerian part of the
PNS system (3.15). The existence of characteristic directions is demonstrated in a
two dimensional case. A generic equation of state is considered h = h(p, ρ), which
permits to extend the results to any kind of EoS. The main results are reported in
this chapter whereas a detailed demonstration can be found in Appendix D. Let us
consider the following system:

∂Fe

∂x
+
∂Ge

∂y
= 0 (3.17)

where the two dimensional Eulerian fluxes are given by:

Fe =


ρu

ρu2 + ωp
ρuv
ρuh0

 Ge =


ρv
ρuv

ρv2 + p
ρvh0

 (3.18)

The system (3.17) can be written in quasi linear form introducing the Jacobian matrix
of the fluxes with respect to the primitive variable vector V defined by:

V =


ρ
u
v
p

 (3.19)

The Jacobian matrix of the fluxes are:

B =
∂Fe

∂V
=


u ρ 0 0
u2 2ρu 0 ω
uv ρv ρu 0

u(h0 + ρhρ) ρ(h0 + u2) ρuv ρuhp

 (3.20)

C =
∂Ge

∂V
=


v 0 ρ 0
uv ρv ρu 0
v2 0 2ρv 1

v(h0 + ρhρ) ρuv ρ(h0 + v2) ρvhp

 (3.21)
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where the following contracted notations for the thermodynamic derivatives have
been used:

hp =

(
∂h

∂p

)
ρ

hρ =

(
∂h

∂ρ

)
p

(3.22)

Hence, defining the matrix Av = B−1C, the system (3.17) can be written in a
quasi linear form:

∂V

∂x
+ Av

∂V

∂y
= 0 (3.23)

To understand the mathematical nature of this system Av eigenvalues must be cal-
culated solving the problem:

det(Av − λI) = 0 (3.24)

where I is the identity matrix and λ the generic eigenvalue. This problem is equivalent
to:

det(C− λB) = 0 (3.25)

which will be considered. Two parameters are introduced for the clearness of notation:

x̂ = ρhp ŷ = ρhρ (3.26)

Hence the computed four eigenvalues are:

λ1,2 =
v

u
λ3,4 =

[2x̂− (ω + 1)]uv ±
√

∆

2[(x̂− ω)u2 + ωŷ]
(3.27)

with ∆ given by:

∆ = (ω − 1)2u2v2 − 4[(x̂− ω)u2 + ω(x̂− 1)v2]ŷ − 4ωŷ2 (3.28)

The system is hyperbolic if all the eigenvalues are real. λ1,2 are always real and are
defined if u 6= 0 : this last condition is included in the previous hypothesis u > 0.
The two others eigenvalues λ3,4 are real if ∆ is positive and hence its sign must be
investigated. First the hypothesis u� v can be used to simplify the expression of ∆,
neglecting the terms multiplied by the crosswise velocity v thus yielding to:

∆ w −4y[(x̂− ω)u2 + ωŷ] (3.29)

Furthermore using some basic thermodynamic relations it can be shown that:

x̂ = ρep + 1

ŷ = −w2
sρep

(3.30)

where ws is as usual the speed of sound, and ep =

(
∂e

∂p

)
ρ

. Thus the sign of ŷ is

related to the sign of ep which can also be expressed as:

ep =
cv(
∂p

∂T

)
ρ

(3.31)
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where cv is the specific heat at constant volume which is always positive. Also the

derivative

(
∂p

∂T

)
ρ

is a positive quantity for any generic equation of state. To con-

firm this obvious statement the computed above derivative with the thermodynamic
models presented in Chap. 2 is reported in Fig. 3.3 versus temperature for different
supercritical pressures. The temperature range covers different regimes going from
the liquid-like condition to perfect gas condition, and the observed quantity is always
positive.

Figure 3.3: Evolution of

(
∂p

∂T

)
ρ

with the temperature for different supercritical pressures

(6 MPa< p < 13 MPa) for methane. (logarithmic scale)

The previous conditions imply that ŷ < 0. Thus ∆ is positive if the term between
square brackets in Eq. (3.29) is positive which reduces to the following condition on
ω:

ω <
[1 + ρep]M

2
x

M2
x + ρep

(3.32)

where Mx = u/ws is the Mach number in the streamwise direction. This condition is
equivalent to the perfect gas one if γ is replaced with an equivalent parameter defined
as:

γ = 1 +
1

ρep
(3.33)

The internal energy derivative ep is always positive and hence it results that the
right hand side of Eq. (3.32) is always positive. Moreover it is an increasing function
of the Mach number and it tends towards zero when Mx → 0. Hence, despite the
foregoing demonstration that would allow to retain part of the pressure gradient in the
Eulerian flux, considering that we are interested in very low Mach number flows, in
the present approach the ω parameter has been taken null. Therefore the streamwise
pressure gradient is considered as a source term and so the expressions of Fe and P
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in Eq. (3.15) become:

Fe =


ρu
ρu2

ρuv
ρuw
ρuh0

 P =


0
−p
0
0
0

 (3.34)

With these expressions Eq. (3.15) is a hyperbolic-parabolic system that can be called
a system of Parabolized Navier-Stokes equations (PNS) in the streamwise direction.
The corresponding eigenvalues can be obtained replacing ω = 0 in Eq. (3.27):

λ1,2 =
v

u
λ3,4 =

[2x̂− 1] v ±
√

∆

2x̂u
(3.35)

with ∆ given by:
∆ = v2 − 4x̂ŷ (3.36)

As was expected the eigenvalues defined in Eq. (3.35) are always real: in fact as it
as been demonstrated x̂ > 1 and ŷ < 0. This analysis permits to conclude that the
obtained PNS system of Eq. (3.15) has a hyperbolic nature. This means that char-
acteristic directions exist and this will permit to numerically solve the PNS problem
with methods based on existence of characteristic directions.

3.4 Riemann problem for PNS

The Eulerian system (3.17) with ω = 0 is a hyperbolic system. This implies that
the solution has a propagation nature. The system is well posed if initial condi-
tions are assigned. In particular a Riemann problem arises if initial conditions are
discontinuous [7]. This special initial value problem can be written as:

∂F

∂x
+ A

∂F

∂y
= 0 −∞ < y < +∞, x > 0

F(0, y) ≡ FL(y > 0) F(x, y) ≡ FR(y < 0)

(3.37)

where the subscript e and the overbar on F have been omitted to simplify the notation.
The Jacobian matrix A is defined as:

A =
∂G

∂F
(3.38)

The Riemann problem of Eq. (3.37) is represented in Fig. 3.4. The structure of its
solution consists of four waves emanating from the origin, one for each eigenvalue.
The solution at the left of λ3 is simply FL and on the right of λ4 is FR. The task
of a Riemann problem is to find the solution in the wedges between the waves. In
particular for the present work we are interested in finding the solution for y = 0. For
this purpose an approximate Riemann solver is developed. This is the well known
Roe’s Riemann solver which has been modified for the PNS and for a generic EoS. Also
Korte [75] developed a Roe’s Riemann solver for the PNS equations but considering a
perfect gas equation of state whereas in the present work a generic equation of state
has been considered h = h(p, ρ).
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Figure 3.4: Schematic of a Riemann problem

3.4.1 Roe’s approximate Riemann solver

The method of Roe [132] to solve the problem of Eq. (3.37) considers approximate
solutions which are exact solutions to the following approximate problem:

∂F

∂x
+ Ã

∂F

∂y
= 0 (3.39)

where Ã is a constant matrix, representative of local conditions. Ã has to satisfy the
following properties which form the so called U property :

(i) it constitutes a linear mapping from vector space F to the vector space G

(ii) as FL → FR → F, Ã(FL,FR)→ A(F) =
∂G

∂F

(iii) for any FL,FR, Ã(FL,FR)× (FL − FR) = GL −GR

(iv) the eigenvectors of Ã are linear independent

Once Ã is known, the evaluation of her eigenvalues λi and corresponding eigen-
vectors r(i) permit to get an approximate solution of the Riemann problem which can
be written in terms of the transverse flux G in y=0:

G(x, 0) =
1

2
(GR + GL)−

1

2

4∑
i=1

|λi|air(i) (3.40)

where ai are the projections of the jump ∆F = FL − FR on the eigenvectors as a
basis:

∆F =
4∑
i=1

air
(i). (3.41)

In the present work the same approach followed in [132] is used to find the matrix
Ã which verify the above properties. Moreover a generic equation of state will be
considered in the implicit form

p = p(ρ, ρh) (3.42)
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The searched matrix Ã must verify property (iii) that is it must be a mapping
between jumps ∆F = FL − FR and ∆G = GL − GR. To find such a matrix
the parameter vector w =

√
ρ[1, u, v, h0] is defined following the idea introduced by

Roe. The jump of any variable, scalar or vector, is here indicated with the notation
∆(·) = (·)L − (·)R. Also for the parameter vector it is ∆w = wL − wR. The flux
vectors F and G can then be expressed in terms of the w components:

F =


w1w2

w2
2

w2w3

w2w4

 G =


w1w3

w2w3

w2
3 + p(w2

1, σ)
w3w4

 (3.43)

where the pressure p has been reported as an implicit function of density ρ = w2
1

and the thermodynamic variable σ = ρh = ρ(h0 − 1
2u

2 − 1
2v

2) = w1w4 − 1
2w

2
2 − 1

2w
2
3.

At this point it is useful two introduce two more symbols, α and β, to indicate the
thermodynamic derivatives of p to respect to ρ and σ:

α =

(
∂p

∂ρ

)
σ

β =

(
∂p

∂σ

)
ρ

(3.44)

The mapping ∆w → ∆F and ∆w → ∆G can be expressed with two matrix B̃
and C̃ respectively, evaluated at the arithmetic mean w̄ = 0.5(wL + wR):

B̃ =


w̄2 w̄1 0 0
0 2w̄2 0 0
0 w̄3 w̄2 0
0 w̄4 0 w̄3

 C̃ =


w̄3 0 w̄1 0
0 w̄3 w̄2 0

2αw̄1 + βw̄4 −βw̄2 w̄3(2− β) βw̄4

0 0 w̄4 w̄3

(3.45)
To obtain C̃ the pressure jump ∆p has been written in terms of ∆w, α and β
according to:

∆p = 2αw̄1∆w̄1 + β∆σ

∆σ = w̄1∆w4 + w̄4∆w1 − w̄2∆w2 − w̄3∆w3
(3.46)

The matrix Ã can be straightforward evaluated from B̃ and C̃, in fact:

∆F = B̃∆w

∆G = C̃∆w = C̃B̃−1∆F

}
Ã = C̃B̃−1 (3.47)

Nevertheless to evaluate the eigenvalues and eigenvectors of Ã it is not necessary
to compute Ã: they can be evaluated from B̃ and C̃ as it will be demonstrated.

Eigenvalues

The eigenvalues of Ã can be computed according to

det(C̃− λB̃) = 0

demonstration:
det(Ã− λI) = 0

Ã = C̃B̃
−1 ⇒ det(C̃B̃

−1 − λI) = 0

I = B̃B̃
−1 ⇒ det([C̃− λB̃]B̃−1) = 0

Binet Theorem⇒ det(C̃− λB̃)det(B̃−1) = 0
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Eigenvectors

If s and r are the eigenvectors associated with the eigenvalues problems:

(C̃− λB̃)s = 0

(Ã− λI)r = 0

it results that
r = B̃s

demonstration:
(Ã− λI)r = 0

Ã = C̃B̃
−1 ⇒ (C̃B̃−1 − λI)r = 0

I = B̃B̃
−1 ⇒ (C̃− λB̃)B̃−1r = 0

(C̃− λB̃)s = 0⇒ s = B̃−1r

At this stage it is convenient to divide all the components of B̃ and C̃ by w̄1 and
do adopt the following notation:

ϕ =
ρ

1/2
R ϕR + ρ

1/2
L ϕL

ρ
1/2
R + ρ

1/2
L

(3.48)

with ϕ being u, v, h0 or p. Hence it will be u = w̄2/w̄1, v = w̄3/w̄1 and h0 = w̄4/w̄1.
With these notations the eigenvalues problem can be expressed as:

det(C̃− λB̃) = det


v − λu −λ 1 0

0 v − 2λu u 0
2α+ βh0 −βu− λv (2− β)v − λu β

0 −λh0 h0 v − λu

 = 0 (3.49)

The resultants eigenvalues are:

˜λ1,2 =
v

u
˜λ3,4 =

(2− β)v

2u
±

√
∆̃

2u
(3.50)

∆̃ = β2v2 + 4(βh+ α) (3.51)

The corresponding eigenvectors are:

r(1) =


1
0
0

−2
α

β
− h0

 r(2) =



q2/(2(2
α

β
+ h0)) + 1

2u
2v

h0 +
q2

2


r(3,4) =


u
u2

λ̃3,4u
2

uh0

 (3.52)

where q2 = u2 + v2.

68



3. Parabolized Navier Stokes equations

3.4.2 The real fluid EoS in the Riemann solver

The originality of the developed Riemann solver relies on the fact that a generic
EoS is considered. Hence any fluid can be theoretically considered provided that
the two parameters α and β are suitably evaluated. It can be shown that α and
β can be computed from the enthalpy h and its derivatives hp hρ. To demonstrate
this statement let us consider a linearization of the enthalpy h = h(ρ, p) around a
constant state h̃ = h(ρ̃, p̃):

h = h̃+ h̃p(p− p̃) + h̃ρ(ρ− ρ̃) (3.53)

Therefore the pressure can be expressed as:

p = p̃+
h− h̃
hp
−
h̃ρ

h̃p
(ρ− ρ̃)

p = p̃+
1

ρ̃h̃p
[ρ̃h− ρ̃h̃+ ρh− ρh]−

h̃ρ

h̃p
(ρ− ρ̃)

p = p̃+
1

ρ̃h̃p
(ρh− ρ̃h̃)−

h̃+ ρ̃h̃ρ

ρ̃h̃p
(ρ− ρ̃)

(3.54)

Hence from this truncated expansion series the pressure jump ∆p between the left
and right states can be expressed as:

∆p =
1

ρhp
∆(ρh)−

h+ ρhρ

ρhp
∆ρ (3.55)

in which the terms which multiply the jumps are evaluated at the average Roe state
defined by Eq. (3.48). Comparing the last relation with Eqs. (3.44) and (3.46) it can
be concluded that α and β can be provided by:

α = −
h+ ρhρ

ρhp
β =

1

ρhp
(3.56)

For a calorically and thermally perfect gas α and β have simple expressions. In
fact from the perfect gas law it results:

p = ρh
γ − 1

γ
= σ

γ − 1

γ
(3.57)

with γ = cp/cv = const. Hence it results:

α = 0 β =
(γ − 1)

γ
(3.58)

3.4.3 U property for the Roe matrix

The matrix Ã appearing in Eq. (3.39) must verify the U property. In the following
the check of each property is carried out. It has to be noticed that although Ã is
never wrote explicitly it is represented by its eigenvalues written in Eq. (3.50).
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First of all the matrix Ã has been constructed as a linear mapping between the
vector spaces F and G which was a request from property (i). Moreover, the param-
eter vector has been introduced precisely to find a matrix which verifies property (iii)
which is essential for the algorithm to be conservative. Also property (iv), which re-
quires the linearly independence of the eigenvalues, is verified because the eigenvectors
has been chosen to be independent. Anyway, this property is further demonstrated
analyzing the determinant of the eigenvectors matrix:

det(r1, r2, r3, r4) (3.59)

which is always non null. Finally property (ii) requires that Ã tends toward the
Jacobian matrix when the right and left states tend one towards each other. This
condition is essential to recover smoothly the linearized algorithm to the original
system. The first observation is that when ϕR → ϕ̄ and ϕL → ϕ̄ also the Roe
average ϕ → ϕ̄ by definition (see Eq. (3.48)). Therefore, the eigenvalues of Ã when
FL → FR → F are obtained from Eq. (3.50) replacing the Roe averages with the

actual state corresponding with F. On the other side, the Jacobian matrix A =
∂G

∂F
has been analyzed in Sec. 3.3.1. In fact it is:(

∂G

∂F

)
=

(
∂G

∂V

)(
∂F

∂V

)−1

→ A = CB−1 (3.60)

Hence A eigenvalues can be computed from

det(C− λB) = 0 (3.61)

which has been evaluated and are given by Eq. (3.35). If x̂ and ŷ are replaced by the
equivalent:

x̂ =
1

β
ŷ = −

α

β
− h (3.62)

It is easy to verify that when the right and left states tend one towards each other Ã
eigenvalues of Eq. (4.45) tend towardsA eigenvalues of Eq. (3.35) which demonstrates
that Ã→ A

3.5 PNS model to study low Mach number compressible
flows

It has been demonstrated that PNS are suitable to be numerically solved with a space
marching approach and this permits to simplify the original problem: in fact march-
ing in space instead of marching in time permits to reduce the problem dimensions
from four (t, x, y, z) to three (x, y, z). Nevertheless the issue of solving low Mach
number compressible flow is still present: how PNS equations deal with this partic-
ular regime? This may of course depend on the way these equations are numerically
solved. Anyway, to answer this question we have to analyze the low Mach number
problems that were exposed in Section 3.1 for the PNS system of equations (3.15)
with Vigneron parameter ω = 0.
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• Accuracy problem. The streamwise pressure gradient is completely consid-
ered as a source term, that has to be correctly evaluated (and this is a delicate
issue that will be faced in the next chapter), and for this reason the problem of
errors in the solution of the order O(1/M2) that were precisely connected with
the pressure divergence term in momentum equations does not subsist anymore.
Nevertheless, it has to be pointed out that the crosswise pressure gradients are
retained in the equations.

• Convergence problem. The PNS system at low velocity continues to be a
stiff problem because of the small values of λ1,2 compared to the large λ3,4. In
fact λ1,2 will always be very small in a channel because the crosswise velocity
are very small. However this characteristic is inherent of the PNS approach
because u � v is one of the hypothesis that has permitted to obtain these
simplified equations. So the stiffness problem is no longer a low Mach number
problem but much more a price to pay to use this set of simplified equations.
Nevertheless, having simplified the problem, small space steps, and hence a
lengthening of the computational time, can be taken into consideration so as to
reach a correct solution.

These last considerations have just the aim to conclude the reasoning that has been
conducted in this chapter and that has brought to the selection of PNS to face the
numerical simulation of supercritical propellants flows in heated cooling channels: in
the development and validation of the numerical method these aspects will be more
deeply investigated so as to demonstrate the accuracy of the numerical method.
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Chapter 4

Analytical and Numerical Model

PNS equations are suitable to describe flows in cooling channels with a high ratio
L/D, as discussed in Chap. 3, under the two main assumptions:

• the derivatives in the streamwise direction in the diffusive terms are of lower
order of magnitude than the same derivatives in the transverse directions;

• the velocity in the streamwise direction is always positive: no reverse flow
occurs.

Considering these assumptions all the streamwise diffusing terms in the Navier-Stokes
equations have been neglected. Moreover, the streamwise pressure gradient has been
considered as a source term. This last condition is essential for the system to be
hyperbolic-parabolic when the Mach number has very low values. The PNS system
equations obtained after these simplifications are reported here in divergence form. A
Cartesian reference system for a straight tube is considered where x is the streamwise
direction and y,z are the transverse directions. The proposed PNS system is:

∂Fe

∂x
+
∂Ge

∂y
− ∂Gv

∂y
+
∂He

∂z
− ∂Hv

∂z
=
∂P

∂x
+ Q (4.1)

where the subscripts ()e and ()v indicate the Eulerian and viscous flux vectors, re-
spectively, after the PNS approximations have been applied. Therefore this system
of equations corresponds to Eq. (3.15) with ω = 0. The corresponding fluxes are:

Fe =


ρu
ρu2

ρuv
ρuw
ρuh0

 Ge =


ρv
ρuv

ρv2 + p
ρvw
ρvh0

 He =


ρw
ρuw
ρvw

ρw2 + p
ρwh0

 (4.2)
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Gv =



0

µ
∂u

∂y
2

3
µ

(
2
∂v

∂y
−
∂w

∂z

)

µ

(
∂v

∂z
+
∂w

∂y

)
uGv,2 + vGv,3 + wGv,4 + k

∂T

∂y



Hv =



0

µ
∂u

∂z

µ

(
∂v

∂z
+
∂w

∂y

)
2

3
µ

(
2
∂w

∂z
−
∂v

∂y

)
uHv,2 + vHv,3 + wHv,4 + k

∂T

∂z



(4.3)

where subscripts ()2, ()3, ()4, indicate the second, third and fourth component of
vectors, respectively. Pressure does not appear in the streamwise Eulerian flux vectors
because it has been moved to the pressure source vector given by Eq. (3.16) with
ω = 0:

P =


0
−p
0
0
0

 (4.4)

A source term vector Q has also been emphasized in Eq. (4.1) for the sake of gener-
ality.

An important peculiarity of the cooling channel flows of interest is their high
Reynolds number of the order of 105 − 106. The consequence is that these flows
are turbulent. In the present study the Reynolds-averaged Navier-Stokes (RANS)
approach has been used to describe these turbulent flows [8]. In the following the
parabolized form of the RANS equations is presented together with the eddy viscosity
closure model of Spalart-Allmaras suitably modified to account for PNS hypothesis.
Then attention is devoted to the present numerical model. The hyperbolic-parabolic
nature of the PNS system has been demonstrated and this allows to use a space march-
ing method in particular relying on the existence of the characteristics. Therefore, a
Godunov type finite volume scheme has been selected for the numerical model. The
core of the scheme is the approximate Roe’s Riemann solver developed for PNS and
a generic EoS, that has been presented in Chap. 3. Other important characteristics
of the code are the initial and boundary conditions, the treatment of the streamwise
pressure gradient and the thermophysical property models implementation through
suitable look-up table.

4.1 Turbulence model

Reynolds averaged Navier-Stokes equations (RANS) have the same form of the Navier-
Stokes equations except that local instantaneous variables are replaced with averaged
variables. Further stresses, referred to as turbulent stresses, are added in the diffusive
terms. Closure models are then necessary to provide a link between the Reynolds-
Stresses and the other variables. Among closure models the basic class of Eddy
Viscosity/Diffusivity Models, are based on the Boussinesq assumption that the tur-
bulent stress tensor τt,ij can be expressed in terms of the mean rate of strain Sij in the
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same way as viscous stresses for Newtonian isotropic fluid, except that the coefficient
of the molecular viscosity is replaced by eddy viscosity [8]. Boussinesq hypothesis is:

τt,ij = 2µTSij

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(4.5)

where µT is called eddy viscosity or turbulent viscosity. In Eq. (4.5) ui are u, v, w
average velocities and xi are x, y, z coordinates. Applying Boussinesq hypothesis
reduces to replace the transport property coefficients with the sum of laminar and
turbulent coefficients, that is:

µ = µ` + µt k = k` + kt (4.6)

where subscript ` refers to laminar values (given from transport property models) and
subscript t refers to turbulent values. It is necessary to provide µt and kt and several
methods are available for this purpose. Dealing with wall turbulence (which is our
interest in channel flows) the more simple models are algebraic and provide algebraic
expressions for µt and kt as functions of different local parameter as for example the
distance from the wall. More complex models include convection-diffusion equations
to be solved together with the other equations. In the present work the one equation
model of Spalart-Allmaras (SA) has been selected. In fact, this model is suitable to
describe wall turbulence and is widely used in literature for this purpose. Moreover,
thought more complicated than algebraic models, the one equation model of SA
is obviously lighter than two equations models. In the following the SA model is
presented and then suitably modified for the PNS.

4.1.1 Spalart-Allmaras one equation model

Spalart-Allmaras [144] introduced a convection-diffusion equation for the turbulent
viscosity. The idea is to treat µt as an additional transported variable. Whereas the
turbulent conductivity kt is considered to be simply related to the turbulent viscosity
through:

kt = µtcp/Prt (4.7)

where Prt is the turbulent Prandtl number that has been introduced by analogy
with molecular transport. Actually to account for the viscous effect of the wall the
transported variable is an equivalent turbulent viscosity rather than µt defined by:

µ̃ =
µt

fv1

fv1 =
χ3

χ3 + c3
v1

χ =
µ̃

µ`

(4.8)

where cv1 = 7.1 is a constant whereas both the viscous function fv1 and the vis-
cosity ratio χ depend on the local variables. The original SA equation for µ̃ for a
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compressible flow for the non stationary RANS [24] has been adopted here:

Dµ̃

Dt
=

1

σ
(∇((µ` + µ̃)∇ν̃)) + Pprod − Pdest + Pdiff (4.9)

where σ ∈ [0.6 ÷ 1] is a constant and ν̃ = µ̃/ρ. The left hand side of Eq (4.9) is
the material derivative accounting for the convective transport, whereas on the right
hand side the term between brackets is a classical diffusive term, with ∇ given by:

∇ =
∂()

∂x
+
∂()

∂y
+
∂()

∂z
(4.10)

Finally three source terms are also present on the right hand side to account for pro-
duction and destruction and non conservative diffusion of µ̃. In particular, the source
terms are modeled as discussed in the following.

Production term Pprod. The production term expression comes from the re-
quirement that for a simple shear stress it has to be proportional to the mean rate of

strain Sij =
∂u

∂y
. Therefore the production term could be expressed as:

Pprod = cb1SνT (4.11)

where S must be chosen so as to reduce to Sij for a simple shear flow. One suitable
choice is to consider the vorticity S =

√
Ω2
x + Ω2

y + Ω2
z with:

Ωx =
∂v

∂z
−
∂w

∂y
Ωy =

∂w

∂x
−
∂u

∂z
Ωz =

∂u

∂y
−
∂v

∂x
(4.12)

Following the same basic idea that has bring to consider µ̃ instead of µT as transported
variable, S̃ is then introduced instead of S in the production term which becomes:

Pprod = cb1S̃ν̃

S̃ = S +
ν̃

κ2d2
fv2

(4.13)

where κ = 0.41 is the Von-Karman constant, cb1 ∈ [0.13÷0.14] is a constant, d is the
distance from the wall and fv2 is a local viscous function given by:

fv2 = 1−
χ

1 + χfv1
(4.14)

Diffusive term Pdiff . This non conservative diffusive term is totally empirical
and introduces another constant cb2 that can be suitable tuned. The term is given
by:

Pdiff = ρcb2(∇ν̃)2 (4.15)

with cb2 ∈ [0.6÷ 0.7].
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Destruction term Pdest. This term is introduced to account for the near-wall
but non viscous “blocking” effect. Dimensional analysis considerations bring to the
following expression:

Pdest =
cw1fw

ρ

(
µ̃

d

)2

(4.16)

The constant cw1 is evaluated with the equilibrium requirement between Pprod, Pdiff
and Pdest:

cw1 =
cb1

κ2
+

1 + cb2

σ
(4.17)

The wall function fw is introduced so as to get the correct friction coefficient at the
wall, which without it was smaller than the experimental data. This last function is
evaluated locally from:

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

g = r + cw(r6 − r)

r = min

(
µ̃

S̃κ2d2
, 10

) (4.18)

with cw2 and cw3 calibration constants.

4.1.2 Spalart-Almaras equation for the PNS

The PNS system (4.1) is now considered, replacing µ and k with the effective viscosity
and conductivity given by Eq (4.6). The PNS hypothesis have been applied to the
SA Eq. (4.9) in stationary condition, that is without time derivative. Therefore all
the streamwise derivatives have been neglected in the diffusive and source terms. The
equation is then included in system of Eq. (4.1) as the following sixth scalar equation:

∂µ̃u

∂x
+
∂µ̃v

∂y
+
∂µ̃w

∂z
=

1

σ

(
∂

∂y

[
(µ` + µ̃)

∂ν̃

∂y

]
+

∂

∂z

[
(µ` + µ̃)

∂ν̃

∂z

])
+Pprod−Pdest+Pdiff

(4.19)
where:

• the production term is: Pprod = cb1S̃µ̃;

• the destruction term is: Pdest =
cw1fw

ρ

(
µ̃

d

)2

;

• the diffusion term is: Pdiff =
ρcb2

σ

(∂ν̃
∂y

)2

+

(
∂ν̃

∂z

)2
.

In the evaluation of the diffusion terms (conservative and non conservative) the dif-
ference with respect to the standard model is that the streamwise derivatives are
neglected. For the production and destruction terms the corrected vorticity module
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S̃ is computed according to Eq. (4.13) except that the vorticity module S is com-
puted neglecting the streamwise velocity derivatives. The components of the vorticity
vector are therefore:

Ωx =
∂v

∂z
−
∂w

∂y
Ωy = −

∂u

∂z
Ωz =

∂u

∂y
(4.20)

The above closure model contains several coefficients that can be tuned to reproduce
experimental data. In the present model the standard values proposed in [144] have
been used and are reported in Table 4.1.

Coefficient Value

κ 0.41
cb1 0.1355
cb2 0.622
cv1 7.1
cw2 0.3
cw3 2
σ 2/3
Prt 0.9

Table 4.1: Values for the Spalart-Allmaras coefficients taken from [144]

4.2 PNS finite volume scheme

Before facing the numerical model it is convenient to finally write the complete an-
alytical model that has been obtained for the description of the turbulent cooling
channel flows. Therefore the parabolized RANS equations are reported in integral
form considering a generic control volume V̄ bounded by a surface S̄ :∫

V̄

∂Fe

∂x
= −

∮
S̄

(Gny + Hnz)dS +

∫
V̄

∂P

∂x
dV +

∫
V̄
QdV (4.21)

where G = Ge −Gv and H = He −Hv whereas ny, nz are the components in the
y and z directions, respectively, of the outward unit vector normal to the surface S̄.
The Eulerian and viscous fluxes are given by:

Fe =



ρu
ρu2

ρuv
ρuw
ρuh0

uµ̃


Ge =



ρv
ρuv

ρv2 + p
ρvw
ρvh0

vµ̃


He =



ρw
ρuw
ρvw

ρw2 + p
ρwh0

wµ̃


(4.22)
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Gv =



0

µ
∂u

∂y
2

3
µ

(
2
∂v

∂y
−
∂w

∂z

)

µ

(
∂v

∂z
+
∂w

∂y

)
uGv,2 + vGv,3 + wGv,4 + k

∂T

∂y
1

σ
(µ` + µ̃)

∂ν̃

∂y



Hv =



0

µ
∂u

∂z

µ

(
∂v

∂z
+
∂w

∂y

)
2

3
µ

(
2
∂w

∂z
−
∂v

∂y

)
uHv,2 + vHv,3 + wHv,4 + k

∂T

∂z
1

σ
(µ` + µ̃)

∂ν̃

∂y



(4.23)

The source terms are:

P =



0
−p
0
0
0
0


Q =



0
0
0
0
0

Pprod − Pdest + Pdiff


(4.24)

The numerical solution of Eq. (4.21) can be carried out considering that the sys-
tem of equations is hyperbolic-parabolic in the streamwise direction. Therefore the
equations can be solved using a space-marching method in the streamwise direction.
Moreover upwind schemes must be used for the Eulerian part because of its hyper-
bolic nature. Upwind finite volume schemes are largely used in compressible density
based numerical codes to solve the unsteady form of the compressible Navier-Stokes
equations marching in time [4]. The computational domain is divided into volumes,
also called cells. The integration in time arises after the evaluation of the fluxes at
each interface. In particular in upwind schemes the Eulerian fluxes are obtained as
solutions of Riemann problems at each interface. Hence these methods rely on the
existence of characteristic directions which has in fact been demonstrated for the PNS
system in Chap. 3. Therefore such approach is suitable for the PNS system of inter-
est. Given these considerations the present space-marching method relies on a finite
volume scheme in which the unknown Fe fluxes are integrated in the x direction with
an Euler explicit scheme once the Ge, Gv, He, and Hv fluxes have been evaluated
at the cell interfaces. The developed scheme is first order in the streamwise direction
and second order in the crosswise direction.

Geometries that will be investigated are straight channels with the axis aligned
with the x coordinate, which is therefore the streamwise coordinate. Each crosswise
section is perpendicular to the streamwise direction as shown in Fig. 4.1. The generic
crosswise section is divided in control volumes. These volumes are genuinely areas
and are called “volumes” only because of the analogy with unsteady finite volume
schemes. In the following they will be called cells. Hence there are N cells in the y
direction and M cells in the z direction and each cell is individuated with a pair of
indexes (j, k) with j = {1, · · · , N} and k = {1, · · · ,M}. The the index i is associated
with the streamwise direction. In a finite volume approach, the integrated variables
are averages over each cell. Hence in the present case at each integration step i the
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Figure 4.1: Schematic of a generic 3D control volume and discretization of the crosswise
section in (N ×M) cells

integrated variable in the cell (j, k), located in the cell center, is defined as:

F̃i
e,jk =

1

Ax,jk

∫
Sx,jk

Fi
e(y, z)dS (4.25)

where Sx,jk is the surface of the cell (j, k) and Ax,jk is its area. In the following a
lighter notation is assumed omitting the (j, k) indexes in the fluxes subscripts. For
example it is:

F̃i
e ≡ F̃i

e,jk (4.26)

Following the basic finite volume approach the system of Eq. (4.21) is considered
for the volume Vi,j,k represented in Fig. 4.2 that is the volume formed from the cell
(j, k) over the streamwise step ∆x = xi+1 − xi:∫

Vi,j,k

∂Fe

∂x
= −

∫
Sl

(Gny + Hnz)dS +

∫
Vi,j,k

∂P

∂x
dV +

∫
Vi,j,k

QdV (4.27)

where ny, nz are the components in the y and z directions, respectively, of the outward
unit vector normal to the longitudinal surface Sl of the volume Vi,j,k. At this stage
an explicit Euler scheme is chosen for the streamwise integration. Introducing the
averages of Eq. (4.26) and considering that Q and the streamwise pressure gradients
are source terms, the above equation becomes:

F̃i+1
e = F̃i

e −
1

Ax

∫
Sl

(Gny + Hnz)dS + Q∆x+ ∆P (4.28)

where ∆P = Pi+1 − Pi. Hence for each cell, if F̃i
e is known, the rest of the right

hand side must be evaluated to compute F̃i+1
e . In this explicit scheme all the terms

are evaluated in xi and considered constant over the space step ∆x. This requires
the estimation of the source terms in each cell (j, k) and the transverse fluxes on the
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boundary of the cell which is called interface. To this aim several points must be
addresses:

• The thermophysical models described in Chap. 2 are necessary. Nevertheless
their complex analytical form make them not usable in their direct form because
of the consequent high computational cost. Rather, all the thermodynamic
and transport properties of interest are discretized in a data base. During the
solving process the properties are taken from the data base which also includes
the necessary thermodynamic derivatives.

• Suitable initial and boundary conditions are provided.

• The accuracy order of the scheme is strictly related on the way it is built.
A explicit Euler scheme has been adopted in the streamwise direction thus
yielding to a first order accurate scheme in this direction. A CFL condition
permits to choose a ∆x integration step which provides a stable scheme. A
linear reconstruction of the solution over each cell has been adopted to obtain
a second order in the transverse direction.

• Transverse Eulerian fluxes are obtained as solution of Riemann problems at each
interface, whereas central differences are used for the viscous fluxes. A suitable
Riemann solver has been developed in this work. It is a modified version of the
Roe’s approximate Riemann solver [132] for Eq. (4.1) with a generic equation
of state.

• The streamwise pressure gradient is evaluated with an algorithm requiring the
global conservation of the integral momentum equation.

Figure 4.2: Schematic of a generic 3D control volume

4.2.1 Implementation of the thermophysical models

In the numerical resolution thermodynamic and transport properties must be com-
puted and related to the primitive variables. Suitable thermophysical models have
been selected and validated in Chap. 2. However these algebraic models are complex
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polynomials and hence their direct use in a numerical model would bring a high com-
putational cost. For this reason a cheaper method has been adopted. The properties
are provided to the numerical model through look up tables.

Figure 4.3: Two dimensional rectilinear grid for the property database

A two dimensional rectilinear grid is generated for pressure and density. Consid-
ering the ranges of density [ρmin, ρmax] and pressure [pmin, pmax] each node of the
grid is defined by:

ρi i = 1, · · · , Nρ ρi+1 > ρi

pj j = 1, · · · , Np pj+1 > pj
(4.29)

Moreover ∆ρ = (ρi+1 − ρi) and ∆p = (pj+1 − pj) are constant over the grid. A
schematic of the grid is reported in Fig. 4.3. A property database is then obtained
computing all the property of interest in the above grid nodes (ρi, pj) with the models
of Chap. 2. Bicubic splines are used to evaluate the value of a generic property F
in a thermodynamic state (ρ̄, p̄), which in general does not correspond with any of
the grid nodes. Bicubic splines are piecewise cubic functions that pass through a
set of given data points. They are continuous and continuously twice differentiable.
Hence they permit to have a very accurate approximation of the property that would
have been evaluated directly with the thermophysical model equation. Moreover the
differentiability ensure a smooth passage between subregions of the grid. If ρi < ρ̄ <
ρi+1 and pj < p̄ < pj+1, then the generic property F is evaluated with:

F(ρ̄, p̄) =
3∑

m=0

3∑
n=0

c(i, j)mnδρ
mδpn (4.30)

where δρ = ρ̄−ρi and δp = p̄−pj , as depicted in the schematic of Fig 4.4. The c(i, j)mn
are 16 coefficients associated to the grid subregion [ρi, ρi+1] × [pj , pj+1] containing
(ρ̄, p̄). These coefficients are related with the four following values for each of the
four nodes of the subgrid:

F ,
∂2F
∂ρ2

,
∂2F
∂p2

,
∂4F
∂2ρ∂2p

(4.31)
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and can be computed in several ways. In any case for a given choice of Nρ×Np data
points F(i, j) and 2Nρ+2Np boundary conditions, it can be demonstrated that there
is exactly one bicubic spline function which is continuously twice differentiable over
the entire domain [2]. In the present numerical model the bicubic spline coefficients for
each property of interest have been evaluated with the NTCC PSPLINE library [2],
which adopt periodic boundary conditions. These libraries are used in a preprocessor
and for each data point a 4× 4 array of 16 coefficients is retained. Then, at run time
when it is necessary, suitable subroutines permit to compute the needed property F
and its derivatives with respect to pressure and density. If c11, · · · , c44 are the 16
coefficients associated with (i, j), the generic F in the subregion [ρi, ρi+1]× [pj , pj+1]
is computed from:

F(ρ̄, p̄) =c11 + c21 · δρ+ c31 · δρ2 + c41 · δρ3+

δp(c12 + c22 · δρ+ c32 · δρ2 + c42 · δρ3)+

δp2(c13 + c23 · δρ+ c33 · δρ2 + c43 · δρ3)+

δp3(c14 + c24 · δρ+ c34 · δρ2 + c44 · δρ3)

(4.32)

Therefore the formula for the derivatives are:

Fρ(ρ̄, p̄) =c21 + c31 · 2δρ+ c41 · 3δρ2+

δp(c22 + c32 · 2δρ+ c42 · 3δρ2)+

δp2(c23 + c33 · 2δρ+ c43 · 3δρ2)+

δp3(c24 + c34 · 2δρ+ c44 · 3δρ2)

(4.33)

Fp(ρ̄, p̄) =c12 + c22 · δρ+ c32 · δρ2 + c42 · δρ3+

2δp(c13 + c23 · δρ+ c33 · δρ2 + c43 · δρ3)+

3δp2(c14 + c24 · δρ+ c34 · δρ2 + c44 · δρ3)

(4.34)

with Fρ and Fp:

Fρ =

(
∂F
∂ρ

)
p

Fp =

(
∂F
∂p

)
ρ

(4.35)

4.2.2 Initial and boundary conditions

Initial and boundary conditions must be provided to carry out the integration. These
conditions are applied on the primitive variable vector V = {ρ, u, v, w, p, µ̃}, where
also µ̃ has been included for a uniform notation. Hence the number of condition must
be 6.

Initial conditions are necessary to start the integration. The vector V is as-
signed at the channel entrance and the corresponding initial F̃e can be computed.

Boundary conditions are necessary to provide the transverse fluxes on the
computational domain boundary. If the vector V is assigned on the boundary the
corresponding transverse fluxes can be computed. Two conditions are taken into
consideration: a viscous or an Eulerian wall (symmetry condition).
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Figure 4.4: Subregion of the two dimensional grid of Fig. 4.3

• Viscous wall. The no slip and impermeability conditions imply respectively that
the tangential and normal velocities are null. Moreover for the impermeability
condition also the pressure gradient normal to the wall has to be null. Finally
the temperature gradient at the wall can be evaluated from an assigned heat flux
(which is zero in the adiabatic case), or the wall temperature is assigned for an
isothermal condition. In any case the conditions on pressure and temperature
involve a condition on the density. Finally the turbulent viscosity at the wall is
zero by definition. These boundary conditions can be expressed mathematically
as follows: 

u = v = w = 0

∂p

∂n
= 0

k`
∂T

∂n
= q̄w or T = Tw

µ̃ = 0

(4.36)

• Symmetry condition. The normal derivatives of the thermodynamic variables
p and ρ, of the turbulent viscosity and of the velocity tangential to the wall
are null, and the normal velocity component is null. Hence introducing the
normal and tangential unit vectors at the wall n and t, and indicating the
vector velocity U = {u, v, w}, these conditions can be expressed as:

U · n = 0 and
∂U · t
∂n

= 0

∂p

∂n
= 0

∂ρ

∂n
= 0

∂µ̃

∂n
= 0

(4.37)
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The boundary conditions are fundamental to obtain the correct solution of the
test case of interest. For example a straight channel with a circular cross section can
be investigated with a 2D axisymmetric configuration which is obtained considering a
suitable geometry and suitable boundary conditions. The 2D axisymmetric integra-
tion domain is a cylinder slice, as shown in Fig. 4.5. A symmetry boundary condition
is imposed on the lateral surfaces S1 and S2, and a viscous wall boundary condition
on the channel surface Sw,i. The symmetry axis (x-axis in Fig. 4.5) is a degenerate
surface that is with a null area. This implies that all the fluxes at the symmetry axis
must be assigned null.

Figure 4.5: Schematic of a 2D axisymmetric integration domain

4.2.3 Eulerian fluxes

In the present Godunov type scheme the Eulerian fluxes Ge and He are obtained
at each cell interface as solutions of Riemann problems. The simplest approach is
to consider that over each cell the primitive variable vector V = {ρ, u, v, w, p, µ̃} is
constant. This situation is schematically depicted in Fig. 4.6 for a two dimensional
case. Therefore, there is a discontinuity at each intercell j + 1/2 from which arises
a Riemann problem. The Riemann problem solution gives the unknown fluxes at
the interface. This approach, in which a piecewise constant solution is considered at
each integration step, gives a first order accurate scheme. Rather to obtain a second
order accurate scheme linear reconstructions of the solution over each cell must be
considered. This is the followed approach in the developed scheme. Unfortunately
linear reconstructions can bring to spurious oscillations in the solution and hence
a further trick must be considered to obtain a Total Variation Diminishing (TVD)
scheme. This is done considering a slope limiter which permits to suitably choose the
reconstruction slope over each cell so to avoid oscillations. In particular the Minmod
slope limiter have been selected. For example if we consider a two dimensional case
at each integration step i linear reconstruction of V must be considered in the y
direction for every j cell. To obtain a linear reconstruction two information must be
provided:

1. a value in a point in the cell: the average over the cell is associated with the
cell center
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Figure 4.6: Discontinuity between left and right states arising at each intercell j+1/2 with
constant reconstruction of the primitive variable vector V

2. the slope of the line: there are two possible slopes ∆V0 = Vj − Vj−1 and
∆V1 = Vj −Vj+1

the Minmod slope limiter permits to select the slope in the following manner:

∆V =


min(∆V0,∆V1) if ∆V0 > 0 and ∆V1 > 0

max(∆V0,∆V1) if ∆V0 < 0 and ∆V1 < 0

0 if ∆V0 ·∆V1 < 0

(4.38)

(a) ∆V0 > 0, ∆V1 > 0 (b) ∆V0 > 0, ∆V1 < 0

(c) ∆V0 · ∆V1 < 0

Figure 4.7: Linear reconstruction with Minmod slope limiter

Minmod slope limiter effect on the linear reconstruction is schematically repre-
sented in Fig. 4.7 for a generic variable which is one of the V vector components. If
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both the slopes have the same sign, the Minmod slope limiter select the smaller slope
in absolute value. This situation is depicted in Fig. 4.7(a)-4.7(b) for positive and
negative slopes respectively. On the contrary if the slopes have different signs a zero
value is selected as it is the case in Fig. 4.7(c). Finally an example of the discontinuity
that arises at each interface with these linear reconstructions is reported in Fig. 4.8.

Figure 4.8: Discontinuity between left and right states arising at each intercell j+1/2 with
linear reconstruction of the primitive variable vector V using a Minmod slope
limiter

Once the linear reconstructions of the solution have been carried out the trans-
verse Eulerian fluxes Ge and He have to be evaluated on the boundary Sl through
the solution of the above mentioned Riemann problems. Multidimensional Riemann
problems can always be reduced to 1D problems in the normal direction to the sur-
face [4]. Therefore the Roe’s Riemann solver presented in Section 3.4 for a 2D PNS
system is used. The Riemann solver has been developed for PNS and a generic EoS
h = h(p, ρ). The main steps necessary to provide the approximate solution of the
Riemann problem are reported. To this aim the Eulerian part of the PNS system
is written in divergence form for a 2D case (omitting the subscript which are not
necessary here):

∂F

∂x
+
∂G

∂y
= 0 (4.39)

with

F =


ρu
ρu2

ρuv
ρuh0

 G =


ρv
ρuv

ρv2 + p
ρvh0

 (4.40)

The Riemann problem occurring at each interface (j + 1/2) between the cells j and
j+1 is schematically reported in Fig. 4.9: the solution of the problem should provide
the fluxes Gj+1/2 at the interface necessary to update the solution from the step i to
the step i+ 1 in the x streamwise direction.

The system (4.39) can be written in a linear form using the constant Roe’s matrix
Ã:

∂F

∂x
+ Ã

∂F

∂y
= 0 (4.41)
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Figure 4.9: Schematic of a Riemann problem at a cell interface

If λ̃i are the eigenvalues of Ã and r(i) the corresponding eigenvectors, the solution of
the Riemman problem is given by:

Gj+1/2 =
1

2
(GR + GL)−

1

2

4∑
i=1

|λ̃i|air(i) (4.42)

In Eq. (4.42) ai are the projections of the jump ∆F = FL − FR on the eigenvectors
as a basis:

∆F =
4∑
i=1

air
(i) (4.43)

The matrix Ã is expressed in terms of an average state defined by the following
equation:

ϕ =
ρ

1/2
R ϕR + ρ

1/2
L ϕL

ρ
1/2
R + ρ

1/2
L

(4.44)

with ϕ being u, v ,h0 or p. With these notations the eigenvalues of the matrix Ã are:

˜λ1,2 =
v

u
˜λ3,4 =

(2− β)v

2u
±

√
∆̃

2u
(4.45)

∆̃ = β2v2 + 4(βh+ α) (4.46)

The corresponding eigenvectors are:

r(1) =


1
0
0

−2
α

β
− h0

 r(2) =



q2/(2(2
α

β
+ h0)) + 1

2u
2v

h0 +
q2

2


r(3,4) =


u
u2

˜λ3,4u
2

uh0

 (4.47)

Finally α and β are two parameters computed according to the used EoS and are
expressed in terms of density, static enthalpy and its derivatives to respect to pressure
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and density evaluated, as all the other variables, in the average state of Eq. (4.44),
with the following expressions:

α = −
h+ ρhρ

ρhp
β =

1

ρhp
(4.48)

with hp and hρ defined by Eq. (3.22). The projections ai of the jumps along the
eigenvectors are computed solving the linear system of Eq. (4.43) with the LAPACK
routine DGESV.

4.2.4 Viscous fluxes

Second order accurate evaluations must be used also for the viscous fluxes Gv and
Hv. This is obtained considering central differences between adjacent cells for the
primitive variable vectorV. Hence the first order derivatives appearing in these fluxes
are simply evaluated as ratios between the jumps ∆(·) = (·)L−(·)R, whereas the local
value is evaluated as an arithmetic mean: (·)m = 0.5((·)L + (·)R). As an example
in a two dimensional case the viscous flux Gv at each intercell j + 1/2 is evaluated
according to:

Gv =



0

µ
∂u

∂y
4

3
µ
∂v

∂y

uGv,2 + vGv,3 + k
∂T

∂y
1

σ
(µ` + µ̃)

∂ν̃

∂y


→



0

µm
∆u

∆y
4

3
µm

∆v

∆y

uGv,2 + vGv,3 + km
∆T

∆y
1

σ
(µ`,m + µ̃m)

∆ν̃

∆y


(4.49)

4.2.5 The streamwise pressure gradient

How to treat the streamwise pressure gradient is one of the more delicate and critical
points in all the PNS approaches present in literature. In the present approach the
whole streamwise pressure gradient is considered as a source term which has to be
evaluated at each integration step. To this aim it is assumed that the pressure gradient
in the streamwise direction is constant along each transverse plane, namely it does
not depend on the position in the transverse plane. This is a good approximation
in a straight channel, whereas if curved channels have to be investigated further
assumptions should be made. Nevertheless it is important to note that only the
streamwise pressure gradient is assumed constant over the crosswise section while the
pressure can vary: in fact none hypothesis has been made on the crosswise pressure

gradients
∂p

∂y
and

∂p

∂z
which allow the pressure to vary over the section.

The
∂P

∂x
term in Eq. (4.1) is evaluated with an iteration process, imposing the

conservation of the integral momentum equation for each step of channel of length
∆x. Referring to Fig. 4.2 the pressure variation has to verify the following balance
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equation: ∫
Sc,i+1

(ρu2 + p)dS =

∫
Sc,i

(ρu2 + p)dS −
∫
Sw,i

µ
∂u

∂n
dS (4.50)

in which Sc,i+1 indicates the channel cross section surface, and Sw,i the wall surface of
channel in the length ∆x. For example, for a 2D planar channel Eq. (4.50) becomes:

d

dx

(∫ H

0
(ρu2 + p)dy

)
−
(
µ
∂u

∂y

∣∣∣∣
H

− µ
∂u

∂y

∣∣∣∣
0

)
= 0 (4.51)

where H is the height of the channel.
Thus the evaluation of the streamwise pressure gradient implies an iteration pro-

cess. If the solution F̃e,i is known at a certain streamwise step i, once the Eulerian
and viscous fluxes have been evaluated and an initial value is given for the source
term ∆P it is possible to march in space and evaluate the solution F̃e,i+1 at i + 1
according to Eq. (4.28), except that the momentum balance of Eq. (4.50) will not be
verified. Therefore an iteration process is started looking for the value of ∆P, con-
sidered constant for each integration cell, which will permit to verify Eq. (4.50). A
secant iteration method algorithm permits to find the correct ∆P in a few iterations:
as starting value the ∆P at the previous space marching step is considered. Note
that only the second component of the Fe flux is involved in this iteration process,
since it is in fact the only flux influenced by the streamwise pressure gradient within
the hypothesis that have been made (namely that the streamwise pressure gradient
is constant in the transverse direction). This makes the iteration process to find the
pressure gradient rather cheap in terms of computational cost.
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Chapter 5

Validation of the Numerical
Method

The numerical model has been tested and validated for 2D axisymmetric configura-
tions so as to demonstrate its suitability for the cooling channel flows analysis. In the
following the results of a numerical simulation carried out on a supercritical methane
adiabatic flow are first exposed and analyzed. In particular, the turbulence model
is investigated and a convergence analysis is carried out. The purpose of these in-
vestigations is to demonstrate the capability of the numerical method to study the
configurations of interest. Then validation is carried out by making comparisons with
numerical results obtained with a standard density based full Navier-Stokes solver and
with experimental data.

5.1 Numerical investigations

5.1.1 Supercritical methane flow

A numerical investigation has been carried out on a turbulent flow of supercritical
methane in a straight channel with a high length over diameter ratio. The dimensions
are within the expected range for liquid rocket cooling channels (see Chap. 1). More
precisely the channel has a diameter of D = 4 mm and a length of L = 100 D. A
length of 50 D is sufficient to obtain a turbulent developed flow and therefore a devel-
oped flow is expected in the second half of the present channel. At the channel inlet
methane has a supercritical pressure of p = 13 MPa and a subcritical temperature of
T = 118 K. These values correspond to a reduced pressure pr = 2.83 and a reduced
temperature Tr = 0.62 and therefore it is a compressed fluid which has a liquid-like
behavior and hence a very low compressibility. Moreover, the flow inlet velocity is
low (uin = 20 m/s) and hence the inlet Mach number is also very low: Min = 0.014.
The solution can be analyzed both observing the two-dimensional field and the bulk
variables. Different definitions of bulk variables can be found in literature: the def-
initions that have been used in the present study are reported in Appendix F. In
Fig. 5.1 the velocity profiles at different streamwise stations along the channel are
reported in a schematic of the channel: to help figure readability no unit is reported
for the velocity whereas the same velocity profiles with a scale for the velocity are
reported in Fig. 5.2(a). Because constant inlet conditions are enforced, the first space
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marching steps cannot be considered physically correct. Nevertheless, this initial in-
correctness is soon overcome along the channel. Indeed the boundary layer correctly
grows and a developed flow is obtained at 50 diameters, as it is expected for a turbu-
lent flow. In fact, as can be observed in Fig. 5.2(a) the velocity profiles at x/D ≥ 50
are nearly superimposed. The boundary layer development can also be deduced by
the wall shear stress behavior depicted in Fig. 5.2(b). It can be observed that the
shear stress initially decreases because of the increase of the boundary layer thickness
then, once the influence of the wall reaches the whole channel, it starts to grow, and
finally reaches a constant value in the developed region. Of course, the flow is never
truly developed as it should be for ideal incompressible flow and in fact the velocity
profile continues to slightly variate also for x/D > 50 (see Fig. 5.2(a)). However,
the fact that the shear stress can be considered constant in the second half of the
channel demonstrates that the present supercritical fluid is very similar to a liquid
(and this is why is referred to as “liquid-like”). These results confirm the validity of
the developed methodology, especially with respect to the following delicate aspects:

1. capability of describing a liquid-like flow with a very low Mach number with a
density based solver;

2. capability to get a correct flow evolution by enforcing uniform initial conditions
in the radial direction. In the algorithm results stable despite the very strong
gradients just downstream the inlet. This is a very interesting feature for the
developed numerical tool because it permits to easily choose the dynamic and
thermodynamic inlet conditions and hence facilitates parametric studies.

Figure 5.1: Schematic of velocity profiles for an adiabatic, turbulent methane channel flow
(not to scale)

5.1.2 Turbulent law of the wall

In the present simulations turbulence has been modeled with a RANS approach to-
gether with the Spalart-Allmaras closure model modified to suit PNS hypothesis. It
is well known that the original Spalart-Allmaras model [144] is build precisely to fit
the wall logarithmic law: to verify that the modifications that have been made for
the PNS model do not change this behavior, a comparison of a velocity profile in
wall coordinates, u+ = u/uτ and y+ = y/yτ , with what is expected from the law of
the wall theory has been carried out. The friction velocity uτ and the characteristic
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(a) velocity (b) wall shear stress

Figure 5.2: Velocity profiles at different streamwise stations, and wall shear stress for an
adiabatic flow of turbulent methane

length yτ are defined as:

uτ =

√
τw

ρ
yτ =

ν

uτ
(5.1)

where the kinetic viscosity ν and the density ρ are evaluated at the wall together
with the wall shear stress τw. For turbulent flow conditions the velocity profile can
be split into three different regions: the viscous sublayer, the logarithmic layer and
the defect layer [8]. From the law of the wall theory the form of the solution in the
viscous sublayer is linear in wall coordinates:

u+ = y+ (5.2)

whereas in the logarithmic region the following logarithmic law should be valid:

u+ =
1

κ
log(y+) +B (5.3)

with κ = 0.41 (von Kàrmàn constant) and B a constant (B ∼ 5). In Fig. 5.3 a velocity
profile in wall coordinates at the end of the channel is compared with Eq. (5.2) in the
viscous sublayer region and with Eq. (5.3) in the logarithmic layer with B = 5.1: a
perfect agreement is found. This demonstrates the validity and good implementation
of the parabolized version of the Spalart-Allmaras closure model.

5.1.3 Grid convergence

Attention must be devoted on the grid generation which is an important part of any
numerical study. Detail on the grid used for the test cases of the present work are
given in Appendix E.

To verify if the number of cells is sufficient to get the solution of the PNS equations,
a grid convergence analysis has been carried out on the test case analyzed in the
previous section. In particular the same test case has been simulated with three
different grids having 20, 40 and 80 cells in the radial direction. The results are
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Figure 5.3: Comparison between numerical and theoretical velocity profiles in wall coordi-
nates.

reported in Fig. 5.4 for the wall shear stress and the bulk pressure. The transverse
spatial order of accuracy rs for the variable s can be evaluated according to Richardson
method [6,20] by the following expression:

rs = ln

(
sc − sm
sm − sf

)
1

ln(h̄)
(5.4)

where h̄ is the refinement factor between one grid and another (h̄ = 2 in the present
convergence analysis). The subscript (c), (m) and (f) refer respectively to the coarse,
medium and fine solution. The computed order of accuracy is close to the formal one
(which is 2, see Chap. 4) for all the solution quantities as can be observed for the
bulk pressure and the wall shear stress in Fig. 5.4. As an example in Tab. 5.1 the
order of accuracy is calculated with Eq. (5.4) in the streamwise station x/D = 100.
An estimation of the solution sex that could be obtained in the limit N →∞ is given
by the Richardson extrapolation:

sex =
h̄rssf − sm
h̄rs − 1

(5.5)

An estimation of the numerical error can be carried out comparing the Richarson
extrapolation with the computed solution. The errors analyzed with this method for
the local variables are of the order of 1% for the coarse grid, 0.2% for the medium
grid and 0.1% for the fine grid. Note that the errors for the bulk variables are smaller
and this is mainly due to the fact that the averages reduce the difference between one
grid and another (see Appendix F for the details of the bulk variables evaluation).
As an example of the above estimated numerical error the extrapolated wall shear
stress and bulk pressure are reported for x/D = 100 in Tab. 5.1.
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(a) bulk pressure (b) wall shear stress

Figure 5.4: Results obtained with three different grid levels in the radial direction: coarse
grid (N=20), medium grid (N=40) and fine grid (N=80)

coarse medium fine extrapolated r

τw[Pa] 314.156 316.564 317.343 317.719 1.62
pb[MPa] 12.8743 12.8729 12.8725 12.8723 1.7

Table 5.1: Grid convergence analysis: calculation of the spatial order of accuracy and
Richardson extrapolation.

5.2 Validation: comparison between PNS and FNS re-
sults

To validate the PNS solver for a perfect gas, either in a laminar or turbulent condition,
comparisons have been made with the results obtained with the full Navier-Stokes
solver presented in [122], for a 2D planar flow and a 2D axisymmetric flow. The fluid
is air in a perfect gas condition. The parameters of all the test cases presented in the
following are listed in Table 5.2.

Test Geometry Flow pin Tin Min qw D or H L
case [MPa] [K] [MW/m2] [mm] [cm]

TC1 planar laminar 0.164 424 0.60 0.00 5 100
TC2 planar turbulent 0.234 412 0.21 0.10 5 25
TC3 axisymmetric laminar 0.243 311 0.14 0.01 4 50
TC4 axisymmetric turbulent 0.244 304 0.12 0.00 4 10
TC5 axisymmetric turbulent 0.244 312 0.12 0.01 4 10
TC6 axisymmetric turbulent 0.245 422 0.10 0.10 4 10

Table 5.2: Test case inlet conditions and geometric parameters . Fluid: air
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5.2.1 2D planar flow

Results obtained with the FNS and PNS solvers for 2D planar channels are compared
for the following two test cases:

1. Laminar adiabatic flow (TC1);

2. Turbulent non adiabatic flow (TC2).

(a) pressure (b) wall shear stress

Figure 5.5: Comparisons between FNS and PNS for a 2D planar adiabatic laminar flow
(TC1)

(a) pressure (b) wall temperature

Figure 5.6: Comparisons between FNS and PNS for a 2D planar heated turbulent flow of
air in perfect gas conditions (TC2)

Inlet and outlet boundary conditions have to be imposed in the full Navier-Stokes
code: the stagnation state at the entrance (pressure and temperature) and the static

96



5. Validation of the Numerical Method

exit pressure. The geometric parameters of the computational domain (L is the length
of the channel) are reported in Table 5.2. The density, pressure and velocity profiles
at a distance L/2 from the entrance (x = 0) are enforced as the initial condition of
the PNS simulations: the results are compared in the remaining L/2 length of the
channel. Pressure, temperature and Mach number at the entrance of the channel of
the PNS simulations are also reported in Table 5.2. The bulk pressure and the wall
shear stress obtained with the two codes are compared in the Fig. 5.5 for the laminar
test case. The displacement of the PNS solution with respect to the FNS solution
is quite small: the maximum discrepancy is of 0.15% on the bulk pressure and 0.5%
on the wall shear stress. For the turbulent heated flow test case TC2 (Fig. 5.6)
the comparison on the wall temperature Tw is displayed instead of the wall shear
stress. As can be seen also in this case the discrepancies are very small: the biggest
discrepancy is on the wall temperature with a difference of 1% (Fig. 5.6(b)).

5.2.2 2D axisymmetric flow

As for the 2D planar test cases, for the 2D axisymmetric flow validation comparisons
have been made between the results obtained with the FNS and the PNS codes. The
following test cases are analyzed:

1. Laminar non adiabatic flow (TC3);

2. Turbulent adiabatic and non adiabatic flows (TC4,TC5 and TC6).

(a) pressure (b) wall temperature

Figure 5.7: Comparisons between FNS and PNS for a 2D axisymmetric heated laminar
flow of air in perfect gas conditions (TC3)

Figure 5.7 illustrates the comparisons for the bulk pressure and the wall tempera-
ture for the laminar test case: it is a non adiabatic flow with constant heat load along
the channel qw = 104W/m2 (TC3 of Table 5.2). As can be seen the discrepancies
are as small as in the 2D planar cases: the biggest discrepancy is on the wall tem-
perature with a difference of 0.5%. The comparisons for the turbulent test cases are
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(a) pressure (b) wall shear stress

Figure 5.8: Comparisons between FNS and PNS for a 2D axisymmetric adiabatic turbulent
flow of air in perfect gas conditions (TC4)

(a) pressure (b) wall temperature

Figure 5.9: Comparisons between FNS and PNS for a 2D axisymmetric heated turbulent
flow of air in perfect gas conditions (TC5)

presented in Figs. 5.8, 5.9 and 5.10: TC4 is an adiabatic test case, whereas TC5 and
TC6 are heated flows with a constant heat load along the channel of qw = 104W/m2

and qw = 105W/m2 respectively. The analysis of these solutions evidences a very
good agreement for the bulk pressure, with discrepancies smaller than 0.05%. The
differences on the wall shear stress and temperature are smaller than 5% and the
trends of the PNS and FNS results are the same.
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(a) pressure (b) wall temperature

Figure 5.10: Comparisons between FNS and PNS for a 2D axisymmetric heated turbulent
flow of air in perfect gas conditions (TC6)

5.2.3 Computational time

One of the advantages of the PNS approach with respect to the FNS consists in
a saving of computational time. A quantification of the saving has been carried
out by comparing the time it takes to compute the same flow-field with the two
approaches. The test case is the TC4 of Table 5.2 except for the length which is
L = 20 cm, that is 50 diameters. The same mesh in the transverse direction has been
adopted for both the computations. The end of the computation with the two codes
is obviously established by different criteria: the FNS simulation is continued until
iterative convergence to the steady-state is achieved; the PNS simulation finishes when
the end of the tube is reached. The computations have been carried out on an Intel
(R) processor, Core(TM)2, quad core, with a 2.5 GHz CPU. The FNS computation
took ∆tFNS = 7895 s, whereas the PNS one only took ∆tPNS = 299 s, that is more
than 25 times less. This is an illustrative case but the the same order of computational
time saving was obtained in all the configurations.

5.3 Validation: comparison with experimental data

The good agreement between the results obtained with the PNS and the FNS solvers
demonstrates that the terms neglected because of the PNS hypothesis are of minor
importance in channel test cases. However, to extend the analysis to other possible
situations occurring inside rocket engine cooling channels, the case of heating of a
supercritical-pressure/subcritical-temperature fluid has been considered as a further
validation test. Moreover, longer channel than those studied in the foregoing section
should be considered. To reach this goal, for a correct validation of the PNS solver,
a test case has been selected for which experimental data are available in the open
literature. In particular, the selected test case is one of those presented in [54],
which is a detailed experimental study of para-hydrogen flow in heated tubes at
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sub- and super-critical pressures. Among all the test cases, the “64_706” has been
selected because of the particular thermodynamic condition of the hydrogen which
can be of great interest in the field of rocket cooling channels. Test case inlet and
exit temperature are 25 and 53 K, respectively, and the inlet pressure is 5 MPa.
Consequently hydrogen operative condition is transcritical: in fact the pressure is
supercritical (Tr ' 3.8) and the inlet temperature is subcritical (Tr ' 0.8) while the
exit temperature is supercritical (Tr ' 1.8).

This test case is of particular interest because it presents heat transfer deterio-
ration and one of the aim of the present work is to study such phenomena in LRE
cooling channels. The heat transfer deterioration phenomena has been introduced in
Chapter 1 and will be deeply studied in the following, hence no further details are
given in this chapter.

Figure 5.11: Enforced and experimental heat flux.

Some detail on the experiments are given. The mass flow rate per unit area of the
tube cross section is 1324 kg/m2s. The experimental apparatus, reported in Fig. 5.12,
is composed by a straight tube which has a length of 91.44 cm and an internal diameter
of 8.51 mm. It is electrically heated (the nominal heat flux is 2.35 MW/m2) in the
last part of the tube, whereas the first third of the tube is unheated in order to have a
developed flow-field in the heated region [54]. The experimental results are measured
in the heated part of the tube by means of surface thermocouples, pressure taps and
voltage measurement devices, as can be observed in Fig. 5.13 where a schematic of
the test-section is reported.

Computations of the 2D axisymmetric configuration are made by enforcing the
following inlet boundary conditions inferred from experimental data: static pressure
pin = 5.0012 MPa, density ρin = 71.65 kg/m3, velocity uin = 18.5045 m/s and
vin = 0 m/s. These conditions provide the same values as in the experimental test
of static temperature and static pressure at the first instrumented test section and
mass flow rate. Moreover, zero heat flux has been imposed in the first part of the
tube and a non-constant heat flux distribution in the remaining length, as reported
in [54]. In fact, the measured heat flux is different than that theoretically enforced
because of the dependence of the channel material electric resistance on temperature
and because of heat conduction through channel walls. For the latter reason, the
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Figure 5.12: Experimental apparatus [54]

heat flux is non-zero also in the nominal unheated region and a linear interpolation
has been assumed to enforce the smooth transition between the adiabatic and heated
part of the channel (Fig. 5.11). The thermophysical properties of hydrogen has been
evaluated according to accurate models that can be found in [170].

The numerical results are compared with the experimental data in Fig. 5.14 in
terms of wall temperature and bulk temperature, pressure and velocity. Note that
the heat flux deterioration is showed by the large peak of wall temperature (see
Fig. 5.14(a)) occurring at x ' 50 cm. As can be seen in Fig. 5.14(b), the bulk
temperature behavior is very well reproduced by the numerical simulation with a
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Figure 5.13: Test section [54]

discrepancy smaller than 0.2%. Also computed bulk pressure (Fig. 5.14(c)), velocity
(Fig. 5.14(d)) and density (not shown here) fall in the range of experimental test
results, as the maximum discrepancy is only 0.1% for pressure, 0.5% for the den-
sity and 0.6% for the velocity. The wall temperature (Fig. 5.14(a)) shows a larger
discrepancy, which however remains smaller than 6%. These comparisons are very
satisfactory. In fact, the data of [54] are affected by an estimated experimental error
of 3% for the mass flow rate, 4% for the inlet fluid temperature and 1% for the fluid
pressure. Moreover, because the value of material electric resistance is considered no
better than 10% accurate, the same uncertainty affects the estimate of the heat flux
as it is a function of the electric power supplied and the wall material resistance.

For the sake of completeness, the results presented in Fig. 5.14 are also compared
with grid converged FNS simulations carried out for this test case in [123]. As seen in
the foregoing section, there are differences between PNS and FNS results. However,
if compared to experimental data, both results are included within the data uncer-
tainty. In particular, a good agreement is found on the bulk properties, whereas there
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is a greater discrepancy in the evaluation of wall properties (see for instance the wall
temperature in Fig. 5.14(a)). It is interesting to note that in this case PNS results
are even closer to experimental data than FNS results. Although the extremely high
resolution in the streamwise direction of PNS and the different way of enforcing inlet
and outlet boundary conditions could provide a partial explanation, the greater close-
ness of PNS results to experimental data with respect to FNS should be considered
as fortuitous. The overall result is, however, that both approaches can be used to
reasonably predict the flows of interest, as confirmed by comparison with experimen-
tal data. Besides, the most important result for the objectives of the present study is
that the PNS approach provides solutions close to FNS also in the case of turbulent
heated flow of a near critical fluid.

(a) wall temperature (b) bulk temperature

(c) bulk pressure (d) bulk velocity

Figure 5.14: Comparisons between experimental data and numerical results

The good agreement between experimental data and numerical results on this test
case proves therefore that the PNS solver could be a suitable tool to study complex
thermodynamic phenomena, and among all the heat transfer deterioration.
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Chapter 6

Numerical Analysis of LNG as a
Coolant in Liquid Rocket Engines

In the recent years an interest toward methane as a rocket engine fuel (together with
oxygen as oxidizer) has grown up again because of several advantages it presents if
compared with other commonly used fuels. A discussion on this subject has been
done in Chapter 1. It has also been emphasized that in nature the major source of
methane is the natural gas. Commercial LNG is typically made up of 90% or more
of methane and of ethane, propane, butane and nitrogen in different percentages
for the remaining part. Further processing LNG allows one to increase methane
molar fraction with the obvious increase of propellant cost. The cheaper LNG has
therefore been considered as a possible rocket engine fuel instead of pure methane:
in fact, due to the large amount of methane contained, LNG should have the same
kind of advantages as methane. However, using LNG rather than methane may
affect the behavior of the different subsystems in such a way to yield changes of
overall rocket performance that have to be correctly predicted. In the present chapter
attention will be devoted to the influence of the LNG composition on the regenerative
cooling capability, which may strongly affect the whole system performance. To this
goal an accurate thermodynamic description of LNG is important and therefore it
has to be described as a gas mixture by appropriate thermodynamic models. The
most important parameters useful to analyze cooling system performance are the
pressure drop and the temperature increase along the channel and also their local
behavior or rather their evolution along the channel. In particular, it is interesting to
observe how the pressure drop and heat transfer characteristics in the cooling channels
change with LNG composition. To pursue this objective the PNS solver presented
in Chapter 4, together with the thermophysical models and suitable mixing rules
presented in Chapter 2, is used to carry out a parametric investigation on the LNG
composition influence on the propellant heat transfer behavior in cooling channels.
The test case is a 2D straight axisymmetric channel, with constant heat load and a
parametric study has been carried out, varying the LNG composition. The role of the
percentage of the main components of LNG mixture on cooling system performance
is presented on the basis of the numerical results obtained.
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6.1 Test case parameters

6.1.1 Geometry and boundary conditions

To investigate the influence of the LNG composition on the heat transfer behavior in
the cooling channels of a liquid rocket engine, different numerical simulations have
been carried out on a 2D axisymmetric geometry, that is a straight channel with a
circular cross section of diameter D = 4 mm. In Fig. 6.1 a schematic of the test
case with the enforced boundary conditions is shown: in the first 100 diameters no
heat flux is applied so as to obtain a developed flow before heating in the last 200
diameters with a constant heat load of 5 MW/m2. The parametric study has been
carried out keeping constant the following parameters:

• inlet pressure pin = 13 MPa

• inlet temperature Tin = 118 K

• mass flow rate per unit area G = 8500 kg/s/m2

Both the geometry and the boundary conditions have been selected so as to get
reliable thermodynamic conditions for a rocket engine cooling channel. In particular
the work of Schuff et al. [139] has been used as a reference for this purpose.

Figure 6.1: Schematic of the computational domain with the enforced boundary conditions
(not to scale)

6.1.2 LNG compositions

LNG is natural gas that has been condensed to a liquid through a cooling process.
Natural gas composition varies with its source (location and climate) and processing
history. Raw natural gas is a mixture of up to 21 components: methane (CH4) is
the primary component with a molar fraction of at least 80%. Among the other
components there are heavier hydrocarbons (ethane (C2H6), propane (C3H8),...),
carbon dioxide (CO2), nitrogen (N2) and water (H2O) [3,41]. Before the liquefaction
process starts, hydrates, CO2 and other components that will freeze are removed.
Also hydrogen sulphide (H2S) and mercury (Hg) are removed to ensure that the
gas is neither corrosive nor toxic [79]. The LNG composition will depend on the
quality specification, and is quite variable around the world, but in general the main
components molar fractions vary in the ranges reported in Tab. 6.1 [9, 30, 31, 37, 51,
59,108,127]:
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CH4 80− 99%
C2H6 1− 17%
C3H8 0.1− 5%
C4H10 0.1− 2%
C5H12 and heavier ≤ 1%
N2 0− 5%

Table 6.1: LNG composition range [9, 30,31,37,51,59,108,127]

In the present study the heaviest hydrocarbon that has been considered is propane.
Considering the ranges listed in Tab. 6.1, the compositions of Tab. 6.2 have been used
for a first set of numerical simulations. The isobaric evolution with temperature of
density, specific heat at constant pressure cp, the dynamic viscosity µ and thermal
conductivity k are shown for the mixtures of Tab. 6.2 in Fig. 6.2 (these graphics have
been obtained with the models presented in Chap. 2). Also pure methane curves
has been reported for the sake of comparison. The temperature range goes from low
subcritical to high supercritical values, whereas the inlet pressure is 13 MPa which
corresponds to a supercritical value for all the mixtures. From a qualitative point of
view the curves of Fig. 6.2 are similar to each other but in fact there are differences as
large as 20%. The purpose of the work is precisely to investigate how these differences
could influence a heated channel flow.

The mixtures of Tab. 6.2 are only representative of typical LNG composition and
do not give a complete overview. A better understanding of LNG behavior for varying
composition can be obtained analyzing the influence of each species taken individually
as the non-methane part of the LNG mixture. To reach this goal, different binary
mixtures CH4 −X are taken into consideration, where X is either ethane, propane
or nitrogen. For each of the three binary mixtures four compositions have been
considered with methane molar fraction being 80%, 85%, 90% and 95%.

CH4 C2H6 C3H8 N2

MIX 1 92 4.0 2.2 1.8
MIX 2 86 9.5 4.0 0.5
MIX 3 93 5.0 1.5 0.5
MIX 4 88 5.0 2.0 5.0

Table 6.2: Molar fraction (in percentage) of the species in different LNG mixtures
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(a) density (b) specific heat at constant pressure

(c) dynamic viscosity (d) thermal conductivity

Figure 6.2: Density, specific heat at constant pressure, dynamic viscosity and thermal con-
ductivity for the different LNG compositions of Tab.6.2 and for pure methane.
Constant pressure p = 13 MPa.
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(a) bulk total pressure drop (b) bulk temperature

(c) wall temperature (d) convective heat transfer coefficient

Figure 6.3: Heated channel flow with the different LNG compositions of Tab. 6.2 and with
pure methane.
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6.2 Results

6.2.1 LNG mixtures

The results obtained for the heated channel flow considering LNG compositions of
Tab. 6.2 are shown in Fig. 6.3. Before analyzing the results it has to be noted that
the inlet bulk total pressure p0 is slightly different for the different compositions
(Fig. 6.3(a)): this is due to the fact that the static pressure, static temperature and
mass flow rate are the same for all the cases, hence inlet density and inlet velocity
differ and thus p0. In particular inlet velocity of pure methane is greater than that
of the LNG mixtures which are characterized by a greater density.

The computed bulk total pressure (Fig.6.3(a)) has a change in the trend for x =
100 D corresponding to the beginning of the heated zone. In fact, in the adiabatic
part of the channel the p0 decrease only depends on the wall friction, whereas in the
heated part (100 D < x < 300 D) also the heat flux contributes. The p0 behavior is
similar for all the LNG compositions but the values are slightly different. This can be
observed also in Fig. 6.4, where the p0 drop in % of the inlet total pressure is reported
along the channel. It appears that globally the greater total drop is found for the
methane case, whereas the drops for the LNG mixtures cases are 5% to 10% smaller.
Reducing the pressure drops in the cooling channels is one of the main aspects in
a design phase: for an assigned chamber pressure that has to be reached the losses
in the cooling channels influence the turbopump design and hence all the system.
From this point of view the lower pressure drops of the LNG mixtures compared to
methane can be considered a positive property of LNG.

Bulk and wall temperatures are reported in Figs. 6.3(b) and 6.3(c) only in the

Figure 6.4: bulk total pressure drop
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(a) bulk total pressure (b) maximum wall temperature

Figure 6.5: Total bulk pressure drop and maximum wall temperature for three different
binary mixtures CH4 −X with xCH4 methane percentage molar fraction

heated part of the channel because in the adiabatic part the temperatures can be
considered constant. Moreover, inlet temperature is one of the parameters set equal
for all the test cases and for this reason all the temperature curves start from the same
point in these figures. Due to the heat load the total enthalpy increase in the heated
part of channel results in an increase in both the static enthalpy, and hence the static
temperature, and the velocity. Because all the test cases are characterized by the same
heat flux and mass flow rate, the increase in the total enthalpy can also be considered
as a fixed parameter of the analysis. As a consequence different temperature increases
can be related to the different thermodynamic and transport properties. Among the
investigated mixtures in Fig. 6.3, the smaller increase in the bulk temperature is
found for methane and this is primarily due to its greater cp: bulk temperature for
the LNG compositions are 3% to 7% greater. Also the wall temperature is smaller
for pure methane: the greater difference is found at the channel exit where LNG wall
temperature is 4% to 8% greater than the methane wall temperature. To describe
the relation between T , Tw and the heat transfer capabilities, the convective heat
transfer coefficient hc, is reported in Fig. 6.3(d)1. In the present discussion the hc is
in fact the difference between wall and bulk temperature because the same heat flux
is imposed for all the cases. From Fig. 6.3(d) it appears that among the investigated
compositions the pure methane case has always the greater hc along the channel. This
result permits to conclude that in the present conditions the heat transfer efficiency
decreases passing from pure methane to LNG. However, it is interesting to observe
how the hc values for methane and for the mixtures MIX 1, MIX 2 and MIX 3

1As explained in Chapter 1 the heat transfer coefficient hc is useful to compare the heat transfer
efficiency of different coolant flows. In fact for an assigned temperature difference (Tw − T ) the
greater hc the higher the heat flux that can be absorbed by the coolant flow, or for an assigned
heat flux and bulk temperature, the higher hc the lower the corresponding Tw, which is a critical
quantity that has to satisfy cooling system constraints. The limit to the higher acceptable Tw is
set by either structural requirements or thermal cracking temperature, depending both on the used
propellant and on the wall channel material features
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(a) CH4 − C2H6 (b) CH4 − C3H8

(c) CH4 −N2

Figure 6.6: evolution along the channel length of the wall shear stress for CH4−C3H8 and
CH4 −N2 binary mixtures

converge toward the channel exit, whereas this is not the case for the mixture MIX
4. The main difference between MIX 4 of Table 6.2 and the others mixtures is the
molar fraction of nitrogen which is higher for MIX 4. Hence one explanation of the
hc behavior toward the channel exit could be found in the different nitrogen nature
to respect to the other species which are hydrocarbons. This will be further discussed
in the following.

As a matter of fact, from the results presented in Fig. 6.3 it can be inferred that
LNG composition influences both the pressure drop and the heat transfer behavior
and this cannot be neglected in the design of a regenerative cooling system.

6.2.2 Binary mixtures: CH4-N2, CH4-C2H6, CH4-C3H8

From the above discussed results only major differences between pure methane and
LNG can be put in evidence and it is difficult to compare the LNG compositions
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(a) wall dynamic viscosity (b) bulk velocity

(c) wall thermal conductivity (d) heat transfer coefficient

Figure 6.7: Evolution along the channel length of wall dynamic viscosity, the bulk velocity,
the wall thermal conductivity and the heat transfer coefficients. Fluid: CH4

and binary mixtures with 80% mole fraction of CH4

one to each other. On the contrary the numerical simulations carried out with the
binary mixtures presented in Sec. 6.1.2 are useful to understand the role of each
species in the LNG heat transfer behavior. The results of the binary mixtures are
summarized in Figs. 6.5: the two graphics depict the total bulk pressure drop ∆p0

between the outlet and the inlet of the channel and the maximum wall temperature
Tw,max reached along the channel as a function of the methane molar fraction in
the binary mixture. A first comment to Fig. 6.5 is that nitrogen binary mixtures
behave differently than the others: this could be expected because of the different
chemical nature of nitrogen if compared with the other investigated species which
are hydrocarbons similar to methane. The ∆p0 increases with the nitrogen molar
fraction, whereas it decreases with ethane and propane molar fractions. This could
be partially explained considering the wall shear stress τw evolution shown in Fig. 6.6:
for propane and ethane mixtures τw decreases with the methane molar fraction. On
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the other hand a different situation is observed for the nitrogen binary mixtures in the
last part of heated channel where τw is greater for the mixtures with more nitrogen.
Finally, with regard to the total pressure drop, Fig. 6.5(a) shows that for the same
methane molar fraction the binary mixtures with ethane give a ∆p0 closer to the pure
methane than the other mixtures.

To find an explanation in the different wall shear stress behavior for the nitrogen
it is useful to remind that it depends on the wall viscosity and velocity gradient. For
this purpose the evolution of the dynamic viscosity at wall and of the bulk velocity
are reported in Fig. 6.7 for the different binary mixtures with 80% molar fraction
of methane. The wall viscosity of all the mixtures is greater than the pure methane
one, for all the thermodynamic conditions arising along the channel. Nevertheless, a
greater difference is found for the nitrogen mixture. Moreover analyzing the velocity
plot (Fig. 6.7(b)) it comes out that all the mixtures have a lower inlet velocity than
methane, and this has been justified in Sec. 6.2.1. However, the bulk velocity of the
nitrogen binary mixture becomes greater than the pure methane one in the second
half of the channel. Conversely the bulk velocity for ethane and propane mixtures
remains lower than methane velocity all along the channel, and increases with a
similar trend. The nitrogen mixture velocity behavior explains why the wall shear
stress evolution with nitrogen molar fraction (Fig. 6.6(c)) changes in the second half
of the channel.

The above described behavior of the velocity is related with the heat transfer
capabilities. Indeed also for the heat transfer characteristics nitrogen mixtures be-
have differently from the others. From Fig. 6.5(b) it appears that the maximum
wall temperature reached along the channel always increases moving away from pure
methane. Nevertheless, the influence of the nitrogen molar fraction is clearly greater:
the wall temperature difference with respect to the pure methane is about 30% for the
20% nitrogen case, whereas only 4% and 6% for the 20% ethane and 20% propane
cases, respectively. The fact that methane is more efficient as a coolant than the
investigated mixtures is also illustrated in Fig. 6.8: the hc of pure methane is the
greatest all along the channel. Moreover, nitrogen mixtures show the lower cooling
capabilities which explain the corresponding greater increase in the temperature if
compared with ethane and propane mixtures (see Fig. 6.5(b)). This also explains
the greater increase in the bulk velocity shown in Fig. 6.7(b). In fact the increase in
the velocity is strictly related with the decrease of the density caused by the increase
in the temperature. On another hand it is interesting to observe that toward the
channel exit the ethane and propane mixtures hc converge toward the same value
as the methane: the differences between the curves after x = 250 D are lower than
1% as can be observed in Fig. 6.7(d). This behavior can be related to the transport
properties of these mixtures which at high temperatures are much closer to each other
than at low temperatures. This is confirmed by the evolution of the wall thermal con-
ductivity and dynamic viscosity along the channel for the different binary mixtures
with 80% molar fraction of methane shown in Figs. 6.7(a)-6.7(c). In these figures,
toward the channel exit, the wall transport properties of ethane, propane mixtures
and pure methane converge toward the same value, whereas the nitrogen ones be-
haves differently. It can concluded that increasing the temperature the percentage of
ethane and propane less and less affects heat transfer capability of LNG mixtures,
whereas this is not the case for the influence of nitrogen which reduces significantly
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(a) CH4 − C2H6 (b) CH4 − C3H8

(c) CH4 −N2

Figure 6.8: evolution along the channel length of the heat transfer coefficient for CH4 −
C2H6, CH4 − C3H8 and CH4 −N2 binary mixtures

the LNG mixtures cooling capability.
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6.3 Conclusions

A parametric numerical study has been carried out to evaluate the influence of the
LNG composition on the heat transfer behavior in the cooling channels of a regenera-
tively cooled liquid rocket engine. Methane, ethane, propane and nitrogen have been
considered as components of LNG mixtures. The 2D axisymmetric test case of all
the simulations was a straight channel with a circular cross section, uniformly heated.
Comparisons have been made between different typical LNG compositions, and also
between binary mixtures to investigate the effect of each species besides methane.
The bulk total pressure drop between the end and the inlet of the channel has been
analyzed: ethane and propane diminish it, and propane more than ethane. On the
contrary increasing the molar fraction of nitrogen causes an increase in the total pres-
sure drop. Nevertheless due to the low amount of nitrogen typically present in LNG
and hence in the analyzed compositions in the present study, it results that the total
pressure drop is greater for methane than for LNG. The investigation on the cooling
capabilities has put in evidence a great influence of nitrogen: increasing the nitrogen
molar fraction causes a clear increase in the wall temperature. Also the presence of
ethane and propane slightly reduces the heat transfer capabilities of the coolant flow;
however these differences become less important as the fluid temperature increases.
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Chapter 7

Heat Transfer Deterioration of
Methane and LNG

The knowledge of the different thermodynamic phenomena that could affect the pro-
pellant flow in the cooling channels of a liquid rocket engine is of particular interest,
as discussed in Chapter 1. This is especially important in the case of engines based
on an expander cycle for which the performance is strictly connected with the heat
transfer characteristics in the cooling channels. In this framework, it has to be taken
into account that the liquid propellants can flow in those channels at supercritical
pressures and in the neighborhood of the critical point. In such conditions the strong
property variations could change the heat transfer capabilities of the propellants. The
main goal of the work presented in this chapter is to investigate the heat transfer to
liquid methane in conditions close to those expected for a liquid rocket engine: the
purpose is to analyze the influence of the thermodynamic properties variations on the
coolant flow and its features, with attention on the heat transfer deterioration that
can affect a transcritical fluid (see Chap. 1). To purse this objective the numerical
model for the PNS equations presented in Chap. 4 together with the thermophysical
models presented in Chap. 2 have been used. In fact, as it has been pointed out
in Chap. 5, using the developed PNS solver is particularly suitable to parametric
analysis, with a negligible loss of precision in physical modeling with respect to full
Navier-Stokes solvers. Moreover, the code has been validated against experimental
data of supercritical hydrogen with heat transfer deterioration, demonstrating its ca-
pability to accurately describe this thermodynamic phenomena. In the following a
set of computations of methane heated in conditions similar to those that could occur
in cooling channels of an expander cycle engine are presented and the possible heat
transfer deterioration is emphasized. Further parametric analyzes are carried out to
investigate the deterioration heat transfer onset and the conditions that most influ-
ence the phenomenon. Finally LNG mixtures presented in the previous Chap. 6 has
been considered and the effect of the composition over the heat transfer deterioration
is investigated.
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(a) bulk total pressure (b) bulk temperature

(c) wall temperature (d) convective heat transfer coefficient

(e) total bulk pressure drop varying with the en-
forced heat load

(f) M-shaped u profile

Figure 7.1: Methane flow in heated channels with a constant heat load.
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7.1 Methane Flow in Heated Channels

7.1.1 Constant heat load

To investigate the capabilities of methane as a coolant in a rocket engine, different
numerical simulations have been carried out on the same 2D axisymmetric geometry
used for the investigation on LNG composition of Chap. 6. It is a straight channel
with a circular cross section of diameter D = 4 mm (see Fig. 6.1). In the first 100
diameters no heat flux is applied so as to obtain a developed flow before heating in
the last 200 diameters with a constant heat load qw. The parametric study has been
carried out keeping constant the following parameters:

• inlet pressure pin = 13 MPa

• inlet temperature Tin = 118 K

• mass flow rate per unit area G = 8500 kg/s/m2

whereas the heat load has been changed for each computation, varying from zero up
to 10 MW/m2. Both the geometry and the boundary conditions have been selected
so as to get thermodynamic conditions close to those expected in a rocket engine
cooling channel. In particular, the work of Schuff et al. [139], which is a system study
for a LOX/Methane expander cycle engine, has been used again as a reference for this
purpose. The results have been analyzed considering the main performance param-
eters of interest in a cooling system analysis. Therefore attention has been devoted
principally to the pressure drop and the cooling capabilities through the heat transfer
coefficient hc The definition of hc. Note that in the present discussion hc is in fact the
difference between wall and bulk temperature because a constant heat flux is enforced
along the channel length. The computed evolution of the bulk total pressure p0, the
bulk temperature T , the wall temperature Tw and the convective heat transfer coeffi-
cient hc is shown in Figs. 7.1(a)-7.1(d). The bulk total pressure p0 evolution refers to
the whole channel length (Fig. 7.1(a)), whereas bulk and wall temperatures, and the
heat transfer coefficient evolution are only shown for the heated part of the channel
because in the adiabatic part the temperatures can be considered constant and hc is
not defined (Figs. 7.1(b), 7.1(c) and 7.1(d)). The total bulk pressure behavior pre-
sented in Fig. 7.1(a) shows the close relationship between the pressure drop and the
heat flux. For the lower heat fluxes increasing the heat flux reduces the pressure drop.
This happens also for the higher heat fluxes in the first part of channel, where the
temperatures are still very low. In fact, methane enters the channel with a supercrit-
ical pressure and a subcritical temperature. In these thermodynamic conditions it is
quite similar to an incompressible fluid and, accordingly, the pressure drop is directly
related to wall friction and hence to viscosity which, for subcritical temperatures,
decreases as temperature increases (see Fig. 2.11 in Chap. 2). The situation changes
when the fluid compressibility starts growing: in this case the temperature increase
yields a density reduction, a velocity increase and, as a consequence, a pressure drop
increment. This is also summarized in Fig. 7.1(e) where the evolution of the pressure
drop with the heat flux is shown: it results that for this specific test case for heat
fluxes smaller than 3 MW/m2 the pressure drop decreases with qw, whereas for higher
heat fluxes the trend changes and a higher heat flux generates a higher pressure drop.
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A change in the temperature behavior for heat fluxes higher than 3 MW/m2 is
also found (Figs. 7.1(b)-7.1(c)). For the smaller heat fluxes both the bulk and the
wall temperatures smoothly increase along the channel, whereas for the higher heat
fluxes Tw exhibits a peak and in the same axis location T changes trend: these are
the consequences of the heat transfer deterioration phenomenon. In fact, in the same
axial location the heat transfer coefficient has a minimum (Fig. 7.1(d)).

The heat transfer deterioration is a phenomenon which occurs when a subcritical
temperature channel flow is sharply heated up. The high temperature gradients in
the channel section leads to the formation of a layer of low density fluid near the
wall, where the temperature is supercritical, which has low heat transfer capabilities,
whereas the core of the flow is still cold and slow (see Chapter 1). As a consequence
the velocity profile has the particular M-shaped profile which can be observed in
Fig. 7.1(f) where the velocity profiles in the wall temperature peak section are re-
ported. The velocity gradient is zero close to the wall and this implies a reduction
of turbulent diffusion, and thus a wall thermal insulation which also contributes to
deteriorate the heat transfer. If the flow is further heated up, the bulk temperature
finally exceeds the pseudocritical temperature Tps (the temperature at which specific
heat at constant pressure cp has a maximum at a specified pressure: see Chap. 1).
Once Tps is exceeded the flow velocity grows, hc increases accordingly (Fig. 7.1(d))
and thus the wall temperature decreases. From a phenomenological point of view,
the heat transfer deterioration phenomenon has been investigated in the literature,
but no clear indication about the flow conditions for its onset has been given. This
set of computations suggest that the heat transfer to methane used as a coolant in
a regenerative cooling system has to be carefully studied. In particular, it has to be
further investigated to understand which are the parameters that have to be taken
into consideration to control the deterioration phenomenon.

7.1.2 Varying heat load in the axial direction

The previous set of computations has emphasized a deterioration of the heat transfer
for constant heat fluxes greater than 5 MW/m2. However, it has to be considered
that the heat load is not constant along a cooling channel. In fact, it varies along
the nozzle with a maximum in the proximity of the throat, hence a variable heat flux
computation has also been carried out. The variable heat flux along the chamber
computed by Betti et al. [103] has been considered as a reference for this purpose, with
a suitable reduction to take into account for the different mass flow rate and channel
geometry considered in the present study. The test case described in Fig. 6.1 has been
considered again except for the length of the heated part of the channel which has
been reduced to 63.5 cm corresponding with 158.75 diameters. The enforced heat flux
is reported in Fig. 7.2(a) and the resultant wall temperature is shown in Fig. 7.2(b).
As can be observed the wall temperature evolution along the channel follows the heat
flux behavior and exhibits a peak where qw has its maximum. The values reached
by Tw are as high as 1930 K, which can not only be explained by the high heat
flux but is also a consequence of the heat transfer deterioration that occurs in that
region and that brings an abrupt drop of the heat transfer coefficient (Fig. 7.2(b)).
The deterioration is also proved by the M-shaped velocity profile in the x station of
the Tw peak, shown in Fig. 7.2(c) (number 2). Also a velocity profile upstream of
the Tw peak location (number 1) and downstream (number 3) are reported in the
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same figure for the sake of comparison (the corresponding x locations are indicated
in Fig. 7.2(b)).

(a) enforced heat flux (b) Tw and hc

(c) u profile at different x section indicated by the
points in (b)

Figure 7.2: Methane channel flow with a variable heat load.

Slightly downstream the Tw peak location the bulk temperature becomes greater
than the pseudocritical temperature. As a consequence, the fluid reaches a gas-like
state, its velocity increases and hence the heat transfer coefficient grows up again.
Moreover, once the throat region is passed qw decreases and therefore the wall tem-
perature decreases until a value of 1000 K at the end of the channel. The above
results make evident that in a regenerative cooling system with methane, the heat
transfer deterioration is a concern and that if it occurs it could lead to unacceptable
wall temperature.
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7.2 The heat transfer deterioration analysis

When a supercritical fluid is heated up and passes through the pseudocritical tem-
perature, a pseudo phase change occurs (see Chapter 1). This can bring to the heat
transfer deterioration, in particular in case of high heat fluxes and low mass flow
rate. This phenomenon has been studied in the literature both experimentally and
numerically. The results obtained show that the heat transfer deterioration is mainly
driven by the following parameters: the ratio between the heat flux and the mass flow
rate per unit area (qw/G), the inlet pressure and the inlet temperature (see Chap. 1).
However, the flow conditions under which heat transfer deteriorates have not been
fully clarified. Moreover as each substance behaves differently in the near-critical
state, suitable studies must be performed for every single fluid of interest. For these
reasons a parametric study is presently carried out to investigate the onset of heat
transfer deterioration for methane. The parameters that have been considered are
the inlet pressure pin, the inlet temperature Tin and the ratio between the heat flux
and the mass flow rate per unit area (qw/G). In the following the influence of each
parameter is analyzed separately. The parametric study is carried out considering
the same test case of Section 7.1.

7.2.1 Inlet temperature

This first parametric set has been obtained keeping constant G = 8500 kg/m2/s,
pin = 13 MPa, qw and varying the inlet temperature from a subcritical temperature
of Tin = 110 K up to a supercritical temperature of Tin = 250 K. Considering that at
the inlet pressure (pin = 13MPa) the pseudocritical temperature is of Tps = 227.3 K,
the investigated inlet temperature range goes from Tin < Tps up to Tin > Tps. Two
heat fluxes have been considered: qw = 5 MW/m2 that for Tin = 118 K is a non
deteriorated test case and qw = 7 MW/m2 that for Tin = 118 K is a deteriorated
test case, as shown in Section 7.1. The results of computations are shown in Fig. 7.3
for the wall temperature and heat transfer coefficient. For Tin = 250 K, which is the
only supercritical temperature among the investigated inlet temperatures, a normal
heat transfer is observed for both the heat fluxes. Indeed the temperature always
increases, while the hc initially decreases because of the formation of the thermal
boundary layer, and then always increases. The behavior is different for all the
other inlet temperatures which are subcritical. For the higher heat flux the heat
transfer is deteriorated and the wall temperature exhibits a peak at the same axis
location where hc reaches a minimum value (Fig. 7.3). On another hand for the
lower heat flux the behavior is similar to the Tin = 250 K case and the heat transfer
is not deteriorated, due to the fact that for T < Tps the fluid is more similar to
a liquid whereas for T > Tps is more like a gas. This different behavior between
inlet supercritical and subcritical temperatures at high heat fluxes confirms that the
heat transfer deterioration phenomenon can occur only when the inlet temperature
is subcritical.

It is interesting to observe in Fig. 7.3(a) how, for the deteriorated cases, increasing
the inlet temperature decreases the Tw peak and brings its position upstream along
the channel axis. It has to be noticed that because G and pin are assigned, a differ-
ent Tin corresponds to a different inlet flow velocity. More precisely the higher Tin,
the higher the inlet velocity, and thus the higher the pressure drop. Moreover, the
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(a) wall temperature (b) heat transfer coefficient

Figure 7.3: Heated channel flows with pin = 13 MPa, G = 8500 kg/m2/s, qw = 5 MW/m2

(dashed line) or qw = 7 MW/m2 (solid line) for different inlet temperatures.

greater subcritical inlet temperatures, the closer to the pseudocritical temperature.
For both the reasons (higher inlet temperature and the consequent increase of pres-
sure drop), the higher Tin, the earlier the pseudocritical temperature is reached along
the channel. This is made evident in Fig. 7.4(a) where the bulk pressure (dashed line)
is plotted together with the bulk constant pressure specific heat (solid line), which
exhibits a peak when the pseudocritical temperature is reached. Increasing the inlet
temperature the cp peak moves toward the channel entrance, and so does the wall
temperature peak (Fig. 7.3(a)). Moreover the cp slightly diminishes increasing Tin.
The reason is that despite the highest pressure drop of the higher inlet temperature
test cases, for the cases with lower Tin a longer way is necessary to reach the pseud-
ocritical temperature. As a consequence the pseudocritical condition is reached for a
smaller pressure and hence the cp peak is higher. This is summarized in Fig. 7.4(b)
where the maximum wall temperature, and the pressure at which the pseudo-phase
change occurs (pps) for the different test cases are reported varying the inlet tem-
perature. Here again it appears that increasing Tin the maximum wall temperature
decreases and pps increases. The higher maximum wall temperature for the lower
inlet temperature can be explained considering that because the passage from the
pseuodcritical temperature occurs when the pressure is lower than in the other cases,
the gradients of all the thermodynamic variables are greater in each section, and this
contributes to the insulation of the wall. This effect can be observed in Fig. 7.4(c),
where the density profiles are shown in the sections of the Tw peak for each test case,
and the lower the Tin, the higher the density gradient. Also the M-shaped u profile
are reported in Fig. 7.4(d). Here just a little effect is observed since decreasing the
inlet temperature just slightly accentuates the M-shape.
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(a) pressure and constant pressure specific heat (b) maximum wall temperature and pressure at
pseudo-critical temperature

(c) density profile (d) normalized u profile

Figure 7.4: Heated channel flows with pin = 13 MPa, G = 8500 kg/m2/s and qw =
7 MW/m2 for different inlet temperatures.

7.2.2 Inlet pressure

Three different inlet pressures have been considered, pin = 8, 10, 13 MPa, keeping
constant the other parameters G = 8500 kg/m2/s, Tin = 118 K, qw = 5 MW/m2.
The results are shown in Fig. 7.5 for different bulk and wall variables. For the lower
pressure of pin = 8 MPa the heat transfer deteriorates and thus the wall temperature
exhibits a peak (Fig. 7.5(a)) which corresponds to a minimum of the heat transfer
coefficient, while for the other two pressure levels the phenomenon does not appear.
The main reason of the pressure influence can be deduced from Fig. 7.5(b) where the
bulk cp and temperature are reported along the channel. For all the pressure levels
considered the incoming total heat is sufficient to make the temperature become larger
than the pseudocritical value (which increases with the pressure) as demonstrated by
the peaks in the cp curves. Nevertheless, when the pressure decreases toward the
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critical value (pc = 4.5992 MPa) the cp peak sharply increases and the passage from
a liquid like to a gas like state becomes more and more abrupt: this is why the cp
curve for the 8 MPa pressure case in Fig. 7.5(b) is steeper and reaches a higher value.
Also in the y direction the gradients of the thermodynamic variables are larger for
lower pressures as depicted in Fig. 7.5(c) for the cp profile in section x/D = 253.
These sudden changes in the thermodynamic variables lead to the formation of the
insulating gas film near the wall which deteriorates the heat transfer.

(a) wall temperature and heat transfer coefficient (b) bulk temperature and constant pressure spe-
cific heat

(c) constant pressure specific heat profile at
x/D=253 corresponding to Fig.7.5(a)

Figure 7.5: Heated channel flows with Tin = 118 K, G = 8500 kg/m2/s, qw = 5 MW/m2

for different inlet supercritical pressures.
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7.2.3 Heat flux to specific mass flow rate ratio

The ratio between the heat flux and the mass flow rate per unit area1 (qw/G) (J/kg)
is directly related with the streamwise gradient of the bulk total enthalpy per unit
mass dh0/dx of the coolant flow by the relation:

qw

G
=

1

4
D
dh0

dx
(7.1)

In the literature the ratio (qw/G) is considered an indicator for the heat transfer
deterioration: if the inlet flow temperature is subcritical and (qw/G) > (qw/G)tr the
heat transfer will be deteriorated, with (qw/G)tr being a threshold value depending
on the coolant inlet pressure and temperature [140]. Recently Grabezhnaya and
Kirillov [156] have identified the following generic relation for the threshold parameter:

(qw/G)tr = 600(MH2O/M), J/kg (7.2)

with M and MH2O being respectively the fluid and water molar weights. Thus for
methane, considering that it is (MH2O/MCH4) = 18/16, according to Eq. (7.2) it
should be (qw/G)tr = 675 J/kg. To verify the validity of this relation for methane
and also better understand the meaning of this threshold parameter, the computations
summarized in Tab. 7.1 have been carried out: two values of the ratio qw/G have
been considered, corresponding to a non deteriorated case and to a deteriorated case,
respectively. Both G and qw have been varied keeping constant the inlet pressure
(pin = 13 MPa) and the inlet temperature (Tin = 118 K), and as a consequence also
the inlet density. Therefore each test has a different inlet velocity.

(qw/G) [J/kg] Test qw [MW/m2] G [kg/m2/s]

588

TC 1.1 3.75 6375
TC 1.2 5.00 8500
TC 1.3 6.25 10625
TC 1.4 7.50 12750

823

TC 2.1 5.25 6375
TC 2.2 7.00 8500
TC 2.3 8.75 10625
TC 2.4 10.5 12750

Table 7.1: Test cases analyzed in the (qw/G) parametric study.

The wall temperature and heat transfer coefficients obtained for all the test cases
of Tab. 7.1 are shown in Fig. 7.6: the test cases with the same ratio (qw/G) exhibit
a similar behavior. In particular for (qw/G) = 823 J/kg the heat transfer is deterio-
rated, whereas this is not the case for (qw/G) = 588 J/kg: this is in agreement with
Eq. (7.2). Nevertheless the entity of the deterioration is different for the different
test cases: the higher G and qw, the higher the maximum wall temperature and the
lower the hc. This can be related to the difference in the pressure along the channel
between one case and another. In fact because the inlet thermodynamic conditions

1The mass flow rate per unit area is referred as specific mass flow rate
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are equal for all the tests (same pin, Tin and hence ρin) the higher mass flow rate
cases have a higher inlet velocity, and as a consequence experience a higher pressure
drop along the channel. This is shown in Fig. 7.7 where for a same (qw/G) the higher
G test case (square symbols) undergoes a higher pressure drop than the other. As
it has been demonstrated in Section 7.2.2 the pressure is an important parameter in
the heat transfer deterioration and this is also shown by the present results: a lower
pressure for a same (qw/G) can make the deterioration occur (see Fig. 7.5).

(a) wall temperature (b) heat transfer coefficient

Figure 7.6: Heated channel flows with Tin = 118 K, pin = 13 MPa for different (qw/G)
ratio.

From this analysis it is possible to conclude that for the investigated inlet pressure
of pin = 13 MPa the criteria of Eq. (7.2) can give an indication for the onset of
the deteriorated heat transfer of methane. Moreover, it is possible to assert that
(qw/G)tr decreases if the inlet pressure decreases. More computations for different
inlet pressures and for more (qw/G) should permit to find a correlation for (qw/G)tr
as a function of pressure.

The above criteria on heat transfer deterioration onset is related to the bulk
total enthalpy streamwise gradient, as expressed by Eq. (7.1): for a given diameter
and mass flow rate a locally high dh0/dx can deteriorate the heat transfer. To better
understand this feature two more test cases are carried out. Actually they correspond
with the two cases TC 1.2 (non deteriorated) and TC 2.2 (deteriorated) of Tab. 7.1
except that a longer channel is considered with a length of 500 D instead of 300
D. These two test cases have the same mass flow rate and different heat fluxes
qw1 = 5 MW/m2 (TC 1.2) and qw2 = 7 MW/m2 (TC 2.2). The results for the two
test cases are compared in Fig. 7.8. For TC 2.2 the heat transfer deteriorates and
Tw reaches a peak for x2 = 233.5 D: the total amount of heat received by the fluid
when it reaches x = x2 is proportional to the product of qw2 and L2 = x2 − xin,
with xin = 100 D unheated length. Therefore, the same total amount of heat is
received by the TC 1.2 flow in a longer length, which is reached at x1 = 287.6 D.
Nevertheless for this lower heat flux no deterioration is present: the wall temperature
always increases along the channel length. This last comparison demonstrates the
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Figure 7.7: Bulk pressure and wall temperature for two test cases with different G and the
same qw/G = 823 J/kg. Entrance thermodynamic conditions: Tin = 118 K,
pin = 13 MPa

fact that what most influences the heat transfer deterioration is the gradient of the
total enthalpy given to the fluid (dh0/dx) rather than the total amount of power:
that is for a same amount of power absorbed by a fluid, the smaller is the length the
higher the probability that deterioration occurs.
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Figure 7.8: Comparison for two heat fluxes test cases with qw1 = 5MW/m2 and qw2 =
7MW/m2.

7.3 Heat transfer deterioration with LNG

In Chap. 6 an investigation of the LNG composition effect over the cooling capabilities
has been carried out. The same mixtures are also considered in the present chapter
focusing on the heat transfer deterioration. The composition are reported in Tab. 7.2.
The aim is to compare the behavior of the LNGmixtures with respect to pure methane
in a regime of deteriorated heat transfer.

xCH4 xC2H6 xC3H8 xN2 MMIX (qw/G)tr
[%] [%] [%] [%] [kg/mol] [J/kg]

MIX 1 92 4.0 2.2 1.8 17.44 619.27
MIX 2 86 9.5 4.0 0.5 18.56 581.90
MIX 3 93 5.0 1.5 0.5 17.22 627.10
MIX 4 88 5.0 2.0 5.0 17.90 603.35

Table 7.2: Parameters of the LNG mixtures: composition (molar fractions in percentage),
molar weight and threshold value for deterioration

With reference to section 7.2.3 the same two ratios qw/G investigated for pure
methane are presently taken into consideration, that is qw/G = 588 J/kg and qw/G =
823 J/kg. In particular the mass flow rate is the same for the two ratios, namely
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G = 8500 kg/s/m2, whereas two different heat fluxes are analyzed, namely qw = 5
and 7 MW/m2. The inlet pressure and temperature are the same of all the other test
cases: Tin = 118 K and pin = 13 MPa.

The results are shown in Fig. 7.9 in terms of wall temperature, bulk temperature,
heat transfer coefficient and bulk pressure. In the same figure are also shown the
results for pure methane with the aim to carry out a comparison. Note that the test
cases with qw = 5 MW/m2 are those analyzed in Chap. 6 and are here reported to
discuss the heat transfer deterioration.

(a) bulk total pressure (b) bulk temperature

(c) wall temperature (d) heat transfer coefficient

Figure 7.9: Heated channels with LNG mixture of Tab. 6.2 and pure methane. Test con-
ditions: pin=13 MPa, Tin=118 K, G=8500 kg/s/m2. Heat fluxes: qw = 5 and
qw = 7 MW/m2

As it could be expected the same qualitative behavior is found for pure methane
and for all the LNG mixtures because of the similarities in the thermophysical prop-
erties. Precisely the test cases with the lower qw/G are non deteriorated whereas for
the higher qw/G the deterioration heat transfer phenomena is present. Being the mo-
lar weight of the LNG mixtures near the pure methane one, also their threshold qw/G

132



7. Heat Transfer Deterioration of Methane and LNG

value, according to Eq. (7.2), are around that of pure methane. This is confirmed
by the calculated values of the molar weights and of threshold parameters reported
in Tab. 7.2 for each mixture. All the threshold values are contained in the range
between the two investigated ratios (588 and 823 J/kg) except the threshold value of
MIX 2. Indeed for MIX 2 it is (qw/G)tr = 581.9 J/kg which is just slightly smaller
than the lower considered ratio of qw/G = 588 J/kg. Therefore, if Eq. (7.2) was
exactly verified the test case of MIX 2 with qw/G = 588 J/kg should present the heat
transfer deterioration phenomena. However this is not the case. In fact Eq. (7.2) is
an empirical formula obtained from experimental data on water in certain particular
pressure conditions. As a consequence, it can only give a rough approximation of the
threshold value.

Figure 7.10: Bulk cp along the channel for different LNG and pure methane test case for
heat transfer deterioration (qw = 7 MW/m2)

From a quantitative point of view the percentage differences between pure methane
and the LNG mixtures are of the same order of magnitude in the deteriorated and
non deteriorated cases. Namely the differences are up to 8% on the temperatures and
10% on the drop of the total pressure. Despite of that, it has to be considered that in
the wall temperature peak region an increment of 8% could be important in terms of
absolute values. As can be observed in Fig. 7.9(c) the difference in the peak value of
the wall temperature are up to 60 K between pure methane and the LNG mixtures.
Also the position of the peak along the channel axis slightly changes from a mixture
to another. The reason is that the thermodynamic conditions at which occurs the
pseudo phase change varies with the composition. In addition it has been shown in
Chapter 6 that the LNG composition influences both the cooling capabilities and the
pressure drops along the channel. As a consequence of the above mentioned aspects
for the different LNG mixtures the pseudo phase change occurs at different locations
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along the channel. This can be observed in Fig. 7.10 where the bulk cp is reported for
the higher qw/G. The cp peak, corresponding with the heat transfer deterioration, is
positioned at different locations. Moreover its entity is different. In particular it is
higher for pure methane, whereas among the investigated mixtures MIX 4 has the
lower cp. The lower cp of MIX 4 explains the higher value in the wall temperature.

Further parametric studies should permit to understand the influence of each
LNG component on the phenomenon. Nevertheless it can concluded that, in first
approximation, the results obtained for the methane deterioration can be extended
on LNG.

7.4 Conclusions

Heat transfer to methane in a regenerative cooling system has been investigated.
Computations referring to conditions close to those which can be expected in cool-
ing channels of liquid rocket engines based on expander cycle have emphasized that if
coolant is methane it could be subjected to the heat transfer deterioration. Therefore,
parametric studies have been carried out to understand the methane heat transfer
deterioration and to see what are the parameters that have to be controlled if the
deterioration is to be avoided. These studies have emphasized that the heat transfer
deterioration is a phenomenon that can affect fluids with a subcritical temperature
that are suddenly heated up and then go over the pseudocritical temperature: the
steep gradients of density and velocity bring to the heat transfer deterioration. For
a given inlet pressure and temperature the deterioration occurs if the ratio (qw/G)
is greater than a critical value which corresponds to a threshold value in the total
enthalpy streamwise gradient dh0/dx, or, for a certain amount of power that the fluid
must absorb, to a minimum heated length. Results show that for the present inves-
tigated thermodynamic conditions the threshold value for heat transfer deterioration
agrees with the value of (qw/G)tr = 675 J/kg found in the literature. However,
further investigations are necessary to evaluate the pressure sensitivity of this pa-
rameter, and eventually to find a correlation of more general validity. In fact, the
present computations have shown a significant influence of the pressure on the phe-
nomenon: decreasing the pressure the deterioration occurs for lower (qw/G), because
of the higher variations in all the thermophysical properties seen by the fluid when
it passes from a liquid-like to a gas-like state. Also the inlet temperature influences
the deterioration: decreasing the inlet temperature for a same inlet pressure and
(qw/G) > (qw/G)tr moves the wall temperature peak downstream and increases its
value. Finally also computations on heat transfer deterioration with LNG mixtures
have been carried out. The parameters that characterize the heat transfer deteri-
oration are strongly related with the thermophysical properties. Therefore, slight
differences have been found comparing LNG with pure methane. Nevertheless, it
can concluded that, at least as a first approximation, the results obtained with pure
methane can be extended to the investigated LNG mixtures, whereas if an accurate
estimation of the deterioration phenomenon onset is needed, studies focusing on the
particular composition must be carried out.

.
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Conclusions

The large interest in using methane or the cheaper LNG as a fuel in LRE has brought
the need to study their behavior in cooling channels. The two main objectives were to
understand the differences between LNG and pure methane and to investigate on the
possible heat transfer deterioration. To reach this goal two main aspects have initially
been taken into consideration, namely the selection of suitable thermophysical models
and the development of a suitable numerical tool.

A large literature review has been done on the available EoS and transport prop-
erty models for mixtures of real fluid. This survey has led to select the GERG EoS,
that has been developed precisely for natural gas mixtures, as the most accurate
available model for the wide range of thermodynamic conditions of interest. This
EoS belongs to the family of Helmholtz free energy based models. On the other hand
the transport property models that have been selected are based on the extended
corresponding states theory which relies on accurate models for viscosity and con-
ductivity for each species. These thermophysical models are used at low temperatures
and are smoothly connected to perfect gas models used at high temperatures. The
correct implementation of thermophysical models has been verified by comparison
with the data of the National Institute of Standard and Technology. An important
characteristic of the selected models is that they permit to treat both mixtures and
single species with a high level of accuracy. Moreover, the mixture models smoothly
converge towards the pure species models, which is an essential feature to compare
LNG and pure methane.

A numerical code has been developed for the heated channel flows of interest. In
particular, a space marching approach has been selected. In fact the geometries of
the channels and the flow features permit to adopt an analytical description based
on the parabolized Navier-Stokes equations. More precisely the parabolized form
of the Reynolds Navier-Stokes equations have been considered. An eddy viscosity
hypothesis has been used and the problem has been closed with the one equation
model of Spalart-Allmaras. In regards to this, the convection-diffusion equation of
Spalart-Allmaras for the turbulent viscosity has been suitably modified to account
for the PNS hypothesis.

Analytical studies have demonstrated that the Eulerian part of considered PNS
system of equations is hyperbolic. As a consequence, a numerical scheme based on the
existence of the characteristic directions has been used. Indeed, the developed code
is based on a finite volume approach with a Godunov-type scheme. In such scheme
upwinding relies on the resolution of Riemann problems. Actually, the Riemann
solver is the core of a Godunov-type scheme. For the present code an approximate
Riemann solver has been developed. It is the Roe’s Riemann solver suitably modified
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for the PNS and to consider a generic EoS, which indeed appears in an implicit form.
Therefore any kind of EoS can be used.

The developed numerical code has permitted to carry out simulations on tur-
bulent flows in channels with an high ratio L/D (L ∼m and D ∼ mm), enforcing
high heat fluxes up to 10 MW/m2, ensuring a highly accurate description of all the
changes in the thermophysical properties. Moreover, because the flow has a very
low Mach number and the channel entrance (∼ 0.01) and high compressibility, the
suitability of the present numerical model to fulfill the objectives of the study has
been demonstrated and discussed.

The numerical model has been validated considering two different aspects. First
comparisons with results that can be obtained with a Full Navier Stokes solver has
been done. The small differences between the results justify the use of PNS. Then,
a validation has been carried out with experimental data available from a test case
of hydrogen with heat transfer deterioration which is precisely the thermodynamic
phenomenon that has to be studied with methane and LNG. Results show a quite
good agreement of numerical and experimental data.

With the validated numerical model two studies have been done. First attention
has been devoted on the differences between LNG and pure methane. Typical LNG
mixtures have been considered and differences of the order of 5% are found in the
pressure drops, and 8% in the temperature fields. Further investigations on different
binary mixtures have permitted to put in evidence the influence of each component
on the mixture. The results have shown that nitrogen has a higher influence being
the only species investigated which is not a hydrocarbon. Propane and ethane have
a lower influence. Moreover the influence of propane and ethane decreases when the
temperature increases, that is along the channel. The reason of this behavior is that
the thermophysical properties of propane, ethane and methane converge towards the
high temperatures regime which is described by models of perfect gas.

Pure methane has then be considered in channels with different levels of heat
fluxes. This parametric study has put in evidence the risk of the deterioration of the
heat transfer in cooling channels. Consequently, the heat transfer deterioration has
been deeply studied for methane. Several parametric series of simulations have been
done varying inlet pressure, inlet temperature and the ratio between the heat flux
and the specific mass flow rate. It has been shown that the deterioration phenomenon
is usually caused by an excess of power enforced to the coolant in a certain channel
length. This limit is represented by a threshold value of the ratio of heat flux to
specific mass flow rate. For a value of the ratio smaller than a threshold value a normal
heat transfer occurs. Conversely for values larger than the threshold value and inlet
temperature lower than the pseudocritical value, the heat transfer is deteriorated.
The reason is that high variations of all the thermophysical properties bring to very
high gradients in the transverse directions which cause an insulation of the wall, thus
bringing to a reduction of the cooling capabilities. The threshold value of heat flux
to specific mass flow rate is a decreasing function of the pressure which means that
the near the pressure to the critical pressure the higher the risk of the deterioration.
In fact, decreasing the pressure towards the critical value brings an increase in the
rate of change of thermodynamic properties with temperature. As a consequence,
the gradients of the flow properties in the transverse direction are steeper and hence
the heat transfer can be subjected to a deterioration.
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Finally a comparison between LNG mixtures and methane has been carried out
in case of a deterioration of the heat transfer. It has been shown that the qualitative
behavior is similar for LNG and methane. As a consequence the results obtained for
methane can be, in first approximation, extended to LNG. However, dedicated studies
should be carried out if precise information are needed. In fact, the comparison
shows that the chemical nature of the coolant clearly influences the deterioration
phenomenon and specific correlations of heat flux to specific mass flow rate ratio
with pressure can be found for each fluid, or mixtures of fluid, of interest.

The developed numerical approach has demonstrated to be a valid tool to carry
out parametric studies on cooling channels in a simple way and with a low computa-
tional cost. Further studies could be carried out with this approach. Among which
it could be interesting to find a precise correlation of the threshold parameter with
pressure for different propellants and mixtures, and eventually a correlation in terms
of reduced parameters (T/Tc, p/pc). Another interesting application is the validation
of existent semi empirical correlations for heat transfer. Finally, the numerical model
can be extended to study other aspects of the cooling channels. For example, a model
for the roughness of the wall could be added as boundary condition.
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Appendix A

Thermodynamic basic principles
and definitions

A.1 Critical point

The phase passage between liquid and vapor results form the balance between pressure
forces and thermal energy of the particles involved. In fact, if the pressure is increased
at constant temperature, the thermal agitation does not change while the attraction
force between the particles increases. This finally yields to the formation of new
bounds and hence to a phase passage. However, if the temperature is greater than a
threshold value the kinetic energy of the particles is so high that the bounds cannot
be created even for very high pressures. In other words, this means that the phase
passage cannot occur. The above threshold temperature is the critical temperature
Tc of the fluid. The corresponding saturation pressure is the critical pressure pc. The
critical density ρc is the density which corresponds to Tc and pc. For a pure fluid the
critical state is unique and the following tow thermodynamic relations are verified in
the critical point: 

(
∂p

∂ρ

)
T

= 0

(
∂2p

∂ρ2

)
T

= 0

(A.1)

The critical point strongly depends on the chemical nature of the fluid. The lower the
interaction forces between the particles the lower the Tc. For instance, the helium
critical temperature is very low, Tc,He = 5.25 K, whereas water as a much higher
critical temperature of Tc,H2O = 647.25 K. To summarize, the critical temperature
is the maximum temperature at which can exist the equilibrium between liquid an
vapor phases, and the critical pressure is the limit value of the saturation pressure.
The difference between vapor and gas comes from the above definition. Indeed, a
vapor has a gaseous phase and a temperature lower than Tc. As a consequence
a vapor can undergo a phase change to liquid phase by compression. Conversely,
a gas has a temperature greater than the critical value and hence cannot become
liquid by compression. As a consequence, at temperature greater than the critical
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value the fluid can exist only in one phase and is called “supercritical”. Similarly the
critical pressure is the greater pressure at which can occur the phase passage between
liquid and vapor. Therefore also a “supercritical pressure“ fluid cannot undergo phase
change. However, a distinction is usually done between temperature lower or greater
than the Tc. Indeed at p > pc and T < Tc the fluid is referred as a compressed
fluid. It is characterized by an high density and a very low compressibility which
make it similar to a liquid. For this reason it is common use to say that the fluid
has a liquid-like behavior. If the temperature is increased keeping the pressure at a
supercritical level, all the fluid properties undergo gradually changes. Even thought
no phase change occurs, the fluid gradually pass form a liquid-like fluid to a gas-like
fluid, thus it undergoes what can be called a pseudo phase change. In fact its density
strongly decreases while its compressibility increases. In particular these changes are
very large around a temperature called pseudocritical temperature (Tps). Precisely
Tps is the temperature at which the specific heat at constant pressure has a peak.
Increasing the pressure the peak occurs at a greater pseudocritical temperature and
has a lower intensity [83]. In fact the peak temperature is called pseudocritical in
analogy with the critical point where the cp reaches an infinite value.

A.2 The corresponding states principle

The compressibility factor Z is a measure of a fluid identity with respect to the perfect
gas law representation:

Z =
p

ρRT
(A.2)

indeed Z = 1 for a perfect gas. Reduced pressure and temperature with respect to
the critical parameters are defined as follows:

pr =
p

pc
Tr =

T

Tc
(A.3)

whereas for the density the value corresponding with critical temperature and pressure
by the perfect gas law is selected as reducing parameter hence giving:

ρr =
ρRTc

pc
(A.4)

With the above definition the compressibility factor can also been expressed as:

Z =
pr

ρrTr
(A.5)

The Van der Walls corresponding states principle states that any gas at the same Tr
and pr should have the same compressibility:

Z = Z(Tr, pr) (A.6)

This principle falls when applied to complex gases, in particular molecules with strong
dipolar momentum and no spherical geometry. Hence a third parameter is introduced
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in the corresponding state principle. One possible third parameter is the compress-
ibility factor at critical conditions:

Zc =
pc

ρRTc
(A.7)

Another, more physical third parameter is the acentric factor ωa. The acentric factor
ωa gives an indication of the deviation from spherical symmetry in a molecule and is
defined as:

ωa = −log10

(
ps

pc

)
− 1 at

T

Tc
= 0.7 (A.8)

where ps is the saturation pressure. For simple fluids characterized by a spherical
symmetry of the molecules, the acentric factor is zero. Hence the three parameter
corresponding states principle states that any fluid with the same acentric factor
should have the same compressibility factor at a given Tr and pr:

Z = Z0 + ωaZ
1 (A.9)

where Z0 and Z1 are functions of the reduced temperature and pressure only. Z0

is the compressibility factor of a simple fluid (ωa = 0) whereas Z1 accounts for the
deviation of real fluids from simple fluids.

The corresponding states principle can be extended to mixtures introducing pseu-
docritical properties, which are suitable combinations of the critical parameters of
each component. Pseuodocritical parameters have not the same physical meaning of
single species critical parameters. Rather they are defined such that the PVT behav-
ior of the mixture is the same as that of a pure component whose Tc and pc are equal
to the pseuodcritical properties of the mixtures. Several mixing rules can be found
in literature to define pseudocritical values. For example simple rules are [130]:

Tcm =
∑
j

xjTcj

pcm =
R
(∑

j xjZcj

)
Tcm∑

j xj(1/ρcj)

ωam =
∑
j

xjωaj

(A.10)

A.3 Mixing rules

A mixture rule is an equation which gives an average of pure component properties:
the aim is to obtain a value which can characterize the mixture so as to extend
thermophysical models developed for pure fluids. Hence a mixture rule expresses a
parameter in terms of composition and pure component parameters [130]:

Qm =
∑
i

∑
j

xixjQij (A.11)

If i = j, Qij is the property of the pure component i (for example the critical tem-
perature Tci. Whereas if i 6= j combining rules are necessary to provide Qij and the
simpler are the Van der Walls combining rules:
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• arithmetic mean

Qij =
Qii +Qjj

2
⇒ Qm =

∑
i

xiQi (A.12)

• geometric mean

Qij = (Qii ·Qjj)1/2 ⇒ Qm =

(∑
i

xiQi

)2

(A.13)

To improve Van der Walls mixing rules a binary interaction parameter kij is intro-
duced for i 6= j. Four typical combining rules are:

Qij = kij
Qii +Qjj

2
kii = 1

Qij = kij(Qii ·Qjj)1/2 kii = 1

Qij = (1− kij)
Qii +Qjj

2
kii = 0

Qij = (1− kij)(Qii ·Qjj)1/2 kii = 0

(A.14)

Interaction parameters are derived from experimental data for all possible considered
binary pairs: they are usually independent from temperature, pressure and composi-
tion.

A.4 Helmholtz free energy

The Helmholtz free energy a is a state function defined as:

a = e− Ts (A.15)

with e internal energy, T temperature and s entropy. The corresponding differential
is:

da = de− Tds− sdT (A.16)

Let us recall the thermodynamic first principle:

de+ pdv − Tds = 0 (A.17)

with v = 1/ρ specific volume. Hence form Eqs. (A.16-A.17) it follows that for T =
const and v = const:

da = 0 (A.18)

which means that a reaches an equilibrium condition. Indeed the Helmholtz free
energy is a thermodynamic potential at constant temperature and specific volume.
An equation of state based on the Helmholtz free energy is a fundamental equation:
any thermodynamic property can be obtained by thermodynamic derivatives of a.
For example replacing Eq. A.17 in Eq. A.16 yields:

da = −pdv − sdT (A.19)
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from which pressure and entropy expressions follow:

p = −

(
∂a

∂v

)
T

s = −

(
∂a

∂T

)
v

(A.20)

GERG equation presented in Chapter 2 provides the reduced Helmholtz free energy
a = a/RT . For simplicity the overbar is omitted and in the following a states for
the reduced Helmholtz free energy. Using Eq. (A.20) and other basic thermodynamic
relations listed in Table A.1 can be derived.

Property Expression

Pressure
p

ρRT
= 1 + δarδ

Entropy
s

R
= τ

∂a

∂τ
− a

Internal Energy
u

RT
= τaτ

Enthalpy
h

RT
= τaτ + 1 + δarδ

Constant volume specific heat
cv

R
= −τ2aττ

Constant pressure specific heat
cp

R
=
cv

R
−

(1 + δarδ − δτarδτ )2

1 + 2δarδ + δ2arδδ

Sound speed
ws√
RT

= 1 + 2δarδ + δ2arδδ −
(1 + δarδ − δτaδτ )2

cv/R

Table A.1: Thermodynamic properties from Helmholtz free energy derivatives

Also derivatives of pressure with respect to temperature and density can be ob-
tained: (

∂p

∂T

)
ρ

= ρR(1 + δrδ − δτarδτ )(
∂p

∂ρ

)
T

= RT (1 + 2δarδ + δ2arδδ)

(A.21)
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All other properties of interest can be derived from the derivatives listed above
using the following basic relation:

(
∂z

∂x

)
y

=

(
∂z

∂ρ

)
T

(
∂y

∂T

)
ρ

−

(
∂z

∂T

)
ρ

(
∂y

∂ρ

)
T(

∂x

∂ρ

)
T

(
∂y

∂T

)
ρ

−

(
∂x

∂T

)
ρ

(
∂y

∂ρ

)
T

(A.22)

where x, y and z are three thermodynamic variables. For example the derivatives of
density with respect to pressure and temperature can be provided using this relation:(

∂ρ

∂p

)
T

= 1�

(
∂p

∂ρ

)
T(

∂ρ

∂T

)
p

=

(
∂p

∂T

)
ρ

�

(
∂p

∂ρ

)
T

(A.23)
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Appendix B

Tables of coefficient for the EoS
and transport property models

In the following are reported the coefficients for the EoS and transport properties
models presented in Chapter 2 to describe mixtures of real fluids for supercritical
pressures. The five species considered are: methane (CH4), nitrogen (N2), ethane
(C2H6) and propane (C3H8).

Temperature rangeSpecies Coeff 200-1000 K 1000-6000 K

a1 −1.766850998 · 10+05 3.730042760 · 10+06

a2 2.786181020 · 10+03 −1.383501485 · 10+04

a3 −1.202577850 · 10+01 2.049107091 · 10+01

a4 3.917619290 · 10−02 −1.961974759 · 10−03

CH4 a5 −3.619054430 · 10−05 4.727313040 · 10−07

a6 2.026853043 · 10−08 −3.728814690 · 10−11

a7 −4.976705490 · 10−12 1.623737207 · 10−15

a8 −2.331314360 · 10+04 7.532066910 · 10+04

a9 8.904322750 · 10+01 −1.219124889 · 10+02

a1 +2.210371497 · 10+04 +5.877124060 · 10+05

a2 −3.818461820 · 10+02 −2.239249073 · 10+03

a3 +6.082738360 · 10+00 +6.066949220 · 10+00

a4 −8.530914410 · 10−03 −6.139685500 · 10−04

N2 a5 +1.384646189 · 10−05 +1.491806679 · 10−07

a6 −9.625793620 · 10−09 −1.923105485 · 10−11

a7 +2.519705809 · 10−12 +1.061954386 · 10−15

a8 +7.108460860 · 10+02 +1.283210415 · 10+04

a9 −1.076003744 · 10+01 −1.586640027 · 10+01

Table B.1: Coefficients of the caloric equation of state for methane and nitrogen
(Eqs. (2.24)–(2.26)).
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Temperature rangeSpecies Coeff 200-1000 K 1000-6000 K

a1 −1.862044161 · 10+05 +5.025782130 · 10+06

a2 +3.406191860 · 10+03 −2.033022397 · 10+04

a3 −1.951705092 · 10+01 +3.322552930 · 10+01

a4 +7.565835590 · 10−02 −3.836703410 · 10−03

C2H6 a5 −8.204173220 · 10−05 +7.238405860 · 10−07

a6 +5.061135800 · 10−08 −7.319182500 · 10−11

a7 −1.319281992 · 10−11 +3.065468699 · 10−15

a8 −2.702932890 · 10+04 +1.115963950 · 10+05

a9 +1.298140496 · 10+02 −2.039410584 · 10+02

a1 −2.433144337 · 10+05 5.608128010 · 10+05

a2 4.656270810 · 10+03 −8.371504740 · 10+02

a3 −2.939466091 · 10+01 2.975364532 · 10+00

a4 1.188952745 · 10−01 1.252249124 · 10−03

C3H8 a5 −1.376308269 · 10−04 9.471216940 · 10−07

a6 8.814823910 · 10−08 −9.575405230 · 10−11

a7 −2.342987994 · 10−11 4.009672880 · 10−15

a8 −3.540335270 · 10+04 1.455582459 · 10+05

a9 1.841749277 · 10+02 −2.818374734 · 10+02

Table B.2: Coefficients of the caloric equation of state for ethane and propane (Eqs. (2.24)–
(2.26)).
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k n0
i,k θ0

i,k k n0
i,k θ0

i,k

Methane
1 19.597538587 − 5 0.004600000 0.936220902
2 -83.959667892 − 6 8.744320000 5.577233895
3 3.000880000 − 7 4.469210000 5.722644361
4 0.763150000 4.306474465

Nitrogen
1 11.925182741 − 5 -1.060440000 -2.844425476
2 -16.118762264 − 6 2.033660000 1.589964364
3 2.500020000 − 7 0.013930000 1.121596090
4 2.044520000 3.022758166

Ethane
1 24.675465518 − 5 1.2372200000 0.731306621
2 –77.42531376 − 6 13.197400000 3.378007481
3 3.0026300000 − 7 -6.019890000 3.508721939
4 4.3393900000 1.831882406

Propane
1 31.602934734 − 5 3.197000000 0.543210978
2 -84.463284382 − 6 19.192100000 2.583146083
3 3.029390000 − 7 -8.372670000 2.777773271
4 6.605690000 14.461722565

Table B.3: Coefficients and parameters of a0i of Eq. (2.31) for the considered 4 species.
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B. Tables of coefficient for the EoS and transport property models

k ni,k ci,k di,k ti,k

1 0.57335704239162·10+0 - 1 0.125
2 -0.26760687523730·10−1 - 1 1.125
3 0.23405291833916·10+0 - 2 0.375
4 -0.21947376343441·10+0 - 2 1.125
5 0.16369201404128·10−1 - 4 0.625
6 0.15004406389280·10−1 - 4 1.500
7 0.98990489492918·10−1 1 1 0.625
8 0.58382770929055·10+0 1 1 2.625
9 0.74786867560390·10+0 1 1 2.750
10 0.30033302857974·10+0 1 2 2.125
11 0.20985543806568·10+0 1 3 2.000
12 0.18590151133061·10−1 1 6 1.750
13 0.15782558339049·10+0 2 2 4.500
14 0.12716735220791·10+0 2 3 4.750
15 0.32019743894346·10−1 2 3 5.000
16 0.68049729364536·10−1 2 4 4.000
17 0.24291412853736·10−1 2 4 4.500
18 0.51440451639444·10−2 3 2 7.500
19 0.19084949733532·10−1 3 3 14.000
20 0.55229677241291·10−2 3 4 11.500
21 0.44197392976085·10−2 6 5 26.000
22 0.40061416708429·10−1 6 6 28.000
23 0.33752085907575·10−1 6 6 30.000
24 0.25127658213357·10−2 6 7 26.000

Table B.4: Coefficients and exponents of ari of Eq. (2.34) for Methane.
KPol,i=6, KExp,i=18
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k ni,k ci,k di,k ti,k

1 0.59889711801201 ·10+0 - 1 0.125
2 -0.16941557480731 ·10+1 - 1 1.125
3 0.24579736191718 ·10+0 - 2 0.375
4 -0.23722456755175 ·10+0 - 2 1.125
5 0.17954918715141 ·10−1 - 4 0.625
6 0.14592875720215 ·10−1 - 4 1.500
7 0.10008065936206 ·10+0 1 1 0.625
8 0.73157115385532 ·10+0 1 1 2.625
9 -0.88372272336366·10+0 1 1 2.750
10 0.31887660246708 ·10+0 1 2 2.125
11 0.20766491728799 ·10+0 1 3 2.000
12 -0.19379315454158·10−1 1 6 1.750
13 -0.16936641554983·10+0 2 2 4.500
14 0.13546846041701 ·10+0 2 3 4.750
15 -0.33066712095307·10−1 2 3 5.000
16 -0.60690817018557·10−1 2 4 4.000
17 0.12797548292871 ·10−1 2 4 4.500
18 0.58743664107299 ·10−2 3 2 7.500
19 -0.18451951971969·10−1 3 3 14.000
20 0.47226622042472 ·10−2 3 4 11.500
21 -0.52024079680599·10−2 6 5 26.000
22 0.43563505956635 ·10−1 6 6 28.000
23 -0.36251690750939·10−1 6 6 30.000
24 -0.28974026866543·10−2 6 7 16.000

Table B.5: Coefficients and exponents of ari of Eq. (2.34) for Nitrogen.
KPol,i=6, KExp,i=18
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B. Tables of coefficient for the EoS and transport property models

k ni,k ci,k di,k ti,k

1 0.63596780450714 ·10+0 - 1 0.125
2 -0.17377981785459 ·10+1 - 1 1.125
3 0.28914060926272 ·10+0 - 2 0.375
4 -0.33714276845694 ·10+0 - 2 1.125
5 0.22405964699561 ·10−1 - 4 0.625
6 0.15715424886913 ·10−1 - 4 1.500
7 0.11450634253745 ·10+0 1 1 0.625
8 0.10612049379745 ·10+1 1 1 2.625
9 -0.12855224439423 ·10+1 1 1 2.750
10 0.39414630777652 ·10+0 1 2 2.125
11 0.31390924682041 ·10+0 1 3 2.000
12 -0.21592277117247 ·10−1 1 6 1.750
13 -0.21723666564905 ·10+0 2 2 4.500
14 -0.28999574439489 ·10+0 2 3 4.750
15 0.42321173025732 ·10+0 2 3 5.000
16 0.46434100259260 ·10−1 2 4 4.000
17 -0.13138398329741 ·10+0 2 4 4.500
18 0.11492850364368 ·10−1 3 2 7.500
19 -0.33387688429909 ·10−1 3 3 14.000
20 0.15183171583644 ·10−1 3 4 11.500
21 -0.47610805647657 ·10−2 6 5 26.000
22 0.46917166277885 ·10−1 6 6 28.000
23 -0.39401755804649 ·10−1 6 6 30.000
24 -0.32569956247611 ·10−2 6 7 16.000

Table B.6: Coefficients and exponents of ari of Eq. (2.34) for Ethane. KPol,i=6, KExp,i=18
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B. Tables of coefficient for the EoS and transport property models

k ni,k ci,k di,k ti,k

1 0.10403973107358 ·10+1 - 1 0.250
2 -0.28318404081403·10+1 - 1 1.125
3 0.84393809606294 ·10+0 - 1 1.500
4 -0.76559591850023·10−1 - 2 1.375
5 0.94697373057280 ·10−1 - 3 0.250
6 0.24796475497006 ·10−3 - 7 0.875
7 0.27743760422870 ·10+0 1 2 0.625
8 -0.43846000648377·10−1 1 5 1.750
9 -0.26991064784350·10+0 2 1 3.625
10 -0.69313413089860·10−1 2 4 3.625
11 -0.29632145981653·10−1 3 3 14.50
12 0.14040126751380 ·10−1 3 4 12.00

Table B.7: Coefficients and exponents of ari of Eq. (2.34) for Propane. KPol,i=6, KExp,i=6
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B. Tables of coefficient for the EoS and transport property models

k dij,k tij,k nij,k ηij,k εij,k βij,k γij,k

Methane-Nitrogen
Fij = 1.0,KPol,ij=2, KExp,ij=7

1 1 0.000 -0.98038985517335 ·10−2 - - - -
2 4 1.850 0.42487270143005 ·10−3 - - - -
3 1 7.850 -0.34800214576142 ·10−1 1.000 0.500 1.000 0.500
4 2 5.400 -0.13333813013896 ·10+0 1.000 0.500 1.000 0.500
5 2 0.000 -0.11993694974627 ·10−1 0.250 0.500 2.500 0.500
6 2 0.750 0.69243379775168 ·10.1 0.000 0.500 3.000 0.500
7 2 2.800 -0.31022508148249 ·10+0 0.000 0.500 3.000 0.500
8 2 4.450 0.24495491753226 ·10+0 0.000 0.500 3.000 0.500
9 3 4.250 0.22369816716981 ·10+0 0.000 0.500 3.000 0.500

Methane-Ethane
Fij = 1.0,KPol,ij=2, KExp,ij=10

1 3 0.650 -0.80926050298746 ·10−3 - - - -
2 4 1.550 -0.75381925080059 ·10−3 - - - -
3 1 3.100 -0.41618768891219 ·10−1 1.000 0.500 1.000 0.500
4 2 5.900 -0.23452173681569 ·10+0 1.000 0.500 1.000 0.500
5 2 7.050 0.14003840584586 ·10+0 1.000 0.500 1.000 0.500
6 2 3.350 0.63281744807738 ·10−1 0.875 0.500 1.250 0.500
7 2 1.200 -0.34660425848809 ·10−1 0.750 0.500 1.500 0.500
8 2 5.800 -0.23918747334251 ·10+0 0.500 0.500 2.000 0.500
9 2 2.700 0.19855255066891 ·10−2 0.000 0.500 3.000 0.500
10 3 0.450 0.61777746171555 ·10+1 0.000 0.500 3.000 0.500
11 3 0.550 -0.69575358271105 ·10+1 0.000 0.500 3.000 0.500
12 3 1.950 0.10630185306388 ·10+1 0.000 0.500 3.000 0.500

Table B.8: Parameters, coefficients and exponents of arij of Eq.(2.35) for the binary mix-
tures taken into account. The values of Fij equal zero for all other binary
combinations.

152



B. Tables of coefficient for the EoS and transport property models

k dij,k tij,k nij,k ηij,k εij,k βij,k γij,k

Methane-Propane
Fij = 1.0,KPol,ij=5, KExp,ij=4

1 3 1.850 0.13746429958576 ·10−1 - - - -
2 4 3.950 -0.74425012129552 ·10−2 - - - -
3 1 0.000 -0.45516600213685 ·10−2 - - - -
4 2 1.850 -0.54546603350237 ·10−2 - - - -
5 2 3.850 0.23682016824471 ·10−2 - - - -
6 2 5.250 0.18007763721438 ·100 0.25 0.50 0.750 0.500
7 2 3.850 -0.44773942932486 ·100 0.25 0.50 1.000 0.500
8 2 0.200 0.19327374888200 ·10−1 0.00 0.50 2.000 0.500
9 2 6.500 -0.30632197804624 ·100 0.00 0.50 3.000 0.500

Nitrogen-Ethane
Fij = 1.0,KPol,ij=3, KExp,ij=3

1 2 0.000 -0.47376518126608 ·10+0 - - - -
2 2 0.050 0.48961193461001 ·10+0 - - - -
3 3 0.000 -0.57011062090535 ·10−2 - - - -
4 1 3.650 -0.19966820041320 ·10+0 1.000 0.500 1.000 0.500
5 2 4.900 -0.69411103101723 ·10+0 1.000 0.500 1.000 0.500
6 2 4.450 0.69226192739021 ·10+0 0.875 0.500 1.250 0.500

Ethane-Propane
Fij = 0.130424765150,KPol,ij=10, KExp,ij=0

1 1 1.000 0.25574776844118 ·10+1 - - - -
2 1 1.550 -0.79846357136353 ·10+1 - - - -
3 1 1.700 0.47859131465806 ·10+1 - - - -
4 2 0.250 -0.73265392369587 ·10+0 - - - -
5 2 1.350 0.13805471345312 ·10+1 - - - -
6 3 0.000 0.28349603476365 ·10+0 - - - -
7 3 1.250 -0.49087385940425 ·10+0 - - - -
8 4 0.000 -0.10291888921447 ·10+0 - - - -
9 4 0.700 0.11836314681968 ·10+0 - - - -
10 4 5.400 0.55527385721943 ·10−4 - - - -

Table B.9: Parameters, coefficients and exponents of arij of Eq.(2.35) for the binary mix-
tures taken into account. The values of Fij equal zero for all other binary
combinations.
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B. Tables of coefficient for the EoS and transport property models

Mixture i− j βν,ij γν,ij βT,ij γT,ij

CH4-N2 0.998721377 1.013950311 0.998098830 0.979273013
CH4-C2H6 0.997547866 1.006617867 0.996336508 1.049707697
CH4-C3H8 1.004827070 1.038470657 0.989680305 1.098655531
N2-C2H6 0.978880168 1.042352891 1.007671428 1.098650964
N2-C3H8 0.974424681 1.081025408 1.002677329 1.002677329
C2H6-C3H8 0.997607277 1.003034720 0.996199694 1.014730190

Table B.10: Binary parameters of the reducing functions for density and temperature
(Eq.(2.36)).

Species Formula ∆H0,i [J/kg] ∆S0,i [J/kg/K]

Methane CH4 -74600 11617.125
Nitrogen N2 0 6839.79074
Ethane C2H6 -83851.544 7623.00439
Propane C3H8 -104680 6130.07218

Table B.11: Enthalpy and entropy at the reference state
T = 298.15 K and p = 1.01325 · 105 Pa

Species Formula ρc [mol/dm3] T c [K] W [g·mol−1]

Methane CH4 10.139342719 190.5640 16.042460
Nitrogen N2 11.183900000 126.1920 28.01340
Ethane C2H6 6.870854540 305.3220 30.06904
Propane C3H8 5.000043088 369.8250 44.09562

Table B.12: Critical parameters and molar masses of the 4 species of interest
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Temperature rangeSpecies Coeff 200-1000 K 1000-5000 K

CH4

aµ,1 +0.57643622 · 10+0 +0.66400044 · 10+0

aµ,2 −0.93704079 · 10+2 +0.10860843 · 10+2

aµ,3 +0.86992395 · 10+3 −0.76307841 · 10+4

aµ,4 +0.17333347 · 10+1 +0.10323984 · 10+1

CO2

aµ,1 +0.51137258 · 10+00 +0.63978285 · 10+00

aµ,2 −0.22951321 · 10+03 −0.42637076 · 10+02

aµ,3 +0.13710678 · 10+05 −0.15522605 · 10+05

aµ,4 +0.27075538 · 10+01 +0.16628843 · 10+01

CO

aµ,1 +0.62526577 · 10+00 +0.87395209 · 10+00

aµ,2 −0.31779652 · 10+02 +0.56152222 · 10+03

aµ,3 −0.16407983 · 10+04 −0.17394809 · 10+06

aµ,4 +0.17454992 · 10+01 −0.39335958 · 10+00

O2

aµ,1 +0.60916180 · 10+00 +0.72216486 · 10+00

aµ,2 −0.52244847 · 10+02 +0.17550839 · 10+03

aµ,3 −0.59974009 · 10+03 −0.57974816 · 10+05

aµ,4 +0.20410801 · 10+01 +0.10901044 · 10+01

H2O

aµ,1 +0.50019557 · 10+00 +0.58988538 · 10+00

aµ,2 −0.69712796 · 10+03 −0.53769814 · 10+03

aµ,3 +0.88163892 · 10+05 +0.54263513 · 10+05

aµ,4 +0.30836508 · 10+01 +0.23386375 · 10+01

Table B.13: Coefficients for the expression of the perfect gas contribution to viscosity
(2.41).
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Temperature rangeSpecies Coeff 200-1000 K 1000-5000 K

CH4

ak,1 +0.10238177 · 10+1 +0.77485028 · 10+0

ak,2 −0.31092375 · 10+3 −0.40089627 · 10+3

ak,3 +0.32944309 · 10+5 −0.46551082 · 10+5

ak,4 +0.67787437 · 10+0 +0.25671481 · 10+1

CO2

ak,1 +0.48056568 · 10+00 +0.69857277 · 10+00

ak,2 −0.50786720 · 10+03 −0.11830477 · 10+03

ak,3 +0.35088811 · 10+05 −0.50688859 · 10+05

ak,4 +0.36747794 · 10+01 +0.18650551 · 10+01

CO

ak,1 +0.85439436 · 10+00 +0.88407146 · 10+00

ak,2 +0.10573220 · 10+03 +0.13357293 · 10+03

ak,3 −0.12347848 · 10+05 −0.11429640 · 10+05

ak,4 +0.47793128 · 10+00 +0.24417019 · 10+00

O2

ak,1 +0.77229167 · 10+00 +0.68463210 · 10+01

ak,2 −0.58933377 · 10+04 +0.12210365 · 10+01

ak,3 +0.90917351 · 10+00 +0.29124182 · 10+03

ak,4 −0.79650171 · 10+05 +0.64851631 · 10−01

H2O

ak,1 +0.10966389 · 10+01 +0.39367933 · 10+00

ak,2 −0.55513429 · 10+03 −0.22524226 · 10+04

ak,3 +0.10623408 · 10+06 +0.61217458 · 10+06

ak,4 −0.24664550 · 10+00 +0.58011317 · 10+01

Table B.14: Coefficients for the expression of the perfect gas contribution to thermal con-
ductivity (2.42).
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Appendix C

Elliptic, parabolic, hyperbolic
differential equations

To introduce the concept of elliptic, hyperbolic, parabolic is it useful to consider the
one dimensional simplified convection diffusion equation [58]:

∂u

∂t
+ a(u)

∂u

∂x
= α

∂2u

∂x2
(C.1)

where a(u) is the x component of the convection velocity and α is a diffusion coef-
ficient. 1 It can be demonstrated that the solution of Eq. (C.1) has the following
form:

u(x, t) = ûe−αk
2teik(x−at) (C.2)

If a is real and α > 0 Eq. (C.2) is a wave of amplitude û, propagating with a velocity
a and damped due to the diffusion coefficient α 2. k is the wave number k = 2π/λ
with λ wavelength.

The approach of searching wave like solutions can be extended also to a system
of quasi-linear partially differential equations (PDE). A system of PDE is then said
to be:

• hyperbolic if its homogeneous part admits wave-like solutions;

• parabolic if its homogeneous part admits damped wave-like solutions;

• elliptic if its homogeneous part does not admit wave-like solutions.

These concepts can be applied also to second order PDE systems. In fact it can
be demonstrated that every second order PDE system can be transformed into a
first order system. Hence also the Navier-Stokes equations can be analyzed under
this point of view. In particular this is done considering the quasilinear form of
the Navier-Stokes equations and analyzing the eigenvalues of Jacobian matrix of the
system as done in Chap. 3 for the PNS system.

1If the x-projection of the momentum equation is considered in absence of pressures and external
forces, u is the velocity and a(u) = u. The convection-diffusion equation becomes the well-known
Burgers equation. Burgers equation plays an important role since it contains the full convective non
linearity of the flow equations

2The amplitude is dumped by a factor αk2 in the time unit
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Appendix D

Vigneron parameter

The 2D Eulerian PNS system is considered:

∂Fe

∂x
+
∂Ge

∂y
= 0 (D.1)

where the two dimensional Eulerian fluxes are given by:

Fe =


ρu

ρu2 + ωp
ρuv
ρuh0

 Ge =


ρv
ρuv

ρv2 + p
ρvh0

 (D.2)

The system (D.1) can be written in quasi linear form introducing the Jacobian matrix
of the fluxes with respect to the primitive variable vector V defined by:

V =


ρ
u
v
p

 (D.3)

The Jacobian matrix of the fluxes are:

B =
∂Fe

∂V
=


u ρ 0 0
u2 2ρu 0 ω
uv ρv ρu 0

u(h0 + ρhρ) ρ(h0 + u2) ρuv ρuhp

 (D.4)

C =
∂Ge

∂V
=


v 0 ρ 0
uv ρv ρu 0
v2 0 2ρv 1

v(h0 + ρhρ) ρuv ρ(h0 + v2) ρvhp

 (D.5)

Hence defining the matrix A = B−1C the system (D.1) can be written in a quasi
linear form:

∂V

∂x
+ A

∂V

∂y
= 0 (D.6)
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D. Vigneron parameter

To understand the mathematical nature of this system, A eigenvalues must be cal-
culated solving the equation:

det(A− λI) = 0 (D.7)

where I is the identity matrix and λ the generic eigenvalue, which is equivalent to:

det(C− λB) = 0 (D.8)

and thus to:
v − λu −λρ ρ 0
uv − λu2 ρv − 2λρu ρu λω
v2 − λuv −λρv 2ρv − λρu 1

(v2 − λu)(h0 + ρhρ) ρuv − λρ(h0 + u2) ρ(h0 + v2)− λρuv ρ(v − λu)hp

 = 0

(D.9)
To solve the 4th order Eq. (D.9) for λ, two thermodynamic parameters are introduced
for the clarity of notation:

x̂ = ρhp ŷ = ρhρ (D.10)

It is helpful to introduce also a third parameter z = v − λu. With these notations
the eigenvalues problem of Eq. D.9 becomes:

ρ2z2{[(x̂− ω)u2 + ωy]λ2 − [2x− (ω + 1)]uvλ+ [ŷ + (x̂− 1)v2]} = 0 (D.11)

Two eigenvalues are obtained from

z = u− λv = 0 (D.12)

which are

λ1,2 =
v

u
(D.13)

The two other eigenvalues are obtained solving the second order equation in λ between
brace brackets in Eq. (D.11), and are:

λ3,4 =
[2x̂− (ω + 1)]uv ±

√
∆

2[(x̂− ω)u2 + ωŷ]
(D.14)

with ∆ given by:

∆ = (ω − 1)2u2v2 − 4[(x̂− ω)u2 + ω(x̂− 1)v2]ŷ − 4ωŷ2 (D.15)

The system is hyperbolic if all the eigenvalues are real. λ1,2 are always real and are
defined if u 6= 0. The others two eigenvalues λ3,4 are real if ∆ is positive and hence
its sign must be investigated. First the hypothesis u� v can be used to simplify its
expression, neglecting the terms multiplied by the crosswise velocity v thus yielding
to:

∆ w −4y[(x̂− ω)u2 + ωŷ] (D.16)

At this point it is convenient to express x̂ and ŷ as functions of the speed of sound

ws and the internal energy derivative ep =

(
∂e

∂p

)
ρ

. The relation between enthalpy

and internal energy can be expressed by:

dh = de+ d(
p

ρ
) (D.17)
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D. Vigneron parameter

from which follows (
∂h

∂p

)
ρ

=

(
∂e

∂p

)
ρ

+
1

ρ
(D.18)

Hence for x̂ it results that:
x̂ = ρep + 1 (D.19)

Combining the first and second thermodynamic principles yields to the well known
differential relations:

dh = Tds+
dp

ρ

de = Tds− pd
1

ρ

(D.20)

from which follows: (
∂h

∂ρ

)
ρ

= T

(
∂s

∂ρ

)
p(

∂e

∂p

)
ρ

= T

(
∂s

∂p

)
ρ

(D.21)

Moreover Maxwell relation implies that:(
∂p

∂s

)
ρ

(
∂s

∂ρ

)
p

(
∂ρ

∂p

)
s

= −1 →

(
∂p

∂s

)
ρ

(
∂s

∂ρ

)
p

= −w2
s (D.22)

Combining Eqs (D.22) and (D.21) it results that:(
∂h

∂ρ

)
ρ

= −w2
s

(
∂e

∂p

)
ρ

(D.23)

where ws is as usual the speed of sound. From this last relations follows:

ŷ = −ρw2
sep (D.24)

Thus the sign of ŷ is related to the sign of the internal energy derivative with respect
to pressure at constant density which can also be expressed applying the chain rule
as: (

∂e

∂p

)
ρ

=

(
∂e

∂T

)
ρ

(
∂p

∂T

)
ρ

(D.25)

The specific heat at constant volume is a positive quantity defined by:

cv =

(
∂e

∂T

)
ρ

(D.26)

and introducing it in Eq. (D.25) gives:(
∂e

∂p

)
ρ

=
cv(
∂p

∂T

)
ρ

(D.27)
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D. Vigneron parameter

The derivative

(
∂p

∂T

)
ρ

is a positive quantity for any generic equation of state. To

confirm this obvious statement the computed above derivative with the thermody-
namic models presented in Chap. 2 is reported in Fig. D.1 versus temperature for
different supercritical pressures. The temperature range covers different regimes go-
ing from liquid-like conditions to perfect gas, and the quantity is always positive.

Figure D.1: Evolution of

(
∂p

∂T

)
ρ

with the temperature for different supercritical pressures

(6 MPa< p <13 MPa) for methane (logarithmic scale).

The previous conditions imply that ŷ < 0. Thus ∆ is positive if the term between
square brackets in Eq. (D.16) is positive. Replacing x̂ and ŷ with Eqs (D.19-D.24)
this conditions is:

(ρep + 1− ω)u2 − ωw2
sρep > 0 (D.28)

which reduces to the following condition for ω:

ω <
[1 + ρep]M

2
x

M2
x + ρep

(D.29)

where Mx = u/ws is the Mach number in the streamwise direction. This condition
is equivalent with the perfect gas one if γ is replaced with an equivalent parameter
defined by:

γ = 1 +
1

ρep
(D.30)

The derivative ep is always positive and hence it results that the right hand side of
Eq. (D.29) is always positive. Moreover, it is an increasing function of the Mach
number and it tends towards zero when Mx → 0.
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Appendix E

Grid generation

In a numerical code the generation of a suitable computational grid is mandatory
to obtain accurate solutions. Two main points must be addressed to create a grid.
The first requirement is to have a clustered grid where the gradients are higher.
Dealing with channel flows the grid should be clustered near the wall where the no-
slip condition causes high velocity gradients. The second requirement is related to the
turbulence model. RANS with Spalart-Allmaras closure model implies an integration
up to the wall. This means that also the thin laminar sublayer should be captured
by the grid. To identify the viscous sublayer it is useful to refer to the logarithmic
coordinates defined as:

u+ = u/uτ y+ = y/yτ (E.1)

uτ is the friction velocity and yτ is characteristic length defined as:

uτ =

√
τw

ρ
yτ =

ν

uτ
(E.2)

where τw is the wall shear stress. Typically the viscous sublayer is bounded in the
region between the wall and y+ = 5. Therefore to obtain an accurate description of
this region the first grid point from the wall should at least correspond to y+ = 1.

In the present work a hyperbolic tangent stretching function has been used to
generate the grid:

st =
tanh(AH · z)
tanh(AH)

(E.3)

where AH > 1 is a parameter and z is the independent variable. For z ⊂ [0, 1] this
function varies in the range [0, 1]. The above function is reported in Fig. (E.1) for
several values of the parameter AH.

For example we can consider a two dimensional axisymmetric case. The compu-
tational domain is represented in Fig. 4.5. A grid must be generated for the generic
section. Only one cell is considered in the tangential direction. Whereas a N cells
grid is generated for the radial direction. This grid must be clustered going from the
symmetry axis towards the wall. Using the stretching function of Eq. (E.3) the grid
can be generated according to:

yj+1/2 =
D

2

tanh(AH ·
j

N
)

tan(AH)
j = {0, · · · , N} (E.4)

163



E. Grid generation

Figure E.1: Stretching function of Eq. (E.3) used in the grid generation

where N is as usual the number of the cells in the y direction. Increasing the parame-
ter AH the grid is clustered near the wall. Therefore a suitable AH can be chosen so
as to verify the required condition on y+ < 1 at the cell near the wall. The projection
of the grid on a plane passing from the symmetry axis is reported in Fig. (E.2).

Figure E.2: Projection of the two dimensional axysimmetric grid a plane containing the
symmetry axis
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Appendix F

Bulk properties

Bulk variables are useful in channel to have a global point of view over the solution.
Moreover semi-empirical correlation for channels are based on bulk properties. It is
important to give clear and coherent definitions of these averages. In the present study
bulk properties are calculated starting from the definitions of bulk total enthalpy and
bulk pressure:

pb =
1

A

∫
A
pdS

h0,b =
1

ṁ

∫
A
ρuh0dS

(F.1)

where A is the crosswise section and ṁ the mass flow rate defined as:

ṁ =

∫
A
ρudS (F.2)

The quantities without subscript appearing in the integral depend on (x, y, z) whereas
bulk properties by definition only depend on the streamwise position x. Once pb, h0

and ṁ have been evaluated the bulk density ρb is calculated with an iteration process:
in fact there is only one density value which together with the given bulk pressure
correspond to the given bulk total enthalpy. Namely bulk density and pressure must
verify the following equations:

hb = h(ρb, pb)

hb = h0,b − 0.5

(
ṁ

ρA

)2 (F.3)

The other bulk thermodynamic and transport properties are calculated using the EOS
and transport properties equations in the thermodynamic state (ρb, pb), whereas the
bulk velocity is simply given by:

ub =
ṁ

ρbA
(F.4)

165



F. Bulk properties

166



Bibliography

[1] NIST, National Institute of Standards and Technology,
http://webbook.nist.gov/chemistry/fluid/.

[2] http://w3.pppl.gov/ntcc/PSPLINE/.

[3] NETL, National Energy Technology Laboratory, http://www.netl.doe.gov/.

[4] Numerical Methods for Conservation Laws. Birkäuser, 1992.

[5] Ideal-gas thermodynamic properties for natural-gas applications. Int. J. Ther-
mophysics, 16:1381–1391, 1995.

[6] Verification and Validation in Computational Sciences end Engineering. Her-
mosa Publishers, 1998.

[7] Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical In-
troduction. Springer, 1999.

[8] Turbulent Flows. Cambridge University Press, 2000.

[9] Lng interchangeability/gas quality: Results of the national energy technology
laboratory’s research for the ferc on natural gas quality and interchangeability.
Report, U.S. Department of Energy National Energy Technology Laboratory,
2007.

[10] S. Acharya. Pressure-based finite-volume methods in computational fluid dy-
namics. Journal of Heat Transfer, 129:407–424, 2007.

[11] A.Fröhlich, H. Immich, F. LeBail, and M. Popp. Three-dimensional flow anal-
ysis in rocket engine coolant channel of high depth/width ratio. AIAA Paper
1991-2183, 1991. 27th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[12] M. Benedict, G. Webb, and L. Rubin. An empirical equation for thermody-
namic properties of light hydrocarbons and their mixtures. Journal of Chemical
Physics, 8:334–345, April 1940.

[13] P. Birken and A. Meister. On low mach number preconditioning of finite volume
schemes. Proceedings in Applied Mathematics and Mechanics, 5:759–760, 2005.

[14] P. Bishnoi and D. Robinson. New mixing rules for the bwr parameters to
predict mixture properties. The Canadian Journal of Chemical Engineering,
50:101–107, February 1972.

167



BIBLIOGRAPHY

[15] A. Boushehri, J. Bzowski, J. Kestin, and E. Mason. Equilibrium and transport
properties of eleven polyatomic gases at low density. Journal of Physical and
Chemical Reference Data, 16:445–467, 1987.

[16] W. Briley. Numerical methods for predicting three-dimensional steady viscous
flow in ducts. Journal of Computational Physics, 14:8–28, 1974.

[17] W. Briley and H. McDonald. Three-dimensional viscous flows with large sec-
ondary velocity. Journal of Fluid Mechanics, 144:47–77, 1984.

[18] C. Brown. Conceptual investigations for a methane-fueled expander rocket
engine. AIAA Paper 2004-4210, 2004. 40th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, Fort Lauderdale, Florida.

[19] P. BuelowJ.C., J. Tannehill, J. Ievalts, and L. Lawrence. Three-dimensional,
upwind, parabolized navier-stokes code for chemically reacting flows. Journal
of Thermophysics and Heat Transfer, 5(3):274–283, 1991.

[20] C. Burg and T. Erwin. Application of richardson extrapolation to the numer-
ical solution of partial differential equations. Numerical Methods for Partial
Differential Equations, 25(4):810–832, 2008.

[21] H. Burkhardt, M. Sippel, A. Herbertz, and J. Klevanski. Comparative study
of kerosene and methane propellant engine for reusable liquid booster stages.
4th international conference on launcher technology "Space Launcher Liquid
Propulsion", Liège, 2002.

[22] H. Burkhardt, M. Sippel, A. Herbertz, and J. Klevanski. Comparative study
of kerosene and methane propellant engines for reusable liquid booster stages.
Technical report, 2002. 4th International Conference on Launcher Technology
"Space Launcher Liquid Propulsion".

[23] P. Caisso, A. Souchier, C. Rothmund, P. Alliot, C. Bonhomme, W. Zinner,
R. Parsley, T. Neill, S. Forde, R. Starke, W. Wang, M. Takahashi, M. Atsumi,
and D. Valentian. A liquid propulsion panorama. Acta Astronautica, 65:1723–
1737, 2009.

[24] S. Catris and B. Aupoix. Density corrections for turbulence models. Aerospace
Science Technology, 4:1–11, 2000.

[25] C.Dang and E.Hihara. In-tube cooling heat transfer of supercritical carbon
dioxide. part 1. experimental measurement. International Journal of Refriger-
ation, 27:736–747, 2004.

[26] X. Cheng, B. Kuang, and Y. Yang. Numerical analysis of heat transfer in
supercritical water cooled flow channels. Nuclear Engineering and Design,
237(3):240–252, 2007.

[27] X. Cheng, T. Schulenberg, and F. Karlsruhe. Heat transfer at supercritical
pressures: Literature review and application to an hplwr. Forschungszentrum
Karlsruhe FZKA 6609, 2001.

168



BIBLIOGRAPHY

[28] R. Chilukuri and R. Pletcher. Numerical solutions to the partially parabo-
lized navier-stokes equations for developing flow in a channel. Numerical Heat
Transfer, 3:169–188, 1980.

[29] Y. Choi and C. Merkle. The application of preconditioning in viscous flows.
Journal of Computational Physics, 105:207–223, 1993.

[30] C. Conrado and V. Vesovic. The influence of chemical composition on vaporisa-
tion of lng and lpg on unconfined water surfaces. Chemical Engineering Science,
55:4549–4562, 2000.

[31] R. Cook. Methane heat transfer investigation. NASA CR-171051, June 1984.

[32] J. W. Cornelisse, H. F. R. Schoyer, and K. F. Wakker. Rocket Propulsion and
Spaceflight. Butterworth-Heinemann, 2007.

[33] A. Crocker and S. Peery. System sensitivity studies of a lox/methane
expander cycle rocket engine. AIAA Paper 1998-3674, 1998. 34th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[34] R. Cross. Combustion performance and heat transfer characterization of
lox/hydrocarbon type propellants. Report CR160874, Aerojet Liquid Rocket
Company, August 1980. prepared for National Aeronautics and Space Admin-
istration.

[35] D. D’Ambrosio and R. Marsilio. A numerical method for solving the three-
dimensional parabolized navier-stokes equations. Computers and Fluids,
26(6):587–611, 1997.

[36] J. T. D.K. Prabhu. Numerical solution of space shuttle orbiter flowfield includ-
ing real-gas effects. Journal of Spacecraft, 23(3):264–272, 1986.

[37] A. Domaschenko, A. Dovbish, R. Darbinyan, A. Lyapin, and V. Peredle’skii.
Analysis of liquefied methane production technology depending on methane
purity and production volume. Journal of Petroleum Science and Engineering,
40(3):145–148, 2004.

[38] A. Domaschenko and Y. Kondrashkov. Technology of quality control of liquefied
methane-a fuel for space rocket systems. Journal of Petroleum Science and
Engineering, 39(11):656–661, 2003.

[39] Z. Duan and J. Hu. A new cubic equation of state and its applications to the
modeling of vapor-liquid equilibria and volumetric properties of natural fluids.
Geochimica et Cosmochimica Acta, 68(14):2997–3009, 2004.

[40] J. Estla-Uribe and J. Jaramillo. Generalized virial equation of state for natural
gas systems. Fluid Phase Equilibria, 231:84–98, 2005.

[41] M. Farzaneh-Gord, A. Khamforoush, S. Hashemi, and H. P. Namin. Com-
puting thermal properties of natural gas by utilizing aga8 equation of state.
International Journal of Chemical Engineering and Applications, 1(1):20–24,
June 2010.

169



BIBLIOGRAPHY

[42] D. Friend, J. Ely, and H. Ingham. Thermophysical properties of methane. J.
Phys. Chem. Ref. Data, 18(2):583–638, 1989.

[43] D. Friend, H. Ingham, and J. Ely. Thermophysical properties of ethane. J.
Phys. Chem. Ref. Data, 20(2):275–347, 1991.

[44] R. Gerbsch and R. Agarwal. Solution of the parabolized navier-stokes equations
for three-dimensional real-gas flows using osher’s upwind scheme. AIAA Paper
1991-0248, 1991. 29th Aerospace Science Meeting, January 7-10, Reno, Nevada.

[45] A. Giovanetti, L. Spadaccini, and E. Szetela. Deposit formation and heat-
transfer characteristics of hydrocarbon rocket fuels. NASA CR-168277, 1983.

[46] M. Gitterman. Hydrodynamics of fluids near a critical point. Reviews of Modern
Physics, 50(1):85–106, 1978.

[47] T. Govindan, W. Briley, and H. McDonald. General three-dimensional viscous
primary/secondary flow analysis. AIAA Journal, 29(3):361–370, 1991.

[48] H. Griem. A new procedure for the prediction of forced convection heat transfer
near- and supercritical pressure. Heat and Mass Transfer, 31:301–305, 1996.

[49] H. Guillard and C. Viozat. On the behavior of upwind schemes in the low mach
number limit. Computers and Fluids, 28:63–86, 1999.

[50] O. Haidn. Advanced rocket engines. In advances on propulsion technology for
high-speed aircraft. educational notes rto-en-avt-150, paper 6, 2008.

[51] P.-G. Han, S.-W. Lee, K.-H. Kim, and Y. Yoon. Performance analysis of the
thrust chamber in liquid rocket engine using liquefied natural gas as a fuel.
AIAA Paper 2004-3860, 2004. 40th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, 11-14 July 2004, Fort Lauderdale, Florida.

[52] H.Bilj and P.Wesseling. A numerical method for the computation of compress-
ible flows with low mach number regions. Computational Fluid Dynamics, 1996.

[53] S. He, W. Kim, and J. Bae. Assessment of performance of turbulence models in
predicting supercritical pressure heat transfer in a vertical tube. International
Journal of Heat and Mass Transfer, 51:4659–4675, 2008.

[54] R. Hendricks, R. Graham, Y. Hsu, and R. Friedman. Experimental heat-transfer
results for cryogenic hydrogen flowing in tubes at subcritical and supercritical
pressures to 800 pounds per square inch absolute. NASA TN D-3095, 1966.

[55] R. Hendricks, R. Simoneau, and R. Friedman. Heat transfer characteristics of
cryogenic hydrogen from 1000 to 2500 psia flowing upward in uniformly heated
straight tubes. NASA TN D-2977, 1965.

[56] K. Higashino, M. Sugioka, T. Kobayashi, R. Minato, and Y. Maru. Fundamental
study on coking characteristics of lng rocket engines. AIAA Paper 2008-4753,
2008. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

170



BIBLIOGRAPHY

[57] K. Higashino, M. Sugioka, T. Kobayashi, R. Minato, Y. Maru, Y. Sasayama,
M. Otsuka, T. Makino, and H. Sakaguchi. Fundamental study on coking
characteristics of lng rocket engines. AIAA Paper 2008-4753, 2008. 44th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 21-23
July 2008, Hartford, CT.

[58] C. Hirsch. Numerical Computation of Internal and External Flows: The Fun-
damentals of Computational Fluid Dynamics, Second Edition. Pitman, 1979.

[59] D. Hissong. Keys to modeling lng spills on water. Journal of Hazardous Mate-
rials, 140:465–477, 2007.

[60] N. H.Negishi, Y.Daimon. Numerical investigation of supercritical coolant
flow in liquid rocket engine. AIAA Paper 2010-6888, 2010. 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[61] Y.-X. Hua, Y.-Z. Wang, and H. Meng. A numerical study of supercritical forced
convective heat transfer of n-heptane inside a horizontal miniature tube. The
Journal of Supercritical Fluids, 52:36–46, 2010.

[62] M. Huber and J. Ely. Prediction of viscosity of refrigerants and refrigerant
mixtures. Fluid Phase Equilibria, 80:239–248, 1992.

[63] M. Huber, D. Friend, and J. Ely. Prediction of thermal conductivity of refrig-
erants and refrigerant mixtures. Fluid Phase Equilibria, 80:249–261, 1992.

[64] J. Hulka and G. Jones. Performance and stability analyses of rocket thrust
chambers with oxygen/methane propellants. Technical report, July 2010.

[65] R. Jacobsen and R. Stewart. Thermodynamic properties of nitrogen including
liquid and vapor phases from 63 k to 2000 k with pressures to 10,000 bar.
Journal of Physical and Chemical Reference Data, 2(4):757–922, 1973.

[66] K. Javadi, M. Darbandi, and M. Taeibi-Rahni. Three dimensional compressible-
incompressible tubulent flow simulation using a pressure-based algorithm. Com-
puters and Fluids, 37:747–766, 2008.

[67] H. Jung, C. Merkle, R. Schuff, and W. Anderson. Detailed flowfield predictions
of heat transfer to supercritical fluids in high aspect ratio channels. AIAA
Paper 2007-5548, July 2007. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion
Conference.

[68] N. Kafengauz. Heat transfer to turbulent stream in pipes under supercritical
pressures. Inzhenerno-Fizicheskii Zhurnal, 44(1):9–12, 1981.

[69] K. Karki and S. Pantakar. Pressure based calculation procedure for viscous
flows at all speeds in arbitrary configurations. AIAA Journal, 27:1167–1174,
1989.

[70] K. E. . K.E. Tsiolkovsky. The exploration of cosmic space by means of reaction
devices. The Science Review, 5, 1903.

171



BIBLIOGRAPHY

[71] R. Klein. Semi-implicit extension of a godunov-type scheme based on low mach
number asymptotic i: One-dimensional flow. Journal of Computational Physics,
121:213–237, 1995.

[72] S. A. Klein, M. O. McLinden, and A. Laesecke. An improved extended cor-
responding states method for estimation of viscosity of pure refrigerants and
mixtures. International Journal of Refrigeration, 20(3):208–217, 1997.

[73] I. Klepikov, B. Katorgin, and V. Chvanov. The new generation of rocket engines,
operating by ecologically safe propellant "liquid oxygen and liquified natural
gas (methane)". Aerotecnica The Journal of Aerospace Science, Technology
and Systems, 41(4-10):209–217, 1997.

[74] O. Knab, A. Fröhlich, D. Wennerberg, and W. Haslinger. Advanced cooling
circuit layout for the vinci expander cycle thrust chamber. AIAA Paper 2002-
4005, 2002. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[75] J. Korte. An explicit upwind algorithm for solving the parabolized navier-stokes
equations. NASA TP 3050, 1991.

[76] S. Koshizuka, N.Takano, and Y. Oka. Numerical analysis of deterioration phe-
nomena in heat transfer to supercritical water. International Journal of Heat
and Mass Transfer, 38(16):3077–2084, 1995.

[77] J. Kreskovsky, W. Briley, and H. McDonald. Analysis and computational of
three-dimensional flow in strongly curved ducts. Computers in flow predictions
and fluid dynamics experiments, 1981.

[78] A. Kumar and A. Henni. Three-parameter cubic equation of state for pure
components of heavy oils. The Canadian Journal of Chemical Engineering,
89:869–878, 2011.

[79] O. Kunz, R. Klimeck, W. Wagner, and M. Jaeschke. The gerg-2004 wide-range
equation of state for natural gases and other mixtures. Technical report, GERG
TM15, 2007.

[80] S. Lawrence and J. Tannehill. Upwind algorithm for the parabolized navier-
stokes equations. AIAA Journal, 27(9):1175–1183, 1989.

[81] F. LeBail and M. Popp. Numerical analysis of high aspect ratio cooling
passage flow and heat transfer. AIAA Paper 1993-1829, June 1993. 29th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[82] B. Lee and M. Kesler. A generalized thermodynamic correlation based on three-
parameter corresponding states. American Institute of Chemical Engineering
Journal, 21:510–527, 1975.

[83] S. Lee and J. Howell. Turbulent developing convective heat transfer in a tube for
fluids near the critical point. International Journal of Heat and Mass Transfer,
41(10):1205–1218, 1998.

[84] Z. Lei. Thermoacoustic convection and transport in supercritical fluids under
normal and micro-gravity conditions. Phd thesis, drexel university, 2009.

172



BIBLIOGRAPHY

[85] E. Lemmon and R. Jacobsen. Viscosity and thermal conductivity equations
for nitrogen, oxygen, argon, and air. International Journal of Thermophysics,
25(1):21–69, 2003.

[86] E. W. Lemmon and R. T. Jacobsen. A generalized model for the thermodynamic
properties of mixtures. International Journal of Thermophysics, 20(3):825–835,
1999.

[87] R. Levy, W. Briley, and H. McDonald. Viscous primary/secondary flow analysis
for use with nonorthogonal coordinate systems. AIAA Paper 83-0556, 1983. 21st
Aerospace Science Meeting, January 10-13, Reno, Nevada.

[88] K. Liang, B. Yang, and Z. Zhang. Investigation of heat transfer and coking
characteristics of hydrocarbon fuels. Journal of Propulsion and Power, 14:789–
796, 1998.

[89] J. Locke and D. Landrum. Uncertainty analysis of heat transfer to super-
critical hydrogen in cooling channels. AIAA Paper 2005-4303, 2005. 41th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[90] J. Locke and D. Landrum. Study of heat transfer correlations for supercritical
hydrogen in regenerative cooling channels. Journal of Propulsion and Power,
24(1):94–103, 2008.

[91] J. Locke, S. Pal, and R. Woodward. Chamber wall heat flux measure-
ments for a lox/ch4 uni-element rocket. AIAA Paper 2007-5547, 2007. 43th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[92] J. Lux and O. Haidn. Flame stabilization in high-pressure liquid oxy-
gen/methane rocket engine combustion. Journal of Propulsion and Power,
25(1):15–23, 2009.

[93] K. Marsh, R. Perkins, and M. Ramires. Measurement and correlation of the
thermal conductivity of propane from 86 k to 600 k at pressures to 70 mpa.
Journal of Chemical and Engineering Data, 47:932–940, 2002.

[94] B. J. McBride and S. Gordon. Computer Program for Calculation of Complex
Chemical Equilibrium Compositions and Applications: I. Analysis. National
Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio
44135-3191, October 1994. Reference Publication, NASA RP-1311.

[95] B. J. McBride and S. Gordon. Computer Program for Calculation of Complex
Chemical Equilibrium Compositions and Applications: II. User’s Manual and
Program Description. National Aeronautics and Space Administration, Lewis
Research Center, Cleveland, Ohio 44135-3191, June 1996. Reference Publica-
tion, NASA RP-1311.

[96] M. O. McLinden, S. A. Klein, and R. A. Perkins. An extended correspond-
ing states model for the thermal conductivity of refrigerants and refrigerant
mixtures. International Journal of Refrigeration, 23:43–63, 2000.

173



BIBLIOGRAPHY

[97] J. Mellish. Low thrust chemical rocket engine study. NASA CR-165276, March
1981.

[98] C. Merkle. Computation of flows with arbitrary equations of state. AIAA
Journal, 36(4):515–521, 1998.

[99] C. Merkle, D. Li, and V. Sankaran. Analysis of regen cooling in rocket com-
bustors. Technical report, May 2004. JANNAF Propulsion Conference.

[100] M. L. Meyer. Electrically heated tube investigation of cooling channel geome-
try effects. AIAA Paper 95-2500, 1995. 31st AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit.

[101] J. Mitchell and J. Gregory. Space storable regenerative cooling investigation.
NASA CR-72341, July 1968.

[102] M. Mohseni and M. Bazargan. The effect of the low reynolds number k-e
turbulence models on simulations of the enhances and deteriorated convective
heat transfer to the supercritical fluid flows. Heat Mass Transfer, 2010.

[103] F. M.Pizzarelli, B.Betti. Coupled analysis of hot-gas and coolant flows in
lox/methane thrust chambers. In 4th European Conference for aerospace sci-
ences. St Petersburg, Russia, July 2011.

[104] B. Muller. Low mach number asymptotics of the navier-stokes equations and
numerical implications. Lecture series, von karman institute for fluid dynamics,
March 1999.

[105] C.-D. Munz, S. Roller, R. Klein, and K. Geratz. The extension of incompressible
flow solvers to the weakly compressible regime. Computers and Fluids, 32:173–
196, 2003.

[106] J. Murthy and S. Patankar. A partially parabolic calculation procedure for duct
flows in irregular geometries. part i: Formulation. Numerical Heat Transfer,
16:1–15, 1989.

[107] M. Naraghi, S. Dunn, and D. Coats. Dual regenerative cooling circuits for liquid
rocket engines. Aiaa paper. 42th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference.

[108] K. Nasrifar and O. Bolland. Prediction of thermodynamic properties of natural
gas mixtures using 10 equations of state including a new cubic two-constant
equation of state. Journal of Petroleum Science and Engineering, 51:253–266,
2006.

[109] J. Nathmann, J. Niehaus, and J. Sturgis. Preliminary study of heat
transfer correlation development and pressure loss behavior in curved high
aspect ratio coolant channels. AIAA Paper 2008-5240, 2008. 44th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[110] H. Negishi and Y. Daimon. Flowfield and heat transfer characteristics of cooling
channel flows in a subscale thrust chamber. AIAA Paper 2011-5844, 2011. 47th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

174



BIBLIOGRAPHY

[111] Y. Noguchi, K. Taya, T. Hirai, A. Yui, and T. Makino. Conceptual design of a
lox/lng rocket engine for a space tourism vehicle. AIAA Paper 2009-5138, 2009.
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2-5
August 2009, Denver, Colorado.

[112] G. Olchowy and J. Sengers. A simplified representation for the thermal conduc-
tivity of fluids in the critical region. International Journal of Thermophysics,
10:417–426, 1989.

[113] D. Palko and H. Anglart. Theoretical and numerical study of heat transfer
deterioration in high performance light water reactor. Science and Technology
of Nuclear Installations, 2008.

[114] S. Pantakar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, 1980.

[115] J. D. Parker, J. H. Boggs, and E. F. Blick. Introduction to fluid mechanics and
heat transfer. Addison-Wesley Publishing Company, 1969.

[116] D. K. Parris and B. Landrum. Effect of tube geometry on regenerative cooling
performance. AIAA Paper 2005-4301, 2005. 41th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit.

[117] S. Patankar and D. Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International Journal
of Heat and Mass Transfer, 15:1787–1806, 1972.

[118] D. Peng and D. Robinson. A new two-constant equation of state. Ind. Eng.
Chem. Fundam., 15(1):59–64, 1976.

[119] I. Pioro and R. Duffey. Experimental heat transfer in supercritical water flowing
inside channels (survey). Nuclear Engineering and Design, 235:2407–2430, 2005.

[120] I. Pioro, H. Khartabil, and R. Duffey. Heat transfer to supercritical fluids
flowing in channels - empirical correlations (survey). Nuclear Engineering and
Design, 230(1-3):69–91, 2004.

[121] M. Pizzarelli, F. Nasuti, and M. Onofri. Cfd analysis of curved cooling channel
flow and heat transfer in rocket engines. AIAA Paper 2010-6722, 2010. 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[122] M. Pizzarelli, F. Nasuti, R. Paciorri, and M. Onofri. Numerical analysis of
three-dimensional flow of supercritical fluid in asymmetrically heated channels.
AIAA Journal, 47(11), Nov. 2009.

[123] M. Pizzarelli, A. Urbano, and F. Nasuti. Numerical analysis of deterioration in
heat transfer to near-critical rocket propellants. Numerical Heat Transfer, Part
A: Applications, 57:297–314, 2010.

[124] M. Pougare and B. Lakshminarayana. A space-marching method for viscous
incompressible internal flows. Journal of Computational Physics, 64(2):389–415,
1986.

175



BIBLIOGRAPHY

[125] D. Preclik, G. Hagemann, O. Knab, C. Mäding, and D. Haeseler.
Lox/hydrocarbons preparatory thrust chamber technology activities in ger-
many. AIAA Paper 2005-4555, 2005. 41th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit.

[126] P.Tamamidis and D. G.Zhang. Comparison of pressure-based and artificial com-
pressibility methods for solving 3d steady incompressible viscous flows. Journal
of Computational Physics, 124:1–13, 1996.

[127] E. Querol, B. Gonzalez-Regueral, J. García-Torrent, and A. Ramos. Available
power generation cycles to be coupled with the liquid natural gas (lng) va-
porization process in a spanish lng terminal. Applied Energy, 88:2382–2390,
2011.

[128] S. E. Quinones-Cisneros and U. K. Deiters. Generalization of the friction theory
for viscosity modeling. J. Phys. Chem. B, 110(2):12820–12834, 2006.

[129] A. Rabah and S. Mohamed. A new three parameter cubic equation of state.
Transactions C: Chemistry and Chemical Engineering, 17(2):177–184, 2010.

[130] R. Reid, J. Prausnitz, and B. Poling. The Properties of Gases and Liquids.
McGraw-Hill Book Company, 1987.

[131] R.F.Kelbaliev. Deterioration of heat transfer at supercritical pressures of a
substance. Journal of Engineering Physics and Thermophysics, 74:416–420,
2001.

[132] P. Roe. Approximate riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43:357–372, 1981.

[133] S. Roller and C.-D. Munz. A low mach number scheme based on multi-scale
asymptotics. Computer Visual Science, 3:85–91, 2000.

[134] S. Rosenberg and M. Gage. Corrosion prevention in hydrocarbon-fueled
booster engine combustion chamber liner. AIAA Paper 89-2738, 1989. 25th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[135] S. Rosenberg and M. Gage. Corrosion prevention in copper combustion chamber
liners of liquid oxygen/methane booster engines. AIAA Paper 90-2119, 1990.
26th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[136] S. Rosenberg, M. Gage, G. Homer, and J. Franklin. Hydrocarbon-fuel/copper
combustion chamber liner compatibility, corrosion, prevention and refurbish-
ment. AIAA Paper 91-2213, 1991. 27th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit.

[137] S. Rubin and J. Tannehill. Parabolized/reduced navier-stokes computational
techniques. Annual Review of Fluid Mechanics, 24:117–144, 1992.

[138] T. Sato, M. Sugiyama, K. Itoh, K. Mori, T. Fukunaga, M. Misawa, T. Otomo,
and S. Takata. Structural difference between liquidlike and gaslike phases in
supercritical fluid. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics), 78(5):051503:1–9, 2008.

176



BIBLIOGRAPHY

[139] R. Schuff, M. Mayer, O. Sindiy, C. Ulrich, and S. Fugger. Integrated mod-
eling and analysis for a lox/methane expander cycle engine: Focusing on
regenerative cooling jacket design. AIAA Paper 2006-4534, 2006. 42nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[140] B. Shiralkar and P. Griffith. Deterioration in heat transfer to fluids at supercriti-
cal pressure and high heat fluxes. ASME Journal of Heat Transfer, 91(1):27–36,
February 1969.

[141] G. Singla, P. Scouflaire, C. Rolon, and S. Candel. Transcritical oxy-
gen/transcritical or supercritical methane combustion. Proceedings of the Com-
bustion Institute, 30(2):2921–2928, 2005.

[142] S.M.Liao and T.S.Zhao. Measurements of heat transfer coefficients from super-
critical carbon dioxide flowing in horizontal mini/micro channels. Journal of
Heat Transfer, 124:413–420, 2002.

[143] G. Soave. Equilibrium constants from a modified redlich-kwong equation of
state. Chem. Eng. Scien., 27(6):1197–1203, 1972.

[144] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic
flow. La Recherche Aérospatiale, 1:5–21, 1994.

[145] G. Sutton and O. Biblarz. Rocket Propulsion Elements. John Wiley and Sons,
2001.

[146] R. Svehla. Transport coefficients for the nasa lewis chemical equilibrium pro-
gram. NASA TM 4647, 1995.

[147] J. Tannehill, D. Anderson, and R. H. Pletcher. Computational Fluid Mechanics
and Heat Transfer. Taylor&Francis, 1984.

[148] J. Tannehill, P. Buelow, J. Ievalts, and S. Lawrence. Three-dimensional up-
wind parabolized navier-stokes code for real gas flows. Journal of Spacecraft,
27(2):150–158, 1989.

[149] M. Taylor. Correlation of local heat-transfer coefficients for single-phase turbu-
lent flow of hydrogen in tubes with temperature ratio to 23. NASA TN D-4332,
January 1968.

[150] D. Thunnissen, S. Guernsey, R. Baker, and R. Miyake. Advanced space storable
propellants for outer planet exploration. AIAA Paper 2004-3488, 2004. 40th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.

[151] R. Tillner-Roth and H. Baehr. An international standard formulation for the
thermodynamic properties of 1,1,1,2-tetrafluoroethane (hfc-134a) for tempera-
tures from 170 k to 455 k and pressures up to 70 mpa. Journal of Physical and
Chemical Reference Data, 23(5):657–729, 1994.

[152] A. Tomboulides and S. Orszag. A quasi-two-dimensional benchmark problem
for low mach number compressible codes. Journal of Computational Physics,
146:691–706, 1998.

177



BIBLIOGRAPHY

[153] E. Turkel. Preconditioning techniques in computational fluid dynamics. Annual
Review of Fluid Mechanics, 31:385–416, 1999.

[154] T.Yamashita, H.Mori, S.Yoshida, and M.Ohno. Heat transfer and pressure drop
of a supercritical pressure fluid flowing in a tube of small diameter. Memoirs
of the Faculty of Engineering, Kyushu UNiversity, 63(4):227–244, 2003.

[155] A. Urbano, M. Pizzarelli, and F. Nasuti. Numerical analysis of transcritical
fluids heating in liquid rocket engine cooling channels. Aerotecnica The Journal
of Aerospace Science, Technology and Systems, 87(4):100–110, 2009.

[156] P. V.A.Grabezhnaya. Heat transfer under supercritical pressures and heat
transfer deterioration boundaries. Thermal Engineering, 53(4):296–301, 2006.

[157] J. Valderrama and A. Silva. Modified soave-redlich-kwong equations of state
applied to mixtures containing supercritical carbon dioxide. Korean Journal of
Chemical Engineering, 20(40):709–715, 2003.

[158] V. Vesovic, W. Wakeham, G. Olchowy, G. Sengers, J. Watson, and J. Millat.
The transport properties of carbon dioxide. Journal of Physical and Chemical
Reference Data, 19(3):763–808, 1990.

[159] Y. Vigneron, J. Rakich, and J. Tannehill. Calculation of supersonic viscous
flow over delta wings with sharp subsonic leading edges. AIAA Paper 78-1137,
1978.

[160] E. Vogel, C. Kuchenmeister, and E. Bich. Reference correlation of the viscosity
of propane. J. Phys. Chem. Ref. Data, 27(5):947–955, 1998.

[161] G. Volpe. Performance of compressible flow codes at low mach numbers. AIAA
Journal, 31:49–56, 1993.

[162] G. Wadawadigi, J. Tannehill, and P. Buelow. Three-dimensional upwind parab-
olized navier-stokes code for supersonic combustion flowfileds. Journal of Ther-
mophysics and Heat Transfer, 7(4):661–667, 1993.

[163] Y.-Z. Wang, Y.-X. Hua, and H. Meng. Numerical studies of supercritical tur-
bulent convective heat transfer of cryogenic-propellant methane. Journal of
Thermophysics and Heat Transfer, 24(3):490–500, 2010.

[164] J. Weiss and W. Smith. Preconditioning apllied to variable and constant density
flows. AIAA Journal, 33(11):2050–2057, 1995.

[165] J. C. Wennerberg, W. E. Anderson, P. A. Haberlen, H. Jung, and C. L. Merkle.
Supercritical flows in high aspect ratio cooling channels. AIAA Paper 2005-
4302, 2005. 41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit.

[166] J. C. Wennerberg, W. E. Anderson, R. Schuff, H. Jung, and C. L. Merkle. Study
of simulated fuel flows in high aspect ratio cooling channels. AIAA Paper 2006-
4708, 2006. 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit.

178



BIBLIOGRAPHY

[167] A. Woschnak and M. Oschwald. Thermo and fluidmechanical analysis of
high aspect ratio cooling channels. AIAA Paper 2001-3404, July 2001. 37th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[168] J. A. Yagley, J. Feng, , and C. L. Merkle. The effect of aspect ratio on the
effectiveness of combustor coolant passages. Technical report, July 1992.

[169] J. A. Yagley, J. Feng, , and C. L. Merkle. Cfd analyses of coolant channel
flowfields. Technical report, 1993.

[170] B. A. Younglove. Thermophysical properties of fluids. i. argon, ethylene,
parahydrogen, nitrogen, nitrogen trifluoride and oxygen. J. Phys. and Chem.
Ref. Data, 11, 1982.

[171] B. A. Younglove and J. F. Ely. Thermophysical properties of fluids. ii. methane,
ethane, propane, isobutane, and normal butane. Journal of Physical and Chem-
ical Reference Data, 16(4), June 1987.

[172] R. Zubrin, B. Frankie, and T. Kito. Mars in-situ resource utilization based on
the reverse water gas shift: Experiments and mission applications. AIAA Paper
97-2767, 1997. 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
and Exhibit.

179


