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Abstract

We compared the ability of high negative and positive  
emotional  arousal  to  increase  the  persistence  of  
consolidated  memory  traces.  Negative  emotional  
arousal was modulated by manipulating shock levels in  
a step-through inhibitory avoidance (IA). Mice trained  
with either low (Low mice,0.35 mA) or high (High mice,  
0.7 mA) shock intensities showed increased step-through  
latencies when tested 24 hours after training, but only  
mice  trained  with  the  higher  shock  intensity  showed 
retention  of  the  IA  learning  1  week  after  training.  
Moreover, we analyzed the expression of the immediate  
early gene c-fos induced by IA training to investigate the  
activation of brain regions (hippocampus, amygdala and  
rostral anterior cingulate cortex) known to play a role in  
emotional  memory.  c-fos  expression  did  not  increase  
depending on shock intensity. Positive emotional arousal  
was modulated by manipulating emotional  salience of  
the  testing  cage  of  an  object  recognition  test  (ORT).  
Mice  trained  in  either  a  high  (chocolate-associated,  
High)  or  a  low  (inedible  piece  of  plastic-associated,  
Low) emotionally arousing cage showed discrimination  
of a novel object 24 hours after training, but only High  
mice  showed  retention  96  hours  after  training.  
Furthermore,  we  investigated  the  effects  of  post-trial  
administration  of  the  dopamine  (DA)  D1  receptor  
antagonist  SCH23390  and  the  β-adrenergic  receptor  
antagonist  Propranolol  on retention of this  version of  
ORT. The lower dose of the SCH23390 (0.01 mg/kg) was  
effective  on  object  discrimination  expressed  by  Low 
mice tested 24 hrs post-training and by High mice tested  
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96 hours  after  training.  A higher  dose  (0.025  mg/kg)  
reduced object discrimination in High mice tested either  
24 or 96 hrs post-training.  Either a high (2 mg/kg) or a  
low  (1  mg/kg) dose  of  Propranolol  reduced  object  
discrimination  in  High  mice  tested  24  hours  post-
training, whereas neither one was effective in Low mice.  
Only the higher dose affected memory of sampled object  
in High mice tested 96 hours post-training.  In a final  
experiment we observed induction of c-fos expression by  
ORT  training.  Training  with  high  levels  of  positive  
emotional arousal did not  promote high levels of c-fos  
expression in hippocampus but it did promote high c-fos  
expression  in  BLA  and  rACC.  Together  these  data  
suggest that a memory trace consolidated in a state of  
high  emotional  arousal  is  more  persistent  than  one  
consolidated  in  a  state  of  low  emotional  arousal  
regardless of the hedonic valence of experience and that  
involve plasticity in BLA and rACC.
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INTRODUCTION.

Memory  is  the  ability  to  store  acquired 

informations that is common to many forms of life from 

the most simple to the more complex and has a huge 

adaptive advantage. In most species, including humans, 

the ability to  select  and prioritize what  information is 

important  to  remember,  relative  to  less  salient  or 

peripheral  information,  is  an  essential  skill  for  the 

eficient use of memory. Indeed, many theories suggest 

that  human  memory  system  may  be  “tuned”  to 

remember information that is necessary for survival.

Clinical  evidence  that  cerebral  trauma  induces 

loss  of  recent  memory  was  reported  in  the  past.  A 

possible  explanation  of  this  kind  of  amnesia,  namely 

retrograde,  seems  to  be  the  consolidation  hypothesis. 

The consolidation  hypothesis  was proposed by Müller 

and Pilzecker in 1900 they found that memory of newly 

learned  information  was  disrupted  by  the  learning  of 

other information shortly after the original learning and 

suggested  that  processes  underlying  new  memories 

initially  persist  in  a  fragile  state  and consolidate  over 
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time. This process seems to be the main mechanism of 

animal and human learning.

Long-term  memory,  long-lasting    memory  and   
memory consolidation.

Memory  consolidation  hypothesis  is  also 

supported  by the  observation  that  the  memory  is  not 

unitary  process.  Indeed,  it  is  divided  in  two  phases: 

short-term (STM) that lasts minutes to few hours, and 

long-term  memory  (LTM)  a  protein  (and  mRNA) 

synthesis-dependent  phase  that  lasts  several  hours  to 

days,  weeks  or  even  lifetime.  Therefore,  a  definite 

property of  LTM is  its  sensitivity to  protein synthesis 

inhibitors. During memory formation, protein synthesis 

is  thought  to  be  required  to  transform newly  learned 

information into stable synaptic modifications. Therefore 

the  phenomenon  is  commonly  termed  “synaptic 

consolidation”.  Synaptic  consolidation  involves  post-

translational  modification  of  synaptic  proteins, 

activation  of  transcription  factors,  modulation  of  gene 
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expression  at  synapses  and  cell  body,  including 

Immediate  Early  Genes  (IEGs)  such  as  c-fos, 

reorganization of synaptic protein including membrane 

receptors  and  cytoskeletal  elements,  all  together 

culminating in synaptic remodeling, which is assumed to 

make  the  trace  stable.  These  processes  are  similar  to 

those observable during devolpment. In both cases, gene 

expression is  regulated by extracellular signals, and in 

both  cases,  similar  ubiquitous  intracellular  signaling 

cascades,  such  as  the  ciclic  adenosine 

monophoshate/protein  kinase  A (cAMP/PKA)  and  the 

mitogen-activated protein kinase (MAPK) cascades, are 

recruited,  and  cellular  remodeling  and  growth  occur. 

Thus,  by  definition,  memory  consolidation  is 

progressive  post-acquisition  stabilization  of  memory. 

Hence,  several  decades  after  Müller  and  Pilzecker 

proposal, at the beginning of this new millennium, the 

consolidation  hypothesis  still  guides  research 

investigating the time-dependent involvement of neural 

systems and cellular processes enabling lasting memory 

(McGaugh, 1966; Dudai, 1996, 2002, 2004; Lechner et 

al., 1999; Dudai and Eisenberg, 2004). During synaptic 
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consolidation memory traces are temporarely vulnerable 

to disruption. The use of treatments administered shortly 

or  immediately  after  training  to  impair  or  enhance 

memory provides a highly effective and extensively used 

method  of  influencing  memory  consolidation  without 

affecting  either  acquisition  or  memory  retrieval 

(McGaugh, 1966; Davis & Squire, 1984; Dudai, 1996). 

Another type of process of memory stabilization 

takes weeks, months, or even years to be accomplished. 

It is believed to involve reorganization over time of the 

brain circuits that moves memory trace to brain areas not 

involved  in  acquisition  nor  stablization  of  LTM.  This 

type of process is termed “system consolidation”. 

As an example the hippocampus is necessary for 

encoding and consolidation of memory traces. However, 

ones consolidated,  traces  reorganize and move to the 

neocortex,  so  that  ultimately  the  neocortex  can 

independently  maintain  the  specific  internal 

representation and actualize it in retrieval. It is not yet 

known what triggers system consolidation, but the most 

parsimonious account is that over time, upon recurrent 

activation  of  the  hippocampal  trace  either  in  explicit 
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recall or in implicit processing (e.g., sleep or emotinal 

arousal),  the  hippocampal  formation  and  related 

structures  send  synaptic  messages  to  neocortical 

neurons,  and  these  messages  trigger  synaptic 

consolidation locally. 

Emotional arousal and   memory consolidation.  

Emotionally  significant  experiences  tend  to  be 

well  remembered  (Bradley  et  al.,  1992).  Significant 

experiences such as birthdays, graduation ceremonies, or 

the loss of a loved one typically leave lasting and vivid 

memories. Therefore,  it  has  been  suggested  that 

persistence of consolidated memory traces is modulated 

by  the  level  of  emotional  arousal  associated  with 

experience.

The  findings  that  post-acquisition  drug 

treatments can enhance memory consolidation suggested 

the  possibility  that  endogenous  processes  activated  by 

experiences may serve to regulate the consolidation of 
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experiences (McGaugh, 1983; McGaugh and Gold, 1989

).  Indeed,  a large  body  of  evidence  indicates  that 

emotional  arousal  induced  by  certain  experiences 

enhances LTM duration by converting into a persistent 

one  acting  on  memory  consolidation  (for  review  see 

McGaugh, 2006). In line  with  this  view,  many  studies 

suggest  that  the  learning  and  memory  processes  are 

strongly influenced  by evaluation  mechanisms of  input 

information. These  mechanisms  controls  local synaptic 

plasticity  processes  influencing  the possibility  that  the 

new  information  is  stored  in  LTM.  This  modulatory 

effect  act  on  those  informations  that  are  relevant  for 

organisms  and  depends  on  emotional  state  of  learned 

experience.  Recently,  Bekinschtein  and  coworkers 

(2007;  2008a;  2008b)  trained  rats  in  inhibitory 

avoidance  (IA)  with  one of  two foot-shock intensities 

(0.4  and 0.7 mA), then tested memory retention 24, 48 

hours  or  1  week  afterward.  Both  trainings  produced 

LTM  (i.e.,  lasting  24  hrs),  but  only  the  stronger  one 

produced LLM (i.e.,  lasting 1 week  in rodents).  This 

indicates  that  persistence  of  LTM  is  increased  by 

emotional arousal of experiences and that enhancement 
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is proportional to level of emotional arousal.

The  brain  ability  to  render  more  relevant 

informations  more  persist  has  a  high  adaptive  value 

because  it  fosters  persistent  avoidance  of  potentially 

harmful  situations.  On  the  other  hand  pathlogical 

persistence  of  emotional  memory  is  associated  with 

post-traumatic stress disorder (PTSD). According to the 

Diagnostic and Statistical  Manual of Mental Disorders 

(DSM-IV) of American Psychiatric Association,  PTSD 

is  a  severe  anxiety  disorder that  can  develop  after 

exposure  to  any  event  that  results  in  psychological 

trauma.  This event  may involve the threat of death to 

oneself or to someone else, or to one's own or someone 

else's  physical,  sexual,  or  psychological  integrity, 

overwhelming the individual's  ability to cope: in other 

words  situation  characterized  by  extreme  levels  of 

negative emotional arousal. Finally, the main symptoms 

of PTSD are recurrent, intrusive and persistent memories 

of the traumatic event.

Neurobiological bases of PTSD are investigated 

by the use of single trial memory tests involving high 

level of negative emotional arousal. The results of these 

11



tests  indicate  that  stress hormones and cathecolamines 

are determinant for consolidation of persistent memories 

under high level of emotional arousal. Hormones of the 

adrenal  medulla  (epinephrine)  and  adrenal  cortex 

(cortisol  in  human  and  corticosterone  in  rodents  or 

glucocorticoids)  are  relased  during  and  immediately 

after emotionally arousing training experiences, such as 

IA and fear conditioning in laboratory animals (McCarty 

and Gold, 1981; McGaugh and Gold, 1989) and there is 

extensive  evidence  that  these  hormones  modulate 

memory consolidation (Dornelles et al., 2007; McGaugh 

and  Roozendaal,  2002;  Oitzl  and  de  Kloet,  1992; 

Roozendaal, et al., 1999; Roozendaal, et al., 2008). The 

effects of stress hormone on memory consolidation are 

not  linear.   Moderate  doses  of  epinephrine  or 

glucocorticoids  enhance  memory  consolidation  but 

lower  or  higher  doses  are  less  effective  or  may even 

impair  memory  consolidation  (Atsak,  2011;  Gold  and 

van Buskirk,  1975; Okuda et  al.,  2004; Roozendaal et 

al.,  2006,  2009). Posttraining  injections  of  moderate 

doses  of  corticosterone  or  dexamethasone,  a  synthetic 

ligand, enhance memory consolidation in a water-maze 
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spatial  task  (Sandi  et  al,  1997).  However,  the  same 

glucocorticoid treatment impairs memory consolidation 

when the task is made more aversive by lowering the 

water temperature (Sandi et al, 1997; Akirav et al., 2004

). Similarly, epinephrine and glucocorticoids are known 

to  enhance  memory  of  IA when  administered  after  a 

mild or low-arousing foot shock, but to impair memory 

consolidation when given after a strong, highly aversive 

foot  shock  that  produces  robust  memory  in  control 

animals  (Gold  et  al.,  1975).  The  memory-enhancing 

effect  of  adrenal  stress  hormones  involves  release  of 

norepinephrine (NE) and activation of  β-adrenoceptors 

in  specific  brain  areas  (McGaugh,  2000;  2004; 

McGaugh and Roozendaal, 2002; Quirarte, et al 1998). 

The activation of β-adrenoceptors by released  NE could 

result  in  facilitation  of  synaptic  transimission  by 

increasing  intracellular  cAMP concentration  and  new 

protein  synthesis,  thus  contributing  to  memory 

consolidation  (Liang  et  al.,  1995;  Ferry  et  al.,  1999; 

Roozendaal et al., 2002). In fact, antagonists or agonists 

of  these  receptors,  administered  after  exposure  to 

emotionally  motivated  tasks,  modulate  memory 
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consolidation (Introini-Collison et al., 1991; Cahill et al., 

1994  and  2000;  Ferry  et  al.,  1999;  Hatfield  and 

McGaugh, 1999; Quirarte et al, 1998;, Roozendaal et al., 

2006  and  2008).  This  hypothesis  is  supported  by  the 

evidence  that  systemically  and  in  loco  post-training 

administration  of  Propranolol,  a  β-adrenoceptor 

antagonist,  impair  consolidation  of  many  emotionally 

arousing  tasks  (Hatfield  et  al.,  1999;  Cahill,  2000; 

Dornelles et al., 2007; Miranda et al., 2003; Roozendaal 

et al., 2002, 2006, 2008). 

Consolidation  processes  are  also  susceptible  to 

treatments that influence dopamine (DA) transimission. 

There are two main classes of dopamine receptors that 

are categorized by their ability to stimulate (D1-like) or 

inhibit  (D2-like)  the  adenyl  cyclase/cAMP/protein 

kinase A (PKA) pathway. Many studies show that post-

acquisition blockade or stimulation of either D1 or D2, 

reduces  and  facilitates,  respectively,  memory 

consolidation  in  different  tasks  (Castellano,  1991; 

LaLumiere, 2004; Managò, 2009; Moncada, 2011). In a 

study  by  Castellano  and  cooworkers  (1991),  for 

example, immediately post-training administration of the 
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DA  D1  receptor  antagonist  SCH23390  prevented 

retention of IA 24 hours later. In a study of 2010 deLima 

and  cooworkers  showed  increased  retention  of  object 

memory by selective D1 receptor aagonist.

Studies  of the influence of emotional arousal on 

memory support a major role of the baso-lateral complex 

of  amygdala  (BLA).  It  has  been  proposed  that  BLA 

modulates  consolidation  of  emotional  memories  in  a 

number  of  learning  systems  (McGaugh,  2000;  2004 

McGaugh  and  Roozendaal,  2002).  Glucocorticoid 

receptors  are  densely  located  in  the  hippocampus, 

infusion  of  glucocorticoid  agonists  in  dorsal 

hippocampus  after  training  enhance  memory.  BLA 

lesions  or  infusion  of  β-adrenoceptor  antagonists  into 

BLA  block  the  effect  of  glucocorticoids  either 

administered  sistematically  or  infused  directely  into 

dorsal hippocampus (Roozendaal et al., 1999). 

Moreover, a number of  studies suggest that the 

persistence of emotional memory involves activation of 

β-adrenoceptor within the BLA (McGaugh, 2000; 2004 

McGaugh  and  Roozendaal,  2002).  In  addition, 
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LaLumiere  and  cooworkers  (2004)  investigated  the 

influence of DA infused into the BLA immediately after 

training enhanced retention of IA. The opposite  effect 

was promoted by post-training  intra-BLA infusions  of 

the  D1  receptor  antagonist  SCH  23390.  Finally, 

blockade  of  local  β-adrenergic  receptor  prevented  the 

facilitatory  effect  of  DA  in  BLA  on  memory 

consolidation.  These  findings  support  a  major  role  of 

DA receptor and  β-adrenergic receptors in the BLA in 

the consolidation of emotional memories. Neuroimaging 

studies  have  revealed  that  during  the  processing  of 

emotional  information,  there  are  correlations  between 

the  strength  of  activity  in  the  amygdala  and  in  the 

hippocampus and the strength of these correlations can 

correspond with the magnitude of the mnemonic boost 

for emotional information (Kensinger & Corkin, 2004).

The rostral  anterior  cingulate  cortex  (rACC) is 

involved in early formation of fear memory and storage 

of long-lasting emotional memories (Frankland, 2004). 

Post-training stimulation of rACC selectively enhanced 

retentiona of footshock in a modifeid version of IA that 

allowed  to  separate  context  from  foot-shock  training 
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(Malin et al., 2005, 2007). Interestly, in the same studies, 

the  authors  demonstrated  a  selective  role  of 

hippocampus for the context and the involvment of BLA 

in consolidation of all components of the task (Malin, 

2005).

The  activity-dependent  expression  of  IEGs  is 

thought to be a crucial  step in the formation of LTM. 

Zhang and cooworkers (2011) analyzed the expression 

of c-fos and Arc genes following a IA training. Indeed, 

as  prevously  discussed  IEGs  are  part  of  the  early 

transcriptional  phase  associated  with  memory 

consolidation. Moreover, Arc and c-fos are required for 

formation of fear memories (Fleischmann et al., 2003) 

and  are  targets  of  CREB,  which  is  required  for  the 

consolidation of LTM (Bourtchouladze et al., 1994; Oike 

et  al.,  1999;  Kida  et  al.,  2002;  Pittenger  et  al.,  2002; 

Kozus et  al.,  2004).  This  study described IA training-

induced c-fos activation in several brain areas including 

the hippocampus and the BLA but no activation in ACC 

and  Arc  expression  in  the  same  brain  areas  with  the 

addition of ACC (Zhang et al., 2011).

Moreover,  in  the  same  study  infusion  of 
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anysomicin into ACC impaired LT-IA memory without 

affecting ST-IA memory.
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Aims and rationale of the experiments.

As discussed so far, emotional arousal increases 

persistence  of  memory  traces  by  influencing 

consolidation processes. These hypotheses are supported 

by the  results  obtained  using  experimental  procedures 

that modulate negative emotional arousal, such as IA or 

fear conditioning. These procedures mimic the impact of 

traumatic  events thus modeling PTSD in experimental 

animals. However, emotional arousal can to be promoted 

by positive experiences and positive emotional arousal 

renders associated memories more persistent too. 

The general  aim of  this  study is  to  investigate 

whether  persistence  of  memories  associated  with 

positive  emotional  arousal  is  modulated  by  the  same 

mechanisms involved by negative emotional arousal.  To 

this aim, I contributed to develop a modified version of 

the Object Recognition Test (ORT) that allows to vary 

the  amount  of  positive  emotional  arousal  during  the 

object  sampling  (training)  phase.  The  procedure  was 

developed  in  outbred  mice  to  be  exploited  in  genetic 
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studies. 

Therefore,  the  first  set  of  experiments  (Part  1) 

presented here evaluated behavioral and central effect of 

IA training with different shock intensities in mice from 

the same outbred strain to  collect  comparable data  on 

negative emotional arousal. IA retrieval 24 hours or one 

week  after training was used as behavioral measure of 

memory  persistence.  Moreover,  expression  of   c-Fos 

induced  by  IA  training  was  evaluated  by 

immunohistochemistry to  map brain  areas  involved in 

consolidation  of  memories  under  different  levels  of 

negative emotional arousal.

A second set of experiments (Part 2) tested the 

validity  of the modified version of ORT to evaluate the 

impact  of  positive  emotional  arousal  on  memory 

consolidation.  Experimental  mice  explored  sample 

objects  in  a  test  cage  previously  associated  with  a 

palatable  food (chocolate)  following 15 hours  of  food 

deprivation  whereas  control  mice  explored  sample 

objects, always following food deprivation, in a test cage 

previously  associated  with  a  small  piece  of  plastic. 

Discrimination of a novel object tested 24 or  96 hrs later 
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was used as behavioral measure of memory persistence. 

The  relative  contribution  of  food  deprivation  and 

chocolate  feeding  was  tested  in  different  groups  pf 

animals.  Finally,  the involvement  of consolidation and 

emotional  arousal  were  tested  by  immediately  post-

training  administration  of  the  DA  D1  antagonist 

SCH23390  and  of  the  ß-adrenergic  antagonist 

Propanolol. 

A final experiment evaluated expression of  c-Fos 

induced by object sampling to map brain areas involved 

in consolidation of memories under positive emotional 

arousal. The results were compared with those obtained 

with IA training. 
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E  XPERIMENTS.  

Part  1:  Effects  of  shock  intensity  on 

persistence  of  inhibitory  avoidance  (IA) 

memory and on induction of c-Fos expression 

by IA   training.  

Materials and Methods.

Subjects

Male  CD1  mice  (Harlan  Laboratories,  Udine, 

Italy) were purchased at 6 weeks of age and housed four 

to a cage on a 12 hours light-dark cycle (lights on at 7:00 

am).  Food and water  were  available  ad libitum.  Mice 

were left  undisturbed for two weeks before behavioral 

testing. Experiments were carried out in accordance with 

22



the  Italian  national  law  (DL  116/92)  on  the  use  of 

animals in research.

Behavioral procedures

Inhibitory avoidance

Mice were trained and tested in a step-through IA 

task.  The apparatus consisted of a trough-shaped alley 

(91  cm  long,  15  cm  deep)  divided  into  two 

compartments by a retractable door: an illuminated safe 

compartment  (31  cm  long)  and  a  dark  shock 

compartment (60 cm long). Mice were not habituated to 

the dark compartment before the training trial.  On the 

training  trial,  each  mouse  was  placed  in  the  lit  start 

compartment facing away from the shock chamber. After 

the  mouse  stepped  with  all  four  paws  into  the  dark 

compartment,  the  retractable  door  was  closed  and  an 

inescapable  foot-shock  (0,  control  mice,  0.35  Low-

trained  mice: or 0.7 mA High-trained mice, 50 Hz, 2.0 

sec)  was administered.  The mouse  was removed from 

the  dark  compartment  30  sec  after  termination  of  the 

foot-shock.  The lowest  shock intensity was chosen on 
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the basis of previous studies showing that it is sufficient 

to  induce  IA retention  for  at  least  24  hours  in  mice 

(Baarendse et al., 2008). The highest shock intensity was 

chosen on the basis of a previous study in mice showing 

that it induces IA retention beyond 24 hours (Boccia et 

al., 2004). On the retention trial, each mouse was placed 

into  the  light  compartment  with  the  retractable  door 

open and allowed to explore the box freely. The latency 

to enter the dark compartment with all  four paws was 

recorded  with  a  timer  by a  nearby experimenter  as  a 

measure of retention. Retention test ended either if the 

mouse stepped into the dark compartment with all four 

paws or if it failed to cross within 180 sec. In the latter 

case, mouse was assigned a score of 180 sec. Foot-shock 

was omitted on retention test.  Each mouse was tested 

only once. 

Tissue preparation.

One hour after training, animals were sacrificed 

via rapid cervical dislocation, the brains were removed 

from skull in approximately 90 seconds and then post-
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fixed in 4% formaldehyde (Sigma) diluted in 0.1 M (pH 

7.4)  phosphate  buffer  (PB)  overnight  at  4°  C.  Then 

brains  were  immersed  for  48-72  hours  at  4  °C  in 

PB/sucrose  30% for  cryoprotection.  Then  brains  were 

blocked in  the  coronal  plane  at  the  level  of  the  optic 

chiasm and their anterior parts were frozen with dry ice 

and  cut  in  40-μm  coronal  sections  with  a  sliding 

microtome.  Three  adjacent  series  of  8–10  sections 

sampling the dorsal hippocampus, amygdala and rostral 

anterior cingulate cortex were selected from each brain 

on  the  basis  of  Mouse  Brain  Atlas  of  Paxinos  and 

Franklin 2001 and immunostained for c-fos as shown in 

figure 2.

Imunohistochemistry. 

Floating  sections  were  processed  at  room 

temperature in 24-well microplates on gentle agitation. 

The  steps  for  imunohistochemistry  procedure  were  as 

follows:

1. 3  times  for  10  minutes  in  Phosphate 
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Buffer + 0.3% Triton X-100 (PBTX)

2. 30 minutes incubation in  PBTX + H2O2 

(3% for non perfused brains)

3. 3 times for 10 minutes in PBTX (or PB 

0.1M)

4. 30 minutes incubation in Avidin blocking 

solution  [Vector  Laboratories] (2 

drops/5ml ) diluted in PBTX

5. 3 times for 10 minutes in PBTX (or PB 

0.1M)

6. 30 minutes incubation in  Biotin blocking 

solution  [Vector  Laboratories] (2 

drops/5ml) diluted in PBTX

7. 3 times for 10 minutes in PBTX (or PB 

0.1M)

8. Overnight  incubation  in  primary  rabbit 

anti c-fos polyclonal antibody (Oncogene, 

AB-5)  diluted 1:20000 in PBTX +  2% 

Normal Goat Serum (Vector Laboratories

)
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9. 3 times for 10 minutes in PBTX (or PB 

0.1M)

10. 2  hours  incubation  secondary  antibody 

anti-Rabbit  (Vector  Laboraories)  diluted 

1:1000 in PBTX

11. 3 times for 10 minutes in PBTX (or PB 

0.1M)

12. 1 hour incubation Avidin-Biotin Complex 

(Vector  Laboratories) diluted  1:1000  in 

PBTX (prepare 30 min before use)

13. 3 times for 10 minutes in PB 0.1M

14. 4  minutes  incubation  in  DAB  solution 

diluted  1:2  compared  to  manufacturer 

instructions  (sections  to  be  compared 

must be treated simultaneously, i.e. using 

Costar® Netwells, 15 mm diameter, 500 

µm Mesh)

15. 3/4 times for 10 minutes in PB 0.1M
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Figure 2. Approximate levels of dorsal hippocampus, amygdala and 
rostral  anterior  cingulate  cortex  selected  on  the  basis  of  Mouse 
Brain Atlas of Paxinos and Franklin 2001.
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Data analysis.

Statistical analyses were performed on a Debian 

GNU/Linux  workstation  using  the  R  free  software 

environment for statistical computing and its graphical 

interface  R-Commander  (Fox,  2005).  An  error 

probability level of p < 0.05 was accepted as statistically 

significant.  Because  a  cut-off  of  180  seconds  was 

imposed during  test  sessions,  the  step-through  latency 

was  expressed  as  median  and inter-quartile  range and 

analyzed  with  non-parametric  tests  in  experiment  1 

Kruskal–Wallis  ANOVA  was  used  when  comparing 

more than two groups. Two-sample Wilcoxon test (two-

tailed) was used as post hoc test following a significant 

overall Kruskal–Wallis test. 

For experiment 2 the brain regions were acquired 

at  4x  objective  magnification  and  ImageJ  1.46p  free 

software  from  http://imagej.nih.gov/ij  was  used  to 

quantify c-fos immunostaining cells. Because no cut-off 

was imposed to analyze the c-fos expression, in thi case 

parametric one-way ANOVA was used when comparing 
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all groups in different brain regions. Tukey was used as 

post hoc test following a significant overall ANOVA test.

Experiment 1.

This  experiment  was aimed to test  in  mice the 

effect of magnitude of negative arousal on LTM duration 

(Bekinschtein  et  al.,  2007).  Ninety-six  mice  were 

randomly assigned to this experiment. One-third of mice 

were  pseudo-trained  by  omitting  the  shock  (control 

mice, cont), one- third were trained with the 0.35 mA 

shock (low-trained mice, Low), and the remainder were 

trained with the 0.7 mA shock (high-trained mice, High). 

Half of the mice for each shock condition (n = 16) were 

tested for retention 24 hours after training, the other half 

were tested 1 week after training. 
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Experiment 2.

This  experiment  was  aimed  to  evaluate  c-Fos 

expression  induced  by  IA  training  in  brain  areas 

involved in  consolidation of  memories  under  different 

levels of negative emotional arousal. We first identified 

brain  regions,  such  as  amygdala,  dorsal  hippocampus 

and  rostral  anteior  cingulate  cortex,  where  gene 

expression  is  activated  after  learning  inhibitory 

avoidance  (IA)  by  analyzing  the  expression  of  the 

immediately early genes c-fos as marker. Three groups 

of mice were trained under both experimental conditions 

from Experiment 1: 0.35 (Low) or 0.7 mA (High) foot-

shock  and  an  additional  group  of  mice  were  taken 

directly from their home cage (naïve group, cont). All 

the mice for each condition (n = 8) were sacrificed one 

hour after training and the brains were processed for c-

fos immunostaining (see above in material and methods 

paragraph).
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Results.

Experiment  1. Figure  3  a  and  b  show  step-through 

latency  measured,  respectively,  24  hours  and  1  week 

after  training  as  a  function  of  shock intensity.  For  24 

hours test (figure 2a), Kruskal–Wallis ANOVA revealed 

a  significant  difference  between  groups  [H(2)  = 23.25; 

p<0.001]. Post hoc analysis revealed that groups trained 

with either shock intensities had a higher step-through 

latency respect  to  pseudo-trained group (cont)  but  did 

not differ one another (Low vs cont: W = 26.5, p<0.001; 

High  vs  cont:  W =  11,  p<0.0001).  For  1  week  test, 

Kruskal–Wallis ANOVA revealed a significant difference 

between groups [H(2) = 13.44; p<0.01]. Post hoc analysis 

revealed that the group trained with the high shock had a 

higher step-through latency respect to both pseudo- and 

low  shock-trained  groups  (High  vs  cont:  W  =  41.5, 

p<0.001; High vs cont: W = 197.5, p<0.01) and that the 

latter  groups  did  not  differ  one another.  These  results 

indicate  that  duration  of  fear  LTM  depends  on  the 

magnitude  of  negative  arousal  experienced  during 

training.
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A

              

B

Figure 3. (A) Step-through latency (median and inter-quartile range
) as a function of foot-shock intensity (Low vs High) measured 24 
hrs  post-training  (*vs  0,  p  <  0.001);  (B)  Step-through  latency 
(median  and  inter-quartile  range)   as  a  function  of  foot-shock 
intensity (Low vs High) measured 1 week post-training (*vs 0, p < 
0.001).
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Experiment  2.  Figure  4,  5  and  6  show  brain  layers, 

microphotographs  examples  and  the  pattern  of  c-fos 

expression induced by training of step-through IA with 

the two shocks condition compared with naïve group of 

brain regions here reported. One-way ANOVA revealed 

a  significant  difference  between  groups  in  all  dorsal 

hippocampus subfields investigated (CA1: F2,21  = 12.91, 

p < 0.001 CA3: F2,21  = 12.65 p < 0.001; DGY: F2,21  = 

13.00,  p  < 0.001).  Tukey's  post  hoc  analysis  revealed 

that Low-trained group had higher c-fos expression in 

CA1,  CA3 and  DGY respect  to  the  High-trained  and 

naïve groups which not differ from each other (figure 4b

)  Moreover,  one-way  ANOVA revealed  a  significant 

difference  between  groups  in  basolateral  (BLA)  and 

lateral (LA) amygdala but not difference in central (CeA

) nuclei of amygdala (BLA: F2,21  = 6.96, p < 0.01; LA: 

F2,21 = 3.61, p < 0.05). Tukey's post hoc analysis revealed 

that all shocked groups had higher c-fos expression in 

BLA respect  to  naïve  group whereas  only low shock-

trained  mice  show  higher  c-fos  response  respect  to 

control group in LA but did not differ  one another  in 
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both brain areas (figure 5b). Finally, one-way ANOVA 

analysis  revealed  significant  effect  in  rostral  anterior 

cingulate  cortex  (rACC:  F2,21  =  52.22,  p  <  0.001). 

Tukey's post hoc shows that both Low and High mice 

differ  to  controls  and also  differ  from each  other   in 

rACC (figure 6b). 
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Figure  4.  Induction  of  c-fos  expression  promoted  by  different 
intensities  of  foot-shock  after  IA training in  dorsal  hippocampus 
(CA1,  CA3  and  dentate  gyrus).  A. Representative  microscope 
photogarphs of brain regions of animals exposed to different shocks 
in IA training.  B. Means (± SEM) of density of c-fos activation in 
CA1, CA3 and DGy from all groups exposed to both foot-shocks 
intensities in IA training and control. # vs all, p < 0.05. Calibration 
bar 100µm.
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Figure  5.  Induction  of  c-fos  expression  promoted  by  different 
intensities of foot-shock after IA training in amygdala (lateral, LA; 
basolaterlal, BLA; and central, CeA amygdala).  A. Representative 
microscope  photogarphs  of  brain  regions  of  animals  exposed  to 
different shocks in IA training.  B. Means (± SEM) of density of c-
fos activation in LA, BLA and CeA from all groups exposed to both 
foot-shocks intensities in  IA training and control.  *  vs cont,  p < 
0.05. Calibration bar 100µm.
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Figure  6.  Induction  of  c-fos  expression  promoted  by  different 
intensities  of  foot-shock  after  IA  training  in  rostral  Anterior 
Cingulate  Cortex.  A. Representative  microscope  photogarphs  of 
brain regions of animals exposed to different shocks in IA training. 
B. Means (± SEM) of density of c-fos activation in CA1, CA3 and 
DGy from all groups exposed to both foot-shocks intensities in IA 
training  and  control.  *  vs  cont,  p  <   0.05;  #  vs  all,  p  <  0.05. 
Calibration bar 100µm.
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Discussion.

IA training under both shock intensities promoted 

memory consolidation  of  the  experience  as  shown by 

expression of similar levels of IA step-through latencies 

24  hours  after  training.  Nonetheless,  only  High  mice 

showed  IA  one  week  after  training.  These  results 

replicate,  in  mice,  those  obtained  with  step-down  IA 

training in rats (Bekinnschtein et al.,  2007; 2008 a;  b; 

Katche et al; 2009). Therefore they offer support to the 

view  that  moderate  emotional  arousal  is  sufficient  to 

promote LTM but insufficient to establish LLM.

IA  training  increased  c-Fos  expression  in  all 

sampled  areas  but  not  in the  CeA.  However,  training 

with high shock promoted c-Fos expression only in BLA 

and rACC. These findings are in line with evidence that 

both  BLA and  rACC are  involved  in  modulating  the 

storage of emotional events and that BLA interact with 

rACC to  consolidate  IA under  high  emotional  arousal 

(Malin et al., 2005, 2007). The lack of activation of c-

Fos  expression  in  hippocampus  CA1  and  CA3  by 

training with the high shock is in contrast with results 
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obtained in  rats (Katche et al; 2009). Discrepant results 

could be explained by differences in the species and/or 

the  task  used  step-through  for  the  present  results  and 

step-down  IA  for  results  obtained  by  the  rat  study. 

However,  is  worth pointing out  that  the results  of  the 

Katche study did not support any relationship between 

IEGs  expression  early  postraining  and  persistence  of 

established LTM. 
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Part  2:  Validation  of  an  experimental 

procedure  that  modulates  the  amount  of 

positive  emotional  arousal  during  object 

sampling (training)  in an object  recognition 

test (ORT)

Material and Methods.

Subjects

Male  CD1  mice  (Harlan  Laboratories,  Udine, 

Italy) were purchased at 6 weeks of age and housed four 

to a cage on a 12 hours light-dark cycle (lights on at 7:00 

am). Food and water were available  ad libitum except 

when  food  deprivation  was  required  by  design  (see 

methods).  Mice  were  left  undisturbed  for  two  weeks 

before behavioral testing. Experiments were carried out 

in accordance with the Italian national law (DL 116/92) 

on the use of animals in research.
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Drugs

All  drugs  were  injected  intraperitoneally  (i.p.). 

The  dopamine  D1  receptor  antagonist  SCH  23390 

(Schering  Corporation,  USA)  and  the  β-adrenergic 

receptor  antagonist  dl-Propranolol  hydrochloride 

(Sigma-Aldrich, Milano, Italy) were dissolved in 0.9% 

saline solution at a volume of 10 ml/kg at doses of 0, 

0.01 or 0.025 mg/kg and 0, 1 or 2 mg/kg respectively. 

The doses were chosen on the basis of previous findings 

that  they  do  affect memory  consolidation  for  the 

dopamine  D1  receptors  antagonist  (Castellano  et  al. 

1991; 1997) and reduce noradrenergic activation (Cahill, 

2000;  Lee  et  al.,  2001;  Zhang  et  al.,  2008)  for  β-

adrenergic  receptor  antagonist.  All  drugs  were 

administered immediately or 120 minutes post-training.
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Behavioral procedures.

Object recognition.

Mice  underwent  object  recognition  test  in  a 

custom made apparatus consisting of a square box (60 x 

60 x 30 cm)  made of  black  Plexiglas® subdivided in 

four equal arenas. The floor of the arenas was made of 

textured transparent Plexiglas® surmounting a plate of 

opalescent  Plexiglas® thick  1  cm.  The  apparatus  was 

dimly illuminated by halogen light sources placed below 

it  (Nilsson  et  al.,  2007).  Light  sources  (four)  were 

carefully  positioned  approximately  50  cm  under  each 

corner  of  the  apparatus  and directed  toward  the  room 

floor.  This  allowed  an  homogeneous  illumination 

throughout all arenas (~10 lux, measured with a PCE-

EM882  multimeter  from  http  ://  www  .  pce  -  italia  .  it  ).  The 

apparatus  was  placed  in  a  ventilated  sound-attenuated 

cabinet.  Objects  to  discriminate  were  four  types,  one 

type for arena: white wooden cube, gray plastic cylinder, 

gray  plastic  sphere  and  silver  metallic  parallelepiped 

(Fig.  7).  They  were  available  in  triplicate  copy  and, 
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based on pilot studies, all aroused comparable levels of 

exploration in CD1 mice (data not shown). For training 

phase, objects were placed at two opposite corners of the 

arenas (6.5 cm from the object center to the corner). To 

prevent mice from displacing objects during testing, they 

were temporarily fixed to the floor of the arenas with 

repositionable adhesive pastels (UHU Patafix White).

On the training trial, mice were allowed to freely 

explore two identical  objects  (Sample objects:  A1 and 

A2) for 15 minutes. On the test trial, the third copy of 

the  familiar  object  (A3)  and  a  novel  object  (B)  were 

placed in the same location of training and mice were 

allowed to freely explore them for 10 minutes. Cohorts 

of four mice belonging to the same cage and to the same 

experimental  group  were  tested  simultaneously.  Each 

mouse  was  tested  only  once.  All  combinations  and 

locations  of  objects  were  counterbalanced  to  reduce 

potential  biases  because  of  preference  for  particular 

locations  or  objects.  Between  each  session,  apparatus 

and objects were thoroughly cleaned with 70% ethanol 

to  remove  urine  and  fecal  boli  and  to  homogenize 

olfactory  trails.  Mice  behavior  was  recorded  with  a 
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camera  connected  to  a  Debian  GNU/Linux 

(http://www.debian.org)  workstation  equipped  with 

hardware  MPEG  encoding  capabilities.  MPEG  videos 

were blindly analyzed by experienced observers. Object 

exploration  was  defined  as  pointing  the  nose  to  the 

object at a distance of 1 cm and/or touching it with the 

nose. Turning around, climbing or sitting on an object 

was not considered as exploration.
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Figure  7.   Phases  of  modified  version  of  one-trial  Object 
Recognition  Task.  Upper  panel  shows  habituation  phase, 
intermediate pannel training trial and lower pannel test trial. 
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Data analysis.

Statistical analyses were performed on a Debian 

GNU/Linux  workstation  using  the  R  free  software 

environment for statistical computing and its graphical 

interface  R-Commander  (Fox,  2005).  An  error 

probability level of p < 0.05 was accepted as statistically 

significant.  Data  from  experiment  1  were  analyzed 

using: (1) two-way analysis  of variance (ANOVA) for 

independent  factors  to  compare  High  and  Low  mice 

either  at  24  or  96  hours  post-training;  (2)  two-way 

ANOVA for independent factors to compare High mice 

free-fed (FF) or food-deprivated (FD) either at training 

or at test; (3) one-way ANOVA to compare mice that, 

except for initial pre-exposure, received chocolate only 

during  conditioning  phase  (PRE),  only  after  training 

(POST),  both  during  conditioning  and  after  training 

(PRE  +  POST).  In  case  of  significant  two-way 

interaction  simple  effect  analysis  was  performed  with 

the  Student’s  t-test  for  independent  samples  (Welch 

variant,  two-tailed).  Data  from  experiment  2  were 

analyzed  using:  (1)  one-way  ANOVA to  compare  to 
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compare  either  High mice  treated  with  different  SCH 

23390 doses (0, 0.01 or 0.025 mg/kg) and Propranolol 

(0, 1, or 2 mg/kg) and to compare Low mice treated with 

all  doses  of  Propranolol. (2)  Student’s  t-test  for 

independent  samples  (Welch  variant,  two-tailed)  to 

compare  Low mice treated with vehicle or 0.01 mg/kg 

SCH  immediately  post-training.  Welch  two-tailed  test 

was also used to compare High mice treated with vehicle 

or 0.025 mg/kg SCH or 2 mg/kg Propranolol 120 min 

post-training.  In  case of significant  overall  one-way F 

ratio, ANOVA was followed by Tukey’s post hoc tests. 

For  all  experiments,  one  sample  t-tests  (two-

tailed)  were  used  to  determine  whether  the 

discrimination index (D.I.) of each experimental group 

was different from 0 (chance  level). Mice showing less 

than 5 s of total object exploration during ORT test were 

excluded from analysis (Sik et al., 2003). 
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Experiment 1.

This experiment was aimed to set-up a model to 

evaluate the effect of positive emotional arousal on LTM 

duration in mice and to evaluate the relative role of acute 

food deprivation and of the caloric and/or fat properties 

of chocolate in that model.

Effect  of  positive  arousal  on  long-term  memory  

duration. Sixty-four  mice  were  randomly  assigned  to 

this experiment. Mice were preexposed for 15 hours to 

milk  chocolate  (Lindt,  two  pieces  for  cage,  each 

weighing  approximately  3  grams)  mixed  to  standard 

food in the home-cage from 7:00 pm of the day before 

the starting of behavioral testing. Then, mice underwent 

a delay conditioning phase lasting 4 days that we call 

habituation. This phase comprised two daily sessions on 

day 1-3 (10:00 am and 2:00 pm) and a single session on 

day 4 (10:00 am). Sessions were as follows: mice were 

allowed  to  freely  explore  the  empty  arenas  for  10 

minutes  then,  depending  on  the  experimental  group, 

chocolate  pieces  (high  emotional  arousing  experience, 
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High, n = 16) or black Lego ® blocks (low  emotional 

arousing experience Low, n = 16), approximately of the 

same form and size of chocolate pieces, were dropped in 

the arenas by the experimenter (one stimulus for arena). 

Mice  were  allowed  to  interact  with  these  stimuli  for 

additional 5 minutes (total habituation session duration: 

15 minutes). At 7:00 pm of day 3 all mice were food-

deprived. On day 4 at 2:00 pm all mice underwent ORT 

training.  Training  session  differed  from  habituation 

sessions only for the presence of sample objects in the 

arenas. Immediately after training, mice were returned to 

their home cages and they were given  ad libitum food. 

Half mice from each group were tested for sample object 

recognition 24 hours after training, the remainder were 

tested  96  hours  after  training.  At  7:00  pm of  the  day 

before test session all mice were food-deprived.

Control of the role of acute food deprivation. Sixty-four 

mice were randomly assigned to this experiment. Mice 

were submitted to the same protocol as the High group 

except for the following differences: a first group (n = 

16,  FF-FF)  was  never  food-deprived  neither  before 
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training nor test session; a second group (n = 16, FF-FD) 

was  food-deprived  15  hours  before  training  but  not 

before  test;  a  third group (n = 16,  FD-FF) was food-

deprived 15 hours  before  test  but  not  before  training. 

These  groups were  compared with the  High group of 

previous  experiment,  here  renamed  FD-FD.  Sample 

object recognition was tested 96 hours after training.

Control of the role of schedule of chocolate exposure.  

Forty-eight  mice  were  randomly  assigned  to  this 

experiment. Mice were submitted to the same protocol 

as  the  High  group   but,  half  (PRE  n=16)  received 

chocolate only during conditioning phase, the remainder 

(POST n=16) received chocolate only during the last 5 

minutes  of training.  Such groups were compared with 

the High group of  previous  experiment,  here renamed 

PRE+POST (n=16). Mice were tested for sample object 

recognition 96 hours after training.
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Experiment 2.

The  following  set  of  experiments  aim  at 

pharmacological validation of the test.

Effects of post-training administration of SCH23390 on  

retention of a sampled object 24 or 96 hours after ORT 

training. One hundred forty-four mice were used in this 

set of experiments.  Two groups of mice (n = 12) were 

trained in the same protocol of Low group of experiment 

3  and  received  vehicle  or  the  low  dose  of  SCH 

immediately  post-training  and  were  tested  for  object 

discrimination  24  hours  after  training. Six  groups  of 

mice (n = 12) were treated identically to the High group 

of Experiment 3 and administered 0,  0.01 or 0.025 of 

SCH  23390  (SCH)  immediately  after  training.  Four 

groups  of  mice  (n  =  12)  received  an  injection  of  the 

highest  dose  of  SCH  or  vehicle  120  minutes  after 

training. Half of the groups from each treatments were 

tested for object discrimination 24 hours after training, 

the reminders were tested 96 hours after training, excpet 

for Low-trained mice that were tested only for 24 hours 
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after training. 

Effects of post-training administration of Propanolol on  

retention of a sampled object 24 and 96 hours after ORT  

training. One hundred fifty-six mice were used in this 

set of experiments. Three groups of mice (n = 12) were 

trained in the same protocol of Low group of experiment 

3 and received 0, 1 or 2 mg/kg injection of Propranolol 

immediately  post-training  and  were  tested  for  object 

discrimination  24  hours  after  training.  Six  groups  of 

mice (n = 12) were treated identically to the High group 

of Experiment 3 and administered 0,  1 or 2 mg/kg of 

Propranolol immediately after training.  Four groups of 

mice (n = 12) received an injection of the highest dose of 

Propranolol  or  vehicle  (0  mg/kg)  120  minutes  after 

training.  Half of the groups from each treatments were 

tested for object discrimination 24 hours after training, 

the reminders were tested 96 hours after training, excpet 

for Low-trained mice that were tested only for 24 hours 

after training. 
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Results.

Experiment  1.  Effect of positive arousal on long-term  

memory  duration.  Two-way  ANOVA  for  total 

exploration  time  did  not  reveal  significant  effects  nor 

interaction for factors “emotionally arousing experience” 

and  “inter-trial  interval”.  Figure  8  shows  the 

discrimination index (D.I.)  measured 24 and 96 hours 

after  training  as  a  function  of  both  high  and  low 

emotional situation. Two-way ANOVA for D.I. revealed 

a  significant interaction between aroused situation and 

inter-trial interval [F1,60=5.06, p<0.05]. For 24 hours test, 

simple effect  analysis  did not reveal  a  significant  D.I. 

difference  between  High  and  Low  groups  and  one 

sample t-tests revealed that D.I. from both groups was 

significantly  above  chance  level  [High:  t15=3.56, 

p<0.005; Low: t15=5.46, p<0.0001 ]. For 96 hours test, 

simple  effect  analysis  revealed  that  Low group had  a 

lower  D.I.  respect  to  High  group  [t30=3.02,  p<0.01]. 

Moreover,  simple  effect  analysis  for  each  level  of 

stimulus paired with test context revealed that only the 

D.I. of Low group at 96 hours test was lower than that of 
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24  hours  test  [t30=2.42,  p<0.05].  One  sample  t-tests 

revealed  that  only  D.I.  from  Low  group  was 

significantly above chance level [t15=7.24, p<0.0001].

Control of the role of acute food deprivation.  Two-way 

ANOVA did not reveal significant effects nor interaction 

between  factors  “feeding  at  training”  and  “feeding  at 

test” in total exploration time. Figure 9 shows the D.I. 

measured 96 hours after training as a function of feeding 

state (FF vs FD) before ORT sessions (training vs test). 

Two-way  ANOVA  revealed  a  significant  effect  of 

“feeding  before  training”  [F1,60=5.06,  p<0.05]  and  a 

significant interaction between “feeding before training” 

and  “feeding  before  test”  [F1,60=4.93,  p<0.05].  Simple 

effects analysis revealed that: D.I. of mice food-deprived 

before both training and test (FD-FD) was higher than 

that of mice food-deprived before training but not before 

test  (FD-FF)  [t30=  -2.50,  p<0.05];  D.I.  of  mice  food-

deprived  before  both  training  and  test  (FD-FD)  was 

higher than that of mice free-fed before training but not 

before test (FF-FD) [t 30 = -3.11, p< 0.005]; D.I. of mice 

free-fed before both training  and test  (FF-FF) did  not 
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differ from that of mice free-fed before training but not 

before test  (FF-FD); D.I.  of mice free-fed before both 

training and test (FF-FF) did not differ from that of mice 

free-fed before test but not before training (FD-FF). One 

sample t-tests revealed that D.I. was significantly above 

chance level for all groups [FD-FD: t15=7.25, p<0.0001; 

FD-FF: t15=3.74, p<0.005; FF-FD: t15=2.86, p<0.05; FF-

FF: t15=3.92, p<0.005].

Control of  the role of schedule of chocolate exposure.  

One-way ANOVA for  total  exploration  did  not  reveal 

significant group differences. Figure 10 shows the D.I. 

measured 96 hours after training as a function of High 

emotionally arousing experience. One-way ANOVA for 

D.I.  revealed  a  significant  group  effect  [F2,45=7.30, 

p<0.01].  Tukey post-hoc  analysis  revealed  that  POST 

group  had  a  lower  D.I.  respect  to  both  PRE  and 

PRE+POST groups which did not differ each other. One 

sample t-tests revealed that D.I. was significantly above 

chance  level  only  for  PRE  [t15=4.46,  p<0.001]  and 

PRE+POST [t15=7.30, p<0.0001].
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Figure  8.  Discrimination  index  (mean ±  SEM) as  a  function  of 
stimulus  paired  with  test  context  measured  24  or  96  hrs  post-
training (*vs High, p < 0.01; # vs 24 hrs, p < 0.05; § vs 0, p <  
0.0001).
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Figure 9.   Discrimination index (mean ± SEM) as a function of 
feeding state before behavioral testing measured 96 hrs post-training 
(*vs  FD–FF  p  <  0.05;  #  vs  FF–FD,  p  <  0.005;  §  vs 
0, p < 0.0001).

Figure  10. Discrimination  index  (mean  ±  SEM)  as  function  of 
chocolate administration protocol measured 96 h post-training (*vs 
all, p < 0.05; § vs 0, p < 0.01).
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Experiment 2. Effects of post-training administration of  

SCH23390 on retention of a sampled object 24 or 96 hrs  

after ORT training. Figure 11a shows the D.I. measured 

24 hours after training in Low mice treated with vehicle 

or low dose of SCH23390. Two-sample t-test revealed 

that SCH-treated mice had lower D.I. respect to vehicle-

treated  mice  (t16.68= 2.306,  p<0.05).  One  sample  t-test 

revealed that D.I. was significantly above chance level 

only in  the vehicle-treated group (t10  = 5.88 p<0.001). 

Data collected in High mice tested 24 or 96 hours post-

training  are  shown  in  figure  11  (b  and  c).  One-way 

ANOVA did not reveal significant group differences for 

total  exploration  time.  Post-trial  administration  of  the 

dopamine D1 antagonist SCH 23390 dose-dependently 

decreased  discrimination  of  a  novel  object  in  a  test 

performed 24 hours after training (Fig. 11b). One-way 

ANOVA  revealed  a  significant  effect  of  the  drug 

treatment on D.I. between groups (F2,33 = 3.621, p < 0.05

). Tukey's post hoc revealed that only the group treated 

with high dose of SCH showed significantly lower D.I. 

than  the  vehicle-treated  group.  One  sample  t-tests 
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revealed that D.I. of both saline-treated mice and of mice 

treated  with  the  low dose  of  SCH significantly above 

chance level (0 mg/kg t11 = 4.997 p < 0.001; 0.01 mg/kg 

t10 =  2.463  p<0.05).  Post-trial  administration  of  the 

dopamine  D1 antagonist SCH  dose-dependently 

decreased discrimination of a novel object tested 96 hrs 

after  training (Fig.  11c).  One-way ANOVA revealed a 

significant effect of the treatment on D.I. (F2,33= 16.307, 

p<0.001).  Tukey's  post  hoc  revealed  a  significant 

differences between D.I. expressed by different groups. 

One sample t-tests  revealed that D.I.  was significantly 

above chance level in the vehicle-treated group as well 

as in the group treated with low dose of SCH (0 mg/kg 

t11  = 11.86 p<0.0001; 0.01 mg/kg t11 = 6.929 p<0.0001). 

Table 1 shows the D.I. presented by High mice receiving 

pharmacological  treatments  120 min post-training.  For 

SCH-treated and vehicle-treated mice two sample t-test 

did not reveal significant differences between groups in 

mice  tested  either  24  and  96  hrs  after  training.  One 

sample t-test revealed that D.I. was significantly above 

chance level for all groups 24 and 96 hrs after training. 
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Effects of post-training administration of Propanolol on  

retention of a sampled object 24 or 96 hours  after ORT 

training. Figure 12a shows the D.I. measured 24 hours 

after  training in  Low mice.  One-way ANOVA did not 

revealed a significant effect of the drug treatment on D.I. 

between groups. One sample t-test revealed that D.I. was 

significantly above chance level in all groups of mice (0 

mg/kg t11 = 5.88 p < 0.001; 1 mg/kg t11  = 4.059 p < 0.05; 

2 mg/kg t11  = 4.658 p < 0.001).  Data collected in High 

mice tested 24 or 96 hours post-training are shown in 

figure  12 (b and c).  One-way ANOVA did  not  reveal 

significant group differences for total exploration. Post-

trial  administration  of  the  β-adrenergic  receptor 

antagonist  Propranolol  dose-dependently  decreased 

discrimination  of  a  novel  object  tested  24  hours  after 

training  (figure  12b).  One-way  ANOVA  revealed  a 

significant effect of the drug treatment on D.I. between 

groups (F2,33 = 3.987, p<0.05). Tukey's post hoc revealed 

that the groups treated with both doses of Prorpranolol 

showed significantly lower D.I. than the vehicle-treated 

group.  One  sample  t-tests  revealed  that  D.I.  is 

significantly above chance level in all groups (0 mg/kg 
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t11 =  4.997  p<0.001;  1  mg/kg  t11   =  2.333  p<0.05;  2 

mg/kg t11  = 3.23 p<0.01).

Post-trial  administration  of  the  β-adrenergic 

receptor  antagonist  Propranolol  dose-dependently 

decreased  discrimination  of  a  novel  object  tested  96 

hours  after  training  (Fig.  12c).  One-way  ANOVA 

revealed a significant effect of the treatment on D.I. (F2,33 

=  8.524  p  <  0.01).  Tukey's  post  hoc  revealed  that 

Propranolol  only  the  group  treated  with  high  dose  of 

Propranolol  had  a  lower  D.I.  than  the  vehicle-treated 

group.  One  sample  t-tests  revealed  that  D.I.  was 

significantly above chance level only for vehicle-treated 

group and low dose Propranolol-treated group (0 mg/kg 

t11  = 11.86 p<0.0001;  1  mg/kg   t11 =  7.23  p<0.0001). 

Table 1 shows the D.I. presented by High mice receiving 

pharmacological  treatments  120 min  post-training.  For 

Propranolol-treated and vehicle-treated mice two sample 

t-test  did  not  reveal  significant  differences  between 

groups in mice tested 24 amd 96 hours after  training. 

One  sample  t-test  revealed  that  D.I.  was  significantly 

above chance level for all groups 24 and 96 hours after 

training (see Table 1).
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Figure 11. A.  Discrimination index (mean ± SEM) as a function of 
SCH23390  dose  (0  and  0.01  mg/kg)  injected  immediately  after 
training in the low arousing version of ORT measured 24 hrs post-
training.  *  vs  saline,  p<0.05;  §  vs  zero,  p<0.05. (B and  C) 
Discrimination index (mean ± SEM)  as  a function of  SCH23390 
dose (0, 0.01 and 0.025 mg/kg) injected immediately after training 
in the high arousing version of ORT measured 24 (B) or 96 (C) hrs 
post-training.  
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Figure 12. A  Discrimination index (mean ± SEM) as a function of 
Propranolol  dose  (0,  1  and  2  mg/kg)  injected  immediately  after 
training in the low arousing version of ORT measured 24 hrs post-
training.  *  vs  vehicle,  p<0.05;  §  vs  zero,  p<0.05.  (B and  C) 
Discrimination index (mean ± SEM)  as a function of Propranolol 
dose (0, 1 and 2 mg/kg) injected immediately after training in the 
high arousing version of ORT measured 24 (B) or 96 hrs (C) post-
training.  
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Drug 
(mg/kg)

120 post 
(24h)

120 post 
(96h)

Vehicle 0.27 ± 0.05 t10= 4.884 p<0.001 0.29 ± 0.05 t11= 4.12  p<0.05

SCH 
(0.025)

0.19 ± 0.06 t11 = 2.98 p<0.05 0.29 ± 0.05 t11=6.18 p<0.0001

Prop 
(2)

0.3 ± 0.05 t11=5.922 p<0.0001 0.26 ± 0.05 t11=6.56 p<0.01

Table 1. Mean (± SEM) and one sample t-tests for chance level of 
D.I. on the testing trial 24 or 96 hours after training of SCH23390 
and Propranolol groups injected with highest doses 120 min after 
training (120 post).
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Discussion.

The main result of this set of experiments is that 

long-term object memory is enhanced when sampling is 

performed under positive emotional arousal. Indeed, in 

the  present  experiments  we  demonstrated  that  mice 

remember  a  sampled  object  for  24  hours  but  this 

memory  can  last  96  hours  if  object  sampling  is 

performed in high positive emotional arousal. 

The present study used a modified version of the 

widely  used  ORT  that  allowed  modulation  of  the 

memory  trace  acquired  during  sampling  by  positive 

emotional  arousal.  To  this  aim  we  associated  the 

experimental context with chocolate and then increased 

the motivational salience of the unconditioned stimulus 

by submitting the mice to a period of food deprivation 

immediately  before  ORT  training  and  testing  phases. 

According  to  several  studies  on  reward  anticipation, 

animals respond with a positive emotional arousal when 

they  are  returned  into  contexts  that  predictst  the 

availability  of  highly  palatable,  caloric,  and  fat  foods 

(Alcaro  et  al.,  2007;  Boissy  et  al.,  2007;  Alcaro  and 
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Panksepp, 2011).  Mice trained and tested in a context 

associated with an inedible plastic (Low) stimulus were 

used as controls. 

Both Low and High mice discriminated the novel 

object when tested 24 hours after training demonstrating 

intact  memory  of  the  previously  sampled  object. 

However, 96 hours after training only mice trained and 

tested  in  high  positive  emotional  situation,  the 

chocolate-associated  context  (High),  were  still  able  to 

discriminate  the  novel  object.  These  data  support  the 

view that experiences associated with a state of positive 

emotional  arousal  are  consolidated  in  more  lasting 

memories as reported for those associated with negative 

ones. Control experiments reported by the present work 

indicate that the LTM of the sampled object is modulated 

by the chocolate  associated context  rather than by the 

chocolate  feeding  immediately after  sampling.  Indeed, 

mice that did receive chocolate on the object sampling 

session without  previous  chocolate-context  pairing  did 

not show discrimination of a novel object 96 hours later, 

whereas  mice  that  did  not  receive  chocolate  but  were 

trained in a context previously associated with chocolate 
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did. These findings rule out the influence of sugar or fat 

(Campolongo  et  al.,  2009;  Smith  et  al.,  2011)  on 

memory consolidation  in  our  experimental  conditions. 

Moreover,  in  our  standard  experimental  condition 

chocolate was made available at the end of the sampling 

session to prevent negative emotional arousal associated 

with frustration (for review see Flaherty,1996) as well as 

contingency between sample object and reward (Hughes, 

2007). 

Moreover,  the  data  suggest  that  the  positive 

emotionally arousing experience was capable to promote 

a  lasting  memory of  the  sampled  object  also  in  free-

feeding  mice;  however,  food-deprived  mice  showed  a 

D.I. significantly higher than free-fed mice. This result 

supports the hypothesis that imposing 15 hours of food 

deprivation  before  objects  sampling  increased  the 

positive  emotional  arousal  promoted  by  chocolate-

associated  context  in  line  with  the  hypothesis  that  a 

physiological depletion enhances the incentive value of 

the  unconditioned  and  conditioned  goal  stimuli 

(Berridge, 2004). Mice food-deprived before training but 

not before test showed lower discrimination than mice 
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trained  and  tested  in  food  deprivation  strongly 

supporting  a  state-dependent  learning.  Finally,  mice 

food-deprived only on test day (96 hours) did not show 

any improvement of object discrimination in comparison 

with  free-fed  mice.  The  latter  observation  indicates  a 

selective  effect  of  the  motivational  state  on  memory 

formation and/or consolidation rather than on retrieval. 

Taken  together,  these  findings  support  the  view  that 

acute  food  deprivation  increased  emotional  arousal 

promoted by the context associated with chocolate, it is 

tempting  to  speculate  that  the  condition  of  feeding 

deprivation invested the experience of re-entering into 

the reward-predicting context of a flashbulb-like quality 

(Brown and Kulik, 1977).

The  main  result  of  the  pharmacological 

experiments is the observation that LTM of the sampled 

object  was impaired by post-training administration of 

propanolol  only  when  sampling  was  performed  under 

positive emotional arousal. Lack of effect of Propanolol 

in Low mice is in apparent contrast with previous results 

showing  that  Propanolol  infused  in  the  BLA of  rats 

immediately following  object  sampling  interferes  with 
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discrimination  of  a  novel  object  tested  24  hrs  later 

(Roozendaal  et  al.,  2008).   However,  in  the  cited 

experiments rats were exposed to the testing cage for the 

first  time during ORT training,  whereas in the present 

experiments mice had 7 previous experiences with the 

test cage. It is reasonable to hypothesize that the level of 

emotional arousal promoted by the training situation in 

the rat  experiment (Rozendaal et  al.,  2008) was much 

higher  than  that  experienced  by  mice  from  the  Low 

group in the present study. Finally, the impairing effects 

of Propanolol on discrimination of a novel object were 

observable  in  mice  treated  immediately  but  not  120 

minutes  post-sampling.  These  results  support  the 

hypothesis  that  activation  of  ß-adrenergic  receptors 

mediates  the  impact  of  emotional  arousal  on  memory 

consolidation regardless of the hedonic sign (positive or 

negative) of the experience.  

In sharp contrast with the effects of Propanolol, 

the  dopamine  D1  receptor  antagonist  SCH23390, 

administered  post-trial  decreased  24  hours  retention 

performance in both High and Low mice.  In addition, 

the lower dose of the D1 antagonist was effective in Low 
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but not in High mice.  Previous work has demonstrated 

the DA dependence of learning for step-down inhibitory 

avoidance,  the  radial  maze,  and  water  maze  (Packard 

and White, 1991; Gasbarri et al., 1996; Bernabeu et al., 

1997;  O'Carroll  et  al.,  2006).  However,  pre-training 

SCH23390 administration was reportedly ineffective in 

ORT (deLima et al.,2010). The discrepancy between this 

previous  and the  present  results  is  difficult  to  explain 

although the two studies differed for the species (mice in 

the  present  rats  in  the  previous),  drug  dosages  (the 

highest  dose used in  the present  experiments  was one 

half  of  the  lowest  used  in  the  previous),  and  time  of 

treatment  (pre-training  vs  post-training).  The  effects 

observed  in  the  24  hours  test  suggested  reduced 

sensitivity  to  D1  receptors  blockade  in  mice  trained 

under high emotional arousal. In previous experiments 

we have  demonstrated  that  whereas  retention  of  High 

and Low  mice do not differ on the 24 hours test, only 

High mice show discrimination of a novel object when 

tested 96 hours after training (experiment 1). Therefore, 

three additional groups (0 and 0.01, 0.25 mg/kg doses of 

SCH23390)  of  High  mice  were  tested  96  hours  after 
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object  sampling.  The results,  showing that  both doses 

were  effective  in  reducing  retention  expressed  at  this 

time  point,  did  not  support  the  hypothesis  that  ORT 

under high emotional arousal is  less dependent on D1 

receptor stimulation. Finally,  our  effects  on  retention 

induced by the dopamine D1 receptor antagonists seem 

to be due to an effect on memory consolidation. Indeed, 

these  effects  were  observed  when  drugs  were  given 

immediately,  but  not  120  minutes,  post-training  when 

the memory trace is susceptible to modulation (Gold et 

al.,  1975).  These  results  support  the  hypothesis  that 

activation of dopamine D1 receptors mediates  memory 

consolidation  regardless  of  the  level  and  the  hedonic 

sign (positive or negative) of the experience.  
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Part 3: Effects of different levels of positive 

emotional  arousal  on the induction of c-Fos 

expression by ORT training.

Materials and Methods.

Subjects.

Male  CD1  mice  (Harlan  Laboratories,  Udine, 

Italy) were purchased at 6 weeks of age and housed four 

to a cage on a 12 hours light-dark cycle (lights on at 7:00 

am).  Food and water were available  ad libitum except 

when  food  deprivation  was  required  by  design  (see 

methods).  Mice  were  left  undisturbed  for  two  weeks 

before behavioral testing. Experiments were carried out 

in accordance with the Italian national law (DL 116/92) 

on the use of animals in research.
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Tissue preparation.

One hour after training, animals were sacrificed 

via rapid cervical dislocation, the brains were removed 

from skull in approximately 90 seconds and then post-

fixed in 4% formaldehyde (Carlo Erba) diluted in 0.1 M 

(pH 7.4) phosphate buffer (PB) overnight at 4° C. Then 

brains were immersed for 48–72 h at 4 °C in PB/sucrose 

30%  for  cryoprotection.  Brains  were  blocked  in  the 

coronal plane at the level of the optic chiasm and their 

anterior parts were frozen with dry ice and cut in 40-μm 

coronal  sections  with  a  sliding  microtome.  Three 

adjacent  series  of  8–10  sections  sampling  the  dorsal 

hippocampus  (figure  12a),  amygdala  (figure  13a)  and 

rostral  anterior  cingulate  cortex  (figure  14a)  were 

selected from each brain on the basis  of Mouse Brain 

Atlas of Paxinos and Franklin 2001 and immunostained 

for c-fos as shows figure 2.
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Imunohistochemistry. 

Floating  sections  were  processed  at  room 

temperature in 24-well microplates on gentle agitation. 

The  steps  for  imunohistochemistry  procedure  were  as 

follows:

      1)3 x 10 min in Phosphate Buffer + 0.3% 

         Triton X-100 (PBTX)

16. 30 min incubation in  PBTX + H2O2 (3% 

for non perfused brains)

17. 3 x 10 min in PBTX (or PB 0.1M)

18. 30  min  incubation  in  Avidin  blocking 

solution  [Vector  Laboratories] (2 

drops/5ml) diluted in PBTX

19. 3 x 10 min in PBTX (or PB 0.1M)

20. 30  min  incubation  in  Biotin  blocking 

solution  [Vector  Laboratories] (2 

drops/5ml) diluted in PBTX

21. 3 x 10 min in PBTX (or PB 0.1M)
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22. Overnight  incubation  in  primary  rabbit 

anti c-fos polyclonal antibody (Oncogene, 

AB-5)  diluted 1:20000 in PBTX +  2% 

Normal Goat Serum (Vector Laboratories

)

23. 3 x 10 min in PBTX (or PB 0.1M)

24. 2  hours  incubation  secondary  antibody 

anti-Rabbit  (Vector  Laboraories)  diluted 

1:1000 in PBTX

25. 3 x 10 min in PBTX (or PB 0.1M)

26. 1 hour incubation Avidin-Biotin Complex 

(Vector  Laboratories) diluted  1:1000  in 

PBTX (prepare 30 min before use)

27. 3 x 10 min in PB 0.1M

28. 4 min incubation in DAB solution diluted 

1:2  compared  to  manufacturer 

instructions  (sections  to  be  compared 

must be treated simultaneously, i.e. using 

Costar® Netwells, 15 mm diameter, 500 

µm Mesh)
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29. 3 x 10 min in PB 0.1M

Data analysis

For  this  experiment  the  brain  regions  were 

acquired at 4x objective magnification and ImageJ 1.46p 

free software from http://imagej.nih.gov/ij  was used to 

quantify c-fos immunostaining cells. Statistical analyses 

were  performed  on a  Debian  GNU/Linux  workstation 

using  the  R  free  software  environment  for  statistical 

computing  and  its  graphical  interface  R-Commander 

(Fox, 2005). An error probability level of p < 0.05 was 

accepted  as  statistically  significant.  One-way ANOVA 

was  used  when  comparing  all  groups  separately  in 

different brain regions. In case of significant overall one-

way F ratio, ANOVA was followed by Tukey’s post hoc 

tests. 
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Experiment.

This  experiment  was  aimed  to  evaluate  c-Fos 

expression  induced  by  object  sampling  to  map  brain 

areas  involved  in  consolidation  of  memories  under 

positive  emotional  arousal.  We  first  identified  brain 

regions,  such  as  amygdala,  dorsal  hippocampus  and 

rostra antyerior cingulate cortex, where gene expression 

is activated after our version of ORT by analyzing the 

expression  of  the  immediately  early  genes  c-fos  as 

marker.  Forty  mice  were  randomly  assigned  to  this 

experiment.  One  group  of  mice  (n  =  8),  which  were 

control  group,  were  trained in  the  same conditions  of 

experiment  4  but  neither  chocolate  piece  nor  black 

Lego®  block  was  dropped  in  the  arenas  by  the 

experimenter and have not been introduced the sample 

objects into the arenas during the training phase (control 

mice,  control).  Sixteen  mice  were  trained  as  in 

experiment 4 half of mice (n = 8) was High group and 

the other half (n = 8) was Low group.  Two additional 

groups of mice (n = 8) were trained as  control  group 

except for piece of chocolate wich was dropped after 10 
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minutes  and  mice  were  allowed  to  interact  with  this 

stimulus for additional 5 minutes (only chocolate-paired 

mice, CHOC). The remaining mice were trained in the 

same  condition  of  High  and  Low  group  of  the 

experiment  4  but  did  not  receive  neither  piece  of 

chocolate  nor  lego block (mice  only trained to  object 

recognition, ORT). All the mice for each condition were 

sacrificed  one  hour  after  training  and the  brains  were 

processed  for  c-fos  immunostaining  (see  above  in 

material and methods paragraph).

Results.

Data on c-fos expression of defined mice groups 

in investigated brain regions are reported in figure 13, 14 

and 15. Statistical analysis did not revealed significant 

difference  between  groups  in  dentate  gyrus  (DGy), 

whereas analysis revelead significant difference between 

groups in CA1 (F2,21  = 9.97, p<0.001) and CA3 (F2,21  = 
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4.88, p<0.05) (Fig. 12b). Tukey's post-hoc showed that 

both High- and Low-trained mice,  wich did not  differ 

each other, had higher c-fos expression respect to control 

group in CA1 and CA3 subfields.  Analysis  of dentate 

gyrus of dorsal hippocampus did not revealed stattistical 

difference  between  groups.  Furthermore,  one-way 

ANOVA of  the  comparison between cont,  CHOC and 

ORT groups  revealed  a  significant  effect  in  CA1 and 

CA3 subfields of dorsal hippocampus (CA1,  F2,20 = 7.53, 

p < 0.01; CA3,  F2,20 = 6.59, p < 0.01). Tukey's post hoc 

showed  that  only  the  chocolate  increased  CA3  c-fos 

expression whereas in CA1 c-fos expression was higher 

both in ORT and CHOC group respect to control group 

of  mice  (figure  12c). Statistical  analysis  to  compare 

control (cont), Low and High groups of mice revealed 

significant  differences  between  groups  in  basolateral 

(BLA, F2,21 = 3.80, p < 0.05), lateral (LA, F2,21 = 4.83, p < 

0.05) and central (CeA, F2,21  = 6.71, p < 0.01) nuclei of 

amygdala (figure 13b). Tukey's post-hoc revealed that in 

all subfields of amygdala investigated c-fos expression 

was significant higher in High respect to control mice 

(cont) and only in CeA c-fos expression was higher in 
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High-trained mice also respect to Low group. In another 

one-way  ANOVA  analysis,  that  compare  ORT  and 

CHOC group with control, did not revealed significant 

difference  between  groups  in  basolateral  amygdala 

(BLA) (figure 13c) whereas in the same group statistical 

analysis revelead significant difference between groups 

in lateral amygdala (LA,  F2,20  = 5.32, p < 0.05), central 

amygdala (CeA, F2,20 = 6.08, p < 0.01). Tukey's post-hoc 

analysis  showed  that  CHOC  group  had  higher  c-fos 

immunoreactivity  respect  to  control  group  in  LA and 

CeA.

Finally,  statistical  analysis  revelead  significant 

difference between groups in  rostral  anterior  cingulate 

cortex (rACC,  F2,21  = 3.74, p < 0.05). Tukey's post-hoc 

analysis showed that only High group had higher c-fos 

immunoreactivity respect to control group (figure 15b). 

In another one-way ANOVA analysis, that compare ORT 

and  CHOC  group  with  control,  did  not  revealed 

significant  difference between groups in  rACC (figure 

15c). 
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Figure 13. Induction of c-fos expression promoted by stimulus-test 
cage pairing (B) and trained without stimuli  and not-trained with 
chocolate (C) compaired with control group in dorsal hippocampus 
(CA1,  CA3  and  dentate  gyrus).  A. Representative  microscope 
photographs of  brain regions of  animals of  all  groups from both 
comparisons.  B.  Means (± SEM) of density of c-fos activation in 
CA1, CA3 and DGy from the groups exposed to both emotionally 
arousing situations (Low and High) and control group. C. Means (± 
SEM) of density of c-fos activation in CA1, CA3 and Dgy from the 
groups that controls for stimulus (CHOC) and training (ORT) and 
control group. * vs Cont, p < 0.05. Calibration bar 100µm. 
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Figure  14.  Induction  of  c-fos  expression  promoted  by  positive 
emotional  arousal  situation in  amygdala (lateral,  LA;  basolateral, 
BLA  and  central  amygdala).  A. Representative  microscope 
photographs of  brain regions of  animals  of  all  groups from both 
comparisons.  B.  Means (± SEM) of density of c-fos activation in 
LA, BLA and CeA from the groups exposed to both emotionally 
arousing situations (Low and High) and control group. C. Means (± 
SEM) of density of c-fos activation in LA, BLA and CeA from the 
groups that controls for stimulus (CHOC) and training (ORT) and 
control group. # vs all, p < 0.05; * vs Cont, p < 0.05. Calibration bar 
100µm. 
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Figure  14.  Induction  of  c-fos  expression  promoted  by  positive 
emotional  arousal  situation  in  rostral  Anterior  Cingulate  Cortex 
(rACC). A. Representative microscope photographs of brain regions 
of all groups from both comparisons.  B. Means (± SEM) of density 
of c-fos activation in LA, BLA and CeA from the groups exposed to 
both emotionally arousing situations (Low and High) and control 
group.  C.  Means (± SEM) of density of c-fos activation in rACC 
from the  groups  that  controls  for  stimulus  (CHOC)  and  training 
(ORT)  and  control  group.  *  vs  Cont,  p  <  0.05.  Calibration  bar 
100µm. 
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Discussion.

The results of this final set of experiments reveal 

a  strong  homology  between  the  neurobiological 

mechanisms  involved  in  the  modulation  of  memory 

consolidation  by  positive  and  negative  emotional 

arousal. 

Indeed,  training  for  ORT  in  a  state  of  high 

positive arousal is associated with a selective increase of 

c-Fos expression in the BLA and rACC. This conclusion 

is supported by the observation that only in these brain 

areas  ORT  training  in  the  chocolate-associated 

environment,  but  neither  ORT  training  per  se  (ORT 

group) nor exposition to chocolate per se (CHOC group

), enhanced c-Fos expression.  Instead,  enhanced c-Fos 

expression in  CA1 and CA3 of  the  hippocampus,  LA 

and CeA was observable in mice from ORT and CHOC 

groups too.

The observation that both BLA and rACC were 

the only brain areas showing increased c-Fos expression 

following  IA  training  with  high  shock  levels  offers 
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further  support  to  the  hypothesis  that  these  two brain 

areas  are  involved  by plastic  changes  associated  with 

memory  consolidation  in  condition  of  high  emotional 

arousal.

Another  interesting  finding  of  this  set  of 

experiments  is  the  selective  activation  of  c-Fos 

expression  in  CeA by  the  exposure  to  chocolate  and 

chocolate-associated  stimuli.  This  conclusion  is 

supported by the significant difference increase of c-Fos 

expression  between  the  High  and  Low  groups  and 

between  CHOC  and  ORT group  and  is  in  line  with 

recent  results  supporting  a  main  role  of  CeA  in 

controlling  the  target  and  intensity  of  appetitive–

consummatory behaviors in food-intake tests (Mahler et 

al., 2009). 
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GENERAL CONCLUSIONS

The aim of this study was to test the hypothesis 

that  positive  and negative  emotional  arousal  influence 

the same consolidation processes. The results  obtained 

support this hypothesis. Indeed either high shock during 

IA training or expectation of a palatable food by food 

deprivation  during  object  sampling  for  ORT  training 

promoted  more  persistent  memories  and  c-Fos 

expression in both the BLA and rACC. 

The  procedure  used  to  modulate  positive 

emotional  arousal  during  object  sampling  in  ORT  is 

novel.  Thus,  we  tested  its  sensitivity  to  post-trial 

pharmacological manipulations known to interfere with 

consolidation  processes.  The results  obtained by these 

experiments  support  a  main  role  of  consolidation 

mechanisms in promoting both LTM and LLM of the 

sampled  object.  Moreover  they  supported  a  role  of 

activation  of  ß-adrenergic  receptors  in  memory 

consolidation in ORT when training is performed under 
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high but not low emotional arousal. A wealth of previous 

evidences  support  the  view  that  consolidation  of 

memory  associated  with  negative  emotional  arousal 

involves activation of  ß-adrenergic receptors in the BLA 

and BLA interaction with cortical areas, with the notable 

inclusion of rACC (Malin et al., 2005, 2007). Therefore, 

we  suggest  that  these  mechanisms  are  implicated  in 

consolidation of memory acquired under  high positive 

emotional arousal too. 
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a b s t r a c t

Previous results demonstrated association between increased FosB/!FosB immunostaining in the ven-
tromedial striatum and behavioral sensitization to amphetamine promoted by repeated stress or by
repeated pairings of the psychostimulant and the testing cage in mice of the C57BL/6J strain. The present
experiments tested this association in an additional protocol, its stability following the end of the sensi-
tizing procedure and its generalization to mice from a different inbred strain. Eleven days after repeated
administration of amphetamine within their home-cages, mice of the C57BL/6J strain expressed sensiti-
zation to the psychomotor effects of the psychostimulant when tested in a novel cage. At this time-point
the same mice showed increased FosB/!FosB immunostaining in the ventromedial striatum. Instead,
mice of the genetically unrelated DBA/2J inbred strain expressing robust sensitization in the same proto-
col did not show changes in FosB/!FosB immunostaining throughout the striatal complex. Lack of effects
in FosB/!FosB immunostaining was also observed in DBA/2J mice behaviorally sensitized by repeated
pairings of amphetamine with the test cage. These results demonstrate that mice, depending on the
genetic background, can develop robust and long-lasting behavioral sensitization to amphetamine in the
absence of striatal !FosB accumulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Behavioral sensitization, the enhanced behavioral response to
addictive drugs promoted by repeated administration, has been
extensively used as a behavioral index of drug-induced brain plas-
ticity in genetic mouse models [1–3]. In most cases presence or
absence of behavioral sensitization is taken to support or rule
out, respectively, a major role of the targeted genetic product in
drug-induced brain plasticity. However, there is evidence that dif-
ferent neural mechanisms are involved in the development and
expression of this behavioral phenotype depending on the induc-
ing procedure, the drug used, and the genetic background of the
tested animals [4–7].

We have previously reported that mice of the inbred strain
C57BL/6J (C57), show increased striatal FosB/!FosB immunostain-
ing when sensitized to the locomotor effects of amphetamine [8].
In the ventromedial caudate enhanced FosB/!FosB immunostain-
ing was observed in mice sensitized either by repeated stress (10

∗ Corresponding author at: Dipartimento di Psicologia, Università “Sapienza”, via
dei Marsi 78; Rome I-00185, Italy. Tel.: +39 06 4991 7826; fax: +39 06 4991 7712.

E-mail address: simona.cabib@uniroma1.it (S. Cabib).

days of 2 h restraint) or by repeated amphetamine pairings with
the test cage (1 daily injection of 2.5 mg/kg over 4 consecutive
days), strongly supporting the association between this pheno-
type and the outcome (sensitization) rather than the procedure or
the drug used. Moreover, in both experimental conditions changes
in FosB/!FosB immunostaining were produced by the repeated
rather than the acute treatments, suggesting a major contribution
of !FosB: the highly stable splice product of the immediate early
gene FosB [9].

The latter hypothesis is supported by results obtained by a dif-
ferent group demonstrating increased striatal !FosB, measured by
Western blots, in C57 mice sensitized by repeated amphetamine
[10]. However, a different study did not find accumulated !FosB
in the accumbens or striatum of adult outbred CD1 mice exposed
to 7 daily amphetamine injections within the home cage [11]. Con-
trasting findings could be explained by differences in the protocols
used for repeated amphetamine treatments or with strain differ-
ences. Indeed, although the C57 strain is the preferred background
for genetic models, mice from this strain, as mice from any other
inbred strain, share the specific genetic make-up inherited from
their single ancestral pair.

Finally, the most relevant characteristic of behavioral sensitiza-
tion or !FosB accumulation is a relative stability after the end of the

0166-4328/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.bbr.2010.10.016
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sensitizing procedures. However, in our previous experiments both
locomotor sensitization and FosB/!FosB immunostaining were
evaluated shortly (24 h) after the end of the sensitizing treatment.

The present experiments were designed to evaluate: (1) the
association between increased striatal FosB/!FosB and locomotor
sensitization to amphetamine induced by an additional proto-
col in C57 mice; (2) the persistence of this association after the
end of the sensitizing treatment; and (3) its generalization to
mice of a different and genetically unrelated inbred strain. In
a first set of experiments we tested locomotor sensitization to
amphetamine expressed by mice of the C57 strain in a novel cage
at different time-intervals following the last of repeated injec-
tions of the psychostimulant within the home-cages, and evaluated
striatal FosB/!FosB immunostaining 11 days after the end of drug-
pretreatment, when expression of the sensitized response was
maximal. In a second set of experiments we tested mice of the
inbred strain DBA/2J (DBA) in the same protocol.

The results obtained demonstrated association between long-
term locomotor sensitization to amphetamine and enhanced
FosB/!FosB immunostaining only in C57 mice. However, the lack
of association between the behavioral and neural phenotypes in
DBA mice could have been specific for the sensitizing procedure
used or due to a strain-specific rapid decay of the !FosB signal in
these mice. Therefore, we performed a third set of experiments and
evaluated FosB/!FosB immunostaining shortly (24 h) as well as 11
days after ceasing a treatment with repeated amphetamine within
the test cage.

2. Materials and methods

2.1. Experimental subjects

Male mice of the inbred strains DBA/2JICo (DBA) and C57BL/6JICo (C57) were
purchased from Charles River (Calco, Italy) at six weeks of age and housed four to a
standard cage (Techniplast, no. 1144b, Italy). Food and water were available ad libi-
tum. Animals were maintained on a 12/12 h light–dark cycle (lights on 7:00 am) for
2 weeks before testing and then they were randomly assigned to the different treat-
ment groups. All experiments were conducted in strict accordance with the Italian
national law (DL 116/92) on laboratory animals based on the European Communi-
ties Council Directive of November 24, 1986 (86/609/EEC). All efforts were made to
minimize the number of animals used and their suffering.

2.2. Drugs

d-Amphetamine (Research Biochemicals Inc., USA) was dissolved in saline solu-
tion (0.9% NaCl) and administered intraperitoneally (i.p.) in a volume of 1 ml/100 g
at the dose of either 1.0 or 2.5 mg/kg.

2.3. Apparatus for behavioral data collection

Behavioral data were collected and analyzed by the “EthoVision” (Noldus
Information Technology, Wageningen, The Netherlands), a fully automated video
tracking system that allows the simultaneous acquisition from up to 16 indepen-
dent arenas. The acquired video tracks were processed by the software to extract
the variable “distance traveled” (cm) as an estimate of locomotor activity. In all
experiments locomotor activity was measured in test cages made of gray PVC
(10 cm × 40 cm × 16 cm) and covered by transparent Plexiglas. Behavioral recording
sessions lasted 1 h.

2.4. Behavioral experiments

A schematic presentation of the time line of the different experiments is pre-
sented in Table 1.

2.4.1. Experiment 1
Five groups (n = 4) of C57 mice were used for this set of experiments. Two

groups of mice were injected twice daily for 4 consecutive days within their
home cages with saline, while the other groups received amphetamine (2.5 mg/kg)
according to the same protocol. All saline-pretreated mice and mice from one of
the amphetamine-pretreated groups were tested for locomotor activity in a pre-
viously unexplored cage 11 days after the end of the pretreatment. Half of the
saline-pretreated mice received a saline injection (Saline) and the other half a
challenge with 1 mg/kg of amphetamine (Acute) immediately before testing. The
amphetamine-pretreated mice were challenged with 1 mg/kg of amphetamine

(Repeated +11) immediately before testing. The other two groups of amphetamine-
pretreated mice were challenged with 1 mg/kg of amphetamine 5 (Repeated +5) or
17 days (Repeated +17) after the end of the drug pretreatment.

2.4.2. Experiment 2
Five groups (n = 4) of DBA mice were used for these experiments. Treatments

and protocols were the same as described in Experiment 1.

2.4.3. Experiment 3
This set of experiments involved 14 groups (n = 4) of DBA mice. Mice from all

groups were injected twice daily for 4 consecutive days: once in the home cage
within the colony room and once in the test cage located in a different room. Four
groups of DBA mice received saline in both home and test cages (Saline). Six groups
of mice received saline in the home cage and amphetamine (2.5 mg/kg) in the test
cage (Paired). Four groups of mice received amphetamine (2.5 mg/kg) in the home
cage and saline in the test cage (NPaired).

Each day at 9.00 am, mice were transported, within their home cages, to the test-
ing room. After 1 h, they received the first injection (either saline or amphetamine,
depending on the group) and were immediately placed in the test cages where loco-
motor activity was recorded as described. Then, they were returned to the colony
room within their home cages. At 5.00 pm, mice received the second injection in
their home cage (saline or amphetamine, depending on the group).

Twenty-four hours after the last injection two groups of DBA mice from
each of the 3 pretreatment conditions received a challenge injection of saline or
amphetamine (1 mg/kg) and were immediately introduced in the test cage where
locomotor activity was recorded. Other two groups from each condition were tested,
following the same procedure, 10 days later (day 11). The remaining two groups of
DBA mice from the Paired condition were tested under amphetamine challenge
(1 mg/kg) 5 or 17 days after the end of the pre-treatment.

2.5. Immunohistochemestry

2.5.1. Experimental groups
Experiments 1 and 2 were aimed at associating long-term effects of repeated

amphetamine on behavior with stable FosB/!FosB immunostaining. Therefore, in
both experiments we used tissue collected from Saline and Acute groups to test for
the acute effects of the drug and compared results obtained from these samples
with those from the group expressing maximal long-term locomotor sensitization
to amphetamine challenge (pretreated with amphetamine and challenged with the
drug 11 days after the end of the pretreatment: Repeated +11).

As for Experiment 3, it aimed at testing the ability of a different sensitizing treat-
ment to induce an increase of striatal FosB/!FosB immunostaining in DBA mice.
The sensitizing paradigm chosen was previously shown to induce both locomotor
sensitization to amphetamine and increased ventral striatal FosB/!FosB immunos-
taining in C57 mice [8]. The protocol requires experimental groups exposed to
repeated pairings of amphetamine with a test cage (Paired), two groups controlling
for the acute effects of the (repeated saline in both home and test cages: Acute), and
two groups controlling for the associative effect of drug pairing with the test cage
(treated with amphetamine in the home cages but repeatedly exposed to the test
cage under saline: NPaired). In this paradigm animals express sensitized response
in the Paired but not in the NPaired condition, due to the excitatory influence of the
drug-associated context in the former and the inhibitory influence of the explicitly
non-associated context in the latter condition [12,13].

FosB/!FosB immunostaining was evaluated in tissue samples from mice of the
Acute, Paired and NPaired groups challenged with amphetamine 24 h after the end of
the drug pretreatment and from mice of the Paired +11 group which were challenged
with amphetamine 10 days later. Observation of high FosB/!FosB immunostaining
in both Paired groups and in the NPaired group was to suggest stable accumulation
of !FosB by the repeated drug administration; lower FosB/!FosB immunostaining
in the samples from the Paired +11 group was to suggest a rapid decay of the signal
after the end of the sensitizing procedure; and lower FosB/!FosB immunostaining
in the samples from the NPaired group was to suggest the main contribution of FosB
possibly elicited by the drug-associated context.

2.5.2. Tissue preparation
All mice were killed and their brains collected at the end of the 60 min test.

Specimens were prepared as previously described [8,14]. Brains were excised and
placed in chilled 10% neutral buffered formalin. Two hours later, they were trimmed
on the coronal plane approximately between the frontal pole and the bregma. The
resulting brain slices (∼3 mm) were re-immersed in freshly prepared formalin solu-
tion and stored overnight at 4 ◦C on gentle agitation. Fixed slices were stored in 30%
sucrose at 4 ◦C until they sank, and then they were frozen with dry ice and cut in 40!
transverse sections with a sliding microtome. Three adjacent series of sections were
collected from each brain approximately between 2.34 and 0.74 mm from bregma
and immunostained for FosB/!FosB and dopamine transporter proteins.

2.5.3. Immunostaining
Immunostaining was performed as previously described [8,14]. Briefly,

FosB/!FosB antigens were detected with a rabbit polyclonal antiserum (sc-48, Santa
Cruz Biotechnology, Santa Cruz, CA USA, diluted 1:1000) raised against an inter-
nal region of FosB protein that is present also in !FosB isoforms [15]. Dopamine
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Fig. 1. Upper panel: schematic representation of sample areas subjected to image analysis. (1) Medial prefrontal cortex; (2) dorso-medial caudate-putamen; (3) ventro-
medial caudate-putamen; (4) accumbens core and (5) accumbens shell. Numbers above drawings indicate distance from bregma. Drawings were adapted from Franklin and
Paxinos [18]. Lower panel: representative photomicrograph of FosB/!FosB-immunoreactive cell nuclei from dorso-medial (A, B, E and F) or ventro-medial (C, D, G and H)
caudate-putamen of C57 (A–D) and DBA (E–H) mice repeatedly treated with saline (A, C, E and G) or amphetamine (B, D, F and H) before amphetamine challenge in a novel
test cage. See Section 2 for more detail. Scale bar = 100 !m2.
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Fig. 2. Locomotor activity (mean cm ± S.E.; (A and C) 5 min blocks; (B and D) 60 min) expressed by C57 mice. (A and B) Effects of saline (Saline) or amphetamine (Acute)
challenge in mice repeatedly injected with saline and effects of amphetamine challenge in mice pretreated with the psychostimulant 11 days before test (Repeated +11).
(C and D) locomotor effects of amphetamine challenge in mice pretreated with the psychostimulant 5 (Repeated +5), 11 (Repeated +11) or 17 (Repeated +17) days before
amphetamine challenge. *p < 0.01 vs. all other groups.

transporter protein was detected with a monoclonal rat antibody raised against the
N-terminus of human dopamine transporter (mab369, Chemicon International, Inc.,
Temecula, CA, USA, diluted 1:10,000). Secondary immunodetection was performed
with biotinylated antibodies (goat anti-rabbit, Vector Laboratories Inc., Burlingame,
CA, USA, or donkey anti-rat, Jackson Immunoresearch Europe Ltd., Cambridgeshire,
UK; both diluted 1:500). Peroxidase labeling was obtained by standard avidin–biotin
procedure (Vectastain ABC elite kit, Vector Laboratories, diluted 1:500). Metal-
enhanced diaminobenzidine (FastDAB, Sigma) was the chromogen. Sections from
each experiments were processed in a single batch of immunostaining allowing
quantitative comparisons within experiment.

2.5.4. Microscopy and image analysis
Visual examination and digital imaging of immunoreacted sections were per-

formed with a Zeiss Axiophot light transmission microscope equipped with a
CoolSnap CCD camera (Fig. 1).

Quantitative image analysis was performed as previously described, measures
were taken bilaterally from four to six rostrocaudal levels per region, depending on
the rostrocaudal extension of the brain region, and then averaged to obtain a sin-
gle value per subject [8,14,16]. Briefly, immunoreactive nuclei were automatically
counted and expressed as no. of nuclei/m2 in selected brain regions using the pub-
lic domain image analysis software ImageJ (http://rsb.info.nih.gov/ij/; [17]) running
on a GNU/Linux operating system (Debian 5.0, www.debian.org). The brain regions
quantitatively analyzed were the medial prefrontal cortex (mpFC), the dorso-medial
caudate-putamen (dmCP), the ventromedial caudate-putamen (vmCP), the Core
(NAc Core) and the Shell (NAc Shell) of Nucleus Accumbens. Brain regions were
identified according to “The Mouse Brain in stereotaxic coordinates” [18]. Dopamine
transporter immunostaining of adjacent slides was used to better discriminate core
and shell subdivisions of nucleus accumbens [14,16,19]. The lateral extent of cau-
date was not quantitatively analyzed because, in accordance with similar studies
[20,21], it was virtually devoid of immunoreactive nuclei in all groups from both
experiments.
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Table 1

Experiment Group Pretreatment Test Immunohistochemistry

Home cage Test cage Withdrawal (days) Challenge

1, 2 Saline SAL – 11 SAL C57, DBA
1, 2 Acute SAL – 11 AMPH C57, DBA
1, 2 Repeated +11 AMPH – 11 AMPH C57, DBA
1, 2 Repeated +5 AMPH – 5 AMPH –
1, 2 Repeated +17 AMPH – 17 AMPH –
3 Saline SAL SAL 1 SAL
3 Acute SAL SAL 1 AMPH DBA
3 Paired SAL AMPH 1 SAL
3 Paired SAL AMPH 1 AMPH DBA
3 NPaired AMPH SAL 1 SAL
3 NPaired AMPH SAL 1 AMPH DBA
3 Saline +11 SAL SAL 11 SAL –
3 Acute +11 SAL SAL 11 AMPH –
3 Paired +11 SAL AMPH 11 SAL
3 Paired +11 SAL AMPH 11 AMPH DBA
3 NPaired +11 AMPH SAL 11 SAL –
3 NPaired +11 AMPH SAL 11 AMPH –
3 Paired +5 SAL AMPH 5 AMPH –
3 NPaired + 17 AMPH SAL 17 AMPH –

2.6. Statistical analyses

Locomotor activity data from Experiments 1 and 2 were evaluated by mixed
model analyses of variance (ANOVA) with Treatment (3 levels = Saline, Acute,
Repeated +11) or Elapsed time (3 levels = Repeated +5; Repeated +11; Repeated +17)
as between factor, and Minutes as repeated measure (1–12 bins, 5 min each). As for
locomotion data from Experiment 3, two independent analyses were performed
on data collected 24 h or 11 days after the end of the drug pretreatment by mixed
model three-way ANOVAs with Challenge (Saline, Amphetamine 1 mg/kg) and Pre-
treatment (Saline, Paired and NPaired) as the between factors, and Minutes (1–12
bins, 5 min each) as the within factor. Finally, a mixed model ANOVA with Elapsed
time (3 levels = 5 days after pretreatment: Paired +5; 11 days after pretreatment:
Paired +11; 17 days after pretreatment: Paired +17) as between factor and Minutes
as repeated measure (1–12 bins, 5 min each) tested the stability of the sensitized
locomotor response to amphetamine challenge in mice from the Paired condition.
Locomotion data of the group Paired +11 were those collected in the group pre-
treated with amphetamine in the test cage and challenged with the drug 11 days
after the end of pretreatment.

Fig. 3. FosB/!FosB-immunoreactive cell nuclei (mean number of
nuclei/1 mm2 ± S.E.) in different brain areas of C57 mice challenged with saline
(Saline) or amphetamine (Acute) following saline pretreatment or challenged with
amphetamine following pretreatment with the psychostimulant, 11 days after the
end of pretreatments (Repeated +11). *p < 0.05 vs. all other groups.

Immunostaining data were analyzed independently for each brain structure by
one-way ANOVA for independent measures (3 levels = Saline, Acute, and Repeated
+11) in Experiments 1 and 2; and 4 levels: Acute, Paired, Npaired, Paired +11 in
Experiment 3).

ANOVAs were followed by Fisher PLSD (protected least significant difference)
tests when appropriate. For all analyses ˛ = p < 0.05.

3. Results

3.1. Experiment 1

Mice of the C57 strain pretreated with amphetamine in their
home cages showed sensitization to the psychomotor effects of
amphetamine challenge in a novel cage 11 days after the end
of pretreatment (Fig. 2A and B). Statistical analysis of locomo-
tion data revealed a main effect of Treatment (F(2,9) = 34.763;
p < 0.0001), a main effect of the repeated measure (F(2,11) = 6.136;
p < 0.0005), and a significant interaction between the two factors
(F(22,99) = 6.738; p < 0.0005). Post hoc comparisons performed on
the mean distance traveled over the 60 min test (Fig. 2B) indicated
that mice from the group Repeated +11 were significantly more
active than either drug-naïve mice (Saline) or mice acutely chal-
lenged with the psychostimulant (Acute).

The locomotor response to amphetamine challenge expressed
by mice repeatedly exposed to the drug was maximal 11 days after
the end of the drug pretreatment (Fig. 2C and D). Statistical anal-
ysis of locomotion data revealed a main effect of the time elapsed
from the end of the pretreatment (F(2,9) = 22.926; p < 0.0001), a
main effect of the repeated measure (F(2,11) = 5.035; p < 0.0005),
and a significant interaction between factors (F(22,99) = 4.819;
p < 0.0005). Post hoc comparisons performed on the mean distance
traveled over the 60 min test (Fig. 2D) indicated that mice tested 11
days after the end of the drug pretreatment (Repeated +11) were
significantly more active than mice challenged with the same dose
of amphetamine 5 (Repeated +5) or 17 days (Repeated +17) after
drug pretreatment.

C57 mice sensitized by repeated amphetamine within the
home cages and challenged with amphetamine in a novel cage
11 days after the end of the drug pretreatment (Repeated +11)
showed increased FosB/!FosB immunostaining in the dorso-
medial (F(2,11) = 6.71; p < 0.05) and ventromedial (F(2,11) = 5.12;
p < 0.05) caudate and in the NAc Core (F(2,11) = 32.92; p < 0.0001).
In all cases, post hoc comparisons revealed that FosB/!FosB
immunostaining in mice from this group was significantly different
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Fig. 4. Locomotor activity (mean cm ± S.E.; (A and C) 5 min blocks; (B and D) over 60 min) expressed by DBA mice. (A and B) Effects of saline (Saline) or amphetamine (Acute)
challenge in mice repeatedly injected with saline and effects of amphetamine challenge in mice pretreated with the psychostimulant 11 days before test (Repeated +11).
(C and D) Locomotor effects of amphetamine challenge in mice pretreated with the psychostimulant 5 (Repeated +5), 11 (Repeated +11) or 17 (Repeated +17) day before
amphetamine challenge. *p < 0.01 vs. all other groups.

in comparison with that of drug-naïve mice (Saline) or mice acutely
challenged with the psychostimulant (Acute) (Fig. 3).

3.2. Experiment 2

Mice of the DBA strain pretreated with amphetamine in
their home cages showed a significant increase of the locomotor
response to amphetamine challenge in a novel cage when tested 11
days after the end of the drug pretreatment (Fig. 4A and B). Statisti-
cal analysis of locomotion data revealed a main effect of Treatment
(F(2,9) = 56.669; p < 0.0001), a main effect of the repeated measure
(F(2,11) = 26.054; p < 0.0001), and a significant interaction between
factors (F(22,99) = 17.080; p < 0.0001). Post hoc comparisons per-
formed on the mean distance traveled over the 60 min test (Fig. 4B)
indicated that mice of the Repeated +11 group were more active

than drug-naïve mice (Saline) or mice acutely challenged with the
psychostimulant (Acute).

The locomotor response to amphetamine challenge expressed
by sensitized DBA mice was maximal 11 days after the end of the
drug pretreatment (Fig. 4C and D). Statistical analysis of locomo-
tion data revealed a significant effect of the time elapsed from the
end of the pretreatment (F(2,9) = 13.669; p < 0.005), a main effect
of the repeated measure (F(2,11) = 30.439; p < 0.0001), and a sig-
nificant interaction between factors (F(22,99) = 6.480; p < 0.0005).
Post hoc comparisons performed on mean distance traveled over
the 60 min test (Fig. 4D) indicated that mice tested 11 days after
the end of the drug pretreatment (Repeated +11) were signifi-
cantly more active than mice challenged with the same dose of
amphetamine 5 (Repeated +5) or 17 days (Repeated +17) after drug
pretreatment.
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Fig. 5. FosB/!FosB-immunoreactive cell nuclei (mean number of
nuclei/1 mm2 ± S.E.) in different brain areas of DBA mice challenged with
saline (Saline) or amphetamine (Acute) following saline pretreatment or chal-
lenged with amphetamine following pretreatment with the psychostimulant, 11
days after the end of pretreatments (Repeated +11). Statistical results are reported
in Table 1.

DBA mice sensitized by repeated amphetamine within the home
cages did not show increased FosB/!FosB immunostaining in any
of the sampled brain areas 11 days after the end of drug pretreat-
ment (Fig. 5). Statistical analyses of FosB/!FosB immunostaining
data did not show significant differences between experimen-
tal croups in dmCP (F(2,11) = 3.98; p = 0.06), vmCP (F(2,11) = 0.45;
p = 0.65), mpFC (F(2,11) = 1.09; p = 0.37), NAc Shell (F(2,11) = 0.94;
p = 0.42) or NAc Core (F(2,11) = 2.61; p = 0.12).

3.3. Experiment 3

No sign of locomotor sensitization was observable in mice chal-
lenged with amphetamine in the drug-paired test-cage 24 h after
the end of the pretreatment (Table 2). Statistical analysis revealed
a main effect of Challenge (F(1,18) = 4.846; p < 0.05) but neither
effect of Pretreatment (F(2,18) = 1.603; p = 0.228) nor interaction
between factors (F(1,18) = 0.447; p = 0.646). The analysis revealed a
significant main effect of the repeated measure (F(11,198) = 16.905;
p < 0.0001) and a significant interaction between the independent
factors and the repeated measure (F(22,198) = 2.746; p < 0.0001).

DBA mice tested 11 days after the end of pretreatment showed
a sensitized locomotor response to amphetamine in the drug-
associated testing cage (Fig. 6A and B). Statistical analyses revealed
a main effect of Pretreatment (F(2,18) = 19.057; p < 0.005), a main
effect of Challenge (F(1,18) = 46.146; p < 0.0001), and a significant
interaction between Pretreatment and Challenge (F(2,18) = 10.084;

Table 2
Mean locomotion expressed over the 60 min test 24 h after the last day of
pretreatment.

Pretreatment Challenge

Saline Amphetamine

Saline 355 ± 25 588 ± 45
Npaired 362 ± 26 575 ± 42
Paired 408 ± 50 835 ± 150

Data are expressed as mean cm (±S.E.).

p < 0.005). The analysis also revealed a significant main effect of the
repeated measure (F(11,198) = 42.311; p < 0.0001) and a significant
interaction among all factors (F(22,198) = 2.67; p < 0.0005); but nei-
ther a significant interaction between Minutes and Pretreatment
(F(22,198) = 1.079; p = 0.372), nor between Minutes and Challenge
(F(11,198) = 0.403; p = 0.953). Individual between-groups compar-
isons performed on the mean distance traveled over the 60 min
test (Fig. 6B) indicated that mice challenged with amphetamine
in the drug-associated cage (Paired) were more active than either
mice acutely challenged with the drug (Acute) or mice challenged in
the test cage associated with saline (NPaired). No significant differ-
ences were found among groups challenged with saline following
identical pretreatment.

Finally, in the group pretreated with amphetamine in the test
cage the sensitized response to the drug challenge peaked 11
days after the end of the pretreatment and decreased thereafter
(Fig. 7A and B). Statistical analysis of locomotion data revealed a
main effect of the time elapsed from the end of the pretreatment
(F(2,9) = 54.153; p < 0.0001), a main effect of the repeated mea-
sure (F(11,99) = 13,223; p < 0.0001); and a significant interaction
between the two factors (F(22,99) = 2.65; p < 0.001). Post hoc com-
parisons performed on the mean distance traveled over the 60 min
test (Fig. 7B) indicated that mice tested 11 days after the end of
the drug pretreatment (Paired +11) were significantly more active
than mice tested 5 (Paired +5) or 17 days (Paired +17) after drug
pretreatment.

In Fig. 8 are presented data on FosB/!FosB immunostain-
ing. No differences between groups were observed in the dmCP
(F(3,15) = 0.69; p = 0.58), vmCP (F(3,15) = 1.81; p = 0.19), mpFC
(F(3,15) = 1.87; p = 0.18), and the NAc Core(F(3,15) = 1.64; p = 0.23).
Significant difference among groups were found in the NAc Shell
(F(3,15) = 4.16; p < 0.05). Post hoc comparisons revealed a signifi-
cant reduction of FosB/!FosB immunostaining in mice of the Paired
group challenged with amphetamine 11 days after the end of the
pretreatment (Paired +11) in comparison with mice acutely chal-
lenged with the drug (Acute).

4. Discussion

The main finding of the present study is the demonstration that
amphetamine can promote robust long-lasting locomotor sensiti-
zation in mice without inducing striatal !FosB accumulation.

Levels of FosB/!FosB immunostaining in dmCP, vmCP, NAc
Core and Shell or mpFC of DBA mice repeatedly treated with
amphetamine within their home cages and challenged with the
psychostimulant in a novel test cage or repeatedly treated with
amphetamine within the test cage did not differ from levels
observable in saline-pretreated mice. However, both pretreatments
increased the psychomotor stimulant effect of amphetamine chal-
lenge up to 11 days after the end of the drug pretreatment. In the
present experiments, FosB/!FosB immunostaining was induced
by an antiserum that recognizes both !FosB and full-length FosB
[15], therefore the results indicate lack of effects of repeated
amphetamine on both splice variants of the transcription fac-
tor.

The observation of higher levels of FosB/!FosB immunostaining
in the NAc Shell of DBA mice challenged with amphetamine 24 h
after the end of repeated saline in comparison with mice challenged
with the psychostimulant 11 days (but not 24 h) after the end of
repeated amphetamine suggests a modest and short-lasting effect
of repeated handling associated with the experimental procedure.
Such an effect would indicate a specific inability of amphetamine
to increase FosB/!FosB in DBA mice that does not extend to
non-pharmacological stimulations. In line with this hypothesis,
increased FosB/!FosB immunostaining has been observed in the
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Fig. 6. Locomotor activity (mean cm ± S.E.; (A and C) 5 min blocks; (B and D) over the 60 min test) in DBA mice tested 11 days after the end of pretreatments. The upper panel
shows data collected in mice challenged with saline following saline pretreatment in both the home and the test cage (Acute); amphetamine in the home cage and saline in
the test cage (NPaired); saline in the home cage and amphetamine in the test cage (Paired). The lower panel shows data collected in mice from the 3 pretreatment groups
challenged with amphetamine before test. *p < 0.01 vs. all other groups.

mpFC of mice of this strain repeatedly exposed to a novel environ-
ment in comparison with mice exposed to the same environment
for the first time [14].

Identical protocols of amphetamine pretreatment induce long-
lasting increase of striatal FosB/!FosB immunostaining in mice of
the C57 inbred strain. The present results demonstrated increased
FosB/!FosB immunostaining in both dmCP and vmCP as well as in
the Core of the NAc of mice behaviorally sensitized by repeated
amphetamine administration within their home cages 11 days
after the end of the drug pretreatment. In a previous study [8] we
observed increased FosB/!FosB immunostaining in the vmCP of
C57 mice behaviorally sensitized by repeated amphetamine pair-
ing with the test cage using the same protocol adopted for DBA
mice in Experiment 3. The effect was evident 24 h after the end
of the sensitizing procedure. Finally, increased striatal FosB/!FosB
immunostaining is observable in the vmCP of mice of the C57 strain
sensitized to the locomotor effect of amphetamine by repeated
restraint stress [8].

These data indicated a consistent association between increased
FosB/!FosB in the vmCP and behavioral sensitization to
amphetamine induced by very different procedures in mice of the
C57 strain.

The increase in FosB/!FosB immunostaining observed in C57
mice challenged with amphetamine following pre-treatment with
the psychostimulant or exposure to repeated restraint stress in
comparison with mice challenged with the same dose of the psy-
chostimulant after pre-treatment with saline or no manipulation
suggests that !FosB accumulation contributes to the phenomenon.
Indeed, it has been shown that full-length FosB is induced by
acute challenges, is short-lived, and is reduced by repeated treat-
ments while !FosB is barely observable in acutely challenged
preparations, is relatively stable, and accumulated though repeated
treatments [9]. Moreover, acute amphetamine was unable to
increase FosB/!FosB immunostaining beyond levels promoted by
saline in any of the sampled areas of mice from both strains
(Figs. 3 and 5). This same dose of amphetamine promotes signif-
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Fig. 7. Locomotor activity (mean cm ± S.E.; (A) 5 min blocks; (B) over the 60 min test) by DBA mice repeatedly treated with amphetamine in the test cage and challenged
with the psychostimulant 5 (Paired +5), 11 (Paired +11) or 17 (Paired +17) after the end of the pretreatment. *p < 0.01 vs. all other groups.

icant c-Fos expression in most of these brain areas of C57 as well
as DBA mice [14]. Therefore, full length FosB appears to be rather
insensitive to acute stimulation by amphetamine in mice.

Comparison between results obtained in mice of the DBA
and C57 inbred strains offer strong support to the hypothesis
that accumulation of !FosB in the striatal complex by repeated
amphetamine is a strain-specific phenotype in mice. It should be
pointed out that although mice from the two inbred strains show
marked differences in stress-induced behavioral sensitization to
amphetamine [22] they show comparable amphetamine-induced

Fig. 8. FosB/!FosB-like immunoreactivity (mean number of nuclei/m2 ± S.E.) in dif-
ferent brain areas of DBA mice challenged with amphetamine (Acute) following
saline pretreatment in both the home and the test cage (Acute); amphetamine in
the home cage and saline in the test cage (NPaired); saline in the home cage and
amphetamine in the test cage (Paired) 24 h after the end of pretreatment and of
mice of the Paired group challenged with amphetamine 11 days after the end of
pretreatment (Paired +11). #p < 0.05 vs. Acute.

sensitization (Figs. 2 and 4). Therefore, the absence of increased
striatal !FosB does not seem to reduce development or expression
of a sensitized response to the psychostimulant in mice.

Thus, the present results offer support the hypothesis that mice
from the two strains develop behavioral sensitization through dif-
ferent and independent mechanisms. In line with this hypothesis,
it has been shown that in DBA but not in C57 mice cocaine sensiti-
zation requires a corticosterone-dependent mechanisms involving
strain-specific neuroadaptations within the midbrain dopamine
(DA) system [6].

On the other hand, the absence of amphetamine-induced
FosB/!FosB accumulation within the striatal complex of mice from
the DBA strain could depend on the strain-specific pharmacolog-
ical effects of the drug. Previous studies have demonstrated that
while amphetamine-induced DA release in the ventral striatum is
impulse-independent in mice of the DBA strain, in C57 mice it is
impulse-dependent and mediated by norepinephrine transmission
within the mpFC [19,23].

In conclusion, the results obtained by the present study
demonstrate that mice can develop robust and long-lasting behav-
ioral sensitization to amphetamine in the absence of !FosB
accumulation in striatal compartments. Moreover, they sup-
port the involvement of strain-specific neural mechanisms in
the development of sensitization to the behavioral effects of
psychostimulants and suggest cautious generalization of causal
relationships between neural and behavioral phenotypes observed
in specific genetic backgrounds.
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We compared the ability of positive and negative emotional arousal to increase the dura-
tion of consolidated memory traces. Positive arousal was modulated by manipulating the
motivational salience of the testing cage of an object recognition test. Negative emotional
arousal was modulated by manipulating shock levels in a step-through inhibitory avoidance
(IA). Mice trained in either a high (chocolate-associated) or a low (inedible object-associated)
emotionally arousing cage showed discrimination of a novel object 24 h after training, but
only mice trained in the more arousing cage showed retention 96 h after training. Mice
trained with either low (0.35 mA) or high (0.7 mA) shock intensities showed increased step-
through latencies when tested 24 h after training, but only mice trained with the higher
shock intensity showed retention of the IA learning 1 week after training. Administration
of the phosphodiesterase type IV inhibitor Rolipram immediately after training in the two
low arousing conditions increases duration of both responses.

Keywords: long-term memory, persistence, emotional arousal, hedonic valence, object recognition, inhibitory
avoidance, cAMP, Rolipram

INTRODUCTION
The establishment of long-term memory (LTM) requires the sta-
bilization of learning-induced synaptic changes. This process is
referred to as memory consolidation (McGaugh, 1966; Dudai,
1996, 2002, 2004; Lechner et al., 1999; Dudai and Eisenberg,
2004). However, not all long-term “consolidated” memories last
equally. Indeed, everyday experience shows that duration of LTM
is highly variable. The behavioral and brain factors underlying this
variability are poorly understood.

A large body of evidence indicates that emotional arousal
enhances LTM duration by acting on memory consolidation (for
review see McGaugh, 2006). However, whether this effect is inde-
pendent of the hedonic valence (positive or negative) of arousing
experience is unknown. Indeed, testing this hypothesis is ham-
pered by the lack of one-trial tasks specifically designed to model
the effects of positive arousal on LTM duration. Thus, the first aim
of the present study was to develop a behavioral protocol able to
induce differentially persistent LTM traces in mice, depending on
the magnitude of positive emotional arousal induced by the test-
ing cage during a single learning trial. To this aim, the novel object
recognition test (ORT) was used as a one-trial, non-aversive, learn-
ing task (Ennaceur and Delacour, 1988; Ennaceur, 2010) and the
emotional salience of the testing cage was modulated by repeatedly
pairing it with a highly palatable food (chocolate).

Recently, it has been observed that intra-hippocampal infu-
sion of the 8-bromoadenosine-3′, 5′-cyclic monophosphate (8Br-
cAMP) analog of cyclic adenosine monophosphate (cAMP)
immediately after a weak (low arousing) inhibitory avoidance (IA)
training mimics the effect of a strong (high arousing) training by
converting a rapidly decaying LTM into a long-lasting one (Rossato

et al., 2009). This finding suggests that the enhancement of LTM
duration induced by a high emotional arousal may be mediated
by cAMP-dependent signaling around the time of memory forma-
tion. However, it is unknown whether cAMP-dependent signaling
is involved in arousal-induced enhancement of LTM duration
regardless of the hedonic valence of the learning experience. Thus,
the second aim of the present study was to comparatively evaluate
the role of cAMP-dependent signaling in the modulation of LTM
duration in both the positive task here reported and in a nega-
tive standard one (IA). To this aim, the phosphodiesterase type IV
inhibitor Rolipram, known to enhance intracellular cAMP con-
centration, was administered in a single peripheral injection after
low arousing training conditions that induce, in both tasks, only
non-persistent LTM traces (i.e., lasting 24 h but not beyond 96 h).

MATERIALS AND METHODS
SUBJECTS
Male CD1 mice (Harlan Laboratories, Udine, Italy) were pur-
chased at 6 weeks of age and housed four to a cage on a 12-h
light–dark cycle (lights on at 7:00 a.m.). Food and water were
available ad libitum except when food deprivation was required by
design (see Materials and Methods). Mice were left undisturbed
for 2 weeks before behavioral testing. Experiments were carried
out in accordance with the Italian national law (DL 116/92) on the
use of animals in research.

DRUGS
Rolipram (Sigma-Aldrich, Milano, Italy) was freshly suspended
in 5% ethanol and 95% saline solution on every experimental
day (Rutten et al., 2006). Rolipram was injected intraperitoneally
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(i.p.) in a volume of 10 ml/kg at the following doses: 0, 3, and
10 mg/kg. These doses were chosen because they have been shown
to be rapidly effective to elevate cAMP concentration in the mouse
brain (Randt et al., 1982). For either IA or object recognition
experiments, Rolipram was administered immediately or 120 min
post-training.

BEHAVIORAL PROCEDURES
Object recognition
Mice underwent ORT in a custom made apparatus consisting of
a square box (60 cm × 60 cm × 30 cm) made of black Plexiglas®
subdivided in four equal arenas. The floor of the arenas was made
of textured transparent Plexiglas® surmounting a plate of opales-
cent Plexiglas® thick 1 cm. The apparatus was dimly illuminated
by halogen light sources placed below it (Nilsson et al., 2007). Light
sources (four) were carefully positioned approximately 50 cm
under each corner of the apparatus and directed toward the room
floor. This allowed an homogeneous illumination throughout all
arenas (∼10 lux, measured with a PCE-EM882 multimeter from
http://www.pce-italia.it). The apparatus was placed in a venti-
lated sound-attenuated cabinet. Objects to discriminate were four
types, one type for arena: white wooden cube, gray plastic cylin-
der, gray plastic sphere, and silver metallic parallelepiped. They
were available in triplicate copy and, based on pilot studies, all
aroused comparable levels of exploration in CD1 mice (data not
shown). For training phase, objects were placed at two oppo-
site corners of the arenas (6.5 cm from the object center to the
corner). To prevent mice from displacing objects during testing,
they were temporarily fixed to the floor of the arenas with repo-
sitionable adhesive pastels (UHU patafix white). On the training
trial, mice were allowed to freely explore two identical objects
(sample objects: A1 and A2) for 15 min. On the test trial, the
third copy of the familiar object (A3) and a novel object (B) were
placed in the same location of training and mice were allowed
to freely explore them for 10 min. Cohorts of four mice belong-
ing to the same cage and to the same experimental group were
tested simultaneously. Each mouse was tested only once. All com-
binations and locations of objects were counterbalanced to reduce
potential biases because of preference for particular locations or
objects. Between each session, apparatus and objects were thor-
oughly cleaned with 70% ethanol to remove urine and fecal boli
and to homogenize olfactory trails. Mice behavior was recorded
with a camera connected to a Debian GNU/Linux1 workstation
equipped with hardware MPEG encoding capabilities. MPEG
videos were blindly analyzed by experienced observers. Object
exploration was defined as pointing the nose to the object at
a distance of 1 cm and/or touching it with the nose. Turning
around, climbing, or sitting on an object was not considered as
exploration.

Experiment 1
This experiment was aimed to set-up a model to evaluate the effect
of positive emotional arousal on LTM duration in mice and to
evaluate the relative role of acute food deprivation and of the
caloric and/or fat properties of chocolate in that model.

1http://www.debian.org

Effect of positive arousal on long-term memory duration. Sixty-
four mice were pre-exposed for 15 h to milk chocolate (Lindt,
two pieces for cage, each weighing approximately 2 g) mixed to
standard food in the home-cage from 7:00 p.m. of the day before
the starting of behavioral testing. Then, mice underwent a delay
conditioning phase lasting 4 days. This phase comprised two daily
sessions on days 1–3 (10:00 a.m. and 2:00 p.m.) and a single session
on day 4 (10:00 a.m.). Sessions were as follows: mice were allowed
to freely explore the empty arenas for 10 min then, depending
on the experimental group, chocolate pieces (CHOC, n = 16) or
black Lego® blocks (OBJ, n = 16), approximately of the same
form and size of chocolate pieces, were dropped in the arenas
by the experimenter (one stimulus for arena). Mice were allowed
to interact with these stimuli for additional 5 min (total session
duration: 15 min). At 7:00 p.m. of day 3 all mice were food-
deprived. On day 4 at 2:00 p.m. all mice underwent ORT training.
Training session differed from previous ones only for the presence
of sample objects in the arenas. Immediately after training, mice
were returned to their home cages and they were given ad libitum
food. Half mice from each group were tested for sample object
recognition 24 h after training, the remainder were tested 96 h
after training. At 7:00 p.m. of the day before test session all mice
were food-deprived.

Control of the role of acute food deprivation. Forty-eight mice
were submitted to the same protocol as the CHOC group except
for the following differences: a first group (n = 16, FF–FF) was
never food-deprived; a second group (n = 16, FD–FF) was food-
deprived 15 h before training but not before test; a third group
(n = 16, FF–FD) was food-deprived 15 h before test but not before
training. CHOC group was renamed FD–FD when compared to
FF–FF, FF–FD, and FD–FF groups. Mice from these groups were
tested for sample object recognition 96 h after training.

Control of the role of schedule of chocolate exposure. Thirty-two
mice were treated identically to the CHOC group but, half (PRE)
received chocolate only during conditioning phase, the remainder
(POST) received chocolate only during the last 5 min of training.
CHOC group was renamed PRE + POST when compared to PRE
and POST groups. Mice from these groups were tested for sample
object recognition 96 h after training.

Experiment 2
This experiment was aimed to evaluate the ability of Rolipram
to enhance LTM duration in the OBJ condition. Thirty-two mice
were randomly assigned to this experiment. Mice were treated
identically to the OBJ group of Experiment 1. Three groups of
mice (n = 8) were administered, respectively, vehicle, 3 or 10 mg/kg
immediately after training. One group (n = 8) were administered
3 mg/kg of Rolipram 120 min after training. Mice were tested
for sample object recognition 96 h after training. Lowest effective
Rolipram dose has been previously determined in pilot studies
(data not shown).

INHIBITORY AVOIDANCE
Mice were trained and tested in a step-through IA task. The appa-
ratus consisted of a trough-shaped alley (91 cm long, 15 cm
deep) divided into two compartments by a retractable door: an
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illuminated safe compartment (31 cm long) and a dark shock
compartment (60 cm long). Mice were not habituated to the dark
compartment before the training trial. On the training trial, each
mouse was placed in the lit start compartment facing away from
the shock compartment. After the mouse stepped with all four
paws into the dark compartment, the retractable door was closed
and an inescapable foot-shock (0, 0.35, or 0.7 mA, 50 Hz, 2.0 s)
was administered. The mouse was removed from the dark com-
partment 30 s after termination of the foot-shock. The lowest
shock intensity was chosen on the basis of previous studies show-
ing that it is sufficient to induce IA retention for at least 24 h
in mice (Baarendse et al., 2008). The highest shock intensity was
chosen on the basis of a previous study in mice showing that it
induces IA retention beyond 24 h (Boccia et al., 2004). On the
retention trial, each mouse was placed into the light compartment
with the retractable door open and allowed to explore the box
freely. The latency to enter the dark compartment with all four
paws was recorded with a timer by a nearby experimenter as a
measure of retention. Retention test ended either if the mouse
stepped into the dark compartment or if it failed to cross within
180 s. In the latter case, mouse was assigned a score of 180 s.
Foot-shock was omitted on retention test. Each mouse was tested
only once.

Experiment 3
This experiment was aimed to test in mice the effect of magnitude
of negative arousal on LTM duration (Bekinschtein et al., 2007).
Ninety-six mice were randomly assigned to this experiment. One-
third of mice were pseudo-trained by omitting the shock, one-
third were trained with the 0.35 mA shock, and the remainder were
trained with the 0.7 mA shock. Half of the mice for each shock
condition (n = 16) were tested for retention 24 h after training,
the other half were tested 1 week after training.

Experiment 4
This experiment was aimed to evaluate the ability of Rolipram to
enhance LTM duration in the low shock condition (0.35 mA).
Sixty mice were randomly assigned to this experiment. Four
groups of mice (n = 12) were trained with the 0.35 mA shock,
then they were administered vehicle, 3 or 10 mg/kg of Rolipram
immediately post-training or they were administered 10 mg/kg
of Rolipram 120 min post-training. In order to rule out a non-
specific drug effect a fifth group (n = 12) was pseudo-trained
and it was administered 10 mg/kg of Rolipram immediately
after being removed from the dark compartment. All mice
were tested for retention 1 week post-training. Lowest effective
Rolipram dose has been previously determined in pilot studies
(data not shown).

DATA ANALYSIS
Statistical analyses were performed on a Debian GNU/Linux
workstation using the R free software environment for statistical
computing2 and its graphical interface R-Commander (Fox, 2005).
An error probability level of p < 0.05 was accepted as statistically
significant.

2http://www.r-project.org/

Object recognition
Data from Experiment 1 were analyzed using: (1) two-way analysis
of variance (ANOVA) for independent factors to compare CHOC
and OBJ mice either at 24 or 96 h post-training; (2) two-way
ANOVA for independent factors to compare CHOC mice free-fed
(FF) or food-deprivated (FD) either at training or at test; (3) one-
way ANOVA to compare mice that, except for initial pre-exposure,
received chocolate only during conditioning phase (PRE), only
after training (POST), both during conditioning and after train-
ing (PRE + POST). In case of significant two-way interaction
simple effect analysis was performed with the Student’s t-test for
independent samples (Welch variant, two-tailed). In case of sig-
nificant overall one-way F ratio, ANOVA was followed by Tukey’s
post hoc tests.

Data from Experiment 2 were analyzed using: (1) one-way
ANOVA to compare mice treated with different Rolipram doses
(0, 3, and 10 mg/kg); (2) Student’s t-test for independent samples
(Welch variant, two-tailed) to compare vehicle-treated mice and
mice treated with 3 mg/kg Rolipram 120 min post-training). For
all experiments, one sample t-tests (two-tailed) were used to deter-
mine whether the discrimination index (D.I.) of each experimental
group was different from 0 (chance level). Mice showing less than
5 s of total object exploration during ORT test were excluded from
analysis (Sik et al., 2003).

Inhibitory avoidance
Because a cut-off of 180 s was imposed during test sessions, the
step-through latency was expressed as median and inter-quartile
range and analyzed with non-parametric tests. Kruskal–Wallis
ANOVA was used when comparing more than two groups.
Two-sample Wilcoxon test (two-tailed) was used either when com-
paring two groups or as post hoc test following a significant overall
Kruskal–Wallis test.

RESULTS
OBJECT RECOGNITION
Experiment 1
Effect of magnitude of positive arousal on long-term mem-
ory duration. Two-way ANOVA for total exploration time did
not reveal significant effects nor interaction for factors “stimulus
paired with test context”and“inter-trial interval”. Figure 1A shows
the D.I. measured 24 and 96 h after training as a function of stim-
ulus paired with test context. Two-way ANOVA for D.I. revealed a
significant interaction between stimulus paired with test context
and inter-trial interval (F1,60 = 5.06, p < 0.05). For 24 h test,
simple effect analysis did not reveal a significant D.I. difference
between CHOC and OBJ groups and one sample t-tests revealed
that D.I. from both groups was significantly above chance level
(CHOC: t15 = 3.56, p < 0.005; OBJ: t15 = 5.46, p < 0.0001).
For 96 h test, simple effect analysis revealed that OBJ group had a
lower D.I. respect to CHOC group (t30 = 3.02, p < 0.01). More-
over, simple effect analysis for each level of stimulus paired with
test context revealed that only the D.I. of OBJ group at 96 h test
was lower than that of 24 h test (t30 = 2.42, p < 0.05). One sample
t-tests revealed that only D.I. from CHOC group was significantly
above chance level (t15 = 7.24, p < 0.0001). These results indi-
cate that long-term duration of object memory is enhanced when
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FIGURE 1 | (A) Discrimination index (mean ± SEM) as a function of stimulus
paired with test context measured 24 or 96 h post-training (*vs CHOC,
p < 0.01; #vs 24 h, p < 0.05; §vs 0, p < 0.0001); (B) Discrimination index
(mean ± SEM) as a function of feeding state before behavioral testing

measured 96 h post-training (*vs FD–FF, p < 0.05; #vs FF–FD, p < 0.005; §vs
0, p < 0.0001); (C) Discrimination index (mean ± SEM) as a function of
chocolate administration protocol measured 96 h post-training (*vs all,
p < 0.05; §vs 0, p < 0.01).

sampling is performed in an environment previously associated to
a rewarding stimulus.

Control of the role of acute food deprivation. Two-way ANOVA
did not reveal significant effects nor interaction between factors
“feeding at training” and “feeding at test” in total exploration time.
Figure 1B shows the D.I. measured 96 h after training as a func-
tion of feeding state (FF vs FD) before ORT sessions (training vs
test). Two-way ANOVA revealed a significant effect of “feeding
before training” (F1,60 = 5.06, p < 0.05) and a significant inter-
action between “feeding before training” and “feeding before test”
(F1,60 = 4.93, p < 0.05). Simple effects analysis revealed that: (1)
D.I. of mice food-deprived before both training and test (FD–
FD) was higher than that of mice food-deprived before training
but not before test (FD–FF; t30 = −2.50, p < 0.05); (2) D.I. of
mice food-deprived before both training and test (FD–FD) was
higher than that of mice free-fed before training but not before
test (FF–FD; t30 = −3.11, p < 0.005); (3) D.I. of mice free-fed
before both training and test (FF–FF) did not differ from that
of mice free-fed before training but not before test (FF–FD); (4)
D.I. of mice free-fed before both training and test (FF–FF) did
not differ from that of mice free-fed before test but not before
training (FD–FF). One sample t-tests revealed that D.I. was sig-
nificantly above chance level for all groups (FD–FD: t15 = 7.25,
p < 0.0001; FD–FF: t15 = 3.74, p < 0.005; FF–FD: t15 = 2.86,
p < 0.05; FF–FF: t15 = 3.92, p < 0.005). These results indicate that
acute food deprivation magnifies the enhancement of LTM dura-
tion promoted by sampling objects in the chocolate-associated
context.

Control of the role of schedule of chocolate exposure. One-
way ANOVA for total exploration did not reveal significant
group differences. Figure 1C shows the D.I. measured 96 h
after training as a function of chocolate administration proto-
col. One-way ANOVA for D.I. revealed a significant group effect
(F2,45 = 7.30, p < 0.01). Tukey’s post hoc analysis revealed
that POST group had a lower D.I. respect to both PRE and
PRE + POST groups which did not differ each other. One sample

t-tests revealed that D.I. was significantly above chance level only
for PRE (t15 = 4.46, p < 0.001) and PRE + POST (t15 = 7.30,
p < 0.0001). These results indicate that the improvement of object
memory observed in mice trained in the chocolate-associated
context does not depend on the caloric and/or fat properties of
chocolate.

Experiment 2
One-way ANOVA for total exploration did not reveal signifi-
cant group differences. Figure 2A shows the D.I. measured 96 h
after training in the object-paired environment as a function of
the Rolipram dose injected immediately post-training. One-way
ANOVA revealed a significant difference in D.I. between groups
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FIGURE 2 | (A) Discrimination index (mean ± SEM) as a function of
Rolipram dose (0, 3, and 10 mg/kg) injected immediately after training in the
object-paired context measured 96 h post-training (*vs vehicle, p < 0.05;
§vs 0, p < 0.01); (B) Discrimination index (mean ± SEM) as a function of
Rolipram dose (0 vs 3 mg/kg) injected 120 min after training in the
object-paired context measured 96 h post-training (*vs vehicle, p < 0.01;
§vs 0, p < 0.001).
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(F2,20 = 4.51, p < 0.05). Tukey’s post hoc revealed that Rolipram
enhanced D.I. respect to vehicle at both doses which did not
differ one another. One sample t-tests revealed that D.I. was
significantly above chance level only for Rolipram-treated groups
[3 mg/kg (t7 = 7.65, p < 0.001); 10 mg/kg (t7 = 4.82, p < 0.01)].
Figure 2B shows the D.I. measured 96 h after training in object-
paired environment in group injected 120 min post-training with
3 mg/kg of Rolipram and in the vehicle group. Two-sample t-
test revealed that Rolipram-treated mice had higher D.I. respect
to vehicle-treated mice (t13 = −3.02, p < 0.01). One sample t-
test revealed that D.I. was significantly above chance level only for
Rolipram-treated mice (t7 = 5.91, p < 0.001). These results indi-
cate that Rolipram enhances LTM duration either when injected
immediately or 120 min post-training.

INHIBITORY AVOIDANCE
Experiment 3
Figures 3A,B show step-through latency measured, respectively,
24 h and 1 week after training as a function of shock intensity.
For 24 h test, Kruskal–Wallis ANOVA revealed a significant differ-
ence between groups [H(2) = 23.25; p < 0.001]. Post hoc analysis
revealed that groups trained with either shock intensities had a
higher step-through latency respect to pseudo-trained group but
did not differ one another (0.35 vs 0: W = 26.5, p < 0.001; 0.7 vs
0: W = 11, p < 0.0001). For 1 week test, Kruskal–Wallis ANOVA
revealed a significant difference between groups [H(2) = 13.44;
p < 0.01]. Post hoc analysis revealed that the group trained with
the 0.7 shock had a higher step-through latency respect to both
pseudo- and 0.35-trained groups (0.7 vs 0: W = 41.5, p < 0.001;
0.7 vs 0.35: W = 197.5, p < 0.01) and that the latter groups did
not differ one another. These results indicate that duration of fear
LTM depends on the magnitude of negative arousal experienced
during training.
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FIGURE 3 | (A) Step-through latency (median and inter-quartile range)
as a function of foot-shock intensity (0.35 vs 0.7 mA) measured
24 h post-training (*vs 0, p < 0.001); (B) Step-through latency

(median and inter-quartile range) as a function of foot-shock
intensity (0.35 vs 0.7 mA) measured 1 week post-training (*vs 0,
p < 0.001).

Experiment 4
Figure 4A shows step-through latency measured 1 week after train-
ing with the 0.35 shock as a function of the Rolipram dose injected
immediately post-training. Kruskal–Wallis ANOVA revealed a sig-
nificant difference between groups [H(2) = 7.55; p < 0.05]. Post
hoc analysis revealed that only the group treated with 10 mg/kg of
Rolipram had a step-through latency higher than vehicle-treated
group (W = 23.5; p < 0.01). Figure 4B shows step-through latency
measured 1 week after training with the 0.35 shock in group
injected with vehicle or 10 mg/kg Rolipram 120 min post-training.
Two-sample Wilcoxon test did not reveal significant difference
between groups. Figure 4C shows step-through latency measured
1 week after training in groups injected immediately after pseudo-
training with vehicle or 10 mg/kg Rolipram. Two-sample Wilcoxon
test did not reveal significant difference between groups. Taken
together, these results indicate that Rolipram enhances fear LTM
only at the highest dose and only when injected immediately after
training. Moreover, Rolipram has no effect on LTM duration in
absence of shock.

DISCUSSION
Two are the main findings of the present study. The first is that
long-term object memory is enhanced when sampling is per-
formed under positive emotional arousal. Indeed, in the present
experiments we demonstrated that mice remember a sampled
object for 24 h but this memory can last 96 h if object sampling is
performed in an environment previously associated with a reward-
ing stimulus. The second finding is that pharmacological stimula-
tion of cAMP cascade enhances the duration of low emotional
memories regardless of hedonic valence. Thus, we found that
mice treated with Rolipram post-trial showed discrimination of an
object sampled under low emotional arousal 96 h earlier and show
IA of a context associated 1 week before with a low intensity shock.
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FIGURE 4 | (A) Step-through latency (median and inter-quartile range) as a
function of foot-shock intensity (0.35 vs 0.7 mA) measured 1 week post-
training (* vs all, p < 0.01); (B) Step-through latency (median and inter-quartile
range) as a function of Rolipram dose (0, 3, and 10 mg/kg) injected

immediately after training with the 0.35 mA foot-shock measured 1 week
post-training (*vs all, p < 0.05); (C) Step-through latency (median and inter-
quartile range) as a function of Rolipram dose (0 vs 10 mg/kg) injected 120 min
after training with the 0.35 mA foot-shock measured 1 week post-training.

POSITIVE EMOTIONAL MODULATION OF LONG-TERM MEMORY
The present study used a modified version of the widely used ORT
that allowed modulation of the memory trace acquired during
sampling by positive emotional arousal. To this aim we associated
the experimental context with chocolate and then increased the
motivational salience of the unconditioned stimulus by submitting
the mice to a period of food deprivation immediately before ORT
training and testing phases. According to several studies on reward
anticipation, animals respond with a positive emotional arousal
when they are returned into contexts that predicts the availability
of highly palatable, caloric, and fat foods (Alcaro et al., 2007; Boissy
et al., 2007; Alcaro and Panksepp, 2011). Mice trained and tested
in a context associated with an inedible plastic stimulus were used
as controls.

Both experimental and control mice discriminated the novel
object when tested 24 h after training demonstrating intact mem-
ory of the previously sampled object. However, 96 h after training
only mice trained and tested within the chocolate-associated
context were still able to discriminate the novel object. These
data support the view that experiences associated with a state
of positive emotional arousal are consolidated in more last-
ing memories as reported for those associated with negative
ones.

Control experiments reported by the present paper indicate
that the LTM of the sampled object is modulated by the chocolate-
associated context rather than by the chocolate feeding immedi-
ately after sampling. Indeed, mice that did receive chocolate on
the object sampling session without previous chocolate-context
pairing did not show discrimination of a novel object 96 h later,
whereas mice that did not receive chocolate but were trained in a
context previously associated with chocolate did. These findings
rule out the influence of sugar or fat (Campolongo et al., 2009;
Smith et al., 2011) on memory consolidation in our experimen-
tal conditions. Moreover, in our standard experimental condition
chocolate was made available at the end of the sampling session to
prevent negative emotional arousal associated with frustration (for

review see Flaherty, 1996) as well as contingency between sample
object and reward (Hughes, 2007).

Moreover, the data suggest that the chocolate-associated con-
text was capable of promoting a lasting memory of the sampled
object also in free-feeding mice; however, food-deprived mice
showed a D.I. significantly higher than free-fed mice. This result
supports the hypothesis that imposing 15 h of food deprivation
before objects sampling increased the positive emotional arousal
promoted by chocolate-associated context in line with the hypoth-
esis that a physiological depletion enhances the incentive value
of the unconditioned and conditioned goal stimuli (Berridge,
2004). Mice food-deprived before training but not before test
showed lower discrimination than mice trained and tested in
food deprivation strongly supporting a state-dependent learn-
ing. Finally, mice food-deprived only on test day (96 h) did
not show any improvement of object discrimination in com-
parison with free-fed mice. The latter observation indicates a
selective effect of the motivational state on memory formation
and/or consolidation rather than on retrieval. Taken together,
these findings support the view that acute food deprivation
increased emotional arousal promoted by the context associated
with chocolate, It is tempting to speculate that the condition of
feeding deprivation invested the experience of re-entering into the
reward-predicting context of a flashbulb-like quality (Brown and
Kulik, 1977).

NEGATIVE EMOTIONAL MODULATION OF LONG-TERM MEMORY
Results from IA experiment confirm and extend to the mouse
those of Bekinschtein et al. (2007, 2008a,b) in rats. Indeed, we
found that training with both foot-shock intensities promoted
LTM (i.e., IA at 24 h post-training) but only training with the
stronger one induced a persistent LTM (1 week). The facilitating
effect of negative arousal on LTM duration is in line with the
above described effect of positive arousal, strongly suggesting that
emotional arousal enhances LTM duration regardless of hedonic
valence.
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PHARMACOLOGICAL STIMULATION OF CAMP CASCADE ENHANCES
PERSISTENCE OF LOW EMOTIONAL MEMORIES
Pharmacological experiments evaluated the effects of single post-
trial administration of Rolipram on retention of low emotional
memories. We used two different tests: ORT and step-through IA.
For both tests we considered protocols capable of promoting LTM
traces of moderate persistence. In the case of ORT, we used mice
trained and tested in the context associated with the plastic stim-
ulus because these animals show retention 24 h but not 96 h after
training. In the case of IA, we performed a preliminary experi-
ment using 0.35 and 0.70 mA and chose the lower shock intensity
that was effective in increasing step-through latencies 24 h but not
1 week post-trial.

The effects of Rolipram were tested at the time-points at which
no retention was observable (96 h for ORT and 1 week for IA)
in vehicle-treated mice. In both cases we found retention in
Rolipram-treated mice. Rolipram is a phosphodiesterase type IV
inhibitor that, at the doses used in the present experiments, pro-
motes a rapid rise of cAMP concentration in the mouse brain
(Randt et al., 1982). The treatment, in both cases, was performed
immediately after a single training session, when the memory
traces are under consolidation and susceptible of manipulation
(McGaugh, 1966). Therefore, the present results suggest that
an increase of brain cAMP concentrations during consolidation
mimics the effects of high emotional arousal on persistence of
long-term memories.

Nonetheless, major differences were found in the effects of
Rolipram on ORT and IA retention. Thus, only the high dose of
the phosphodiesterase inhibitor was effecting in enhancing step-
through latencies 1 week after IA training, whereas the lower dose
was already capable to enhance D.I. to the level of the high dose
in mice tested 96 h after ORT training. The most economic expla-
nation of this difference could be that step-through latencies and
D.I. were tested at different time points after training. Indeed, if
the pharmacological manipulation is increasing duration of the
memory traces, a lower dose could be sufficient to produce a 96-h
duration whereas only larger doses would induce 1 week-lasting
memories. Another difference between the effects of Rolipram
on retention in the two conditions was that the drug improved
object memory when administered 120 min post-trial, whereas it
improved IA retention only when administered immediately post-
trial. It should be noted that Rolipram improves object memory
in rats if injected 3 h, but not immediately, after sampling (Rutten
et al., 2007). However, the dose administered in the present study is
much more higher than the one used by Rutten et al. (2007). Thus,
the observed efficacy of immediate post-sampling administration
could depend on the half-life of Rolipram extending up to 120 min.
On the other hand, such hypothesis fails to explain why an even
higher dose (10 mg/kg) enhances IA retention if administered
immediately, but not 120 min, after training. This may suggest
that newly formed non-aversive memories remain susceptible to
cAMP stimulation for a longer time respect to aversive ones.
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Abstract
Objective Phenylketonuria (PKU) is an inherited metabolic
disease characterized by plasma hyperphenylalaninemia and
several neurological symptoms that can be controlled by
rigorous dietetic treatment. The cellular mechanisms underly-
ing impaired brain functions are still unclear. It has been
proposed, however, that phenylalanine interference in cogni-
tive functions depends on impaired dopamine (DA) transmis-
sion in the prefrontal cortical area due to reduced availability
of the precursor tyrosine. Here, using Pahenu2 (ENU2) mice,
the genetic murine model of PKU, we investigated all meta-
bolic steps of catecholamine neurotransmission within the
medial preFrontal Cortex (mpFC), availability of the precur-
sor tyrosine, synthesis and release, to find an easy way to
reinstate normal cortical DA neurotransmission.
Methods and results Analysis of blood and brain levels of
tyrosine showed reduced plasma and cerebral levels of
tyrosine in ENU2 mice. Western blot analysis demonstrated
deficient tyrosine hydroxylase (TH) protein levels in mpFC
of ENU2 mice. Cortical TH activity, determined in vivo by

measuring the accumulation of l-3,4-dihydroxyphenylala-
nine (L-DOPA) in mpFC after inhibition of L-aromatic acid
decarboxylase with NSD-1015, was reduced in ENU2 mice.
Finally, a very low dose of L-DOPA, which bypasses the
phenylalanine-inhibited metabolic steps, restored DA pre-
frontal transmission to levels found in healthy mice.
Conclusion The data suggests that a strategy of using tyro-
sine supplementation to treat PKU is unlikely to be effec-
tive, whereas small dose L-DOPA administration is likely to
have a positive therapeutic effect.

Introduction

Phenylketonuria (PKU; McKusick 2610600) is an inherited
metabolic disease caused by a deficiency of the enzyme
phenylalanine hydroxylase, which is necessary to convert
phenylalanine to tyrosine. This results in accumulation of
phenylalanine (> 20 mg/dl), known as hyperphenylalanine-
mia, and reduction of tyrosine concentrations in the blood
and brain. Treatment of PKU requires maintaining blood
phenylalanine within an acceptable range (between 2 and 10
mg/dl) by restricting phenylalanine from the diet. If the
disease is untreated, patients develop severe mental retarda-
tion and neuropathological signs. Compliance with a rigid
low phenylalanine diet is difficult (Giovannini et al 2007;
MacDonald 2000), and it is still unknown when or if the diet
can be safely interrupted (De Roche and Welsh 2008;
Stemerdink et al 2000; Diamond et al 1994). Indeed, evi-
dence indicates that even mildly elevated blood phenylala-
nine levels induce deficits in cognitive functions involving
the prefrontal cortical area (Brumm et al 2004: Channon et
al 2004; De Roche and Welsh 2008; Diamond et al 1994;
Huijbregts et al 2002; Leuzzi et al 2004; Schmidt et al 1994;
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Smith et al 2000; White et al 2002; Stemerdink et al 2000),
in particular executive abilities. This suggests that excess
phenylalanine interferes with cortical functioning. The me-
dial prefrontal cortex (mpFC) is widely innervated by bio-
genic aminergic neurons, which have a major role in
emotion and cognitive functions (Arnsten and Robbins
2002; Lapiz and Morilak 2006; Aston-Jones and Cohen
2005; Goldman-Rakic 1999; Clarke et al 2004, 2005,
2006; Walker et al 2009). Moreover, there are reports of
reduced levels of biogenic amines in post mortem brain
tissue (McKean 1972), low levels of biogenic amine metab-
olites in cerebrospinal fluid of patients with hyperphenyla-
laninemia (Bonafé et al 2001; Butler et al 1981) and reduced
brain amine levels and metabolism in PAHenu2 mice (ENU2)
(Puglisi-Allegra et al 2000; Pascucci et al 2002, 2008), that
is, the genetic murine model of PKU. Dopamine (DA) is the
most studied among cerebral biogenic amines (Diamond
2007; Joseph and Dyer 2003). Although reduction of cere-
bral DA metabolism has been reported in PKU patients
(Diamond et al 1994; Hanley et al 2000; Krause et al
1985; Guttler and Lou 1986; Lou et al 1987; Luciana et al
2004; Lykkelund et al 1988; McKean and Peterson 1970;
Paans et al 1996) and ENU2 mice (Joseph and Dyer 2003;
Pascucci et al 2009; Puglisi-Allegra et al 2000; Smith and
Kang 2000), DA metabolism in mpFC of PKU organisms
has not been investigated until now. Therefore, it is difficult
to determine the mechanisms by which high blood phenyl-
alanine levels reduce cortical DA biosynthesis (De Groot et
al 2010; Martynyuk et al 2010).

ENU2 mice represent a qualified model for clarifying
neurochemical deficits in pFC of PKU organisms, because
they are characterized by a biochemical phenotype that
closely resembles untreated human PKU, as well as by
reduced enzymatic activity of phenylalanine hydroxylase,
high blood phenylalanine levels, hypomyelination, bio-
chemical and behavioural deficits (Andolina et al 2010;
Cabib et al 2003; Embury et al 2007; Glushakov et al
2005; Joseph and Dyer 2003; Martynyuk et al 2005;
Pascucci et al 2002, 2008, 2009; Puglisi-Allegra et al
2000; Smith and Kang 2000; Zagreda et al 1999). In partic-
ular, previous data showed deficits in DA and norepineph-
rine (NE) metabolism in the mpFC of ENU2 mice (Joseph
and Dyer 2003; Puglisi-Allegra et al 2000; Pascucci et al
2009). Since DA availability in mpFC is very important in
executive functions, the elucidation of the mechanism by
which phenylalanine reduces cortical DA metabolism is
essential. Thus, the present study was aimed at investigating
catecholaminergic metabolism in the mpFC of ENU2 mice
and at suggesting strategy to reinstate normal cortical cate-
cholamine levels.

First, we investigated tyrosine blood and brain levels in
order to evaluate the influence of excess phenylalanine on
brain availability of catecholamine precursor. Second, we

evaluated expression and in vivo activity of the tyrosine
hydroxylase (TH) enzyme in mpFC of ENU2 mice. Finally,
we evaluated the effect of l-3,4-dihydroxyphenylalanine
(L-DOPA), the direct DA precursor, on activation of the
frontal cortical catecholaminergic transmission in the presence
of high circulating phenylalanine levels. Since restraint stress
is known to induce a clear-cut increase of amine outflow in the
mpFC of rodents (Cuadra et al 2001; Matuszewich et al 2002;
Pascucci et al 2007), and phenylketonuric mice are unable to
activate catecholamine release under stress (Pascucci et al
2009), we assessed the effect of L-DOPA on cortical catechol-
amine release of restrained ENU2 mice.

Materials and methods

Animals

Homozygous (-/-) PahEnu2 (ENU2) and (+/+) PahEnu2 (WT)
male mice of the background strain (BTBR) were obtained
from heterozygous mating. Genetic characterization was
performed on DNA prepared from tail tissue using the
Easy DNA Kit (Invitrogen, Carlsbad, CA, USA). The
enu2 mutation was detected after PCR amplification of exon
7 of the Pah gene and digestion with Alw261 restriction
enzyme (Promega corporation, Madison, Wi, USA) as de-
scribed (Pascucci et al 2008). At postnatal day 28, animals
(sex matched) were housed 2-4 per standard breeding cage
with food and water ad libitum on a 12:12h dark: light cycle
(light on 07.00 am -07.00 pm h). Experiments started when
animals reached 8 weeks of age. All mice were housed
individually 24 h before surgery for microdialysis. Naive
animals were used for each experiment.

All experiments were conducted in accordance with
European legislation (EEC no. 86/609), Italian national leg-
islation (DL no. 116/92) governing the use of animals for
research, and the guidelines of the National Institutes of
Health on the use and care of laboratory animals.

Drugs

Chloral hydrate, NSD-1015, and L-DOPA were purchased
from Sigma-Aldrich (St. Luis, MO, USA). NSD-1015 was
dissolved in artificial CSF and perfused through the micro-
dialysis probe. Chloral hydrate (450 mg/kg) and L-DOPA
(0.5, 1, 2.5 mg/kg) were dissolved in saline (0.9 % NaCl)
and injected i.p. in a volume of 10 ml/kg.

Brain and blood assay

For brain and blood phenylalanine and tyrosine assay, WT
(n06) and ENU2 (n06) mice were sacrificed by decapitation.
Brains and blood were prepared for biochemical analysis.
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First, the brains were removed, frozen and stored in
liquid nitrogen until the day of biochemical assay. Frozen
whole brains were weighed and homogenized in 0.05M
HClO4 (1:100 ml/mg). The homogenates were centrifuged
at 10000 x g for 20 min at 4 °C.

Blood samples for phenylalanine and tyrosine quantifi-
cation were placed in heparinized tubes and centrifuged at
2,500 rpm, at +4 °C, for 10 min. An aliquot of supernatant
was collected, and transferred to a new tube with 35 % 5-
sulfosalicylic acid (10:1 vol/vol), and centrifuged at 8000
rpm, at +4 °C, for 5 min.

Blood and brain samples were allowed to react with the
same volume of o-phthaldialdehyde reagent (67.1 mg of
o-phthaldialdehyde dissolved in 1.0 ml of methanol plus
50 µl of mercaptoethanol and diluted in 9 ml of borate buffer,
0.4 mM, pH 9.5). After a 2-min reaction time, the sample was
transferred to the HPLC system coupled with a fluorescence
detector (Waters 474 Model). The excitation and emission
wavelengths were set at 330 and 480 nm, respectively.
Nova-Pack C18 (3.9 x 150 mm) and Sentry Guard Nova-
Pack C18 (3.9 x 20 mm; Waters Assoc.) columns were used.
The flow rate was 1.2 ml/min. The mobile phase consisted of
35 % methanol in 0.1 M Na-phosphate buffer, pH 6.5.

Western bolt analysis

Brains of mice from the different groups (WT, n08; ENU2,
n08) were removed, frozen and then fixed vertically on the
freeze plate of a freezing microtome maintained at -10 °C.
Punches of mpFC (Fig. 1a) were obtained from frozen brain

slices as previously reported (Puglisi-Allegra et al 2000) and
stored in liquid nitrogen until the day of assay. Each mpFC
tissue sample was homogenized at 4 °C in lysis buffer [20
mM Tris (pH 7.4), 1 mM EDTA, 1 mM EGTA, 0,1 % Triton
X-100] with protease inhibitor cocktail (Sigma-Aldrich, St.
Louis, MO, USA). Tissue extract was centrifuged at 12000
g at 4 °C for 15 min. The supernatant fluid was removed and
stored at – 80. Samples were heated at 95 °C for 3 min and
protein (15 mg) was separated by SDS-PAGE (10 % gel).

Membranes were rinsed in Tris- buffered saline (TBS),
then blocked in 5 % non-fat milk in TBS with 0.1 % Tween
(TBS-T) for 1.5 h at room temperature in TBS-T and incu-
bated overnight in anti-TH antibody (Chemicon, Temecula,
CA, USA) (1:3000 dilution) diluted in 3 % BSA, followed
by goat anti-rabbit IgG (H+L) AP conjugate (1:2000 dilu-
tion; Santa Cruz Biotechnology, Santa Cruz, CA, USA) in
2 % non-fat milk in TBS-T, and developed with the ECL-R
reaction (Amersham). The film signals were digitally
scanned and quantified using densitometric image software
(imagej 64), normalized for β-actin level.

In vivo microdialysis

All mice were anesthetized with chloral hydrate, mounted in
a stereotaxic frame (David Kopf Instruments, Tujunga, CA)
and implanted unilaterally with a guide cannula (stainless
steel, shaft outer diameter of 0.38 mm, length 1 mm;
Metalant AB, Stockholm, Sweden), fixed with epoxy glue
and dental cement, into the mpFC (Fig. 1a; AP, +2.8; L, 0.6;
according to the Franklin and Paxinos atlas, 2001).

Fig. 1 Reduced expression and in vivo activity of TH in mpFC of
ENU2 mice. (a) Schematic representation of mpFC. (b) Western blot of
TH protein obtained from mpFC of ENU2 and WT mice and (c)
quantification of protein using chemiluminescence (mean ± S.E.M.)
indicated reduced enzyme availability in mutant mice. Detection of β-
actin was used as loading control. (d) Enzymatic activity of TH was
determined measuring accumulation of transient intermediate L-DOPA
in vivo during continuous infusion of 20 µM NSD-1015. Dialysates

were collected at 20-min intervals. Results are expressed as percent
changes (means ± S.E.M.) from basal values. Statistical analyses were
performed on raw data. Comparison of time course of changes in
extracellular levels of L-DOPA in pFC of ENU2 and WT mice reveals
reduction of L-DOPA accumulation in ENU2 mice, significant from
160 min onwards. * P<0.05 versus basal values. § P<0.05 in compar-
ison with WT
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Placement of probes in mpFC was evaluated by methylene
blue staining. Only data from mice with correctly placed
cannula are reported.

Mice were allowed to recover in their home cage. The probe
(2 mm long;MAB 4 cuprophane microdialysis probe,Metelant
AB) was introduced 24 h before microdialysis experiments.
The mice were lightly anesthetized with chloral hydrate to
facilitate manual insertion of the probe into the guide cannula.
The dialysis probe was connected to a CMA/100 pump
(Carnegie Medicine, Stockholm, Sweden) through PE 20 tub-
ing (Metalant AB) and an ultralow torque dual-channel liquid
swivel (model 375/D/22QM; Instech Laboratories, Plymouth
Meeting, PA) to allow free movement. Artificial cerebrospinal
fluid (147 mMNaCl, 1 mMMgCl, 1.2 mMCaCl2, 4 mMKCl)
was pumped through the dialysis probe at a constant flow rate
of 2 μl/min. The day of the experiments, each animal was
transferred to a Plexiglas cylinder provided with microdialysis
equipment (Instech Laboratories, Inc.) and with home cage
bedding on the floor. Dialysis perfusion was started 1 h later
and mice were left undisturbed for 2 h before baseline samples
were collected. Dialysate was collected every 20 min. The
mean concentration of the three samples collected immediately
before treatment (<10 % variation) was taken as basal concen-
tration. Twenty microliters of each dialysate sample were trans-
ferred to HPLC systems for analysis.

In vivo TH activity Cortical TH activity in WT (n08) and
ENU2 (n08) mice was determined in vivo by the accumula-
tion of L-DOPA in mpFC after inhibition of L-aromatic acid
decarboxylase with NSD-1015 (Sigma-Aldrich, St. Louis,
MO, USA). Ringer solution containing 20 μM of NSD-1015
was pumped through the dialysis probe at a constant flow rate
of 2 μl/min, and dialysates were collected at 20-min intervals
for 260 min. L-DOPA was assessed by HPLC coupled to an
amperometric detector (Decade II model, Antec Leyden, The
Netherlands). The detector potential was set at +700 mV
against an Ag/AgCl reference electrode. The mobile phase
was previously described (Nakahara et al 2000).

L-DOPA treatment Finally, we evaluated the effect of L-
DOPA administration on prefrontal cortical DA response
to stress in hyperphenylalaninemic mice. DA, DOPAC
(3,4-dihydroxyphenylacetic acid), HVA (homovanilic acid)
and NE levels were determined simultaneously, utilizing the
HPLC system coupled to a coulometric detector (model
5200 °Coulochem II; ESA, Chelmsford, MA). The condi-
tioning cell was set at +400 mV, electrode 1 at +200 mV, and
electrode 2 at -250 mV; the mobile phase was previously
described (Pascucci et al 2007). A Nova-Pack C18 column
(3.9 x 150 mm; Waters) and a Sentry Guard Nova-Pack C18
pre-column (3.9 x 20 mm) maintained at 30 °C were used.
The flow rate was 1.1 ml/min. The detection limit of the
catecholamines assay was 0.1 pg.

First, we identified a per se ineffective dose of systemati-
cally administered L-DOPA by performing a dose-response
study. Naive WT (n06) and ENU2 (n06) mice were injected
i.p. on consecutive days with saline or L-DOPA (0.5, 1, 2.5
mg/kg) and DA and NE in vivo extracellular levels were
assessed. Doses were injected in a random order and sufficient
time was allowed for neurotransmitter to return to basal levels
(no more than 180 min were necessary). No more than two L-
DOPA doses were administered daily.

Last, the effect of systemic administration of a per se
ineffective dose of L-DOPA on only frontal cortical DA and
metabolite response to stress was evaluated, as L-DOPA
inability to increase NE frontal cortical extracellular levels.
Following collection of baseline samples, animals subjected
to the stress experience (WT-sal, n08; ENU2-sal, n08;
ENU2-L-DOPA 0.5, n08) were put in a restraint apparatus
for 2 h and dialyzate samples were collected every 20 min.
The apparatus consisted of an adjustable neck-blocking
support mounted on a Plexiglas base and movable U-
shaped metal piece that could be fixed to the base at the
level of the animal’s hips thus preventing it from turning on
its back (Cabib and Puglisi-Allegra 1991).

Data analysis

The effect of genotype (WT and ENU2) on phenylalanine
and tyrosine brain and blood levels and on brain/blood ratios
was evaluated by one-way ANOVAs.

Regarding western blot data, the effect of genotype (WT
and ENU2) on TH protein levels in mpFC was evaluated by
one-way ANOVA.

For microdialysis data, statistical analyses were always
carried out on raw data (concentrations: pg/20 µl). Data
were presented in figures as percent changes from baseline
levels.

The effect of genotype on L-DOPA accumulation in
mpFC was analyzed by repeated-measures ANOVA with
one between factor (genotype, two levels, WT and ENU2)
and one within factor (time, forteen levels, 0, 20, 40, 60, 80,
100, 120, 140, 160, 180, 200, 220, 240, 260 minutes).

The effect of L-DOPA treatment on DA and NE extracel-
lular levels in mpFC of ENU2 and WT mice was analyzed by
repeated-measures ANOVAs with one between factor (treat-
ment, four levels, saline, L-DOPA 0.5, 1, 2.5 mg/kg) and one
within factor (time, seven levels, 0, 20, 40, 60, 80, 100 and
120 minutes).

The effect of L-DOPA treatment on DA, DOPAC and
HVA extracellular levels in mpFC of ENU2 mice sub-
jected to restraint was analyzed by repeated-measures
ANOVAs with one between factor (group, three levels,
WT-sal, ENU2-sal and ENU2-L-DOPA 0.5) and one with-
in factor (time, seven levels, 0, 20, 40, 60, 80, 100 and
120 minutes).
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Results

Blood and brain levels and brain/blood ratio
of phenylalanine and tyrosine in ENU2 and WT mice

To determine whether high phenylalanine levels inhibit ty-
rosine transport across the blood-brain barrier, we measured
phenylalanine and tyrosine blood and brain levels in ENU2
and WT mice (Table 1). The concentration of phenylalanine
was significantly higher in ENU2 than in WT mice, both in
blood (~2500 %) and in brains (~1700 %). For tyrosine
levels, ENU2 showed reduction of blood and brain levels
(~40 %) compared with WT mice. Moreover, phenylalanine
blood/brain ratio was significantly reduced, and tyrosine
blood/brain ratio was not significantly different, in ENU2
compared with WT mice.

Expression and in vivo activity of TH in mpFC of ENU2
and WT mice

Western blot analysis of TH protein (Fig. 1b, c) showed
significant difference between the two genotypes (F1,100
11.25, p<.01), revealing a 40 % reduction of TH protein
levels in mpFC of ENU2 (1.84±.21) in comparison with
WT (1.10±.06) mice.

Figure 1d reports in vivo TH activity in mpFC of ENU2
and WT mice. Statistical analysis revealed significant geno-
type x time interaction (F1,18203.82, p<.05). In WT mice,
blockade of aromatic L-amino acid decarboxylase promoted a
time-dependent increase of frontal cortical L-DOPA outflow
that became significantly higher than basal levels after
120 min, reached maximal levels (233.7 %) at 260 min.
ENU2mice achieved a steady state after 160 min of perfusion,
reaching a maximal increase of 80.2 % at 260 min.

In vivo microdialysis

The two genotypes did not differ for DA cortical basal
outflow (WT00.95±.14 pg/20 l; ENU200.98±0.15 pg/20
µl), while NE extracellular levels from mpFC of ENU2 mice
were significantly reduced (WT02.12±.23 pg/20 µl; ENU20
1.24±0.19 pg/20 µl; F1,1008.64, p<.05), as previously

reported (Pascucci et al 2009), suggesting that compensatory
mechanisms appear to support DA release at the expense of
NE in basal conditions.

Dose-response curve of L-DOPA The dose-dependent effect
of L-DOPA treatment on catecholaminergic frontal cortical
extracellular release was evaluated (Fig. 2a, b). L-DOPA at a
dose of 0.5 mg/kg i.p. had no significant effect on DA
outflow in either group of mice, but at the dose of 1 and
2.5 mg/kg i.p. produced significant increase of DA cortical
extracellular levels (Fig. 2a).

None of these doses of L-DOPA had an effect on extra-
cellular levels of NE in either group, with the exception of a
slight increase at 2.5 mg/kg i.p. in ENU2 mice (Fig. 2b).

Effect of L-DOPA treatment on DA cortical neurotransmis-
sion in stressed ENU2 mice Because L-DOPA treatment
was unable to increase NE frontal cortical extracellular
levels, effect of per se ineffective dose of L-DOPA was
evaluated on frontal cortical DA outflow and turnover (as
measured by their major metabolites, DOPAC and HVA) in
ENU2 and WT stressed mice (Fig. 3). We compared frontal
cortical DA outflow in WT and ENU2 stressed mice follow-
ing saline or L-DOPA (0.5 mg/kg i.p.) treatment. Statistical
analyses revealed a significant group x time interaction
(F18,16803.15, p<.0001). Analyses of DOPAC and HVA
extracellular levels in WT, ENU2-sal and ENU2-L-DOPA
0.5 groups revealed significant group x time interactions
(DOPAC: F12,12603.77, p<.0001; HVA: F12,12603.90,
p<.0001).

As previously reported (Pascucci et al 2009), ENU2
mice did not show the typical increase of prefrontal
cortical DA outflow. Indeed, DA decreased below basal
levels (Fig. 3). Moreover, stress resulted in augmented
DOPAC and HVA extracellular levels in WT but not in
ENU2 mice (Fig. 3), although DOPAC (WT-sal053.34+
8.87 pg/20 μl; ENU2-sal059.20+12.61 pg/20 μl; ENU2-
L-DOPA 0.5059.88±17.09 pg/20 µl) and HVA (WT-sal0
118,12±21.72 pg/20 µl; ENU2-sal0154.83±19.24 pg/20
µl; ENU2-L-DOPA 0.50159.65±27.91 pg/20 µl) basal
levels did not differ between groups. Nevertheless, in
ENU2 mice (similar to WT-sal) treatment with L-DOPA

Table 1 Blood and brain levels and brain/blood ratios of phenylalanine and tyrosine in WT and ENU2 mice

WT ENU2

blood brain brain/blood ratio blood brain brain/blood ratio

Phenylalanine 92.0 + 4.8 2.2 + 0.2 0.023 2334.1 + 143.7b 38.0 + 4.7b 0.016 a

Tyrosine 82.8 + 6.1 3.5 + 0.4 0.043 34.2 + 1.7b 1.27 + 0.2b 0.039

Amino acids levels (μM) in blood and brain samples and blood/brain ratios in WT and ENU2 mice. Values are expressed as means + SEM. a p <
0.05; b p < 0.001 vs WT
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caused an immediate significant increase in DA outflow
(20-60 min) followed by a return to basal levels as well
as partial but significant increase of DOPAC and HVA
extracellular levels.

Discussion

This study demonstrates that the reduced DA concentrations
reported in prefrontal cortical area of PKU mice are mainly

due to reduced cortical expression and activity of the TH
enzyme, supporting the use of L-DOPA to treat cortical
dopaminergic deficits in phenylketonuric subjects.

It is well known that brain amine levels are reduced in
PKU patients and mouse models, and DA is the most
extensively studied neurotransmitter. In particular, reduced
DA availability in mpFC has been proposed as the biochem-
ical mechanism responsible for reduced cognitive perform-
ances observed in PKU patients. It has also been proposed
that DA cortical deficits stem from decreased levels of

Fig. 2 Dose-dependent effect
of L-DOPA on frontal cortical
catecholamine extracellular
levels. Dose-dependent effect
of L-DOPA (0.5, 1.0, 2.5 mg/kg
i.p.) on DA (a) and NE (b)
outflow in the mpFC of WT and
ENU2 mice. Results are
expressed as percent changes
(means ± S.E.M.) from basal
value during 120-min post-
injection. Statistical analyses
were performed on raw data.
Drug was administered to time
0. * P<0.05 vs saline group. §
P<0.05 in comparison with
vehicle-injected mice

Fig. 3 Effect of L-DOPA on dopaminergic cortical neurotransmission
in stressed ENU2 mice. Recovery of DA and metabolite response to
stress in mpFC of ENU2 mice submitted to 120 min of restraint
following systemic administration of 0.5 mg/kg i.p. of L-DOPA. Dial-
ysates were collected at 20-min intervals. Results are expressed as

percent changes (means ± SE) from basal values. Statistical analyses
were performed on raw data. Drug was administered to time 0. * P<
0.05 versus basal values. § P<0.05 compared with vehicle-injected
WT mice
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amino acid tyrosine (“tyrosine/dopamine” theory), the pre-
cursor of DA, and that low levels of tyrosine are a conse-
quence of high phenylalanine levels outcompeting other
amino acids for transport across the blood-brain barrier
(Diamond et al 1994). Although the “tyrosine/dopamine”
theory is strong and empirically supported, controversial
data have been reported. Indeed, dietary supplements of
tyrosine do not improve cognitive performance in PKU
patients (Smith et al 1998), and frontal cortical levels of
tyrosine do not return to normal levels when PKU mice
are placed on the low phenylalanine diet (Joseph and
Dyer 2003). These data indicate that reduced tyrosine
availability alone cannot explain the DA cortical deficits,
suggesting co-existing of several factors. In this study,
we investigated full cortical dopaminergic metabolism in
ENU2 mice in order to elucidate phenylalanine-induced inter-
ferences at each metabolic step and suggest an easy pharma-
cological way to raise cortical dopaminergic levels.

Synthesis of catecholamines occurs via hydroxylation of
tyrosine to L-DOPA by TH. L-DOPA is rapidly decarboxy-
lated by L-aromatic amino acid decarboxylase to DA, which
is then metabolized to NE. Thus, we firstly examined blood
and brain availability of DA precursors. Although the pres-
ence of high phenylalanine and reduced tyrosine blood and
brain levels is well known, the evaluation of brain/blood
ratios for tyrosine and phenylalanine in this study is not
consistent with the hypothesis of phenylalanine-induced
inhibition of amino acid transport to the brain, according
to previously reported data (Joseph and Dyer 2003). In fact,
we observed a significant reduction of blood and brain
tyrosine levels, according to the literature, but found no
significant difference in the brain/blood ratio between phe-
nylketonuric and normal mice, suggesting that reduced brain
levels of tyrosine reflect low tyrosine blood levels more than
reduction of access to the brain. Conversely, when we
compared the phenylalanine brain/blood ratio in both
groups, we found a trend towards reduced phenylalanine
access in the brains of PKU mice, which, however, was
unable to prevent high brain phenylalanine levels.

Second, based on demonstrations that tyrosine is not the
limiting factor on DA biosynthesis (Joseph and Dyer 2003;
Pascucci et al 2009), we investigated cortical availability
and activity of TH. Analysis of Western blot data confirmed
reduced TH protein levels in mpFC of PKU mice (Joseph
and Dyer 2003). Although the decreased protein amount of
TH could be an adaptive downregulation in response to
reduced dopaminergic synthesis, a faster degradation of
the TH protein could not be excluded. Moreover, in vivo
assay of TH cortical activity (measured as accumulation rate
of L-DOPA after blockade of the decarboxylating enzyme)
showed significant reduction in the rate of DA synthesis in
ENU2 vs WT mice. The reduction of L-DOPA accumula-
tion (66 %) was greater than the 40 % reduction seen in TH

protein concentration suggesting other mechanisms causing
TH inhibition. This most likely involves a direct inhibitory
effect of phenylalanine on mpFC TH activity.

So far our data suggestes three complementary factors are
able to explain DA reduced biosynthesis in PKU: decrease
of precursor availability to the brain and reduction of protein
synthesis and activity of TH enzyme. Recently, we demon-
strated that deficits of cortical serotonin biosynthesis in
PKU mice are due to phenylalanine -induced inhibition of
cortical tryptophan hydroxylase activity (Pascucci et al
2009). These results are in agreement with the hypothesis
that phenylalanine influences cortical aminergic transmission
by inhibiting activity of enzymes hydroxylating amino acid
precursors (Curtius et al 1981; McKean 1972; Ogawa and
Ichinose 2006).

Third, based on the reduction of prefrontal cortical TH
protein and activity levels in ENU2 mice, we were able to
identify L-DOPA, the product of tyrosine hydroxylation, as
responsible for increasing DA cortical levels. As previously
reported (Pascucci et al 2009), when ENU2 mice were
subjected to restraint stress, an environmental challenge
known to enhance aminergic release in the mpFC (Page
and Lucki 2002; Pascucci et al 2007), they showed deficits
in the activation of frontal cortical serotoninergic and dopa-
minergic transmission and altered noradrenergic responses.
In particular, no initial increase of DA release followed by
decrease below baseline levels was observed compared with
WT, although basal frontal cortical outflow of DA was
unaffected. Moreover, DA turnover was also affected by
hyperphenylalaninaemia, as shown by reduced DOPAC
and HVA extracellular levels in ENU2-stressed mice, al-
though DA basal levels were unaffected.These results sug-
gest compensatory mechanisms are involved that maintain
suitable DA metabolism necessary to hold basic physio-
logical functions. However, these mechanisms are unable
to sustain the activation solicited by stressful experience.

In order to restore cortical dopaminergic response to
stress, we administered L-DOPA, the proximal precursor
of DA. The L-DOPA dose-response curves obtained in the
ENU2 and WT mice were similar suggesting that the corti-
cal DA metabolic pathway following tyrosine hydroxylation
step is intact. Nevertheless, an alternative possibility cannot
be excluded: i.e. the L-DOPA-induced DA release depends
on serotonergic neurons (Carta et al 2007; Navailles et al
2010; Tanaka et al 1999), wherein L-aromatic amino acid
decarboxylase is also present. The same L-DOPA doses
were unable to increase frontal cortical release of NE, sug-
gesting an impairment of the conversion of DA to NE in
cortical neurons. The administration of a per se ineffective
dose of L-DOPA (0.5 mg/kg i.p.) affected response to stress
in mpFC of ENU2 mice, producing activation of DA and
metabolite response. These results show that DA metabo-
lism in the mpFC is very sensitive to L-DOPA treatment,
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suggesting, under stress challenge, an increase of L-DOPA
decarboxylation by DOPA decarboxylase to DA. Although
neurological complications related to prolonged treatment
with L-DOPA have been reported in Parkinson’s disease
patients, the dose used here was well below that associated
with abnormal movements in human and in animal models.

Altogether, our data suggests that DA cortical deficits in
PKU are due to several factors: reduced precursor cerebral
availability, reduced cortical TH protein levels and inhibition
of TH cortical activity. Thus, our data raises doubts about
using tyrosine in PKU patients. A better approach may be
the use of low dose L-DOPAwhich in the PKU mouse is able
to increase cortical DA neurotransmission even in the pres-
ence of high blood and brain phenylalanine levels.
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