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1. INTRODUCTION 

1.1. BI/MULTI-STATIC RADAR 

Although the overwhelming majority of radar systems have been developed as monostatic entities, 

the earliest radar were bistatic, i.e. in a configuration operating with separated transmitting and 

receiving antennas [1]. With the advent of pulsed operation and the duplexer in the late 1930s, the 

interest in bistatic radar dropped quickly and the monostatic radar, with its single-site operational 

advantage, become the configuration of choice and virtually all bistatic radar work ended after 

World War II [2]. However, the limits of monostatic radar are now beginning to be reached, and over 

the last years bistatic radar have been the focus of increased research activity [3]. 

One of the main issue relating to monostatic system is that the achievable information is limited by a 

single prospective. It is our common experience that observing an object, or a situation, by different 

points of view allows us to reach a greater information about that phenomenon. Extending the 

concept in the field of radar, the single prospective limitations can be addressed by using a 

multiplicity of transmitter and receivers leading directly to the concept of multi-sensor radar system. 

The spatial diversity offered by geographically distributing sensors allows for a much richer 

information set to be garnered from which both the detection and classification of targets can be 

improved [4]. Moreover, a monostatic radar represents a single point of failure. By having separated 

and multiple transmitters and receivers, the total system is much less vulnerable to out of services, 

since, if properly designed, the single sensor out of service does not necessarily render the system 

inoperative. Separation also has effect on the effectiveness of Electronic Counter Measures (ECM) 

since the transmitters and receivers are not co-located and therefore a receiver may be outside the 

main-lobe of the jammer or even outside Line Of Sight (LOS). 

The concept of multistatic radar is not new. Since in 1960 is operating the Navspasur (NAVal SPace 

SURveillance), a US Navy multistatic continuous wave radar that detects orbiting objects as they pass 

through an electronic “fence” over the continental United States; three transmitting stations and six 

receiving stations are interspersed along a great circle from Fort Stewart (Georgia) to San Diego 

(California) [5]. The locations of the transmitting and receiving stations is shown in Figure 1-1. In 

1978-1980 a multistatic measurement system was developed by the Lincoln Laboratory of 

Massachusetts of Technology to collect bistatic signature data and perform high-accuracy coherent 

tracking of re-entry targets [7]. Since in a multistatic scheme a receiver does not emit 

electromagnetic energy it is harder to locate than active radars, and therefore their potentiality in 

the military applications gained great attention from the late 1970s, [8]. Very soon, the concept was 

developed also in non-military applications, since the multistatic radar enables triangulation and 

allows a higher detection probabilities due to multiple observations [9]. Further information about 

the historical context of multistatic radar can be found in [10]. The recent technology advances, 

especially in digital transmission, better processing power, more reliable communications and 

precision navigation by Global Navigation Satellite System (GNSS) have led to a reassessment of 

multistatic radar, that now days can be considered an emerging technology [4]. 
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Figure 1-1. Navspasur sensors sites, [6]. 

1.2. MULTISTATIC AND MIMO RADAR 

It should be noticed that different multi-sensor schemes can be developed and differing terms can 

be found in the literature, such as multistatic radar, multisite radar, radar network, distributed radar 

and MIMO (Multi-Input-Multi-Output) radar. So far we used the terms “multistatic” and “multi-

sensor as “catch all” to embrace all forms possible. In this work a multi-sensor scheme is achieved as 

compositions of N bistatic transmitter-receiver couples. In some definitions a transmitter-receiver 

configuration is assumed to be bistatic if the distance between the antennas is “comparable” [11] or 

“a significant fraction” [12] of either the target-receiver or the target-transmitter distance. The only 

assumption when we refer to multi-sensor configurations is that the several transmit and receive 

antennas are on different platforms. Hereinafter we consider two possible scenarios, that we refer 

as Multistatic and MIMO. In the multistatic case, only one device of the network is transmitting and 

the other just receive, while in the MIMO case all the platforms carries an active radar and receives 

echoes from all the transmissions. The two possible situations are sketched in Figure 1-2:  in Figure 

1-2.a, only sensor 2 transmits while 1 and 3 just receive (multistatic case), while in Figure 1-2.b all 

the sensors transmit and receive the radar waveforms (MIMO). We point out that in literature, 

sometimes the two schemes are referred as semi-active and fully active [13]. 

1.2.1. MIMO RADAR 

The concept of MIMO systems has been the focus of intense research activity in the field of the 

wireless communications, since its capability to dramatically improve the performance of 

communication systems over single antenna systems [14]. The concept of MIMO has been recently 

applied  to the field of radar [15]. We remark that in literature the term MIMO radar can refer to a 

system using waveform diversity allowed by transmit and receive antenna arrays containing element 

that are collocated [16] or to a system exploiting the diversity offered by widely separated 

transmitting and receiving antennas [17]. 
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The key aspect of a MIMO radar with respect to a multistatic configuration is the use of orthogonal 

waveforms [18]. They should have good auto-correlation and cross-correlation properties, as well as 

low Doppler loss. Several studies can be found in literature regarding waveform diversity in MIMO 

radar, e.g. [19], [20], [21], [22], [23], [24], [25], [26] and [27]. 

MIMO radar is nowadays a new, fast changing and controversial subject [28]. Although several 

problems have still to be resolved [29], MIMO radar represent a promising emerging technology.   

1.2.2. MULTISTATIC RADAR 

For the multistatic case a further categorization is applicable: active systems and passive systems. In 

this subsection we discuss about the latter configuration. 

In the active configuration, the bi/multi-static radar operates with its own dedicated transmitter, 

which are specially designed for bistatic operation, or with transmitters of opportunity, which are 

designed for other purposes but found suitable for bistatic operation. When the transmitter of 

opportunity is from a monostatic radar the bistatic radar is often called a hitchhiker.  

In the passive configuration, the transmitter of opportunity is from a non-radar transmission, such as 

broadcast, communications or radionavigation signal, and in literature the bistatic radar has been 

called many things including passive radar, passive coherent location, parasitic radar and piggy-back 

radar [30]. Bistatic radar using transmitters of opportunity have been a topic of increasing interest 

over the last years [31], since they have some significant attractions, in addition to those common to 

all bistatic radars. As well as being completely passive and hence potentially undetectable, they can 

allow the use of parts of the RF spectrum (VHF and UHF) that are not usually available for radar 

operation, and which may offer a counterstealth advantage, since stealth treatments designed for 

microwave radar frequencies may be less effective at VHF and UHF. Broadcast transmissions at these 

frequencies can have substantial transmit powers and the transmitters are usually sited to give 

excellent coverage. 

 

Figure 1-2. Multi-sensor configurations – a) Multi-static, b) Multi-Input-Multi-Output (MIMO). 
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1.3. MULTI-SENSOR RADAR IMAGING 

1.3.1. BI/MULTI-STATIC SAR 

Conventional monostatic Synthetic Aperture Radar (SAR) systems using a single-antenna high-power 

transmitter and a highly sensitive receiver onboard the same platform, represents today a mature 

remote sensing and surveillance system, and it is utilized routinely in a wide range of commercial 

and scientific applications. Many SAR systems are in operation, from both airborne and spaceborne 

platforms, to provide high resolution radar images. 

Recently, the bistatic, as well multistatic and MIMO concepts, have been applied to the field of SAR, 

since the variety of potential gains in the scene information. Bistatic geometries give extra 

information regard the targets, since their radar cross section (RCS) is essentially different from 

monostatic case [32], [33]; different bistatic geometries result in target RCS variation, allowing a 

better Automatic Target Classification (ATC) procedure [34], [35]. The multi-perspective observation 

can improve the overall resolution when the scattered measurements are fused [36], it can provide a 

better ability to distinguish targets from clutter [37]; also, electronic countermeasure devised for 

monostatic SAR are less effective against distributed systems [38].  

The research about bi/multi-static SAR have received increased attention over the last years. Several 

new SAR missions have been suggested, where the spatial diversity offered by the multi-sensor 

configurations increases capability, reliability and flexibility [13]. Potential application areas of multi-

static and MIMO SAR systems include, but are not limited to, SAR interferometry [39], [40], wide-

swath SAR imaging [41], resolution enhancement [42], interference suppression [43], ground moving 

target indication [44], spaceborne tomography [45] and multistatic imaging [46], [47]. 

Examples of spaceborne multistatic configurations are the interferometric cartwheel [48] and BISSAT 

[49]. The former is composed by three passive identical microsatellites set in a particular geometry 

and flying behind or ahead of an active SAR satellite illuminating a ground swath; the reflected 

signals are received by the microsatellites with specific viewing configurations; the obtained data are 

mainly used for the computation of a Digital Elevation Model (DEM). The latter, founded by the 

Italian Space Agency, consists in a passive SAR flying on board a small satellite, which observes the 

area illuminated by an active SAR, such a COSMO/SkyMed satellite. 

An example of spaceborne MIMO configuration is the Techsat 21 (Technology Satellite of the 

twenty-first century) [50]. The topology of the system (Figure 1-3) involves a cluster of satellites in a 

single orbital plane. Each satellites transmits its own orthogonal signal at X-band and is receiving all 

reflected signals. The intended use for Techsat 21 includes RF multistatic imaging, GMTI, anti-

jamming operation and geolocation. Another example is the German TanDEM-X (TerraSAR-X add-

on for Digital Elevation Measurement) mission, lunched in June 2010 and aiming at realizing a 

spaceborne bistatic SAR interferometer based on two low-Earth-orbiting satellites flying in close 

formation [51] (Figure 1-4). 

Regarding bistatic airborne SAR, experiments have been conducted in the United States and, more 

recently, also in Europe. A pioneering experiment took look in Michigan in 1983, involving two 

Convair CV-580 aircraft flying at ~330 Km/h and using several configurations with vertical or 
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horizontal separation between the platforms [53]. More recently, an experiment has been 

conducted by QinetiQ Malvern under the UK MoD Corporate Research Program in September 2002. 

It focuses on a fully airborne, synchronized BSAR demonstration using QinetiQ’s enhanced 

surveillance radar and the Thales/QinetiQ airborne data acquisition system [54]. Other examples are 

the FGAN BSAR experiment (November 2003), using two SAR sensors PAMIR and AER-II [55] and the 

ONER-DLR Bistatic Airborne SAR Campaign (October 2002-February 2003) [56].   

 

Figure 1-3. TechSat 21 topology. 

 

Figure 1-4. TanDEM-X in formation flight, [52]. 
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1.3.2. BI/MULTI-STATIC ISAR 

In 1980, the Inverse SAR (ISAR) concept was proposed  [57], [58]. Conversely to SAR, where the high 

resolution cross range profile is achieved exploiting the motion of the platform with respect to a 

stationary scene, in ISAR is the target’s relative movement that produces the Doppler gradient 

making the cross-range resolution possible (this concept was exploited during the Sixties in the radar 

astronomy of the moon and planets, exploiting their rotation to produce the image of their surface 

[59]). Nowadays ISAR is a well established technique [60] and it is largely used in maritime 

surveillance for the classification of ships and other objects [61]. 

In the past, the bistatic ISAR case was considered to obtain separated images of the same target 

taken with different aspect angles in order to improve recognition capability [62], [63]. Also, multiple 

sensors was considered to improve ISAR interferometric capability [64], [65], [66].  

1.3.3. PASSIVE RADAR IMAGING 

The passive radar imaging technology based on external illuminators is a popular topic in recent 

years. Several contribution can be found in the field of SAR using different opportunity transmitters, 

as for example telecommunication geostationary satellite [67], TV broadcasting satellite [68] or GNSS 

satellite [69], [70], [71].  

Regarding Inverse SAR (ISAR) few contributions can be found in the literature exploiting different 

opportunity transmitters. Terrestrial transmitters, radio FM and DVB-T, are exploited in [72] and [73] 

respectively, while GPS and geostationary telecommunications satellites are considered in [74] and 

[75], [76]. 

1.3.4. CHALLENGES IN MULTI-SENSOR RADAR IMAGING 

Despite the number of potential using multiple transmitter-receivers couples, several technical 

issues have to be faced. 

One of the main problem is the phase and time synchronization [13]. To maintain time and 

frequency synchronization in a multi-sensor configuration where no direct synchronization is 

practical, stable local oscillators are often used. Oscillator errors deserve special attention in 

distributed SAR systems since there is no cancellation of low-frequency phase errors as in a 

monostatic SAR, where the same oscillator signal is used for modulation and demodulation [77]. 

Possible solution for time synchronization are discussed in [78]. 

Other practical problems regard the flight coordination. Especially in the case of spaceborne 

configurations, the collision avoidance may be a major design driver. Interferometric applications 

require a very accurate knowledge of the position of the platforms, at the millimeter level, that could 

be achieved using GNSS measurements [79]. 

As in MIMO radar, in a MIMO SAR (as well as MIMO ISAR), each antenna should transmit a unique 

waveform, orthogonal to the waveforms transmitted by other antennas. In addition, the waveforms 

used in SAR should have a wide bandwidth so that high resolution can be obtained, and since usually 

the SAR are placed inside airplanes or satellites, a high average transmit power is required for the 
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transmitted waveforms [80]. Most of the MIMO radar waveforms are not suitable for MIMO SAR 

imaging and difficult to implement in the real world [29]. A practical solution is the use of linearly 

modulated (chirped) waveforms. 

The processing of bi/multi-static data requires robust and efficient algorithms [13]. Several 

processing techniques have been proposed. The possibility to apply a specific processing algorithm is 

strictly dependent on the bistatic geometry and the relative motions between the platforms [81]. 

1.4. WORK OVERVIEW 

The work here presented reports several innovative radar imaging techniques exploiting the spatial 

diversity offered by multi-sensor systems in order to improve the performance with respect to the 

conventional, single channel cases. 

Chapter 2 and 3 are dedicated to the study of active multi-sensor ISAR technique. In ISAR, the 

imaging capability are strictly related to the target’s intrinsic motion characteristics. This draws some 

lines at the imaging capability for two main reasons:  

1)  There is no way to a priori assign the desired value of the cross range resolution; moreover, 

depending on particular conditions, it could be very poor. 

2) Since the target motion is generally unknown, the information necessary for focusing must 

be estimated directly from the received signal. 

In [82] the Distributed ISAR (D-ISAR) technique has been proposed, consisting in the exploitation of 

the signal received by multiple surveys in order to improve the achievable cross-range resolution: 

the spatial diversity offered by the multiple view angles allows to achieve a much wider observation 

angle than for a single aperture, resulting in an ISAR with higher resolution. The work in [82] 

considered a multi-aspect formation and a dominant yaw motion. It  has been extended in [83] for a 

multi-grazing formation exploiting the horizontal motion of the target and in [84] for targets 

undergoing 3D motion (i.e., simultaneously rolling, pitching and yawing targets). 

Chapter 2 focuses on the D-ISAR technique making use of stepped-frequency waveforms, which have 

the advantage of reducing the instantaneous bandwidth and the sampling rate requirements. The 

proposed technique is validated by a set of real data we acquired in the anechoic chamber at the 

SELEX ES (ex SELEX Galileo) base in Caselle (Turin, Italy) in April 2011. 

The multiple view angle observation are exploited in chapter 3 in order to improve the target 

rotation motion estimation performance. The key point of the proposed estimation techniques is 

that different view angle results in different Image Projection Plane (IPP) and as a consequence the 

Doppler position of a scatterer as viewed by a sensor is different by the other sensor. Properly 

exploiting this effect, the estimation accuracy of the estimation can be improved. Two cases will be 

presented for two kind of sensor displacement: in the first one, a multi-aspect formation is 

considered and it is studied in the case of a dominant vertical motion; in the second a joint multi-

aspect/multi-grazing formation of sensor is studied, and target is considered undergoing a 3D 

motion; the joint multi-aspect/multi-grazing case not only allows an improvement in the accuracy of 

the target rotation motion estimation, but also it is able to perform the separate estimation of all the 

radial, horizontal and vertical components, that is useful for the selection of proper imaging interval 
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to feed ATR procedures. Both model-based and model-free criteria are considered and the analytical 

derivation of the Maximum Likelihood estimation scheme is reported along with the derivation of 

the Cramer Rao lower Bounds. 

A similar concept to the D-ISAR has been proposed in [85] for improving range resolution by 

exploiting multiple SAR surveys of the same area, and it is extended for a MIMO SAR constellation in 

[86]. In chapter 4 we propose a combination of the MIMO-ISAR and MIMO-SAR concepts, defining a 

2D-MIMO SAR/ISAR technique exploiting a reconfigurable formation of sensors. We will show the 

capability of the proposed technique to improve both the cross-range and the slant range 

resolutions of rotating targets, by properly processing the data acquired by properly located sensors. 

Proper cross-track and along-track displacements of the sensors allows to achieve a 2D resolution 

cell improvement that, exploiting all the monostatic and bistatic acquisitions, could be considerably 

greater than the number of the real sensors. 

In the multi-sensor ISAR techniques considered until now cooperative transmitters have been 

exploited; moreover, we focused on the rotational motion of the target. In chapter 5 a multistatic 

ISAR technique is proposed exploiting a radar transmitter of opportunity. Specifically, we define and 

asses an ISAR-while-scan mode for coastal surveillance based on the exploitation of the data 

acquired by multiple properly located passive devices (receivers only) from the transmissions of a 

coastal surveillance radar system for the formation of ISAR images of ship targets of interest using 

their translational motion as source for the Doppler gradient for the image formation. An ad-hoc 

processing technique is described along with simulated results. As will be clearer in the following, 

differently from the D-ISAR technique where the multiple observations allow to increase the overall 

Doppler bandwidth (and therefore the cross-range resolution), here the multiple observations allows 

to improve the azimuth sampling frequency of the system, allowing to fulfill the Nyquist criteria and 

making the azimuth signal compression possible.  

A fully passive technique is presented in chapter 6, where the use of GNSS transmitters of 

opportunity is considered for the formation of SAR images. The large number of satellites in a GNSS 

constellation offers a rather unique system diversity; signal reflections from multiple satellites can be 

acquired from a single receiver (this configuration is slightly different from the one depicted in Figure 

1-2.a, where a single transmitters and multiple receivers were considered; however we can refer this 

configuration again as multistatic). The proper combination of the signal can improve the observed 

area information and here we consider the case of a non-coherent combination. A multistatic PSF for 

the system is defined and analyzed both against simulated and real data. Challenges of the proposed 

combination scheme are discussed and the first preliminary results obtained from real radar images 

are shown.  
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2. MULTI-ANGLE DISTRIBUTED ISAR FOR ENHANCED CROSS RANGE 

RESOLUTION OF MANMADE ROTATING TARGETS 

As well known the Inverse Synthetic Aperture Radar (ISAR) technique exploits the rotational motion 

of a target with respect to its centre, as observed by a nearly stationary sensor platform, to provide 

high resolution images of the target itself, [58], [60]. This is the case of airborne or spaceborne 

systems (hovering helicopters/UAV or geostationary satellites) imaging ship targets interested by 

yaw, pitch and roll rotation motions induced by the sea. 

Since the achievable cross range resolution depends on the intrinsic motion characteristics of the 

target (and specifically on its overall change of aspect angle Δθ), there is no way to a-priori assign the 

desired value of cross range resolution, [60]. Moreover, depending on the particular conditions, the 

achievable resolution can be very poor. With reference to the case of ship targets imaging, this 

condition can occur in presence of a low sea state inducing very limited rotations: in this case the 

limited rotation motion can result in a very low cross range resolution. This is made even worse by 

the typical use of the short CPI (Coherent Processing Interval) that is required by the constraint of 

keeping fixed the ship rotation axis. These circumstances can have particularly negative implications 

as ISAR images are often used to feed NCTR (Non Cooperative Target Recognition) procedures. To 

counteract this effect and to increase the cross range resolution of ISAR images (especially in the 

case of very small changes in the target aspect angle) a possible strategy is represented by the 

exploitation of the data acquired by multiple radar sensors carried by multiple air platforms, [82]. If 

the sensors are appropriately spaced, each scatterer can be globally observed from a much wider 

observation angle than for a single aperture and therefore an ISAR image with a higher resolution 

can be obtained. 

This new multi-sensor ISAR technique can be referred as Distributed ISAR (D-ISAR) and two different 

reference scenarios are possible for the sensors belonging to a formation of S platforms: in the first 

scenario (addressed as multistatic distributed ISAR) only one platform carries an active radar system 

and the other (S-1) carry receiving only sensors, while in the second one (addressed as MIMO, 

Multiple Input Multiple Output, distributed ISAR) all the S air platforms carry an active radar that 

autonomously transmits and receives the radar waveforms. In this latter case the active sensors are 

considered additionally able to separately receive also the waveforms transmitted from the other 

transmitters. It has to be noticed that echoes from all the transmitters (one in the multistatic and S 

in the MIMO case) will be received by each receiving device in the formation. This requires the use of 

appropriate transmitted waveforms to allow the separation of the echoes. A pictorial view of these 

two reference scenarios is presented in Figure 2-1 for the sake of clarity. Figure 2-1a sketches the 

multistatic distributed ISAR case where the flying formation is composed of an helicopter carrying 

the transmit/receive hardware and a few lightweight UAV used to carry the receive-only devices. 

Figure 2-1b presents the MIMO distributed ISAR case with several hovering helicopters carrying an 

active radar system each. 
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Figure 2-1 - Distributed ISAR scenarios in the (a) multistatic case and in the (b) MIMO case 

2.1. DISTRIBUTED ISAR CONCEPT 

The D-ISAR concept is summarized in Figure 2-2 for the case of two platforms (A and B) and a target 

rotating with constant velocity ω around its vertical axis and initial azimuth angle θ
�

 and observed 

for an observation time T. A multi-aspect formation is here considered, as in [82], while the multi-

grazing case is studied in [83]. 

The time-varying observation angle of the multistatic case is sketched in Figure 2-2A, for the case 

where the first sensor is a monostatic (transmit and receive radar) while the second sensor is a 

receiving-only sensor, positioned so to provide the appropriate change in the view angle (namely 

α��� − α�). With the two sensors, the maximum increase achievable in observation angle, and 

therefore in resolution, is of a factor of 2, which is obtained by setting α��� − α� = ωT = Δθ. 

In the MIMO case (Figure 2-2B) platform A is supposed to carry an active radar system transmitting 

and receiving an up-chirp while platform B is equipped with a radar system transmitting a down-

chirp with two receiving channels: the first one matched to its own transmission and the second one 

matched to the transmission from platform A. The angular separation between the two transmitting 

sensors 1 (from platform A) and 3 (from platform B) is α� − α� = α	
. We recall that a bistatic 

acquisition for limited values of the bistatic angle corresponds to an equivalent monostatic 
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configuration with a fictitious sensor at azimuth angle equal to the mean angle between the real 

transmit and receive platforms; therefore, the bistatic acquisition from platform B provides a 

fictitious sensor 2 for which α� − α� = α�
�  applies. 

 

Figure 2-2. Multi-angle D-ISAR concept. 

The extension of the dual platform case to a generic number N of equivalent sensors (N=S in the 

multistatic case and N>S) is straightforward, and leads to a global change of the view angle for the 

kth scatterer equal to: 

Δθ���� = ��� ��2� − ��� ��2� = ���� − �� + ��2 � − ���� − �� − ��2 � = �� + �� − �� (1) 

In order to avoid gaps in the overall view angle, it is required that θ��  − !�" ≤ θ����  !�", namely: 

α��� − α� ≤ ωT for every value of n = 1,…,N. If neither gaps or overlapping between the sub-

apertures, the upper bound for both global observation angle and achievable cross range resolution 

are equal to:  

Δθ���� ≤ Δ� + $% − 1'�� = Δ� + $% − 1'Δ� = %Δ� (2) 

Δ() = λ2Δθ���� ≥ ,2%Δ� (3) 

To quantify the improvement in cross range resolution in practical situation, the -./ parameter is 

defined: 

γ() = Δ()Δ()� = Δθ����Δ� ≤ % (4) 

 

2.2. SYNTHETIC BANDWIDTH D-ISAR 

In the past, D-ISAR techniques have been considered using linearly modulated (chirped) waveforms. 

However the use of an instantaneous wideband waveform entails cost and complexity in the 

receiver, mainly related to the high requested sampling rate. Here we propose the use of the D-ISAR 
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proposed concept and processing scheme are also validated by using a set of real data acquired 
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As usual in ISAR literature, an arbitrary reference point in the target, called t

the target motion is decomposed into a translation of the fulcrum (which is 

compensated for) and a rotation of the target body around this point (rigid 

hypothesis). The interest is in targets with a dominant rotation around the vertical axis (resulting in

), therefore pitch and roll are considered negligible with respect to

the motion. The origin of the coordinate reference system is set in the target fulcrum 

he target is assumed to rotate with a rate ω around the Z axis. 

TRANSMITTED WAVEFORMS 

The active sensor transmits a stepped-frequency waveform consisting in a series of K short 

narrowband (ideally monotone) pulses, being the carrier frequency increased pulse to pulse by a

fixed frequency step Δf. We call T2 the temporal interval between two consecutive pulses, so the PRT 

, and the set of K pulses is called burst (see Figure 2-
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$ ' = 3 rect!7 �t − T8
2 � $i�1'T� � nKT��

<

=>�
· e@�A�BC 
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time axis. 

Figure 2-3. Fast time axis for the stepped-frequency waveforms. 

Transmitting N bursts we can obtain N slant range profiles taking a complex sample in the center of 

s for each pulse in the burst (see Figure 2-3) and operating N inverse Fourier 

transforms, one for each burst. The obtained range resolution is: 

Δr � c
2KΔf 
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instantaneous bandwidth and the sampling rate requirements. The changes induced in the D-ISAR 
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being KΔf just the overall spanned bandwidth

frequency step Δf and the pulse duration T

In the general case, the baseband frequenc

in the vector 

such that f=E = f�E + $i −
received by each sensor in the formation are organized in a K×N matrix, each column collecting the 

complex samples relative to a specific burst. 

MIMO CASE 

For the MIMO D-ISAR to work, a set of 

along with the pre-processing needed to correctly separate the receiving channels
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angle distributed ISAR for enhanced cross range resolution of 
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c  
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complex samples relative to a specific burst.  

ISAR to work, a set of stepped-frequency orthogonal waveforms

processing needed to correctly separate the receiving channels

Referring to stepped frequency waveforms the i-th transmitted pulse is a rectangular no

signal, so its frequency baseband response is a sinc function centered in fi and havi

: on this basis two pulses transmitted on two frequencies f1 and f2 such that 
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of the active sensors, we set Tp and Δf as:  

T8 � S 2ΔR
c   &  Δf � S

T8
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Figure 2-4. Frequency vectors for the case S = 2. 
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2.3. FOCUSING TECHNIQUE

The block diagram of the proposed focusing technique is shown in 

equivalent sensors (when S

angle distributed ISAR for enhanced cross range resolution of 

 

Figure 2-5. Baseband responses for the case S = 2. 

Figure 2-6. Sampling for the case S = 2. 

FOCUSING TECHNIQUE 

block diagram of the proposed focusing technique is shown in Figure 2

equivalent sensors (when S = 2, Neq = 2 in the multistatic case and Neq = 3 in the MIMO case).

Figure 2-7. Synthetic bandwidth D-ISAR focusing technique. 
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2-7 for the case of Neq 

3 in the MIMO case). 
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The first step is channel selection, needed in the MIMO case and here explained under the 

hypothesis of waveforms completely overlapped in time domain. Specifically, referring to the case of 

S=2 and Neq=3, for each transmitted burst each equivalent sensor has in input a 2K×1 x vector 

containing the samples taken at time instants S1 and S2 (Figure 2-6). These samples result from the 

coherent superposition of the echoes from the two transmitted waveforms. We aim at obtaining two 

K×1 vectors x1 and x2 equivalent to the vectors obtained if the receiver would sample distinctly the 

two signals taking only a sample in the center of each ΔTs, i.e. in S� = $S� + S�' 2⁄ . To this purpose, 

two operations are performed:  

1. The orthogonality between the transmitted waveforms is used to separate the two 

contributions. The elements [2i-1,2i] of x contain the contributions of the pulses 

transmitted on f=� and f=�, with i = 1,2,...,K. K scalar products are performed to select the 

opportune coefficient: 

xEX LiO = 12 3 xLnO ∙ e�@�A�BYZ[
�=

�>�=��
 (10) 

where h = 1,2 and i=1,2,...,K and the instants are given by S� = S� + (−1)�/(2Δf). 

2.  The reconstruction of the two vectors xh is obtained by means of: 

xELiO = xEX LiO ∙ e@�A�BY(Z]^Z_)�  (11) 

These operations must be performed for all the N transmitted bursts. Therefore, starting from a 

2K×N data matrix, after the separation, two K×N matrices are obtained. 

At this point a comment on the phase error (and Doppler shift) induced by the target motion during 

a single PRT is in order. As known in the case of synthetic bandwidth this Doppler shift can be not 

negligible, differently from the instantaneous bandwidth case (i.e. chirped waveforms). The change 

in the radar-target range due to the motion of the target during the burst duration can cause the 

shift and the blurring of the range Point Spread Function (PSF), [60]; to counteract this effect a 

motion compensation stage should be performed. To this purpose in the past several methods have 

been proposed (e.g. [87]). However we recall that in this paper we focus on targets with negligible 

translation and exploit the rotation motion. Under this hypothesis, the PRF of the system has a lower 

bound imposed by the Doppler bandwidth Bd: 

PRF = 1KT� ≥ Bc = 2D ωλ  (12) 

where D is the maximum target's cross-range extent (diameter of the target area assumed circular), 

ω is the angular speed and λ is the transmitted wavelength. Considering a target scatterer at cross-

range position x() = D 2⁄  (worst case) with respect to the rotation centre the change in the slant 

range distance from the generic antenna and the considered scatterer between the first and the last 

pulse of the burst is always upper bounded by λ/4 when the constraint in (12) is satisfied and 

therefore can be neglected. The shift of the peak of the range PSF (Point Spread Function) can be 

shown, [60], equal to:  
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v)f(T�Δf = Dωλ ∙ ΔrPRF ≤ Δr2  (13) 

where v) is the scatterer radial velocity (evaluated in the worst case for a scatterer at x() = D 2⁄ ), Δr 

is the slant range resolution and the upper bound applies again when the constraint in (12) is 

satisfied. We can observe that the shift is spatially variant (it changes with changing x()) and its 

maximum value is contained in a fraction of the range resolution cell: therefore it does not affect the 

quality of the cross-range PSF; moreover, despite being very limited, it can also be easily 

compensated as explained in the following. Since the blurring of the range PSF appears for radial 

velocities considerably higher than the values causing the shift, [60], this point is not a concern in the 

case under study. Obviously in the case of not negligible translation a proper mocomp stage should 

be applied before going in the following processing steps.  

Considering the transmission of the synthetic bandwidth waveforms and the target rotation, the raw 

data are defined in the wavenumber domain (range-frequency, azimuth-frequency), where the Polar 

Format Algorithm (PFA) operates. The approach here proposed to focus the distributed image is a 

Decentralized Technique for multi-angle ISAR focusing, based on a modified version of the PFA, as in 

[82]. This decentralized approach first focuses N low resolution ISAR images and then combines 

them coherently to achieve the high resolution image. After channel selection, if needed, for each 

branch in the scheme (Figure 2-7) the processing is organized in the following steps: 

1. Modified Polar to Cartesian interpolation which removes the range and Doppler migration 

from single sensor data, sets the same Image Projection Plane (IPP) for the Neq sensors and 

scales the axes as all the acquisitions were monostatic (see Figure 2-8). 

2. Time Selection which is needed when the observations from the different sensors are 

partially overlapped in angle.  

3. Azimuth Fourier transform which allows to go in cross-range domain. 

4. Range shift correction which is performed by multiplying the data by a phase ramp in range 

frequency dimension with slope dependent on the cross-range position. 

5. Range Fourier transform which transforms the data in the range & cross-range domain. 

6. Phase alignment which compensates the different phase terms due to the different slant-

range distances of the N equivalent sensors to the scene centre. 

7. Coherent combination which consists of two operations. The first aligns the time selected 

acquisitions, as the corresponding data were acquired by a single monostatic sensor. The 

processed images are then summed to obtain the distributed ISAR image with improved 

cross-range resolution.  

Note that in order to obtain the low resolution single-sensor ISAR images as intermediate outputs, 

after step 1 we can skip step 2 and perform steps 3-4-5. 
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Figure 2-8. Polar to Cartesian grid for N = 3. 

2.4. SIMULATED PERFORMANCE ANALYSIS 

In this section we show the resulting images for a simulated ship target interested by a constant 

rotational yaw motion of angular speed ω = 0.4 [deg/sec] and a horizontal formation of platforms; 

the angular spacing between the platforms is such that no overlapping or gap is present in the 

equivalent overall view angle. The maximum target extent D is 120m and we choose a PRF value of 

80Hz, therefore fulfilling (12). In order to have a slant range resolution of 0.5m the needed overall 

bandwidth is 300 MHz; since we set the slant range swath ΔR equal to 150m, that is slightly greater 

than D, the Δf is about 1MHz and then the number of sub-samples K is about 300. Therefore the sub-

pulse repetition frequency is PRF ∙ K ≈ 24kHz. 

Figure 2-9 shows the obtained images for the following cases: a) single monostatic channel 

(conventional ISAR) with Δrcr=1.5m; b) multistatic (S=2) with Δcr=0.75m; c) multistatic (S=3) with 

Δcr=0.5m; d) MIMO (S=2) with Δrcr=0.5m. 

The range and cross-range cuts are shown in Figure 2-10 for the target scatter in (30m,7m).  

The quality enhancement moving from conventional to D-ISAR is evident: specifically when S=2 a 

cross-range resolution improvement equal to 2 and 3 are achieved respectively in the multistatic and 

MIMO cases. From the range cuts we observe that, as predicted by the theory, the range PSF is 

exactly obtained in all the considered cases; moreover the result obtained in the MIMO case 

highlight the effectiveness of the proposed set of waveforms. The cross-range cuts underline the 

cross-range enhancement and confirm that the cross-range PSF is not degraded by the use of the 

synthetic bandwidth waveforms. 
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Figure 2-9. D-ISAR images of a simulated ship target – a) Conventional ISAR, b) Multistatic D-ISAR S = 2, c) Multistatic D-ISAR S 

= 3, d) MIMO D-ISAR S = 2. 

 

Figure 2-10. Range and cross range cuts. 

2.5. APPLICATION TO LIVE D-ISAR DATA 

In order to validate the multi-angle D-ISAR concept an experimental campaign has been carried on in 

April 2011. D-ISAR data have been acquired against targets on a rotating turntable in an anechoic 

chamber at the SELEX Galileo base in Caselle (Turin, Italy). A photo of the anechoic chamber is shown 

in Figure 2-11a. 

The measurements are based on the use of a Compact Range system which generates a planar wave 

front in the test zone. The Compact Range System includes the parabolic reflector, the system of 

feeds and the positioner of the target under test. The reflector is an offset parabolic reflector P/N 

5755 made by Scientific Atlanta (Figure 2-11b). The reflector is illuminated by a spherical wave front 

from a transmitting feed located into its focus; the signal from the target is focalized by the reflector 

into its focus where the receiving feed is located. A second receiving feed has been added 60 cm 

apart from the first one, thus giving the second bistatic channel with bistatic angle equal to 4.3°. The 

measurements instrumentation is based on a HP 8510C Network Analyzer (Figure 2-11c). The system 

transmits a stepped frequency waveform in the Ku-band (16.5GHz) with an equivalent overall 

bandwidth of 3GHz and Δf=3.75MHz. The turntable rotation yields an angular separation burst to 

burst of about 0.1°. 
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Figure 2-11. Anechoic chamber at the SELEX Galileo base in Caselle a) Anechoic chamber, b) Parabolic reflector, c) HP 8510C 

Network Analyzer. By courtesy of Selex Galileo. 

The overall experimental setup is thus equivalent to the D-ISAR multistatic case with S=2, with the 

bistatic angle β equal to 4.3°. The equivalent geometry acquisition is sketched in Figure 2-12. The 

antennas are in the (z=0) plane (multi-aspect D-ISAR). In order to obtain a distributed image in the 

Image Projection Plane (IPP) with the distributed LOS aligned to the direction θ0, we need to 

consider the sensor A with the LOS �� = �� − gh and sensor B with the Line-of-Sight  �� = �� + �gh . 

The distributed acquisition is then formed by sensor A, accounting for its monostatic acquisition, and 

equivalent sensor C, accounting for the bistatic acquisition due to sensor B that receives 

transmission from sensor A. Therefore, following the same approach in [82], when an observation 

angle equal to β/2 is available separately at each receiving channel, aiming at achieving the 

maximum resolution improvement, the maximum cross range resolution achievable in the D-ISAR 

image is equal to Δcr=λ/(2β): for fc=16.5GHz we have max Δcr≈12cm.  
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Figure 2-12. Equivalent acquisition geometry. 

The first analyzed target is a grid of metallic cylinders, acting like point scatterers; the framework 

with point scatterers, the metallic cylinders and grid structure are shown in Figure 2-13. 

 

Figure 2-13. Grid of metallic cylinders- a) framework, b) metallic cylinder, c) target structure. 
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To have a square resolution cell in the final image we consider only a portion of the available 

bandwidth (1.24GHz). Figure 2-14 shows the obtained images for conventional ISAR with Δcr=0.24m 

and multistatic (S=2) D-ISAR case with Δcr=0.12m, with the comparison of the cross range cuts. We 

can appreciate the improved in the cross range resolution that is equal to 2 as we expected (this can 

be easily verified looking at the null position of the D-ISAR cross range cut compared with the 

conventional ISAR case).   

 

Figure 2-14. Grid of metallic cylinders D-ISAR images – a) Conventional ISAR, b) D-ISAR, c) Cross range cuts comparison for the 

target fulcrum. 

After the analysis of performance achievable against simple targets such as isolated scatterers or grid 

of scatterers, a complex target has been considered; in particular the target is an aircraft model of an 

ATR 42, of dimensions of about 2×1.5 m
2
, shown in Figure 2-15. 

In this case the overall achievable bandwidth is exploited, hence the slant range resolution is 5 cm. 

Figure 2-16 shows the comparison between the D-ISAR image achieved when an aperture equal to 

β/2 is selected from both the channel (Figure 2-16a) and the conventional ISAR image achieved when 

a view angle equal to β is selected (Figure 2-16b). As we can observe the two images are quite 

similar, and this is confirmed comparing the cross range cuts of the isolated scatterer in ~(0,1.2) m. 

This confirms that the D-ISAR technique allows us to reduce the acquisition time (and therefore the 

global view angle) achieving the same resolution capability.  

 



Chapter 2 – Multi-angle distributed ISAR for enhanced cross range resolution of 
manmade rotating targets  

22 

 

 

Figure 2-15. ATR 42 model – scale 1:20. 

 

Figure 2-16. ATR42 model D-ISAR images – a) D-ISAR for Δθ single sensor equal to β/2 , b) Conventional ISAR for Δθ single 

sensor equal to β, c) Cross range cuts comparison. 
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2.6. CONCLUSIONS 

The multi-angle distributed ISAR technique making use of stepped frequency waveforms has been 

proposed and analysed. Suitable orthogonal synthetic waveforms have been proposed for the MIMO 

case and the required focusing technique has been shown. The target rotation effect during the 

burst time has been analyzed and a range shift correction step has been proposed. The results 

obtained by processing simulated data confirmed that the proposed technique is able to provide an 

increase of the cross-range resolution up to the number of equivalent sensors in the formation; for 

the two platforms configuration, the multistatic configuration provided a cross-range resolution 

improvement factor γcr=2 while with the MIMO D-ISAR γcr=3 has been obtained. The results obtained 

by processing live D-ISAR data making use of stepped-frequency waveforms have also been shown. 

The complete agreement between the results obtained against simulated and real data indicates 

that the performance prediction derived via the theoretical analysis is representative of the 

performance achievable in practical applications. 
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3. TARGET ROTATION MOTION ESTIMATION EXPLOITING DISTRIBUTED 

ISAR DATA 

Generally speaking, the ISAR image is the range-Doppler (RD) plane projection of a 3-D target [58]. In 

the range dimension the resolution of the image is directly related to the transmitted bandwidth 

(and therefore can be a priori set). On the contrary, in the Doppler domain it depends on the 

unknown target’s relative motion [60]. 

The target motion can be divided into rotational and translational motion. Usually only the rotational 

motion contributes to imaging, giving rise to the Doppler gradient that makes the cross range 

resolution possible; in contrast, the translation motion produces unwanted phase error terms that 

yield distortions in the final image, and therefore it must be accurately compensated in order to 

obtain a well focused image. The compensation of the phase error terms due to the translational 

motion is called ISAR autofocus and several techniques can be found in literature (see e.g. [88], [89], 

[90]). However, in this contest we assume already compensated any relative translational motion of 

the target and focus on the rotation motion. 

Most of the characteristics of the resulting image depends on the target rotational motion, which is 

typically is described by a vector ωXYZ, whose components refer to roll, pitch and yaw, [91], [92].First 

of all, the amount of the target rotation, and specifically its overall change of aspect angle, entails 

the cross range resolution of the image. Moreover, the target is imaged on the Image Projection 

Plane (IPP), namely on the plane normal to the effective rotation rate vector ωeff, which is a 

projection of ωXYZ on the plane normal to the Line Of Sight (LOS). Therefore the orientation of the IPP 

depends on the target motion: in particular, top-view images arise when ωeff has only a vertical 

component, while side-views when ωeff has only a horizontal component. 

Since the image quality depends on the intrinsic target motion, ISAR processing could be a 

complicated issue. Specifically, if the target is interested by a slow rotational motion (e.g. a ship 

observed in low sea state condition), its overall change of the view angle will be limited and as a 

consequence the achievable cross-range resolution will be very poor. This is made even worse by the 

constraint to keep limited the coherent processing interval (CPI): the orientation of ωeff changes with 

time and high quality images can be obtained when the rotation axis is almost fixed during the CPI. 

Moreover, automatic target recognition (ATR) systems could require a specific orientation of the IPP 

in order to achieve top-view or side view images (the most useful for classification/identification, 

[93]). 

Since the target motion is usually unknown, it has to be estimated directly to the received signal in 

order to correctly scale and focus the target image. Plus, in order to achieve the images on a desired 

IPP, the knowledge of the horizontal and vertical components of the rotation motion is required.

In the previous chapter we shown that the exploitation of multiple radar sensor observing the 

rotating target from multiple view angles (Distributed ISAR technique) is able to provide an increase 

of the cross-range resolution up to the number of sensors in the multistatic case (one sensor one 

sensor of the formation transmits and the remaining just receive) or even higher in the MIMO case 

(each platform carries an active radar and receives echoes from all the transmissions). In the analysis 

that has been carried on an exact knowledge of the rotational motion has been considered. In the  D-
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ISAR the accurate knowledge of the rotational motion is an essential information to correctly 

combine the signals received from the several sensor; an analysis of the degradation of the 

technique performance when errors on the knowledge of the rotational motion are considered is 

presented in [82]. Moreover, [84] addresses the focusing technique for the case of a motion 

composed not only by the yaw but also by pitch and roll. 

The exploitation of angular diversity is here considered with the aim of target rotation motion 

estimation: we propose the performing of the target rotation motion estimation by means of the use 

of multiple radar sensor (Multi-Sensor (MS) techniques), i.e. using platform formation geometries 

similar to the ones considered in the D-ISAR techniques. We analyze the case of a single active radar 

and two additional receivers and consider two kind of sensors displacement: in the former, we 

consider a multi-aspect formation, i.e. the additional receivers observe the target with the same 

grazing angle of the transmitter but with different aspect angle, while in the latter a joint multi-

aspect multi-grazing formation has been considered, i.e. the three sensors have different grazing and 

aspect angles.  

In both the scenario Maximum Likelihood (ML) estimators have been analyzed and their theoretical 

performance have been evaluated by means of the Cramer Rao Bound (CRB). Since the ML is highly 

dependent on the target model, other model-free estimation schemes are here considered, based 

on the maximization of the contrast and on the minimization of the entropy. The performance 

analysis for simulated scenario is presented and the impact of non-idealities is analyzed. The 

theoretical results for the multi-aspect case are also validated by applying the proposed MS 

techniques to D-ISAR data acquired in anechoic chamber. 

In ISAR literature we can find several target rotation motion estimation techniques concerning 

Single-Sensor (SS) ISAR data (as examples [94], [95], [96]). In other works, rotation motion estimation 

has been addressed using planar geometries: in [64], [65] and [66] the double angular diversity is 

exploited in order to find the position of the scatterers resolving the ambiguity in the Range-Doppler 

plane arising when scatterers having different position are projected onto the same 2D cell 

exploiting interferometric approaches (InISAR); in [97] the use of multiple receivers is considered in 

order to achieve a sequence of ISAR movies enabling to estimate the rate of change of the Doppler 

frequency and then the target motion and the 3D shape of the observed object. However, these 

techniques considered small values of the distance among the several receivers (about 1m), whereas 

in this work we exploit the angular diversity in a multi-platform system, i.e. with considerably greater 

distances between the receiving channels.  

3.1. TARGET AND SIGNAL MODEL 

We consider a moving target, such a ship, modeled as a rigid body in the far field with K dominant 

scatterers, with complex reflectivity constant during the time aperture T. Its motion is decomposed 

as the translation of a reference point (assumed negligible or already compensated) and the rotation 

of the body around that point.  

The considered MS formation is composed by three platforms: platform C is equipped with an active 

senor, while A and B carry receiving only devices. In the XYZ reference system centered in the target 

fulcrum the Г-th sensor (Г = A, B, C) is located in LR� tan(ζk) −R� R� tan(ψk)O!, being R0 the 

distance between the sensor C and the target fulcrum, ζk and ψk the aspect and grazing angle 
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concerning the sensor Г, see Figure 3-1; without loss of generality we consider ζm = ψm = 0°. The k-

th scatterer is located in Lx�� y�� z��O! at aperture centre t0 and its rotation is described by the 

rotation vector rstu  =  Lωs ωt ωuO!  =  Mw ∙ Lω)xGG ω8=C(E ωyz{O! , whose components 

represents the rotation rate around the X, Y and Z axes respectively; Mθ is the rotation matrix 

accounting for the initial heading angle of the target. 

For each platform belonging to the formation we can introduce the (O,H,R,V) reference system 

representing the point of view of the corresponding radar, [96]. The R-axis (|}  unit vector) is the LOS 

direction, the H-axis is given by the unit vector ~� normal to |}  and belonging the (X,Y) plane and the 

V-axis is given by the unit vector �� normal to the (R,H) plane. The three HRV systems are highlighted 

in Figure 3-2 for the geometry in Figure 3-1. 

 

Figure 3-1. Multi-sensor ISAR geometry. 

 

Figure 3-2. Radars point of view reference systems. 

The change from reference (O,X,Y,Z) to (O, H
Г
,R

Г
,Z

Г
) for sensor Г can be expressed by means of the 

matrixes Mψ
Γ  and Mζ

Γ, which describe respectively an anticlockwise rotation of the reference system 

around the X axis with the grazing angle ψk and a clockwise rotation around the Z axis with the 

aspect angle ζk.  

The rotation rate vector as viewed from the sensor Г in the HRV system can be expressed as a 

function of its horizontal, radial and vertical components as: 
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rΓ = Lω�k ω�k ω�k   O! = M�k  M�k rstu.   (1) 

Moreover, in the same reference system, the scatterer coordinates at aperture centre t0 and at a 

generic slow time instant t can be expressed respectively as: 

�h�,Γ�  r�,Γ�  v�,Γ� �! = Mψ
Γ  Mζ

Γ Lx�� y�� z��O!  (2) 

Lh�,Γ(t) r�,Γ(t) v�,Γ(t) O! = M�Γ M�Γ M�Γ  �h�,Γ� r�,Γ� v�,Γ� �!
 (3) 

where Mγ
Γ is the matrix concerning a counter-clockwise rotation around the γ-axis (γ = H,R,V). The 

amount of the rotation is described by the angle  �Γ (t) swept around the γ-axis, changing with time 

and depending on ωγ
Γ.  

The three r�,k�  are the slant range distances of the k-th scatterer measured by the Г-th sensor, i.e. are 

known quantities. The horizontal and vertical components of the scatterer as viewed by the 

reference sensor could be obtained from the three r�,Γ�  coordinates resolving the linear system given 

by: 

L� = � (4) 

where L is the matrix accounting for the system geometry given by: 

L = �S��C�� S��S�
 C�
 S�
� (5) 

� = �h�,m� v�,m� �!
 and � = �r�,m� C��C�� − r�,	� r�,m� C�
C�
 − r�,
� �!

 is the is the 2×1 vector of 

known terms being Cx = cos(x) and Sx = sin(x). Hence, from (2) we could have the h�,m�  and v�,m�  

coordinates for all the sensors. However, this is possible if and only if L is invertible, i.e. if and only if |L| ≠ 0; this condition depends on the sensors displacement being |L| = S��C��S�
 − S�
C�
S�� . 
We have to analyze the cases of multi-aspect and joint multi-aspect multi-grazing formation: 

• multi-aspect case: in this case we have ψ	 = ψ
 = ψm = ψ; in the analyzed cases we set ψ = 0, and therefore |L| = 0. If ψ ≠ 0, |L| ≠ 0 and in principle we could recover h�,m�  and v�,m� ; however in practical application (4) is a perturbed linear system, since, as well as error in 

the knowledge of the sensors position, the precision whereby the slant range values are 

measured is limited by the transmitted bandwidth. To recover the scatterer position in  

presence of errors the linear system has to hold a good degree of stability, i.e. it has to be a 

well-conditioned problem. It is easy to prove that if the geometry of the observation has a 

low grazing angle (condition fulfilled for our case of long range surveillance), the inversion 

problem is highly ill-conditioned so that the perturbation will amplify greatly the errors in the 

solution. For this reason, in the multi-aspect case we consider as unknown parameters the 

horizontal and vertical positions of the scatterers. 

• joint multi-aspect multi-grazing case: since the double angular diversity, L is nonsingular; 

moreover, (4) has a good degree of stability and also in presence of errors due to imprecision 

in sensors positions and the quantization of the slant range axes we are able to obtain all the 

HRV scatterers coordinates in (2). For this reason, in the joint multi-aspect multi-grazing case 
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we consider as known parameters the coordinates of the scatterers. We point out that the 

minimum number of needed channels to resolve the system is three; if more than three 

receivers are considered, we could always obtain the desired coordinates using (4), as long as 

we have both the aspect and grazing diversity. In such case the minimum square error 

solution of the system could be adopted. 

The signal received by sensor Г pertaining to the k-th scatterer is an echo of the transmission from 

sensor C. Neglecting the complex reflectivity of the scatterer and the constant phase term due to the 

distance between sensor Г and the scatterer fulcrum, it can be expressed as a function of the 

component r�,k(t) in (3) and the wavelength λ as: 

s�,k(t) = exp �−j 2πλ �r�,m(t) + r�,k(t)�� (6) 

In the hypothesis of uniform rotations (ϑ�k(t)  = ω�kt), choosing C as the reference sensor in the 

formation (rm = r) and expanding in Taylor series at second order the phase term, (6) can be 

approximated as: 

s�,k(t) ≈ exp �−j 2πλ �α�,k(r) ∙ t + β�,k(r) ∙ t��� = exp�−jϕ�,k(t)� (7) 

The parameter α�,k(r) is the scatterer Doppler frequency at time t0, while β�,k(r) is the focus 

parameter: 

α�,k(r) = 3 α�,k�
�>�,�,�β�,k(r) = 3 3 ω�ω�β�,k��

�>�,�,��>�,�,�
 (8) 

The parameters α�,k�
 and β�,k��

 in (8) are quantities depending on system geometry and scatterers 

position. They can be expressed as linear combination of the HRV scatterer position with respect to 

the reference sensor: 

α�,k� = −v�,m� − v�,k� C�� − h�,k� S��S��α�,k� = h�,k� S��C�� − v�,k� S�kα�,k� = h�,m� + h�,k� C��
β�,k�� = r�,m�

2 + r�,k�
2 �C��� + S��� S��� � − v�,k�

2 S��� S���
β�,k�� = r�,k�

2 �S��� + S��� C��� � − v�,k�
2 �S���C��� �

β�,k�� = r�,m�
2 + r�,k�

2 C��� + v�,k�
2 S���

β�,k�� = β�,k�� = r�,k�
4 S����1 − S��� � + v�,k�

4 S���S���
β�,k�� = β�,k�� = v�,k�

2 S��C��� − r�,k�
4 S��S���

β�,k�� = β�,k�� = r�,k�
4 C��S��� − v�,k�

2 C��C��� − v�,m�
2

 (9) 
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In the hypothesis of K dominant scatterers, in K different range cells, embedded in white Gaussian 

background, the signal received by the sensor Г for the k-th cell in the m-th slow time instant (m = -

M/2,...,M/2) is written as: 

g�,k(t¢) = A�,k ∙ s�,k(t¢) + η�,k(t¢)  (10) 

where A�,k is the unknown but deterministic complex reflectivity as viewed by sensor Г and η�,k is 

the background contribution with power σ�� . Note that the assumption of a white Gaussian 

background can be acceptable since Doppler filtering can be applied to the selected target dominant 

scatterers thus discarding the contribution of clutter. 

The joint probability density function of the collected data is therefore given by: 

¦§(¨) = (π�<©σ��∙�<©)�� exp �− 1σ�� (¨ − Sª)«(¨ − Sª)� (11) 

[ ]TT
K

T
2

T
1   ...    gggg =  is the 3KM × 1  data vector with [ ]TT

Ck,
T

Bk,
T

Ak,     gggg =k  and 

( ) ( )[ ]TM/2Γk,M/2Γk,Γk, tg ... tg +−=g , [ ]TK21  ...  aaaa =  is the 3K × 1  complex amplitude vector with 

[ ]Ck,Bk,Ak,k A A A=a  and S is the 3KM × 3 phase matrix, where the k-th 3M × 3 block is a diagonal 

block matrix and ( ){ } ( ){ }[ ]TM/2Γk,M/2Γk,Γk, tjexp ... tjexp +−= ϕϕs is the M × 1 block; † is the hermitian 

operator. 

3.2. MULTI-SENSOR ESTIMATION TECHNIQUES 

In the phase term of (7) the two contributions depending on the target rotation rate vector are the 

scatterer Doppler frequency α�,k(r) (linear with t) and the focus parameter β�,k(r) (quadratic with 

t). As well known, for a point scatterer the correct compensation of the β�,k(r) allows to achieve an 

azimuth Point Spread Function (PSF) with a resolution comparable with the theoretical limit and 

which position is related to the α�,k(r). Most of the conventional motion estimation technique are 

based on the compensation of the quadratic term, e.g. [94], looking for the ω value which maximizes 

some specific cost functions related to the quality of the achieved PSF. In our multi-platform case the 

view angles diversity results in different Doppler positions of the scatterer, since the different IPPs. 

Therefore we can exploit this diversity to improve the performance of the estimation process. 

The main idea here is to perform an azimuth coherent compensation in two steps: Doppler based IPP 

alignment depending on functions of α�,k(r)  and dechirping based on β�,k(r)  for the signal 

received by each sensor for each selected range cell. Signals from the different sensors are then 

properly processed and combined in order to carry on the optimization process resulting in the 

estimation of the rotation r�  (Figure 3-3). The innovative contribution is to exploit not only the 

azimuth compression in order to obtain a well-focused PSF, but also looking for the r value resulting 

in the best IPPs alignment. 

For both the considered geometries, the Maximum Likelihood estimation technique (MS-ML) will be 

presented and analyzed. As well known, this kind of estimation can be proven to reach the best 

accuracy (i.e. the Cramer Rao Lower Bound, CRB), but has the main drawback of being dependent on 

the target model. Therefore it is of great interest to investigate also different model-free criteria. 
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Specifically we consider MS model free estimation techniques based on the maximization of the 

peak power and of the contrast and on the minimization of the entropy. 

 

Figure 3-3. Multi-sensor motion estimation processing scheme. 

3.3. MULTI-ASPECT FORMATION 

The considered geometry is depicted in Figure 3-4 and we consider the target interested by a 

dominant yaw motion. It should be pointed out that the dominant yaw motion case applies to a 

large number of situations: in ISAR imaging, to turning ground targets, to air targets undergoing yaw 

maneuvers and to ship targets changing their route; in hybrid SAR/ISAR imaging, to the scatterers in 

the imaged scene after translation motion compensation of scene center. 

 

Figure 3-4. Multi-aspect ISAR geometry. 

Under the hypothesis of negligible radial and horizontal component of the rotation rate vector, we 

can write the phase of the received signal in (7), neglecting the constant terms, as: 

ϕ�,k(t) = − �Ā �α�,k� ω�t + β�,k��ω�� t��  (12) 

Considering negligible grazing angle, we can write: 

α�,k = ω��h�,m� + h�,m� cos ζk + r�,m� sin ζk� (13) 
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being C the reference sensor we can set ζm = 0° and therefore α�,m = 2ω�h�,m� , representing the 

scatterer Doppler frequency as viewed by the reference sensor. Because of the different view angle, 

the scatterer will be projected onto different Doppler cell in the three different IPP; the Doppler Shift 

of the k-th scatterer as viewed by the Г sensor with respect to α�,m can be written as: 

Δf�,Γ = α�,( − α�,Γ = ω��h�,m� �1 − cos ζ
Γ
� − r�,m� sin ζ

Γ
�  (14) 

We point out that both α�,m and Δf�,Γ depend on, as well as the target rotation rate, the unknown 

horizontal position of the scatterer. However, while reference scatterer Doppler frequency has a 

strong dependence on the h�,m� , in the Doppler shifts this can be neglected: for all the cases of 

interest, cos ζ
Γ

≈ 1, since the differences in the view angle among the several sensors have to be 

keep limited in order to observe the same scatterer reflectivity. Therefore we can approximate the 

Doppler shifts as: 

Δf�,k ≈ −ω�r�,m� sin ζ
Γ
 (15) 

and therefore: 

α�,k = α�,m�h�,m� � − Δf�,k(ω�) (16) 

In (16) we have considered α�,m depending only on h�,m� : even if the target rotation rate would be 

known, however we cannot know the scatterer Doppler cell before the azimuth compression. Since 

the scatterer slant range position is a measured quantity, the only unknown parameter in its 

expression is ω�; the approximation in (15) means that the term h�,m� �1 − cos ζ
Γ
� does not entail a 

change of the Doppler cell for the scatterer. 

The Focus Parameter is given by: 

β�,k = β�,k��ω�� = ω��2 �r�,m� (1 + cos ζk) − h�,k� sin ζk� ≈ ω�� r�,m� = β� (17) 

where again the approximations cos ζ
Γ

≈ 1 and sin ζ
Γ

≈ 0 hold. 

Considering (16) and (17), the phase term in (12) can be expressed as: 

ϕ�,k(t) = − 2πλ ��α�,m − ω�r�,m� sin ζ
Γ
�t + ω�� r�,m� t�� (18) 

3.3.1. ESTIMATION TECHNIQUES 

Based on (11) and accounting for the phase model in (18), the MS-ML estimator can be proven 

(appendix A1) being equal to: 

ω��±² = arg max´µ ¶3 arg max·¸,¹ ¶3º»�,k« ¨�,kº�
k

¼<
�>�

¼ (19) 

The MS-ML estimate is the ω�� value which maximizes the output of the scheme in Figure 3-5: for 

every ωV value under test, the signal from the k-th range cell is first re-aligned to its Doppler 

frequency (as viewed in the reference IPP concerning the sensor C) and dechirped, then it is Fourier 
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transformed. For each cell the squared modulus of the re-aligned, dechirped and Fourier 

transformed signals from each sensor are averaged. The value of the rotation rate which maximizes 

the signal mean power is assumed as the estimated value ω��±² . 

The ML is a "local" cost function: it means that the ω� ©½ value is selected as that value providing the 

highest averaged (over the available range bins and sensors) peak power. Therefore in the multi-

aspect formation case the ML technique corresponds to a peak power (PP) technique.  

Different criteria can be based on a “global” view of the output signal. We apply three model free 

objective functions: contrast optimization for the amplitude (AC), for the intensity (IC) and entropy 

minimization (He). Their processing scheme are obtained by replacing the evaluation of the averaged 

peak power after the fusion of the data from different sensors and range bins has been carried on 

(see Figure 3-6).  

 

Figure 3-5. Multi-aspect formation. Multi-sensor Maximum Likelihood processing scheme. 

       

Figure 3-6. Multi-aspect formation. Multi-sensor model free processing scheme. 
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The ω��¾¹  and ω���¹  estimates are the ω�  value which maximize the contrast (evaluated on the 

amplitude and on the intensity respectively and averaged over the K range bin) of the re-aligned, 

dechirped and averaged intensity image Ik: 

ω��¾¹ = arg max
ωµ ¶3 IC�

<
�>�

¼
ω���¹ = arg max

ωµ ¶3 AC�
<

�>�
¼ (20) 

where ACk = std[√Ik]/E[√Ik] and ICk = std[Ik]/E[Ik]. 

The ω��ÀÁ  is the ω� value which minimizes the mean entropy over the K range bin: 

ω��ÀÁ = arg min´µ ¶3 He�
<

�>�
¼ = arg min´µ ¶− 3 3 P�¢ ln P�¢

©
¢>�

<
�>�

¼ (21) 

where P�¢ = I�¢ ∑ I�¢©¢>�Ä . 

3.3.2. THEORETICAL ESTIMATION ACCURACY 

Based on the phase model in (18), it can be shown (see Appendix B1) that the maximum achievable 

accuracy on the estimation error on ω�, defined as δω� = ω�� − ω��  (being ω��  the true value of the 

rotation rate), can be expressed as: 

CRB ≐ σωµ� = 1
χ + μ − ξ

 (22) 

where 

χ = 2π�MT�
λ

�
σ��

4ω�T�45  3 3 r�,m� M�,Γ�<
�>�Γ

 (23) 

μ = �π_©!_
λ

_
σ[_ ∑ ∑ �)¸,¹_ ©¸,Γ_ È=�_�ζΓ�� �<�>�Γ   (24) 

ξ = 2π�MT�
λ

�
σ�� 3 r�,m� �∑ M�,Γ� sinζ

ΓΓ ��
∑ M�,Γ�

Γ

<
�>�

 (25) 

The quantity χ depends on the quadratic term in (18) and therefore it takes into account for the 

dechirping operation. If we would not express the scatterer Doppler frequency as a reference 

Doppler frequency plus a Doppler shift but we would express the phase of the received signal as: 

ϕ�,k(t) = − 2πλ �α�,kt + ω�� r�,m� t�� (26) 
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the corresponding ML estimator would be (see Appendix A1) 

ω��ZZÉÊ = arg max
ωµ ¶3 3 arg max

α¸,Γ º»�,Γ« ¨�,Γº�<
�>�Γ

¼ (27) 

and the corresponding CRB (see Appendix B1) would be: 

CRBZZÉÊ = �Ë  (28) 

This estimator corresponds to perform the estimation separately for each channel compensating 

only the quadratic term,  avoiding the re-alignment of the several IPP, i.e. the Doppler shift 

compensations to the IPP of the reference sensor, and then maximizing (minimizing) the averaged 

objective function (SS
av

). 

The quantities μ and ξ derive from the effect of the Doppler shift. Specifically μ is a gain in the 

estimation accuracy: in the distributed estimation we look for the ω value that not only provides the 

best cross range compression of the signals, but also the best IPPs alignment. We underline that, 

since  ÌÍ =  0°, this term does not depend on the signal power received by the reference sensor. On 

the contrary ξ is a reduction of this gain depending on the difference between the signal power 

received by the sensors A and B: if one is much greater than the other, the Doppler re-alignment 

becomes less important than the dechirping. It is worth noticing that, in the hypothesis of a limited 

angular separation between the sensors (condition that should be fulfilled for the imaging purpose) 

it is reasonable to assume that ºA�,kº� = |A�|�, ∀Γ∈LA, B, CO: in such a case ξ is equal to zero. 

We consider the three sensors in Figure 3-4 with ÌÑ = −ÌÒ = 5°, null grazing angle, λ = 3 cm, 

observing a ship target with an initial heading angle θ0 = 45° interested by a yaw motion given by ωV 

= 0.0541 rad/sec. In Figure 3-7 we show the comparison between the theoretical standard deviation 

of δωV as a function of the integrated signal to noise ratio SNR, defined as SNR�,Γ = M ºA�,Γ� º σ��⁄  and 

hereinafter assumed the same for all the scatterers and sensors, for a bow scatterer of the ship with 

T = 0.56 s (corresponding to a cross range resolution Δrcr = 50 cm); blue plot refers to the SS case, the 

green plot to the SS
av

 case, i.e. the MS case exploiting only the quadratic term (dechirping) and 

therefore with only the χ contribution, the red plot to MS case with only the μ contribution, i.e. 

exploiting only the linear term (Doppler re-alignment) and finally the black plot to the MS overall 

bound in (22). The quantity ξ is assumed to be zero. As it is apparent, the main contribution in the 

estimation accuracy improvement with respect to the SS case is due to the Doppler Shift re-

alignment; moreover this term represents just the benefit of the distributed approach with respect 

to the estimation achieved averaging the single sensor dechirping-based objective functions 

(σ´µ� = 1/χ
 

case).  

Figure 3-8 shows the theoretical standard deviation of the estimation error σωµ�  normalized to ω��  as 

a function of the slant range of the scatterer as viewed by the reference sensor for several SNR 

values, using the SS, SSav and MS techniques. The simulated scenario is the same one of Figure 3-7. 

Different colors represent different SNR values, while different symbols refer to different estimation 

approaches. As it is apparent, the normalized accuracy improves as rm� increases; moreover, fixing rm�, 

the error decreases when SNR increases. It is also visible how the MS approach outperforms SS/SSav 
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techniques, implying that, for a specific SNR, a given normalized accuracy can be achieved with 

targets of considerably smaller size moving from SS, SSav to the MS case. 

 

Figure 3-7. Theoretical standard deviation of the estimation error as a function of the SNR for a bow scatterer.  

 

Figure 3-8. Theoretical normalized standard deviation of the estimation error as a function of the scatterer slant range. 

3.3.3. SIMULATED PERFORMANCE ANALYSIS 

To confirm the theoretical results presented in the previous section, a simulated analysis is here 

performed. We considered the case of a single range cell (K = 1) and analyzed two different 

situations: in the first one we considered a single scatterer per range cell, matching the MS-ML 
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target model, in the second one we considered the presence of several scatterers. This allowed us to 

test the MS-ML technique when the application doesn’t match the analytical model for the target 

and to compare its performance with respect to the other model-free MS estimation techniques 

here investigated. 

In the first case we considered the same study case as in Figure 3-7. We applied the proposed MS 

techniques and compared the performance to the case in which the averaged single sensors 

estimation is performed. Figure 3-9 shows the normalized standard deviation of the estimation error 

as a function of SNR for the single sensor averaged and distributed techniques (blue and red curves 

respectively). As it is apparent, all the MS techniques are very close to the theoretical results 

represented by the CRBs, except the maximization of the contrast on the amplitude AC. Moreover it 

could be shown that in this same condition all the considered techniques are almost unbiased. 

 

Figure 3-9. Simulated normalized standard deviation of the estimation error for a bow scatterer as a function of the SNR. 

The case of several scatterers in the same range cell has been analyzed by considering two scatterers 

with amplitude A1 and A2 and phase difference Δφ uniformly distributed in [0, 2π]. The difference of 

the horizontal coordinates Δh between the two scatterers is uniformly distributed in [0.5, 1.5]·Δrcr, 

i.e. the main lobe of the second scatterer pulse response is comprised between the main lobe and 

the second right lobe of the first scatterer. The impact of the interference among the scatterers is 

studied in noise free conditions by evaluating the mean value and the standard deviation of the 

estimation error and the average cost function as obtained by averaging over 10000 realizations of 

the phase and cross-range difference among the scatterers. 

Figure 3-10 shows the objective functions averaged over the trials for the case A1 = A2 as a function 

of the normalized estimation error (to compare the plots of all the objective functions in the same 

figure, instead of He we plot 1/He). We observe that the ML curve presents a bimodal behavior, 

having a minimum in correspondence of the true value of the rotation speed. This is due to the fact 

that the ML estimator has been formulated for the case of one single scatterer per range cell and we 
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applied it for a different target model. This demonstrates how strong is the model dependence in the 

MS-ML technique. The AC, IC, He cost functions don't depend on the target model: even if the 

presence of the second scatterer worsens the estimation, they maintain the maximum just in 

correspondence of the true value of the rotation speed. 

In Table 3-1 are reported the mean and the standard deviation of the normalized error (ηÕ´Ê  and σÖ´Ê, respectively) for the simulations of two scatterers in a range cell with different ratios between 

amplitude values. It is apparent how the MS model-free techniques outperform the MS-ML and at 

the same time how the performance worsens as the amplitudes of the two scatterers become 

comparable. 

 

Figure 3-10. Multi-aspect formation. Normalized objective functions for the case of two scatterers in the same range bin with 

equal amplitude. 

A2/A1 
ML IC AC He 

ηÕ´Ê σÖ´Ê ηÕ´Ê σÖ´Ê ηÕ´Ê σÖ´Ê ηÕ´Ê σÖ´Ê 

0.1 0.0125 0.2798 -0.0025 0.2802 0.0015 0.2659 -0.0026 0.2719 

0.5 0.0096 1.2758 0.0093 1.1418 0.0038 1.1100 0.0027 0.9814 

1.0 -0.1024 2.2920 -0.0327 0.9342 -0.0779 1.9969 -0.0122 0.5180 

1.5 -0.0336 1.5993 -0.0254 1.3620 0.0579 1.7244 -0.0156 1.1215 

TABLE 3-1. MEAN AND STANDARD DEVIATION OF THE NORMALIZED ERROR OF THE ROTATION SPEEED ESTIMATION FOR THE 

SIMULATED DATA FOR THE CASE OF TWO SCATTERERS IN THE SAME RANGE BIN [%]. 

So far we have considered the case of a dominant vertical motion. Now we show how the 

performances of the MS techniques degrade in the case of a 3D motion, namely when yaw, pitch and 

roll are simultaneously non null. 
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Figure 3-11 shows the bias of the normalized estimation error on the vertical component of the 

rotation vector when the target is interested by a 3D motion, described by: r = Lω� ω� ω�O =L0.0491 −0.0215 0.0228Orad/sec. Figure 3-11a is for the case of a bow scatterer, while Figure 

3-11b is for a mainmast scatterer. In both the cases we can observe the great bias of the estimation 

error, making the multi-aspect technique non applicable when the horizontal and radial component 

of the rotation motion are not negligible. 

 

Figure 3-11. Bias of the normalized estimation error on the ωV for a ship target undergoing a 3D motion – a) bow scatterer, b) 

mainmast scatterer. 

3.4. JOINT MULTI-ASPECT – MULTI-GRAZING FORMATION 

In the case of a joint multi-aspect multi-grazing displacement of the sensors, we investigated the 

particular case of an L shape formation: sensor A and C have the same grazing but different aspect 

and sensor B and C different grazing but same aspect (see Figure 3-12). We underline that it is a 

special case of sensors displacement and the quality of the results to follow hold for different 

formation as long we have both the aspect and grazing diversity. In regard to the target motion, we 

consider a yawing, pitching and rolling target, so that the all of target rotation vector components in 

(1) are simultaneously not null. 

As discussed in section 3.1, for this kind of geometry the parameters in (9) can be assumed known, 

and it is the main difference with respect to the multi-aspect formation case; moreover, since now 

we are considering a three-dimensional motion, instead of a scalar value we have to estimate a 

vector. 
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Figure 3-12. Multi-aspect/multi-grazing ISAR geometry (special case of the L shape formation). 

 

3.4.1. ESTIMATION TECHNIQUES 

Based on (11) and accounting for the phase model in (7) when, the MS-ML estimator can be proven 

(Appendix A2) equal to: 

r� ©½ = arg maxr Ú∑ ∑ º»�,Γ« ¨�,Γº�<�>�k Û  (29) 

Based on (29), the MS-ML estimate of ω is the ω̂ value which maximizes the output of the scheme 

in Figure 3-13. For every ω under test the signal from the k-th range cell is first re-aligned to the zero 

Doppler frequency and dechirped, then a coherent integration is performed; for each cell the powers 

of the signals received from each sensor are averaged. The value of the rotation rate which 

maximizes the signal mean power is assumed as the estimated MLω̂ . 

The processing schemes of the model free estimation techniques can be obtained exploiting the 

compensation of the Doppler shift Δfk,Г = αk,Г - αk,C, as in the multi-aspect case, rather than the 

Doppler frequency αk,Г, as in the MS-ML case. Δfk,Г is the shift in the Doppler position of the k-th 

scatterer as viewed by the sensor Г with respect to sensor C. The corresponding processing scheme 

is sketched in Figure 3-14. 

Apart from the specific cost function, the main difference between this scheme and the MS-ML is 

represented by the FFT block; in the ML case we are looking for the ω value which maximizes the 

signal mean power at the zero Doppler frequency, namely we are looking at the power of the 

scatterer in a constrained Doppler filter. In contrast with the model-free cases we look for the ω 

value which maximizes the cost function evaluated over all the Doppler filters. 

We analyze four model free objective functions: peak power (PP), contrast optimization for the 

amplitude (AC) and for the intensity (IC) and entropy minimization (He). 

The PPω̂ estimate is given by: 
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r� ÜÜ = arg maxr Ú∑ argmax·¸,¹ Ú∑ ºs�,k∗ g�,kº�k Û<�>� Û  (30) 

The PP is a local cost function: among all the tested ω values, the chosen rotation rate vector is the 

one maximizing the output peak power. 

The r� Þm, r� Þm and r� Þm are the same in (20) and (21), respectively, where the scalar ωß is replaced by 

the vector r. 

 

 

Figure 3-13. Joint Multi-aspect-multi-grazing  formation. Multi-sensor Maximum Likelihood processing scheme 

 

Figure 3-14.  Joint Multi-aspect-multi-grazing  formation. Multi-sensor model free processing scheme. 

3.4.2. THEORETICAL ESTIMATION ACCURACY 

It could be shown (Appendix B2) that the second moment of the estimation error for the γ-th 

component of the rotation vector  (defined as δωγ = ωγà − ωγ
�, where ωγà and ωγ

� are the estimated 

and true value of ωγ)  is given by: 
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Figure 3-15 shows the theoretical normalized standard deviations of the estimation error on ωH and 

ωV (log-scale) as a function of the r and h coordinates as viewed by the sensor C for different v 

coordinate values. The integrated signal to noise ratio, defined as SNR�,k = MºA�,kº� σ��S , is assumed 

to be independent on Г and equal to 30 dB (i.e. SNR�,k = SNR = 30 dB) and the CPI is equal to 0.55 s, 

resulting in a cross-range resolution of about 50 cm. The platform formation is the same in Figure 

3-12 with Δζ = Δψ = 5°, λ = 3 cm, observing a ship target with initial heading angle θ = 45° interested 

by a constant rotational motion given by ω = [ωH, ωR, ωV] = [0.0491, -0.0215, 0.0228] rad/s and a 

dominant scatterer in the range bin is assumed. 

Although the CRB values in Figure 3-15 depend on the considered study case, it could be proven that 

the qualitative trend of these figures remains unchanged for different cases. This allows us to make 

same general considerations on  the suitability of a scatterer for the estimation of a specific 

component of the motion. For example Figure 3-15a shows that in order to estimate ωH, a propitious 

scatterer lying on the (R,H) plane is the one with a h coordinate great enough, regardless of the r 

coordinate; the reverse situation could be shown for the radial component, since the figures of the 

σR/ωR cases are very similar to the σH/ωH ones but rotated of 90°; Figure 3-15d,e,f show that the 

most propitious scatterer to be selected for the ωV estimation is the one with a small vertical 

coordinate, while in the case of v not null is better to select a scatterer with almost the same h and v 

coordinates. 
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Figure 3-15. Theoretical normalized standard deviation of the estimation error (log-scale) as a function of the plane (R,H) as 

viewed by the sensor C for different v coordinates - a) σH/ωH, v=0 m ; b) σH/ωH, v=15 m ; c) σH/ωH, v=30 m ; d) σV/ωV, v=0 m ; e) 

σV/ωV, v=15 m ; f) σV/ωV, v=30 m. 

3.4.3. SIMULATED PERFORMANCE ANALYSIS 

The performance of the MS techniques are analyzed against simulated data for the same parameters 

in Figure 3-15. Figure 3-16 shows the normalized standard deviation (STD) of the estimation error on 

ωγ for a bow scatterer with aperture time Tlow-res ≈ 0.18 s and Thigh-res ≈ 0.55 s. The proposed MS 
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techniques are able to estimate separately the components of ω and it could be shown to be almost 

unbiased. It is also apparent that the estimation accuracy improves with finer cross-range resolution 

(i.e. longer CPI). Moreover MS-ML shows the best accuracy, reaching the theoretical CRB, with 

respect to the other MS techniques.  

Figure 3-17 shows the normalized STD of the estimation error for a main mast scatterer in the case 

of sinusoidal yaw (amplitude Ay=1°, frequency fy = 0.2083 Hz), pitch (Ap = 1°, fp = 0.178 Hz) and roll (Ar 

= 5°, fr = 0.091 Hz), being ωyaw, ωpitch and ωroll defined as their first derivative at t = t0 and leading to 

the same ω as in the constant rotational motion case. T is set to 0.55 s. As it is apparent, keeping 

reasonably limited the CPI, the MS estimation techniques with non-uniform rotational motion have 

nearly the same performance as in the constant rotational motion case. 

Figure 3-18 shows the results obtained in the case of the estimation performed using together the 

bow and the main mast scatterers, in the case of constant rotational motion and T ≈ 0.55 s. From the 

comparison with the curves in Figure 3-16 and Figure 3-17 referring to the same case of motion and 

aperture time, some considerations can be done. In the K = 2 case (bow and mast jointly), the 

accuracy of the model-free techniques improves with respect to the accuracy in the K = 1 cases (bow 

and mast separately) being however very close to the performance provided by the best K = 1 case. 

On the contrary, ML estimator provided a great gain in the estimation accuracy moving from K = 1 to 

K = 2. This different behavior can be explained by recalling that the ML technique has a strong 

sensitivity to the Doppler alignment, namely to the compensation of the linear part of the phase. 

Moreover it could be proven that an estimation based on the Doppler alignment only is not possible 

when K = 1 (ill-conditioned problem), whereas it becomes possible when K > 1. This explains why 

moving from K = 1 to K = 2 the ML technique greatly outperforms the other MS techniques. 

 

Figure 3-16. Normalized STD of the estimation error on ωH, ωR and ωV for a bow scatterer with constant rotational motion. 

 

Figure 3-17. Normalized STD of the estimation error on ωH, ωR and ωV for a main mast scatterer: constant vs sinusoidal 

rotational motion. 
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Figure 3-18. Normalized STD of the estimation error on ωH, ωR and ωV using both bow and main mast scatterers with constant 

rotational motion. 

Figure 3-19 shows the normalized STD of the estimation error on ωv when the ideal compensation of 

the linear phase terms is performed (already realigned IPPs) and only the focus parameter (curves 

labeled with subscript β) contributes to the estimation,  in comparison with the output of the MS 

techniques previously described. We analyzed the bow scatterer case with T ≈ 0.18 s. It is apparent 

the improvement in the estimation performance due to the exploitation of both the Doppler 

frequency realignment and dechirping, for the special case of limited aperture time. 

 

Figure 3-19. Normalized STD of the estimation error on ωV for a bow scatterer: dechirping vs Doppler realignment + dechirping 

based techniques. 

So far we have assumed the exact knowledge of the slant range positions of the scatterers. In 

practical situations, the precision whereby the slant range values are measured is limited by the 

transmitted bandwidth. Here, we analyze by simulation the performance of the MS techniques when 

an error on the knowledge of the r coordinates is taken into account. Specifically we assume the 

measures of the three slant range coordinates affected by independent errors with uniform 

distribution between [-Δr/2 ; Δr/2], being Δr the slant range resolution. 

Figure 3-20 shows the performance of the estimation of ωV as a function of the slant range 

resolution in noise free-condition for the bow scatterer. As it is apparent the quantization error on 

the slant range coordinates entails a lower bound on the achievable accuracy, increasing with the 
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reduction of the transmitted bandwidth. Moreover, we observe that the worst case is provided by 

the ML estimator, due to its strong dependence on the target model. 

 

Figure 3-20. Normalized STD of the estimation error on ωV for a bow scatterer in noise-free condition vs radar range 

resolution. 

3.5. APPLICATION TO LIVE MULTI-SENSOR ISAR DATA 

In order to validate the performance analysis previously obtained, we applied the MS estimation 

schemes to the live D-ISAR data presented in Section 2.5. We recall that the system transmits a 

series of narrowband pulses in the X-band (λ = 3 cm) and in the Ku-band (λ = 1.82 cm), being the 

carrier frequency increased by a fixed frequency step equal to 3.75 MHz to form a burst (stepped-

frequency waveform). The overall spanned bandwidth is 3 GHz and the turntable yields an angular 

step Δθ� = 0.07° burst to burst (the turntable is fixed during the single burst transmission). 

The equivalent geometry of the acquisition (depicted in Figure 2-12) corresponds to an active radar 

and one additional receiver located at same grazing angle. Hence we are analyzing the multi-aspect 

formation in Figure 3-4 whit bistatic aspect angle Δζ =  4.3° and a target characterized by a constant 

yaw motion. 

We point out that the objective of the estimation process is the angular step Δθ� (the corresponding 

ωv is simply given by Δθ� divided by the burst duration, that for these data is not defined). After the 

range compression and the range cell selection, the estimation techniques are performed by means 

of the following steps for each Δθ under test: signals from both channels are dechirped and the 

signal from  the bistatic channel is re-aligned to the Doppler frequency pertaining to the monostatic 

channel; the FFT on the angular domain is performed and the squared modulus are extracted 

obtaining two vectors VA and VB; VA and VB are averaged element by element to obtain the image I; 

finally the different objective functions are evaluated. 

The first analyzed dataset is the grid of metallic cylinders acting like point scatters shown in Figure 

2-13; here we analyzed the dataset acquired for the X-band transmission. We selected an overall 

view angle of about 2.86°, resulting in a cross range resolution of 30 cm for the single (mono-/bi-

static) ISAR image. To avoid range cell migration effects we decided for a slant range resolution equal 
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to 15 cm. In order to have one scatterer in the range cell to be selected for the estimation, we 

properly chose the central view angle. 

normalized estimation error, defined as (

3-21a,b refer to the objective functions for the SS (monostatic channel) and SS

techniques respectively. 

data. As it is apparent, when the distributed approach is considered, the objective functions become 

narrow around the true value.

for the ML, AC, IC and He

apparent how the overall angular aperture is too small to make the quadratic term compensation 

significant for the estimation problem and how in this case the Doppler shift realignment helps in 

improving the estimation performance.

Figure 3-21. Normalized cost functions vs the normalized estimation error 
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In order to have one scatterer in the range cell to be selected for the estimation, we 

properly chose the central view angle. Figure 3-21 shows the normalized objective functions 

estimation error, defined as (Δθtest-Δθ0)/Δθ0, being ∆θtest the vector of tested 

a,b refer to the objective functions for the SS (monostatic channel) and SS

techniques respectively. Figure 3-21c shows the MS objective functions applied to the distributed 

As it is apparent, when the distributed approach is considered, the objective functions become 
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Again it can be seen the ineffectiveness of the SS and SS

aperture: with the Doppler shift realignment based technique better results ar

Figure 3-22 shows the MS objective functions vs

of the bistatic aspect angle: 4.3° (

objective cost function;  moving from the lower to the higher value of the bistatic angle we observe 

how the curves become narrower around the null estimation 

of the increased bistatic angle on the MS estimation process.

Figure 3-22. Normalized cost functions vs the normalized estimation error for the MS estimation technique
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3.6. CONCLUSIONS

In this chapter we proposed and analyzed rotation motion estimation techniques exploiting the data 

acquired by formation of sensors with angular diversity in aspect and in both aspect and grazing. 

Both model-based and model

been derived. 

The study of the multi-aspect case underline how the exploitation of the angular diversity in the 

estimation process to greatly improve the accuracy of the estima

component normal to the sensor baseline with respect to the single sensor case exploiting the 

angular diversity. Specifically, the simulated performance analysis proved the improvement in the 

estimation accuracy rising from the 
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how the curves become narrower around the null estimation error, proving the ameliorative effect 

of the increased bistatic angle on the MS estimation process. 
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IPPs re-alignment, with respect to the conventional estimation techniques based only on the quality 

of the cross range compression of the single ISAR image. The application of the technique against 

live multi-sensor ISAR data confirmed the results achieved against simulated data and showed the 

ameliorative effect of the Doppler shift re-alignment in the estimation process in the case of a small 

angular aperture; moreover, the analysis showed how increasing the bistatic angle leads to a further 

performance improvement. 

Increasing the angular diversity in the formation considering the case of joint grazing/aspect diversity 

allows the sensitivity to all the component of the rotation rate vector. The accurate estimation of the 

horizontal, radial and vertical component of the rotational motion allows to select proper imaging 

intervals to achieved high quality scaled images. The case of non-idealities due to the quantization of 

the measured range has been analyzed, showing the degradation of the performance when a poor 

slant range resolution is provided. We point out that this degradation could be reduced using 

additional receivers, allowing a more accurate location of the scatterers.  

APPENDIX 

A. ANALYTICAL DERIVATION OF THE MAXIMUM LIKELIHOOD ESTIMATORS  

For the joint statistic in (11), the log-likelihood function is given by: 

lnL¦â(ã)O = −3äå(ln æ + ln çè�) − 1çè� (ã − éê)�(ã − éê) (A1) 

being H the hermitian operator. 

1. Multi-aspect formation 

Considering the expression of the phase of the signal in (18), the unknown quantities in (A1) are σ�� , ª, fc�̧ (k = 1, … , K) and ω� = ω: the ML estimate of the rotation rate ω can be obtained as: 

ω�©½ = arg max´ ìarg maxí[_ ,ª,�î¸ï ðlnLp§(¨)Oñò (A2) 

The maximization with respect to σ��  carries to: 

σ�� = (¨ − óª)�(¨ − óª)3KM  (A3) 

Substituting (A3) into (A2) and carrying the maximization with respect to ª we have: 

ª = (ó�ó)��¨�ó  (A4) 

Therefore we obtain: 

ω� ©½ = arg min´ �arg min�î¸ï ð|(ô − ó(ó�ó)��ó�)¨|�ñ�  (A5) 
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Based on (A5), the ML estimate is the value which minimizes the power of the projection of the 

received signal into the subspace orthogonal to the useful signal: this corresponds to maximizing the 

power of the projection of the received signal into the useful signal subspace.  

Setting LL
H
=(S

H
S)

-1
, we can write: 

|(ô − ó(ó�ó)��ó�)¨|� = (¨ − óõõ�ó�¨)�(¨ − óõõ�¨) = ¨�¨ − ¨�ó(ó�ó)��¨ (A6) 

Hence, (A5) yields to (19). 

Considering the expression of the phase of the signal in (26), the unknown quantities in (A1) are σ�� , ª, α�,k(k = 1, … , K; Γ = A, B, C) and ω� = ω: the ML estimate of the rotation rate ω can be 

obtained as: 

ω� ©½ = arg max´ Úarg maxí[_ ,ª,·¸,�ðlnLp§(¨)OñÛ  (A7) 

Performing the maximizations with respect to σ�� , ª, α�,k as above we find (27). 

2. Multi-aspect/multi-grazing formation 

For the joint multi-aspect multi-grazing formation, the scatterer Doppler frequency as viewed by the 

sensor Г is a parameter depending only on r. Therefore, the unknown quantities in (A1) are σ�� , ª, r = Lω� ω� ω�O: the ML estimate of the rotation rate vector r can be obtained as: 

r� ©½ = arg max´À,´÷,´µ�arg maxí[_ ,ª,ðlnLp§(¨)Oñ�  (A8) 

Performing the maximizations with respect to σ��  and ª we find: 

r� ©½ = arg minrð|(ô − ó(ó�ó)��ó�)¨|�ñ  (A9) 

Considering (A6), we obtain (29). 

B. ANALYTICAL DERIVATION OF THE CRAMER RAO LOWER BOUNDS  

The CRB can be evaluated via the Fisher information matrix F, defined as: 

F = �f=,@�  ø f=,@ = E �ú G� 8û(y)úwB
ú G� 8û(y)úwü �  (A10) 

being E{·} the mean operator and (θi,θj) any pair of unknown parameters. 

1. Multi-aspect formation 

In (A1), accounting the phase model in (18), there are 7K+2 unknown parameters: the noise power 

σn
2
, the 3K modulus Ak,Г and the 3K phase φk,Г of the K scatterers, the K scatterers Doppler 

frequencies fc�̧  and the rotation rate ω. Therefore LFO = L7K + 2O × L7K + 2O and it is given by: 

F = ýF�,� ⋯ F�,�
⋮ ⋱ ⋮F�,� ⋯ F�,�

� (A11) 
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being: 

F�,� = E ¶�∂(∙)∂ω �2¼ ø �F1,1� = L1 × 1O 

F�,� = E ¶� ∂(∙)∂φ�,k�
2¼ k=1,…,KΓ=A,B,C
�			
 �F2,2� = L3K × 3KO 

F�,� = E ¶�∂(∙)∂fc�̧ �
2¼ k=1,…,K�			
 �F3,3� = LK × KO 

Fh,h = E ¶� ∂(∙)∂A�,k�
2¼ k=1,…,KΓ=A,B,C
�			
 �F4,4� = L3K × 3KO 

F�,� = E ¶�∂(∙)∂σ�� �
2¼ ø �F1,1� = L1 × 1O 

F�,� = F�,�T = E ì∂(∙)∂ω ∂(∙)∂φ�,kò k=1,…,KΓ=A,B,C
�			
 �F1,2� = L1 × 3KO 

F�,� = F�,�T = E ì∂(∙)∂ω ∂(∙)∂fc�̧ ò k=1,…,K�			
 �F1,3� = L1 × KO 

F�,h = Fh,�T = E ì∂(∙)∂ω ∂(∙)∂A�,kò k=1,…,K�			
 �F1,4� = L1 × 3KO 

F�,� = F�,�! = E ì∂(∙)∂ω ∂(∙)∂σ�� ò ø �F1,5� = 1 

F�,� = F�,�! = E ì ∂(∙)∂φ�,k
∂(∙)∂fc�� ò k,u=1,…,KΓ=A,B,C

�				
 �F2,3� = L3K × KO 

F�,h = Fh,�! = E ì ∂(∙)∂φ�,k
∂(∙)∂A
,�ò �,
>�,…,<k,�>	,
,m

�					
 �F�,h� = L3K × 3KO 
F�,� = F�,�! = E ì ∂(∙)∂φ�,k

∂(∙)∂σ�� ò k=1,…,KΓ=A,B,C
�			
 �F2,5� = L3K × 1O 

F�,h = Fh,�! = E ì∂(∙)∂fc�̧
∂(∙)∂A
,�ò k,u=1,…,KΔ=A,B,C

�				
 �F3,4� = LK × 3KO 

F�,� = F�,�! = E ì∂(∙)∂fc�̧
∂(∙)∂σ�� ò k=1,…,KΓ=A,B,C

�			
 �F3,5� = LK × 1O 

Fh,� = F�,h! = E ì ∂(∙)∂A�,k
∂(∙)∂σ�� ò k=1,…,KΓ=A,B,C

�			
 �F4,5� = L3K × 1O 

(A12) 

The derivates of (A1) needed to evaluate F are: 
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∂(∙)∂σ�� = − 3KMσ�� + 1σ�h 3 3 3 Úºg�,k(t¢) − A�,ke�@��¸,�^�¸,�(C�)�º�Û
©�

¢>�©�

<
�>�k

 

∂(∙)∂A�,k = 2σ�� 3 ÚRe�g�,k(t¢)e�@��¸,�^�¸,�(C�)� − A�,k�Û
©�

¢>�©�
 

∂(∙)∂φ�,k = 2σ�� 3 ÚA�,kIm�g�,k(t¢)e�@��¸,�^�¸,�(C�)��Û
©�

¢>�©�
 

∂(∙)∂fc�̧ = − 4πλσ�� 3 3 �A�,kIm�g�,k(t¢)e�@��¸,�^�¸,�(C�)��t¢�
©�

¢>�©�k
 

∂(∙)∂ω = − 4πλσ�� 3 3 3 �A�,kIm�g�,k(t¢)e�@��¸,�^�¸,�(C�)��(sin(ζk) t¢ + 2ωt¢� )�
©�

¢>�©�

<
�>�k

 

(A13) 

Being Re{·} and Im{·} the real and imaginary part operators and ��,k(��) defined as in (18). 

The mean values in (A12) are (k, u = 1,...,K; Г, Δ = A,B,C): 

E ì∂(∙)∂σ��
∂(∙)∂θ ò = �3KMσ�h    ,   θ = σ��

0         ,   θ ≠ σ��
� 

E ì ∂(∙)∂A�,k
∂(∙)∂A
,�ò = �2Mσ��    ,   (k, Γ) = (u, Δ)

0        ,   (k, Γ) ≠ (u, Δ) � 
E ì∂ ∂(∙)∂φ�,k

∂(∙)∂φ
,�ò = � 2Mσ�� A�,k�    ,   (k, Γ) = (u, Δ)
0                 ,   (k, Γ) ≠ (u, Δ) � 

E ì∂(∙)∂fc�̧
∂(∙)∂fc�� ò = �2π�MT�3λ�σ�� 3 A�,k�

k
   ,   k = u

0                             ,   k ≠ u � 
E ì ∂(∙)∂φ�,k

∂(∙)∂A
,�ò = 0 

E ì ∂(∙)∂φ�,k
∂(∙)∂fc�� ò = 0 

E ì∂(∙)∂ω ∂(∙)∂A�,kò = 0 

(A14) 
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E ì∂(∙)∂ω ∂(∙)∂φ�,kò = − 2πMT�3,ç�  ωr�,mA�,k�  

E ì∂(∙)∂ω ∂(∙)∂fc�̧ ò = 2π�MT�3,�ç�  r�,m 3 A�,k� sin(Ìk)
k

 

E ì�∂(∙)∂ω ��ò = 2π�MT�λ�σ� 3 3�r�,m� A�,k� sin�(ζk)3 + r�,m� A�,k� ω�T�5 �<
�>�k

 

We can rearrange F as: 

F = �F		 F
	F	
 F

� (A15) 

being 

F		 = �F�� F�� F�,�F�� F�� F��F�� F�� F��
�   ,   F
	 = �F�h F��F�h F��F�h F��� = F	
!    ,   F

 = �Fhh Fh�F�h F��� (A16) 

The inverse of F can be easily evaluated by means of the Frobenius relations for partitioned matrices: 

F = �F		 F	
F
	 F

� , F�� = �P		 P	
P
	 P

� (A17) 

being 

P		 = (F		 − F	
F

��F
	)��P
	 = −F

��F
	P		 = P	
!P

 − P		��P
	P	
 = F

��  (A18) 

Since F
	 = F
	� = 0 we have �ÑÒ = �ÒÑ� = 0, �ÑÑ = �ÑÑ�� and �ÒÒ = �ÒÒ��. To evaluate the CRB we 

need to evaluate only PAA, therefore we need only to invert the block FAA. We subdivide FAA in this 

four blocks (F�� = F��! = 0): 

F		 = ýLF��O LF��, F�� O
�F��F��� �F�� 00 F���� (A19) 

From the Frobenius relations, and considering that FAA is a scalar, we can write: 

σ�́ = F		�� = 1
F�� − LF�� F��O �F�� 00 F����� �F��F��� 

 

(A20) 

Carrying out the calculus we find the CRB in (22).  

Accounting the phase the phase model in (26), i.e. considering the whole Doppler frequency as an 

unknown parameters, we can use the same process to derive the CRB. In this case we have LFO = L9K + 2O × L9K + 2O. The structure of F is given again by (A11) but LF��O = L1 × 3KO, LF��O =
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L3K × 3KO, LF��O = L3K × 3KO, LFh�O = L3K × 3KO and LF��O = L1 × 3KO, since there are 3K (instead 

ok K) unknown Doppler frequencies.  

The derivates of (A1) with respect to σ�� , A�,k and φ�,k are as in (A13) (since they do not depend on 

the expression of ϕ�,k(t¢)) and we have to calculate again the derivates with respect to the Doppler 

frequencies and the rotation rate: 

∂(∙)∂ω = − 8πλσ�� 3 3 3 �A�,kIm�g�,k(t¢)e�@��¸,�^�¸,�(C�)��(ωt¢� )�
©�

¢>�©�

<
�>�k

 

∂(∙)∂fc¸,� = − 4πλσ�� 3 �A�,kIm�g�,k(t¢)e�@��¸,�^�¸,�(C�)��t¢�
©�

¢>�©�
 

(A21) 

All the expressions (A13) that do not depend on the expression of ϕ�,k(t¢) held also in this case. The 

main difference is in the elements E ìú(∙)ú´ ú(∙)ú�î¸ï ò, being here equal to zero, therefore ��� = ���� = 0. 

Therefore, to calculate the bound we need to invert only the block of F given by:���� ������� ����. Using 

the Frobenius relations we find (28). 

2. Multi-aspect/multi-grazing formation 

The unknown quantities in (A1) are: the noise power σn
2
, the 3K modulus Ak,Г and the 3K phase φk,Г of 

the K scatterers, the horizontal, vertical and radial components of the rotation rate vector ω. 

Therefore LFO = L6K + 4O × L6K + 4O and it is given by: 

F = ýF�,� ⋯ F�,h⋮ ⋱ ⋮Fh,� ⋯ Fh,h
� (A22) 

being 
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F�,� = E ì∂(∙)∂ωγ

∂(∙)∂ωδ

ò
γ>�,�,�
δ>�,�,�
�				
 �F�,�� = L3 × 3O 

F�,� = E ¶� ∂(∙)∂φ�,Γ�
�¼ �>�,…,<

Γ>	,
,m
�				
 �F�,�� = L3K × 3KO 

F�,� = E ¶� ∂(∙)∂A�,Γ�
�¼ �>�,…,<

Γ>	,
,m
�				
 �F�,�� = L3K × 3KO 

Fh,h = E ¶�∂(∙)∂σ��  ��¼ ø �F�,��= L1 × 3KO 

F�,� = F�,�! = E ì∂(∙)∂ωγ

∂(∙)∂φ�,Γò
γ>�,�,��>�,…,<
Γ>	,
,m
�				
 �F�,�� = L3 × 3KO 

F�,� = F�,�! = E ì∂(∙)∂ωγ

∂(∙)∂A�,Γò
γ>�,�,��>�,…,<
Γ>	,
,m
�				
 �F�,�� = L3 × 3KO 

F�,h = Fh,�! = E ì∂(∙)∂ωγ

∂(∙)∂σ�� ò
γ>�,�,��				
 �F�,h� = L3 × 1O 

F�,� = F�,�! = E ì ∂(∙)∂φ�,Γ
∂(∙)∂A
,Δò �,
>�,…,<

Γ,Δ>	,
,m
�					
 �F�,�� = L3K × 3KO 

F�,h = Fh,�! = E ì ∂(∙)∂φ�,Γ
∂(∙)∂σ�� ò �>�,…,<

Γ>	,
,m
�				
 �F�,h� = L3K × 1O 

F�,h = Fh,�! = E ì ∂(∙)∂A�,Γ
∂(∙)∂σ�� ò �>�,…,<

Γ>	,
,m
�				
 �F�,h� = L3K × 1O 

(A23) 

The derivates of (A1) with respect to σ�� , A�,k, and φ�,k are as in (A13), while the derivates with 

respect to the γ-th component of the rotation vector is: 

∂(∙)∂ω� = − 4πλ 1σ� 3 3 3 M�,k�α�,k� t¢ + β�,k� Xt¢� �Im Úg�,k(t¢)e�@ �¸,�^�¸,�(C�)"Û
© �S

¢>�© �S
<

�>�k
 , 

 γ = H, R,V   

(A24) 

being β�,k� X = !g",�!#$ , i.e.: 

β�,k� X = %&�,k%�� = 2��&�,k�� + �'&�,k�' + �(&�,k�( 

β�,k� X = %&�,k%�' = 2�'&�,k'' + ��&�,k'� + �(&�,k'( 

β�,k� X = %&�,k%�( = 2�(&�,k(( + ��&�,k(� + �'&�,k('  

(A25) 

The several mean values in (A23) are (k, u = 1,...,K; Г, Δ = A,B,C): 
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E ì∂(∙)∂σ��
∂(∙)∂θ ò = �3KMσ�h    ,   θ = σ��

0         ,   θ ≠ σ��
�    

E ì ∂(∙)∂A�,k
∂(∙)∂A
,�ò = �2Mσ��  , (k, Γ) = (u, Δ)

0     , (k, Γ) ≠ (l, Δ) �  , �k = 1, … , KΓ = A, B, C � 
E ì ∂(∙)∂φ�,k

∂(∙)∂φ
,�ò = �2Mσn2 M�,k�  , (k, Γ) = (u, Δ)
0              , (k, Γ) ≠ (u, Δ)� , �k, u = 1, … , KΓ, Δ = A, B, C � 

E ì ∂(∙)∂φ�,k
∂(∙)∂A
,�ò = 0    , Úk, u = 1, … , KΓ, Δ = A, B, C � 

E ì ∂(∙)∂A�,k
∂(∙)∂ω�ò = 0    , ¶k = 1, … , KΓ = A, B, Cγ = H, R,V �  

ì ∂(∙)∂φ�,k
∂(∙)∂ω�ò = − πλσ��

MT�3  β�,k� X   , ¶k = 1, … , KΓ = A, B, Cγ = H, R,V �  
ì∂(∙)∂ω�

∂(∙)∂ω�ò = 2π�MT�λ�σ�� 3 3)α�,k� α�,k�
3 + β�,k� Xβ�,k� X

20 T�*<
�>�k

; γ, δ = H, R,V 

(A26) 

The bounds relative of the three components of the rotation rate vector are the first three elements 

of the diagonal of the inverse of F.We can rearrange F as in (A15) setting: 

F		 = �F�� F��F�� F���  ,   F
	 = �F�� F�hF�� F�h� = F	
!    ,   F

 = �F�� F�hFh� Fhh� (A27) 

As in the multi-aspect case, we have F
	 = 0, and the bounds can be evaluated inverting only the 

matrix F		. Using again the Frobenius relations we obtain: 

Z = (F�� − F��F����F��! )�� (A28) 

Z is a symmetric L3 × 3O matrix whose generic element is given by (32). Performing the inversion and 

taking the elements of the diagonal we find the bounds in (31). 
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4. MIMO SAR/ISAR IMAGING OF ROTATING TARGETS WITH 

RECONFIGURABLE FORMATION OF PLATFORMS 

In recent years the radar community has devoted considerable attention to the study of networks of 

low-mass and low-cost jointly operating sensors. This is due to the well known advantages of a 

constellation, namely the robustness to out of services and the reconfiguration capability of the 

overall system, thus enabling many different applications, [13]. Moreover, despite the poor 

performance of each sensor in the network and the synchronization issues, [77], [78], [98], the 

possibility of achieving comparable or even better performance with respect to conventional single 

sensor (SS) systems has been widely addressed. 

When imaging man-made targets (such as ships) the resolution of achievable radar images is a key 

point. As well known, the range resolution of a Synthetic Aperture Radar (SAR) image depends on 

the transmitted bandwidth, which can be limited if a low cost and low-mass sensor is considered or 

more in general is limited by regulation constraints: a wider bandwidth imposes both stronger 

requirements on the hardware of the transmit and receive chain, and the requirement of a higher 

downlink capacity to ground; moreover, the international rules assign to radar applications only a 

limited fraction of bandwidth (e.g. the International Telecommunication Union reserves only about 

300 MHz at X-band). In order to build a cheaper and lighter single sensor, one might reduce the 

system bandwidth at the expense of a reduced range resolution. 

In chapter 2 we shown how the exploitation of multiple radar sensor properly spaced allows us to 

configure a Distributed ISAR (D-ISAR) system where a wider observation angle than in the single 

sensor case is emulated, resulting in an enhanced cross range resolution. A similar concept can be 

considered for the range dimension. 

In the past the exploitation of proper angular diversity in a multiple radar system has been proofed 

allowing to improve the range resolution, [85] (see also [99], [100]). The joint processing of the 

multiple-surveys acquired signals could result in an overall synthetic bandwidth greater than the 

transmitted one: an improvement of range resolution up to the number of surveys could be 

achieved selecting proper acquisition geometries. The concept has been generalized in [86] for a 

Multi-Input-Multi-Output (MIMO) SAR system able to exploit both monostatic and bistatic 

acquisitions to allow a maximum theoretical improvement factor greater than the number of 

operating systems, [101]. 

In this chapter we consider a generalization of the MIMO SAR [86] (that we recall in 4.1) and MIMO 

ISAR [82] (discussed in section 2.1) concepts: a 2D-MIMO SAR/ISAR system is proposed based on a 

formation of platforms which can be configured with proper cross-track and along-track 

displacements. A maximum theoretical 2D resolution cell improvement factor can be achieved 

significantly greater than the number of flying platforms, by jointly exploiting both the monostatic 

and the bistatic acquisitions.  

The 2D-MIMO SAR/ISAR system concept mainly addresses those applications where the resolution 

requirements change with the specific operational conditions: in such a case the use of a 

reconfigurable system could allow in almost all conditions the achievement of radar images of man-

made targets with the required quality for classification or identification purposes. A typical case is 
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maritime surveillance where, depending on the target aspect angle (angle between the radar Line Of 

Sight - LOS and the ship centerline) and on the sea state, conventional single-channel techniques can 

result in ship images with poor quality. The flexible use of a constellation of platforms could be 

therefore of great importance for both non-cooperative target classification/identification and vessel 

traffic management, allowing complete real-time control, surveillance and monitoring in wide sea 

areas. 

4.1. DISTRIBUTED SAR CONCEPT 

The MIMO SAR concept is based on the consideration that SAR surveys of the same area with 

different off-nadir angles contain different parts of the ground reflectivity spectrum: different 

observations from different incidence angles observe different spectral shifts in the down-converted 

signals. This effect is known as the “wavenumber shift” in SAR interferometry [102]. The basic 

principle of range resolution improvement is to coherently combine the different parts of the 

measured spectra, in order to increase the total range bandwidth.  

4.1.1. WAVENUMBER SHIFT DERIVATION BASED ON EQUIVALENT CROSS-

TRACK APERTURES 

When dealing with SAR systems, one is familiar with the equivalence between the platform 

formation motion in the along-track direction (synthetic aperture) and the frequency bandwidth of 

the corresponding chirp signal in the slow-time domain [60]. Applying the dual form of this 

equivalence to the range dimension we can consider the frequency bandwidth of the transmitted 

signal in the fast-time domain as equivalent to an aperture in the cross-track direction. The range 

resolution cell obtained after the signal compression can be treated as the illuminated region 

corresponding to an equivalent aperture of length L’ having a beamwidth Δθ
eq

, as sketched in Figure 

4-1.   

 

Figure 4-1. Range resolution and equivalent aperture. 
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The expression of the equivalent beamwidth Δθ��, as a function of the off-nadir angle θ� and of the 

bandwidth of transmitted signal B can be obtained considering that the projection of the equivalent 

beam in the ground range direction has to be equal to the achievable ground range resolution: 

ground range resolution cell = ¯��-]./ (xÈ(-]) = .�Ñ01è(-])  (1) 

and therefore: 

Δ��23 = ¯
C4(w]).   (2) 

being λ the wavelength and c the speed of light. 

Considering several SAR sensors observing the same area on the ground with different off-nadir 

angles we are able to increase the corresponding equivalent aperture, and therefore Δθ��,. As in the 

D-ISAR technique some constraints hold for the aspect angles of the sensors in order to avoid gaps in 

adjacent apertures (see section 2.1 eq. (1)), in the MIMO SAR technique a constraint has to be posed 

for the selection of the off-nadir angles. 

As sketched in Figure 4-2 let us consider a second survey of the same area with an off-nadir angle ��, 

transmitting signal with the same bandwidth. Indicating the middle off-nadir angle as θ� = w]^w_�  and 

the difference between the two angles Δθ = θ� − θ�, the expression in (2) can be re-written as: 

Δθ��, = ¯
. tg  θ� + �w� " ≈ 
¯
.  tg(θ�) + �w� (xÈ_(-ï)" (3) 

Analogously, for the second sensor: 

Δθ��, = ¯
. tg  θ� − �w� " ≈ 
¯
.  tg(θ�) − �w� (xÈ_(-ï)" (4) 

 

Figure 4-2. Multiple SAR surveys acquisition geometry. 

The two equivalent apertures result contiguous if: 
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Δθ = Δθ��,2 + Δθ��,2 = λBc tg(θ�) (5) 

A different approach to derive (5) has been proposed in [85]. 

Let s��5(t�) and s��5(t�) be the two received signal at radio-frequency: 

6s��5(t�) = g �t� − 2R�c � · exp �j2πf( �t� − 2R�c ��
s��5(t�) = g �t� − 2R�c � · exp �j2πf( �t� − 2R�c ��� (6) 

being t1 and t2 the fast-time domains, g(·) the transmitted waveform and fc the carrier frequency..  

As derived in [85], the transformations between the two fast-time domains and the ground range 

are the following: 

6t� = 2R�c + 2uc sin(θ�)
t� = 2R�c + 2uc sin(θ�)� (7) 

Being u the ground range coordinate centered in the middle of the observed scene. Therefore we 

can re-write (6) in terms of ground range as: 

89:
9;s��5(u) = g�2u sin(θ�)c � · exp ìj2πf8 2u sin(θ�)c ò

s��5(u) = g�2u sin(θ�)c � · exp ìj2πf8 2u sin(θ�)c ò� (8) 

The two signals are demodulated by a multiplication for a reference function depending on θ�: 

s<=©><(u) = exp ì−j2πf( 2u sin(θ�)c ò (9) 

The resulting down-converted signals can be expressed as: 

89:
9;s�(u) = g�2u sin(θ�)c � · exp ìj2πf8 2u sin(θ�)c �sin(��)sin(��) − 1�ò

s�(u) = g�2u sin(θ�)c � · exp ìj2πf8 2u sin(θ�)c �sin(��)sin(��) − 1�ò � (10) 

Since in practical applications the difference between the two off nadir angles will be very limited, 

we can assume the two scaling factor of the transmitted waveform g(·) equal to the scaling 

experienced at θ�, i.e. g  �
 È=�(w])( " ≈ g  �
 È=�(w_)( " ≈ g  �
 È=�(wï)( ". 

Indicating with G(·) the Fourier transform of g(·), the spectra of s�(u) and s�(u) are given by: 
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89:
9;S�(f) = G)f − f( �sin(��)sin(��) − 1�*

S�(f) = G)f − f( �sin(��)sin(��) − 1�*� (11) 

Where f is the transformed variable of 
�
 È=�(wï)( , thus having dimension [Hz] and corresponding to a 

temporal frequency. In this domain, signals in (11) have a relative shift equal to: 

Δf = f( ì�sin(��)sin(��) − 1� − �sin(��)sin(��) − 1�ò = f8 ìsin(��) − sin(��)sin(��) ò ≅ f( Δθtg(θ�) (12) 

4.1.2. MIMO SAR CONCEPT 

The concept presented in the previous section can be extended for constellation composed by active 

sensors transmitting a set of orthogonal waveforms, that we referred as MIMO SAR system. In 

particular, the sensors are assumed able to separate the echoes from their own transmissions from 

the echoes of other sensors transmissions. 

Let us consider the geometry depicted in Figure 4-3. The two real platforms A and B carry active 

radar systems transmitting almost orthogonal waveforms and have a cross-track displacement such 

that they observe the target with off-nadir angles θA and θB, respectively. The equivalent apertures 

LA and LB obtained by sensors A and B, working as usual monostatic systems. The equivalent aperture 

LC is obtained when sensor A transmits and sensor B receives, namely exploiting a bistatic 

acquisition. As already discussed in section 2.1, the bistatic acquisition is equivalent to a monostatic 

one located on the bisector between the transmitter and receiver path, leading to the virtual sensor 

C with off-nadir angle θC = (θA + θB)/2. By properly selection both the two off-nadir angles and the 

equivalent aperture lengths, it is possible to define a geometry in which the bistatic equivalent 

aperture LC exactly fills the gap between the aperture LA and LB, thus ensuring the continuity in the 

overall aperture. 

 

Figure 4-3. MIMO SAR acquisition geometry. 



Chapter 4 – MIMO SAR/ISAR imaging of rotating targets with reconfigurable 
formation of platforms  

62 

 

From a spectral point of view, the three off-nadir angles result in the spectral shifts ΔfΓ (Γ=A,B,C) (12) 

in the down converted signals, where Δθ is replaced by ΔθΓ, i.e. the difference between the off-nadir 

angle pertaining the Γth sensor and the reference off-nadir, equal to θC. 

Let us consider sensors A and B transmitting orthogonal waveforms with bandwidth 100 MHz and θA 

and θB angles such that ΔfA = - ΔfB = 80 MHz. The spectra of the downconverted signal after range 

compression are shown in Figure 4-4 using two real sensors: as we can observe, an overall synthetic 

bandwidth equal to 260 MHz can be achieved, resulting in an improvement in the range resolution. 

The maximum spectral shift that ensures contiguity between the three spectra is equal to the 

transmitted bandwidth (substituting the bandwidth B in (12) the equivalence between (5) and (12) 

can be easily verified).  

It is worth noticing that since the use of a MIMO constellation an improvement factor in range 

resolution greater than the number of real platforms can be achieved. Referring to the previous 

example, using two real sensors the maximum range resolution improvement is equal to 3 when ΔfA 

= - ΔfB = transmitted bandwidth B = 100 MHz. This is obtained by using both the monostatic and 

bistatic acquisitions, giving rise to a number of equivalent sensor N generally greater than the 

number of real sensors S. The optimization of the positions of a set of MIMO sensors to provide 

maximum angular coverage without gaps has been obtained in [101]. 

In Figure 4-5 black and white squares respectively represent the real and the fictitious cross-track 

angular apertures used in the distributed configuration, where the term “real aperture” indicates the 

equivalent cross-track aperture for the sensor operating in monostatic configuration, whereas 

“virtual aperture” corresponds to bistatic acquisitions. It could be shown, [101], that in the limit A → ∞, the value  N → A�, so that the MIMO improvement tends to be quadratically related to the 

number of real platforms. 

Figure 4-4. MIMO SAR overall received bandwidth. 
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Figure 4-5. Map of real and virtual apertures (angle of view) in the MIMO distributed SAR. 

4.2. 2D-MIMO SAR/ISAR CONCEPT 

The operative scenario here considered accounts for the presence of a formation of S air - or space - 

platforms. Each one is equipped with an active radar system, able to receive and separate echoes 

from the different transmissions through the use of almost orthogonal waveforms. Sensor antennas 

are appropriately steered toward the moving target to be imaged. The considered geometry is 

sketched in Figure 4-6 for the case of S = 4.  

 

Figure 4-6. 2D-MIMO SAR/ISAR scenario. 

Generally the position of each platform is defined according to a couple of angles, namely an aspect 

angle φi and an off-nadir angle θi for i=1,...,S defined in the XYZ reference system. If we consider the 

h-th transmitting platform and l-th receiving platform (h,l = 1,...,S) we can define the n-th equivalent 

sensor position: it is a real position in the case of a monostatic acquisition, i.e. couple (h,h), and a 

fictitious position for a bistatic couple (h,l) with h ≠ l. Therefore we consider a formason of 

equivalent sensors characterized by different off-nadir angles ϑn = ϑhl = (θh + θl)/2 and azimuth 

angles ϕn = ϕhl = (φh + φl)/2 with n = 1,…, N (N = 9 when S = 4, as depicted in Figure 4-5).  

Signals received by all the equivalent sensors (therefore both monostatic and bistatic acquisitions) 

can be properly processed in order to produce an output image with better slant and cross range 

resolution. This improved image is equivalent to the output image one would achieve if processing 

the signal received by fictitious monostatic sensor with reference aspect and off-nadir angle equal to 

φ0 and θ0 respectively, acquiring for a longer time and transmitting a wider bandwidth with respect 

to the real sensors in the formation.  



Chapter 4 – MIMO SAR/ISAR imaging of rotating targets with reconfigurable 
formation of platforms  

64 

 

As explained in section 4.1, the demodulation of the signals received from each sensor with respect 

to the common reference results in a relative spectral shift between the different equivalent 

sensors. Accounting for the scenario in Figure 4-6, the spectral shift (12) of the n-th equivalent 

sensor can be written as: 

Δf� ≅ f( (θ� − θ�)tg(θ�)  (13) 

It is worth noticing that the spectral shift in (13) is defined with respect to the target fulcrum (O in 

Figure 4-6); this shift can slightly vary with changing the position inside the imaged scene as a 

consequence of variation of the local incidence angle. This characteristic has to be properly taken 

into account in the derivation of the 2D-MIMO focusing technique.  

The target is modeled as a rigid body consisting in a set of K scatterers. Here we assume the 

translational motion negligible or already compensated [60] and focus on the rotation motion. 

Moreover we assume the coherent processing interval T suitable for image formation already 

selected and limited to some specific value [96], [103]. In first approximation the target is supposed 

to undergo a 1D rotational motion around the axis Z with a rotation rate equal to ω. This induces for 

each scatterer in the target and for each equivalent sensor in the formation  a linear angular shift in 

the time aperture, [82], equal to: 

ζ��(t) = ζ�� − φ� + ω(t − t�) (14) 

where ζ�� is the aspect of the k-th scatterer as observed from the reference aspect ϕ�. 

Based on (13) and (14), the data corresponding to the different sensors are displaced in the polar 

plane (range frequency & view angle) as shown in Figure 4-7 for the same scenario of Figure 4-6. 

From Figure 4-7 it is possible to identify N = 9 different acquisitions (the striped ones monostatic 

while the gray ones bistatic) partially overlapped both in the range frequency and in the view angle 

domain.  

 

Figure 4-7. 2D-MIMO SAR/ISAR data grids. 
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Looking at Figure 4-7, since (ϕ�, ϕ�) ≤ ϕ� ≤ (ϕ�, ϕh) and (θ�, θ�) ≤ θ� ≤ (θ�, θh), it is evident that 

by coherently processing the data portion identified by the red box it is possible to obtain a range 

and a cross-range resolution improvement factor γr and γcr equal to: 

γ) = 1 + f(B Lmin(θ� − θ�, θ� − θ�) − max(θ� − θ�, θ� − θh)O tg(θ�)Ä  
(15) 

γ() = 1 + Lmin(ϕ� − ϕ�, ϕ� − ϕ�) − max(ϕ� − ϕ�, ϕ� − θh)O ωTS   (16) 

where B is the bandwidth of the transmitted waveform. 

When the platforms are symmetrically displaced (ϕ� = ϕ�, ϕ� = ϕh , θ� = θ�, θ� = θh and Ri = R 

for i = 1,...,S) and maximally spaced still assuring a continuous coverage in range frequency and 

observation angle (i.e. no gaps or overlaps in the polar domain), γr = γcr = 3 for the case S = 4 and a 

global improvement factor equal to γ = γr·γcr = 9 is obtained for the 2D cell area. 

4.3. 2D-MIMO SAR/ISAR FOCUSING TECHNIQUE 

To focus an image with improved range and cross-range resolutions a 2D processing technique is 

required to properly combine radar signals acquired from the multiple sensors and to correct the 

migration through range and Doppler resolution cells. The proposed approach is a decentralized 

technique for multi-angle SAR/ISAR focusing, based on a modified version of the Polar Format 

Algorithm (PFA). This decentralized approach first focuses N low resolution ISAR images 

(intermediate output) and then combines them coherently to achieve the high resolution image 

(final output). The scheme is sketched in Figure 4-8. 

For each branch in the scheme (i.e. for each equivalent sensor, N = 9 branches for the case in Figure 

4-6) the processing is organized in the following steps: 

1) Fast-time compression. 

2) Modified Polar to Cartesian interpolation which removes the range and Doppler migration 

from single sensor data, co-registers the N low-resolution focused images and scales the 

axes as all the acquisitions were monostatic. 

3) Range profile formation. 

4) Slow-time Fourier transform. 

At this point the low resolution single-sensor ISAR images LRn for n=1,..., N are obtained as 

intermediate output. The following steps refer specifically to the processing of the multi-sensor data: 

5) Azimuth distributed processing (here named MIMO-ISAR, following the nomenclature in 

[82]) , which provides M high cross range resolution images. Each one is achieved by means 

of the appropriate combination of a subset of the N low resolution images. 

6) Range distributed processing (here named MIMO-SAR, following the nomenclature in [86]), 

which properly combines the M high cross-range resolution images to yield the final high 

resolution image. 
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Figure 4-8. 2D-MIMO SAR/ISAR processing scheme. 

The MIMO ISAR processing is detailed in Figure 4-9. If the total frequency extent is divided in M 

intervals, then the goal of azimuth processing is to obtain M high cross-range resolution images 

HCRm for m=1,...,M, by separately processing a group of images LRn, which are selected in the “Low 

resolution image and data selection” step. In the case N = 9 each subset is always formed by 3 

images (a, b and c); they correspond to raw data filling an angular portion of the polar support in 

Figure 4-7 pertaining to a specific frequency interval, whose central value is relative to a specific off-

nadir angle. For the symmetric geometry of acquisition previously described, azimuth distributed 

processing can be applied separately to 3 subsets of 3 low-resolution images pertaining to the same 

off-nadir angle (θ0 or θ1 or θ3) and therefore M = 3 high cross-range resolution images are achieved. 

After compensating the constant phase term depending on the distance between the sensor and the 

target fulcrum, signals are time shifted in order to synthesize an overall CPI equal to γcr⋅T. Local 

variations of the off-nadir angle, inside the imaged scene and with the considered sensor, can cause 

abrupt slow time phase changes; therefore an azimuth phase junction step is applied to each cross-

range cell. To this purpose for each cross-range cell the corresponding sub-image is obtained by 

selecting a proper strip centered on the cross-range under consideration. For each range bin the 

phase compensation term of sensor a (c) with respect to reference b is extracted from the scalar 

product between sub-image a (c) and b. After phase compensation only the cross-range cell under 

test is retained. The azimuth phase junction procedure is repeated for all cross-range cells, then time 

selection is applied and finally the images are coherently combined. It is worth noticing that time 

selection is needed when the observations from the different sensors are partially overlapped: this 

turns out in a γcr value lower than the maximum bound (3 in our case). However a partial overlap is 

needed in order to apply the phase junction step: particularly higher overlaps would guarantee the 

extraction of more reliable values of the phase compensation term thus allowing the achievement of 

a pulse response of the overall imaging system with the desired characteristics (peak position, 

mainlobe resolution and side lobe level). Therefore there is an implicit trade-off between resolution 

gain and quality of the final image. From our experience 10-20% overlap would suffice, thus allowing 

γcr=2.8-2.6. We point out that the application of time selection requires the knowledge of the target 

rotation motion. This motion can be very accurately estimated by applying the techniques exploiting 

multi-sensor data described in chapter 3.   
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Figure 4-9. MIMO-ISAR distributed processing scheme. 

The M high cross-range resolution images from the MIMO ISAR distributed processing feed the 

subsequent MIMO SAR distributed processing sketched in Figure 4-10. The chain is composed by the 

cascade of three main steps: a range phase junction stage, a frequency selection stage and coherent 

combination stage. The MIMO SAR processing performs similarly to MIMO ISAR but works in range 

direction: almost the same considerations apply. At the output of the range distributed processing 

the final high range and cross-range resolution image is obtained.  

It is worth noticing that the MIMO ISAR or the MIMO SAR processing could be bypassed, exploiting 

only the images pertaining to equivalent sensors with the same aspect or grazing angle respectively 

and achieving images with single dimension resolution improvement. 
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Figure 4-10. MIMO-SAR distributed processing scheme. 

4.4. SIMULATED PERFORMANE ANALYSIS 

To test the proposed technique we simulated the case of S = 4 X-band (fc=10 GHz) space-borne 

(R0=850 km and θ0=60°) radar systems working in the symmetric formation case and observing the 

moving target. In a first case study the target is supposed to rotate around the Z axis with constant 

rotation rate ω (0.4°/sec). In a second case we considered a target undergoing 3D motion comprising 

also sinusoidal yaw, pitch and roll with amplitude and frequency equal to Ayaw=0.1°, fyaw=0.2 Hz, 

Apitch=0.1°, fpitch=0.18 Hz, Aroll=0.5° and froll=0.09 Hz respectively. The 3D rotation can be also 

represented by the rotation vector ω=[ωh ωr ωv] described in the hrv reference system, [96], 

representing the point of view of the fictitious monostatic equivalent radar at reference angles φ0 

and θ0, where r is the LOS, h belongs to the XY plane and is orthogonal to r, while v is orthogonal to r 

and h.. So the first case results in ωv≠0 and ωh=0 while for the second we have ωv≠0 and ωh≠0. 

Results shown in this paper were obtained by using a set of almost orthogonal up-down chirped 

waveforms as in [82], [104], [105]; obviously their cross-correlation degrades image quality (sideobe 

level and its integrated ratio) giving rise to a floor of not compressed residual signal. As discussed in 

[86] strategies based on separation in the slow time domain or in the Doppler domain could be 

applied to obtain fully orthogonal waveforms. However it is worth to notice that the proposed 

MIMO-2D coherently combines the images from the different equivalent sensors and thus provides a 

gain in peak power equal to the number of integrated sensors: this allows a further mitigation of the 

effects of the not compressed floor.  

First of all an analysis of the achievable MIMO-2D, MIMO-ISAR and MIMO-SAR Point Spread 

Functions (PSFs) has been conducted. Figure 4-11.a and b show respectively the cross-range and 

cross-range PSFs compared to the SS conventional PSF, for the 1D rotation case; the MIMO-2D PSF 

achievable if the considered waveforms were perfectly orthogonal (labeled as MIMO-2Dideal) is also 
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reported for comparison. Figure 4-11.c shows the corresponding -4 dB iso-level curves. As it is 

apparent from results in Figure 4-11 the MIMO-2D allows the achievement of a considerable 

improvement in both the range and cross-range resolutions independently on the motion 

characteristics of the target. In particular we obtain a range resolution of about 1.5 m in the SS 

(transmitted bandwidth B = 100 MHz) and MIMO-ISAR cases and of 58 cm in the MIMO-SAR and 

MIMO-2D cases. On the other hand a cross-range resolution of 1.2 m is achieved in the SS (synthetic 

aperture time 1.8 sec) and MIMO-SAR cases and of 46 cm in the MIMO-ISAR and MIMO-2D cases. 

Specifically we obtain the improvement factors γr = 2.60, γcr = 2.59 and γ = 6.74. We point out that in 

both frequency and view angle domains overlaps have been considered (ηf=Δf/B=0.8 and 

ηT=|φ1|/(ωT)=0.79) reducing the resolution improvements factors with respect to the maximum 

theoretical values but allowing the phase junction steps to work properly. Finally we notice that 

results in Fig. 6 confirm our previous observations concerning the use of not perfectly orthogonal 

waveforms. In particular, slight asymmetries in the secondary lobe region of the range PSF, Figure 

6b, can be observed which could be removed by using fully orthogonal waveforms. This can be easily 

proved by comparing the MIMO-2D to the ideal MIMO-2D. 

 

Figure 4-11. Point Spread Function – a) Cross-range, b) Slant-Range, c) -4 dB iso-level curves. 

The case of an extended target is then considered. Figure 4-12 shows the image of a grid of point-like 

scatterers interested by 1D rotation, with the same parameters of the previous case. Two clusters of 

four scatterers are placed at distances such that they cannot be separated with the conventional SS 
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technique, Figure 4-12.a (with white “×” representing the true scatterers positions); moving to 

MIMO-ISAR case, Figure 4-12.b, we observe the improvement of the cross-range resolution which 

allows us to better resolve in cross-range but not in range, while the reverse situation is observed for 

MIMO-SAR, Figure 4-12.c. Finally, in the 2D-MIMO case, Figure 4-12.d, we can see the improvement 

of both range and cross-range resolutions which allows us to separate the four different scattering 

centers. These results are further confirmed by the inspection of Figure 4-12.e and f showing the 

range and cross range cuts of the scatterers around the scene center. 

 

Figure 4-12. Grid of point-like scatterers – a) Single Sensor, b) MIMO-ISAR, c) MIMO-SAR, d) 2D-MIMO images; e) Cross-range 

and f) Slant range cuts comparison.  
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A more complex target is considered in Figure 4-13 showing a ship with length about 120 m and 

different levels of superstructure. In this case a transmitted bandwidth of 33.3 MHz and an aperture 

time equal to 0.6 s have been considered being the remaining parameters as above. For such case 

we have a slant range resolution of 4.5 m in the SS case and 1.78 m in the 2D-MIMO, while in the 

cross-range we move from 3.58 m to 1.38 m. We observe how the resolution increases so that 

scattering centers not resolvable with SS (Figure 4-13.a), MIMO ISAR (Figure 4-13.b) or MOMO SAR 

(Figure 4-13.c) can be resolved via MIMO-2D (Figure 4-13.d). 

 

Figure 4-13. Ship target model – a) Single Sensor, b) MIMO ISAR, c) MIMO SAR, d) MIMO 2D. 

The case of 3D rotation is then considered. Specifically, observing that 3D rotation motion impacts 

on the cross-range/Doppler domain and that scatterers belonging to the superstructure are the most 

sensitive to the presence of pitch and roll motions, [96], Figure 4-14 shows the Doppler PSF for the 

scatterer representing the apex of the mainmast of the above ship target. In this case MIMO-2D 

focusing technique has been applied matching the parameters to the vertical motion, [84], and to 

allow the comparison the PSFs have been centered on the same Doppler frequency value. The 

obtained results are also compared to the results achievable in the same conditions but setting to 

zero pitch and roll. We have to notice that similar results are achieved for the two cases of 3D and 

1D rotation motions and the resolution gain is maintained also in the 3D case even if with a slightly 

different value since not only yaw, but also pitch and roll contribute to the vertical component of the 

motion.  

It is worth notice that (in deriving the system and analyzing its performance) we have assumed all 

the imaged scatterers behaving as ideal point scatterers with same amplitude and phase for all the 
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exploited observations. Obviously this hypothesis is not always verified, especially when 

experiencing a wide change in the view angle. However our focus is on cases implying quite limited 

changes of the observation angle over the different acquisitions (i.e. medium resolution) so that we 

can assume the target to be in the pseudo-monostatic region. Obviously a moderate degradation of 

the image quality is expected if the operative conditions do not comply with the previous 

assumptions. 

 

Figure 4-14. Comparison of Doppler PSF in presence of 1D and 3D rotation motion. 

Finally to support the practical application of the proposed technique, we analyze the performance 

robustness in presence of disturbances causing deviations of the actual position of the platforms 

with respect to the nominal (desired) positions. Particularly we consider the position of each 

platform in the XYZ reference system as a random variable uniformly distributed in a sphere, with 

center on the nominal position and radius r. Different platforms are interested by independent 

perturbations. The performance robustness is investigated by analyzing the mean value (100 

independent trials) of resolution and sidelobe level (in dB) of range and cross-range PSFs achieved by 

matching the focusing to the nominal geometry. Results are reported in TABLE 4-1. As evident the 

resolution improvement is basically maintained under non ideal conditions (theoretical ∆R = 0.58 m 

and  ∆CR = 0.46 m), while a small degradation is observed for the Side Lobe Ratio (SLR). The 

considered robustness is obviously also a consequence of: (i) spaceborne geometry causing limited 

perturbations on the off-nadir and aspect angles even in presence of not negligible perturbations on 

the positions (more stringent requirements to be expected in the airborne case); (ii) overlap in the 

polar plane between the different acquisitions; (iii) presence of the phase junction step able to 

counteract the effect of disturbances inducing phase discontinuities. 

r ∆SR [m] SLR SR [dB] ∆CR [m] SLR CR [dB] 

5 Km 0.60 -12.94 0.47 -13.07 

TABLE 4-1. MIMO 2D PERFORMANCE UNDER NON IDEAL CONDITIONS. 
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4.5. CONCLUSIONS 

In this chapter a technique has been proposed to jointly increase the range and cross-range 

resolution of radar images of rotating targets. A 2D-MIMO SAR/ISAR system has been configured, 

consisting in a formation of platforms with proper cross-track and along-track displacements, each 

carrying an active radar system. A distributed focusing technique for the joint elaboration of the 

monostatic and bistatic acquired data has been developed and tested against simulated datasets. 

Obtained results show that the achievable images can have a 2D resolution cell improved of a factor 

up to 9 when a formation of four platforms is considered. The flexible use of such a constellation of 

platforms could allow the improvement of resolution in range or cross-range or in both directions on 

the basis of the specific needs and could be useful for example for non-cooperative ship target 

imaging. 
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5. ISAR WHILE-SCAN MODE FOR COASTAL SURVEILLANCE 

The intense human activity affecting the coastal environment has made the coastal surveillance one 

of the main topic of the last years. The detection and identification of ships navigating in the coastal 

area is essential in order to prevent maritime accidents and to take countermeasures against piracy 

activities. Usually, coastal radars are used for the detection of vessels, while the ship classification is 

obtained by Automatic Target Recognition (ATR) procedures, that largely use ISAR images. 

As well known the capability of obtaining an Inverse Synthetic Aperture Radar (ISAR) image of a ship 

is highly dependent on the ship motion conditions induced by the sea state [91]. Ship motion can be 

divided into rotation and translational motion, and usually ISAR images showing the ship on different 

image projection planes (such as top, side or mixed views of the ship) are obtained by properly 

exploiting the ship rotation around its centre of gravity [60]. 

In the case of low sea state the ship rotation motion can be not sufficient for the formation of an 

ISAR image with acceptable resolution. In chapter 2 we showed that the proper exploitation of the 

data acquired by multiple radar sensors allows to achieve a much wider observation angle than for a 

single aperture, and this corresponds to increase the overall Doppler bandwidth of the combined 

received signal, resulting in ISAR images with higher resolution (Distributed ISAR (D-ISAR)). In the 

case of a very low sea state the yaw, pitch and roll motions induced by the waves on the ship could 

be negligible for the formation of the ISAR image. In this case it is of interest to develop an ISAR 

mode relying on the target translation only. In particular, this paper aims at defining and studying an 

ISAR while-scan mode for coastal surveillance based on the exploitation of the signal transmitted by 

the coastal radar over successive scans.   

The use of the translational motion of the ship as source of the needed Doppler gradient that makes 

the cross resolution possible imposes the need of a high synthetic aperture time in order to achieve 

an ISAR image with reasonable resolution. The usual values of scan rates of a coastal radar designed 

for detection purposes give rise to sampling frequencies considerably lower than the Doppler 

bandwidth, making the imaging impossible. The sampling frequency of the system can be increased 

locating multiple passive sensors properly spaced. Properly combining the signals received from the 

multiple passive devices we can obtain a sampling of the signal reflected from the target much more 

dense, such that a well focused image can be obtain. It is worth noticing that in the proposed system 

the diversity in the angles of the target observations has a different aim with respect to the D-ISAR 

technique. In the D-ISAR technique the angular diversity is exploited in order to increase the Doppler 

bandwidth, whereas here is used to synthesize a greater azimuth sampling frequency of the system 

allowing to respect the Nyquist rule.  

As will be detailed in the chapter, it is expected that the number of the required passive devices 

depends on the ratio between the needed sampling frequency and the sampling done by the coastal 

surveillance radar according to the scan rate value, while their location is expected to depend on the 

desired cross range resolution. 
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5.1. ISAR WHILE-SCAN CONCEPT 

The operative condition is given by a coastal surveillance radar equipped with a rotating antenna 

with a scan rate equal to ωz deg/s and an azimuthal beamwidth Θa deg monitoring the coastal vessel 

traffic and used as illuminator of opportunity; N passive devices are located near the coast receiving 

the reflected signal. A pictorial view of this scenario is depicted in Figure 5-1. 

 

Figure 5-1. ISAR while-scan operative condition. 

As well known [60], the cross range resolution that is achievable with a conventional ISAR processing 

is equal to: 

Δ() = λ2Δθ (1) 

with Δθ being the global variation of the view angle of observation of the individual point target and λ the wavelength. At a given distance R0, Δθ depends on the tangential velocity Vt and the dwell time 

Tobs (see Figure 5-2): 

LÈ2 = D��E �Δ�2 �  ø Δθ ≅ TxFÈVCR�  (2) 

 

Figure 5-2. Evaluation of the global variation of the view angle during the dwell time. 



Chapter 5 – ISAR while-scan mode for coastal surveillance  

77 

 

Considering a single scan Tobs is equal to the Time on Target (ToT), given by the ratio between ΘH  and ωz. Typical values of the ToT for a coastal radar for VTS (Vessel Traffic System) applications are in the 

order of ms [106], therefore not sufficient to obtain an image with reasonable cross range resolution 

when only the translational motion of the ship is considered (~10 m/s).  

In order to increase the dwell time the target can be observed over M successive scans. Therefore, 

the overall duration of the acquisition is given by Tscan·M. From (1) and (2), we have: 

Δ() = λR�2MTÈ(z�VC (3) 

As follows from the Nyquist theorem, the possibility to realize a well focused image is subject to the 

constraint to have a sampling frequency at least equal to the Doppler bandwidth Bd observed by the 

radar. The Doppler bandwidth depends on the radial velocity of the target (see Figure 5-3), and it is 

given by: 

Bc = 4V)λ = 4VCλ sin �Δθ2 � ≈ 2VCλ Δθ = VCΔ() (4) 

 

Figure 5-3. Evaluation of the Doppler bandwidth. 

Assuming the receiver collecting a single sample during each ToT, the sampling time of the signal as 

viewed by the single passive device is equal to the duration of the single scan Tscan and the Nyquist 

condition can be written as: 

Bc ≤ 1TÈ(z� (5) 

As example we consider a VTS radar operating in the X-band (λ = 3 cm) with a scan rate of 132°/s and 

an azimuthal beamwidth of 0.45° observing a ship at the distance of 10 Km moving with tangential 

speed 5 m/s. Exploiting the single scan observation (i.e. Tobs = ToT), the achievable Δ() is greater than 

2 Km, not sufficient for imaging purposes. Exploiting the signal received during 6 scan (i.e. Tobs = 

M·Tscan), we are able to achieve a cross range resolution of about 1 m. However , the inequality in (5) 

cannot be satisfied, since Bc ≈ 5Hz, while 1/TÈ(z� ≈ 0.37Hz. 
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In order to increase the sampling frequency of the azimuth signal we use a multitude of passive 

devices. The number N of these receivers must be at least equal o the ratio between the needed 

sampling time Tc (=1/Bd) and the sampling time due to the scan rate value: 

N¢=� = ITÈ(z� T(S J (6) 

Hypothesizing a constant velocity of the ship, in order to have a uniform sampling of the signal the 

several sensor have to be equally spaced. Let us consider the N passive devices aligned on the 

direction of the tangential velocity of the target and Δ be the distance between two sensors. The 

maximum value of Δ has to be such that two samples have a temporal distance equal to Tc. We recall 

that a bistatic couple transmitter (TX) – receiver (RX) corresponds to an equivalent monostatic 

configuration with a fictitious sensor at azimuth angle equal to the bisector of the TX and RX Line-of-

Sight (LOS). Assuming the distance between TX and each RX negligible with respect to the radar – 

target distance we can set Δmax equal to two times the minimum temporal distance between two 

samples: 

Δ¢zK = 2 TÈ(z�N¢=� V) (7) 

Substituting (4) and (6) into (7) we found that the maximum value of Δ is equal to 2Δ(). 

5.2. TARGET AND SIGNAL MODEL 

We consider a ship target modeled as a rigid body in the far field characterized by K dominant 

scatterers with complex reflectivity constant during the time aperture; its motion can be 

decomposed as the translation of an arbitrary reference point and the rotation of the body around 

that point. We consider the case of a very low sea state, such that the rotational motion is negligible 

and the target is only translating with velocity VLLM. 
For sake of simplicity we consider a planar geometry. The (X,Y) reference system is depicted in ; its 

origin is located in the target reference point at the instant t0; the ship  follows a straight trajectory 

with speed VLLM = LVK,VyO and its kth scatterer is located in Lx�(t), y�(t)O = �x�(t�) + VKt, y�(t�) +Vyt O; the transmitter is located in Lx!s, y!sO = L0, −R0O and the ith receiver in Lx�s,=, y�s,=O =Lxx��È�C + iΔ, −R0O, with i = 1,…,N and xoffset given by x�s,� − x!s − Δ. We point out that in this 

geometry Vx = Vt. 
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Figure 5-4. ISAR while scan system geometry. 

Neglecting the constant complex reflectivity of the scatterer, the signal received from the ith sensor 

pertaining the kth scatterer in the mth instant of slow time (m = 1,…,M and tm+1-tm = Tscan) can be 

written as: 

s=,�(t¢) = eÚ�@�Ā)B,¸(C�)Û = eÚ�@�Ā��NO,¸(C�)^�÷O,B,¸(C�)�Û
 (8) 

being R!s,� (R�s,=,�) the distances between the kth scatterer and the transmitter (ith receiver): 

R!s,�(t¢) = P�x!s − x�(t¢)�� + �y!s − y�(t¢)�� =
= P(x�(t�) + VKt)� + �R� − y�(t�) − Vyt��

 

(9) 

R�s,=,�(t¢) = P x�s,= − x�(t¢)"� +  y�s,= − y�(t¢)"� =
= P(xx��È�C + iΔ − x�(t�) − VKt)� + �R� − y�(t�) − Vyt��

 

(10) 

Assuming xx��È�C = 0, r=,�(t¢) for the reference point can be expanded in Taylor series at third order 

as: 

r=,�(t¢) ≈ σ=,� + α=,�t¢ + β=,� t¢�2 + γ=,� t¢�6  (11) 

being 

ç1,� = D� + P(QΔ)� + D�� (12) 
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�1,� = RS + (T'ï�(U1�P(1�)_^'ï_  
(13) 

&1,� = RV�D� + RV�D�� + RS�Q�Δ� + 2RVRSQΔD�((QΔ)� + D��)��  
(14) 

-1,� = − 3RV�RSD�� − 3�RV�D�� + RS�Q�Δ� + 2RVRSQΔD���−RVQΔ + RSD��
((QΔ)� + D��)��  

(15) 

  

5.3. FOCUSING TECHNIQUE 

5.3.1. PSF ANALYSIS 

In order to analyze the PSF and illustrate the azimuth processing let us consider the signal received 

by a point target located in (xk,yk) when t = t0 assuming the range migration already compensated. 

The operative condition is given by the configuration in Figure 5-4 such that N = Nmin and Δ = Δmax 

according to the tangential velocity of the point target. Each device collects one sample each Tscan 

sec, but during the same scan the two samples collected by two consecutive devices have a temporal 

equivalent distance equal to T(�, = T(. By means of an interleaving operation, as depicted in Figure 

5-5, we are able to form a vector of the collected samples sk[i] (i=1,…,M×N) taken at sampling period T(�,. At this point s[i] can be compressed by applying an azimuth matched filter with a reference 

signal given by the complex conjugate of (9) with (n,m) corresponding to the proper receiver and 

scan indexes, followed by a Fourier transform. 

As a study case we consider a point target located on the target fulcrum at a distance of 10 Km when 

t = t0 moving with velocity equal to 8 m/s with a squint angle α = 30° with respect to the x-axis, 

resulting in a tangential velocity of 6.93 m/s. Tscan is equal to 3 sec and the target is observed for 5 

scans, therefore Tobs = 15 s, and λ is 3 cm. From (2), Δθ is about 0.6°, corresponding to an achievable 

cross range resolution of 1.43 m; Bd ≈ 4.7 Hz and therefore Tc ≈ 0.21 s. We consider N = Nmin = 14 

devices, spaced with distance Δ = Δmax = 3 m allowing to have T(�, = T( . The result of the 

compression on this interleaved (Figure 5-5) signal is shown in Figure 5-6: the achievable PSF 

confirms the capability of the overall system to provide proper cross range resolution. 
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Figure 5-5. Data interleaving for the special case of a single range bin. 

 

Figure 5-6. Azimuth Point Spread Function. 

Let us now consider the same configuration but a point target moving with a lower tangential 

velocity. As example, let us consider Vx = 5.6 m/s; therefore, Δθ ≈ 0.48°and Δcr ≈ 1.79 m, Tc ≈ 0.32 s 

and T(�, ≈ 0.27 s. In these conditions, during the single scan, the overall samples collected by the N 

receivers cover a duration greater than Tscan. Therefore the samples collected by the first L receivers 

during each scan overlap in time with the samples collected by the last (N-L) receivers during the 

previous scan. To counteract this effect, a proper data selection must be performed: only the data 

collected by the first L receivers, covering a time slot equal to Tscan, have to be used to build the 

interleaved signal, while the data collected by the remaining sensors can be discarded, see Figure 

5-7. 
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In the previous example L = 11; the result of the compression of the signal in [xT(t0),yT(t0)] = [10,0] m 

is shown in Figure 5-8, both with and without applying the data selection (solid blue line and red 

dotted line, respectively). As we can observe, the proper selection of the data is required for the 

achievement of the cross-range PSF with the desired characteristics. 

 

Figure 5-7. Data selection for the special case of a single range bin. 

 

Figure 5-8. Comparison of the cross-range PSF with and without applying the data selection. 

5.3.2. ISAR WHILE-SCAN FOCUSING TECHNIQUE 

The block diagram of the proposed focusing technique is sketched in Figure 5-9. Each branch of the 

scheme corresponds to the processing of the data received from the n-th sensor, collected in a 

matrix Sn of dimension H×M. sn[h,m] is the h-th fast time sample collected after the digitalization of 

the signal during the m-th scan. The processing is composed by the following steps: 
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1. Range Compression, which allows to go in the slant range domain. After the compression, 

the rows of the N matrices refer to the range domain. 

2. Range Cell Migration Correction (RCMC), completely corrected for target fulcrum, achieved 

in the fast frequency/slow time domain by multiplying the transformed data by: 

W/1X(Y/) = Z[�\X]�'ï̂(_`).  (16) 

being fr the fast frequency and 
��[ï (C)(  the time delay due to the variation of the distance 

between the target fulcrum and the central sensor of the receiving array evaluated in t = t0 

and the distance between the target fulcrum and the n-th receiver evaluated in tm. Finally, 

an Inverse FFT is applied. 

3. Azimuth Dechirping, achieved as explained in sub-section 5.3.1 according to (11)-(15). We 

point out that the contribution of the term -è,� may be negligible only if small enough 

synthetic aperture lengths are considered.    

By following the above procedure, N matrices An are achieved, whose columns contain the 

compressed range samples and the rows the phase history of a range bin after the compensation of 

the phase referring to the reference point.  

 

Figure 5-9. ISAR while-scan processing scheme. 
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Figure 5-10. Data interleaving. 

At this point the data of the several sensors have to be properly combined. First of all, a Data 

Selection (DS) step is applied: as explained in the previous section, for each scan we have to use only 

the data of the first L devices such that a time slot equal to Tscan is covered, in order to avoid time 

overlapping of the data. Therefore, only the first L An matrices are used, while the remaining are 

discarded. 

After the DS, the Ag (g=1,…, L≤N) output matrices have to be properly combined by the interleaving 

as depicted in Figure 5-10: the data are rearranged in a matrix Atot with size H×ML, being the m-th 

H×L block composed by the columns of the Ag matrices corresponding to the m-th scan. By applying 

this procedure, each row of Atot corresponds to a range bin observed in ML consecutive instants of 

slow time. 

Finally, a Fourier Transform is applied to go in the final image domain. 

5.4. SIMULATED RESULTS 

We consider a VTS radar operating in the X-band (λ = 3 cm) with a scan rate equal to 132°/s and an 

azimuthal beamwidth of 0.45° and transmitting a chirp signal with bandwidth B = 22 MHz [107].  

The system observes targets located at a distance of 10 Km from the transmitter when t = t0, for a 

maximum dwell time equal to 6 scans. The maximum considered velocity for the target is 10 m/s. 

Therefore the maximum achievable Δcr is 0.91 m, (3), and the minimum number of passive device to 

place is 30, (6), that are located with xoffset = 0 and Δ = Δmax = 1.82 m, (7). To be noticed that, for 

practical applicability, the number of required sensors can be considerably reduced by increasing Δcr. 

We chose here a demanding case with Δcr = 0.91 m to highlight the effectiveness of the proposed 

concept and processing. 

As first study case we consider a distributed target given by a grid of 9 point scatterers (see Figure 

5-11) interested by a translational motion VLLM = [10,0] m/s. The N devices acquired the echoes during 

M scans of the antenna. Since the tangential velocity of the target is just equal to the maximum 

possible velocity for the considered scenario, the data received by the all of the passive devices are 

processed and the DS block of the processing scheme could be by-passed. 



Chapter 5 – ISAR while-scan mode for coastal surveillance  

85 

 

 

Figure 5-11. Grid of point scatterers. 

 

Figure 5-12. ISAR images of the grid of point scatterers – a) 4 scans, b) 6 scans, c) Cross-range cuts, d) Range cuts. 

Figure 5-12-a.b shows the ISAR images of the grid when 4 and 6 scans of the antenna are considered, 

respectively. As we can observe, increasing the number of scans we are able to improve the azimuth 

resolution of the images; this is confirmed by the cross range cuts around the central point in Figure 

5-12.c: specifically, we found Δcr = 1.36 m and Δcr = 0.91 m in the two cases. As obvious, the slant 

range resolution, Figure 5-12.d, is fixed by the transmitted bandwidth. 

The case of a simulated ship target composed by many point scatterers and with different 

superstructure levels is then considered. We considered the same geometry as in the previous study 
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case and 6 scans of the coastal radar. The ship moves in direction α = 20° with respect to the sensor 

alignment, but different velocities are considered, as reported in TABLE 5-1, resulting in different 

values of L. 

Figure 5-13 shows the achieved ISAR images for the different target velocity cases. From these 

figures we can appreciate the effectiveness of the proposed technique in providing high-quality top-

view images of vessels. We can also observe the improvement of the achieved cross range resolution 

with the increase of the processed synthetic aperture.  

Case Vt [m/s] L Δcr [m] 

a 5 15 1.82 

b 7.5 23 1.37 

c 10 30 0.91 

TABLE 5-1. SHIP TARGET TANGENTIAL VELOCITY. 

 

Figure 5-13. ISAR images of a ship target with tangential velocity 5 m/s (a), 7.5 m/s (b) and 10 m/s (c).

 

5.5. CONCLUSIONS 

The aim of this chapter has been the assessing of a novel ISAR while-scan mode technique for coastal 

surveillance purposes. The technique exploits the signal transmitted by a coastal surveillance radar, 

having as main objective the detection of vessels navigating in the area under observation, and that 

is not otherwise involved in the imaging activity. A passive (receiving only) array located on the coast 

is exploited to form a physical aperture, that combined with the translational motion of a ship target 

produces a synthetic aperture allowing to achieve ISAR images. The relationships between the 

parameters of the VTS radar and the array configurations have been derived. An ad-hoc focusing 

technique has been proposed, able to combine the signal received by the several sensors of the 

array over successive scans of the coastal radar in order to form a final ISAR image.  

The simulated performance analysis confirmed the effectiveness of the technique to provide radar 

images of ships with suitable resolution; the cross range resolution may be increased by integrating 

signal receptions over an increasing number of scans; also, because of the exploitation of the 

translational motion of the ships to produce the Doppler gradient, the achievable ISAR images are 

top-views of the ship, that can be properly exploited for vessels classification and identification 

purposes [93], thus helping ATR procedures for coastal surveillance. 
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6. MULTISTATIC GNSS-BASED SYNTHETIC APERTURE RADAR 

Over the last years the Bistatic Synthetic Aperture Radars (BSARs) have been the focus of increasing 

research activity, [1][3]. A BSAR system operates with distinct spatially separated antennas for signal 

transmission and echo reception. Such a spatial separation has several operational advantages, 

which will increase the capability, reliability and flexibility of future SAR missions.  Although the basic 

operation of all BSAR system is much the same, the differences are mainly as a consequence of the 

geometry employed. Several bistatic configurations have been proposed, involving different 

combinations of transmitters and receivers on moving (spaceborne, airborne): e.g. the transmitting 

and receiving platforms can be carried by two or more satellites (as the German TanDEM-X mission 

[51]), the transmitter can be mounted on an airborne platforms and the receiver on another one, 

[55], [56], or on the ground [108]. 

The examples of BSAR systems reported in [51], [55], [56] and [108] refer to cases of a cooperative 

transmitter. Another possibility is to configure a passive system using satellite illuminators as 

transmitters of opportunity. It is possible to use other radar transmitters [109], [110], transmissions 

from audio-video broadcasting [68], navigation or communication satellites [69]. The work presented 

in this chapter is dedicated to the case of such a system using Global Navigation Satellite System 

(GNSS) as transmitters, such as GPS, GLONASS or the forthcoming Galileo and Beidou. The feasibility 

of this system has been experimentally demonstrated for both moving and stationary receivers, [70], 

[71], however here we consider the stationary receiver case only. 

As transmitters of opportunity, GNSS present some drawbacks compared with other satellite 

transmitters. The main one centers on their low-power budget. For example, Direct Satellite TV 

(DVB-T) broadcasting transmitters introduce about 20 dB stronger power flux density near the earth 

surface when compared with GNSS. On the other hand, long dwell times are possible. Another 

advantage is the relatively simple synchronization. This follows from the fact that navigation signals 

were designed to be optimal for remote synchronization, [69]. 

The main motivation for using GNSS as transmitters lies in the structure of the GNSS constellations. 

At any time of the day, there are 6-8 satellites in a single constellation (24-32 when all 4 GNSS 

systems are fully operational), illuminating any point on Earth from different angles. All of these 

signals can be received and processed separately or jointly using a single receiver, essentially forming 

a multi-static radar system. This feature has a number of advantages. First of all, it provides the 

potential for persistent area monitoring anywhere in the world. In addition, images obtained from 

the same scene, but different satellite illumination angles, may aid in terrain classification [111]. 

Furthermore, images obtained from different satellites may be fused to increase the amount of 

information in a given area. 

Despite the low power budget, images with a suitable signal-to-noise ratio (SNR) and azimuth 

resolution (3-4m) can be obtained by considering long dwell times on target (typically 4-5 minutes). 

However, the range resolution is defined by the GNSS ranging signal bandwidth. For example, the 

Galileo E5bQ signal has a bandwidth of approximately 10 MHz (perhaps the broadest bandwidth 

GNSS signal), offering a resolution of 15m in the quasi-monostatic case. Furthermore, range 

resolution degrades rapidly as the bistatic angle increases [3]. In previous research , it was 

experimentally shown that using very long dwell times (10 mins or more) provides some 

improvement in range resolution as well as azimuth, however the improvement factor was not 
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sufficiently high. Therefore, as a bistatic system, GNSS-based SAR was found appropriate only for 

applications where a coarse resolution is acceptable. 

This work considers the non-coherent combination of multiple BSAR images to provide multi-static 

imagery with improved resolution. In the first part we consider the study of the Multistatic Point 

Spread Function. Some initial considerations on this topic can be found in [112]. The idea is that 

different bistatic topologies yield Point Spread Functions (PSFs) with different orientations. 

Therefore, after their combination, a single multi-static PSF (MPSF) can be formed that is the 

intersection of all the individual PSFs. By appropriate selection of the bistatic topologies we may 

expect a dramatically improved resolution. The natural extension of this research is to consider the 

multi-static capability of this technology to explore its full potential on real radar images [111]. Some 

preliminary results on this topic is presented in section 6.4. 

6.1. BISTATIC POINT SPREAD FUNCTION 

One of the key parameter of any remote sensing system is the spatial resolution, i.e. the degree to 

which two scatterers of approximately equal amplitude can be separated  in one or more directions, 

such as range or azimuth [1]. In a BSAR the range resolution ΔR depends on the signal bandwidth B 

and on the bistatic angle β (i.e. the angle between the transmitter and receiver line of sights), 

whereas the azimuth resolution ΔA depends on the dwell time on target Td and the equivalent 

angular speed ω=, as well as on the wavelength ,, [3]: 

ΔR = α) c
2B cos  β 2S " 

(1) 

ΔA = αz λ2ω=Tc (2) 

being α) and αz shape factors defining the -3dB resolution values. 

However, in a BSAR range and azimuth resolutions are not generally orthogonal and therefore do 

not by themselves specify the two-dimensional bistatic resolution cell. It can be fully described by 

the Generalized Ambiguity Function (GAF) [3], [113]. It is given by the product of two functions, ¦(∙) 

and a	(∙). The former is the matched filter output of the ranging signal and the latter is the inverse 

transform of the normalized received signal magnitude pattern: 

|Χ(c,d)| ≈ ¦e2 cos  β 2S "f!(d − c)c g ∙ a	 �2ω=h!(d − c)λ � (3) 

where A is the vector position of the desired point reflection to be evaluated and vector B is an 

arbitrary position of another reflector in the vicinity of A; β is the bistatic angle and f is a unit vector 

in the direction its bisector and defining the direction of the range resolution; ω= and h are referred 

to as the equivalent angular speed and the equivalent motion direction (since a monostatic SAR 

moving in the direction h with angular speed ω= would exhibit similar Doppler-based resolution 

characteristics); h specifies the direction of the azimuth resolution. The several quantities are 
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depicted in Figure 6-1, showing the considered bistatic geometry. Since the transmitted signal from a 

GNSS satellite is a pseudo random code, the matched filter output can be approximated with a 

triangle function (and therefore αr = 0.586); because of the long dwell times, the received signal 

magnitude pattern can be accurately modeled as a rectangular function and, as a consequence, mA(.) 

is a sinc function (and therefore αa = 0.886). 

 

Figure 6-1. Bistatic SAR geometry. 

The projection of onto the ground plane gives rise to a resolution cell that is approximately an ellipse 

(resolution ellipse), that can be evaluated using both numerical [112] and analytical methods. In 

subsection 6.1.1 we propose an analytical method to evaluate it. The resolution ellipse is 

characterized by its orientation ϕ, being function of the range and azimuth resolutions and the angle - between their directions projected onto the ground plane, Θ4 and Ξ4 respectively. Since in a 

bistatic system range and azimuth are generally not orthogonal, - is different from 90°. It should also 

be noted that according to their definition [3], the range and azimuth resolutions are indicators of a 

system’s resolution capability, but their directions are not the ones where the spatial resolution is 

the worst. In the following, the range and azimuth resolution projected onto the ground plane will 

be indicated as ΔRg and ΔAg, respectively. 

As example, Figure 6-2 shows a simulated PSF for a scatterer in the scene center and a GLONASS 

satellite; β is about 71° and ω= is 0.005°/s; the dwell time is 200 s (therefore a linear trajectory of the 

satellite can be assumed [114]). The mutual positions of the receiver and the transmitter entail γ ≈ 

34.2° and the orientation of the resulting resolution ellipse is ϕ ≈ 122°. The resolution in the range 

and azimuth directions is defined along Θ4 and Ξ4. However, the worst spatial resolution, δmax, is 

along the major axis (green line) of the PSF while the best one, δmin,  is along to minor axis of the PSF, 

being very close to Ξ4. For this reason, the parameters δmin and δmax will be used to characterize the 

spatial resolution capability of this system hereafter, since they represent its bounds. In this 

example, the area of the resolution cell and the resolutions δmax and δmin (evaluated at the -3 dB 

contour hereafter) are about 163 m
2
, 44.5 m (while ΔR4 is 25.80 m) and 4.7 m (slightly better than 

ΔAg = 5.12 m), respectively. 
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Figure 6-2. Bistatic Point Spread Function. 

6.1.1. RESOLUTION ELLIPSE 

The difference of vector (j − k) in (3) is the target separation vector. When it is normal to the line 

of f it lies along an iso-range contour, while if it is normal to the line of h it lies on an iso-Doppler 

contour, [3]. Namely: 

f�(j − k) = L�V �S �lO �mÑ − mÒnÑ − nÒoÑ − oÒ � = 0 (4) 

h�(j − k) = LpV pS plO �mÑ − mÒnÑ − nÒoÑ − oÒ� = 0 (5) 

Assuming k = q and the arbitrary vector j lying on the ground plane, from (4) and (5) we can 

obtained the equations of two straight lines defining the direction of the iso-range and iso-Doppler 

contours: 

QWr − stuEZ vQuZ: n = − �V�S m (6) 

QWr − xr¦¦vZs vQuZ: n = − pVpS m (7) 

The direction of decreasing of the sidelobes in the two domains is normal to these straight lines. 

Figure 6-3 highlights the iso-range and iso-Doppler lines for the same study case in Figure 6-2 along 

with the sidelobes direction. 
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Figure 6-3. Bistatic PSF - a) iso-range contour, b) iso-Doppler contour. 

Taking two points at ± ΔD 2S  on the range sidelobes direction we can draw the straight lines parallel 

to the iso-range contour (the same for the azimuth case), as shown in Figure 6-4. Therefore, by 

multiplying the ¦(∙)  and aÒ(∙)  functions we highlight a parallelogram, referred as resolution 

parallelogram. The resolution parallelogram  is shown in Figure 6-7. 

 

Figure 6-4. Building of the resolution parallelogram: straight lines – a) range, b) azimuth. 

 

Figure 6-5. Resolution parallelogram. 
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The resolution ellipse can be derived as the circumscribed ellipse to the resolution parallelogram. 

The complete analytical derivation of the ellipse is reported in Appendix A. Figure 6-6 shows the 

comparisons of the theoretical ellipses (magenta plots) and simulated PSF achieved for the PSF in 

Figure 6-2. 

 

Figure 6-6. Comparison theoretical ellipse (magenta plot) – simulated PSF. 

6.2. MULTISTATIC POINT SPREAD FUNCTION 

6.2.1. MULTISTATIC PSF USING NON-COHERENT ADDITION 

The use of  GNSS transmitters entails a signal bandwidth much smaller than a conventional SAR. E.g. 

GLONASS signals have a bandwidth of 5.11 MHz and therefore the range resolution is 30 m at best 

(quasi-monostatic case); from (1), the resolution degrades even further as the bistatic angle 

increases. On the other hand, the use of GNSS makes possible long dwell times, in the order of 5 

mins or higher, allowing azimuth resolutions considerably greater than the range ones (3-4 m). 

Therefore the most critical value of the resolution is in the range dimension, resulting in wide 

resolution cell areas. 

In order to improve the resolution capability of the system we derive a multistatic scheme formed by 

several bistatic couples, where the same receiver fixed on the ground collects the signals from 

different GNSS satellites and combines all bistatic images obtained from them into a single, multi-

static one. The considered geometry is depicted in Figure 6-7 for the case of two satellites. Different 

satellite positions and trajectories result in different bistatic PSF parameters: the n-th bistatic PSF (3) 

is characterized by specific directions of range and azimuth resolutions and different values of the 

bistatic angle (1) and the equivalent angular speed (2). Different Θ� and Ξ� result in a different angle γ�, whereas different ω=� and β� in different values of the range and azimuth resolutions ΔR� and ΔA�. Finally, different γ�, ΔR� and ΔA�result in different PSF orientations ϕ�.  
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Therefore, a non-coherent combination of the individual PSFs, with their different orientations, 

results in a multi-static PSF whose resolution cell area is the overlapping segment of the single 

bistatic PSFs, and therefore may be essentially reduced. As a first step, the non-coherent addition 

method is considered, as it is a linear operation. We define as Multistatic PSF (MPSF) the non-

coherent addition of N ≥ 2 PSFs: 

MPSF: 1N 3 z¦ e2 cos  β� 2S " f�!(d − c)c g ∙ a	 �2ω=èh�!(d − c)λ �z�
è>�  (8) 

 

 

Figure 6-7. Multistatic SAR geometry (N = 2). 

6.2.2. MAGNITUDES VS POWERS COMBINATION 

We point out that the summation in (8) is performed on magnitudes rather than on powers. In order 

to explain the reason of this choice, let us consider the same simulated PSF in Figure 6-2 and the one 

obtained by a rotation of 90 deg. In Figure 6-8 we show the comparison between the resulting MPSF 

for the magnitudes and powers summations. It is evident that the summation on magnitudes has a 

better behavior than the one on powers, since the mainlobe is smaller and the sidelobes are lower. 

The reason of this can be explained as follows. Let us consider the (i,j) pixel of the PSF projected onto 

the ground plane, being i the index of the x-axis and j the one of the y-axis; a�=,@ is the modulus of the 

(i,j) pixel of the nth PSF. Considering the combination of two PSF (the case of more than two can be 

easily extended) the pixel of the resulting MPSF in the power domain is given by A=@�  when the 

summation is performed on the magnitudes and by  I=,@ when it is performed on powers:  
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Figure 6-8. Magnitudes vs powers summation – a) summation on magnitudes, b) summation on powers. 

�A=@� =  a�=,@ + a�=,@"� =  a�=,@� + a�=,@� + 2a�=,@a�=,@"I=,@ = a�=,@� + a�=,@� � (9) 

From (9), and considering that all the values are positive and lesser than 1 (achieved by 

normalization), follows that: 

0 < I=,@ < A=@� ≤ 1   ø −∞ < 10 log�� I=,@ < 10 log�� A=@� ≤ 0 (10) 

Finally, considering the absolute values we find: 

º10 log�� |1[� º ≤ º10 log�� }1,[º (11) 

6.2.3. APPROXIMATED VERSION OF THE MULTISTATIC PSF 

One of the features of the single channel PSF represented by the GAF in (3) is that is given by the 

product of two functions dividing the range and Doppler domain: even if the range and Doppler 

directions are not orthogonal their domain are still separable. For the MPSF in (8) this cannot be 

done since the summation and the modulus operator. However, an approximated version of the 

MPSF is given by: 

å�A� ≈ ¦~aÖ (12) 

being: 

¦~ = 1N 3 ¦�
�

�>�
= 1N 3 ¦e2 cos  β� 2S "f�!(d − c)c g�

�>�
 (13) 
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aÖ = 1N 3 a	�
�

�>�
= 1N 3 a	 �2ω=�h�!(d − c)λ ��

�>�
 (14) 

In this expression the range and Doppler domains are again separated. This approximation can be 

easily proven setting pn ≈ p. This assumption can be considered true in a wide zone around the 

mainlobe of the MPSF since the p(·) function has a very wide mainlobe. That is due to the bistatic 

geometry, the limited bandwidth and the elevation angle of the satellite [3]. 

6.2.4. INTERSECTING ELLIPSE 

In this section we present a mathematical model for evaluating the resolution cell of the MPSF 

achieved from two single PSF, based again on an ellipse. 

As described in section 6.1, the resolution cell of the single PSF can be described by the resolution 

ellipse. Considering the composition of two different PSF we have two different ellipses intersecting 

in four points, as depicted in Figure 6-9 for the PSF presented in Figure 6-2 and its rotated by 90° 

version. These four points describe a parallelogram; therefore it is possible building the ellipse 

following the procedure for the single PSF ellipse described in Appendix A. 

Figure 6-10.a shows the intersecting ellipse superimposed to the MPSF; we can observe the 

capability of the intersecting ellipse to described the mainlobe of the MPSF; in Figure 6-10.b the -8 

dB contour have been plotted, highlighting that the intersecting ellipse describe the mainlobe region 

at -8 dB.  

 

Figure 6-9. Intersecting points 
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Figure 6-10. MPSF, Intersecting ellipse - a) MPSF with dynamic range [-8 0] dB, b) -8 dB contour vs intersecting ellipse. 

6.2.5. SIMULATED RESULTS 

Potentially, the non-coherent addition method can be applied to images obtained from different 

satellites, belonging to different navigation satellite constellations. However, in this analysis satellites 

from the same GLONASS constellation are considered. Assume N = 3 bistatic geometries formed by 

GLONASS transmitters and a receiver fixed on the ground. The parameters of the acquisition are 

reported in TABLE 6-1 along with the parameters of the resulting PSF, shown in Figure 6-11. The 

worst resolution case has been found for Acquisition 1 (A1), namely the one having the minor angle 

γ, and the best one for A3, where γ ≈ 90°.  

Acquisition 
Satellite 

(Cosmos) 

β 

[deg] 

ωE 

[deg/s] 
Td [s] 

ΔRg 

[m] 

ΔAg 

[m] 

δmax 

[m] 

δmin 

[m] 

� 

[deg] 

� 

[deg] 

Area 

[m
2
] 

A1 744 62.24 0.0045 300 22.74 3.98 67.23 3.62 19.46 79.91 189.21 

A2 736 102.64 0.0048 250 43.09 4.14 49.10 3.85 59.33 37.64 144.37 

A3 732 73.68 0.0048 200 26.74 4.97 26.88 4.83 80.64 -9.54 93.91 

TABLE 6-1. SIMULATED ANALYSIS PARAMETERS. 
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Figure 6-11. Simulated bistatic PSFs - a) A1, b) A2, c) A3. 

The MPSFs are shown in Figure 6-12, both for the case of two bistatic channel (Figure 6-12.a,b,c) and 

the one achieved combining the all bistatic PSFs Figure 6-12.d). Comparing the bistatic PSFs in Figure 

6-11 and the MPSFs in Figure 6-12, the reduction of the resolution cell area compared to the single 

PSFs is evident for N = 2. Increasing the number of combined channels, the main effect is the 

reduction of sidelobe levels around the peak, while the mainlobe region remains approximately the 

same as the one achieved by integrating two channels. The cell sizes of the MPSFs are reported in 

TABLE 6-2. Comparing the entries here to those of TABLE 6-1, an improvement of the worst spatial 

resolution is achieved, and as a consequence a reduction of the resolution cell area of about five 

times can be seen between the bistatic and multistatic cases. 
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Figure 6-12. Simulated multistatic PSFs - a) A1 + A2, b) A1 + A3, c) A2 + A3, d) A1 + A2 + A3. 

MPSF A1+A2 A1+A3 A2+A3 A1+A2+A3 

δmax [m] 10.25 7.03 9.30 7.45 

δmin [m] 4.12 5.23 4.84 4.74 

Area [m2] 36.33 28.79 38.77 29.61 

TABLE 6-2. SIMULATED MPSF RESOLUTION CELL SIZE. 

Figure 6-13 shows the approximated version of the MPSF achieved from (12) for the same cases in 

Figure 6-12.b (A1 + A3) and Figure 6-12.d (A1 + A2 + A3). A good agreement between the nominal 

and the approximated version of the MPSF can be observed, particularly around the mainlobe. The 

absolute error of the approximation is calculated as: 

               Err = ºMPSF − MPSFz88º × MPSF                (15) 

where MPSFz88 is the approximated version of the MPSF in (12) and the × operator denotes a pixel-

by-pixel multiplication.  
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Figure 6-13. Approximated version of the simulated multistatic PSF – a) A1 + A3, b) A1 + A2 + A3. 

 

Figure 6-14. Absolute error of the MPSF approximation – a) A1+A3, b) A1+A2+A3. 

Figure 6-14 shows the errors for the approximated MPSF in Figure 6-13, showing a negligible error in 

the mainlobe of the function and a limited error (below -20 dB) around it. 

Figure 6-15 shows the comparison between the simulated PSFs and the theoretical resolution 

ellipses derived as in section 6.1.1. We can appreciate how the resolution ellipse describes very well 

the area at -8 dB of the mainlobe. 

Figure 6-16 shows the comparison between the simulated MPSFs and the theoretical intersecting 

ellipses derived as in section 6.2.4. Also in this case we can appreciate the capability of the 

theoretical ellipse to describe the -8 dB region of the mainlobe of the resulting function when N = 2. 

The integration of N > 2 single channel has the main goal of reducing the sidelobes around the peak, 

while the mainlobe region can be sufficiently well approximated by the smallest of the intersecting 

ellipses deriving from the combination of each couple of bistatic channel (Figure 6-16.d). A more 

accurate description could be achieved by means of numerical method. 
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Figure 6-15. Comparison simulated PSF - theoretical resolution ellipses -  a) A1, b) A2, c) A3. 

 

Figure 6-16. Comparison simulated MPSF - theoretical intersecting ellipses - a) A1 + A2, b) A1 + A3, c) A2 + A3, d) A1 + A2 + A3. 
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6.2.6. MULTISTATIC PSF WITH MINIMUM AREA 

As in the bistatic case the minimum area is achieved when - ≈ 90°, in the multistatic case for N = 2 

we expect the minimum value when Δϕ = ϕ� − ϕ� ≈ 90°. For example, in the previous analysis the 

smallest area for the multistatic case was found combining A1 (with the poorest resolution) and A3, 

since the two PSFs are nearly orthogonal. 

Considering two PSFs described by two resolution ellipses being one the rotated version of the other 

one around its centre, it is quite evident that the minimum intersecting area will be achieved for the 

case of the different in the orientation of 90 deg. An analytical proof is given in Appendix B. 

However, different orientations are achieved from different satellite trajectories, and in general the 

shape of the two PSFs will differ also for the length of the axes of the theoretical ellipses. 

In order to show the resolution improvement as a function of the difference in PSF orientation, the 

following simulation scenario was carried out: a real GLONASS satellite trajectory 3h long was 

considered, with satellite elevation angles greater than 45° throughout. In real situation, this would 

allow a low-gain antenna pointed towards the sky to record the GLONASS direct signal for the whole 

acquisition time without the need to steer it in the satellite’s direction. The whole trajectory was 

then divided in K frames, each one being Td sec long. Each frame can yield a PSF whose orientation 

depends on the satellite position and direction during the frame interval. Therefore, frames have an 

angular separation Δϕ. The resulting PSF deriving from frame 1 is combined following (8) with the 

PSFs from all the other frames, so Δϕ = ϕE − ϕ�, h = 1, … , K.  

Figure 6-17 shows the area of the MPSF as a function of Δϕ. We can observe how for all the 

considered frame time the area greatly decreases with the increase of Δϕ, moving from values 

around 500-1000 m
2
 for Δϕ ≈ 0° (where Δϕ = 0° is the single PSF case) up to 50-100 m

2
 when Δϕ ≈ 90°.  

 

Figure 6-17. MPSF area as a function of the difference in bistatic PSF orientation 
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6.2.7. EXPERIMENTAL RESULTS 

Data acquisitions using GLONASS satellites were conducted to confirm the proposed techniques. The 

experimental hardware, developed at the University of Birmingham, comprises a superheterodyne 

receiver with two channels. The first uses a low gain antenna to collect the direct signal from the 

satellite which is used for the synchronization providing the propagation delay and phase reference 

for image formation (heterodyne channel HC) [115]; the second uses a high-gain antenna receiving 

the signal reflections from the target area (radar channel RC). In this context we are interested in 

experimentally obtain the MPSF and compare it with theoretical results. Since in BSAR the use of 

passive point-target like corner reflector is not recommended, in order to emulate a point-like target 

both RC and HC antennas were pointed towards the satellite using low-gain antennas and we use the 

direct signals to generate the bistatic PSFs. The experimental setup is shown in Figure 6-18. 

 

Figure 6-18. Experimental setup. 

The parameters of the acquisitions are reported in TABLE 6-3 and the experimental bistatic PSFs are 

shown in Figure 6-19.a,c, along with the corresponding simulated ones, so that we can appreciate 

the very good accordance between simulated and experimental single channel results (Figure 

6-19.b,d). We observe that the two satellite trajectories result in two nearly orthogonal PSFs and 

therefore, according with the results in Figure 6-17, we expect a considerably great improvement 

factor in the resolution cell area. The resulting MPSF is shown in Figure 6-19.e, with a good 

coincidence with the theoretical expectations, Figure 6-19.f. In addition, TABLE 6-4 reports the cell 

sizes of the bi/multi-static PSFs both for simulated and experimental results. It can be seen that the 

MPSF presents the worst spatial resolution that is improved of about five times with respect to worst 

resolution in the bistatic case, and the multistatic resolution cell area is approximately 2.5 and 4 

times better than in data acquisitions A and B, respectively. Finally, Figure 6-20 shows the 

approximated MPSF achieved applying (12). 

Acquisition 
Satellite 

(Cosmos) 

β 

[deg] 

ωE 

[deg/s] 

Td  

[s] 

ΔRg 

[m] 

ΔAg 

[m] 

� 

[deg] 

� 

[deg] 

A 717 85.45 0.0049 300 31.28 3.25 62.78 43.77 

B 716 100.14 0.0050 210 39.39 4.80 69.08 122.62 
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TABLE 6-3. EXPERIMENTAL ANALYSIS - ACQUISITION AND BISTATIC PSFS PARAMETERS. 

 PSF A PSF B MPSF 

δmax [m] 32.38 40.49 7.26 

δmin [m] 3.00 4.67 4.38 

Area [m2] 62.30 107.92 25.54 

TABLE 6-4. EXPERIMENTAL BI/MULTI-STATIC PSF PARAMETERS 

 

Figure 6-19. Bistatic PSFs; a) Acq. A (simulated), b) Acq. A (experimental), c) Acq. B (simulated), d) Acq. B (experimental). 
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Figure 6-20. Approximated version of the experimental MPSF. 

6.3. MULTIPLE SCATTERERS COMBINATION 

In the previous sections we studied the proposed multistatic scheme for the combination of BSAR 

images and we studied it in the case of single point scatterers, resulting in the Multistatic PSF. The 

next step is to move from the point target analysis to the distributed targets. In this section we show 

some preliminary theoretical and results achieved by applying the proposed scheme to images 

composed by several point scatters, showing one of the main issue related to this kind of 

combination.  

Let us consider a very simple distributed target composed by two scatterer of equal amplitude. Each 

one will result in a ellipsoidal shape which orientation is a function of the mutual position 

transmitter – receiver and the trajectory of the receiver. Since the satellite – target distance is much 

greater than the size of the scene we observe, we can consider this shape invariant with the target 

position. If proper satellites are chosen, two images with different PSF orientations can be formed. 

Depending on the mutual positions of the two point targets, two possible cases are possible: 

1. The two different scattering centres split in the composite image. 

2. Artefacts (ghosts) arise in the composite image. 

To illustrate these two possible situations let us consider the image characterized by the PSF as in 

Figure 6-2 (image A) and a second image which PSF is the same one but rotated by 90° (image B). 

The scene is composed by two point targets of equal amplitude at a distance d ≈ δmax. We consider 

two study cases: a) the target separation vector lies on the direction of the orientation of the PSF 

A, �Ò; b) the target separation vector is orthogonal to �Ò. The resulting single channel images are 

shown in Figure 6-21 (case a) and Figure 6-22 (case b). 

As we can observe two situations can be highlighted: in the case a the two point targets give rise to a 

unique shape such that we see them as a unique scatterer in image A and they appear as two PSFs in 

image B; in the case b they appear as two separated point targets in both the images. 
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Figure 6-21. BSAR images of a distributed target composed by two point targets, case a – a) image A, b) image B. 

 

Figure 6-22. BSAR images of a distributed target composed by two point targets, case a – a) image A, b) image B. 

The resulting multistatic images are shown in Figure 6-23. Figure 6-23.a is relative to the case a: we 

can observe the potential of the technique to separate the two different scattering centers, with an 

improvement in the image resolution as described in section 6.2; Figure 6-23.b is relative to case b: 

the issue of the technique is the possible presence of ghosts in the composite image. 

 

Figure 6-23. Combination of multiple scatterers, separation of different scattering centers (a) and ghost formation (b). 
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The situation become more and more complicated with the increase of number of the scattering 

centers. It should be pointed out that the problem of the ghost is one of the main challenge in the 

multistatic scenario [1] and in the past several solutions to reduce the number of artifacts in the final 

image have been proposed, e.g. [116], [117], [118]. 

A possible solution to counteract the effect is exploit a number of transmitters greater than two. Let 

us consider the three bistatic geometries in TABLE 6-1, and a scene composed by two point 

scatterers of equal amplitude located in [0,0]m and [10,10]m. 

Figure 6-24 shows the three resulting BSAR images; as we can observe in images A1 and A3 we see 

as separated the two points, whereas in image A2 we see only one shape. 

Figure 6-25 shows the three multistatic images obtained by the combination of the three couples of 

single images. As we can observe, ghosts appear in image b, resulting by the composition of image 

A1 and A3, whereas in images a and c the two scatterers appear as separated points. 

 

Figure 6-24. De-ghosting: BSAR images of a scene composed by two point targets – a) A1, b) A2, c) A3. 
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Figure 6-25. De-ghosting: Multistatic SAR images with N = 2 – a) A1 + A2, b) A1 + A3, c) A2 + A3. 

The idea is that ghosts result in different positions if different couples of single channel images are 

used to form the multistatic ones, whereas the real scatterers appear in their true positions. 

Figure 6-26.a shows the multistatic image resulting by the combination of the all the bistatic images. 

The real point scatterers have a bigger power than the ghosts, since the take advantage of a gain of 

non-coherent integration. If as example we apply the min operator to the three images in Figure 

6-25 instead of the summation to form the final image (Figure 6-26) we can reduce much more the 

power of the ghosts in the final image. 

 

Figure 6-26. De-ghosting: Multistatic SAR images with N = 3 (a) and the result of the min operator (b).  
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6.4. ANALYSIS OF REAL BSAR IMAGES 

In this section we present some preliminary experimental results of real BSAR images acquired at 

multiple bistatic geometries. The experimental campaign was conducted on the roof of the School of 

Electronic, Electrical and Computer Engineering of the University of Birmingham. The equipment 

used for experimentation was the same as presented in section 6.2.7, but in this case the RC uses a 

antenna pointed towards the imaging scene, collected satellite signal reflections for imaging. The 

experimental setup is shown in Figure 6-27. 

The target area was Metchley Park, located to the West. A satellite photo of this area is shown in 

Figure 6-28. This area was selected for two reasons. First of all, there are four isolated towers 

approximately 1.2 Km away from the receiver (Figure 6-29.a), secondly, there are tree lines in the 

area facing towards the receiver, so they could yield strong echoes (Figure 6-29.b). 

The results here presented refer to three experiments with four different satellite positions, 

reported in TABLE 6-5 (satellite azimuth angles are measured clockwise starting at the West 

direction, elevation angles are measured relative to the location of observation, bistatic angles are 

calculated according to bistatic geometries) [111]. 

The images obtained from the four experiments are shown in Figure 6-30, superimposed on the 

satellite photograph of the area in Figure 6-28. 

 

Figure 6-27.Real BSAR imaging - Experimental equipment. 
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Figure 6-28. Metchley Park area. 
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Figure 6-29. Metchley park – a) Building at far end, b) trees in the middle range. 

Image Satellite Date of 

acquisition Azimuth Elevation Bistatic angle 

M 732 24 May 2012 170.6°-161.1° 75.8°-74.6° 74.4° 
J 736 24 July 2012 187.7°-189.7° 54.3°-52.1° 63.5° 

A 736 31 Aug 2012 42.1°-39.1° 70.6°-72.7° 90.8° 
D 744 7 Dec 2012 148.2°-151.3° 52.4°-42.1° 54.2° 

TABLE 6-5. POSITIONS OF SATELLITES IN DIFFERENT EXPERIMENTS. 

Some preliminary considerations are in order: 

• Different time of acquisitions: the images have been acquired in different times. This 

should not be a issue for the multistatic image combination we propose here, since we are 

investigating a non-coherent technique looking at stable scatterers. 

• Different elevation and azimuth views of the scene:  the differences in the point of view of 

the scene entail different reflectivity of the scatterers as a consequence of the different 

bistatic geometry. Different shadowing effects appear in the images and there is a strong 

decorrelation of the received signals. These could be very useful in areas such terrain 

classification, SAR image feature extraction or even SAR clutter cancellation, whereas in our 
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case these represent a problem and limitations on the differences of the azimuth and 

elevation angles of the observation have to be studied. 

• Very complex scene: the scene is composed by natural and manmade objects, such as 

trees, grass and building, showing different scattering phenomenon, and it is a difficult 

situation for a starting analysis 

The goal here is to show some very first real results showing the capability of the multistatic  GNSS-

based SAR to improve the quality of the images and to highlight some of the major challenges have 

to be faced in the future. 

 

Figure 6-30. Metchley Park radar images – a) May (M), b) July (J), c) August (A), d) December (D). 
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6.4.1. RADAR CHANNEL BISTATIC PSF 

Figure 6-19 showed the coincidence between the theoretical bistatic PSF and the one experimentally 

obtained from the RC when it collects the direct signal from the satellite. In this section we aim to 

show the coincidence between theory and experiment also for the PSF achieve by processing of the 

reflected signal.  

Firstly, we extract an isolated scatterer from one of the images in Figure 6-30 and evaluate the 

theoretical PSF to make the comparison. 

 

Figure 6-31. Radar channel PSF – a) BSAR image of Metchley Park (J), b) isolated scatterer, c) simulated PSF, d) comparison 

with the resolution ellipse. 

Figure 6-31.a shows the image J. An isolated scatterer at the far end has been extracted (Figure 

6-31.b) and observing the comparison with the simulated PSF (Figure 6-31.c) we can appreciate the 

very good agreement between theory and experiment; also, the comparison between the real 

scatterer image and the resolution ellipse has shown (Figure 6-31.d). 

6.4.2. MULTISTATIC IMAGES 

Here we show and discuss the multistatic images obtained by the combination of the images in 

Figure 6-30. The several images resulting by the combination of N = 2 channels are shown in Figure 

6-32. In order to analyze some feature of the images, we focus on the two areas in Figure 6-29: the 

tree lines in the middle range and the buildings at the far end. 

Tree lines 

Figure 6-33 shows the multistatic image achieved as combination of the images M and D, while the 

multistatic image achieved by the combination of three channels is shown in Figure 6-34. We can 

observe the capability of the system to start to isolate the scattering centers probably due to the 

trunks of the trees. However, as previously discussed, several bright points are ghosts. We try to 

apply the rule described in section 6.3 and the image resulting from the min operator is shown in  

Figure 6-35. We can observe the great reduction of the number of scattering points, so that we can 

expect that the most of the remaining bright points are due to the reflections from the trees. The 

optical photo of the trees is shown in Figure 6-36. Counting the number of bright points and the 
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number of trunks we found a very good coincidence. We underline that this is only a very first result, 

highlighting the capability of the technique to improve the imaging capability of the passive system.   

Buildings at the far end 

Figure 6-37 shows the single channel images of the area at the far end of the image. We can observe 

how several scatterers visible in one image cannot be visible in the others. Moreover, in this area 

there are different kind of objects as well as the buildings, such as trees and bushes. Therefore, as 

well as the ghosts due to the near scatterers from the same object, in this area we have ghosts due 

to returns from different targets. The multistatic image as composition of M, A and D is shown in 

Figure 6-38, along with the image resulting by the application of the min operator. We start to 

identify the shape of the buildings, but many problems are still to be investigated. 
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Figure 6-32. Metchley Park multistatic images – a) M + J, b) M + A, c) M + D, d) J + A, e) J + D, f) A + D. 
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Figure 6-33. Tree lines area – multistatic image M+D. 

 

Figure 6-34. Tree lines area – multistatic image M+A+D. 
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Figure 6-35. Tree lines area – multistatic image min{M,A,D}. 

 

Figure 6-36. Optical photo of the tree lines. 
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Figure 6-37. Building at the far end, BSAR images – a) Aug, b) Dec, c) May. 
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Figure 6-38. Building at the far end – a) optical photo, b) Multistatic image M+A+D, c) multistatic image min{M,A,D}. 

6.5. CONCLUSIONS 

The work presented in this chapter puts forward a multistatic SAR system using GNSS satellites as 

transmitters of opportunity and a stationary receiver on the ground. The use of such a technology is 

cost-effective since only the development of the receiver is required and can be potentially used for 

persistent local area monitoring. The first part of the presented work shows the theoretical analysis 

of the multistatic PSF achieved combining the single images resulting from several GNSS satellites 

transmissions. Such a system has the potentiality to considerably improve the resolution cell with 

respect to the single bistatic channel case properly selecting satellites positions and trajectories. The 

theoretical analysis was verified by both simulations and experimental results. It is worth to notice 

that all the results are applicable for the configuration using a moving receiver, where a Doppler 

resolution less than 1 m is expected; therefore in such a configuration a resolution cell of about 1 m
2
 

could be achieved.  

The second part of the chapter shows a preliminary experimental study on the application of such 

technology on real BSAR images, showing the potentialities of such of technique to extract an 

increased amount of information from the observed area by exploiting several GNSS satellites. Even 

if many issues are still to be faced, the technique has the potential to be a powerful and low cost 

remote sensing tool, due to the choice of GNSS as transmitters.   
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APPENDIX 

A. RESOLUTION ELLIPSE 

Let the vertices of the parallelogram be O, P, Q and R and d1 and d2 the two diagonals, i.e. ��: ���LLLLM 

and ��:�D�LLLLM; the centre of the parallelogram is C: (xm, ym) = ðd� ∩ d�ñ (see Figure A 1). 

 

Figure A 1. Resolution parallelogram. 

The general form of an ellipse is [119]: 

E(x, y): ax� + 2bxy + cy� + 2dx + 2fy + g = 0 (A1) 

satisfying  Δ ≠ 0, � > 0 and Δ }S < 0, being: 

Δ = �a b db c fd f g�    ,   � = �t �� ��    ,   } = t + � (A2) 

The semi-major and the semi-minor axes are given by respectively: 

aX = � 2(af � + cd� + gb� − 2bdf − acg)(b� − ac)  �(t − �)� + 4�� − (t + �)" (A3) 

bX = � 2(af � + cd� + gb� − 2bdf − acg)(b� − ac)  −�(t − �)� + 4�� − (t + �)"  (A4) 
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The counter clockwise angle of rotation from the x-axis to the semi-major axis of the ellipse is given 

by: 

ϕ =
899
:
99;

0 , b = 0, a < �π2 , b = 0, a > �12 cot��  t − �2� " , b ≠ 0, a < �π2 + 12 cot��  t − �2� " ′ b ≠ 0, a > �
� (A5) 

It is known that the diagonals of the parallelogram are two conjugate diameter of the circumscribed 

ellipse, so that we can exploit this information to extract the equation of the searched ellipse. For 

starters, C is the centre of the ellipse, being the intersection point of a couple of conjugate 

diameters. By means of the translation of the plane TC we can shift the centre of the ellipse in (0,0): 

(mX, n′) = �Íðm, nñ: �mX = m − mÍnX = n − nÍ � (A6) 

We point out that in the case presented in Figure A 1 the ellipse is centered in (0,0) and the 

translation TC is unnecessary; however it is necessary if the center is located in different position. 

The equation of an ellipse having its centre in (0,0) is given by: 

E(x, y): ax� + 2bxy + cy� = 1 (A7) 

i.e., referring to (A1), � = Y = 0 and E = −1 (for sake of simplicity the apex ‘ accounting for the 

isometry in (A6) will be omitted). 

In order to define the ellipse now we need three information. We can substitute two endpoints of 

the segments OQ and PR, obtaining two linear equations with variables a, b, c (we cannot use the 

other endpoints, because the equations are not independent). 

The third equation can be obtained implicitly differentiating the equation of the ellipse 

2tm + 2� �n + m �n�m� + 2�m �n�m = 0 (A8) 

Then, substituting one endpoint from a chord and the slope of its tangent line (= dy/dx) into this 

equation we get a third linear equation with variables a, b, and c. The value of dy/dx is known 

because in the point which a diameter across the ellipse, the tangent line is parallel to the conjugate 

diameter (see Figure A 2). 
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Figure A 2. Conjugate diameters of the ellipse 

In order to find the parameters a, b and c we can resolve the following linear system: 

� tm�� + 2�m�n� + �n�� = 1tm�� + 2�m�n� + �n�� = 12tm' + 2��n' + m'a�]� + 2�m'a�] = 0 � (A9) 

or, in matrix form: 

�t��� ý m�� 2m�n� n��m�� 2m�n� n��2m' 2�n' + m'a�]� 2m'a�]
� = �110� → �� = � (A10) 

being (m1 , n1) the coordinates of the point i = O, P, Q, R after the transformation in (A6) and a�]  the 

angular coefficient of the straight line passing through R and P. Applying the Cramer’s rule we find: 

xH = ý  2m�n� n��� 2m�n� n�� 2�n' + m'a�]� 2m'a�]
� 

x� = ý m��  n��m�� � n��2m'  2m'a�]
� 

x. = ý m�� 2m�n�  m�� 2m�n� �2m' 2�n' + m'a�]�  � 
(A11) 

Finally, the five parameters defining the ellipse in (A1) are: 
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t = |xH| |x|Ä   ;   � = |x�| |x|Ä   ;    � = |x.| |x|Ä
� = Y = 0   ;   E = −1  (A12) 

Substituting (A12) in (A3), (A4) and (A5) we have the axes of the ellipse and its orientation. 

Figure A 3 shows the circumscribed ellipse to the parallelogram in Figure A 1. 

 

Figure A 3. Circumscribed ellipse. 

B. MINIMUM INTERSECTING AREA 

Without loss of generality we consider the centre of the ellipse describing the PSF of the first channel 

(reference) in (0,0) and its major axis lying on the x-axis; any different situation can be achieved by 

means of isometries of the plane. We assume the ellipse describing the PSF of the second channel 

having the same centre and the same axes length but rotated of � deg. 

The ellipse in (A1) having its major axis lying on the x-axis is given by the following parametric form: 

�� = �m = tX cos(�)n = �X cos(�)� = L0,2æ) � (A13) 

The rotated ellipse can be obtained applying a rotation matrix: 

�m�n�� = ��rW� −sinϕWQu� �rW� � �mn� → �� = �m� = m�rW� − nWQu�n� = mWQu� + n�rW�� (A14) 
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We consider � ∈ �0, \��, since the other cases can be achieved by symmetry. The two ellipses are 

shown in Figure A 4. 

 

Figure A 4. Ellipses E0 and Eφ for a’ = 3 m, b’ = 1 m, φ = 30°. 

The area of an elliptical sector defined by the angle �� and �� (see Figure A 5) is given by: 

|(��, ��) = �(��) − �(��) (A15) 

being 

�(�) = tX�X2 �� − �E�� � (� − t) sin(2�)(� + t) + (� − t) cos(2�)�� (A16) 

 

Figure A 5. Elliptical sector. 
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Intersecting the two ellipses four elliptical sectors can be highlighted. The intersecting area is given 

by the summation of these four areas. Referring to Figure A 6: 

|1è_2/02._1�è = 3|1h
1>�

 (A17) 

where Ai is given by (A15)  using the proper angles measured in anticlockwise direction from the x-

axis. However, it easy to verify that |1 = Ò�^ .]¡.¢�£^.h ,⋁Q . Therefore we can write (A17) as: 

|1è_2/02._1�è = 4|� = 4 ��(�') − ���¥�� (A18) 

 

Figure A 6. Area of the intersecting ellipses 

The two angles �'  and �¥ do not depend on the shape of the ellipse (i.e. the major and minor axes), 

but only on the rotation angle. As an example, in Figure A 7 two cases of ellipses are shown. Both the 

ellipses are rotated of 30 deg (dotted lines). As we can observe, the chords connecting the 

intersection points for the case ��,���  (pink points) and  ��,��� (green points) lie on the same 

straight lines, therefore describing the same angles. 

Also, for symmetry, �¥ is an half of � and the separation between the straight lines with angular 

coefficient �'  and �¥ is right 90 deg, being the direction of the ellipses achieved by means a rotation 

of 
��  (see Figure A 8). 
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Figure A 7. The angles defining the intersection points do not depend on the specific form of the ellipse, but only on the 

rotation angle. E1: a’ = 3, b’ = 1 ; E2: a’ =1, b’ = 5. 

 

Figure A 8 Relationship between the rotation angle and the angle describing the first intersection point – a) this angle is an 

half of the rotation, b) the directions of the intersecting lines of the two ellipses are orthogonal. 

Therefore we have: 

|1è_2/02._1�è = 4|� 6 �¥ = �2�' = æ2 + �¥ = æ2 + �2
�4 ��(�') − ���¥�� (A19) 

Using (A19) we can write (A18) as a function of �: 

A = 2ab ìθ¦ − tg�� � (b − a) sin�2θ¦�(b + a) + (b − a) cos�2θ¦�� − θ� + tg�� � (b − a) sin(2θ�)(b + a) + (b − a) cos(2θ�)�ò = 

= 2ab ìπ2 + ϕ2 − tg�� � (b − a) sin(π + ϕ)(b + a) + (b − a) cos(π + ϕ)� − ϕ2 + tg�� � (b − a) sin(ϕ)(b + a) + (b − a) cos(ϕ)�ò = 
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= 2ab ìπ2 + tg�� � (b − a) sin(ϕ)(b + a) − (b − a) cos(ϕ)� + tg�� � (b − a) sin(ϕ)(b + a) + (b − a) cos(ϕ)�ò =

* = 2ab6π2 + tg�� ¨ (b − a) sin(ϕ)(b + a) + (b − a) + (b − a) sin(ϕ)(b + a) + (b − a)
1 − (b − a)� sin�(ϕ)(b + a)� − (b − a)� cos�(ϕ) ©ª 

After simple manipulations we have: 

|1è_ = 2t� ìæ2 + �E�� �(�� − t�)2t� sin(�)�ò (A20) 

Since the inverse tangent is a monotonic increasing function, the minimum value of the area is 

achieved for the minimum argument. Since (�� − t�) < 0, the minimum value is obtained for the 

maximum value of  sin(�), i.e. for � = \�: 

|�1è = 2t� ìæ2 + �E�� �(�� − t�)2t� �ò (A21) 

We point out that the case of � = 0° corresponds to have two completely overlapped ellipses, and 

in such case |1è_ = æt�, namely the overall area of the ellipse. 

  

                                                                 
*
 �E��(m) ± �E��(n) = �E��  V±S�∓VS" 
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