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Introduction

The aim of the present work is to present the interplay between time-changed
stochastic processes (and pseudoprocesses) and partial differential equations. With
a certain abuse of language we refer to the time-change of the process X (t), t > 0,

X(Y(@t), t>0. (1)

A well-known example of time-changed process is the iterated Brownian motion
By (Bs(t)), t > 0, (see Burdzy (1993a,b, 1998)) where B;, i = 1,2 are independent.
In DeBlassie (2004) it has been shown that the distribution ¢(z,t) of the iterated

Brownian motion solves the fourth-order equation

0 1o 1 &

9 - -9 . - @ R : 2
5 4(2:1) 23ax4+2\/%dx25(x), z€eR,t>0 (2)

The study of the iterated Brownian motion has been stimulated by the fact that
it is able to model diffusions in cracks (Burdzy (1998), Chudnovsky and Kunin
(1987)). In the present work we choose Y (t), ¢ > 0, with non-decreasing paths and
in particular we will focus on subordinators and their inverses. This restriction is

crucial.

Subordination, a brief overview

A subordinator o/(t) is a stochastic process with independent and stationary incre-
ments and non-decreasing paths. Furthermore a subordinator is a Lévy process and
thus one have (see It6 (1942))

ol (t) = bt + Z Ag, a.s. Vt > 0, (3)

0<s<t

where Ay, s > 0, is a Poisson point process with characteristic measure v(ds) + adxo,

0o 18 the Dirac point mass at infinity and v, a, b, are known as the Lévy triplet and
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are such that
f(z) = a+bx+ /000 (1—e*) v(ds), /Ooo(s A Dv(ds) < oc. (4)

We call X (0/(t)), a subordinate process. The transition probabilities 14,(B) =
Pr {af (t)e B }, B C [0, 00), of subordinators are convolution semigroups supported
on [0, 00), for which

/0 e M u(ds) = e, (5)

We recall that in general a family of sub-probability measures p;, ¢ > 0, on R" is

said to be a convolution semigroup if
L. p (R") <1,Vt >0,
2. pr % Ds = Drys, Vs, 1 >0,

3. pr — 09, vaguely as t — 0.

The concept of subordination has been introduced by Bochner (1949, 1955) and is
related to Cy-semigroups. A bounded linear operator T; acting on a function u € 8,

where (B, ||-||) is a Banach space, is said to be a Cy-semigroup if Yu € B

1. Thu = u,

2. TiTou = Tyygu, Yu € B, s,t > 0,

3. limy 0 || Tyu — ul| = 0, (strong continuity).
The operator

T = /OO Tou e (ds), u € B, (6)
0

where the integral must be meant in the Bochner sense, is said to be a subordinate

semigroup in the sense of Bochner and is again a Cy-semigroup. A classical result
due to Phillips (1952) state that the infinitesimal generator of T7u is

Al = —f(=A)u = —a + bAu + /000 (Tyu — u) v(ds). (7)
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The fractional case

If
a—1
v(ds) = Fog —ds @€ (8)
one gets
f(z) = a—l—b:c—i—/ooo (1—e) Fog_—_a:)ds = z° (9)

which is the Laplace exponent of the a-stable subordinator. Consider the process
L(t) = inf{s > 0:0%s) >t}. (10)

Such process is known in literature as the inverse of the a-stable subordinator
and has non-decreasing, non-independent and non-stationary increments (see Meer-

schaert and Sikorskii (2012)). In Baeumer and Meerschaert (2001) it has been shown
that a Lévy process time-changed with L(t), t > 0, solves the equation

Raoc
ot>

u—uy = Lu (11)

subjecto to suitable initial conditions. The time-derivative appearing in (11) is the

Riemann-Liouville fractional derivative defined for o € (0,1) as

R 1 d [t wu(s)
g u(t) = m%/o = S)ads, a€ (0,1). (12)

Anomalous diffusions

The study of fractional equations has gained considerable popularity during the
past four decades. This is also due to the fact that a lot of applied scientists have
recognized the importance of fractional equations as a powerful tool able to describe
the reality. This is the case, for example, of Anomalous Diffusions (AD). It is well-
known that the mean-square displacement of a Brownian Motion (BM) is linear in
time and equal to 2¢. However this is the way as the heat spreads over a homogeneous
media. When a diffusion process is obstructed or take place in a non-homogenous
media the mean-squared displacement is often non linear in time and equal to t%.

Such kind of diffusions are described by fractional equations.






Chapter 1

Space-time fractional telegraph

equations

Articles: D’Ovidio et al. (2012). Time-changed processes related to space-time frac-

tional telegraph equations.

D’Ovidio et al. (2014). Fractional telegraph-type equations and hyperbolic Brow-

nian motion.

Summary

In this work we construct compositions of vector processes of the form S2° (c2£¥(t)),
t>0,ve (O, %}, B € (0,1], n € N, whose distribution is related to space-time frac-
tional n-dimensional telegraph equations. We present within a unifying framework
the pde connections of n-dimensional isotropic stable processes S’ whose random
time is represented by the inverse £”(t), t > 0, of the superposition of independent
positively-skewed stable processes, #¥(t) = H?"(t) + (2)\)% HY(t), t >0, (H, HY,
independent stable subordinators). As special cases for n = 1, v = % and f =1
we examine the telegraph process T' at Brownian time |B| (Orsingher and Beghin
(2004)) and establish the equality in distribution B (CQL%(t)> o (|1B(t)]), t > 0.
Furthermore the iterated Brownian motion (Allouba and Zheng (2001)) and the two-
dimensional motion at finite velocity with a random time are investigated. For all
these processes we present their counterparts as Brownian motion at delayed stable-
distributed time. The last section of the paper is devoted to the interplay between
time-fractional hyperbolic equations and processes defined on the n-dimensional

Poincaré half-space.
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1.1 Introduction and preliminaries

1.1.1 Introduction

The study of the interplay between fractional equations and stochastic processes
has began in the middle of the Eighties with the analysis of simple time-fractional
diffusion equations (see Fujita (1990) for a rigorous work on this field, or more
recently Allouba and Nane (2012), where the compositions of Brownian sheets with
Brownian motions are considered). In some papers the connection between fractional
diffusion equations and stable processes is explored (see for example Orsingher and
Beghin (2009), Zolotarev (1986)). The iterated Brownian motion has distribution

satisfying the following fractional equation

0z 1 0
t%u(:v,t) = g@u(x,t), reRt>0, (1.1)
(see for example Allouba and Zheng (2001)) and also the fourth-order equation
0 1o 1 &2

reR,t>0, (1.2)

——Uu

) = ——u(z,t) + ————96
ot (Jf, ) 23 ax4u(‘7;7 )+ 2\/2_7'('td1'2 (l’),
see DeBlassie (2004) (also for an interpretation of the iterated Brownian motion to

model the motion of a gas in a crack). Zaslavsky (1994) has studied the fractional

kinetic equation (derivatives are meant in the sense of Riemann-Liouville)

o8 =P
where py € C* (R!) is the initial condition and
df do f o f

Lf = —ays—+ D D .
/ azdx+ qd(—x)a+ P gza

(1.4)
For p = ¢ = 1/2, the differential operator (1.4) is symmetric and Saichev and
Zaslavsky (1997) have given the solution to (1.3) in the form g(z,t) = [ po(z —

y)h(y,t)dy where

fla,t) = %/Ooop(w,f) hs (5%) £r e, (1.5)

where p(z, &) is the fundamental soution to

dp

and the function hgz appearing in (1.5) is the law of a positively skewed stable r.v.

with Laplace transform
/ e he(t)dt = e (1.7)
0
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Clearly l5(¢,t) = %hg ((j)) f_%_l is the density of the inverse L? of H” since

Pr{H(t)> ¢} = Pr{L’(¢) < t}. (1.8)
Therefore the use of the inverse of subordinators in the solution of fractional equa-

tions with one time-fractional derivative can be traced back in the papers mentioned

above and in Baeumer and Meerschaert (2001).

When the fractional equation has a telegraph structure, with more than one

time-fractional derivative involved, that is for v € (0, 1]

<8—2y+2/\ay)u(xt):c2a—2u(xt) reREt>0,A>0,c>0, (1.9)
ot otv ’ ox2 V7 ’ ’ ’ ’ '

the relationship of its solution with the time-changed telegraph processes is ex-
amined and established in Orsingher and Beghin (2004) . The space-fractional
telegraph equation (with M. Riesz space derivatives) has been considered in Ors-
ingher and Zhao (2003), while the connection between space-fractional equations

and asymmetric stable processes has been established in Feller (1952).

Fractional telegraph equations from the analytic point of view have been studied
by many authors (see Saxena et al. (2006) for equations with n time derivatives).
For their solutions have been worked out also numerical techniques (see, for example,
Momani (2005)). Telegraph equations have an extraordinary importance in electro-
dynamics (the scalar Maxwell equations are of this type), in the theory of damped
vibrations and in probability because they are connected with finite velocity random

motions.

In this paper we consider various types of processes obtained by composing sym-
metric stable processes §2%(t), t > 0, 0 < 8 < 1, with the inverse of the sum of
two independent stable subordinators (instead of one as in Baeumer and Meer-
schaert (2001)) say £”(t), ¢ > 0, 0 < v < 3. These time-changed processes,
W,.(t) = 828 (c*L(t)), t > 0, have distributions, w’(x,t), £ € R", t > 0, which

satisfy telegraph-type space-time fractional equations of the form

0821/ Cau
(6’t2V +2)\8t”) w? (x,t) = = (=AW (x,t), xeR"t>0,c>0,\>0,
(1.10)

where 0 < <1, 0<v < %, subject to the initial condition
w? (x,0) = 6(x). (1.11)

The fractional Laplacian (—A)B , appearing in (1.10), is defined and analyzed in

Section 1.3 below. The fractional derivatives appearing in (1.10) are meant in the
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Dzerbayshan-Caputo sense, that is, for an absolutely continuous function f € L' (R)
(for fractional calculus consult Kilbas et al. (2006)),

—Cayf(t) ! /t i /(9) d l<rv< eN.  (1.12)
= — 1% . .
ot T(m—v) )y (t—spri-m=® ™ L

Equation (1.10) includes as particular cases all fractional equations studied so far
(including diffusion equations) and also the main equations of mathematical physics
as limit cases. Thus the distribution of the composed process S2° (L*(t)), t > 0,
represents the fundamental solution of the most general n-dimensional time-space

fractional telegraph equation. We give the general Fourier transform of the solution
to (1.10) with initial condition (1.11) as

Eeig-s,%ﬂ(c%va)) _
1 A A
— 5 1 —+ > E,,71 (Tlty) + 1 — 5 El,71 (T’QtV) y
X =g Dl (3
(1.13)
where
o= A+ X =EP, = A= N2 =g (1.14)
and
P (1.15)
E,,(x) = _ v, >0, 1.15
v (@) kz:% ' (vk + )

is the two-parameters Mittag-Leffler function (see, for example, Haubold, Mathai
and Saxena (2011) for a general overview on the Mittag-Leffler functions). Our
result therefore includes all previous results in a unique framework and sheds an

additional insight into the literature in this field.

An important role in our analysis is played by the time change based on the
process LV(t), t > 0. We consider first the sum of two independent positively
skewed stable r.v.’s H?(t) and HY(t), t > 0,0 <v < 3,

H(t) = H¥(t) + (2\)” HY(t), ¢ >0, (1.16)

whose distribution #,(z,t) is governed by the space fractional equation

2v v

0 0 0
aﬁy(x,t) = — (W—FQ)\—V) h(x,t), r>0,t>0,0<v< (1.17)

1
ox 2

In (1.17) the fractional derivatives must be meant in the Riemann-Liouville sense
which, for a function f € L' (R), is defined as

o” B 1 am [° f(s)
aqu(x)— F(m—y)dxm/o (x—s)”“‘mds’ m—1<v<m,méeN.
(1.18)
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We then take the inverse £”(t), t > 0, to the process H"(t), t > 0, defined as
£°(t) = inf {s >0 H?(s) + (207 HY(s) > t} . t>0, (119

whose distribution is related to that of #¥(¢), t > 0, by means of the formula
Pr{c"(t) <z} = Pr{#H"(z) > t}. (1.20)

The distribution 4,(x,t) of £”(t), t > 0, satisfies the time-fractional telegraph equa-

tion

2v v
(8 —1-2)\8 )L,(a:,t) = —%L(m,t), r>0,t>00<v (1.21)

1
ot?v otv 2

where the fractional derivatives appearing in (1.21) are again in the Riemann-
Liouville sense. We are able to give explicit forms of the Laplace transforms of

fi(2,t) and £,(z,t) in terms of Mittag-Leffler functions for all values of 0 < v < 1
For example, for the distribution 4, (x,t) of £(t) we have that, for 7y < A\?,

/OO e " (x,t)de =
0

1 A A
14+ —— | Ea(mt")+ |1 — ——— | E,1 (rat") ], (1.22)
A2 — A2 —

"2
o= A+ VA=, T2 = —A— /A —17. (1.23)

The distribution 4,(z,t) of £¥(t), t > 0, has the general form

where

¢ ¢
L(x,t) = / loy (z,8) hy(t — 8,2 ) ds + 2/\/ l,(2\z, s) hy, (t — s,x) ds, (1.24)
0 0

where the distributions of H*, H”, and that of their inverse processes L?” and
LY appear. For our analysis it is relevant to obtain the distributions of # 2 (1),
t >0, and £2(t), t > 0. We also obtain explicitely the distributions of H3 (t)
and H3(t), t > 0, and also of their inverses L3(¢) and L3(t), ¢ > 0, in terms of
Airy functions. By means of the convolutions of these distributions we arrive at the

following cumbersome density of the random time L3 (t), t >0,

Pe{ci(edr} = /ds/ dw e w6A1<—x (t_s)>Ai<23);i).

\/_ (t_s) [%+t551 d. (1.25)
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Forn =1, 5 =1and v = 1 in (1.10), we get the telegraph equation which is

satisfied by the distribution of the one-dimensional telegraph process
t
() = V(0) / (—1)¥O ds, >0, (1.26)
0

where N(t), t > 0 is an homogeneous Poisson process, with parameter A > 0,
independent from the symmetric r.v. V(0) (with values £c¢). Properties of this
process (including first-passage time distributions) are studied in Foong and Kanno
(1994) and a telegraph process with random velocities has been recently considered
by Stadje and Zacks (2004).

Forn=1,g=1and v = % the special equation

1
<%+2)\(§t—§%) wlé(xﬂf) _ 0266—;2?”1%(”””5)’ rEeR,t>0,

(1.27)
wlé(x, 0) = (x),

has solution coinciding with the distribution of 7' (|B(t)]), ¢ > 0, where |B(t)],
t > 0, is a reflecting Brownian motion independent from 7' (see Orsingher and
Beghin (2004)). For A — oo, ¢ — o0, in such a way that % — 1 the fractional
diffusion equation (1.1) is obtained from (1.27) and the composition 7' (| B(t)]), t > 0,
converges in distribution to the iterated Brownian motion. Our result, specialized

to this particular case gives the following unexpected equality in distribution

T(BG)) ¥ B (85@)), t>0, (1.28)
where
9 Nz [* _a? 2282 s
Pr{B (°L"(t)) € dz} = o ) s(tl—s)e 1% s (m+1) ds,
(1.29)
and
Pr{T (|B(t)|) € dx} = /000 Pr{T(s) € dz} Pr{|B(t)| € ds} . (1.30)

The absolutely continuous component of the distribution of the telegraph process
T(t), t > 0, reads

dw e~ A 3} A
Pr {T(S) € dl’} = 9% )\Io E\/ 2?2 — g2 + @ [0 E\/ 2?2 — x2 ,
(1.31)

where |z| < ct, t >0, ¢ > 0, and

oo

Ihz) =3 (g)% (kl!)g. (1.32)

k=0
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Forn =2, 8 =1and v = 1, equation (1.10) coincides with that of damped planar
vibrations (we call it planar telegraph equation) and governs the vertical oscillations

of thin deformable structures. The solution to
(& +228) r@.y.t) = (& + &) ey t), 2 +yP <PR1>0,
T(ZL’, Y 0) = 5(1’, y)>

T’t(l'7 Y, O) = 07
(1.33)

corresponds to the distribution r(x,y,t) of the vector T'(t) = (X (¢), Y (t)) related to
a planar motion described in Orsingher and De Gregorio (2007). This random mo-
tion T'(t), t > 0, is performed at finite velocity ¢, possesses sample paths composed
by segments whose orientation is uniform in (0, 27), and with changes of direction
at Poisson times. The distribution r(z,y,t) of T'(t), t > 0, is concentrated inside a

circle C of radius ¢t and has an absolutely continuous component which reads

A @7’\t+%‘ /22 —(x2+y?)

 27e VEE — (2% + )

r(z,y,t) : (z,y) € Cy,t > 0. (1.34)

If no Poisson event occurs, the moving particle reaches the boundary 0C.; of Cy

At

with probability e~ The vector process T'(t), t > 0, taken at a random time

represented by a reflecting Brownian motion, |B(t)|, has distribution
oz y.1) = / Pr{X(t) € ds,Y(t) € ds} Pr{|B(t) € ds}  (1.35)
0

which satisfies the fractional equation

1 2 2
(% + 2/\5;) q(z,y,t) = & (% + 88_y2> q(z,y,t), (z,y) € R* t > 0.
(1.36)
However, the distribution of By (cQL%(t)>, t > 0, does not coincide with (1.35) (By
is a two dimensional Brownian motion). In this case the role of T'(¢), ¢t > 0, in (1.28)
is here played by a process which is a slight modification of T'(¢), t > 0. We take

the planar process with law

Ae X [e2VEP—@H7) 4 =2/ +0)
Ver — (@ +y)

t(x,y,t) =

] . 2+ <At >0,
2me

(1.37)

which also solves equation (1.33). The process with distribution

x,Y,t) = v(x,y,s
q(y)/o(y) X 7

Pr{|B(Y)] € ds} + — 22 Pr{|B(1) e ds}]
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— /Ooo (t(x,y,S) + %t(m,y, s)) Pr{|B(t)| € ds}, (138)

has the same law of a planar Brownian motion at the time £2(¢), ¢ > 0. The
process T(t), t > 0, possessing distribution (1.37) is obtained from T'(t), t > 0, by

disregarding displacements started off by even-order Poisson events.

The last section of the paper is concerned with random motions on the hyper-
bolic Poincaré half-space, H" = {x,y:x € R"! y > 0}, whose distributions are

governed by fractional equations of the form
2v . n— v
(8t2u + 2)\88tl/> PZ(”? t) = % (Slnh ! 778@77 (sinh’}”*lnpn(n’ t))) ) n > OJt > O
pr(n,0) = (),

(1.39)

for 0 < v < % and n € N. The corresponding kernel
K (n, 1) =
solves instead the fractional equations
(a;; + 2)\gtu> kY (n,t) = ma% (sinh”_1 n%mfb(n, t)) , n>0,t>0,
i (0,0) = 0(n).

mlﬁ(%t% n>0,t>0, (1.40)

(1.41)
The process 7,V (t), t > 0, in H" which possesses distribution p*(z,t) solving (1.39)

is obtained by means of the composition
T.(t) = B (L(t)),  t>0, (1.42)

where B is the hyperbolic Brownian motion in H". The hyperbolic Brownian
motion has been introduced in the plane by Gertsenshtein and Vasiliev (1959) and
in H? by Karpelevich, Tutubalin and Shur (1959), in 1959. In successive papers
many properties of the hyperbolic Brownian motions have been explored (see for
example Getoor (1961), Gruet (1996), Lao and Orsingher (2007), Matsumoto and
Yor (2005)). The relationship between kernels in H? and H?® and kernels in higher-
order spaces is represented by Millson formula

e—nt

knio(n,t) = kn(n,t), n>0,t>0n¢eN. (1.43)

~2msinhnan "
Since pgp and k3 are considerably simpler than p’g” and ko we give explicit expressions
for the distribution
1 An sinhn e’ _a%2 g2
p32 (777 t) 3 t—s  4s (
27 S2+4/t — 5

where n > 0 and ¢t > 0. This dlstrlbutlon solves the fractional-hyperbolic telegraph

2] d 1.44
o)

equation (1.39), for v = 1 and n = 3.
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1.1.2 Notations

For the reader convenience we list below the main notations used throughout the

paper.

o S2(t) = <Sfﬂ(t),522ﬁ(t),--- ,Sfbﬁ(t)>, t>0,0<p <1, ne Nis a isotropic
stable n-dimensional process with law vg (x,t), x € R™, ¢t > 0.

e H"(t),t > 0,0 < v <1, is a totally positively-skewed stable process (stable
subordinator), with law h,(z,t), z > 0, t > 0.

e [”(t),t >0, is the inverse of H"(t), t > 0, and has law [, (z,t), = > 0, t > 0.

o H(t) = H(t) + (2)\)% HY(t), t > 0, is the sum of two independent stable
subordinators and has law #,(z,t), z > 0, t > 0.

o L¥(t), t > 0, is the inverse of #H"(t), t > 0 and possesses distribution £,(x,t),
x>0,t>0.

e T(t),t > 0, is a telegraph process with parameters ¢ > 0 and A\ > 0 and law
pr(z,t), —ct <x <ct,t>0.

o W, (t) = 828 (cL(t)), t > 0, has law w? (x,t), x € R*, t > 0.
o W(t)=T(|B(t)|), t >0, has distribution w(z,t), z € R, t > 0.

e T'(t), t > 0, is the planar process with infinite directions, parameters ¢, A > 0
and law r(x,y,t), (z,y) € Cu = {(x,y) € R? : 22 + ¢y* < At?}, ¢ > 0.

e T(t), t > 0, is the planar process with infinite directions, parameters ¢, A > 0
and law t(z,y,t), (v,y) € Cq = {(x,y) € R?: 22 +¢*> < At?}, t > 0, con-
structed by disregading displacements started off only by even-labelled Poisson

events.
* Q(t) =T (|B(t)]), t >0, has law q(z,y,1), (z,y) € R*, t > 0.

e B"(t), t > 0, is the n-dimensional hyperbolic Brownian motion in H" =
{(z,y) : € R" !y >0} and has law p?(n,t), n > 0, t > 0 with kernel
kn(n,t), n>0,t>0.

o TV(t) = B" (£¥(t)), t > 0, has distribution p“(n,t), n > 0, t > 0 and kernel

n

ki (n,t), n>0,t>0,

e By fwe denote the Laplace transform of the function f and by fwe denote

its Fourier transform.
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1.1.3 Preliminaries

Let us consider a stable process S”(t),t > 0, 0 < v < 2, v # 1, with characteristic

function
Eeiisy(t) _ e—a|§\”t(1—iasign(§) tan%) (145)

where 6 € [—1,1] is the skewness parameter and

o = cos %V (1.46)

For # = 1 the distribution corresponding to (1.45) is totally positively skewed and
for 6 = —1 is totally negatively skewed. The stable process with stationary and
independent increments, totally positively skewed will be denoted as H"(t), t >
0. We note that the density h,(z,t), of H"(t), is zero at x = 0 as the following

calculation show

hl,(O,t) — i Eei&H”(t) dé— _ i/ e—o‘|§|”t(1—itan%)d£

o ) o Y
- oo 0
_ i / 6—U|£Vt(1—itanl’27r)d£+/ e_J$|”t<1+itan"2"r)d£:|
2T LJo —0

= i /Oo e—EluteiU?ﬁdé“_i_/oo e—&l”te%ﬂdg}
2m | Jo 0
]_ [ & %_1 i o0 %_1 ]_ i
= — / e * <f> e2dz+/ e ? <E) —e 2dz
2m | Jo t 0 t t
cos T[> -1
= 2 / e~* <5> Zdz = 0. (1.47)
0

The positively skewed stable r.v. H"(t) has x-Laplace transform

hy (1,t) = Be #H"®O = c=tw" O<v<l, (1.48)

and therefore Fourier transform
o (6.1) = B0 — | (e-Ciomr@) = (g )

_ 6—t\§|"cos %(17isign(§)tan%”)' (149)

This shows once again that the skeweness parameter is 6 = 1.

The probability law h,(z,t), of H”(t), t > 0, solves the boundary-initial problem

(%"‘aiyu)hu(%t):(), x>0,t>00<v <1,
hy(O,t) = 0, (1'50)
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By taking the x-Laplace transform of the Riemann-Liouville fractional derivative

appearing in (1.50) we have that

c [&Uyh,,(a:,t)] (1) = / S oty dr

/0°° [F 1—v) dx x (Zy(—zj))”dz] da

/0°° [P(l—v 0 dh(zv e F(}iﬁou? ”]dx

p(l(o_tV/O e et gy 4 1—1// d'z/ dx e b = V( —2,t)
=, (0, )" +m /0 eV dz /0 dxh (x,t)dx

oo 1 -
=h, (0, )" + [/ e“xhl,(:v,t)dx] i i 1 rh,(0,t) = p¥hy, (u,t). (1.51)
0

Therefore

. N
Zhy, (u,t) + p’h, (u,t) = 0, >0,t >0,
il () + "l (p,t) f (1.52)
h

h (11,0) = 1,

so that

o () = e, (1.53)
In other words the density of a positively skewed stable r.v. solves the space-

fractional problem (1.50).

We will also deal with the inverse process of H”(t), t > 0, say L”(t), t > 0, for
which
Pr{H"(z) >t} = Pr{L"(t) <z}, x> 0,t>0. (1.54)

Such a process has non-negative, non-stationary and non-independent increments.

Furthemore we recall that the law [, (z,t) of L”(t), can be written as

1
Liw,t) = 2 Wosisy (—%) 2 >0,t>0, (1.55)

where
ok

Wa(@ Zk'r (ak +b)’

reRa>—-1,b€eC, (1.56)

is the Wright function, and has Laplace transform

-~ > & ]_ v
(2, 1) = / e M, (w, t)dt = / Wiy (—t%) dt = p'~tem
0 0
(1.57)
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1.2 Sum of stable subordinators, H"(t) = H"(t) +
1
< ITU
(2X\)v H3 (1)
For the construction of the vector process W, (t) = S (c2£¥(t)), t > 0, whose
distribution is driven by the general space-time fractional telegraph equation (1.10),
we need the sum #¥(t), t > 0, of two independent positively skewed processes. The

second step consists in constructing the process £¥(t), t > 0, inverse to #H*(t), t > 0.

We now start by considering the following sum
1 1
H'(t) = HY(t) + (2\)» HY (1), £>0,0<v <, (1.58)

with H?”, HY, independent, positively-skewed, stable random variables, A > 0. The

distribution of #¥(t) can be written as

At = | o (9, B — 1, 200) dy. (1.59)

Taking the double Laplace transform of (1.59), with respect to ¢ and x, we get

i (7 11) :/ 6_’“/ e "y, (z,t) dx dt :/ M =20 gy
0 0 0
1

_ _ [ ! ! } ! (1.60)
oA 22dy g | —re =1 To—T1 '
where, for 0 < u < A2,
= ATV L (1.61)
7"2:—)\+\/)\2—,u. '
By means of formula
0 Y=

where E,,(z) is the Mittag-Leffler function defined in (1.15), we can invert the
x-Laplace transform in (1.60) obtaining, for g < A2,

by (T, 1) =
= (B (2 V=) ) = B (A= V=) )]
=5 ;2 — |5 \;E(%EM ((—/\ IS u) xy)

——— L —— H(%E ((-x= v =n) :c”)] . (1.63)
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Formula (1.63) gives the explicit form of the t-Laplace transform of 4,(x,t) in terms

of Mittag-Leffler functions. In view of formula

1
1 e Mt pr—lgin

E, (—Mt") = — dzx, 0<v<l, 1.64
3 ) 7r/0 2 11+ 22 cosmv g (1.64)

we have that

Yy’ tsinwr dy

7 (y* + 14 2y” cosmv)

1 o [ -V’
o /N4 —A+\/)\2—u(9—$/o

1
N 1 0 /°° e_xy</\+ VA=) y”Lsin v dy
A+ /A2 — p oz Jy 7 (y? + 14 2y¥ cosv)

[ dy y¥ sin v 1 B 5 5—1.
[ = (Vi)

Y2 4 1+ 2y” cos ) 2, /N2 — 1

'6—xy<>\—\/m>% B (AJF m)i—le—w(xﬂ/my]

‘ZIV JE N v l _-— v l
:E{— [ R C

2/ A2 — 1
1 1
1 o —z U’ (—ra)v —zU’(—r1)v
- ) [e S , (1.65)
re — 110X To r1
where U is the Lamperti distribution with density
Pr{u’ € du}  sinmv u’~!
= > 0 1.66
du 7 14 u® + 2u” cosmv’ Lo (1.66)

and represents the law of the ratio of two independent stable r.v.’s of the same order
.
Theorem 1.2.1. The law h,(z,t) of the process H"(t) = H¥(t) + (2)\)% HY(t)

solves the fractional problem

%ﬁv(iﬂ,t):—<%+2)\gu>ﬁu(x,t), r>0,t>00<v<3,
h,(0,1) =0, (1.67)
h,(z,0) = §(z).

The fractional derivatives appearing in (1.67) are intended in the Riemann-Liouville

sense.

Proof. By considering (1.49), we have that the Fourier transform of f,(x, t) is written

as

ﬁ;(ﬁ,t) — ReiH () — Eeié[Hz”(t)Jr(?A)%H”(t)] _ E€i§H2v(t)ez‘5HV(2At)
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_ 67t\§|2” cos mv(1—isign(§) tan ) —2Xt[€|" cos T (171' sign(€) tan %)

e ) g o) 165)

Y

and thus

SR = [— (rawe’?“g“@)Q —2A (gl e % @) ] -

(i £ 5) ) 160

In view of the relationship
el e~ 55 — _je (1.70)

we have that formula (1.69) can be rewritten as
8 -~ . v . v —t(—1i 2v_ _i&
opf (6:1) = [ (i)™ — 2\ (i) ] e M, (1.71)
In (1.51) we have shown that
c| 2 hy (z,1)] ( )—/me—wﬁh (z,t)dz = p"hy,(u,t) (1.72)
oo @0 W) = | g (@ = 1"hy(p, :

and thus for a sufficiently good function f we have the following Fourier transform

~

7 L‘)a::uf(x)} (&) = /OOO ~(=i0)= ;;Vf(x) dr = (—i&)" f(&). (1.73)

In view of (1.73) we have that the Fourier transform of the right-hand side of the

equation (1.67), equipped with the boundary conditions, is written as

_r { o fi (,t) + 2) ay,,ﬁu(w,t)] (&) =

ox? Ox
= — /00 e~ (7id)e o by (x,t) dv — 2\ /OO e~ (-0 > b, (z,t) dx
0 dx? 0 ox?
= = (=)™ +2A(=i)") v (&:1)
-~ () (i ) 00’
= — (i)™ 42X (—i€)") e O D" (1.74)

which coincides with formula (1.71). This is tantamount to saying that the Fourier
transform £, (£,t) is the solution to

%ﬁ?(é D)=~ (TR R, EeRe>0

0) =

and this completes the proof. ]
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1.2.1 The inverse process L"(t)

Let £¥(t), t > 0, be the inverse process of #"(t), t > 0, as defined in (1.19) for which
Pr{c"(t) <z} = Pr{#H"(z) > t}, z,t >0, (1.76)
and let f,(z,t) be the law of £¥(t), t > 0. We have the following result.

Theorem 1.2.2. The law f,(z,t) of the process LV(t), t > 0, solves the time-

fractional boundary-initial problem

<§:;V+2>\%> Lz, t) = —%L(m,t), r>0,t>00<v<3,
L(x,0) = d(x), (1.77)

t72u

L(0,1) = T(i20) 2)‘F(t:uy

and has x-Laplace transform which reads, for 0 <y < A2,

A v _ # r v
(1 + )\2—_7> By (rt”) + (1 SO fy) B,y (rat )] , (L.78)

rn= —A+ VA =7, g = —A— A2 —17. (1.79)

The fractional derivatives appearing in (1.77) are intended in the Riemann-Liouville

1

where

Sense.

Proof. We first show that the analytical solution to the problem (1.77) has double

Laplace transform £, (7, 1) written as

=~ ,u2y—1 + ZAMV—I

) = ) 1.80
Lo = (1.50)
By taking the ¢-Laplace transform of the equation in (1.77) we have that
Wy vy 8 r
Pk (@, ) + 2000 (2, ) = = b (2,0 (1.81)

By taking into account the boundary condition and performing the x-Laplace trans-
form of (1.81) we have that

(B +2007) b, (1) = £ (0, 12) = b (7, 1) - (1.82)

Now, by considering the boundary condition, we get that

" oo oo t_2V t™v
6 (0,p) = /0 dte ', (0,1) = /0 dte” {ru—zu) AT )
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= 22 (1.83)

and thus

~ Iu2y—1+2)\luu—1
L) = = o
W2+ 2 \uY 4y

(1.84)

Now we show that the double Laplace transform of the law £, (x,t) coincides with
(1.80). We first recall that

by (1, ) = / dte "k, (t,x) = Ee #1" @) — Ee rH*@[Re—rH"(2A2)
0

= Doy (p1,7) hy (. 22x) = €777 g5, (1.85)

where we used result (1.48). By considering the construction of the process L”(t),
t > 0, as the inverse process of #H"(t), t > 0, as stated in (1.76), we get

Pr{c’(t)cdx} 0 5 A
T = —3 Pr{#"(x) <t} = —gfo h,(s,x)ds. (1.86)

Lz, t) =

In view of (1.86), the double Laplace transform of 4,(z,t) can be obtained observing
that

~ 0o 00 t
o = [Cane [ae [ [ oo ds]
0 0
_ - x t
= Adxe”ax/ dte“/ﬁv

1 e a a 2v v
—_ yr = yr | 2 —xptt =2z
,u/o dre” 8xﬁ,,(av p) = M/o dre” [8:66 1

00 . . 2v—1 2)\ v—1
_ (lu21/71 +2)\NV1)/ dip o= 2o _ Mzu + VM . (1.87)
0 W2 4 2 v 4y

which coincides with (1.80). Now we pass to the derivation of the z-Laplace trans-

form of £, (x,t). We can write

Z (7 M) _ Mlefl + 2)\M1/71 _ Mllfl N qufl B M2ufl
’ P A2y = gt =y (p =) (0 =)
v—1 v—1 v—(1-v) v—(1-v) 1
- £ 4B | _ A (1.88)

[l ST el & p=rr =] 2/ =4

where
rn=-A+VA—9,  m=-A-y/2—y (1.89)

Now we need the following results

/e”tE,,J(rjt”) at = L =12
i .
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e’} #21/71
/ e MU L (rtY) dt = : (1.90)
0 Y =T
Therefore
- v
L(7,t) = Ey1 (rmt”) + Eyq (rot”) — ——=[Ey1- (mt") — E,1-, (rat”)] .
2./ A2 —
(1.91)
Since
E (2) E,i1(z)+ L (1.92)
vl-v\2) = 2L 12 F(l—l/) .
we have that
Z (’7, t) = E 7“175 + EV 1 (Tgt ) 2\/}\—27_7 [TltVE,,J (T’lty) — TQtVEVJ (T’Qty)]
_/\+,/)\2 )\—1—\/)\2
_ Eyq (mt”) + |1 - B,y (rat”)
24/ N2 —
1 A 5 A 5
=35 (1 + /\2—_7> E, 1 (mt”) + (1 - )\2—_7) By (rat )] , (1.93)

which coincides with (1.78).

Now we check that the Laplace transform (1.93) solves the fractional equation

(82” +2Aa”)fm B = L)+ 4 (0,0
ot otv ’ ’ ’
_ 2 v
= —vfu(v,t)+r(1_2y)+2AF(1_V) (1.94)

which is the z-Laplace transform of the equation appearing in (1.77). Since

v t—QV Ca?u~
o ~ tv CauN

we therefore need to show that

C g CoN ~ ~
(atQV +2A at,,) Ly t) = =7h(7,1). (1.97)

In light of
CayEwl (rit") = riBua (rit"),  § = 1,2, (1.98)

o
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C’a2u
atQV

we are able to show that (1.78) solves (1.94). We first check result (1.99) as follows,
for 0 <2v <1

t7™Vr;
vy _ .2 v J
E,/J (Tjt ) = T‘j E,,,l (Tjt ) + m,

(1.99)

CH2v o0 k CH2v N
l?u t” = t’

gz v (13t) Z% T yk 1) o

> rk vk t

J vk—1 —2v
= t— d

;r(yku)ru—m/os (t=s) ™ ds

7,;?; tuk’—Zu 1 1

Sl/k—l (1 . 8)1_2V_1 ds

[
WE

I'(vk) T'(1-2v)

k=1

Tk tvk—2u

_ J
L(vk—-2v+1) kZ_OF(yk—VJrl)

T,/f:—l-l tukflz

[
NE

>
Il

1

=7t i (rst")" + ! = 2B, (rit") + by (1.100)
7= TWk—v+1)  T(1-v) g r(1-v)y
Therefore
0821/ Caz/
2\ t) =
(3 + 2 ) £ 0

3
1 by 08211 . A 0621/ .
) [(1 Vs 7) g D () + (1 - m) v B (12t )]
A

+2A1 1+ CayE (rmt")+(1- A CayE (rot”)
5 )\2_7 ot v,1 (T —/\2_7 otv v,1 T2
1 A _V7’1
"2 <”m> (11200 5775

A 9 ” t_VT'Q
—{—(1—)\2—_7) (TQEV,l(TQt )+F(1—V)>]
A v —)\ r rot”
< + —m (TlEu,l (Tlt )) + (1 o N2 — 7) 2EV71 ( 2l )]
+

I8 1 —)\ E (rlt)(r1+2>\)—l—7“2 1__)\ *
A2 — A2 —

« By (rat”) (12 + 2)\)1

ARV VA2 — ) — YVAE =7 =A A2 —y— )\ )
- 2 \/T l/l 711 2 \/77 I/l 7/'2

_|_
]_

(1 + —)\j\—_’y> v,1 (rit”) + (1 \/77> E, . (T2tl})]]
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T, (1101

In the last steps we used the fact that
A 1 t™v A T2 t™v
1 1— =0 1.102
(* )\2—7>F(1—V)+< xz_y)r(l—u) S

i+ 2\ = —rg, ro 4+ 2\ = —ry, rirg = 7. (1.103)

and

]

Remark 1.2.3. The derivation of result (1.78) suggests an alternative proof for the
Fourier transform (Theorem 2.2 in Orsingher and Beghin (2004)) of the law of the

time-fractional telegraph process.

Remark 1.2.4. From (1.88) we get the time Laplace transform of 4, (z,t), for z >
0,/,L>0,O<1/<%, as

2v

L(x,n) = /f”_le_x“be_”‘x“y + 2\pr e g (1.104)
Since (see formulas (1.55) and (1.57))
l;(x,u) = /000 e_’“ftlyW_,,,l_V (—:—V> dt = pte ™" (1.105)
and (see formula (1.53))
(1) = / b e hy(z,t)de = e ™" (1.106)
0

we are able to invert (1.104) and we obtain the explicit distribution of the process
£¥(t), t > 0, which reads

Pr{c”(t) € dx}
dx

t t
= / loy (z,5) hy(t —s,2 ) ds + 2)\/ I,(2\x, $) hoy, (t — s,x) ds
0 0

L(x,t) =

b1
= / —_ W_2V71_2V <—%> hy<t — S, 2)\ZE) ds
0 5%

S2V

b1 2\
+ 2)\/ —W_pioy (__x) ho, (t — s, x) ds. (1.107)
o S S

14

The densities h, and hsg, can be written down in terms of series expansion of stable
laws (see pag. 245 of Orsingher and Beghin (2009)).
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1.3 n-dimensional stable laws and fractional Lapla-
cian
Let
Si(t) = (Sfﬁ<t>,S§5<t>, o ,Si%)) . t>0,8€(0,1], (1.108)
be the isotropic stable n-dimensional process with joint characteristic function
— — ) 9 _ ;— 28
U"Qlﬂ (€7t) = U?L/B (51)527 U >€’nat) = EGZ&S”B(?&) =€ t< §%+£§+ +£%)

= et (1.109)

—

The density corresponding to the characteristic function v2” (€, ¢) is given by

1 4 2
U?Lﬁ (m7t) = U?f (Z‘l,IQ, T 7Invt) = W/R e & —t[€]l ﬁdé (1110)

The equation governing the distribution v2# (x,t) of the vector process S2(t), t > 0,
is
ot

where the fractional negative Laplacian is related to the classical Laplacian by means

(8 + (—A)B> v (x,t) = 0, xeR"t>0, (1.111)

of the following relationships (Bochner representation, see for example Balakrishnan
(1960), Bochner (1949))

Slnﬁﬁ/ DN —A)TA = smﬂﬁ/ \B-1 (/ e—w(A—A)dw) Ad)\
0 0 0

e ™
_ S Wﬁ A F(ﬁ) / wl—ﬂ—le—w(—A)dw _ — / wl—ﬁ—le—w(—A)dw
T 0 F (1 6) 0

— (=AY, (1.112)

A definition of the fractional negative Laplacian can be given in the space of the

Fourier transforms as follows

1

AV ule) — —
() ulw) =~

/ (2 gy 1) a(e) de, (1113)
where

Dom (—A)? = {ue LL®Y ;[ [ae)P (1+ |\5\|25) d¢ < oo}. (1.114)

Rn

An equivalent alternative definition of the n-dimensional fractional Laplacian is

(—AY u(@) = (8,n) P.V./ uz) = uly) , (1.115)

y
R [l — gy
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where the multiplicative constant ¢(3,n) must be evaluated in such a way that

/ e (A) u(a)dw = (€] /R () do. (1.116)

Let us focus our attention on the one-dimensional case of (1.115). In this case we
have that, for 0 < 25 < 1,

32
(_@) ulw) = elp.1 Pv/\x ”25

ety [ [ e / ]
= c(8,1) lim { /O :o ua) ;ﬁgj L /0 f ulz) ;ﬁg’ - Z)dz]

- g (LG [ )] 0

where in the intermediate steps, we considered the relation between the Marchaud
and the Weyl fractional derivatives. By setting

2p
2T (1 —28) cosfr’

(1) = (1.118)

we have that, for 0 < 25 < 1,

_ (_ai;)ﬁu(x) _

- 20018 B L“(l i 26) % /oo (z(i)zc)ljﬁ - Ta i 25) C% /;o %}

T — | % = 5 1.119
2COSﬂ7T F(]_ — 25) dx /oo |JZ _ Zlgﬁ z 8|x|26u(x)7 ( )
where 3 Zéﬁ represents the Riesz operator.

Remark 1.3.1. We notice that, for 0 < 28 < 1,

23
F {a—u@)} ©) = —lePace). (1.120)

0|x[*

This is due to the calculation

F [yt (© -
- _QColsﬁwF(liZﬁ) [/_mdmm (d%/_m%_%/x %)]
(

"2 C(zfﬁﬂ r(1 i 20) l/: dret (/_; (Z i)zc)l; R /xoo (Z(j);)ijﬁ )]
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1€ 1 o © i dy ety
~ 2cos prT (1 —2p) [/_OO dzu(2) (/Z (x — 2)26 - /—oo (z — x)Qﬁ )]
Zf 1 00 . 0 oiky o0 iy
:2(:0857?]7(1—25) |:/—oo€£ ulz)dz </0 Wdy_/o y*P dy)}

2 1 e *° sin &y
__ € (2) d d
2cos57rr(1—25)/_ e*ulz) Z/o g

o0

B 3 1 ul€) [~ [ Cwy, 26—
__cosﬁwru—zﬁ)r(zﬁ)/o /0 sindye™*w ™ dwdy

B ¢ 1 ae) [ o [F (i
__COSBWF(1—2ﬁ)F(2B)/O dww’ 1/0 dye y( 2 >

A T N

cos B T (1 — 28) F(2ﬁ)/0 e
e A0 [T e [T e
~ cos Bl (1—28) F(QB)/O duww 1/0 dy )
£ 1 u§ rp)ra-as)

T 2cos pr ' (1 —2p) T'(2P) |£[2-28 = _|f|2ﬁ u(). (1.121)

This concludes the proof of (1.120).

1.4 Space-time fractional telegraph equation

We consider now the composition of an isotropic vector of stable processes S23(t),
t > 0, defined in (1.108), with the positively-valued process, defined in (1.76),

L(t) = inf{s >0 HY(s) = H¥(s) + (2\)7 HY(s) > t}, t>0, (1.122)

where H?”, HY are independent positively skewed stable processes of order 2v and v,
respectively. The distribution w? (z,t) of the process 827 (¢>£¥(t)),t > 0, 3 € (0,1],

is the fundamental solution to the space-time fractional telegraph equation

0821/ C’au
+ 2 wl(x,t) = =2 (=AW’ (x,t), xeR"t>0 (1.123)
ot otv

In our view the next theorem generalizes some previous results because we here have

fractionality in space and time and the equation (1.123) is defined in R".

Theorem 1.4.1. For v € (0, %], B € (0,1] and ¢ > 0 the solution to the Cauchy

problem for the space-time fractional n-dimensional telegraph equation
(G 429V wl (@.t) = (A wi(@0), @ eRI>0

(1.124)
wy (x,0) = d (),
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coincides with the probability law of the vector process
W, (t) = S2° (°(t)), t>0, (1.125)

and has Fourier transform which reads

wy (€,) =
1 A A
= 5 1 -+ 5 E,,J (Tlty) -+ 1— 5 El/,l (Tgty) s
A2 — 2 ||g|*” VA2 =€)
(1.126)
where

o= AN =€, = A=A =€) (1.127)

The time derivatives appearing in (1.124) must be meant in the Dzerbayshan-Caputo

sense. The fractional Laplacian is defined in (1.113).

Proof. By taking the Laplace transform of (1.124) we have

pPrw) (a, ) — () + 2 [u wy (@, ) — o) | = = (=A) w) (2, ),

(1.128)

where we used the fact that (see Kilbas et al. (2006) page 98, Lemma 2.24)

C v
. [82 w,) (w,t)} = il (@, p) — p ol (x, 0), (1.129)

Now the Fourier transform of (1.128) yields

—~

(1> +22p") w) (& ) — (7" + 2207 7Y) = = [|€]*° ﬂ( p),  (1130)
and thus
u2l/—1 + 2)\[uu—1
2 4 22 4 ¢ €)1
The probability density of the process W, (t), t > 0, defined in (1.125), can be

written as

Z/L;é & n) = u>0,6eR" (1.131)

w? (x,t) = /OOO vg (x,?s) £, (s,t) ds, (1.132)

and has Fourier transform equal to

/ T wl (z,t) do = / e~ SIEI™ [ (s,1) ds. (1.133)
n 0
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In order to show that the Laplace transform of (1.133) concides with (1.131), we

have to derive the Laplace transform of £,(z,t), with respect to the time ¢. Since
Pr{c”(t) <z} = Pr{#H"(z) >t} (1.134)

we have that

b (w,p) =
= /OO e‘“tﬁ/oo Pr{#"(z) € ds} dt = /00 e M (—g/tﬁl,(s ) d5> dt
0 oz J, 0 oz J, ’

o €—$u21’ —2Azu?

2v—1 v—1 —zu?¥ =2 xp”
T + N7 H H , 1.135
ox v ( ) © ( )

where we used result (1.85). Now we can complete the proof by taking the Laplace

transform of (1.133) so that, in view of (1.135), we obtain

/ eﬂtdt/ 67028\\5”2’6 4}(3715) ds =
0 0

o0 2v—1 v—1
= (W2 / s NP —sy2—2as g _ M+ 2M
0

i+ 200 + 2 €)%

(1.136)

which coincides with (1.131). The unicity of Fourier-Laplace transform proves that
the claimed result holds. The proof that the Fourier transform of w? (x,t) has the
form (1.126) can be carried out by means of the calculation performed in Theorem
1.2.2. We have that

—~

O e L | s
o @ € W= W (=) ()
_ luufl N ,uzzfl B |:#11(1V) B qu(lzz):| 1
wmn e L el g e

(1.137)

o= AN = = A=A = 2] (1.138)

and thus by inverting (1.137) by means of (1.90), we obtain result (1.126). An

alternative derivation of (1.126) can be carried out as follows

where

1/0\5 (&,t) = /OO et dx /00 Pr {82 (*s) € dz} Pr{L"(t) € ds}
0

—00

- /OO e~ sIE Pr (£ (1) € ds} = (1.126) (1.139)

because of Theorem 1.2.2. O
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1.4.1 The case v = %, subordinator with drift
The fractional equation (1.123), for n =1, v = 3, reads
(gt +2)\C£§> wg(x,t) = (afTZ';) wﬁ (z,t), 0<B<1,  (1.140)
where % is the Riesz operator defined in (1.119). For 8 = 1 we have the special
case )
((i + )\((;?;) wlé (x,t) = ¢ aa—zwz (z,t) (1.141)

dealt with in Orsingher and Beghin (2004). The construction of the composition

related to equation (1.140) involves the subordinator
aq(t) = t+ (2N Hz(t), t>0, (1.142)

where H l( t), t > 0, is a positively-skewed stable process and has the same law as
the first-passage time of a Brownian motion through level . We note that # 2( ),
t > 0, has distribution with support [¢,00) and thus dlffers from #H"(t), t > 0,
0 < v < 3, which instead has support [0, 00). The distribution of (1.142) writes
ot _2
Pr {}[é (t) < x} = 0(%)2 %% dz, x>t>0. (1.143)

The inverse process
1 . 2 1 . 1
L3(t) = mf{s L5+ (20)2 H3(s) zt} - mf{s L33 (s) zt} (1.144)

is related to (1.142) by means of the relationship

x2

\/_ 24/ 27rz3

Pr{ L3(t) < m} - Pr{a{z( (1.145)

From (1.145) we can extract the distributon of £2(£), t > 0, in the following manner

Pr{L%(t)de} a 0 e— —2 ze ko

[; t) = =
%(x’ ) dl’ (t x \/47-(-23
2))2
o\p o™ (2/\35)2) (2/\35)2)
A(t—x 4(t—x
= = +oA—S . O<az<t (1.146)
dm(t — z)? m(t —x)

Remark 1.4.2. The distribution (1.146) can be also obtained from the general case
(1.107) which for v = 3 becomes, for 0 < z < t,

h(z,t) = /Oté(s—x)h;(t—8,2/\x)d8+2)\/tl;(2)\x,s)5(x—(t—s)) ds

0
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= ha (t —2,20x) + 2X 11 (2A2, ¢ — 7)

_(2x)? @22
2 \r e 4t—=) e 4(t—wx)

St ) (1.147)
dm (t — ) (t —x)

1
2

In the last step we used the fact that
Li(t) "2 |B(t)], t>0, (1.148)

where L2 (), t > 0, dealt with in section 1.1.3, is the inverse of the totally positively-
skewed stable process H %(t), t>0.

The t-Laplace transform of (1.146) becomes

G = [ e g d =

2\ _@a)? _(2xa)?
xz [ e d(t—x) s e At—)
= — e_ut—dt—i—Q)\/ P — |
V2 Ja V2m(t —x)3 e 7(t —x)
_(@x)? (222)2

2) ~ ; ° e
— _xeﬂw e*utudt 42N\ He / e*utl dt
0

V2 0 V2rt3 vt

— e Hem VR | 9N 73 g mhe e DV (1.149)

Finally the z-Laplace transform of (1.149) becomes

é(fy,u) = / e " </ e M [%(x,t) dt> dx
0 T

1 2 1 o 1+2we
pAY 200 Ep Y20 py 20/

which coincides with (1.88), for v = 3. Let us now consider the process W, (t) =
8§28 (c2L¥(t)), t > 0, dealt with in Theorem 1.4.1. For 8 =1, n =1 and v = % this

process becomes

(1.150)

1
2

Wi(t) = S? (c%%(t)) - B (CQL%(L«)), t>0 (1.151)

where B represents a standard Brownian motion and L%(t), t > 0, is the process
defined in (1.144). With

22

e 4t

p|B|($’t) = \/E’

we denote the law of the process |B(t)|, t > 0. In view of the previous results we

x> 0,t>0, (1.152)

are able to prove the following theorem.
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Theorem 1.4.3. The law of (1.151) coincides with the law of the composition
w(t) =T(B@®)]), t>0, (1.153)

where T is the telegraph process (1.26) with parameters ¢ > 0, A > 0 and law pr(z,t)

which has characteristic function

pr(&t) =
S
(1.154)
In other words we have the following equality in distribution
B (c%%(t)) “ o (B®)),  t>0. (1.155)

Proof. First we show that the Fourier-Laplace transform of the law w! (z,t) of the
2
process Wi (t) = S <C2L%(t)> =B <C2L%(t)>, t > 0, is written as in (1.136) for

V:%,le,nzl,andreads

)

wh (6,p) = L2t
2 pA 20/ + &3

(1.156)

We have that
00 t
e M (/ PB (ZE,CQS) [%(s,t) ds) dt
0

o0
pB(x,c2s)ds/ €_Mt[%(8,t>dt
S
- T

se 4t=s e ai=s
:/ pp(z,c?s)ds / e M
0 s

\/m +2) \/m dt
— /OOO p5 (2, %) (e_s(ﬁ”‘/ﬁ) + 2)\\/ﬁe_s<”+2)‘ﬁ)> ds

z2 _ z2

Dt gyt [T s
e ds + 2\~ 2 e SHPAVE) g
/0 Vamcs s 0 4mc2s

(1.157)

and thus taking the Fourier transform we get

—

w% <§’ 'u) = / 67802626_8(“+2’\\/ﬁ) ds + 2)\/L7% / 6*502526—5(114—2)\\/;2) ds
0 0

B 1+ 2)\u_%
20+

(1.158)



1.4 Space-time fractional telegraph equation 34

Now we are going to prove that the law w(x,t) of the process W(t), t > 0, has
Fourier-Laplace transform that coincides with (1.156). We have that

w(x,t) = /OOOpT(q:,s)p|B|(s,t) ds, (1.159)

and thus the Fourier transform of w(z,t) reads
w (€,1) =/ 6i5mdflr/ pr(x,s) pip|(s,t) ds
—o0 0
(1 LA >e_xs+s\/m

_1/”
-5/

)\ /\2 2¢2
+ (1 — W) 6_/\8_8 A= ] p|B|(S,t) ds. (1160)

Passing now to the Laplace transform we have
= 1 [ o0 A
w(gv :u) = _/ e Mt dt/ 14+ ——— €—>\s+5\/>\2—0252
2 Jo 0 A2 — 2€2
+ (1 — %) e—As—s\/m] e s

j— /
0

T T P Vo e
A2 — 0252 \/ﬁ

1 A 1
N (H A?—&g?) <>\+\/ﬁ— A2—02§2>

() (e
)\2_0252 /\+\/ﬁ+ /\2_02§2

B <)\+ )\2—c2§2> ()\+\/ﬁ+ )‘2_sz2>
) (2\/ﬁ A2 — 0252) (1 + 20/ + 2€?)
(V=g -2) (A + i - YNV =)

(1 . AQA )e_msm

_ 0252

_I_
(2\/5 N — (;252) (1 + 20/ + c22)
1+ 2/\,u_%
= 1.161
P20/ + 22 ( )
which coincides with (1.156). O

This shows that for each t we have the following equality in distribution

T(B®)) ¥ B (&ﬁ(t)), >0, (1.162)
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where the role of the Brownian motion is interchanged in the two members of (1.162).
Thus, by suitably slowing down the time in (1.162), we obtain the same distributional

effect of a telegraph process taken at a Brownian time.

Remark 1.4.4. The probability distribution of the process
Wi(t) = B (CQL%(t)), t>0, (1.163)

can be written as

z2 2252

(x,1) = g/gt\/ﬁemts {2(%_8)+ 1] ds

x

A/t 1 ;w{l(H t)}d
= —_— —— € 4c“s t—s —_ S
CcT Jo 1/3(15—5) 2 t—s

w

D= =

s VA (M a2 h ] 1 t
y2A VA ity e T {_ <1+—y)] dy.  (1.164)
CTr 0 \/§1/t— % 2 t_ X
Taking the limit for ¢ — oo, A = oo, % — 1, formula (1.164) becomes
e w et

1i Yz, t) = 2 - 1.165
)x,clinooy% (z.1) 0 Ay \/t Y ( )
2

which coincides with the distribution of an iterated Brownian motion By (|By(t)|),
t > 0, with B;,j = 1,2, independent Brownian motions. From (1.164) we can see
that the distribution of Wi (t), t > 0, has a bell-shaped structure.

Finally we show that the density w! (z,t) integrates to unity in force of the
2

calculation

2

> o b s t o [ s 6_%
wi (x,t) doe = dx | ds L(s,t) = ds | — dz
/—oo (=,1) /—oo 0 Vars 2 (5,%) /o (33 /(;)\)62 Vidmz3 )

s=t
® seTE X te 4z
= dz = / dz = 1. 1.166
[ 7(;;2 VAmrz3 ] » 0o VArz3 ( )

==

In the intermediate step, formula (1.146) has been applied.

Remark 1.4.5. The characteristic function of the process T?’(t), t > 0, whose

distribution satisfies
(Z+208) s (e.t) = Zmp¥(0,t), 0<F<15#1
pi (w,0) = 6(x), (1.167)

0,28
7t ‘ = 07
2tPr (z,1) —o
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reads
Eeig’ﬁﬁ(t) _
e 4 A VR [ A N I
2 A2 — g A2 — c2[¢]?P
(1.168)

see Orsingher and Zhao (2003). Therefore by performing the same steps as in theorem
(1.4.3) we prove that

526 (L%(w) w28 (1B@))),  t>0. (1.169)

1.4.2 The case v = 3, convolutions of Airy functions

L
3

We first recall that the totally positively-skewed stable process H3(¢), ¢ > 0 has law

i /
Pr {H%(t) e dm} = —=Ai (\/3_3:) de,  x>0,t>0, (1.170)

where Ai(+) is the Airy function. Result (1.170) can be obtained from the general
series expansion of the stable law of order % (see Orsingher and Beghin (2009) page
245) which reads

(2,1) = & 3 (—1)kwx—%<k+”—1 sin (g(k+ 1))

h

1
3

- LS (1)

1 33 1 1 1
— =2 A - Ai , 1.171
3z/x (\3/356) v/ 3x (\3/31:) ( )
where we used formula (4.10) of Orsingher and Beghin (2009), which reads

k! 3

3_2 00 k Sin (—2W(k+1)> k41
Ai(w) = ==Y (3%) ° Jr < > . (1.172)
Since
H3(t) 2 ¥ H3(1), (1.173)

we have result (1.170). From the relatioship between H3(t), ¢ > 0, and the inverse
process Li(t), t > 0,

Pr{H%(t) < :z:} - Pr{L%(x) > t} (1.174)
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we extract the density of L%(x), x>0,

dt ot

Pr{L%(x)edt} - 3/0 8 y )

/35

A
L) [ ) &
(1.175)

Since

0 t t t
—Ai| — ) = —=A7 1.176
s < v 33) 3s5v/3s : <\3/3s> ( )

we conclude that, for x > 0, ¢ > 0,

Pr {L%(a;) € dt}
di

/05\/1_ ( >ds+/ 315% <3t5 dsx
- [ (m) o v ()L L s ()
_ %Ai (%) . (1.177)

In the last step we took into account the asymptotic expansion 7.2.19 of Bleistein
and Handelsman (1986).

With similar calculation we obtain the law h%(x, t) of the process H3(t), t > 0,
which is expressed in terms of Airy function. From the general series expression of
the stable law (see Orsingher and Beghin (2009)) we have that,

hg(x,l) =
— 2 - kr(g(k—i_l)) —2(k4+1)—1 _: 27
- 37%(_1) Tl‘ 3 sin ?Ug—i_l)

RN DL L S S AN S % ki1
= 37T\/7_Tkz; X 21—§(k+1) F< 3 >Sl (3 (k+ ))/0 dwe ™ w s T2
14/22 1 w1 5] 22w
= —\/——F Yw™s Ai d 1.178
x V 322 ﬁ/o A ( 3:1:2) 0 ( )
and thus, in force of the fact that H3(¢) ' t2H3(1),

t 1 [ 1 22 22
h (I,t) = ﬁ;/o dwe*“’wfé ¥ @Al (—tS —w> . (1179)

Wi
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Remark 1.4.6. We check that the distribution (1.179) integrates to unity. We have
that
/ ha () do —
/22 5 /22
/ dw e "w s {| = / dea= 81 AL | —t{/ 22
\/_ 32
y=z %t 223 2241 s
= \/—/ dwe "w 6\3/ 33 (ts 3 ) /0 dy Ai (—y)
-1
= / dwe ¥ _6 3 22 3 22_w
N Vi3V s

1 1 ]_ > 1
= — dwe w673 = —/ dwe w2t = 1, 1.180
7l V7 Jo (1150

where we used the fact that

/000 dy Ai(—y) = g (1.181)

For the law of the process L3 (x), x > 0, we therefore have that

Pr{L%(x) < t} = Pr {H%(t) > :1:}

= == Ai —t\— | e Yw sdwdz (1.182)
/ / ﬁ z 322 ( 322 )
and thus

92
l2 (t, ) dw dz ; A1 /20 ey
3 322 322
oo oo 92 [92 92
‘/ / Lf ﬁ\/g 3 A (—tv3 3—w) = dw
o Jo 2T z z z
2
/ / dwdz ; Ai (—t3 2_1;)> e P
z
e 1 a 3 2 w
- = e Yw s —Ai1 dwdz
/ / \/_ 322 0z ( 3,22)
2
/ / dwdz ; Ai (—t3 z—g}> T
z
i ofPu -
[ \/_/ @6 U) 6A1< 322>]

Z=T

/ / dwdz A1 X 22_w e VW
322 322
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3 o 3 22 _ _1 . 3 2 w
- — e Yw s Ai | —t d 1.1
2\/%/0 V32 " 1( \/3x2> v (1.183)

For checking that (1.183) integrates to unity one can perform calculation similar to
that of Remark 1.4.6.

Now we have all the information to get the distribution of the process L%(t),
t > 0, by means of formula (1.107). We have that

Pr {L%(t) e dx}
dx
t
:/lg( t—s)hi( 2)\ards+2)\/l1(2)\x s)h (t—s,z)ds

:/ds 2\/_/ dw,/ 30— 5)? Yw 6A1<—x 3(t22—s)>dw]'

S\/_ (?/AE>+2)\ \/_ (f/Aﬁ>

b e e )
/ds/ dw e "ws Ai (—x,/ (t_8)2> Ai(%)'
|

3 x+ s
V3s\[ 3(t—5)? |25 t—s

Result (1.184) permits us to write explicitly the solution of the fractional telegraph

[% (x,t) =

CAJ

(1.184)

equation (1.10) for v = %, B=1andn=1, as

00 T2
wl (z,t :/ C " L(s,t)ds, xe€R,t>0. 1.185
1(x, 1) v/ 1(s,1) (1.185)

1.4.3 The planar case

Let us consider the planar process
T(t) = (X(1),Y(1), t >0, (1.186)

with infinite directions and finite velocity ¢, investigated in Orsingher and De Gre-

gorio (2007), which has probability law (see formula 1.2 therein)

A e—)\t—&-%\ /c2t?2 —(x2+y2)

2 .2 2,2
, Ty <ct,t >0, 1.187
2ne \JER—(? + ) ! (57

r(z,y,t) =
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which satisfies the telegraph equation

0? 0 0? 0?
— 4+ 2= | r(z,y.t) = | ==+ =— | r(z,y,1). 1.188
(5 + 205 ) o) = & (s ) o). (L1ss)
The distribution of T'(t), t > 0, has a singular component uniformly distributed
on the circle 0Cy = {(x,y) € R? : 2* + y* = ¢*t*} with probability mass equal to
e~*. The process T'(t), t > 0, describes a random motion where directions change
at Poisson paced times and the orientation of each segment of the sample paths is
uniform in [0, 27).

Let g(z,y,t) be the distribution obtained by means of the composition of the
process T'(t) with a reflecting Brownian motion with law

_ g2

pipi(s.t) = i/ﬁ t>0,5>0, (1.189)
which satisfies the equation
Sk )
Py pB|(s,t) = —%pm(s,t) (1.190)
and also
0 0?
§p|B|(3at) = @P|B|(S,t) (1.191)

We have the following theorem.

Theorem 1.4.7. The law of the composition
Q) = T(|B(t)]), t>0 (1.192)
written as
q(z,y,t) = /000 r(x,y,s)p|(s,t)ds, (1.193)

satisfies the 2-dimensional time-fractional equation

0 €9z L[ 0 P
(a—i_Q)‘at;)qcxvyat) =C (@—i_a_yg)q(x?yat)v 1’7Z/€Rat>07

(1.194)

subject to the initial condition

q(z,y,0) = d(z,y). (1.195)



41 Space-time fractional telegraph equations

Proof. By considering (1.193) and (1.190) we can write

CH2 o0 CH2
(g t) = / r(as) im0 ds
0 2

Otz
= \/Ooo T(l’,y, S) <—%p|3|(8,t)) ds
= [—p|B|(s,t)r(:v,y7s)E:§°+/OOO p|B|(S,t)%T(x,y, s)ds. (1.196)

In the previous step it must be taken into account that the boundary 9C,, is ex-
cluded. From (1.193) and (1.191) we have that

grtle.nt) = [ res) a0y ds = /w re,,5) 5gpin(5:1) ds

0 0
I{(fﬁ%)apwwt]s: / 55" (©:Y:8) 5-pis(s,¢) ds

- {pB(s zf)aa r(z,y,s )} /0 pB|(s,t) 0632 (x,y,s)ds.
(1.197)

Thus, by looking at (1. 188) (1.196) and (1.197) we obtain

c

0
EQ<x7y7 ) (I yat)

= [t a2( 9+ 2L p(e,y.5)] d
- 0 p|B| S, 052 x,Yy,s aSr x,y,s S

oo ) 82 82 ) 82 82
_ g L9 Y - (11
[ nats 0 (gt 5 ) rtesds = @ (5 + ) o). (1198

which means that ¢(z,y,t) satisfies equation (1.194). O

It is easy to show that the process Q(t) = T (|B(t)|), t > 0, has not the same
law of the process Wy(t) = By (CZL% (t)), t > 0. However it is possible to construct
a planar process, say ¥(t), t > 0 (which is a slightly different version of T'(t), t > 0)
composed with a suitable ”time process” which has the same distribution as Ws(t),
t > 0. The planar random motion ¥(t), t > 0, with distribution

e N [ AVEEEER) 4 W]

t(z,y,t) = (1.199)

2me \/02752 — (22 + )

where (z,y) € Cy = {(z,y) : * + y* < *t?}, can be constructed starting from the
model dealt with in Orsingher and De Gregorio (2007). The distribution is based

on the solution to the planar telegraph equation

0? 0 o [ O 07
(@4_2)\&?) t(z,y,t) = ¢ (8x2 P 2) v(z,y,t), (1.200)
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namely
—Xt
t(2,y,1) = e [Ae%\/mjufze—%\/m}, (1.201)
Vet — (22 + y?)
with A = B = 52 and thus we can easily check that

e

// drdyt(z,y,t) = 1 —e 2. (1.202)
Cct

We take a particle starting from the origin, moving at finite velocity ¢, and changing
direction (chosen with uniform distribution) at Poisson times and neglect displace-
ments started off by even-labelled times. The sample paths of this motion are
constructed by piecing together only odd-order displacements of the planar motion
T(t), t > 0. The process just described has distribution (1.199) as shown below

t($7y;t) -
CPr{ET(t) eda} | Ae M [e2 VI 4 2V 1)
\/02152 — (22 4+ y?)

_ g%e—At [i (%\/C%Q (2t yz)>2k_1 @]

dx 2me

k=0
1A AN bl e ()
=== = 2k +1) (*t* — (22 + %)) 2
2 (3) eerner - @) oty e
oo )2+
— 93" Pr{X(f) € d, Y1) € dy|N(t) = 2% + 1} e D
S Pr{X(0) € de. V(1) € dN() =2k +1} G
i N ()\t)2k+1
=2 Pr{T(t) € dm|N(t) =2k +1} e It (1.203)
where, for 22 + y? < ¢*t? (see Orsingher and De Gregorio (2007)),
Pr{X(t) € dz,Y(t) € dy|N(t) =n} n 5.5 N
= t° — 2 1.204
dx dy 2n(ct)" (c (" +97))7 7, (1204)
and
(At
2€_>\t2 2T ZQPr{N = 2%k +1} = 1—e 2 (1.205)
i (

The factor 2 appearing in (1.203) and (1.205) can be interpreted as follows. The
displacements generated by an even number of Poisson events are disregarded and
replaced by displacements produced by an odd number of deviations. Therefore,

odd-order Poisson events ignite twice the displacements considered in (1.203).
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Theorem 1.4.8. The composition with distribution

alent) = [ st [p|B|<s,> o (5 >] (1.200

which satisfies the time-fractional equation

P CH3 , [ O0* 0?
_ o 1.2
(aﬁ >\8%>q(£v,y,t) (5ot gz ) et (1200

has the same law of the process Wy(t) = By (CQL%(t)>.

Proof. We begin by evaluating the Fourier-Laplace transform of (1.206).

ﬁ(&a,u)
t i€x+ia 1 al
ds dte H dxdye Ye(z,y,5) |pB|(s,t) + =~ —pB|(S, 1)
Cet 2) ot
2>\ + \/_ / e B
=——Y ds dx dy e ¢ (2, y, 5) e *VE, 1.208
s [ (@,5,5) (1.208)

Now we need the Fourier transform of the law t(z,y,t) of the process T(t), t > 0,
which reads

(&, a,)
AeM otiay | €5 VIR | otV )
— z T+ioy
//Ct \/02t2 _ (xQ 4 y2)
— [c242 _ A
:>\6 At/ d@/ dppe §c0s9-i—o¢sm0))‘eC = +e e/ CQZSQ—p2
2mc N

2me

] dx dy

2)\2 -\t A 2m—1
_ 2322 — 2 J 2 2\ ¢
> /op,,;)<0\/c p (2 i o(p €+a> p
2k
o ((/Ere?

_2)\6_’\t S (%)2m§:(—1) ( ? ) /Ct (02t2_ z)m*% 2k+1 g
T & em) & (k)2 ; pyomeep
i W)”“

2

m -1

e M (%)2 o - -

T Z (2m)! ZQ(k!)2(ct)(2m+2k+1)/ y (L—y)" 2 dy
k=0 0

2
2k
AN 1S g [(VEFA\ T (@) (m - 5)
E) WZ(_D( 2 ) KT (k+m+1+1)"
(1.209)

)\_ 0
:Ee Atmzzo(

k=0
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Thus, from (1.208), we have that

14222
poA 20/ + 2 (§2 4+ a?)

= 2\ <
q(&a,p) = ARMRY/L dsT(€, a,t) e *VH = (1.210)
0

20/

in force of the calculation

/ dsT (€, a,8) e VF =
0

2

\ [ o A\2m >
_ - d —As —s\/p
c / o¢ Z c?™(2m)! Zk! (cs)*@m“k“)f‘(k—i—m%—l—i—%)e

0 m=0 k=0
—— 2k
1-2 - )k( §2+a2) c*k
m [e8) 2 o0
Z /T2 I'(2m) Z / o S(MHVR) @2m2kt1 g
0

)\2m2m'F KD (k+m—+141)

0 () sy

=0
—\ 2k
©° 2m 1-2m (_1)k £2+a
_ A 3 AT /T2 ['(2k +2m + 2)
2(A+ Vi) azomt A+ Vi)™ S R () e T (R m 1 5)

—\ 2k
0 2 1-2 1)k §2+a2
VA A2mol-2m T (k+m+1)
- 2 Z 2m Z 91—2(k+m+1)
2 (A a) Amem! (A R) T K (A + ) e VT

= >(v€2+a)% < i
(>\+\/_2mz:%m )\+\/_2ng KA+ )™ e 2k / cred

2)

0o 22 _ c (5 +a >—u D)
= — 2)\ / du euo‘+\/ﬁ)2 “ (>‘+\/ﬁ)2 = (A+\/ﬁ) 2(¢2 2
(A—i—\/ﬁ)Q 0 i A2 ] c(£+a2)
(M) (A+vi)

2A = 22 . (1.211)

Tt VR - AR (@ta) BN+ (@ +a?)

The Fourier-Laplace transform of the law of the process By (CZL%@)) is written

as in (1.136) forn =2, f =1 and v = % as the following calculation shows

W)

wi (& a,t) = /OoopB(é,acs) [1( @) ds

00 —2Xs.\/1
— (1 + QAM_%> / e_HS—(§2+a2)025 |:€—2)\S\/l7« =+ 2)\6 :| ds
: Vi

1+ QAM_%
= : 1.212
2A /I + p A+ (§2 + a?) ( )

In the previous calculation we use the Laplace transform of l (x,t) obtained in
(1.149). The proof is complete since (1.212), coincides with (1.210) and with the
Fourier-Laplace transform of (1.207). O
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Remark 1.4.9. Since for the first passage time Te = inf {z : B(z) = \%} of a

Brownian motion through level \% we have that

T entprd o _ osVE
/0 e Pr{rﬁ edt} sV, (1.213)
and
/ e M ——pp(s,t)dt = e *VF (1.214)
0 otz
we can write
AR P (5 = | ety s ot
t(z,y, s)—pB|(s 5 = t(x,y,
PR 0 VoG t3
/ t(x e i ——ds = "9 t(z,y,s)pp|(s,t) ds (1.215)
a 'Y, S \/— o a Y,S)P|BI\S, . .

This representation of the second term of (1.206) is extremely interesting because
by integrating (1.215) in C,; we get

® 9 e 00 Cone
/ %(1 — e )pip(s,t) ds = 2)\/ e ¥ g (s, t) ds (1.216)
0 0
and yields the missing probability of the first term of (1.206).

Remark 1.4.10. We check that the law

1

Q(:E,y,t) = /Ooot(l",y, 8) lp|3|(s t) 21)\5 1p|B|(3 t)] ds (1.217)

integrates to unity. By taking the t-Laplace transform, the integral with respect to

(x,y) becomes

//C dx dy/ dte " q(z,y,t)
ct 0
:/ T(-e) / T piayls,t) + o e piay(s,t) | dt | ds
0 0 ’ 2X ot
o0 —sVl e SVH
= 1 —e 2 {6 + } ds
||y
1 1 o0 o
Y . —s\/lL . —s<2/\+\/ﬁ)
(e ) [ e

AL L) L[y (1215)
20/ \VE 22X+ /1 1% 0

The same check can be done directly by taking into account formulas (1.215) and
(1.216).
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Relationships similar to B <C2L%<t>> o (|B(t)]), t > 0, and the analogous one
in the plane, cannot be established in spaces of dimension n > 3, because random
motions governed by telegraph equations in such spaces have not been constructed.
Random flights in R™ have been studied (Orsingher and De Gregorio (2007)) but

their distributions are not related to higher-dimensional telegraph equations.

1.5 Hyperbolic fractional telegraph equations

The Hyperbolic Brownian motion is a diffusion on the Poincaré half-space
H* = {(z,y) ;@ € R"',y > 0}, (1.219)

with generator, written in cartesian coordinates,

Z y@a (1.220)

In the half-plane H? the hyperbolic Brownian motion was introduced by Gertsen-
shtein and Vasiliev (1959) while in H? it was introduced by Karpelevich, Tutubalin
and Shur (1959). The reader can also consult, for more details, Getoor (1961),
Gruet (1996), Lao and Orsingher (2007), Matsumoto and Yor (2005). The hyper-

bolic Poincaré half-space is equipped with the metric

n—1
> ic1 dz? + dy?

ds® = /7 : (1.221)
and thus the hyperbolic distance in H" is given by the formula
coshn(z',z) = 1+ M, z, 2 e H", (1.222)
2yy'
where ||-|| is the usual euclidean norm. We define the operator £ as the governing

operator of the planar hyperbolic Brownian motion ng (t), t > 0, which is written

as
0? 0?
= —_—+ — 1.223
m =0 (5 ) (1.22)
in Cartesian coordinates and takes the form
92
= + ———— 1.224
G2 sinh? 7 O ( )

in hyperbolic coordinates, where

1 0 0
Gy = Snhn 9y (&nhnan) (1.225)
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Note that we disregard the factor % in 53'2”’ in the forthcoming calculation as in the
pioneering work by Gertsenshtein and Vasiliev (1959). The problem involving the
radial part of (1.224) which is written as

%k2(n7t) = 62k2(777t)7 n> Oat > 07

(1.226)
ka(n,0) = d(n),
has the following solution
_t 0o _$?
ka(nt) = —— L (1.227)

d
2373 J, /coshp — coshn v
to which we refer as the kernel of the law of BI?(t), t > 0. The law of Bi(t), t > 0
is therefore written as

phP(n,t) = sinhnky(n,t), 1> 0,t> 0. (1.228)

The three-dimensional hyperbolic Brownian motion BL?(t), t > 0 is driven by the

operator

o* 0 0 9]
— 2 — | —z—
3 =2 (ax2 + oy + az2> 25 (1.229)

written in Cartesian coordinates. We are interested in the Cauchy problem

%k3(nat> = G3k3(777t)7 n> O,t > 07

(1.230)
k3(n,0) = d(n).

where

1 0 0
= — [ sinh?n=— 1.231
g3 sinh?n In (sm 77877) (1.231)

represents the radial part of 555”’ which coincides with $3 in hyperbolic coordinates.
The solution to (1.230) is given by
¢ _n
et ne
k3(n,t) = —— 1.232
3(777 ) QWSiDhT]J ( )

and thus the probability law of ng(t), t > 0, reads

PP (n,t) = sinh® 1 ks(n, ). (1.233)

In general, the law of a n-dimensional hyperbolic Brownian motion is written as

prP(n,t) = sinh" ™k, (1, 1), (1.234)
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and solves the heat equation

- t) = — h" — | ————p"P(n,t 1.235
i .0) = o (s (et ) (1.235)
where
0 0 1
Y= — (sinh" ' [ ——— N 1.236
Gn on (sm n@n (sinh”1 77)) ’ nelh ( )
is the adjoint of
1 0 0
= —————— (sinh" ' n— ), 1.237
G = o (0 g ) (297
in the sense that
<gnkn7 pn> = <kn7 g;pn> ) n € N. (1-238)
Thus the n-dimensional kernel satisfies
0
g hn (1:1) = Guka (n,1). (1.239)

The kernels for n > 3 can be obtained from k; and k3 by means of Millson

recursive formula (see Debiard, Gaveau and Mazet (1976))

e—nt

9. (n,1). (1.240)

kpio (0,t) = —5—=——7="
+2(:1) 2w sinhn On

By working out the derivatives we obtain a more explicit version of Millson formula

(1) L o) ! , .
k2j+1<n7t) = T(@ni1 <_sinh7] %) k3 (777 t) ) J=2Ln=27+1,
(5749) ) J , .
k2j+2 (777 t) = (2m)i _Sinhna@ ka (777 t) > J=20,n=25+2.
n

Theorem 1.5.1. The distribution of the composition

TV(t) = B" ((1)), Ve (0,% >0, (1.241)

where B is the n-dimensional hyperbolic Brownian motion in the Poincaré hy-

perbolic half-space H", satisfies the fractional hyperbolic telegraph equation for v €
(0,3],

(2‘?—5 + %%) ph(nt) = & (Sinh"’l o (Gl (0, t))) , >0,

vy (1,0) = d(n),

and thus the kernel .
ko (1,1) = ——=—pn(n,1) (1.242)
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satisfies, for v € (0, %} )

C52v Cov 1 n— v
(6?7 + 2252 ) kY (n,1) = —sinh’{*lnagn <smh 1 né%l’in (77,15)> ;o n>0,
’%71; (7770) = 5(77)’
(1.243)

Proof. 1t is convenient to consider the Laplace transform, E,V: of the kernel x. We
have that

EAUND) :/ dt e "KY (n,t) :/ dte_“t/ dsk, (n,s) L(s,t)  (1.244)
0 0

0
= / kn (0, 8) (=" 4 220" ) s (2 g (1.245)
0

Now we show that (1.245) satisfies the Laplace transform of (1.243) written as

— 1 0 0 ~
420" K = ————— (sinh" '~y : 1.246
(™ 200) s o) = g St g (0, 1) (1.246)
By considering (1.239) and that ¥ (n,0) = d () we have, for n > 0

1 0 . vnel 87
ma—n <smh ﬁa—n“n("bﬂ))

> d a a v v
— / m@_ﬁ (Sinhn—l na_nkn (T],S)> (/~L2V_1 + 2>\Iuy_1) 675(,“2 +2Apu )
0

Os
= |:kn(77, S) (/,(,21/71 —+ 2/\MV71) e—s(M2V+2/\uy>i|

:/ ds an (7775) (quufl +2)\Mu71) e‘s(’ﬂ"”)‘””)
0
s=0

+ (,u21/71 + 2)\M1171) (M2V + 2/\[11”)/ kn (7],8) e—s(;ﬂu—i—?)\u”) ds
0
= (1 +22") wi; (0, 1) (1.247)
[

Remark 1.5.2. By taking profit of the simple structure of pgp (n,t) we can give, for
n = 3, an alternative direct proof of the result of theorem 1.5.1. We first evaluate

the Laplace transform % (1, 1), as follows

Fonn) = [ halnes) [T e odeds = [T hans) s ds
0 0 0
2
_n (0> + 227 /oo o~ s (T2 2" e ds
2y/msinhn 0 N
_ W N i (1.248)

sinh n
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Now we show that (1.248) solves the Laplace transform of (1.243) for n = 3. We
have that

1 0 0 ~
— = = |sinhZn—xr
Sinh2 n 87] (Sln 7767] K3 (/’77 H’))

2v—1 v—1

_ 12 o Smhznﬁ(ﬂ + 2 ) o/ Tr T2

sinh®n On on sinh n

2v—1 2\ v—1 = ~
= — (i '+h2 K )g [e’"\/ T2 (sinhn V14 p + 2 ¥ 4 cosh 77)}

sinh”n n

(IUQV—I + 2)\Iu1/—1) 6—77\/1+M2V+2>\M”

- sinh?n [\/1 22

. (sinh ny/ 1+ 2 + 2\p¥ + cosh 77) — (cosh v/ 1+ 2 + 2\p¥ + sinh n)]

(21 4+ 227 o=V 1+ 22
sinh? 7

e )

[sinhn (1+ p* +2Au”) — sinhn)]

v v (,U’QV_1+2)‘:LLV_1> —n4/ v v v v\ v
= (#2 +2)‘M) S e " Ip2v 4227 (MQ + 2\ ) K% (777,&)-

(1.249)

Remark 1.5.3. For v = 5 we know the explicit law of the process ”(t), t > 0,

which is written as in (1.146). Thus we have an explicit representation for the law

of the process

B0 = B (£0), >0 e
which reads
1 t . 2 \ a2.2 o) 22
. ‘ e ne i se” t—s e
2(n,t) = sinh? / : + s
ps (n,1) " o 24/7s3 sinhn m(t—s)3  /r(t—s)
/\ . h t —5 2,2 n2
_ Ansinhy i € e—i_s -1 5 + 2 ds. (1.251)
2m 0 S2y/t —s t=s



Chapter 2

Generalized space-time fractional

equations

Article: Orsingher and Toaldo (2012). Space-time fractional equations and the re-

lated stable processes at random time.

Summary

In this paper we consider the general space-time fractional equation of the form
> /\jgt—ufjw(xl,n- i) = = (=N w(xy, - a;t), for v; € (0,1], 8 € (0,1]
with initial condition w(zy,---,2,;0) = [[;_, d(x;). We show that the solution
of the Cauchy problem above coincides with the distribution of the n-dimensional
vector process S27 (¢2Lvvvm(t)), t > 0, where S27 is an isotropic stable process
independent from £+ (t) which is the inverse of #" ¥ (t) = " | /\]1./”j H"Yi(t),
t > 0, with H"(t) independent, positively-skewed stable r.v.’s of order v;. The prob-
lem considered includes the fractional telegraph equation as a special case as well
as the governing equation of stable processes. The composition S27 (¢? L1 Vm(t)),
t > 0, supplies a probabilistic representation for the solutions of the fractional equa-
tions above and coincides for = 1 with the n-dimensional Brownian motion at the
random time £¥¥m(t), t > 0. The iterated process £¥*m(t), t > 0, inverse to
fyrrm(t) = 370 )\;/V]- VHY (oHY (gHY (-+- (HY(t)--+))), t > 0, permits us to
construct the process S27 (c2L€x1#m(t)), t > 0, the distribution of which solves a
space-fractional equation of the form of the generalized fractional telegraph equa-
tion. For r — oo and = 1 we obtain a distribution, independent from ¢, which
represents the multidimensional generalisation of the Gauss-Laplace law and solves
the equation 337", Njw(xy, -+, @,) = 30, %w(ml, -+« ,x,). Our analysis repre-

sents a general framework of the interplay between fractional differential equations
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and composition of processes of which the iterated Brownian motion is a very par-

ticular case.

2.1 Introduction and preliminaries

2.1.1 Introduction

The study of the relationships between fractional differential equations and stochas-
tic processes has gained considerable popularity during the past three decades. In
pioneering works simple time-fractional diffusion equations have been considered
(see for example Fujita (1990)) and its connection with stable processes has been
established (see Orsingher and Beghin (2009); the reader can also consult Zolotarev
(1986) for details on stable laws). In such papers the authors have shown that the
compositions of processes have distributions satisfying fractional equations of dif-
ferent form. The iterated Brownian motion By (|Bz(t)|), t > 0, (with B, and B,
independent Brownian motions) has distribution solving the fractional equation (see
Allouba and Zheng (2001))

o2 1 8?2
_u(r,t) = — ——u(, 1), ER,t>0.
8tEU(x ) " &Ezu(:ﬂ ) T

as well as the fourth-order equation (see DeBlassie (2004))

(t)—184(t)—|— 1 d?
at“ Y= 238x4u o o0/t dz?

i(z), reRt>0.

It has been shown by different authors (see Benachour et al. (1999)) that the solution
to the biquadratic heat-equation

0 1 0
&U(.T,t) = —§@U(Jf7t), T € R,t > 0,

coincides with

1 v’
u(z,t) = ]E{ 27 |B(0)] cos (2|B(t)| —%)}

and appears as the distribution of the composition of the Fresnel pseudoprocess with

an independent Brownian motion (see Orsingher and D’Ovidio (2011)).

When the fractional telegraph equation

o +2)\ﬁ u(z,t) = cQa—Qu(x t) reRt>0 (2.1)
ot ot T o2 ’ ’ '
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for v € (0,1], A > 0, ¢ > 0, is considered, the solution of problem (2.1) for v = %
has been proved to coincide with the distribution of 7' (|B(t)|), t > 0, where T'(¢),
t > 0, is a telegraph process independent from the Brownian motion B(t), t > 0 (see
Orsingher and Beghin (2004)). From the analytical point of view, equations similar
0 (2.1) have been studied in the form

0~ o°

A 2
%u(:vt) a5l u(z,t) = c%u(ast)%—ﬁ u(z,t) + (x,t), ze€Rt>0,

for a € 0,1], p € [0,1], v > 0, by Saxena et al. (2006). These authors have provided

the Fourier transform of solutions of fractional equations of the form

6%} g1 8
aq Ot 'LL(-T, t) + .+ Apt1 aat_an+1 U(.T, t) = CZ%U(]?, t) + 52’&(33, t) + 90(3:’ t)
for ag, -+ ;a1 € (0,1) and 8 > 0, (see Saxena et al. (2007)) in terms of generalized

Mittag-Leffler functions (but no probabilistc interpretation has been given to these
solutions). Telegraph equations emerge in electrodynamics, in the study of damped
vibrations, in the analysis of the telegraph process. Its multidimensional version
appears in studying vibrations of membranes and other structures subject to fric-
tion. Equations with many fractional derivatives emerge in the study of anomalous
diffusions as pointed out by Saxena et al. (2006, 2007).

The symmetric stable laws have distribution satisfying the space-fractional equa-

tion 5 o
—u(x,t u(z,t), reRt>0,
e t) = Nl u(z,t)
where is the Riesz fractional derivative. For asymmetric stable laws the connec-

8| \”
tion with fractional equations has been established by Feller (1952). The connection

between fractional telegraph equations and stable laws has been established in a
recent paper by D’Ovidio et al. (2012), in which the authors considered the multi-

dimensional space-fractional extension of (2.1)

821/ oY ) 8 .
(8152” + 2/\(97) u(x,t) = —c (—A) u(z, t), xeR"t>0, (2.2)
for v € (0,3], 8 € (0,1]. The solution to (2.2) subject to the initial condition

u(x,0) = d(x) is given by the law of the composition of the form S2° (c2£¥(t)),

t >0, where S2%(t), t > 0, is a n-dimensional isotropic stable vector process and
£7(t) = inf {s L H(s) + (20)7 HY (s) > t}

where H?"(t) and HY(t), t > 0, are independent positively-skewed stable processes,

with v € (0, %] For 8 = 1 the composition above takes the form of a Brownian
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motion at the delayed time £”(t), ¢t > 0. For v = % and n = 1 this establishes the

fine distributional relationship
T(BO) "= B(lLim), >0,

see D’Ovidio et al. (2012).

In the present paper we consider the further generalization of the space-time

fractional equation with an arbirtrary number of time-fractional derivatives

SN, (@) = = (A wl , (xt),  xERL>0,

J ot Tviye v

W, (,0) = 0(2),

Uiy

(2.3)

for v; € (0,1], B € (0,1], A\; >0, j = 1,---,m. The symbol % stands for the

Dzerbayshan-Caputo fractional derivative which is defined as

C@u 1 t dam (S)
t) = ds™ d —1
o/ ) F(m—v)/o (- sprion®  molsvsmmel,

for an absolutely continuous function f (for fractional calculus the reader can consult
Kilbas et al. (2006)). The fractional Laplacian (—A)?, 8 € (0,1) is defined and
explored in Section 2.1.2 below. We show that the solution to (2.3) is given by the
law of the process S27 (¢?£¥1m(t)), t > 0, where

L () = nf {s > 02 3770 (5) > 1) (2.4)
and
moo1
H O (f) = Z/\;j HY(8), t>0, (2.5)
j=1
for Hjl.’j7 j =1,--- m, totally positively-skewed stable processes (stable subordina-

tors), of order v;. In other words we show that the solution of a general space-time
fractional equation (which includes reaction-diffusion equations, telegraph equations,
diffusion equations as very special cases) coincides with the distribution of a stable
vector process taken at a random time £¥(t), t > 0, constructed as the inverse of
the combination of independent stable subordinators. For the classical Laplacian
(8 = 1) we have that the solution to (2.3) is the distribution of a Brownian motion
at time £V(t), t > 0.

We also prove that the law of the processes (2.4) and (2.5) are solutions of

fractional differential equations. In particular we show that

Pr{#vovm(t) € do}

fors () = —
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is the solution to the space-fractional problem for v; € (0, 1)

%@,1,,..7%(%75) = Zm Aj 88;] by ooe i (T, 1), x>0,t>0
by oo (2,0) = 0(2), (2.6)
by oo (0,8) = 0,

while the law of £¥>" ™ (t) solves
S N o e (0 8) = =Ll (), > 0,8>0
6,17.,.7,/m(0,t) - Z;nzl Ajr(f—_jy]-)?

for v; € (0,1). In (2.6) and (2.7) the fractional derivatives must be meant in the

Riemann-Liouville sense that is, for an absolutely continuous function f,

(2.7)

aVf(av):;i/m(Ads, m—1<v<m,méeN.

Ox” L'(m—v)dx xr — s)vti-m

A section is devoted to the case of the fractional equation with two time deriva-
tives of order a € (0,1] and v € (0, 1] with a # v,

ot« otv
wy, (x,0) = i(z),

which takes a telegraph-type structure for @« = kv, k € N, kv < 1. The Fourier-

(Cfaa + AL ) wh, (z,t) = —c (=A)° wh , (x,t), x eR" t>0, 28)

Laplace transform of the solution of (2.8) for a = kv reads

o ) kv—1 2\ v—1
/ dt e_“t/ dx e *wl (1) = P oM 55 (2.9)
0 " ’ P £ 207 + 2 [|€]]

where |[|-]| is the usual euclidean norm. For k = 2, n = 1, f = 1, we have the classical
fractional telegraph equation studied in Orsingher and Beghin (2004). The Fourier

transform of ws, , (x,t) reads

@211,11(5725) = 5

A A
(1 + \/ﬁ) By (—mt”) + (1 - \/ﬁ) E, . (—UQtV)]

(2.10)

where 1, and 7, are the solutions to u?” + 2 \p” + 262 = 0 and

[e.9]

§:Fd%+ﬂ

k=0

Ez/”y v, 9 >0,z € R,

is the two-parameter Mittag-Leffler function. For v = 1, (2.10) coincides with the

characteristic function of the telegraph process. For k = 3 and v < 1 in (2.9) we
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obtain explicitely the Fourier transform of the solutions in terms of Mittag-Leftler
functions and the Cardano roots A, B and C' of the third order algebraic equations
13 4207 + 2 || = 0. For k > 3 we can write

k

k
By (€, 1) = 7 T2
k R E[ =z

but the explict evaluation of Z; is, in general, impossible.

In Orsingher and Beghin (2009) n-times iterated Brownian motion

Jn(t) = Bi(|Ba (|1Bs -+ (|Bua(@®)]) -+~ D) t>0,

is considered and its connection with the fractional diffusion equation

a7 i, D
Py u(z,t) =2 @u(az,t)

investigated. Here we consider first the n-times iterated positively-skewed stable

process ;H" with weights \; >0, 5=1,---,m,
1/1, v Z ; HVJ(3HVj (...T[_]Vj(t)...)))7 t >0, (2'11)

We construct the inverse of the process (2.11) as follows
grvm(t) = inf {s > 0: HL7"m(s) > t}, t>0.
We show that the distribution of the composition
B, (Pgmrm(t), >0,

where B,, represents the n-dimensional Brownian motion, is the solution to the
Cauchy problem for v; € (0,1], r € N,

(x,1), xeR"t>0,

sUm

Ca”r
SN, (1) = A
Wi, (@,0) = d(@).
We show that for the number 7 of iterations tending to infinity

law
B, (L0 (1) — X,
r— o0

where X, , is a r.v. independent from ¢ and possesses density equal to

n+2
m 2 m
Pr{X,,, € dx} 1 21 A _n=2 PDIEPY
= o |z||” % Koo | —— ] |,
dx (2m)2 c 2 c
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where K, (z) is the modified Bessel function. For n = 1 the distribution (2.12)
becomes the Gauss-Laplace law
Z;'n:1 Aj V/ERN 2]
1, () = € E . (2.13)
Result (2.13) was obtained also in Orsingher and Beghin (2009) and by a different
approach for \; = 1, \; = 0 for j > 2, ¢ = 3, was derived by Turban (2004) as the
limit of iterated random walks.

2.1.2 Preliminaries
One dimensional stable laws

Let us consider a stable process, say S”(t), t > 0, v € (0,2], v # 1, for which, in

general,

Eei{SV(t) _ e—g‘ﬂut(l—iesign(g)tan‘%’) (214)
.
consider positively skewed processes (0 = 1) say H"(t), t > 0, whose characteristic

where 0 € [—1,1] is the skewness parameter and o = cos In this paper we

function writes
B (€,1) = B€H" @) — oolelcos 3 (1-isign(@) tan ) _ (Il FEO) gy
(2.15)
where we used the fact that |¢] e~258%&) = —j¢. The process HY(t), t > 0, has the
important property of having non-negative, stationary and independent increments,

and thus it is suitable to play the role of a random time. The law h,(x,t), z > 0, of
H"(t), t > 0, with Fourier transform Ey(g ,t) and Laplace transform

ho (p,) = e, (2.16)

solves the fractional diffusion equation, for v € (0, 1],

(2 + 2V hy(x,t) =0, 2>0,t>0,
hy,(x,0) = 0(x),
h,(0,1) = 0,

where the fractional derivatives are intended in the Riemann-Liouville sense. We
notice that the process given by the composition of r € N independent stable sub-
ordinators of the same order v € (0, 1), say 1 H” (oH” (---» H(t)---)), t > 0 has law
which reads
Pr{iH" (H" (---, H(t)---)) € dx} _
dx
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:/ ds; 1’%(%31)/ d822hy(81,82)/ d833hu(82753)"'/ dsrrhu(sr7t>-
0 0 0 0
(2.17)

In view of (2.15) and (2.16) we can easily write the Laplace and Fourier transforms

of (2.17). For example the Laplace transform reads

Ee H 1HY QHY (- HY (1)) _ / dr e M Pr {1Hu (QHV ( e Hy(t) L. )) c dx}
0

= [ s [Cdsaaulonse) [ dsaahulsas) o [ ds b
0 0 0 0

B / d526_52,uy2 / d33 Shu(827 33) o / ds?” rhu(sra t) = e—tu”r (218)
0 0 0

and therefore we have the following Fourier transform

Re € 1HY (2HY (-r HY(8))) e_t(_ig)yr (2.19)

Multidimensional stable laws and fractional Laplacian

Let us consider the isotropic n-dimensional process S?(t), t > 0, 3 € (0, 1], with

density
1

(2m)"

and therefore characteristic function

vg (x,t) = /R dg e76® e‘tHgHQB, zeR"t>0, (2.20)

5 (€,1) = Be€S7 (0 — ot

where the symbol ||-|| stands for the usual Euclidean norm. The law (2.20) is the
solution to the fractional Cauchy problem, for 5 € (0, 1]

(&+(-2))us(@t) =0, weR"t>0,
vg(x,0) = d(x).

(2.21)

The fractional negative Laplacian appearing in (2.21) has been considered by many
authors (see for example Balakrishnan (1960), Bochner (1949)). The Bochner rep-

resentation of the fractional Laplacian reads

_(—a)f = SmTh /Oo AN — AT A,
0

™

Equivalently, an alternative useful definition can be given in the space of the Fourier

transforms, as

1

A () —
(-8 ul@) =

| =i ae ae
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where

Dom (-8 = {ue £ @) [ @@F (1+161”) dé < oo

]:R'IL

In the one-dimensional case and for 0 < 28 < 1 we have that (see for example
D’Ovidio et al. (2012) for details on this point),

o2 B 928
(—@) u(z) = WU(CC),

where % is the Riesz operator usually defined as

LR Sy
0|xz|?#  2cosfBrl(1—2B)dx | o |z — 2|8
and for which the Fourier transform becomes
0% 28 ~
d [8|x|26“(‘”)} = — &[T u(g).

2.2 Generalized fractional equations

2.2.1 Linear combination of stable processes

In this section we start by considering processes of the form

m 1

AT () = Y ONTHP (), t>0,05€(0,1),j=1,--- ,m, (2.22)

j
j=1

where ijj (t), t > 0, are independent stable subordinators of order v; € (0,1]

introduced in section 2.1.2. Furthermore we will deal with the inverse process of

HVLVm say LY07Vm(E) )t > 0, which can be defined as the hitting time of #* ™

as

m 1

L Vm () = inf {s >0 9 (s) = Y AT HP () > t} ,  t>0. (223)

J J
j=1

The definition (2.23) of the process £ ™ permits us to write
Pr{rm"m(t) <z} = Pr{#H"™ " (x) > t}. (2.24)
We present the following two results.

Theorem 2.2.1. We have that
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i) The solution to the problem for v; € (0,1), j=1,---,m,

D b (,1) = =3 N2 by (2, 1), x> 0,t>0,
ﬁylv"'?”’rn(x’ 0) = 5(:C)7 (225)
by e 1, (0,1) = 0.

is given by the law of the process H"'»"*m(t), t > 0, defined in (2.22).

ii) The solution to the problem for v; € (0,1), j=1,---,m,

S N by () = =2, (0t), x> 0,630,
6/1,"',1/771(0715) = Z;nzl )‘jr(tl—_,ij)a

is given by the law of the process LYY (t), t > 0, defined in (2.23).

(2.26)

The fractional derivatives appearing in (2.25) and (2.26) must be intended in the

Riemann-Liouville sense.

Proof of i). Since for the Riemann-Liouville fractional derivative we have that

0" o\
F | geeuta)] © = (-ie)" 7t (227
x
we can write the Fourier transform of the problem (2.25) as
0~ L oY “ NS
Eﬁm,m,vm &t) =-F Z )\j%ﬁ”h'"y”m (z,0)] (§) = Z Aj (—1§)” by e v (&),
=1 j=1

and therefore we have that

~

Giltun e (€:8) = DT NG (=) g (€:1) (2.28)
P (€,0) = 1. |

The Fourier transform of the law #f,, ... ., (x,t) of the process (2.22) is written as

1
oo

Eei&0 () = e Sy Ay HyY (1) CL) e, 2 (i) (2.29)
for which
O o iewneomy | NO v e (i)
o = DN (i) RN,
j=1

This is tantamount to saying that the Fourier transform of 4,, ... ., (z,t) is the solu-
tion to the problem (2.28) and thus #,, ... ,,,(x,t) is the solution to (2.25). O
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Proof of ii). In this proof we will make use of the Laplace transform of the Riemann-

Liouville fractional derivative which, in view of (2.27), can be written as

£ | i) () = w1,

Taking the Laplace transform of (2.26) with respect to ¢t we get

@ ~ 0 ~
DN i (0 11) = =5 b (2,0, (2.30)
j=1

and performing the z-Laplace transform of (2.30) we arrive at
> N Loy (Vo 18) = oy (0, 1) = YLy (3, 10)- (2.31)
=1
The boundary condition appearing in (2.31) can be derived from (2.26) as
Ly (O ) = [ dte™™ ) ) At
om0 = [ e Z =g Z e

and thus from (2.31) we have that

7 (v, 1) = 2o e
V1, yUm 77/”’ Z‘;n:l A]ILLV] + 7

(2.32)

Now we show that the Fourier-Laplace transform of the law of the process £ ¥m(t),
t > 0, coincides with (2.32). By taking into account the property (2.24) of the law

of LY ¥m we obtain
=~ [ee] oo
Lo (77 M) = / dt e / dx 6_7$4/1,"' Wm (l‘, t)
0 0

N T " 3/
_/0 dte“/oda:GV{ax dz fy, .. (zx)}

1 [~ [0~
S L
/0 dze _ xﬁljl,”',l’m(l’b7 x)]

L
00 B 1
- _ l/ dr e~ QEG—MZ?lA]JH]( )
HJo 8x

0

u |0z X A+

which coincides with (2.32). The proof of Theorem 2.2.1 is thus concluded. O
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2.2.2 Generalized fractional telegraph-type equations

In this section we study equations of the form

m C qv;
S N () = (A L, (1), @ERE>0, (239

v,
Jj=1

forv; € (0,1}, j=1,---,m, B €(0,1],¢ >0, A > 0. The symbol = 2 stands for the
Dzerbayshan-Caputo fractional derivative. Equation (2.33) generalizes the telegraph
equation in that an arbitrary number m of time-fractional derivatives appears and
the n-dimensional fractional Laplacian governs the space fluctuations. Concerning

the equation (2.33) we present the following result.
Theorem 2.2.2. The solution to the problem for v; € (0,1], j = 1,---,m, f €
(0,1],

ET 1 )\J 2?37 wﬁ “\Um (.’B, t) = _CQ <_A>ﬁ wgl,---,um(wa t)? YIS Rn)t > 07

Wy oo (@,0) = 6 (2) .
(2.34)

s given by the law of the process
Wybmim(t) = S2P (2L (L)), t>0, (2.35)

where S* is the isotropic vector process dealt with in section 2.1.2 and £’V Vm(t),
t > 0 is the process defined in (2.23).

Proof. Since for the Dzerbayshan-Caputo fractional derivative we have that,

C v
£ |5l 00 = @l - o), ve o),

we can write the Laplace transform of (2.34) as
ST, (o) ZA poto(@) = = (=A) wy L, (@)
Jj=1

The Fourier-Laplace transform of (2.34) is therefore written as

e~ Z;n:1 At
w s Um (€7I’L> = m v ) QB‘
D jor A+ 2 €]l

Considering (2.24) we can derive the Fourier-Laplace transform of the process (2.35).
We have that

73351,.-. WWm, (57 :U’) = / de €i£~m / dt e—ﬂt / ds Up (11, 028) 6/1,~~~ WWm, (87 t)
n 0 0

(2.36)
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e8] o0 t
:/ dse_SCQMZB/ dte _9 by o (2, 8) dz
0 0 9s Jo 77

1 [ 2en28 [ O~
- _ —sc?||€]| -
LT s ()

1 / % 1g e—slEI? (QEGMZ;; AjH;j(S))
0

M ds
@16 1 / % 1 e—slEI? ( aﬁ e_szgn_lxjm)

K Jo S

m 00 m g vi—1

= Z /\j/LVj_l/ ds e—sCNIENIP —s STy X _ Zj:l AjH -
m Vs
i=1 0 2j1 A+ 2 €]l
= (2.36).

Since the Fourier-Laplace transform of the problem (2.34) coincides with that of the
law of the process 827 (¢>£71m(t)), t > 0, the proof is complete. O

2.2.3 Telegraph-type equations with two time-fractional deriva-
tives

When in the equation (2.33) only two time derivatives appear we can rewrite the
problem, for o, v € (0,1] as

(52 + 2052 ) wl, (@,t) = = (-8) wl (@), @ER"L>0,

(2.37)
wl,(@,0) = §().

1
2
the classical fractional telegraph equation, investigated from a probabilistic point of
view in Orsingher and Beghin (2004) (for n = 1 and § = 1) and in D’Ovidio et al.
(2012) (for n € N and 8 € (0,1)). In view of Theorem 2.2.2 is it not difficult to

prove the following result.

For a = 2v, v € (0 } the reader can recongnize in (2.37) the standard form of

Corollary 2.2.3. The solution of the fractional Cauchy problem (2.37) is given by

the law of the process
Wor(t) = S29 (2L (t)), t>0. (2.38)

where
LO%(t) = inf {5 >0 HO(s) = HE + (2)\)7 HY(s) > t} ,
for HY and HS independent stable subordinators.
Proof. The proof of this result can be carried out by repeating the arguments of

Theorem 2.2.2 and will not be reported here. It is sufficient to assume that A\ = 1,
A2 =2\, A>0and A\; =0 for j > 2. [
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2.2.4 The case a = kv

Let us consider a = kv, v € (0, ﬂ, k € N, in (2.37). The problem becomes

<Caky + 2N )w’B (z,t) = —2 (=AWl (x1), x Rt >0,

otkv ot kv,v kv,
Wiy (@,0) = 6().

(2.39)

In view of Corollary 2.2.3 the solution to (2.39) is given by the law of the process
828 (cL*(t)), t > 0. The Fourier-Laplace transform of wfyyy(w,t) can be now

written as
k k
~B /Lkl/—l + 2)\/LV_1 . Iul/—l . 1
Wiy (&5 1) = = p" + 2ap”
' 22+ 2 €] E“”_Zi E“”_Zi
where Z; are the roots of p* 4 2xu” + ¢ ||€]|*7 = 0
For k = 3 we get
~8 | 1 u 1 1
= 2\ 2.40
w3V,I/<€7/‘L) MV—AMV—BMV—C—i_ AILL B,LLV—C’ ( )

where A, B and C are the solutions to u® + 2\ + ¢ ||€]|*” = 0. Formula (2.40)

can be rewritten as

Bl =P (L LY ]
e K ~5) o mm o
- (u —A —C) (A—C)I(B—C)}
- () | e h P BB E B
4 MVI_C(A_O;(B_C)} | (2.41)

By considering now the relationship

oo 'uu—(l—Zy)
/ e MUTPITNE, L, (CF) dt = ———
0 p —C
we can invert (2.41) with respect to u. Thus we can explicitely write the character-
istic function of the process S§2 (2L (t)), t > 0, as

[ iS5 (9 1) :t*QVEMl_QV (At") 4+ 20E, 1 (At") N t2E,1_, (Bt") + 2\E,, (Bt")
(B—A)(C—-A) (A—B)(C — B)
72 E, 19, (Ct") + 2)\E, 1 (Ct)
(A-C)(B-C)

+
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2.3 Multidimensional Gauss-Laplace distributions

and infinite compositions

In Orsingher and Beghin (2009) the authors have shown that the process

In(t) = Bi([B2(|Bs - (IBuna(®)])--- D)), >0,

converges in distribution for n — oo to a Gauss-Laplace (or bilateral exponential)
random variable independent from ¢ > 0. In this section we show that the process
B, (£vvm(t)), t > 0, converges in distribution, for r — oo, to a multidimensional

version of the Gauss-Laplace r.v. and solves the equation, for v; € (0,1), r € N,
m Cayr

5 — 2 B,
"o (x,t) = Ay (2, t), x e R" t>0.

sVm

— 10,
] I/
= o

The process £/ #m(t), t > 0, is defined as
grirm(t) = inf{s > 0: HLV7 " (s) > t}, t>0

where
m 1
() = SONTHY (GHS (3HY (o HY(8)0), 6> 0.

J=1

We start by presenting the following results.
Corollary 2.3.1. We have that

i) The solution to the problem for v; € (0,1), j=1,--- ,m, r € N,

% 17;1,-",l/m<'r7t) = = Z;ﬂ 1 )\J;ZJT 21,---,um(x7t)> r > Oat > 07
D (2,0) = (), (2.42)
Zl,'”,l/m(o’t) = O)

is given by the law of the process

Sty = S ON HY (oHY (HY (- JHY (1)), 1> 0.

ii) The solution to the problem for v; € (0,1), j = --- ,m, r € N,
ZjllAjgth 0 (xt) = am[’él (1), x>0,t>0,

(2.43)
0y (0,8) = Zm AJF(I u)

1s given by the law of the process

grtm(t) = inf{s > 0: Q7 (s) > ty, >0, (244)
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Proof of i). The proof is carried out in the same spirit of Theorem 2.2.1, thus by

considering the Fourier transform of (2.42) we get

LN (35 I B O 73 A N ()
b0, (6,0) = 1.

The proof is completed by observing that the solution to (2.45) is given by the Fourier

(2.45)

transform of the law of the process $2 ¥~ (t), t > 0, which can be obtained by

means of the calculation
1

Rt "™ (1) _ i€ T N7 HY (oHY (HYS (2 n HYG (£) ) (2;9) —t 30 Aj(—i€)" i

Y

that is the solution to (2.45). O

Proof of ii). By considering the double Laplace transform of (2.43) we have that
SN () =0, (0) = (),

where the boundary condition is given by

/ dte‘“tZAJF ZAJW ,
0

and thus

Z;n: )\]/LVJ_l
Z?Lﬂ Ajp” i+ v
The definition (2.44) permits us to state that the processes £/ "= (t), t > 0, and
Heovm(t) ¢ > 0, are related by the fact that

0o () = (2.46)

Pr{guim(t) <a} = Pr{sm""(x) > 1},

and thus we can perform manipulations similar to those of Theorem 2.2.1. We have

that the double Laplace transform of the law [},  (z,t) is then given by

0 (1) =/ dte“t/ dre™® [— 0 / dzb,, ., (z,x)}
o 0 0 Ox o

1 [ [0 ~
= —— | dge"

L[ | 2R )

1 /Oo _ 0 —p ™ >\1J H]( H”j(,]{”j(... HVj(t))))
- _ dre % | ZLRer2XimiA7 1 2 3 r

K Jo 8x

K Jo Ké Zj:l )‘jﬂ i+

and coincides with (2.46). O
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Theorem 2.3.2. The solution to the problem for v; € (0,1], § € (0,1], j =
1---,m,reN,

s Af;f—:fmgg.w (1) = - (~AY v, (1), @eR1>0,
Wy, (@,0) = d(z),
(2.47)
is given by the law of the process
W, (1) = S (Pervm(t)),  t>0. (2.48)

where the process £V (t), t > 0, is defined in (2.44). For = 1, the process
(2.48) becomes the subordinated Brownian motion B, (2L "™ (t)), t > 0.

Proof. The Fourier-Laplace transform of (2.47) can be easily derived as in Theorem
2.2.2 and reads

j 1

)\],u”f
2 e Aju S+ e €|

By considering the law of the process §27 (¢?€¥1m(t)) we have that

=B,

o (& 11) =

(2.49)

dt e MRS Wt W)

/L
:/ / dte! /Oodsvﬁ (2,5) 0,0, (5:0)
/ _SCQenB/O - {——/h }
e ( % o S))

1
/ o= sclEl1% <3Ee—u2§”1 A 1H”f(2H”j(3H”f(mrH”j(t)'"))))
Js

- ds eI oS X '
a

m oo " m ) 1

Z M 1 / ds eI =TS Dm M

=1 ’ > A+ €]l

which coincides with (2.49). O

(2.18)

1
1w Jo
1
M
1
1

We now consider the limiting case for r — oo where the iteration of the process
S26 (2gvivm(t)), t > 0, is infinitely extended. In the next theorem we have that
the limiting law of

lim S2° (v (t)),  t>0,

T—00
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is, for § = 1, a generalization to R" of the Gauss-Laplace probability density. This
result represents an extension to the n-dimensional case of the infinitely iterated

Brownian motion.

Theorem 2.3.3. The distribution of the limiting process

lim B, (0" (1)) "2 X,,,

7—00

does not depend on t and reads

m 2 m
 Pr{X,,edz} 1 2= A n—2 Dt A
B dz  (2n) c T

1o, ()

The density (2.50) solves the equation

(Z )\]> mm(l‘l,-.- ,xn) — CQ _2mm(l‘17... ’:L‘n);
j=1 - ox?

which is obtained from (2.47) by letting r — oo.

Proof. By assuming

the density

w,,(x) = A (Z x?) KnT—2
=1

has first-order derivative which reads

0
—w,(x) =
81’]'
A . 2-2) g Kn2 (B (22 + —|—xi)%
:AB#”K@<B(xf+~-+xi)2>—A(2) Ko (B )

n n ﬁ+l
(ijl 133) 1 2 (ijl :L‘?) 1732
= — ABu; (Z x§> Ka <B (27 +-+ xi)%> : (2.51)
j=1

In the last step we applied the relationship

D) = VKo (2) = Ko (2) (252)

dz z
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of Lebedev (1965), page 110. The second-order derivative now becomes

92
8_37?mm (xlv T 73771) =
2 2 2\3
1 i x»Kg(B(xl—i—---%—a:n)?)
— _AB Ky (B (234 +22)*) + 2AB- -
n 9\ 4 " 2 n 9 a1l
(Zi:l zﬂ) 2 =1 xj)
x? 1
— AB? - %(B(x%—i— —l—xi)?)
n o\4T2
OE)
2 . Ky (B (e} 4+ a2)7)
= AB? Z n+1K§+1 (B (:13%—# +xi)2> — AB n
n 472 n 4
(Zie) (T )
(2.53)
By considering the relationship
v
Ky1(2) = Koma(2) + 2 K,(2)
of Lebedev (1965), page 110, the derivative (2.53) takes the form
0 22 [N 2 i 2 2
@mm(xl,---,xn) = AB%z; ij K%_l(B(x1+---+xn)).
j j=1
The Laplacian of w,,(z1, - ,z,,) therefore becomes
_n+t2 1
n 82 ) n ) 4 n ) 2
> oatom (@) = AB* () a3 Koo | B 2]
and thus taking A and B explicitely we obtain the desired result
n 2 m
02 Z 9 Qmm(xly e 7$n) = Z )\jmm(mly e 7$n)
j=1 7" i=1
]
Remark 2.3.4. For r — oo the Fourier-Laplace transform (2.49) becomes
~f 1 SN
mm(ﬁ?”) p—— = ; 287
Py di + €l
and thus the Fourier transform takes the form
~ A
o, (§) = L (2.54)

m 26"
ST A+ 2 €]
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The inversion of the Fourier transform (2.54) can be carried out by means of the

hyperspherical coordinates. Thus we have that
1 . A
w}, (2) = / e e
(2m)" Jgn Z A+

1o
= ¢ d@ dHn_

2
/ d¢ efip[ml sin 01 sin O+ sin 6, _2 sin ¢+x2 sin 01 sin O2-+- sin 6, _2 cos @]
0

671p[23 sin 01 sin 02+ sin 6y, _3 cos O0p,_a2+ -+ +xp_1 sin 01 cos a+xr, cos O1] Sinn72 &1 ... 5in 8n72

1 o o .
:@r)n-l/o > §1+02 wdp/ Cwl/ Ao / df,- "6y - sin 0,

e—ip[azg sin 01 sin 02+ sin 6,,_3 cos Op_2+ -+ +xTpn—_1 sin b1 cos Oa+xy, cos 01]

Jo (p\ /22 + 23 sin 6 sinfy - - - sin Hn_2>

We now evaluate the integrals with respect to ¢; by means of formula 6.688 page
727 of Gradshteyn and Ryzhik (2007), which reads

/2 sin“* z cos (B cosz) J, (asinz) dr = Ea—leer; <\/ a? + 52> .
0 2 (a2 + p2)zta 72

valid for R(r) > —1. We start with the integral with respect to 6,,_o

™
/ den_2 e~ thT3 sin @+ sin 6, —3 cos O, —2 <in en—Q Jo <p /LL'% + I% sinf; - - -sin 971—2)
0

us

=2 /2 dB,,_5 cos (pxrzsinby - - -sinb,_3cosb,_o)sinb,_»Jy (p\ /% + 23 sinf; - - - sin Qn_g)
0

-2
=V2r | psinby - - -sinb,,_s\/x? + 22 + 22 Ji [ pr/2? + 22 + 22 sin6; - -sinf,_
p 1 2 3 ! 1 2 3

and thus the integral with respect to #,_3 becomes

s
/27'(' / dgn_3€—zpa:4 sin@y---sin By, 4 cos O, _3 SiIl2 971—3
0

(psin91 -o-8inf, 3¢/ + 23 + x§> J1 (p\/x% + 2% + 23 sinb; - - -sin&n_g)
1 =
2
=2V2r (p sin6,_---sinf, 4/ 2?2 + 23 + x%) / db,,_3 sin? 0,3
0
cos (prysinfy - - -sinf,,_4 cosb,_3) J% (p\ /22 + x5 + 22 sin B - - - sin 0n_3)

= (\/%)2 (p?sin® Oy - - -sin® O, g (27 + 23 + 23 + 27))

=

N

N[
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J1 (p\/x% + 23+ 2% + 23sinf; sinfy - - - sin Gn_4> .

After n — 2 integrations we arrive at the integral with respect to p which reads

1 \/ 27:1 )‘j n—2 27:1 )‘j
lal| ™" Koe | F——

(27)z c

where we used formula 6.566 page 679 of Gradshteyn and Ryzhik (2007), which
reads

> 1
/ dx 2" J,(ax)
0

2+ b?

= 0K, (ab), a>0,R0b) >0 —1<Rw) <

N o

Remark 2.3.5. We can check that (2.50) for all n € N is a true probability density.

n+2
m 2 m
Sn Z i=1 )‘j o0 o2 \/ Z =1 )‘j
/ W, (z) de = area(ﬁ) d / P Ky " dp
n (2m)2 c 0 ¢
=2
(2m)z 1 ZTzl Aj o, ZTzl Aj
B 0

in force of formula 6.561(16) of Gradshteyn and Ryzhik (2007) page 676

> 1 1 —
/ WK, (az) = 2-1g-n1T (#) r (++) | (2.56)
0

valid for R (u + 1+ v) > 0 and R(a) > 0. The non-negativity of (2.50) is shown by

the following integral representation

K,(z) = / et cosh vt dt
0
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valid for |arg(z)| < § (see Gradshteyn and Ryzhik (2007) page 917 formula 8.432).

By considering that

K

(2) = Ki(z) = | —€77, (2.57)

2z

1
2

(NI

from (2.50) we derive the following probability density for & € R3,

mm($1,x2,$3) =

Dim A NERY s Xgah  VERN,

c

(2e)°m X2y @5 (2¢) ||||”
In the two dimensional case the distribution (2.50) has a simple structure which
reads
o) = L Doy, (Vb
m(x1,22) = ———— — |
b 2r 2 0 c

In view of (2.57) it is also easy to show that the distribution (2.50) coincides for
n = 1 with the classical Gauss-Laplace distribution. We have that for n = 1 (2.50)
becomes

1 PREPY TN
o) == (YD) | e
2 C m
2 Zj:1 Aj |zl
T-n_ )\ m 7
_VZmh R (2.58)

2c
Furthermore, for Ay =1, Ay = 2\, A > 0 and A\; = 0 for j = 3,--- ,m, we note that
(2.58) coincides with formula (3.18) of Orsingher and Beghin (2009).

Remark 2.3.6. By considering the iterated random walk
Yo(k) =51 (S2 (- (Su(k))--+)),  keN,

with S;, j = 1,--- ,n, independent random walks, Turban (2004) has shown that for
n — 0o, Y, (k) converges to a stationary r.v. (independent from k) which possesses
Gauss-Laplace distribution, in accord with result (2.50) of the present work and
with (3.12) of Orsingher and Beghin (2009).



Chapter 3

On the subordinate Poisson

process

Article: Orsingher and Toaldo (2013). Counting processes with Bernstein intertimes

and random jumps.

Summary

We consider here point processes N7 (t), t > 0, with independent increments and
integer-valued jumps whose distribution is expressed in terms of Bernstein func-
tions f with Lévy measure v. We obtain the general expression of the probability
generating functions G/ of N/, the equations governing the state probabilities pi
of N/, and their corresponding explicit form. We give also the distribution of the
first-passage times T,f of N/, and the related governing equation. We study in detail
the cases of the fractional Poisson process, the relativistic Poisson process and the
Gamma Poisson process whose state probabilities have the form of negative bino-
mial. The distribution of the times T]l-j of jumps with height I; (327_, I; = k) under

the condition N(t) = k for all these special processes is investigated in detail.

3.1 Introduction

In this paper we consider a class of point processes with stationary independent
integer-valued increments of arbitrary range. These processes can be regarded as
generalizations of the Poisson process where jumps can take any positive value.
Furthermore we shall show that these processes N7/ (t), t > 0, can be viewed as time-

changed Poisson processes N (H/(t)) where H/(t) are subordinators, independent
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from N, associated with the Bernstein function f. The probabilistic behaviour of the
processes P/ (t), with related counting process N/(t), is described by the following

properties.

i) P/(t) has independent increments;

ii)

dtX [ e=2ssky(ds) + o(dt), k> 1,
PI‘{Nf[t,t—l-dt):k}: k!fo € 51/( 8) O( ) =
1—dt [*(1—e)v(ds) +o(dt), k=0,
(3.1)

where
f) = /0 T (1—e ) u(as) (32)

is the integral representation of the Bernstein functions. By v we denote a

non-negative Lévy measure on the positive half-line such that
/ (s A1) p(ds) < oo. (3.3)
0

We often speak of P/(t), t > 0, as generalized Poisson processes performing integer-
valued jumps of arbitrary height. These processes can be used to model many
different concrete and real phenomena. For example, if we consider the car acci-
dents in the time interval [0,¢), the number of injured people in each clash can take
any positive number. Analogously in floods or earthquakes, the number of destroyed
buildings in each event can be clearly of arbitrary magnitude and thus can be repre-
sented by P/(t), t > 0, with suitably chosen Bernstein function f and Lévy measure

V.

We observe that for

as—a—l

ds) = ——ds, € (0,1), 3.4

Wds) = Frmagds @€ (3.4)

we obtain the space-fractional Poisson process studied in Orsingher and Polito
(2012). In this case the subordinator corresponding to the space-fractional Pois-
son is a stable process of order o and positively skewed. If the Lévy measure is the

Dirac point mass at one, then the corresponding subordinated Poisson process is
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where N;, i = 1,2, are independent homogeneous Poisson process with rate A > 0.
Such process has been investigate in Orsingher and Polito (2012). The subordinator

H/ has Laplace transform
]Ee—qu(t) — ot —tfo (1—6_3“)1/(033) (36)
and thus in the case of the space-fractional Poisson process, f(u) = u®. The prob-

ability distributions p/(t) = Pr {N/(t) = k} are governed by difference-differential

equations of the form

d y

L pL(t) = +Z 'pk ol / e sMv(ds), kE>0,t>0, (3.7)
0

with the usual initial conditions. From (3.7) we extract the probability generating
function G7(u,t) of N/(t) as
G (u,t) = e /AU~ — e_tfooo(l_efsmfm)V(ds). (3.8)
We prove also that
EuNE ®) — ~tfA(1-w) (3.9)
and thus we show that
N/ (t) 2 N (H' (1)) (3.10)

By means of the shift operator B™p! (t) = pl_, (t) we can rewrite equation (3.7) as

d ;
at’k
which for f(z) = z® coincides with the equation (2.4) of Orsingher and Polito (2012).

We also present a further representation of the generalized Poisson process P/ (t),

plt) = —f (NI = B))pl(t), t>0k>0, (3.11)

t > 0, as the scale limit of a continuous-time random walk with steps X; having

distribution
PriX; =k} — — /O UPrN(s) = k) Tiow v(ds),  kEN,  (3.12)
whero
u(n) = /0 T Pr{N(s) = n} v(ds). (3.13)

For example, for the space-fractional Poisson process the distribution (3.12) becomes

L(k — a)/k! k> n. (3.14)

R > ey
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For the hitting-times

T = inf {t > 0: N'(t) > k} (3.15)
we show that
k-1
d (=Nt db
f - _° sF(N)
Pr {Tk € ds} Jds = 7 E TR : (3.16)

1=

We note that for f(A) = A (case of the homogeneous Poisson process) formula (3.16)
yields the Erlang distribution

Sk—l

_ \k_—Xs
Pr{T}, € ds} = e (=]

ds, k>1,s>0. (3.17)

In some special cases it is possible to write down the distribution p£ (t), t >0,
k > 0, and to analyse many related random variables. When the Lévy measure is
v(ds) = as @ 1/T(1 — «), and therefore f(\) = A%, we have the space-fractional

Poisson process whose distribution is written in many alternative forms as

ety = CD 5 () lar+ )

kb=t Dlar+1-k)
_EDP A
TR duh” .
oAt
= ] [Ck,ktk + Ck_lyktk_l + -+ Clykt] , (318)
where ¢ ;, j = 1,...,n, are suitable coefficients. In this case the conditional distri-

butions of the instants of occurrence of jumps of N“(¢) is analyzed. The possibility

of multiple jumps makes the form of the conditional distributions

Pr {ﬂ {ij = dt]} ’N“(t) - k} (3.19)

J=1

rather complicated and can be given in closed form for small values of k, only. By le-j
we mean the instant of occurrence of the j-th jump of length /;. The space-fractional
Poisson process has the drawback of having infinite mean values as emerges from
the form

G (u,t) = e (10" lu| <1, € (0,1), (3.20)

of the p.g.f.. This defect is circumvented when the Poisson process with relativistic

stable subordinator is considered, that is for

Oés—oc—le—es
'l—a)’

v(ds) = 0>0,0<a<ls>0, (3.21)
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with corresponding Bernstein function

f(p) = (0+p)" =0 (3.22)

In this case the probability distribution of N O"9(15), t > 0, writes

(- 1>m et & 00y Tlak+1)
B t — 3.23
and has p.g.f.
GO(u,t) = e~ HIO+HAA—u)]* =0} (3.24)

Clearly for § = 0, N*(t), t > 0, coincides with the space-fractional Poisson process
and (3.23) coincides with (3.18). From (3.24) we easily see that the moments of
N*Y(t) are finite and

EN*Y(t) = A0*'t,
VarN*?(t) = X072 (A1 —a)+0). (3.25)
The most attractive subordinated Poisson process emerging in our analysis corre-

sponds to the Lévy measure

6—8

v(ds) = . ds, s >0, (3.26)

and thus as BernsStein function

f(z) = log(1+ z). (3.27)

We call this process Poisson with Gamma subordinator or simply Gamma Pois-
son process and we will denote it by N'(¢), ¢ > 0. It is well-known that for
A= (1—-p)/p, p € (0,1) we obtain the negative binomial process studied in Brix
(1999), Kozubowski and Podgorski (2009) and fractionalized in Beghin (2013). The
distribution of NT(¢) has the following form

MNT(k+1t)
EIT(t) (A + 1)

Pr{N"(t) =k} = k>0 (3.28)

with p.g.f.
GV (u,t) = (1+ A1 —u)™", lu| < 1. (3.29)

The independence of increments and the structure of the distribution (3.28) permits
us to obtain a number of interesting distributions related to the Gamma process.

For example, we have that

Pr {ﬂ {Tjﬁ e dtj} ‘Nr(t) - k} - k;i 5 Hl—f (3.30)

J=1
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for 0 <t; <---<t;<---<t <t,r<k In(3.29) T]l-j denotes the instant of the

occurrence of the j-th event of amplitude /;. Furthermore

Pr{N"(s) =r|N"(t) =k} = E Kfj) X" (1- x)’“—ﬂ (3.31)

where X is a Beta r.v. with parameter s and ¢t — s. The result (3.31) generalizes a
fine feature of the homogeneous Poisson processes which relates it with the Bernoulli

r.v.. The correlation function of N¥(t), t > 0, has the form
Cov [N"(s), N'(t)] = A(A+ 1) min(s, ) (3.32)

and

k

Cov [NF<S),NF(7~U)|NF(t) = k} - t(t + 1)

(1 + %) min(s, t) min(t — s, ¢ — w),
(3.33)

for s,w € (0,t). We also study the distribution of N{ (t) — Ni (¢), with N] and NJ
independent and establish the relationship with the Skellam distribution of Ny(t) —

N (t) for the homogeneous Poisson process.

3.2 General result

We now examine in detail the main properties of the process N7 (t), t > 0, with in-
dependent increments outlined in the introduction. Our first result is the difference-

differential equations governing their state probabilities
pi(t) = Pr{N(t)=k}, k>0 (3.34)

Theorem 3.2.1. The probabilities pl(t) = Pr {NI(t) =k}, k>0, are solutions to

the equations

k

d A &0
/ - _ S/ NS —sA _m
il = =Fole) + 32 Tl 0 /0 esmu(ds), k> 0,60, (3.35)
with initial conditions
1, k=20
pl(0) = (3.36)
0, k> 1.

The p.g.f- G (u,t) = EuNf(t), |u| < 1, satisfies the linear, homogeneous equation

G (u,t) = —f (A1 =) G (u,t)

i) - 1 (3.37)



79 On the subordinate Poisson process

and has the form

G (uyt) = e TO0-0) = ot f5 (1= 0ot (3.38)

Proof. Since N/(t) has independent increments and the distribution of jumps is

given by (3.1) we can write

k
pr(t+dt) = Pr{N/[t+dt) =k} = Pr{U{Nf(t) =4, NI[t,t + dt) :k—j}}

J=0

kol

-1

k—j eS]
- Pr {N/(t) —]}dt A ])!/0 e s Iy(ds)

Pr{N/(t) = k} (1 — dt /OOO (1—e) V(ds)) : (3.39)

A simple expansion permits us to obtain, in the limit, equation (3.35). From equa-
tion (3.35) we have that

i
o

0
aGf(u t) = Zu —pk
00 k 00
= — f()\)Zuk Z Z )\—‘ /o e sMv(ds)

= NG (u,t) + Z / _S)‘mdsZupkm
= — f(NG(u,1) / _3)‘(1_“) — 6_8’\) v(ds)

_ —Gf(u,t)/ (1 PO u)) v(ds)
= — G (u,t) FIN1 = u)). (3.40)

In the last step we take into account the representation (3.2) of the Bernstein func-

tions. ]

Remark 3.2.2. The appearence of pp—;(t), k > j > 2, in (3.35) makes the master
equation of the state probabilities pg(t), substantially different from the case of the
classical Poisson process. This fact is related to the possibility of jumps of arbitrary
height. We also observe that

N/ () 2 N (H (1)) (3.41)

where H' is the subordinator with Laplace transform (3.6). This can be ascertained
by evaluating the p.g.f. of N (Hf(t)), t >0, as follows

EuN(H ) — f:uk /00 Pr{N(s) = k}Pr{H’(t) € ds}
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= / e~ M= Pr {HI(t) € ds}
0
=G (u,t). (3.42)
In view of (3.41) we can write the distribution of N/(¢) as
f f o s ()\3) f
Pr{N'(t)=k} =Pr{N (H'(t)) =k} = b {H(t) € ds}
0
o (_1>k dk > —Asu f
_T%/o e M Pr{H’(t) € ds} .
(=D* @ 0w
— il u 3.43
K duk” . (3.43)
Remark 3.2.3. The equation (3.35) can alternatively be written as
d
ZPk(t) = —f (AT = B))pi(t),  t>0,k>0, (3.44)

where B is the shift operator such that Bpl(t) = pl_,(t). This can be shown as

follows

— F(\I = B)pl(t)
_ / T (1= MUY u(ds) p](t)

_ /0 h (1 —e Y (A;B!)m) v(ds) pl (¢)

m=0

= +Z ,pkm /e“m(dS)
0

Clearly (3.45) coincides the with right-hand member of (3.35).

(3.45)

A further representation of N/(t), ¢ > 0, can be obtained as the limit of a suitable

compound Poisson process.

Theorem 3.2.4. Let

(3.46)



81 On the subordinate Poisson process

where N(s), s > 0, is a homogeneous Poisson process with rate A > 0. The compound

Poisson process

N(%u(n))
Zy(t) = Y X; t>0, (3.47)
j=1
where X;, j =1,2,..., are discrete i.1.d. r.v.’s with probability law
1 o0
Pr{X; =k} — ﬁ/ Pr{N(s) = k} v(ds), k>neNVj=12...,
u(n) J,

(3.48)

converges in distribution to the subordinated Poisson process N'(t) asn — 0. In

other words

N (#) 2 N (H (1) ' lim Z,(t). (3.49)

n—0

Proof. The p.g.f. of Z,(t) writes

g2 ®) :6—tu(n)(1—EuX>

= exp {—tu(n) Z (1—u)Pr{X = k:}}

(5:48) exp {—tu(n) Z: (1 — uk) ﬁ /OOO PI‘ {N(S) = k‘} I[[k:Zn] V(dS)}

= exp {—t /000 Z (1 —u*)Pr{N(s) =k} V(ds)} . (3.50)

By taking the limit for n — 0 of (3.50) we have that

lim Eu?"® = exp {—t /00 i (1 —u*)Pr{N(s) =k} V(ds)}

n—0
k=0
= exp {—t/ (1- e*’\s(k“)) V(ds)}
0
() (3.51)
[

Remark 3.2.5. If we take into account processes whose probabilities satisfy the

time-fractional equation

d” = * m
Grl® = —FOl0+ Y Sl (0 [ e Psmutds), k040,
m=1 : 0

(3.52)
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for v € (0,1) the corresponding p.g.f. has the form

G (ut) = B (—t” /0 h (1—6_SA(1_”))V(ds)) (3.53)

where E,1(x) is the Mittag-Leffler function and the fractional derivative appearing
in (3.52) must be understood in the Caputo sense. For the space fractinal Poisson
process f(A) = A%, 0 < a < 1, the distribution of the process related to (3.53) is
explicitely given by formula (2.29) of Orsingher and Polito (2012). The processes

whose distribution is governed by (3.52) admits the following representation
B (H (L"(1))), t>0, (3.54)
where LY and the stable subordinator H” are related by

Pr{L"(t) >z} = Pr{H"(x) < t}. (3.55)

3.3 Hitting-times of the subordinated Poisson pro-

cess
In this section we study the hitting-times
T/ = inf {t > 0: N'(t) > k}, (3.56)

of the subordinated Poisson processes. The fact that N7(t) performs jumps of
random length makes T,{ substantially different from the Erlang process related to

the homogeneous Poisson process. Indeed, the law of Tk’f can be written down as

follows
P {1/ € ds}
= Pr{U {N/(s) =k —j, N[s,s +ds) 2]’}}
:dsZPr{Nf(s) =k—j} ZPr{Nf[s,s—Irds) =m}

:dsZI/OOOPr{N(z) =k—j}Pr{H/(s) € dz} Z%/ﬁwemumu(du)

sy [T > .
—dsjzl/o (k:—j)!e Pr{H/(s) € dZ}/o Pr{N(u) > j}v(du)
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:dsg (;” _)]' /OOO dci,:jwz Pr {1/ (s) € dz}/ooo Pr{N(u) > j} v(du)

(
:dsz ((;i)j_)]' dCl)\]:j e8I /OOO Pr{N(u) > j} v(du)
(

_>‘>l d' —sf(\) OO — (/\u)r —Au
=ds TR /0 1-— ¢ v(du). (3.57)

r=0

The distribution of T,f can be also obtained by observing that

Pr {T,f < s} = Pr{N/(s) > k}

oo e j
- Z/ e_’\zﬁ Pr{H/(s) € dz} (3.58)
=k 70 J:
and thus
d = [ L (A\2)
r{ kEds}/ds dsj:k/o e 7 r{H'(s) € dz}
d o

= Pr{N(z) > k}Pr{H/(s) € dz}

k—1
d (=N [ d
- _ = —eMPr{H/ d
ds 1=0 ! /o d)\le r{ (s) € Z}
k—1
d —\Ntart
=-— ( 1!) N N s >0. (3.59)

Remark 3.3.1. In particular, we observe that from (3.57) and (3.59) we have that
Pr{Tlf c ds} = FN)e Vs, s>0, (3.60)

This proves that the waiting time of the first event for all subordinated Poisson

processes is exponential. Instead

Pr {TQf € ds} = IV (FO) = AN £ AN FN) ds,  s>0,  (3.61)

and for f(A) = A (ordinary Poisson case) we recover the Gamma distribution with
parameters (2,\). Result (3.61) can also be obtained from (3.57). For f(A) = \*

(space-fractional Poisson process) we have that

Pr{T¢ € ds} = dsA\e " (1 —a + \%s), s> 0. (3.62)
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Clearly (3.61) cannot be the distribution of the sum of exponantial r.v.’s (3.60)
because the second event can also be obtained as a jump of magnitude equal to two.

Finally we observe that

(_)\)kfl d dkfl

oD dsaweTe ds s €(0.00),

Pr {T,f € ds} = Pr {T,f_l € ds} —
(3.63)
so that the distributions of T}, can be derived successively.

Here we derive the equation governing the distribution of Tj. First we note that

oo

Pr{T, € ds u e f(N(1—u
=) o {28 b O —u)e fAA-u), (3.64)

This can be proved as follows

ds

' (u,5) = ZukPr {T} € ds}
k=1

d Ly
:%ZZuk/ Az — Pr {Hf Gdz}
0

j=1 k=1 J:
d 't —u [ (A2)
=y — Az Pr{H(s) ed
ds ; u—1 /0 ‘ J! { )€ Z}
d > U —Az(1—u
:£ ; m(ek(l )— )PI‘{H‘f EdZ}
- % FOL = w))esf0-w) (3.65)

Theorem 3.3.2. The probability density

dt) = Pr{T,f c dt} /dt (3.66)
solves the equation
FO— Bl () = — ol (1) (3.67)
Proof. Since
k=1 oo §m
Faa -l = 1l - X [P a0 eos)

we can write, since gy = 0,

Yt FML = B)al (1)
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m!
NI Sy ( /0 s ()\;)'mz/(ds)) A )
= f(NG (u, t) — G' (u, 1) /000 e (e — 1) v(ds)
=f(A\1 =) G (u,t) (3.69)
From (3.65) we get
fOQ—u)G' (u,t) = —%gf(u,t), (3.70)
which completes the proof. O]

3.4 Some particular cases

In this section we specialize the function f in order to analyse some particular cases
of N/(t), t > 0.

3.4.1 The space-fractional Poisson process

It

a/sfocfl

T

ds, ae(0,1), (3.71)

we obtain the space-fractional Poisson process N%(t), t > 0, studied in Orsingher
and Polito (2012). The distributions of jumps (3.1) and (3.2) specialize to

COMI g — 1) (a— b+ 1)dE+o(dt), k>0
Pr {N®[t,t +dt) =k} = mala—1)-(a Jdt + o(dt),
1 — A%t + o(dt), k=0,

(3.72)

since f(A\) = A®. The distribution of N can be written in three different ways as

o) = Pr{Ne(t) =k} = =Y 3 (—x*)" D(ar+1)

kb=l T(ar+1-k)
GRS Gl
=7 Tz:; ] (ar)(ar —1)---(ar —k+1)
_ (=DM e
= %l we . (373)

and we note that the probabilities (3.72) can be obtained directly from (3.73).
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Remark 3.4.1. In light of (3.73) the distribution of the space-fractional Poisson

process has the following alternative form
e M k k-1 2
PE(t) = — lonst® + cemr st oo oppt? + o] (3.74)

where the coefficients cj, 7 = 1,...k, can be computed by means of successive

deriwatives. In particular, we have that

k(k—1
Chk = (a)\at)k, Ch-1k = a1 (1—-a) %()\at)kl
k—2 k—1
. k(k—1 N ,
Co = ()\at)2 a? H (j —a) %, 1 = atA H(] —a).
Jj=1 j=1
(3.75)
For a =1 all the coefficients ¢, j =1,...,k — 1, are equal to zero and we recover

from (3.74) the distribution of the homogeneous Poisson process. The coefficients
(3.75) are sufficient to obtain p$(t), 1 < j <4 as

'pg‘(t) = o [()\aat)z + a(l — a)A*t]
ps(t) = St [(Aat)? + 3 (A%at)? (1 —a) + (A%at) (1 —a) (2 — a)] (3.76)
p5t) = S (@A) + 6 (Aat)’ (1—a) + 6 (ar )’ (1—a)(2—a)
\ +)\°‘at(1 —a)(2—-a)(3—a)
Remark 3.4.2. From (3.73) we obtain that, for k > 1,
(_1)k+1
Pr{N®[t,t+dt) =k} = y Na(a—1)---(a—k+1)dt
(=) (a+1)
= \%dt . 3.77
KT (a+1— k) (8:77)
Since
( 1)k+1
Pr{N%[t,t +dt) =k} = *dtT( 1)
; r +dt) =k} o+ Zk'l“a+1—k)
~ A¥dtT(a+1)sinma L'k — )
B ™ ; k!
At 1) si o = whke
_ (v + 1) sinma e_wzw
0
*dtT’ 1) si >
_ A%t (a+ )sm7ra/ e (e — 1) woduw
T 0
A%dt si r HI(1 —
_Atdtsinral{a+ DL =) _ o, (3.78)
am
we get

Pr{N°[t,t +dt) =0} = 1 — A\t (3.79)
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Remark 3.4.3. In light of the independence of increments for the space-fractional
Poisson process we have that
Pr{N%(s) =r}Pr{N*(t—s)=k—r}
Pr{N«(t) = k}
(k) dd_rTe—s)\“uo‘ ddkki—Tr e—(t—s))\"‘uo‘
r Czt_’“ke—mtua -
<k‘) >y st S n ] Cnpp(t— 8)"

St

where we used (3.74). For a =1 we get that ¢, Ck—rj—r, Cik, # 0 and ¢j, = Cpp—r =

Pr{N%(s) = r|N“(t) = k} =

. (3.80)

r

ar =0, forj <r,n<k—r 1<k and thus we recover from (3.80) the binomial

distribution.

In the time interval [0,¢] the instants of occurences of the upward jumps are
denoted by le»j, 1 <j<r, l; >1, where r is the number of jumps in [0,¢] and ; is
the height of the j-jumps. We can write the following distribution

T KT (4 1) (=) [T s
Pr{ﬂ{T;J Edtj}‘]\/o‘(t) :k} - . =1 et 17)
j=1 D n—1 Cnl"
(3.81)
for 0 < t; < --- < t, < t, where we used the independence of the increments and

3.72). If N(t) =k, and [; = 1, Vj, we have that
( j

k ark
Pr {ﬂ {7} €dt;} ‘N“(t) = k} = k'k(a—M (3.82)

ot
j=1 Zj:l Cjkt

on the simplex
Sp=Ati,i=1,... k:0<t; <ty <--+ <ty <t}. (3.83)

Clearly, for a = 1, we retrive from (3.82) the uniform distribution on the set S;.
Since the coefficients ¢;; can be calculated in some specific cases, the distribution
can be written down explicitely for small values of k. For example, for k = 2 we
have that

2 2
AT dtydt
Pr ﬂ{T]‘ledtj}’Na(t)ZQ = (O; ) dhdt, . 0<t<ty<t,
i1 (aAt)” + a(l — a) et
(3.84)
fa(l — a)\vdt
Pr{r} € dt;|N*(t) =2} = ( 2 0<t <t

aret)’ + a(l — a)\et’
(3.85)
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3.4.2 Poisson process with relativistic (tempered) stable sub-

ordinator

In the case the Lévy measure has the form

as—a—le—Gs

v(ds) = Ti—a)

ds, 0>00<a<l, (3.86)

we obtain an extension of the space-fractional Poisson process. This new Poisson
process has the form N*?(t) = N (H*(t)) where H*? is the relativistic or tempered
stable subordinator. Such process is calles relativistic since it appeared in the study
of the stability of the relativistic matter (see Lieb (1990)). From (3.38) we obtain
the p.g.f. as

G (u,t) = EuN™"®)

e’} —a—1_,—0s
e L [T sy s e
exp{ /O (1= ey 2

_ o HI+A )"0}

_ s O+ M =)

e k!
_ ot i (=t (0 + X)) | o
& k! 0+ A
_ o i (—t(0 + )" i T'(ak +1) "
pard k! — I'(ak+1— m)m! 04+ A
= D™ Am?t SN [—HO0+ M) T (ak+1
=S (= ') _ + (ak +1) (3.87)
— m! (6 +N) — F(ak+1—m)
From (3.87) we extract the distribution of N as follows
(=)™ Amet SN (—t (A + 0)*)" T(ak+1)
Pr {N*Y(t) = — > 0.
PN =mp = 9+)\me0 F(ak—l—l—m)’ =
(3.88)

For §# = 0, formula (3.88) yields the distribution of the space-fractional Poisson
process (see formula (1.2) of Orsingher and Polito (2012)). An alternative form of
(3.88) is

«a (_1)m A " ap d™ —tu® @
Pr{N“(t) =m} = il G e’ tdu—me tu®(0+) (3.89)
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and can be derived either from (3.88) or from (3.43). From (3.89) (and also from
(3.1)) we have that, for m > 1,

Pr{N*?it,t +dt) =m} = U™ () A+0)"ala—1)--(a—m+1)dt

m!
(3.90)

and this represents the distribution of the jumps during [t,¢ 4 dt). Formula (3.90)
shows that high jumps have less probability to occur than in the space-fractional

Poisson process. Since
o0
o0

3

Pr {N*’[t,t +dt) = m}
(

_n}u)m (Aie) (A+6)%ala—=1)--- (@ —m+1)dt

= (—1)m+1< A )mrr(a+1)

m! A+6 (+1—m)

m=1

dt (6 + \)

m=1

o Do+ 1) sinTa A\ 1
—dt (6 + \) - Z<A+8> —(m —a)
m=1 ’

JD(a+Dsinra [ | o=/ wA \" 1
=dt (0 + A o v — ) —d
6+ 7 /0 wee mZI<A+9) v

Do+ 1)si % .
a0+ ne Tt )Smm/ woL [e_keTG—e_w] dw
0

it (6 4 Aoy T {m — a)l(a) — <AL+9> r(1— a)F(a)]
—dt[(0+ \)* — 0] (3.91)
we get
Pr{N**[t,t +dt) =0} = 1 —dt[(0+\)* — 6% (3.92)

Remark 3.4.4. We notice that

EN*?(t) = \* ',
Var [N*()] = M0* 2 (A1 —a) +0),
Cov [N*?(t)N*(s)] = As0* > (A(1— ) +0) (sAt). (3.93)

From (3.93) it is apparent that in the space-fractional Poisson process (8 = 0) the

mean values diverge.



3.4 Some particular cases 90

3.4.3 Poisson process with Gamma subordinator

For the Lévy measure

—S

¢ ds, s> 0, (3.94)
s

v(ds) =

the distribution of the related Poisson process has a particularly simple and interest-
ing form. We note that the Bernstein function corresponding to the Lévy measure
v(ds) = “ds is

s

flz) = / (1—e) € ds = log(1 + z). (3.95)
0 s
Therefore the probability generating function (3.38) reduces to the form
G (u,t) = e tlos0RAM=0) — (1 4 A1 —w))™", (3.96)

and thus the intertime 7" between successive clusters of events has law

1
(1+ M)t

Pe{T >t} — (3.97)

Formula (3.96) is clearly the p.g.f. of NT(¢) N (H"(t)) where H" is the Gamma
subordinator with Laplace transform
Ee (0 — (14 )" (3.98)

The distribution of N (¢), ¢ > 0, can be extracted from (3.96) as the next Theorem

shows.

Theorem 3.4.5. The process N'(t), t > 0, has the following distribution

Net(t41)-(t+k—1) 1 L

Pr {Nr<t> — k} — X k! (F1)FF >
(14Nt k= 0,
T (k + 1)

IOk (A + )T (3.99)

Proof. From (3.96) we have that

Gr(u,t) = (1+X1—wu)"
= (1— 1YA) (1+1)"

—t G F(_t_'_l) Au '
= (1+2) ’;k!r(—wl—k‘) (_HA)
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RN A N\ +k),
=N u (_1+A) EDR

k=0
—~ | M@+ k 1
jg:zﬁﬁl '+ ) t+k]. (3.100)
prd (1+X)
A second, alternative derivation of (3.99) proceeds as follows
Pr{N"(t) =k} = la—kGF(u t)
k! Ouk B T
—1)k )Nk N — — 1
R N C T T Py
k! we0
Net(t+1)---(t+k—1) 1
= . 101
i TSI (3.101)
The probability of zero events is therefore
1
Pr{NY(t)=0} = G*(0,t) = 3.102
V() =0} = G700 = (3102
O
Remark 3.4.6. The distribution (3.101) of N¥(t) can also be written as
r N Tk+t)1
Pr{N"(t) =k} = = EPr{N(T) =k} (3.103)

L+ T &

where T is gamma distributed with parameters (1,t) (that is the distribution of H)
and N 1s a homogeneous Poisson process with parameter A, independent from T .

Furthermore (3.99) can be regarded as an extension of the negative binomial B where

(i + k)
T()C(k + 1)

fori=t,p=1/(1+X), =N/ (1+ ) (see also Kozubowski and Podgdrski (2009)).

Pr{B =k} = p'q" (3.104)

Corollary 3.4.7. The distribution of jumps in this case has the form

k1
2dt, k> 1,
Pr{N"[t,t +dt) =k} = ) - (3.105)
1—log(1+\)dt, k=0,

as can be inferred from (3.1) and also from (3.99). The jumps possess logarithmic

distribution.

Remark 3.4.8. We observe that, for s <t, r <k,

. C ok T'(t) I(s+r(t—s+k—r)
m{N’@)ﬂN(ﬂkﬁC)p@_SW@) I'(k+1)
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E\B(s+rt—s+k—r)
p— . .].
() s (3100
Furthermore from (3.106) we can write, for 0 <r <k,
k fl xs+r—1(1 _ x)tferkfrfld‘,E
Pr{N"(s) =r|N"(t) =k} = 0
r{ =TIV () } (T) B(s,t—s)
k _
= KT)XTQ - X) } (3.107)
where X is a r.v. with Beta distribution with parameter s and t — s, that is
s—1 1 — t—s—1
Pri{Xeds) = LU= (3.108)

B(s,t —s)

Formula (3.107) shows that in the Gamma Poisson process the conditional number

of events at time s < t is a randomized Bernoulli if N(t) = k.

Remark 3.4.9. In view of (3.99), (3.105), and the independence of the increments

of the Gamma Poisson process we have that

Pr {ﬂ {Tjﬂ' c dtj} ’Nf(t) - k,} - F]‘Eﬂ?ﬂ) | % (3.109)

J=1

on the simplex 0 < t; <ty < --- < t, <t and Z;Zl l; = k. Some special cases of
(3.109) are

i)l =1,Vj=1,...,r, and thus r = k. In this case we have that

k KID(1) k
({7 edt}’NF )=k F(t+kH i 0<t; < <ty <t

7j=1
(3.110)
ii) Iy = k and thus r =1 (unique jump of length k). Here we get
dt, EII(t
Pr{rf € dt,|N"(t) =k} = klm—i])ﬂ) 0<t <t (3.111)

iii) k=2m, l; = 2, Vj, and therefore r = m. We have that

{ﬂ{r edt}’NP ) = 2m }— 2m11"t+2m H (3.112)

7=1

forO<t;<---<t, <t.
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Remark 3.4.10. From (3.96) we obtain the n-th factorial moment of N'(t), t > 0,

E[N'(t) (N"(t) = 1) -+« (N"(t) —=r+ 1)] =Xt{t+1)---(t+r—1). (3.113)
While ENY(t) = At, the variance becomes VarNT (t) = Mt(A + 1) and
Cov [NT(t),N"(s)] = AA+1)(sAt). (3.114)

Furthermore we have that

E Uot Nr(s)ds] = \t?/2

ar {/t NF(s)ds] = AA+1D)#*/3 (3.115)
0
Remark 3.4.11. We can write also the following conditional mean values

E [N"(s)|NT(t) = k] = k:, 0<s<t, (3.116)
E [N"(s)N" (w)|N(t) = k]

ks (s(s+1) s(w — s)

_T+k(k )t(t—i—l) + k(k — )m, for0 <s<w<t (3.117)
Cov [NF(S) (w)|NY(t) = k‘]

k k
= Y (1 + ;) min(s,t) min(t — s,t — w). (3.118)

As a special case we extract from (3.118) the conditional variance as

Var [N"(s)|N"(t) = k| = % (1 + ?) , 0<s<t, (3.119)

and from (3.117)

E [(Nf(s)f INT(t) = k;] — %k 4 k(- 1)??11

(3.120)
As a check we observe that
VarN'(s) =E [VarN"(s)|N"(t)] + Var [E [N"(s)|N"(t)] ]

_ s(t—s) s(t —s) 2 s
= mE mE (N (t) + t—QVarN(t)

st—s
= - A
tt+1 +t2(

— As(1+ \). (3.121)

NY(t) +

2
S
AN+ 1)+ NP) + t—2A(A + 1)t
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Remark 3.4.12. We consider here the distribution of Ny (t) — Nj (t), t > 0, where
NjF, J = 1,2, are independent Gamma Poisson processes. This leads to a gener-
alization of the Skellam law of the difference of independent homogenous Poisson
processes. We have that

Pr{N{(t)— Ny (t)=r}

s MND(k+ )N (k47 +t)
< (1 NPT (OR(L+ Nk + 1) T (t)

1 © >\2k+r o] o0
_ d dz e W% k+t—1 _k+r+t—1
(1+ N2T2(t) ; (1 + N2l (k + 1) /0 w/ e

2k+r
_ d dz e Y% 2 +t 12 1+>\ VW )
- 1+)\2t1“2 waee — Rk + )

/ / —w—z t 5—1 T—i—t 1] 2>\\/
1+>\2t1“2 1+)\

= [ e - vz = e

—EPr {NY(1) - Ny (1) =}
=EPr {N{(U) = Ny(Y) =r} (3.122)

k=

where U and Y are independent Gamma r.v.’s with parameter 1 and t, and Iy(x) is a
Bessel function. For the reader’s convenience we recall that the Skellam distribution

reads

Pr {Nf(t) ~NJ(t) = r} = e~(B+M <%);I|T| (sz> . reZ,  (3.123)

for independent Poisson processes Ny, Nzﬁ, with rate \, 5.



Chapter 4

Convolution-type derivatives and

time-changed Cp-semigroups

Article: Toaldo (2013). Convolution-type derivatives, hitting-times of subordinators

and time-changed Cy-semigroups.

Summary

This paper takes under consideration subordinators and their inverse processes
(hitting-times). The governing equations of such processes is presented by means
of convolution-type integro-differential operators similar to the fractional deriva-
tives. Furthermore the concept of time-changed Cy-semigroup is discussed in case
the time-change is performed by means of the hitting-time of a subordinator. Such
time-change gives rise to bounded linear operators governed by integro-differential
time-operators. Because these operators are non-local the presence of long-range

dependence is investigated.

4.1 Introduction

The study of subordinators and their hitting-times has attracted the attention of
many researchers since the Fourties. In particular a great effort has been dedicated
to the study of the relationships between Bochner subordination and Cauchy prob-
lems (Bochner (1949, 1955)). See Feller (1966), Jacob (2001), Schilling et al. (2010)
and the references therein for more information on Bochner subordination. A subor-
dinator Yo (t), t > 0, is a Lévy process with stationary and independent increments

M a(t)

and non-decreasing paths for which Ee = e ) where f is a Bernstein func-
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tion (see Bertoin (1996, 1997) for more details on subordinators). Its inverse process

is defined as

TL(t) = inf{s > 0: To(s) > t} (4.1)

and is the hitting-time of 0. When the function f is f(\) = A%, a € (0,1),
the related subordinator is called the a-stable subordinator and the inverse pro-
cess L*(t) = inf{s > 0:0%s) >t} is called the inverse stable subordinator (see
Meerschaert and Sikorskii (2012), Meerschaert and Straka (2013), Samorodnitsky
and Taqqu (1944) for more information on the stable subordinator and its inverse
process). The relationships between such processes and partial differential equa-
tions have been object of intense study in the past three decades and have gained
considerable popularity together with the study of fractional calculus (for fractional
calculus the reader can consult Kilbas et al. (2006)). As pointed out in Orsingher and
Beghin (2004, 2009), fractional PDEs are indeed related to time-changed processes
while the relationships between time-fractional Cauchy problems and the inverse of
the stable subordinator was explored for the first time by Baeumer and Meerschaert
(2001), Meerschaert et al. (2009), Saichev and Zaslavsky (1997), Zaslavsky (1994).
Equations of fractional order appear in a lot of physical phenomena (Meerschaert
and Sikorskii (2012)) and in particular for modeling anomalous diffusions (see for
example Benson et al. (2001), D’Ovidio (2012)).

In the present paper we deal with the inverse processes Y L(t), t > 0, of subor-
dinators /o (t), t > 0, with Laplace exponent the Bernstein function f having the

following representation

flz) = a+br+ /Ooo (1—e™") p(ds) (4.2)

for a non-negative measure 7 on (0,00) (Bernstein (1929), Schilling et al. (2010)).
We consider the case in which the tail s — v(s) = a + (s, 00) is absolutely contin-
uous on (0, 00) and we define integro-differential operators similar to the fractional

derivatives. In particular we show how the operator

d bo
! — = il _ 4
Dult) bdtu(t) +/0 8tu(t s)v(s)ds (4.3)
allows us to write the governing equations of
Tu = / Tsuly(ds), u € ‘B, (4.4)
0

where I4(B) = Pr{/L(t) € B} are the transition probabilities of /L and T} is a Co-
semigroup on the Banach space (B, ||-||). We call the operator 7; a time-changed
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Co-semigroup. In fact the main result of the present paper shows that T;u, u € B,

is a bounded strongly continuous linear operator on B and solves the problem
ID.q(t) = Aq(t), 0<t< oo,
a(t) = Ag(t) .
q(0) = v € Dom (A).

where A is the infinitesimal generator of the Cy-semigroup Tiu, u € B.

A central role in our analysis is played by the tail v(s) of the Lévy measure
v since it emerges through all the results of the paper. It appears in the defini-
tions of convolution-type derivatives of the form (4.3) we will discuss in Section 4.2.

Furthermore we prove the following convergence in distribution

N(tv(y)) |
; } aw f
lim | bt + 2 Y, o(t),  t>0, (4.6)
]:
where Y; are i.i.d. random variables with distribution
1
Pr{Y; e dy} = o) (7(dy) + adoo) Lysrys v>0,Vj=1,...,n, (4.7)

and N(t), t > 0, is a homogeneous Poisson process. The symbol ., stands for the

Dirac point mass at infinity.

List of symbols

Here is a list of the most important notations adopted in the paper.

o With L [u(+)] (A\) = u(\) we denote the Laplace transform of the function w.
o Flu(+)] (&) = u(€) indicates the Fourier transform of the function w.
e With /o(t), t > 0, we denote the subordinator with Laplace exponent f.

e 1;(B) =Pr{/o(t) € B} indicates the convolution semigroup (transition prob-
abilities) associated with the subordinator /o (¢), + > 0. When the measure
¢ has a density we adopt the abuse of notation p(ds) = u(s)ds where p,(s)
indicates the density of y;.

e /L(t), t > 0, indicates the inverse of the subordinator Yo (t), t > 0.

e The symbol [,(B) = Pr{/L(t) € B} indicates the transition probabilities of

TL(t), t > 0. In case I; has a density we denote it, by abuse of notation, as
lt(S).

e With A we denote the infinitesimal generator of the semigroup Tiu for u € B

(B is a Banach space).
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4.2 Convolution-type derivatives

In this section we define convolution-type operators similar to the fractional deriva-
tives. The logic of our definitions starts from the observation of the fractional
derivative of order @ € (0,1) (in the Riemann-Liouville sense) to be considered the
first-order derivative of the Laplace convolution u(t) x t=*/T'(1 — «) (see Kilbas et
al. (2006))

- 1 d [t u(s)

—u(t) = =———— ds. 4.8
g ) F(l—a)dt/o (t—s)2 "’ (48)
d
dt
this idea respect to a Bernstein function (Bernstein (1929)). A Bernstein function

is a function f(z): (0,00) — R of class C*°, f(z) > 0, Va > 0 for which

Formula (4.8) can be formally viewed as (4)® for o € (0,1). Here we generalize

(-D)Ff®(z) <0, Vo >0andkeN. (4.9)

A function f is said to be a Bernstein function if, and only if, admits the represen-
tation .
f(x) = a+bx +/ (1—e™) p(ds), x>0, (4.10)
0

where a,b > 0 and v(ds) is a non-negative measure on (0, 00) satisfying the integra-

bility condition
/ (zA1) p(dz) < 0. (4.11)
0

According to the literature we refer to the measure 7 and to the triplet (a, b, ) as the
Lévy measure and the Lévy triplet of the Bernstein function f. The representation
(4.10) is called the Lévy-Khintchine representation of f.

The Bernstein functions are closely related to the so-called completely monotone
functions (see more on Bernstein function in Jacob (2001), Schilling et al. (2010)).
The function g(z) : (0,00) — R is completely monotone if has derivatives of all

order satisfying
(=Dkg®(z) >0, Vo >0andke {0} UN. (4.12)

By Bernstein Theorem (see Bernstein (1929)) the function g is completely monotone

if and only if
g(x) = / e **m(ds), x>0, (4.13)
0

when the above integral converges V& > 0 and where m(ds) is a non-negative mea-
sure on [0,00). Here and all throughout the paper the following symbology and
definitions will be the same. We call f(x), z > 0, the Bernstein function with

representation (4.10) and we consider the completely monotone function

g(x) = —=, x>0, (4.14)
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with representation
g(x) = b+ /OO e *y(s)ds, (4.15)
0
where v(s) is the tail of the Lévy measure appearing in (4.10)
v(s)ds = (a+ v (s,00)) ds. (4.16)

The representations (4.14) and (4.15) define a completely monotone function and are
valid for every Bernstein function f (see for example Schilling et al. (2010) Corollary
3.7 (iv)). We observe that v(s) is in general a right-continuous and non-increasing

function for which

/1 (a+v(s,00))ds = /1 v(s)ds < oo. (4.17)
0 0
Furthermore we note that
v(s,00) < o0, for all s > 0. (4.18)
In order to justify (4.18) we recall the inequality
(I—e)(nl)<1—e, t>0, (4.19)
which can be extended as
(1—-e)tre<(1—e?), foral0<e<1, ¢>0. (4.20)

By taking into account (4.20) we can rewrite for all 0 < ¢ < 1 the integrability
condition (4.11) as

/ (tAe)p(dt) < oo, forall 0 <e <1, (4.21)
0

since

66_

/ (E A ) (dt) < / (1—e) o(dt) =~ f(1) <00 (4.22)
0 1/ ec —1
and this implies (4.18). When the Lévy measure has finite mass, that is

v(0,00) < o0, (4.23)

and if b = 0, the corresponding Bernstein function f is bounded.
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4.2.1 Convolution-type derivatives on the positive half-axis

In this section we define a generalization, respect to a Bernstein function f, of the
classical Riemann-Liouville fractional derivative and we discuss some of its funda-
mental properties. Here is the first definition.

Definition 4.2.1. Let u(t) € AC([e,d]), 0 < ¢ <t <d < oo that is the space of ab-
solutely continuous function on [c,d|. Let f be a Bernstein function with representa-
tion (4.10) and let v be the corresponding Lévy measure with tail v(s) = a+v(s,00).
Assume that s — v(s) is absolutely continuous on (0,00). We define the generalized

Riemann-Liouville derivative according to the Bernstein function f as
d t—c
ngc’d)u(t) == {bu(t) +/ u(t — s) V(s)ds} : (4.24)
0

The representation (4.24) can be extenended for defining the derivative on the
half-axis R™ as it is done for the classical Riemann-Liouville fractional derivative
(see Kilbas et al. (2006) page 79). Hence we write

TPy (1) = % [bu(t) - /Otu(t — s)u(s)ds] : (4.25)

Lemma 4.2.2. Let th(c’Oo)u(t), t > ¢ >0, be as in Definition 4.2.1 and let |u(t)| <
Me*t for some N\, M > 0. We have the following result

c [fpt(wo)u(t)} ) = FO) AN —beule),  RA> Ao (4.26)
Proof. The Laplace transform can be evaluated explicitely as follows

L [fD§C’+°°)u(t)] (\) =bAT(N) — beu(c) + £ [% /0 t_cu@— 5) V(s)ds] \)

— DAT(A) — beu(c) + AL [ /0 = s) V(s)ds} )

=DbAU(N) — be *u(c) + A /000 /00 e Mu(t — s) v(s)dt ds
s+
=Ag(N)a(X) — be u(c)
= f(N) a(N) — be ulc). (4.27)
In the last steps we used (4.14) and (4.15). O
In view of the previous Lemma we note that our definition is consistent and gener-

alize the Riemann-Liouville fractional derivatives of order a € (0, 1) in a reasonable

way.
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Remark 4.2.3. Let the function f of Definition /.2.1 be f(x) = % x>0, o €
(0,1), for which (4.10) becomes

> st
x* = 1—e) ———ds, 4.28
| =i (429
that is to say a =0 and b =0 and
OéS_a_l
v(ds) = ———d 4.29
I/( 8) F(]. _ O{) S ( )
and therefore
* qzot s™%ds
=d —dz = ——. 4.
v(s)ds s/s T a)dz Ti—a) (4.30)
By performing these substitutions in Definition J.2.1 it is easy to show that
0 Rda
IOy () = ——u(t) (4.31)
dt
where
R 1 d [t wu(s)
—u(t) = =——— d 4.32
dtau<> F(l—a)dt/o(t—s)as (4:32)

s the Riemann-Liouville fractional derivative.

By following the logic inspiring the fractional Dzerbayshan-Caputo derivative
(see Kilbas et al. (2006)) defined, for an absolutely continuous function w(t), t > 0,

as

“de B 1 boul(s)
%u(t) =T —04)/0 (t_s)ads, (4.33)

we can give the following alternative definition of generalized derivative respect to

a Bernstein function.

Definition 4.2.4. Let f and v be as in Definition 4.2.1. Let u(t) € AC ([c,d]),
0 <c<t<d< oo Wedefine the generalized Dzerbayshan-Caputo derivative

according to the Bernstein function [ as

IDEDy(t) = b u / —u (t — s)v(s)ds. (4.34)

As already done for the classical Dzerbayshan-Caputo derivative we can extend
(4.34) on the half-axis Rt (see for example Kilbas et al. (2006) page 97) as

IOy (1) = b%u(t) +/ %u(t—s) v(s)ds. (4.35)

Throughout the paper we will write for the sake of simplicity /®; instead of / ©§0’°°).
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Lemma 4.2.5. Let /D, be as in (4.35) and let |u(t)] < Me*?, for some Ng, M > 0.
We obtain

- A
L [fCDtu(t)} (A) = f(N)u(N) — Mu(O), R > Ao. (4.36)
Proof. By evaluating explicitely the Laplace transform we obtain

L[Du(t)] (A) =bAu(A) — bu(0 / /—ut—s s)ds dt

= bAT(N) — bu(0 // —ut—s)()dtds

— BTN — bu(0) + /0 e (s)ds (AT(A) — u(0)

=Ag(N)u(A) = g(A\)u(0)

~ A
= sy — 1) (437)
where we used the relationships (4.14) and (4.15). O

Remark 4.2.6. By performing the same substitutions of Remark /.2.3 it is easy to
show that

Du(t) = — (4.38)

4* s the Dzerbayshan-Caputo derivative defined in (4.33).

where dta

It is well known that the Riemann-Liouville fractional derivative of a function
u € AC([c, d)] exist almost everywhere in [c, d] and can be written as (see Kilbas et
al. (2006) page 73)

Rda Cda (t _ C)—a

) = u(c). (4.39)

Here is a more general result.

Proposition 4.2.7. Let DY and fD“Y be respectively as in Definitions /.2.1
and 4.2.4. We have that th(C’d)u(t) exists almost everywhere in [c,d] and can be

written as
IDDyt) = T2 Du(t) + v(t — culc). (4.40)
Proof. Let V(s) = [v(s)ds and

w(s) = /05 v(z)dz, 0<s<o0, (4.41)
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such that

/V(t —s)ds = —w(t —s)—V(0). (4.42)

Since u € AC([c, d]) we have for ¢ < s < d

u(s) = /S u'(2)dz + ulc) (4.43)

and therefore we can rewrite /D" u(t) as
IDu(t)
_p 2 (t)+i/t [+ ul)) vie - s)a
=b-u i ). Cuzz u(c s)ds
d [* d [*
= —d' ()V(0) + v(t —c)u(t) + E/ u'(s)w(t — s) d8+£/ u'(s)V(0)ds

=v(t — c)u(c) + / u'(s)v(t — s)ds
=v(t — c)u(c) + /0 b u'(t — s)v(s) ds. (4.44)

In the second step we performed an integration by parts. O

4.2.2 Convolution-type derivatives on the whole real axis

In this section we develop a generalized space-derivative respect to a Bernstein
function f with domain on the whole real axis R, by following the logic inspiring
the Weyl derivatives.

Definition 4.2.8. Let f and v(s) be as in Definition 4.2.1. We define the general-

1zed Weyl derivative, according to the Bernstein function f, on the whole real azis

Tptu(r) = [bd%u(x) + /OOO a%u(a: — s)u(s)ds] : (4.45)
" Tp-u(z) == — {b%u(w) + /000 %u(m + s)y(s)ds} : (4.46)

Some remarks on the domain of definition of (4.45) and (4.46) are stated in

Section 4.5.1.

Lemma 4.2.9. Let /DF be as in Definition /.2.8. We have that

F U pfu@)] () = f(—i&)u(g) (4.47)
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and
F U 0ru(@)] (€) = FG©)ae) (4.48)
Proof. By evaluating the first Fourier transform explicitely, we obtain
F [0 u@)) (©) = ~viga(e) ~ €7 | [~ ute - sl ©
= — bictu(€) — i /0 ) /R e TiEsy (2) cijl/(s)ds
= — bictu(€) — i /O ds e’ <a + / ﬂ(dz)) u(€) (4.49)
and by integrating by parts we get that
FUDiu(] () =a(e) - biga(©) + [ (1- ) plds) (e
— (i) (E), (450)
By repeating the same calculation one can easily prove (4.48). 0

Remark 4.2.10. Definitions (4.45) and (4.46) are consistent with the Weyl defi-
nition of fractional derivatives on the whole real axis which are, for a € (0,1) and
x € R, (see Kilbas et al. (2006))

+ Jo 1 x
dzau(m) = m%/m (xu_(sz)ads, right derivative, (4.51)
and
—d” 1 d [ u(s) .
= - — . 4.52
dxau(x) Ti—a) d:c/m = x)ads, left derivative (4.52)
We have
:I:da
FpFu(r) = d—u(x), z e R. (4.53)
'Ia

We resort to the fact that (see Kilbas et al. (2006) page 90)

:I:@a
F |t (© = @i (4.54)
and thus by combining (4.54) with Lemma /.2.9 the proof of (4.53) is complete. The
reader can also check the result by performing the substitution b =0 and

v(s)ds = F(ls—_aa)ds (4.55)

in (4.45) and (4.46) which yields (4.51) and (4.52) with a change of variable.
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4.3 Subordinators, hitting-times and continuous

time random walks

A subordinator Yo (t), t > 0, is a stochastic process in continuous time with inde-
pendent and homogeneous increments and non-decreasing paths (see more on sub-
ordinators in Bertoin (1996, 1997)). The transition probabilities of subordinators
m(B) = Pr{fo(t) € B}, B C [0,00) Borel, t > 0, are convolution semigroups of
sub-probability measure with the following property concerning the Laplace trans-

form

L] (N) = eIW (4.56)

where f is a Bernstein function having representation (4.10). A family p,, t > 0, of
sub-probability measures on R"” is called a convolution semigroup on R" if it satisfies

the conditions

o 1y (R") <1,Vt>0;
® [l [l = flrs, VS, T >0, and pg = do;

® [i; — 0g, vaguely as t — 0,

where we denoted by dp the Dirac point mass at zero. The fact that the tail func-
tion s — v(s) of the Lévy measure v is absolutely continuous on (0,00) and that
v(0,00) = oo is a sufficient condition for saying the transition probabilities of the
corresponding subordinator are absolutely continuous (see Sato (1999), Theorem
27.7). We recall that a measure p on B (Rd) is said to be absolutely continuous
if given B € B (R?) satisfying Leb (B) = 0 then p(B) = 0 (8 indicates the Borel
o-algebra).

It has been shown that any subordinator has a Laplace exponent as in (4.56) and
that any Bernstein function with representation (4.10) is the Laplace exponent of a
subordinator (see for example Bertoin (1997)). A subordinator is a step process if
its associated Bernstein function f is bounded. Looking at the representation (4.10)
we see that a Bernstein function is bounded if 7(0,00) < oo and b = 0. If these
conditions are not fulfilled (and thus b > 0 and (0, 00) = 00) the subordinator is a

strictly increasing process.
The inverse process of a subordinator is defined as
TL(t) = inf{s>0:Jo(s) >t},  st>0, (4.57)

and thus /L is the hitting-time of /o since /o has non-decreasing paths (see Bertoin

(1996, 1997)). With this in hand we note that /L is again a non-decreasing process
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but in general it has non-stationary and non-independent increments. In what

follows we develop some properties of the transition probabilities of /L(t), t > 0,

denoted by I,(B) = Pr{/L(t) € B}.

Lemma 4.3.1. Let 7o(t), t > 0, and ' L(t), t > 0, be respectively a subordinator and
its inverse. Let f be the Laplace exponent of fo represented as in (4.10) for a,b > 0.
Let v(s) be the tail of the Lévy measure v and l;(B) the transition probabilities of
FL. We have that

£ [1(s,00)] (A) = ie—sfw. (4.58)
Proof. We resort to the fact that /o has non-decreasing paths and thus, in view of

the construction (4.57) of /L we have
Pr{/L(t) > s} = Pr{lo(s) < t}. (4.59)

In view of (4.59) we observe that

/ e_’\tlt(s,oo]dt:/ e M 1u[0, t)dt (4.60)
0 0

and thus .
o0 oo 1
/ e M[s, 00)dt = / e_)‘t/ ps(dz)dt = ~e= I, (4.61)
0 0 0 A
[

Proposition 4.3.2. Let /o(t), t > 0, be the subordinator with Laplace exponent
f represented by (4.10) for a > 0, b > 0. Let v be the tail of the Lévy measure
v. Let assume that v(0,00) = oo and that s — v(s) = a + v(s,00) is absolutely
continuous on (0,00). Let TL(t), t > 0, be the inverse of fo, in the sense of (4.57),
with transition probabilities I,(B) = Pr{ I L(t) € B}. We have the following results.

1. The transition probabilities I, have a density such that l;(ds) = l;(s)ds and
l1(s) = bus(t)+ (v(t) * us(t)) where with abuse of notation we denoted with l;(s)
and ps(t) respectively the density of l;(ds) and ps(dt) and the symbol * stands

for the Laplace convolution fot ws(t — 2)v(z)dz.  Furthermore L[l.(s)] (\) =
f(A)e—sf(A)
5 .

2. hmh_m lt+h = lt Vit 2 0 and limt_>0 lt[(), OO) = (50[0, OO)
3. 1,(0) = v(t), ¥t > 0.

4. 14]0,00) =1, Va,b > 0.
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Proof. 1. Since we assume 7(0,00) = oo and s — v(s) absolutely continuous
on (0,00), we have that from Theorem 27.7 in Sato (1999) the transition
probabilities ju,(dzx) are absolutely continuous and therefore have a density

pe(x). Thus we write

£ bpa(?) + (pa(2) 5 ()] (A) =be* / e / pa(t — 2w (2)dz dt
= be N ¢ h dz /OO dt e pg(t — 2)v(2)
)

where we used (4.15). From (4.62) we get

(4.62)

[ e+ =l Qo = [~ I ity = oo
(4.63)

Since (4.63) coincides with (4.61) we can write

| bra(0) + Gnalt) () du = 5,00) (4.64)
which completes the proof.

2. We have

h—0 J

00 t+h
}llirré lipn]s,00) = lim (bus(t +h) + / ps(t +h— z)y(z)dz) ds
- 0
=1y[s, 00) (4.65)

since pus(t) is a density. Furthermore

l}f{l)l 1:]0,00) = ltiJ%l 000 (b,us(t) —i—/o ps(t — z)u(z)dz) ds = 6p[0,00). (4.66)

3. This is obvious since for t > 0, 1;(0) = buo(t) + v(t) * po(t) = v(t).
4. The proof of this can be carried out by observing that

/ e M1,[0, 00) dt :/ e My[s, 00) dt
0 0

1
— —e—sfV)
)\e

s=0

s=0

Subordinators are related to Continuous Time Random Walks (CTRWs). The

CTRWs (introduced in Montroll and Weiss (1965)) are processes in continuous time
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in which the number of jumps performed in a certain amount of time ¢ is a ran-
dom variable, as well as the jump’s length. For example, the stable subordinator
can be viewed (in distribution) as the limit of a CTRW performing a Poissonian
number of power-law jumps (see for example Meerschaert and Sikorskii (2012)). In
Meerschaert and Scheffer (2004), among other things, the authors pointed out that
the limit process of a CTRW with infinite-mean waiting times converge to a Lévy
motion time-changed by means of the hitting-time L*(t), ¢t > 0, of the stable sub-
ordinator o®(t), t > 0. Since subordinators are also Lévy processes they can be
decomposed according to the Lévy-Ito6 decomposition (It6 (1942)). By following the
logic of the Lévy-Ito decomposition we derive a CTRW converging (in distribution)
to a subordinator with laplace exponent f and having a hitting-time converging to
its inverse. Our CTRW is therefore the sum of a pure drift and a compound Pois-
son. The distribution of the jumps’ length need some attention. In particular we
define i.i.d. random variables Y; representing the random length of the jump, with

distribution

Pr{Y; € dy} — ﬁ ((dy) +a6) Loy 4> 0, =1, o, (4.68)
where 0, indicates the Dirac point mass at co and ¢ > 0. In (4.68) v and v
are respectively the Lévy measure and its tail as defined in equations from (4.10)
to (4.16) and upon which the definitions of convolution-type derivatives of previous
section are based. The parameter a > 0 is that in (4.10) and it is known in literature
as the killing rate of the subordinator. The distribution (4.68) can be taken as
follows. The probability of a jump of length y > v > 0 is given by the normalized
Lévy measure when ¢ = 0. When a > 0 the probability of a jump of infinite
length increases since 7(y) == 0 and thus Pr{Y e dy} /dy == a/v(y). When
constructing a CTRW with Poisson waiting times and jump length’s distribution
(4.68) by choosing a > 0 we obtain a limit process (for v — 0) assuming value
+oo from a certain time ¢ < co. Usually ( is called the lifetime of the process (see
Bertoin (1997)). The case a > 0 in (4.68) therefore gives rise to the so-called killed
subordinators. A killed subordinator /5, is defined as

Tay, t <,
5 =47 ¢ (4.69)
+00, t >,
where
(=inf{t>0:70(t)=00}. (4.70)

Obviously a = 0 implies ¢ = oo. For simplicity we will use the notation o, both for

killed and non-killed subordinators when no confusion arises. We are ready to prove
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the following convergences in distribution inspired by the Lévy-Ito decomposition

and usefull in order to understand the role of the Lévy measure v and its tail v(s).

Proposition 4.3.3. Let N(t), t > 0, be a homogeneous Poisson process with param-
eter § = 1 independent from the i.i.d. random variables Y; with distribution (4.68).
Let f be the Bernstein function with representation (4.10) Laplace exponent of the
subordinator Yo (t), t > 0, and let TL(t), t > 0 be the inverse of Yo as in (4.57). Let

v(s) be the tail of the Lévy measure v. The following convergences in distribution

are true.
1.
N(tv(v)) l
; | e
lim | bt + Y| = o), (4.71)
=0
2.
N(sv(v)) l
N . : . f
lim inf § 5> 0 : bs + ZO Y; >t L(1). (4.72)
J:

Proof. In order to prove (1) we consider the following Laplace transform
N(tv(v))

Eexpq —Abt—A > Y

=0
_ MR [E (e—AY)N(tV(”/))]

= exp {_ )\bte_t’/(’Y)(l—Ee_’\Y)}
- {_t (bA +v(7) /:O (1—e™)Pr{Y e dy}) } : (4.73)

where Pr{Y € dy} is the one in (4.68). In the previous steps we used the indepen-
dence of the random variables Y; and the fact that

Ee— M) — ~tv(m)(1—e) (4.74)

By performing the limit for v — 0 in (4.73) we obtain

N(tv(7))
lim B exp § —Abt — A >y

J=0

— exp {—t (a A+ /OOO (1—e) 17(dy)) }

— et/ (4.75)
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and this proves (1).
Now we prove (2). Let Z(t) = inf {s > 0:bs+ Z;V:(SV(V)) Y; > t}. By definition

we have that

N(sv(x))
Pr{Z(t)>s} =Pribs+ » Y;<t (4.76)

=0
and thus

N(sv(7))
LIPr{Z()>s}(\) =L [Prabs+ Y Yi<-o| (). (4.77)

By taking profit of calculation (4.73) we obtain

L[Pr{Z()>s}(\) = %exp {—3 (a +bX + /OOO (1—ev) D(dy)> } (4.78)

and by performing the limit for v — 0 we arrive at

1

lim £ [Pr{Z(-) > s}](\) = ~e %/, (4.79)
7—0 A
Since (4.79) coincides with (4.61) the proof is complete. O

Remark 4.3.4. For f(x) = 2%, o € (0,1) result (4.71) becomes

N (t F(t;:);) )
: law
%12% jEZO Y, = o), (4.80)

where c®(t), t > 0, is the stable subordinator of order o € (0,1) and the i.i.d.

random variables Y; have power-law distribution
Pr{Y edy} /dy = ay*y * '~ v >0, (4.81)

which can be obtained from (4.68) by performing the substitutions

—a—1 —a
_ oy g
= < d d = — 4.82
due to the fact that f(zr) = x* = (4.28) (@ = 0, b = 0). The result (4.80) is
well-known (see for example Meerschaert and Sikorskii (2012)) and represents the
convergence in distribution of a CTRW with power-law distributed jumps to the stable

subordinator.
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4.4 Densities and related governing equations

In this section we present in a unifying framework the governing equations of the
densities of subordinators and their inverses, by making use of the operators defined

in Section 4.2.

Theorem 4.4.1. Let 7o(t), t > 0, and TL(t), t > 0, be respectively a subordina-
tor and its inverse. Let U be the Lévy measure such that v(0,00) = oo and let
v(s) = a+ v(s,00). Assume s — v(s) is absolutely continuous on (0,00). Let
(=inf{t>0:To(t) = c0}.

1. The probability density ju;(x) of the subordinator Yo is the solution to the prob-

lem
(%,ut(x) = —fDQS;bt’Jroo)ut(x), xr>bt,0<t<(,b>0,
< we(bt) = 0, t <, (4.83)
po(x) = 6(z),
L ic(2) = bz — ).

2. The probability density li(x) of TL(t), t > 0, is the solution to the equation

0 < < L < ) ] b > 0’
ngOm)lt(x) - _aglt(x)v t>0, and L !
x O<z< C, Zfb = 07
(4.84)
subject to
i (t/b) =0,
1(0) = v(), (4.85)

The operator IPPT) s the one of Definition 4.2.1.

Proof. As already pointed out the conditions assumed on 7 and v(s) ensure that

w(B) and [;(B) are absolutely continuous and therefore have densities we denote

again by p(z) and l;(x).

1. First we note that p(z) =0 for x < bt, b > 0, indeed from Proposition 4.3.3

N(tv(v))
! o |
Pr{’/o(t) > bt} —ili%Pr bt + Z Y; > bt

J=0
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N(t()
= lim Pr ZO V;>0p = 1. (4.86)
J:

The Laplace transform of u;(x) is £ [u:(+)] (¢) = e (@) and therefore £ [fi.(¢)] (\) =
1/(f(A) + ¢). In view of Lemma 4.2.2 the Laplace transform of (4.83) with

respect to x is

d . ~ _
ST6) = —F(O)Fl6) + be " (bt (4.87)
and therefore by performing the Laplace transform with respect to ¢ we obtain
~ 1

where we used the facts that fig(¢) = 1 and p(bt) = 0. This completes the
proof of (1).

2. First we show that l;(z) = 0 for x > l—t) when b > 0. By considering Proposition

4.3.3 we have
Pr{fL(t) < 2} = Pr{fa (2) >t}
N(vm)
= limPrt+ ]ZO Yy >ty = 1. (4.89)

The double Laplace transform of [;(x) reads

f)/A
L(L]IL(x)](P)](N) = —F—, 4.90
(£ [L(2)] (9)] (A) o OV (4.90)
where we used Proposition 4.3.2. From this point we temporary assume that
b > 0. We consider the Laplace transform with respect to = of (4.84) and we

obtain
IDP T (¢) = —oli() + 1:(0) — e (1/b). (4.91)

Considering the Laplace transform with respect to ¢ of (4.91) and by taking

into account (4.85) we get

FONNG) ~ tly(6) = ~olafe) + T (4.92)
where we used the fact that
/0 h e My(t)dt = %A) —b (4.93)
and Lemma 4.2.2. The conditions (4.85) imply ly(¢) = 1 and thus
I\(¢) = qbff—}@) (4.94)

The proof for b = 0 can be carried out equivalently.
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4.4.1 Some remarks on the long-range correlation

The operators /®, and f Dt(c’“) are non-local and govern processes with different
memory properties. The presence of long-range correlation can be detected in several
ways (see for example Samorodnitsky (2006)). Here we will explore the rate by
which the correlation of the inverses of subordinators decays (a similar approach
can be found in Leonenko et al. (2013) applied to a fractional Pearson diffusion). In
Veillette and Taqqu (2010) the authors derive an explicit formula for the moments

of the inverse processes of subordinators. Such formula reads in our notation
E[JL(t)™ - TL(t,)™]
tmin
= / ZmJ](fl —T,...,tn — T, M1y...,Myj_1,M; — 1,mi+1,...,mn) U(dT)
0

=1

(4.95)

where ¢, = min(ty, -+ ,t,) and

Ux) =E[/L(z)] =E UOOO ]I{fa(t)gw}dx} (4.96)

is known as the renewal function and is the distribution function of the renewal
measure U(dzx). The renewal measure is the potential measure of a subordinator

and it is given by
U(B) = E / I soen di = / w(B)dt,  for BC[0,00),  (497)
0 0

the reader can consults Song and Vondracek (2009) for further information. We

recall the renewal function is subadditive that is
U+y) <U(z)+Uly), Vr,y,>0 (4.98)

and that - -

/ e MU(dx) = L / e MU (z)dr = ; (4.99)
0 f(X) 0 Af(A)

Furthermore it is well-known (see, for example, Bertoin (1997), Proposition 1.4)

that there exist positive constants ¢ and ¢ such that

cU(z) < !

< dU(x). (4.100)
By applying (4.95) we write

EL(s) L(t) = /SM (U(s—71)+U(t—7))U(dr) (4.101)
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which can be interpreted as a long-range dependency property. We can write for
w > 0,

E(/L(#t)/L(t+ ) = /M(Hs) (Ut —7) + Ut + 5 — 7)) U(dr)
> /t U(s + 2t — 20U (dr)

¢ 1
> /0 C/f(—lU(dT) (4.102)

s+2t—21 )

where we applied (4.98) and (4.100). We recall that 1/f is monotone and thus we

can write

¢ 1 t 1
lim —1)U(d7) = / lim —————U(dr) > 0 (4.103)
0

s Jo ¢f (saiar s & f (a7

since lim, o f(z) > 0. Fix w,t > 0 and use formula (4.103), we have

/ ESL() Lt +5)ds — +00,  Yuw,t> 0. (4.104)

4.5 On the governing equations of time-changed
Cy-semigroups
In this section we discuss the concept of time-changed Cy-semigroups on a Banach

space (B, ||+||y) (see more on semigroup theory in Engel and Nagel (2000), Jacob
(2001)) which we define as the Bochner integral

Tu - / Touly(ds) (4.105)
0

where T}, is a Cy-semigroup and [, are the transition probabilites of the inverse / L(t),
t > 0of fo(t), t > 0. We recall that a Cy-semigroup of operators on B is a family
of linear operators T; (bounded and linear) which maps B into itself and is strongly

continuous that is
lim ||Tyu — ull = 0, Yu € 8. (4.106)
t—0

In other words a bounded linear operator T; acting on a function u € B is said to

be a Cy-semigroup if, Vu € B,

e Tou = u (is the identity operator),

o 1\Tsu=TTu= E+SU7 VS’ t >0,
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o limy o ||Tiu — uly = 0.

The infinitesimal generator of a Cy-semigroup is the operator

Ty —
Au = lim ~% u’ (4.107)
t—0 t
for which
T —u o
Dom (A) :=queB: lmé ; exists as strong limit ¢ . (4.108)
—

The aim of this section is to write the initial value problem associated with 7; by

making use of the convolution-type time-derivatives of Definition 4.2.4.

Theorem 4.5.1. Let 7L(t), t > 0, be the inverse process of a subordinator with
Laplace exponent f and let I; be the transition probabilities of L. Let (0, 00) = oo
and s — v(s) = a+ v(s,00) be absolutely continuous on (0,00). Let Tyu, u € B,
be a (strongly continuous) Cy-semigroup on the Banach space (B, ||+||s) such that
| Tyullg < ||lull- Let (A, Dom(A)) be the generator of Tyu. The operator defined by
the Bochner integral

Tiu :/ Tsuli(ds) (4.109)
0

acting on a function u € B is such that

1. Tu is a uniformly bounded linear operator on B,
2. T is strongly continuous Yu € B,

3. Tyu solves the problem

TDiq(t) = Aq(t), 0<t<oo,

(4.110)
q(0) = u € Dom(A)

where the time-operator '®, is the one appearing in Definition 4.2.4.

Proof. Now we prove the Theorem for b > 0 which is the case requiring some
additional attention. The proof for b = 0 can be carried out equivalently and

therefore is a particular case.

1. At first we show that the operator T;u is uniformly bounded on (B, [*||y)-
From the hypothesys we have

IT) <1, t>o0, (4.111)
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In view of (4.111) we can write
(Tl = | [ et
0 B
< [ 1Tl 1) < (1.112)
0
since 4]0, 00) = 1, Vt > 0, as showed in Proposition 4.3.2.
2. The strong continuity follows from the fact that
}lgr(l)||771u—u||% = ‘ /0 Tsuly(ds) —u .
< / Tt — g In(ds) 223 0, (4.113)
0
since I, = dg as h — 0 and Tj is strongly continuous.
3. Since T; is a Cy-semigroup generated by (A, DomA) we have
d
ETtu = AT,u = T;Au, Vu € Dom (A). (4.114)
Now let
Tou —
4, =0t (4.115)
s
We note that
AT :AS/ T.uli(dz)
0
> Tz st — Tz
_ / Lz Teuy oy
0 s
oo 7’7‘S _
_ / T ( “ “) l,(dz) (4.116)
0 s

and since for u € Dom (A) the limit for s — 0 on the right-hand side exists

we have that 7; maps Dom (A) into itself.

By using Lemma 4.2.5 we note that the Laplace transform of (4.110) becomes

FN(@,A) — q(2,0) = Ag(z, \)
q(z,0) = u(x).

Now define the operator

o A
TRy 4 = / e MTdt = QRJ[()\%A
0

(4.117)

(4.118)
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where

Rioya = / e N Tat. (4.119)
0

We recall that since we assume (A, Dom (A)) generate a Cy-semigroup for
which || Tyul|g < |||, We necessarily have that A is closed and densely de-
fined. Furthermore for all A € C with RA > 0 we must have that A € p(A)

and || Ry 4l < where

%A’
Rya = / e MT, dt (4.120)
0

is the resolvent operator and p(A) is the resolvent set of A. The integral
(4.119) is justified since every Bernstein function has an extension onto the
right complex half-plane H = {\ € C: R\ > 0} which satisfies (see Schilling
et al. (2010), Proposition 3.5)

Rf(N) = a+b§]%)\+/ (1 —e ™ cosSA) p(ds) > 0. (4.121)
0

By computing we can evaluate the following Laplace transform

/ e MO, Tudt =
0

e’} _ oo t —
= {b/ e M }llirr(l) Wu dt + / e‘”/ llzir% 7;+h3uh Tisu v(s)dsdt
0 - 0 o =

M [ 1 [
= [lim b— e M udt —blim — / e MTudt
h—0 h J,

h—0  h J,
-I—/ dsv(s) / e M lim Tesh—st = ﬁsu}
0 s h—0 h
6)\]1 1 \h h
= |blim TRyu —blim — | e MTudt
h—0  h h—0 h Jy

f(\) . e/\h_lf e h—/\t
+(T—b by g M= fim e | e T dt

_ f(/\) ) e)\h_lf e)\h h Y
_[)\ ilzlgrl) . Ryu Toe Toudt

= f(\) Ryu — @u (4.122)

where in the third step we used (4.15).
With this in hand we note that / R 4 satisfies

Rf( 1 1
Iml = S Rl < S e = e 9

Furthermore we can formally write

/ G_Atﬁdt _ f()‘)/ —sf T ds = f(A)/ e—s(f()\)—A)dS
0 A 0 A 0
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)1
X 70—

where we used Proposition 4.3.2 to state that L[l.(s)] (A\) = %)‘)efsf()‘) and
l;(s) represents by abuse of notation the density of l;(ds). In (4.124) we used

(4.124)

the exponential representation 7, = e*4. Since we do not assume that A is
bounded the symbol e*4 should be intended as e'*u = strong-limy_,., et u

(Yosida approximation) where Ay := AAR,.
Now we have to prove that Vu € Dom(A) we must have / Ryu € Dom(A) and

(fON) —A) "Ryu = TRy (f(N) — A)u = @u (4.125)

Now by the definition

Ay = %(Thu —u) (4.126)

for which lim;_,g A, = A, we find

T o0
ARy == Toul,(ds) dt

/ / 5“’” Toonu = 1s0) sy

— / *Sf()TsﬂLhu Tuds
)\ 0

h
"t f(N) [ Lf(A) [
_ —sf(N) i ST (A
= ;) /h e T,udz Y /0 Tuds
f) MW —1 e f1 /" o/ A
z - sf(A)
=7 5\ i e Tudz -7 i e T,uds
b9 0f(/\) TRyu — —f()\/\)u (4.127)

This proves that / Ryu € Dom (A) and that (f(\) — A) ' Ryu = @u Furthe-

more we find

TR\ Au :/ e M Audt = / e_kt/ T Auly(ds) dt
0 0
/ / Ep —Tsuli(ds)

) 0
= e IV T,
A /0 3 uds

— @u + f(N) Ry, (4.128)

which completes the proof.
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4.5.1 Convolution-type space-derivatives and Phillips’ for-

mula

Let T, be a Cy-semigroup acting on functions u € B, where (B, ||+||y) is Banach
space. Let p; be a convolution semigroup of sub-probability measures on [0, c0)
such that L[] = e~/ where f is a Bernstein function. The operator defined by the

Bochner integral

T = / Tsu pe(ds), u € B, (4.129)
0

is called a subordinate semigroup in the sense of Bochner. A classical result due to
Phillips (1952) state that the infinitesimal generator (A, Dom (/A)) of the subor-

dinate semigroup /7" on u € B is written as
FAu = —f(=A)u = —au+ bAu + / (Tsu — u) v(ds), (4.130)
0

with Dom (A4) € Dom (/A).

In Definition 4.2.8 we developed the convolution-type space-derivatives / DF de-
fined on the whole real axis. We have shown that they becomes, for f(z) = x%,
a € (0,1), the Weyl space-fractional derivatives defined in (4.51) and (4.52). In
this section we show that — /D, can be viewed as the infinitesimal generator of the

subordinate semigroup in the sense of Bochner

Quulz) = / " () e(ds) (4.131)

0

where Tiu(z) = u(x +t), u € LP (R), is the left translation semigroup.

Remark 4.5.2. We recall that the left translation operator Tiu = u(z+t), t > 0, u €
LP (R), defines a strongly continuous Co-semigroup on LP (R) (see for example Engel
and Nagel (2000) page 66) and has infinitesimal generator A = 2 with Dom (A) =
Wir 1 <p < oo, where

WP (R) = {u € L” (R) : u absolutely continuous and v’ € LP (R)}.  (4.132)

This implies that — D have to coincide with Phillips’ representation (4.130) with
A= 2.

Proposition 4.5.3. Let 7o (t) be a subordinator with Laplace exponent f and tran-
sition probabilities . Let { =inf {t > 0: Jo(t) = +o00}. The solution to the initial

value problem

Sq(z,t) = —=Toy q(x,t),  weR0<t<,

(4.133)
q(z,0) = u(z) € W (R),
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is given by the contractive strongly continuous semigroup of operators on LP (R)

Quia) = [t mmldy).  t< (4.134)

which is the subordinate translation semigroup Tju(z) = u(z + t), in the sense of
Bochner. The operator ! Dy is that of Definition 4.2.8 and WP is defined in (4.132).

Proof. Since Q;u is a subordinate semigroup in the sense of Bochner, it defines again
a Cp-semigroup on L? (R). By applying Phillips’ result (Phillips (1952)) we know

that the infinitesimal generator of Qu is written as

—f ( 0833) u(z) = —au(x) + b%u( )+ /OOo (Thu(z) — u(x)) o(ds).  (4.135)

Since
|- (52) e

by applying the well-known inequality (see for example Jacob (2001))

0
< alu(z)[, +b ng(:&)

+ /000 HTSlu(x) - u(x)”p v(ds)
(4.136)

p

[Tru(z) — u(@)|| < (¢ Au(@)[| A2[ju(@)]]),  u e Dom(A) (4.137)

which is valid in general for a strongly continuous semigroup Tyu(z) on a Banach

space (B, ||+||) and infinitesimal generator (A, Dom (A)), we can write

0

0 0 €
_fl = < - -
H f ( 6:6) ) <a Hu(x)Hp +b Haxu(:c) ) —i—/o zv(dz) axu(x) )
+2/ v(dz) ||u(x)||p (4.138)
This shows that
Wi (R),  ifb>0,
0
Dom <—f <—%)> = S WP (R), if b =0 and 7(0, 00) = o0, (4.139)
L? (R), if b= 0 and (0, 00) < oco.

since for (0, 00) < 0o we can choose € = 0 in (4.138).

The Definition 4.2.8 of /D

— I pu(z) —b—u / —u x + s)v(s)ds (4.140)

x
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for w € Dom (£) = W' (R) can be rewritten as

— I () —b—u / 55U (z+s) (a+/oo
= —au(x )—l—ba—u( / /
dz) (T

‘(dz)) ds

0

= —auta) + byl + [ o) (Tu) —ule)  (@14)

T

which coincides with (4.135). This shows that Dom (— /Dy u(z)) = WP (R). O

4.6 Example: the tempered stable subordinator

By setting the Bernstein function considered in previous sections to be f(z) = 22,

€ (0,1), we retrive the stable subordinator o*(t), t > 0, for which Ee *""®) =
e~ and its inverse process L(t), t > 0. Therefore by performing the substitution
f(z) = z all throughout the paper we retrive the results related to fractional

calculus. In this section we take as example the Bernstein function

(0%

f(z) = (2 +9)" =9 = m/g (1— e ™) e P51 ds, (4.142)
where ¥ > 0, @ € (0,1). The Bernstein function (4.142) is the Laplace exponent of
the subordinator o (t) such that

Fe2"0%() _ o~ tO+9)*—0%) (4.143)

The process Yo®(t), t > 0, is known in literature as the relativistic stable subordi-
nator since it appears in the study of the stability of the relativistic matter (Lieb
(1990)) but it is also known as the tempered stable subordinator (see for example
Meerschaert and Sikorskii (2012) page 207, Rosinski (2007) or Zolotarev (1986),
Lemma 2.2.1). From (4.142) we know that the Lévy measure has the explicit repre-

sentation
066_195 S—a—l

v(s)ds = Ti—a)

ds, (4.144)

and has infinite mass (f(x) is not bounded). Furthermore its tail becomes
ad*T(—a, s)
= —1 4.14
o) = (M), (1.145)

where

['(—a,s) :/ ezt (4.146)
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is the incomplete Gamma function. It is well-known that the governing equations

of Yo(t), t > 0, is written by using the so-called tempered fractional derivative

R Ao
OVu(z) = eﬁxa—ia [e”" u(x)] — 9*u(x), a e (0,1), (4.147)
as
5 o (x) = =90 (), x>0,t>0, (4.148)

see Meerschaert and Sikorskii (2012) page 209 and the references therein. According

to Theorem 4.83 we must have
a J,a

gn M (x) = — ISP e (g, x>0,t>0, (4.149)
and indeed it is easy to show that if f(\) = (A +9)* — ¥«
d [* VT (—
ID0sy(z) = %/0 u(z — s) (%) ds = 9V%u(x). (4.150)

This can be done for example by observing that

L Lz% /0 Cu(z - 9) (%) ds] (A) = £ [00*u(x)] (A). (4.151)

The time operator /@, governing the density of

VL(t) = inf {s > 0: "o%(s) > t}, (4.152)
becomes in this case
! VT (—a, s)
rpOea(yy = 0 / o) () g 4.153
t t (ZE) 815 0 tfs(x) F(l . Oé) S, ( )
and therefore [[*(z), t > 0, is the solution to
o) (UCe) ds = ~2 @), t>0.2>0,
1(0) = s, t>0, (4.154)

10%(z) = 6(z).

Finally, in view of Proposition 4.3.3, we are able to write the CTRW converging
in distribution to Yo?(t), t > 0. We have

V((=5EE))
lim > Y; B 9ge(t) (4.155)

v—0
Jj=0

where Y; are i.i.d. random variables with distribution

—y,,—a—1
o Ly
19&F (—O{, ’7)

and N(t), t > 0, is a homogeneous Poisson process with parameter 6 = 1.

Pr{Y; e dy} /dy = v>0,Vi=1,...,n, (4.156)



Chapter 5

Subordinate pseudoprocesses

Article: Orsingher and Toaldo (2013). Pseudoprocesses related to space-fractional

higher-order heat-type equations.

Summary

In this paper we construct pseudo random walks (symmetric and asymmetric) which
converge in law to compositions of pseudoprocesses stopped at stable subordinators.
We find the higher-order space-fractional heat-type equations whose fundamental
solutions coincide with the law of the limiting pseudoprocesses. The fractional equa-
tions involve either Riesz operators or their Feller asymmetric counterparts. The
main result of this paper is the derivation of pseudoprocesses whose law is governed
by heat-type equations of real-valued order v > 2. The classical pseudoprocesses

are very special cases of those investigated here.

5.1 Introduction

In this paper we consider pseudoprocesses related to different types of fractional
higher-order heat-type equations. Our starting point is the set of higher-order equa-

tions of the form

m

a—um(:z,t), reRt>0meN>2 (5.1)
xm

aum(x,t) = Km
whose solutions have been investigated by many outstanding mathematicians such
as Bernstein (1919), Lévy (1923), Polya (1923) and also, more recently, by means
of the steepest descent method, by Li and Wong (1993). In (5.1) the constant k,, is
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usually chosen in the form

+1, m =2n+ 1,
Ky = (5.2)
(=)™ m = 2n.

In our investigations we assume throughout that k,, = (—1)" when m = 2n + 1.
Pseudoprocesses related to (5.1) have been constructed in the same way as for the
Wiener process by Daletsky (1969), Daletsky and Fomin (1965), Krylov (1960),
Ladohin (1962), Miyamoto (1966). More recently pseudoprocesses related to (5.1)
have been considered by Debbi (2006), Lachal (2003, 2013), Mazzucchi (2013). For

equations of the form

Qet) = L (et),  zeRt>0 (5.3)
815 o'l 9 - a|x‘,y Y 9 I ) 9 .
where 0 < v < 2, and 6.‘%“ is the Riesz operator, the fundamental solution has the

form of the density of a symmetric stable process as Riesz himself has shown. For
v > 2 the equation (5.3) was studied by Debbi (see Debbi (2006, 2007)) who proved

the sign-varying character of the corresponding solutions.

For asymmetric fractional operators of the form

in -~ -0 +a“/ =T +9 -7
b [0 -0 sing(+0) -
sinmty Oz sinwty Oz
the equation
9 F 7,0
—uyg(z,t) = "D upg(x,t),  reRE>0,0<y<2 (5.5)

ot
was studied by Feller (1952) who proved that the fundamental solution to (5.5) is the

law of an asymmetric stable process of order . The fractional derivatives appearing

in (5.4) are the Weyl fractional derivatives defined as

o L

R T KT AN e

USRS S ()
%U(x) B F(m—’Y) d!Em/x (y—x)’Y-‘rl—mdy (56)

where m — 1 < v < m. The Riesz fractional derivatives appearing in (5.3) are

dy

combinations of the Weyl’s derivatives (5.6) and are defined as

a7 1 l*@” 87]

Oz | B _2008% Oz i oY

(5.7)

This paper is devoted to pseudoprocesses related to fractional equations of the

form (5.3) and (5.5) when v > 2. Of course, this implies that Weyl’s fractional
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derivatives (5.6) are considered in the case v > 2. The fundamental solutions of
these equations are sign-varying as in the case of higher-order heat-type equations
(5.1) studied in the literature (compare with Debbi (2006)).

Fractional equations arise, for example, in the study of thermal diffusion in fractal
and porous media (Nigmatullin (1986), Saichev and Zaslavsky (1997)). Other fields
of application of fractional equations can be found in Debbi (2006). Higher-order
equations emerge in many contexts as in trimolecular chemical reactions (Gardiner
(1985) page 295) and in the linear approximation of the Korteweg De Vries equation
(see Beghin et al. (2007)).

In our paper we study pseudo random walks (for the definitions and properties
of pseudo random walks and variables see Lachal (2013)) of the form
N(t’y*%ﬁ)
W)y = Y U™ (5.8)
j=1

where the r.v.’s Qz’%ﬁ are independent from the Poisson process N, from the pseudo
r.v.’s Uj%(l) and from each other and have distribution for 0 < 5 < 1,v >0, k € N,

L, w <7,
(l)%ﬁ’ w > .

w

Pr {Q}W > w} - (5.9)

The U?*(1) are independent pseudo r.v.’s with law ug(z, 1) with Fourier transform

/ ey (x,1) do = e 167" (5.10)

oo

The Poisson process N appearing in (5.8) is homogeneous and has rate A = r(%-ﬁ)
We prove that
lim W20 (¢) 2 72k (HO (1)) (5.11)

~¥—0

where U?* is the pseudoprocess of order 2k related to the heat-type equation (5.1)
for m = 2k and H” is a stable subordinator of order 3 € (0,1) independent from
U?:. We show that the law of (5.11) is the fundamental solution to

o anﬁ
avgkrg(fﬂ,lﬁ = Wvgkg(l’,t), x € R,t > O,ﬁ € (0, 1), k e N. (512)

In other words, we are able to construct pseudoprocesses of order v > 2 in the form
of integer-valued pseudoprocesses stopped at stable distributed times as the limit of
suitable pseudo random walks. We consider also pseudo random walks of the form

N<t7—ﬂ(2k+1))

Yoo U D)@Y (5.13)

J=0
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where the Q}’B(%H) have distribution (5.9) (suitably adjusted), Uj%Jrl (1) is an

odd-order pseudo random variable with law ug,11(x,1) and Fourier transform
/ e ugpi (2, 1) do = € (5.14)

and the ¢;’s are random variables which take values 1 with probability p and g.

All the variables in (5.13) are independent from each other and also independent

from the Poisson process N with rate A = ﬁ In this case we are able to show
that
limg WD) 2 g2 () ) - U3 (H (at)) (5.15)
Yy

where H f , 7 = 1,2, are independent stable subordinators independent also from the
pseudoprocesses Uy, Us. We prove that the law of (5.15) satisfies the higher-order

fractional equation

%w6(2k+1)(x7t) = Rwgart1) (T, 1), reRt>0, (5.16)

where 1 Bkt - 9B@k+)
R = _cos'%” pe”ﬁkW -+ qe*”BkW : (5.17)

The Fourier transform of the fundamental solution of (5.16) reads
Batapen (€,1) = ¢ IO O ) (5.18)

We note that (5.18) corresponds to the Fourier transform of the law of (5.15) with

a suitable change of the time-scale that is

¢ qt
2kl g8 D _ 2kl | g8
! ( "\ cos %” 2 >\ cos %”

_ o~ tEIPEE (1= sign(€) (p—q) tan 5 (5.19)

Eexp {zf

The mean value here and below must be understood with respect to the signed
measure of the pseudoprocess (see for example Debbi (2006)). We study also the

pseudoprocesses governed by the equation
0 F B(2k+1),0
azﬁ(%ﬂ),e(%t) =D Y 2(2641),0(2, T) (5.20)

where DA is the operator defined in (5.4) with v replaced by B(2k + 1).
Also in this case we study continuous-time random walks whose limit has Fourier

transform equal to

i

Bl P00 PR g e (0,1),k>1,-8<0< B (5.21)
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When we take into account pseudo random walks constructed by means of even-
order pseudo random variables we arrive at limits Z2°%9(¢t), + > 0, with Fourier

transform

cos 50
~tle|2+0 2%

Fei€2¥0) _ . cos 5B (5.22)

which shows the symmetric structure of the limiting pseudoprocess.

5.1.1 List of symbols

For the reader’s convenience we give a short list of the most important symbols and

definitions appearing in the paper.

The right Weyl fractional derivative form —1 <~y <m, m e N, z € R

T B 1 am [* u(y,t)
—u(z,t) = T(m =) o™ /_Oo =y dy (5.23)

e The left Weyl fractional derivative for m —1 <~y <m, m € N, x € R,
el (=)™ dm™ [ u(y,t)
— t) = d 5.24
8x”u<x’ ) L'(m —~) dz™ /Z (y — x)y+i-m 4 (5:24)
e The Riesz fractional derivative form —1 <~y <m, m €N, z € R,
a7 1 Tt o
= — 5.25
Olx|” 2 cos LF [8x7 * 8x7] (5.25)

e We introduce the operator R, for 8 € (0,1), k € N, p,g € [0,1] : p+qg =1,
r € R,

1 ] +aﬂ(2k+1) ) —aﬁ(%-&-l)
R=-——5 { ok B2kt1 +qe”* 32k 1} (5.26)

cos 5 OB (2k+1) OB 2k+1)

e The Feller derivative form —1 <y <m,meN, 0 >0, z € R,
ppro — _ [5G =670 sins(FH) (5.27)

sinty Oz sinmy Oz

U™(t), t > 0 is a pseudoprocess of order m € N with law u,,(z,t), © € R,
t > 0, governed by (5.1)

HP(t) is a stable subordinator of order 8 € (0,1) with probability density
hg(x,t), x> 0,t>0.
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5.2 Preliminaries and auxiliary results

In this paper we consider higher-order heat-type equations where the space derivative
is fractional in different ways.

5.2.1 Weyl fractional derivatives.

First of all we consider equations of the form

0 07
Euv(x,t) = %uv(x,t), reRt>0,v>0, (5.28)
where ;‘?: are the space-fractional Weyl derivatives defined as
T 1 ™ [*  u(zt)dz
— t) = ’ , —1l<~vy<1lmeN, (529
oz th(2,1) L'(m — ) da™ /OO (x — z)y—mtl " 7 " (5:29)

B m—1<y<m,meN.
x

—_avu o) = (=)™ d™ [ wu(zt)dz
0) = Sy |, s
(5.30)

In our analysis the following result on the Fourier transforms of Weyl derivatives is

very important.

Theorem 5.2.1 (Samko et al. (1993), page 137). The Fourier transforms of (5.29)
and (5.30) read

/ Y dr e L ua ) = (—ie) A ) = Je[eF O q(e, 1), (5.31)
e oxY

o . 787 ity -
/ dx €z£$@u($,t) = (Zg)’y a(&vt) = |§|’767 ston(e) a(g’t) (532)

Clearly u(&,t) is the x-Fourier transform of u(zx,t).

Proof. We give a sketch of the proof of (5.31) with some details.

> e TO7 *© , 1 am [ u(z,t)
ix — i&x d )
/_OO dze 8x7u($7t> /_Oo dre {F(m—v) e /_OO Z—(x—z)V—mH}
e , 1 O™ u(x — z,t)
= dr e | —-— [ d :
| e [nm—v)/o “gam }
- /OO dw eifwa—mu(w t) _ /00 dz e zm=!
oo Ouwm """ D(m =) Jo

o 1 o0 ‘
=(—i& m/ e“u(w, t) dw —/ dz e ;ML
R T
(5.33)
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The result
(=)™ /OO O e A |£|W€J§ sign(€) (5.34)
L(m =) Jo
can be obtained for example by applying the Cauchy integral Theorem (see Samko
et al. (1993) page 138). O

5.2.2 Riesz fractional derivatives

By means of the Weyl fractional derivatives we arrive at the Riesz fractional deriva-

tive, form —1 <y <m, meN,

Y o z oo ([ 1\ym
() = — — Do / _uly.t)dy +/ (=)™ uly. ) dy
Ol|x| 2cos TT(m —7) | ) o (. —y)—mHt L (y— )t
1 o o
T 2 cos <8x7 + 8x7> u(z,t) (5.35)

In view of Theorem 5.2.1 we have that, for v > 0, v ¢ N,

> ix a7 1 — 3T gion 1Y gign -~
/ dr % 8|x|7u($’t) =~ 5o [’5‘76 3 sign(§) 4 |E[e 2 S8 ©) u(é,t)
o 5
= —[¢["u(€, v). (5.36)

Remark 5.2.2. The general fractional higher-order heat equation

0 o
auv(x, t) = Wuﬂ,(x,t), reRt>0, (5.37)

has solution whose Fourier transform reads
(e ) = el (5.38)

For 0 < ~v < 2, (5.38) corresponds to the characteristic function of the symmetric

stable processes (this is a classical result due to M. Riesz himself).

5.3 From pseudo random walks to fractional pseu-
doprocesses
We consider in this section continuous-time pseudo random walks with steps which

are pseudo random variables, that is measurable functions endowed with signed

measures, and with total mass equal to one (see Lachal (2013)). In order to obtain in
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the limit pseudoprocesses whose signed law satisfies higher-order fractional equations

we must construct sums of the form

N (2R

Yoo qURT QY Be(0,1),k €N,y >0, (5.39)

=0

where

1, with probability p,
—1, with probability ¢,

The r.v.’s Q?’B(%H) have probability distributions, for 8 € (0,1), k € N,

B(2k+1)
, for w >
Pr {Q]ﬁ(z’”” > w} — ) ! (5.41)

1, for w < 7.

X
w

The Poisson process N(t), t > 0, appearing in (5.39) is homogeneous with rate

1
A=——  Be(0,1) 5.42
The pseudo random variables (see Lachal (2013)) U ]-2/““(1) have law with Fourier

transform

/ dr e gy (2,1) = e (5.43)

and the function wugg,q(x,t), © € R, ¢ > 0, is the fundamental solution to the
odd-order heat-type equation, for k € N,

%UQk-&—l(xat) = (_1)k%u2k+l(l‘7t>u LS Rut > 07

(5.44)
Ugk+1(2,0) = o(x).

There is a vast literature devoted to odd-order heat-type equations of the form (5.44),
to the behaviour of their solutions, and to the related pseudoprocesses (Beghin et
al. (2007), Lachal (2003), Orsingher (1991), Orsingher and D’Ovidio (2012)).

The r.v.’s and pseudo r.v.’s appearing in (5.39) are independent and also inde-
pendent from each other. We say that two pseudo r.v.’s (or pseudoprocesses) with
signed density u! , u2,, are independent if the Fourier transform JF of the convolution

1

2 . .
u,, * u; factorizes, that is

F [up, * ud] (&) = F [up,] (€) F [u,] (). (5.45)

We are now able to state the first theorem of this section.
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Theorem 5.3.1. The following limit in distribution holds true

N(m—ﬁ(2k+l))

: j B(RE+1)  law
yﬂ% Z; € Uj?JJrl(l) QJW B(2k+1)  lau U12k+1 (Hf(pt)) N U22k+1 (Hg(qt)> 7
J:

(5.46)

where HI’B and Hg are independent positively-skewed stable processes of order 0 <
B < 1 while U and U2* are independent pseudoprocesses of order 2k+1. All the
random variables N(t), t > 0, €;, Q}’ﬂ(%ﬂ) are independent and also independent
from the pseudo random variables Uj%ﬂ(l). The Fourier transform of the limiting

pseudoprocess reads

R €U (Y (0t) U (B (at)) .~ @+ (cos BF —i sign(€) (p—a) sin 57 ) (5.47)

Proof. In view of the independence of the r.v’s and pseudo random variables ap-

pearing in (5.46) we have that

N(ty—B2k+1)

Ee® 2i=o

=E [E <ei§eU2k+l(1)Q"/,B(2k+1))N(t'y—ﬂ(2k+1)):|

. (1 - Eeifev2k+1<1>cw<%+l>)}

) EjUJ_Qk-Fl(l) Q;;B(2k+1)

1 — pE€i£U2k+1(1)Q%ﬁ(2k+l) . qu,iéUzkﬂ(l)Q%ﬁ(zkH)) }

_ )\t (p + q— pEeiEUQk-&-l(l)Q’Yﬂ(Qk-!—l) B qu—i§U2k+1(1)Q%ﬁ(2k+l)> }

P (1 _ E€i€U2k+1(1)Q%ﬂ(2k+1)> +q <1 _ ]Ee_igUQk-H(l)Q'y,,B(Qk-}—l))) }
(5.48)

We observe that
» (1 _ E6i§U2k+l(1)Q’Yv5(2k+l)> + q (1 - ]Ee_igUQkJrl(l)Q%B(szrl))

oo B(2k+1
:p/ dw (1 B vy (2k+ )5(2]{5 + 1)ei£2k+1w2k+l>
5

wPk+1)+1

o0 B(2k+1)

Y 6(21? + 1) g2k 1y 2k41

+q / dw (1 — e (5.49)
Y

and therefore

N(W*B(%#Ll)

Eeié 2i=0 ) U (1) Q}‘B(Qk“)
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o At 00 y | 75(21&&)5(2]{ + 1) €2k +1y2k+1
= exp _,76(2k:+1) P y vt WBCk 1 ¢
o B(2k+1)
Y B(Qk + 1) g2k 12k 41
+q/7 dw (1 T Bk ©
— A\t (£~)2k+1 . © dw ,yﬁ(2k+1)€i(§w)2k+1
= _ &) _ 2k+1
- {m [p (1 e ) pig (2k+1) [y wB2k+1)—2k

—i(gy)2kH1 . % duw AP k+1) p—i(Ew)2R
q (1 ) ) +qie (2 + 1)/ BT 2k . (5.50)

~

By taking the limit we get that

N twfﬁ(2k+1))

lim Ee 25=0 U2+ (1) Q) PR+

y—0
dw fw 2k:+1 00 dw e_,i(gw)2k+l
_ _ o2kt 2k 1
= exp | —Al(2k + 1) ( pig /0 BT ok T qig /O WB@k1)—2k
_ o et ] 551)
By setting A = 1 g We obtain

N (7B ER 1))

lim Ee® 2i=0

y—0

7r im B
. 2k+1 sign(&) B(2k+1 sign(§)
GUZRHI(1) Q7 PH+D . t(plélﬁ( Je™ () 1 q|¢| PR e 2 )
—t|g|B(2k+1) B _ —q)sin 78
L IR (cos i sisn(€) (r-a)sin F) (5 59)

Now we consider the Fourier transform of the law of the pseudoprocess
Ve — U (HY () - UF (H(q0)) (5.53)
which reads

Rei€V VR () _ p iU (B (v01)) g —i€U3 T (Hy (at))

= ([T aseer e nian ) ([T e )

_ e—tp(—zf%‘”)ﬁe—tq(iﬁ%“)ﬁ

_t(plf\‘*(%*“e‘ig
=€

™ sign(§)+q‘§|6(2k+1)eigw Sign(é))

_ t|§|ﬁ(2k+1) (cos 78 _i sign(¢) (p—q) sin ﬂ) 7 (554)

and coincides with (5.52). O

Remark 5.3.2. If 5 = the Fourier transform (5.54) becomes

2k:+1

EeigUE’“*l(Hf(pt))Eefi§U§k+1(Hf(qt)) _ o HlEl cos sy it sin sy (5.55)
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which corresponds to the characteristic function of a Cauchy r.v. with position

parameter equal to t(p — q) sin m and scale parameter t cos % This slightly

generalizes result 1.4 of Orsingher and D’Owvidio (2012).

For even-order pseudoprocesses we have the following limit in distribution.

Theorem 5.3.3. If U?*(t), t > 0, is an even-order pseudoprocess and N(t), t > 0,

is a homogeneous Poisson process, independent from U?*(t), t > 0, we have that

N(t'y_%ﬂ)

- 2kB  law

lim E’O UMY = U (HO(t),  t>0, (5.56)
j:

where HP is a stable subordinator of order 3 € (0,1) and Q}’Qkﬁ are i.i.d. Tandom

variables with distribution

1, w < 7,
Pol{Q >w} = {0 ! (5.57)
(%) ;W >,
The pseudoprocess U%(t) is governed by the equation
9 k41 o
—ugg(z,t) = (1) ugr(, 1), z €R. (5.58)

ot Ox2k

Proof. We start by evaluating the Fourier transform

N t’y_Qkﬁ) ok
; ,2kB
Eelg Ej:o U]%(l)Q;Y

—FE [E (eifU%(l)Qmm)N(tV%B)]

~expd — 2 (1 gt
72]6

At o 2%,,2k 2kﬁ72k5
_ —1¢
_eXp{_TB/ dy<1_€|‘ ! )}W
g v Y

At °°
= exp {_7%6 [(1 — e—\&l%v?’“) +/ dy e~ 161 Y g 2h—1-2k5 ka%ﬂ} } (5.59)

Y

By taking the limit we have that
_ N(ty2k8 . 2%k, 2k
]_lm 61&- Zj:(o ) Ufk(l)Q’J‘/,Zkﬁ _ e—)\t‘£|2k2k fO e—|£\ Yy y2k(l—,8)—1dy
¥—0
_ 6—At\§|2kﬁ e v wBdw

— e MIEPHT(1-p) (5.60)
which coincides with
RV (H7®) — / e Pr{H(t) € ds} = e 1" (5.61)
0
since \ = =~ [
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Remark 5.3.4. For 3 = 1 the composition U** (H?(t)) has Gaussian distribution.

For g = i we have instead the Cauchy distribution and for g = ﬁ we extract
the inverse Gaussian corresponding to the distribution of the first passage time of a

Brownian motion. The case [ = é yields the stable law with distribution
he) = = i =) (5.62)
1(x) = —= Ai| —= :
3 v/ 3T V/3x

where Ai denotes the Airy function (see Orsingher and D’Ovidio (2012)).

In order to arrive at asymmetric higher-order fractional pseudoprocesses we con-
struct pseudo random walks by adapting the Feller approach (used for asymmetric
stable laws) to our context. This means that we combine independent pseudo ran-

dom walks with suitable trigonometric weights as in (5.4).
Theorem 5.3.5. Let X;’(zkﬂ)ﬁ and Yj%(zkﬂ)’g be i.i.d. r.v.’s with distribution
7 (2k+1)8

Pr {X’77(2k+1)5 > w} _ w
1, w <y,

, w >
K (5.63)

and let U**1(t), t > 0, be a pseudoprocess of odd-order 2k+1, k € N. For0 < 3 <1
and —f < 6 < B we have that

N<t,yf(2k+1)6)

1
inZ(8 — 0)\ C+1)B
lim (—Sm2<5 )) ) XDk (1)

=0 sin (8 —
]:

N(t'y*(%“)ﬁ)

{W)(” Sy eE g | e Zoeee (5 64

sinf3 =

where
imwh

Rei6Z7E0 _ otlgGE e (5.65)

Proof. The Fourier transform of (5.64) is written as

) S —(2k+1)B
[ sinF(B=0)\ @R+DB N( (2K
g ()T ) Vg

1 _
sin %(B-&-G)) Ck+1)8 ZN(t'y (2k+1)ﬁ)

. 75 (2k+1)B 12k +1
xIEe_ZS( sin7p §=0 Y; uim ()

(5.66)

where the first member is given by

. (sin Z(8-0) m N(t,y—(2k+1),(3)
Eelé sin /3 Zj:O

X;’(2k+1)ﬁU]~2k+1(1)
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_ At € () P e s
= exXp —m 1 —Ee
At 00 ey (sin 53{3-0)) %y%ﬂ ,Y(Qk—&-l),é’
— O T ems / I—e J@ETATH (2k+1)5
e exp & —At i 7P g@RHB ALY 2(8—9) /oo e Yw P dw
sin (3 0
_inB sign(§) [ sin Z(B—0)
—\t[¢|RR+1)B 2 —2 2 \T(1-8
_ (= ra-m (5.67)

The second member of (5.64) becomes, by performing a similar calculation,

1

in T @8 _ N (ty~ k1B

_ig(Slns?n(f;9)> Ck+1)8 Zj:(ov )
Ee

inf sign(§) [ sin T (B+6)
N0 —AL[E|RFDEe T ( e e
e S | (5.68)

Y]."*’(%“)ﬂUJ?’““(l)

and thus for A = ﬁ we obtain that

B

1 —
i&_(sin g(ﬁ_m) E+DB ZN(m (2k+1)8)
sin 7 j=0
Ee B J

v,(2k+1)B 1 r2k+1
X; U; (1)

}/j’Yy<2k+1)5Uj2k+l(1)

sin £ (8+6) ) m N(t77(2k+1)5>

XEe_ig( sin w3 Zj:O

0 ie|(h8e inB sign(€) (sin gupe)) 7t|§\<2k+1)56m5 sign(€) (sin gww))
—€ €

sin w3 sin w83

il

_41¢(2k+1)8 Y57 sign(€)
et e (5.69)

]

By considering symmetric pseudo random walks with the Feller construction we
arrive in the next theorem at symmetric pseudoprocesses with time scale equal to
w3
COSs o5 .
—Sin%ﬂ,0<ﬂ<1, b <0<p.

Theorem 5.3.6. Let X]’zﬁk and Yjﬂﬁk be i.i.d. r.v.’s with distribution

Pr{X”’Zﬁk > w} = w
1, w < 7,

v 28k w >
)" ! (5.70)

and let U(t), t > 0, be a pseudoprocess of order 2k, k € N. If N(t) is a homo-

geneous Poisson process, with parameter A = r(11_ 5 independent from

7,28k
Y;

and

v,28k
XJ’

we have that

sin % (8 —0) E N7
: 2\ 7,28k 112k
%13(1) ( sinf3 ) JZ_; XU
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= (3 4 g\ e V(")

> ’ aw

N (msm—ﬂﬁ) Yooy = 2 rs0, (571)
7=0

forO<p<1land -0 <0< and

—t|f‘2k3 cos 70
e

w557 (5.72)

Eeigzmcﬁ,e _

Proof. The Fourier transform of (5.71) is written as

sin 73 sin 3 3=0 ]

_ 1 —28k : T —28k
e(m B0\ T N(TTIE) ) e (sma e\ TR N (T
g (RS T E s e )7 s O (573
where the first member is given by

1 —28k
sln Bk
ZE 2 5 (B— 9) 2 Z] ( ) X7,2Bk U2k(1)

Ee sin w3 =0 J J —
sm 5 T(B—0) U2k(1)X’y’2ﬁk:| }
= exp — Ee®sins
{ 72’“5
1 2k
oo - &(Sl"ﬂfg m) TN yae K8
- 2k6 € (2k8) —marT y2kB+1 dy

1
SlIl . fo%s) —E% sing(ﬁ—e) B ok
¥—0 exp —)\t|€’2k< (B )) Qk/ e €] ( sin 783 ) Y y2k7172kﬂdy
0

s1n7r5

AHE[PRET(1— B [Si“jff“”}

_ ) g (5.74)
and by similar calculations the second member becomes
y
1 —2Bk )
sin 5.(5+6) \ 79F N () sk ok sin § (46

ie( R T o VRO ) oy MIEPITa-g) S|

Ee g 7=0 i S 7l (5.75)

Thus we have that

. —28k 1 —28k
sin Z(B— N(t sin N(t
ig( (6 9)) 2Bk j:(ov ) ),’7 28k U%(l) ( b (B+9)> Zj:(o“/ ) Yj"”wk Uf’“(l)
Ee Ee

sin 7 sin 78

sin 5 (6-6) | sin 5 (8+6)
v—0 e_)‘t|€‘2kﬁr(1_ﬂ) |: si2n 7B + si2n B :|

cos Z 0
—lg2s 22

—e cos 53 (576)
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5.4 Governing equations

In the previous section we obtained fractional pseudoprocesses as limit of suitable
pseudo random walks. In this section we will show that the limiting fractional
pseudoprocesses obtained before have signed density satisfying space-fractional heat-
type equations of higher-order with Riesz or Feller fractional derivatives. The order
of fractionality of the governing equations is a positive real number and this is
the major difference with respect to the pseudoprocesses considered so far in the

literature.

We start by examining space fractional higher-order equations of order 2k, 5 €
(0,1), k € N, which interpolate equations of the form (5.1).

Theorem 5.4.1. The solution to the initial-value problem

Buh(n,t) = Famvg (),  TERE>0,keN,Be(01)
Vop(w,0) = 5(x)

can be written as
1 1
vgk(x,t) = ﬁE [sin (IG% (Hﬂ(t)))l

= %E [sin (xGW G) } (5.78)

and coincides with the law of the pseudoprocess

(5.77)

V2k‘,8(t) — U2k (H'B(t)) ’ t > ()7 (579)

where U is related to equation (5.1) for m = 2k and HP is a stable subordinator
independent from U?**. G7 (t) is a gamma r.v. with density
o

g (x,t) =~ ; et x>0,t>0,v>0. (5.80)

Proof. The Fourier transform of (5.77) leads to the Cauchy problem

8tv2k(€ t) = |€|2kﬂv2k(f t)
UQk(§ 0) =1,

(5.81)

whose unique solution reads

EeiV*"®) /dxe / ds ugy(z, s) hs(s,t)

_ / ds e~ hy(s, 1) = e 6™ (5.82)

0
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In (5.82) ug is the density of U?* and hg(x,t) is the probability density of the
subordinator H?. Now we show that the Fourier transform of (5.78) coincides with
(5.82). We have that

oo (€)= / dweitr L —E {sm (xG% (Hﬁ;())ﬂ
- fo [ [ oo (2) e et co
/ / Pr{GQ’“ ( > S dy} Pr{H"(t) € ds} {/R dme“”fijﬂ :

(5.83)
By considering that the Heaviside function
1, z >,
Ho(z) = (5.84)
0, z <«
can be represented as
1 . etaw 1 ) eiaw
oW(2) = — | dwe™* = —— [ dwe " ——, 5.85
Hal2) 27‘(‘/R we 1w 21 Jr we 1w ( )

we obtain that formula (5.83) becomes

7 / PY{G% ( ) € dy} Pr{HO () € ds} [H-y(€) = Hy(O)]
/ / {G% ( ) € dy} Pr {H’(t) € ds} [Ij—¢ +00)(¥) — [1—00g) (¥)]

- / / dyds 2ksy2 ’16’8y2k>1[[o,oo1(y) It 001 (%) = Li—oo.g ()] Trs(s, 1)
0 0
(5.86)

For £ > 0 (5.86) becomes
00 3
oo (E,1) = / ds {1 —/ dy 2k3y2k_1e_y2k5} hs(s,t)
0 0
:/ ds e_g%shg(s,t) = P (5.87)
0
and for & < 0 (5.86) is

oo (€,1) = /0 ds {/5 2k3y2k_16_y2ks} hg(s,t)

:/ ds e s pg(s,t) = e U, (5.88)
0
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Since

1 OO 2k
Pri G* (—) €d } dy =2k 2/““_1/ se ¥ hg(s,t)ds
{ 00 yo/dy =2ky i 8(s:1)

= Pr {GW (%) € dy} /dy (5.89)

the second form of the solution (5.78) follows immediately. O

For £k > 1, g € (0, %] the solutions (5.78) are densities of symmetric random
variables, while for 3 > ¢ the functions (5.78) are sign-varying. Clearly for § = 1
we obtain the solution of even-order heat-type equations discussed in Orsingher and
D’Ovidio (2012). As far as space-fractional higher-order heat-type equations we
have the result of the next theorem where the governing fractional operator R is
obtained as a suitable combination of Weyl derivatives. The operator R governing
the fractional pseudoprocesses appearing in Theorem 5.3.1 is explicitely written for
{p,ge0,1] :p+q=1},{€(0,1), keN:m—1<S(2k+1) <m, m € N} as

R U§k+1 ($7 t) =
1 { in Bk +86(2k+1) _inBh —aﬁ(2k+1)

cos 2 Hppari T 4¢ ax5(2k+1):| Uap (1)

1 am | . v vy T
- _ [emﬁkp/ 2k+1(y )

cos 2T (m — (2k + 1)) D™ o (w — y)eEnEmm Y

) B
—inBk m Va1 (Y, 1)
LgeT (1) / ey (5.90)
where the left and right Weyl fractional derivatives appear.

Theorem 5.4.2. The solution to the problem

%vgkﬂ(x,t) = ﬂ%vgkﬂ(a;,t), reRt>0,€(0,1),k €N,

(5.91)
U2ﬁk+1(x70) = 0(z),
15 given by the signed law of the pseudoprocess
_ t t
VB(2k+1)(t) =y Hlﬁ pﬂw — U2kt HQB qﬂﬂ 7 (5.92)
cos 5 cos 5

where Ulzkﬂ, Uz%Jrl are independent odd-order pseudoprocesses and Hlﬁ, HQB, are

independent stable subordinators.
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Proof. The Fourier transform of (5.90) is written as

F [zﬁ vl (x, t)] (€) =

1 4Bkt . HBRk+1)
o imBk —in Bk B
J-"[— [ e GepeRy T4° W} Vo (:0)| (6)

1 —im :
- _ COS/B_W [ mﬁk:( f) (2k+1) +qe Bk (ZS) B(2k+1) ] U2k+1(§ t)
2
_ B gion 8 Sion
= M —|g|p@k+D [pe 7 sign(€) | o5 sien(© ] o (61)
. B\ o
- _ ‘§|5(2k+1) (1 — i sign(&) (p — ¢) tan 7) v§k+1(§, t) (5.93)
and therefore we have that
U2k+1(£ t) —t\§|5(2k+1)(1—i(p—q) sign(§) tan B—;) (594)
In view of (5.54) we get
_ &V (2k+1)8
Eeifv(2k+1)/3(t) — Re gy (htt (COS ﬁ‘rr)
_ o~ HEPCHHD (1—i sign(€) (p—q) tan 7 ) (5.95)

and this confirms that the solution to (5.91) is given by the law of the pseudoprocess
(5.92). O

+inkB

Remark 5.4.3. Since ecos%" = Cosﬁ(%ﬂ (because €™ = (e™)*F = (=) =

e~ ™kB ) the operator (5.90) takes the form of the Riesz fractional derivative of order
B(2k + 1) whenp=q = 3.

We now pass to the derivation of the governing equation of the fractional pseu-
doprocesses studied in Theorem 5.3.5. We first recall the definition of the Feller
space-fractional derivative which is

sin (8 —0)t0°  sinZ(8+0) -0

FpPoy(z) = — Y ey S + Sln(ﬂﬁ) 5P u(m) (5.96)

We recall that

il

F["Du(x)] (&) = —[¢lPe™ & @n(g), (5.97)

as can be shown by means of the following calculation

i F ROy (p) — sin 7(8 — 0) i) sin Z (5+0>z 8] &
[ dwets D) - - [FEED i+ TS eyl



141 Subordinate pseudoprocesses

B ) . )
|£| |:<6g'3 _ﬂe %’ﬂe%’e) 6—%',8 sign(§)+

 2jsin ﬂﬁ
+ (e%ﬂe%o — e’%ﬁe’%(;) e3P Sig“(f)] u(é)
—fﬁe%ﬁ(f), 6 > 07
= il
—(—é)ﬂe‘Tu(S), £<0
= — |g|7es T O(¢) (5.98)

where we used the results of Theorem 5.2.1. The explicit form of the Fourier trans-

form of the solution to

%u(m,t) = DPO(x, 1), u(z,0) = o(z), reRt>0, (5.99)
1s written as "
U, 1) = elelfe® 7 (5.100)

and for € (0,2], 4m — 1 < 0 < 4m + 1, m € N, represents the characteristic

function of a stable r.v.. The last condition on @ is due to the fact that
~ . . O
[a(&,t)] < 1if and only if cos - € (0,1]. (5.101)

The condition (5.101) must be assumed also for 5 > 2 where (5.100) however fails
to be the characteristic function of a genuine r.v.. For § = 5 < 1 (5.100) becomes
totally negatively skewed. By interchanging sin(3 — )7 with sin( 4 0)7 we obtain

instead
Q1) = elelPeT 0 (5.102)

which is totally positively skewed for 6 = 5 < 1.

We are now ready to prove the following Theorem.

Theorem 5.4.4. Let Z8CFD0() t > 0, be the limiting fractional pseudoprocess
studied in Theorem 5.3.5. The signed density of ZPk+D9(t) is the solution to

atZ,B(QkH) (x,t) — FDB(%H)’HZfB(%H)’g(:E,t)

(5.103)
5B(2k+1),0 (z,0) = &(x)

and coincide with the signed distribution of the composition for B € (0,1), —f <
0 < B,

0 0
e = v (e () - (o ()
(5.104)
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where Hjﬂ7 J = 1,2 are independent stable r.v.’s and the independent pseudoprocesses

Uj%“, Jj =1,2, are related to the odd-order heat-type equation

a2k+l

0
§U2k+1(l’,t) = (—1)kWU2k+1($,t). (5105)

The positivity of the time scales in (5.104) implies that —3 < 0 < 3.

Proof. By profiting from the result (5.97) we note that the Fourier transform of
(5.103) is written as

0 2B(2k+1), t B(Qk:-l—l)e%rﬁ sign(§) 28(2k+1),0 t
g, t) = —g (€1 5106
/\B(2k+1 (5 O)
which is satisfied by the Fourier transform
PN (g p) = (tePEEDE (5.107)

We now prove that the Fourier transform of (5.104) coincides with (5.107). In view

of the independence of the r.v.’s and pseudo r.v.’s involved we write that
F P00 _ g {Uf’“* I(Hf ("%nf; 2 t>>fU22k+ 1(H§ (“"s?n(fg = ))}

0
= {/ dx e / dsung z s)hﬂ( SmSlflﬁW; ) )}
| 0
X [/Rdxe ZEaa/o d3U2k+1(x7S)hf3( % >}
] e, sin (5+9) S ekt sSin (6‘{’9)
[ ) ] [ ) o

_tsin %(ﬁ+9) <i§2k+l)ﬁ6—tsm 5(B—0) (—i52k+1)5

=e sin 73 sin g3
B(2k+1

- eitKLif‘ﬂﬁ ) [ . W(ﬁ+9)67[3 51g11(§)+81n (ﬁ 9)6 7[3 51gn(£):|

J\g?{%?) [<6%ae%e,e—%ﬁe—%e)e%ﬁ sign(£)+<€%667%0787%Be%’9>67%6 sign(@]
— e 181N ™

_t|¢|B2k+1) o Y sign(€)
=kl ¢ (5.108)

which coincides with (5.107). O

5.5 Some remarks

We give various forms for the density v7(z,t) of symmetric pseudoprocesses of ar-

bitrary order v > 0. For integer values of v = 2n or 7 = 2n + 1 the analysis of
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the structure of these densities is presented in Orsingher and D’Ovidio (2012). We
give here an analytical representation of v7(x,t) for non-integer values of ~, which
is an alternative to (5.78), as a power series and in integral form (involving the
Mittag-Leffler functions). Furthermore, in Figure 5.1 we give some curves for spe-
cial values of v. We also give the distribution of the sojourn time of compositions of

pseudoprocesses with stable subordinators (totally positively skewed stable r.v.’s).

Proposition 5.5.1. For v > 1 the inverse of the Fourier transform
V(€ 1) = et (5.109)
can also be written as
v _1 —t€"
v (z,t) =— cos(éx)e ™ d¢
m™Jo

00 2kt1
L e ()

D U e
B % Jeg2h B (2’““ (2k +1) ( %
S (e ()

oo e 2h 1 ! el g (k) (1-24) -1
kz n ((Qk;—i—l) (1—%>)/0 dyy & (1 —y)Y
_ (:Eyv (1 — y)l}y>2k 14 _1

) Fr(enoy) U

1
t 1\2 _1 1 -1
- W; dyE( 1)’1—i< <$yv(1_y)1 i) t i) (L —y)
t_l . 10\ 2 1 1
w=y/(l-y) L 7 2 wa _1 wo
A dw E — t — 5.110
o | E | <1+w> ' T o410

and for v < 2 coincides with the characteristic function of symmetric stable pro-

CESSES.

Formula (5.110) is an alternative to the probabilistic representation (5.78) for

v = 2kf. For 1 < < 2 it represents the density of a symmetric stable r.v..

Remark 5.5.2. We note that

w0, = Lo (1 + 1) (5.111)
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as can be inferred from (5.110). In the neighbourhood of © = 0 the density v¥(x,t)

can be written as

at) ~—— | L1 <1> _ %QF 3)

e \n t5
C
=v7(0,t) (1 — = ) (5.112)
2t~
where
F<l+§)r<l+§> 3772
C, = 7 ! . 5.113
il 27T ( )

In the above calculation the triplication formula of the Gamma function (see Lebedev
(1965) page 14) has been applied

2 2T

I'(z)0 (z + %) T <z + g) — 3327;(32). (5.114)

Remark 5.5.3. For even-order pseudoprocesses U%(t), t > 0, the distribution of

the sojourn time
t
I, (U) = / Tjo.0) (U(s)) ds (5.115)
0
follows the arcsine law for allm > 1 (see Krylov (1960)). Therefore the distribution
of the sojourn time of U (Hﬁ(t)), t>0, € (0,1), reads

Pr{T, (U (H?)) € de} = / TP L, (U) € do) Pr{HP(1) € ds)
:d% Pr{H"(t) € ds} . (5.116)

ey
& x(s —x)
In the odd-order case the distribution of the sojourn time
t
T, (U%4) = / Tooey (U4 (s)) ds (5.117)
0
is written as (see Lachal (2003))
%41 si gy _ 1 — g2k
Pr{T, (U**") € da} = do —=27 2 (t — z)” 241 [gy)() (5.118)
™

and thus we get

d n —-— 00
Pr{T, (U (7)) € da) :%/ _ Pr{HA(t) € ds) .

1

(5.119)
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For 3 =  the integral (5.116) can be evaluated explicitly

Pr{Ft (U% <H>> c dx} :d?x/:o W(Sl_x) \t/(;igds

1 2
B dxt z e 2Y d
™2z Jo V1—xy 4
2
drt 1 e
= dw
™23 Jo V1—w

dot & t2)’“1/1 i 1
= —— ) = | w(l—-w) 2 dw
7r\/27nr3 2%;& <: 2x k! 0 ( )

dxt 2
=——F — t 12
2r ( 29:)’ #>0,6>0,  (5120)

where
(Ej

Epul) =Y ———— v, >0, (5.121)

Ty +p)

is the Mittag-Leffler function.

Figure 5.1: The density v7(z,t) for v > 2 displays an oscillating behaviour similar

to that of the fundamental solution of even-order heat equations.
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Chapter 6

Time-changed pseudoprocesses on

a circle

Article: Orsingher and Toaldo (2013). Even-order pseudoprocesses on a circle and

related Poisson kernels.

Summary

Pseudoprocesses, constructed by means of the solutions of higher-order heat-type
equations have been developed by several authors and many related functionals have
been analyzed by means of the Feynman-Kac functional or by means of the Spitzer
identity. We here examine even-order pseudoprocesses wrapped up on circles and
derive their explicit signed density measures. We observe that circular even-order
pseudoprocesses differ substantially from pseudoprocesses on the line because - for
t >t > 0, where ¢ is a suitable n-dependent time value - they become real random
variables. By composing the circular pseudoprocesses with positively-skewed stable
processes we arrive at genuine circular processes whose distribution, in the form of
Poisson kernels, is obtained. The distribution of circular even-order pseudoprocesses
is similar to the Von Mises (or Fisher) circular normal and therefore to the wrapped
up law of Brownian motion. Time-fractional and space-fractional equations related
to processes and pseudoprocesses on the unit radius circumference are introduced

and analyzed.
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6.1 Introduction and preliminaries

Pseudoprocesses are connected with the fundamental solution of heat-type equations

of the form
aun(a:,t) = cn%un(x,t), reR, t>0,neN, (6.1)
where
(—1)z+, for even values of n
c, = (6.2)
+1, for odd values of n,
subject to the initial condition
u(z,0) = o(x). (6.3)

For n > 2 the fundamental solutions to (6.1) are sign-varying. By means of a
Wiener-type approach some authors (see for example Albeverio et al. (2011), Dalet-
sky (1969), Daletsky and Fomin (1965), Krylov (1960), Ladohin (1962)) have con-
structed pseudoprocesses which we denote by X (t), ¢ > 0 or X, (t), if we spec-
ify the order of the governing equation. In these papers the set of real functions
x:t€[0,00) = x(t) (sample paths) and the cylinders

C ={z(t):a; <az(tj) <bj, j=1,---,n} (6.4)

have been considered. By using the solutions u, to (6.1) the measure of cylinders is

given as

b1 bn n
tn (C) = / dxy - -- / dzx, H Up (xj — i1, t; —tj_1). (6.5)
n j=1

al a

In (6.5) we denote by u,

1 [ . .
up(x,t) = %/ de e een(ZIO" (6.6)

—00

For n = 2k and ¢y, = (—1)*! the integral (6.6) always converge as it does for the
odd-order case. The measure (6.5) is extended to the field generated by cylinders
(6.4) for fixed t; < --- <t; <--- <t,. The signed measure obtained in this way is

Markovian in the sense that
oy (X (L4 T) € 8%} = puxn) {X(1) € B). (6.7
where #r is the field generated as

Fr = o {X(t1) € By, -, X(t,) € B.}, (6.8)
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where 0 < t; < --- <t, =T. More information on properties of pseudoprocesses
can be found in Cammarota and Lachal (2012), Lachal (2003) and Nishioka (2001).
For pseudoprocesses with drift the reader can consult Lachal (2008).

In this paper we consider pseudoprocesses on the ring ® of radius one, denoted

by O(t), t > 0, whose signed density measures are governed by

%vn(e,t) = cn%vn(ﬁ,t), 6 €0,2m),t > 0,n > 2,

v, (6,0) = 5(0). (69)

The signed measures of pseudoprocesses on the line X (¢), ¢ > 0, and those on the

unit-radius ring, O(t), t > 0, can be related by

{O(t) € d9} = U {X(t) €d(®+2mm)}, 0<6<2m (6.10)

This means that the pseudoprocess © has sample paths which are obtained from
those of X by wrapping them up around the circumference 8. Counterclockwise

moving sample paths of © correspond to increasing sample paths of X.

For n = 2 we have in particular the circular Brownian motion studied by Hartman
and Watson (1974), Roberts and Ursell (1960), Stephens (1963). The pseudopro-
cesses running on X are called circular pseudoprocesses and are denoted either by
O(t), t > 0, or ©,(t) if we want to clarify the order of the equation governing
their distribution. We concentrate our attention on the even-order case because
the odd-order wrapped-up pseudoprocesses pose qualitatively different problems of

convergence of their Fourier expansion. In view of (6.10) we can write

van(0,1) = Y uga(0+2mm,t),  0<6 <2 (6.11)
Equation (6.11) shows that the solution to (6.9) can be obtained by wrapping up
the solution to (6.1) which reads

1 [ , n
Ugy(2,t) = %/ dE e %€, reRt>0. (6.12)

The function (6.12) has been investigated in special cases by Hochberg (1978),
Krylov (1960), Nishioka (2001) and more in general by Lachal (2003, 2008). The
sign-varying structure of (6.12) has been discovered in special cases by Bernstein
(1919), Lévy (1923), Polya (1923), as early as at the beginning of the Twentieth
century and has been more recently studied also by Li and Wong (1993).

The Fourier series of (6.11) has the remarkably simple form

Von (6, 1) + Z " cos k), 0 €[0,2m). (6.13)
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For n = 1 we obtain the Fourier series of the law of the circular Brownian motion
(see Hartman and Watson (1974)). The function

v(0, 1) ot Ze " cos k6 (6.14)

is similar to the Von Mises circular normal

ekcosé) k
k) = 142 0 2 1
v(6, k) 27r[0(k:) ( + mz:l " cos m@) , €[0,2m),  (6.15)
where
2\ /x\ 2+m 1
— Z ‘ (6.16)
;(2) KT (m+j+1)

is the m-th order Bessel function. The relationship between (6.14) and (6.15) is
investigated in the paper by Hartman and Watson (1974). The Von Mises circular
normal represents the hitting distribution of the circumference ® of a Brownian

motion with drift starting from the center of 8. The planar Brownian motion
(R(t), ¥(t)), t > 0, with drift k = (ky, k2), ||k|| = k, has transition function

2 2,
Pr{R(t) € dp, V(t) € dp} = %6_%6_%6pkcowdpdcp (6.17)
T
and marginal ,
Pr{R(t) € dp} = —e e 2t.[0 (pk) dp. (6.18)
Therefore
Pr{W(t) € dp|R(t) € dp} = e (6.19)

and for p = 1 coincides with (6.15).

The analysis of the pictures of vy,(0,t) for different values of ¢ and different
values of the order 2n, n € N, shows that the distributions (6.13) after a certain
time become non-negative. This means that pseudoprocesses on the circle ® behave
differently from their counterparts on the line and rapidly become genuine random
variables. Furthermore we remark that in small initial intervals of time the circular
pseudoprocesses have signed-valued distributions with a number of minima which
rapidly unify into a single minimum (located at # = m) which for increasing ¢
upcrosses the zero level. This is due to the fact that in a small initial interval of
time the effect produced by the central bell of the distribution has not yet spread
on the whole ring .

The value of the absolute minimum of vy, (6,t) for ¢ > ¢ has the form

1 & n _
van(m 1) = o+ — R s (6.20)

7T
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The graph of functions vy, (#,t) slightly differ from that of the density of circular

Brownian motion as shown in figures 6.1 and 6.2. The term k£ = 1 in (6.13) is the

leading term of the series and the form of the distribution vs,(6,t) is very close to
that of 5= + Le~" cosf.

Figure 6.1: The distributions of the fourth-order circular pseudoprocess for different

values of ¢
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Figure 6.2: The distributions (for ¢ = 1) of the circular pseudoprocesses of various

order 2n
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The odd-order case is much more complicated because the solutions to equation

(6.1) are asymmetric (with asymmetry decreasing for increasing values of the order

n). Some properties of solutions to odd-order heat-type equations can be found in

Lachal (2003, 2008). In the present paper the wrapped up solution to (6.1) gives

the fundamental solution of (6.9) as

Vony1(0,t) = Z Uont1(0 + 2k7, 1),

0 €10,2m), (6.21)
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whose Fourier series reads

J I e
vania(0,) = -+~ > cos(K* Mt + k6). (6.22)
k=1

We note that for n = 1 the series (6.22) becomes a discrete version of the solution
to (6.1) which reads

1 . (x
uz(z,t) = - T Ai (3—375) (6.23)

where
. 1 [~ o’
Ai(z) = — cos [ ax + — | da (6.24)
T Jo 3

is the Airy function. The probabilistic representations of solutions of higher-order
heat-type equations show that for increasing values of n the solutions wug,1(z, 1)
and ug,(z,t) slightly differ. Therefore the corresponding circular version vy, (0, t)

must have Fourier transform which converge since vs,(0,t) do.

We consider also the wrapped up stable processes &2(t), t > 0, and the related
governing space-fractional equation.In particular we show that the law of G2 (275t),

t > 0, is the fundamental solution of the space-fractional equations

5\ B
200(0,1) = —( 1.0 ) Lo,  elo,2r),t>0,8¢€(0,1],

o (6.25)
v5(6,0) = (),

and has Fourier expansion

U2ﬁ<9>t) = _7T

> 2\ 8
1+2 Z e_<m7> " cos m@] . (6.26)

m=1

The fractional operator appearing in (6.25) is the one-dimensional fractional Lapla-

cian which can be defined by means of the Bochner representation (see, for example,
Balakrishnan (1960), Bochner (1949))

162\ sinwfg [ 1 02 -
_<_§ﬁ) = — /0 <A+(_§W>> N d, Be(0,1). (6.27)

We show that formula (6.26) coincides with the distribution of the subordinated
Brownian motion on the circle, B (H?(t)), t > 0, where H?(t), t > 0, is a stable
subordinator of order 5 € (0, 1] (see, for example, Baeumer and Meerschaert (2001)).

Furthermore we notice that

B(2H (1) ¥ &%), >0, (6.28)
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G&28(t), t > 0, is a symmetric process on the ring ® with distribution which can be

obtained by its symmetric stable counterpart on the line as

= 1 OO —1 mm) ,—t|£[?P
pexs(6,t) = Y o= / dg e +2m) el

1
o

1+2 Z e ¥ cos k’@] . (6.29)
k=1

For 8 = 3 we extract from (6.26) the Poisson kernel

_ V2
Wl0,1) = — lme ™
2mq +e 2 27 V2 cosh

(6.30)

The composition of the circular pseudoprocesses ©,(t), t > 0, with positively-
skewed stable processes of order %, say H n (t),t > 0, leads also to the Poisson kernel.

In particular, we show that

1 df 1 —e 2
Pr {@% (H n(t)> € de} - T g Pl (631

In the odd-order case the result is different, depends on n and has the following form
for 6 € [0, 2m)

Pr {@Qn+1 (Hﬁ(t)) € d@}

do 1— 672tcos 72<2;+1)

= 2 5 ™ o 7’ (632)
o 1te teos gy 26—tcobm CcoS <9 + tsin m)

The composition of pseudoprocesses with stable processes therefore produces gen-
uine r.v.’s on the ring R as it happens on the line (see Orsingher and D’Ovidio
(2012)). We note that the distribution of the composition in the even order case is
independent from n (formula (6.31)), while in the odd-order case the Poisson kernel
obtained depends on n and has a rather complicated structure. For n — oo the
kernel (6.32) converges pointwise to (6.31) since the asymmetry of the fundamental
solutions of (6.1) (as well as that of their wrapped up counterparts) decreases. The
result (6.31) offers an interesting interpretation. The Poisson kernel (6.31) can be
viewed as the probability that a planar Brownian motion starting from the point
with polar coordinates (e7*,0) hits the circumference & in the point (1,0) (see Fig.
6.4a). Therefore this distribution coincides with the law of an even-order pseudo-
process running on the circumference and stopped at time H %(t), t > 0. This
result is independent from n and therefore is valid also for Brownian motion. A
similar interpretation holds also for circular odd-order pseudoprocesses taken at the
time HTIH(t), t > 0, but starting from the point with polar coordinates (e~ b,t),
where a,, = cos7/(2(2n+ 1)) and b, = sinw/(2(2n + 1)).
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6.2 Pseudoprocesses on a ring

In this section we consider pseudoprocesses O(t), t > 0, on the unit-radius circum-
ference ®, whose density function v,(0,t), 0 € [0,27), t > 0, is governed by the
higher order heat-type equation

%vn(Q,t) = cna%vn(@,t), 0€0,2m),t>0,n>2, (6.33)

vn(6,0) = 5(0). '
The pseudoprocesses O,, have sample paths obtained by wrapping up the trajectories
of pseudoprocesses on the line R. Increasing sample paths on X correspond to
counterclockwise moving motions on the ring ®. The structure of sample paths of
pseudoprocesses has not been investigated in detail although some results by Lachal
(Theorem 5.2, Lachal (2008)) show that there is a sort of ”slight” discontinuity
in their behaviour (this is confirmed by Hochberg (1978)) and the fact that the
reflection principle fails (Beghin et al. (2001), Lachal (2003)).

It must be considered that the wrapping up of the sample paths and of the
corresponding density measures produces in the long run genuine random variables
(with non-negative measure densities in the case n is even). Our first result concerns
the distribution of ©,(t), t > 0.

Theorem 6.2.1. The solutions to the even-order heat-type equations (6.33) reads

1
Vo (0,1) = oy +— Z e " cos ko), for con = (—=1)"*, n > 1, (6.34)

Proof. We can obtain the result (6.34) in two different ways. We start by considering

the even-order case where the wrapping up of the solutions to (6.1) which leads to

Vo, (0, 1) Z Ugn (0 + 2mm, ) Z / dg e~ 1 O0F2mmE =€t (6.35)

m=—0Q m=—0oQ
The Fourier series expansion of the symmetric function vs, (6, t) has coefficients

1 27 0
ap = - /0 df cos kO L_Zoo Ugn (0 + 2mm, t)]
m—+1

=2 Z / dy usg, (21y, t) cos2mky

m=—00

1 [ 1 [ - n
= _/ dz coskz (—/ d¢ e e E t)
T ) oo 21 J_ o

1 2n 1 .
- =&t | - iz(k—§) —iz(k+&)
=5 df [27T/_00dz( +e )}
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7]€2nt

LT g s —my v o1k = ©

:27r

(6.36)

— 00

An alternative derivation of vy, (6,t) is based on the method of separation of vari-
ables. Thus under the assumption that vs,(0,t) = T'(t)y(0) we get

TO®) e (6)
W )

In order to have periodic solutions we must take integer values of § and thus the

(=)t = =g (6.37)

general solution to (6.33) becomes

[e.9]

Vo (60,1) = Z Ape coskl = Ay + 2 Z Ay e " cos k6. (6.38)

k=—o00 k=1

The initial condition

S s
vn(,0) = 6(6) = ——+ %Zcos k6 (6.39)
k=1

implies that A, = %, which confirms the result. n

Proposition 6.2.2. We are able to give a third derivation of (6.34) by resorting
to the probabilistic representation of fundamental solutions to even-order heat-type
equations of Orsingher and D’Ovidio (2012) which reads

Ugp (2,1) = %E {sin <:cG2” (%)) } (6.40)

forc, = (=1)"" n>1. In (6.40) G7(t7') is a generalized gamma r.v. with density

27

; et x>0,t>0,v>0. (6.41)

g'(z,t) =~

Proof. We start the proof by wrapping-up the representation (6.40) as follows

o0

1 1
0,t) = ————E<sin | (0+2 e - : 42
w0 = Y e (02t (7))} o
Now we evaluate the Fourier coefficients of (6.42) as
I = [*™ df _ o (1
ap = ﬁ mzzoo/o mE {Sll’l(e + 2m7T)G (;) } cos k6

= %E {/ dzCOS i sin (z G (1)) }
s oo z t

:iE{/Omdz [sin (b +2G™ (1) | sin(:G* (3) —kz)]}

2 z z
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=l macep) = 1Pl () 24 = e o)

where we used the fact that

o0 i z, if a>0,
/ dp 2T ]2 (6.44)
0 x -z if a<O.

]

The calculation (6.43) shows that the density of even-order circular pseudopro-
cesses can be viewed as the superposition of sinusoidal waves whose amplitude cor-

responds to the tails of a Weibull distribution.

For the odd-order pseudoprocess we proceed formally as in the even-order case

and the Fourier cofficients of

U2n+1(97 t) = Z U2n4-1 (0 + 2m7r, t) (645)
become
a :i > df e(—l)n(—i§)2n+1t i/OO dz (ei(k—g)z +€—i(k+§)z)
2r J_ o 2 J_ o

1 > ie2nt1y
:%/wdfe‘zg [6(6 — k) + 8(€ + k)]

1 120 20 1
—_ [e—zk2 +1 + ezk2 +1i| — Z cos kj2n+1t. (646)
27 s
In a similar way we have that
by = i = df e(—l)n(—i§)2n+1t L /OO dz (ez’(k—g)z _ e—i(k+§)z)
2 J_ o 21 ) _ o
1 [ 20 1
=— [ deeETTO(E — k) — 0(E+ k)] = ——sin k2, (6.47)
21 ) _ o s

and thus the expression of the distribution of the odd-order pseudoprocess on the

circle vo,41(0,t) becomes

I
vana(0,) = -+~ > " cos (K"t + k) . (6.48)
k=1

For n = 1 the series (6.48) is similar to the integral representation of the Airy

function

Aiz) = /O " cos (a:c—i— O‘;) da. (6.49)
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We are not able to give a rigorous proof of the convergence of the series (6.48) but
we are able to give an alternative derivation as follows. In particular we can obtain
the expansion (6.48) for circular odd-order pseudoprocesses by resorting again to the
probabilistic representation of the law of pseudoprocesses of Orsingher and D’Ovidio
(2012) which reads

Ugpi1(x,t) = LE {e_b"’” (1) sin (anx Gl (%)) } , (6.50)

where co,p 1 = (=1)", n > 1, G7(t7!) is a generalized gamma r.v. with density
(6.41) and

T s

W= S b, = sin——— . 6.51

I = O on 1) oen+1) (6.51)

By wrapping-up (6.50) we obtain
V2n+1 (97 t) =
> 1 2n+1( 1 1
_ E J o~ bn(0+2mmG (1) 9 on+1 [+ '

mz_oo O 2mm) {e sin | a, (0 + 2mn)G ;

(6.52)

We prove that the Fourier series expansion of (6.52) coincides with (6.48).We need
both the sine and cosine coefficients of the Fourier expansion because the signed

laws are asymmetric. The Fourier coefficients become

ap = +cosk? e,
™

(6.53)
bk = —%Sinkzn—i_lt.

We give with some details the evaluation of (6.53)

COS k'e 7bn(0+2m7T)G2n+1 1 . 2n+1 1
7r2 Z / d80—|—2m7r { (+) sin an (0 + 2mm)G 7

_ 12IE {/00 dZCOS kZ@ bnzG2n+l(%) sin (ansznﬂ (1)) }
s oo z t

= g

dz

—00

z
] [ [ ) ) el )
127 o ?

pH (R () e e O L (e

By considering the following integral representation of the Heaviside function
1 eiyw —iyw

Hy(r) = dw e = /Rdw e

e

S or w jw (6.55)

i { [ Bl G @) £ (G (1) vy

}
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the coefficients ay, in (6.54) become

ax :W/ dw we™*" ! [Hy(w(ay, — iby)) — Hi(—w(an + iby)

+H(w(a, +ib,)) — Hi(—w(a, — iby,))]

(2n + 1)t [ e (2n+ 1)t [ w
(2n 4+ 1)t [ o (2n+ 1)t [ "
_ |:Z( n + ) / dw w2n€zw2 +1tHk(w) + M/ dw w2n —iw? +1tH ( ):|
. 2 1 t o0 . n o0 ; n
- Z(—n; ) (/ dw w? e ™" (w) _/ dw we™” +1t7‘[k:(w))
T oo —o0
1 o om 1
_ 1 (elk2 +14 + eile +1t) — ~ cos k2n+1t- (656)
2T T

In order to justify the last step we can either take the Laplace transform with respect
to t (see for example Orsingher and D’Ovidio (2012)) or we can apply the following
trick

a’k = élm M (/OO dw eicw2n+lw2neiiw2n+1t B /OO dw ecw2n+lw2n€iw2n+1t> .
k k

(6.57)

The coefficients by (6.53) can be obtained by performing similar calculation.

6.2.1 Circular Brownian motion

The circular Brownian motion B(t), t > 0, has been analyzed by Roberts and Ursell
(1960), Stephens (1963) and also by Hartman and Watson (1974). In a certain sense
it can be viewed as a special case of symmetric pseudoprocesses on the ring ®. The

distribution of B(t), t > 0, has Fourier representation

ps(0,t) = ;ﬁ (1 + 226 Bt cos ke) 0 e [0,2), (6.58)

k=1

and can be also regarded as the wrapped up distribution of the standard Brownian

motion

2m7l'2
Z - (6.59)

m=—0Q

P (87 t) \/ﬁ

Formula (6.58) corresponds to n = 1 of (6.34) for the even-order case with a suitable
adjustement of the time scale. The law (6.58) can be obtained directly by solving
the Cauchy problem

Dps(0.t) = $22pa(0,1), 6 el0,2n),t>0,

6.60
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or as the limit of a circular random walk as in Stephens (1963). The distribution of
the circular Brownian motion is depicted in Figure 6.2 and looks like the Von Mises
circular normal (this is the inspiring idea of the paper by Hartman and Watson
(1974) in which the connection between the two distributions is investigated). For
t — oo the distribution of B(t), t > 0, tends to the uniform law.

We note that

(2k+1)

2 [o¢]
— _ 6.61
_'_71';; 2/<:+1 ( )

N | —

and therefore

Pr{—z <B(t) < E} <

1 2 . m
5 5f S5t valid for ¢ > —ZIOgZ ~ 0.209. (6.62)

The relationship between circular Brownian motion B(t), t > 0, and Brownian
motion on the line B(t), t > 0,

(B(t) € do} = O (B(t) € d(0 +2mm)},  0€[0,2r), (6.63)

permits us to derive the distribution of

max |B(t)|, t >0, (6.64)

0<s<t

that is the distribution of the maximal distance reached by the circular Brownian
motion from the starting point. Of course the sample paths overcoming the angular
distance 7 at least once are assigned 7 as maximal distance which therefore has a

positive probability (converging to 1 as time tends to infinity).

Proposition 6.2.3. For the mazimal distance (6.64) we have that

Pr {maX B (s)| <9} - /0 Pr{—9< win B(s) < max B(s) <e}

0<s<t o

(y— él"g) <—y+2e§m—1)>2
= d
[ (> - 3 )

00 (1—27)6 2

> (—1)7"/ Tt (6.65)
S Y V2w

The related first passage time of circular Brownian motion has density which has

the following form

Pr{Ty € dt} = —%P {&1&){ 1B (s)| <0}dt
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00 ( 1)7“ _ (1—2r)262 ( 1)7” B (142r)292
— e 2t - e 2t
= E r— (1 —2r)+ 0(1+ 2r
r=—o0 [ 2 27Tt3 ( ) 2 V 27Tt3 ( )

2

2
fe 7 | o 222 216> . 2rf
= ( 27rt3> TX_: (—1)e "7 (COSh S 2r sinh ) (6.66)

2
Curiously enough the factor 96_927/ V27t3 coincides with the first passage time

through 6 of a Brownian motion on the line.

6.3 Fractional equations on the ring X and the

related processes

In this section we consider various types of processes on the unit radius circumference

R.

6.3.1 Higher-order time-fractional equations

We start by analyzing the processes related to the solutions of time-fractional
higher-order heat-type equations. We consider the time-changed pseudoprocesses
Oy, (L¥(t)), t > 0, where

L"(t) = inf{s>0: H"(s) >t} (6.67)

and where HY(t), t > 0, is a positively skewed stable process of order v € (0,1]. We
notice that the Laplace transform of the distribution I, (x,t) of (6.67) reads (see for
example Orsingher and Toaldo (2012))

/ dre I, (x,t) = E,; (—t") (6.68)
0
where
El/ = /. -, 1\ Ra ) .
1 (x) ]ZOF(VJ,H) reRv>0 (6.69)

is the Mittag-LefHler function. For pseudoprocesses related to time-fractional equa-

tions we have the next theorem.

Theorem 6.3.1. The solution to the problem, for v € (0,1], n € N,

2oy (0,1) = — (—g“—;)”vgn(e,t), 6ecl0,2r),t>0,

(6.70)
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is the univariate (signed) distribution of ©a, (L¥(t)), t > 0, which reads

1 [o¢]
U (0,8) = - (1 +2) B,y (—k*"t") cos k@) . (6.71)

k=1
The time-fractional derivative in (6.70) must be understood in the Caputo sense,
that s

0” v ]- t%vé/n(e’ 8)
Uk (6.1) = F(l—v)/o ST 0<v<l (67

Proof. The law of O, (L"(t)), t > 0, is given by

1 & > 2n
vy (6,1) :7/ ds <1+2Ze—k scosk;@) L(s,t)
0 k=1

_i - _ 1.2n4v
=5 <1+2;Eml( k t)coskﬁ). (6.73)

Since, Vk > 1, we have that

%E%l (—E*"t") cos k) = — k*"E,y (—=k*"t") cos k@
2n
=(—1)"* ;02” E,1 (—=k*'t") coskd, (6.74)

and therefore we conclude that (6.73) satisfies the fractional equation (6.70). O

Remark 6.3.2. For n =1, formula (6.73) becomes the distribution of subordinated
Brownian motion B (L¥(t)), t > 0. For v =1 we retrieve from (6.71) the solutions
(6.34) of the even-order heat-type equations on R..

6.3.2 Space-fractional equations and wrapped up stable pro-

cesses

The following Theorem represents the counterpart on ® of the Riesz statement on
the relationship between space-fractional equations and symmetric stable laws (for

the non-symmetric case see the paper by Feller (1952)).

Theorem 6.3.3. The law of the process B (Hﬂ(t)), t >0, is given by

1
w(0,1) = —
p%(?) 27T

1 N ()"
+2 Z e \2/) "coskf (6.75)
k=1

and solves the space-fractional equation, for B € (0, 1],

2\ B
500 = = (=34e) 00, 0ep.m), >0

(6.76)
P (6,0) = 6(6).
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The fractional one-dimensional Laplacian in (6.76) is defined in (6.27) and HP(t),
t >0, is a stable subordinator of order € (0,1].

Proof. The law of B (Hﬁ(t)), t > 0, is given by

o 1
P00 = [ dspa0.9)hals.t) = 5
0 ™

© 62\ 5
1+ 2Ze_<7) " cos k@] : (6.77)
k=1

where py is the law of circular Brownian motion and hg is the density of a positively
skewed random process of order 5 € (0, 1]. In order to check that (6.75) solves (6.76)

it is convenient to write the fractional derivative appearing in (6.76) as

102\° sinmf [ 12 \\ ' 4
(‘5@) i / (“(‘5@)) AT dA
1 /Oo o _u>\_u<_lﬁ)
- Aﬁ/ e 2007) du d\
BT =5) Jo 0
e
= u e 2002/ du. 6.78
9 o
From (6.78) we have therefore that

1 02\" 1 o0 —u—19%
<_§%> cos k) = I'(=5) / duu=" e < 26?92) cos kb
- 0

1 o (—u) [ 1\ 9%
- B-1 N
F(—B)/o duu ; i ( 2) 2027 cos k6

1 oo —B8-1 - (_U)_
_F(—ﬁ)/o duu Z T cos k0

1 /°° k2
= duu P e ™7 cos kf
L'(=5) Jo

2 B
= (3) cos k0, (6.79)

and this shows that (6.75) satisfies (6.76). O

Remark 6.3.4. Another way to prove that

2\ B 2\ B
(—%%) coskl = (%) cos ko (6.80)

can be traced in the paragraph 4.6, page 428 of Balakrishnan (1960), which confirms

our result.

Theorem 6.3.5. For the wrapped up version, say &2(t), t > 0, of the symmetric

€828 (t)

stable processes S*°(t), t > 0, with characteristic function Ee = e*”é‘m, we

have the following equality in distribution

&%) 'Y B (2H (1)) & B (H? (2°1)), t>0. (6.81)
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Proof. The density of G%(¢), t > 0, must be written as

Pr{&¥(t) edf} 1
—i&(04+2mm) 7t|£|2ﬁ
P (0,1) = - S / dt e (6.82)

m=—0Q

The Fourier expansion of (6.82) becomes
a o0
P (0,1) = 50 +Y " aycoskd (6.83)

where

ak = _/ d9_ Z / dg e~ 16(0+2mm) ~UE* cos k6
0
=— Z / d§ —t|§|25/ df e~ cos 2k

1 g2 . ) »
[ 13 113 iyk iyk
_(27r)2/ d€e 4 /oodye y(ey +e y)
- / de e 5(¢ — k) 1 6(E+ k)] = L. (6.84)
s
This permits us to conclude that
1 —Kk2Bt
pees(0,1) = o—+— Z cos kf. (6.85)
O

While the integral in (6.82) (representing the Fourier inverse of symmetric stable
laws) cannot carried out, its circular analogue can be explicitely worked out and

leads to the Fourier expansion (6.85).

Corollary 6.3.6. In view of the results of Theorems 6.5.1 and 6.3.3 we have that

the solution to the space-time fractional equation, for € (0,1],

B
v v 2 v,3
S0, = — (<35) PO, el 10 6.56)
p5’(0,0) = 5().

can be written as

%0 (0,1) =t ZEH <— (—)Bt”> cos k0, (6.87)

and coincides with the law of the process
FUet) = B (HP (L' (), t>0. (6.88)

In (6.88) H” is a stable subordinator of order 3 € (0,1] and L is the inverse of H”
as defined in (6.67).
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Proof. Here we only derive the distribution of #*4(t), t > 0. We have that

Pr {#%(t) € do} :d@/ Pr{B(s) € d@}/ Pr {H(w) € ds} Pr{L"(t) € dw}
0 0
o do [© o~ _# *
= 4+ = —zs B v
o + - /0 Z:e cos k@/o Pr{H”(w) € ds} Pr{L"(t) € dw}
Ao df [ () ,
Zﬁ—l—? i ;6 (%) coskf Pr{L"(t) € dw}

i 2\ B
142 Z cos kO E, 4 (— (%) t”)] , (6.89)
k=1

where in the last step we applied (6.68). ]

o

S or

6.4 From pseudoprocesses to Poisson kernels

In this section we show that the composition of pseudoprocesses of order n running
on the circumference ® with positively skewed stable processes of order % leads to
the Poisson kernel. This is the circular counterpart of the composition of pseudo-
processes with stable subordinators which leads to Cauchy processes. In both cases

pseudoprocesses stopped at H %(t), t > 0, yield genuine random variables.

We distinguish the case where n is even from the case of odd-order pseudopro-

cesses. We have the first result in Theorem 6.4.1.

Theorem 6.4.1. The composition Oa, <Hﬁ(t)>, t > 0, of the pseudoprocess Oa,
with the stable process Hﬁ(t), t >0, has density

df 1 —e 2
Pr{6y (H= (1)) cdo} = - , N, 6.90
B (1)) € 21+ e=2t — 2e~tcos me (6.90)

and distribution function
. L arctan (ifﬁ:z tan g) : 0 € 0,7,
Pr{@% (H%(t)) < 0} - 3
1+ % arctan (% tan g) , 0 € (m, 2m),

(6.91)

which are independent from n.

Proof. We have that

Pr {@Qn (Hﬁ(t)> € d@} —df /OOO ds |5+~ > L

I 1o jen
Ze_kQ % cos k:@] h(s,t)
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1 1S 1t
—db %—F;;(:os/{ﬁe ]
d@ e—t—l—i@ e—t—z@
=— |1+ — —
2#[ 1+ ettt 1—et’9}
do 1 —e 2

= — . 6.92
271 + e 2 — 2etcosf ( )

The result (6.91) is derived by applying formula 2.552(3) page 172 of Gradshteyn
and Ryzhik (2007)

d 2 vaz—b2tanZ
/ ’ = arctan Y= il , a® > b (6.93)
a-+bcosx Va2 — b2 a+b
O

Remark 6.4.2. The Poisson kernel (6.90) can be interpreted as the distribution of

the process B (T¢) where B is a planar Brownian motion and T4 = inf {t > 0: B(t) € R }.
In the case of Theorem 6.4.1 the planar Brownian motion starts from the point
(e7*,0). Therefore we have that

B (%) 'Y 0,, (Hﬁ(t)), t>0. (6.94)

This means that a pseudoprocess running on the ring R and stopped at a stable
time Hﬁ(t), t > 0, has the same distribution of a planar Brownian motion starting
from (e7*,0) at the first exit time from the unit-radius circle. The result (6.94)
holds for all n € N and represents the circular counterpart of the composition of
pseudoprocesses on the line with stable subordinators H%(t), t > 0, which possesses
a Cauchy distributed law. Ast — oo the distribution (6.90) converges to the uniform
law.

Remark 6.4.3. In view of (6.91) we note that for O, <H%(t)>, t >0, the proba-
bility of staying in the right-hand side of R has the remarkably simple form

s 1 ™ . 1 2 ¢
Pr{_§ < Oy, (H%(t)) < 5} =3 + ;arctane ; vt > 0. (6.95)

We now pass to the Poisson kernel associated to odd-order pseudoprocesses. The
asymmetry implies that the density of the composition Oy, <H 2an(t)), t>0,is
bit more complicated than (6.90).

Theorem 6.4.4. The composition Og, 1 (HTlﬂ(t)>, t > 0, has density

de 1 — e 2ant
21 1 + e—2ant — 2e=ant cos (6 + by,t)’

Pr {@Wl (Hﬁ(t)> c d@} - (6.96)
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Figure 6.3: In the picture the density of the circular Brownian motion (dotted line)

and the kernel (6.90) are represented.

0.3

and distribution function

Pr {1 (H771 (1)) <0} =

—ant —ant
L larctan 2" tan %t — arctan 1" tan but 0 < &t < 7
™ l—e—9on 2 l—e—an 2 ) 2 9
1 14e—9nt O+bnt 1 14e—9nt bt bt
1+ - arctan /-5 tan =5 —arctan ;T rtan ==, < 0 <2m o
(6.97)
where
s T
a, = COS ————— b, = sin ————. 6.98
" 2(2n +1)’ " 2(2n + 1) (6.98)

2n

of order 5-t5. Then, in view of (6.34), we have that

Proof. Let h%(s, t), s,t > 0, be the density of a positively skewed stable process

Pr {1 (H771 (1)) € db} :dH/O ds (% —i—%Zcos (k6 + k2"+ls)) hos (s.t)
k=1

S
=df | =+ =) e "% cos (k(0 + but))
2r 7 —
4o 10 o—t(an—ibn) o0 g—t(an-+ibn)
T or 1 — eif o—t(an—iby) + 1 — e—i0p—t(an+iby)
_db 1 — g 2ant

=— . 6.99
21 1 4 e2ant — 2e=nt cos (0 + byt) (6.99)

The same result can be obtained by considering that Xs,. (H ﬁ(t)) has the
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following Cauchy distribution (see Orsingher and D’Ovidio (2012))

Pr {X2n+1 (Hﬁ(t)> € dx} = feos 2(2;+1) dzx.
T [<x+tsin M) + 2 cos? 5y
(6.100)
By wrapping up (6.100) we arrive at (6.96) in an alternative way. In view of (6.93)

we can write

Pr{ @y (H51(1)) < 6} =
1 ¢ 1 — ¢—2ant

=— [ d
27 J, Y1 e—2ant — 2e=ant cos (y + byt)

1 14e—ant 0+bnt 14e—9n 04-bnt
)= [arctan T e=ant tan 5 — arctan T—e—ant * tan bt , 0< —5 = <m,
1 1+e—9nt O+bnt 1 14e—9nt bnt _ bat
1 + — arctan ;=5 tan =5 —arctan e 5 tan 7t < 0 < 27 — 225
(6.101)
]

(a) (b)

Figure 6.4: The distribution of the hitting point of a planar Brownian motion is
obtained as subordinated circular pseudoprocess in the even case (Fig. 6.4a) and
odd case (Fig. 6.4Db).

Remark 6.4.5. From (6.101) we arrive at the following fine expression

Pr {@%H <HT1+1(t)> < 9}

1 1 —e 2t tan ¢ (1 + tan? 22t
[ ( ( 2 ) , 0 € [0,2m),

= — arctan t 3 -~
m e=nt)® + 4tan § tan Yt + (1 + e~ont)” tan? but

(6.102)
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Figure 6.5: Distributions related to odd-order Poisson kernels (for t = 1)

from which we are able to explicitely write for Oqp,1q <Hﬁ(t)) the probability of

staying in the interval (0,7) as

Pr {0 < Og41 (Hﬁ(t» < 7T}

while for (O, g) we obtain

™

sinh a,,t

arctan — ,
sin bt

Vt>0,  (6.103)

Pr {o < Oy (Hﬁ(t» < g}
(1 — e~ 2ant) (1 + tan? %)
= — arctan 3 - 3 -~
@ (1 —e )" + 4tan 2t 4 (14 e~9n!)” tan? %t

sinh a,,t

= — arctan

T 2 sinh? tal cog? b 4 eant sin byt + 2 cosh? dal gin® bat

2
sinh a,,t

1
= — arctan

: 6.104
T cosh a,t — cos b,t + et sin b,,t ( )

By means of the same manipulations leading to (6.104) we arrive at the alternative
form of the distribution function for 6 € [0, ],

sinh a,,t tan g

1
= — arctan - 7
T cosh ant — cosb,t + et sinb,t tan 3

(6.105)

Pr {0 < Ognis (Hﬁ(t)) < 0}

Remark 6.4.6. In the third-order case we can arrive at the Poisson kernel (6.96)
for n =1 by considering that (see Orsingher and D’Ovidio (2012))

Pr{Xg (H%(t)) e dm}
dx

V3t
T om oy 2] (6.106)
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The wrapped up counterpart of (6.106) becomes for 6 € [0, 27)

{@3( HA(t )) ed@} - :i Pr{Xg (H%(t)> Ed(0—|—2m7r)} —

o S [ () ()

2
0+2mmn+5 V3t 2
V3t ¢ d«9\/_ 3t einerh) )
—a Yy v Z st
2m = (O+2mm+ L)+ 38 e V21s V2ms3
00 (v3t/2)*
d9\/§t/°° { ( t)} 2| e
= ds |1+ 2 cos |k|lO+=)|e 2 | —
2T Jo ; 2 V2ms?
db = 5 t db 1 — e V3t
=— |1+2 e 2 % cos {k:(@—l——)] = — ;
2 kz:; 2 211 4 V3 — 2¢=V3cos (0 + L)
(6.107)
%g and by = =

which coincides with (6.96) since a; =






Chapter 7
Higher-order Laplace equations

Article: Orsingher and Toaldo (2012). Shooting randomly against a line in euclidean

and non-euclidean spaces.

Summary

In this paper we study a class of distributions related to the r.v. C,(t) = t tanx O, for
different distributions of ©. The problem is related to the hitting point of a randomly
oriented ray and generalize the Cauchy distribution in different directions. We show
that the distribution of C,,(¢) solves the Laplace equation of order 2n, possesses even
moments of order 2k < 2n — 1, and has bimodal structure when © is uniform. We
study also a number of distributional properties of functionals of C,(¢), including
those related to the arcsine law. Finally we study the same problem in the Poincaré
half-plane and this leads to the hyperbolic distribution Pr{n € dw} = —4%— of

7 cosh w

which the main properties are explored. In particular we study the distribution of
hyperbolic functions of 7, the law of sums of i.i.d. r.v.’s n; and the distribution of

the area of random hyperbolic right triangles.

7.1 Introduction

In this paper we consider the random variables of the form

ttans O ec (0,2 N, ¢t >0
Cu(t) = an 1 ) S ( ,2), neN,t>0, (7.1)
—ttann |O], ©c(-%,0),

under different assumptions on the distribution of ©.
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First of all we consider the case where the random angle © has distribution

™

sin - ne
(0) = 2 eot® 9], e (-fﬁ) neN,
T 22
and we show that in this case C,,(t) has probability density
nsin =~ 2l
W(z, 1) = 2n , eR,t>0. 7.2
plant) = (M) S (72)

We regard (7.2) as a generalization of the classical symmetric Cauchy law under
many viewpoints. First of all because, for n = 1, the angle has uniform distribution
and the law of C'(t) becomes

1t

S rzeRt>0.
T2 + 22

4! (Q?, t) =
Furthermore in this case C(t) = t tan © represents the segment intersected by a ray

shooted from the point O against the parallel ¢ units away.

In the case n > 1 we mantain the same interpretation but here the angle has a

law which becomes increasingly concentrated around 6 = 0 as n increases.

For |z| < t the cumulative distribution of (7.2) has the form

I nsindts S (—1)F o\ 20kl
Pr{C,(t = = 2 (—)
HGll) <ok =5+ — %2711{:—1—1 [

where

= <_1)k a
OQ(Z) = Z mzz k+1, 22 < ]., o > O,
k=0

represents a generalization of the arctan z function and reduces to it for a = 1.

The density (7.2) is a solution to the 2n-th order Laplace equation

a2n aQn
(8752” + m) pn(z,t) = 0.

However (7.2) differs from the classical Cauchy because even moments of order

2k < 2n — 1 exist and is non longer infinitely divisible as the characteristic function

shows.

Some other properties of the Cauchy are lost but by considering some other
related distributions we are able to give a picture of generalized higher-order Cauchy
distributions with interesting interlaced distributional properties. In the case © is

T T

uniform in (—5, 5) the probability density of

& ttanm= O, CNS (0,
—ttanw |O)], ¢ (-
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reads

- no( |\ 2t
Dn(z,t) = = — _— reR,t>0. (7.3)

T\t t2n 4 g2n’

The distribution has a bimodal structure and thus substantially differs from (7.2).

The maxima of (7.3) are located at x = £t (Z—:) 2. For the r.v. C,,(t) the following

remarkable property holds
I
Ca (3)

In our view it is relevant that the probability law (7.3) shares with the classical

o

< (D).

Cauchy also the property that

possesses arcsine distribution, that is

~ dw
Pr{Zntedw}:—, 0<w<t.
(¥ Ty w(t —w)
Curiously enough the ratio of independent r.v.’s /Wn(t) = gé—g has a distribution

which generalizes that of the ratio of independent Cauchy r.v.’s; that is

Cl(t dw nt"|w["! £\
pr{cn%dw}:_wwbg(_), wERE5 0

C\TQL(t) 7T2 (t?n _ w2n> w

However the distribution (7.3) does not satisfy an higher-order Laplace equation as
(7.2) does.

The third r.v. considered below is
Cp(t) = ttan®© (7.4)

where © has distribution g,(6), € (—%,%). The distribution of (7.4) is unimodal

and has analytical form

n—1
1 I t\ "
po(z,t) = —sin————(—] | R,t > 0. 7.5
Pa(,1) D T PR (]x\) re (7.5)
We note that for (7.5) the r.v.
=~ t




7.1 Introduction 174

has Beta distribution with parameters (%, 1-— %)

In the last section of the paper we consider the problem of shooting against a
geodesic line in the Poincaré half-plane Hj . We shoot from a point O of the x-axis,
representing the infinite in H against a half-circumference of radius ¢ and center O
(see figure 7.6a below). The hyperbolic distance n between the points P and @), is

given by
_ —logtang, 0e(0,2), (7.6)
logtang, RS (%,W),
because the metric in Hj is
ds® = W

Considering © uniformly distributed in (0, 7), the random variable (7.6) has prob-
ability density
4 e "dw 2 1

ri{n € dw} ml4e 2w 7 coshw . v

The symmetric r.v.

N S}
n = —logtan§

has density

1 1
Pr{ned = — d R )
r{n € dw} p—— w € R, (7.7)
and characteristic function
87 1
Ee®” = G B e R.
cosh 7”

The hyperbolic r.v. 7 has the unusual property that its density and characteristic

function have the same analytic form. The even-order moments

T 2n
i = (5) 1B
q 5 | Eon|

show an interesting relationship with the Euler numbers E5,,. We produce a direct

derivation of the distribution
w

N N 2
Priin +17p € dw} = rsinhw’

w € R,

by means of the Cauchy residue theorem and we give also the explicit distribution

of sums 7, = > 7, 7; for any n € N. We obtain the distribution of all hyperbolic



175 Higher-order Laplace equations

functions of 77 and of other related functionals. For example, we prove that the law

of sinh 7 coincides with the standard Cauchy and that

1 1
Y = 2~ — T 12~
cosh” 7 1+ sinh* 7

has arcsine distribution. In the last section of the paper we also derive the distri-
bution of the area K of the hyperbolic right triangle (see fig. 7.6a one side of which
has length 7 defined in (7.6). We show that the distribution of K is

2 dw T
e ean) = 2 e (07), |
r{K € dw} oy g we (0 5 (7.8)
with mean 5
EK = —log2.
T

7.2 The higher order Cauchy random variables

We consider the angular distribution

us

SN g- a1 T
2(0) = 220t 0l e (——,—) 7.9
w(®) = o . (7.9
which for n = 1 coincides with the uniform law in (—%,%). The distribution (7.9) is
concentrated around § = 0 (see figure 7.1) and its spread around the mean decreases
as n increases. One expects that the shots must be concentrated around the target
and (7.9) satisfies this requirement. In order to check that (7.9) integrates to unity

we perform the following calculation

3 2sin = 2 .
/qn(e)cw:& cot™= 6 do

™ 0

[NIE]

1

sin = 1
S Zin— [ ym (1—y) m dy
T 2n Jo
1 1 1
:—Sin<l>F — | I'{1—— ) =1,
m 2n 2n 2n
because I (%) r (1 — %) = /= for the reflection formula of the Gamma integral.

We note that the related random variable cos © with © distributed as (7.9) has

even-order moments equal to

Ecos™© = 2/ cos™ 0q,(0) do
0
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The special case m = 2 yields Ecos?© =1 — %

We now pass to the derivation of the distribution of

Co(t) =

ttan%@, @6(0,%), n e Nt >0,
—ttann 5

o, ©e(-3,0).

Theorem 7.2.1. The explicit law of C,(t), where © possesses distribution (7.9),

reads

s T t2n—1
Pr{C,(1) € dz} = > 2n dr  zeRt>0, (7.10)

T th + x?n

and for |x| <t

Pr{Co(t) < o} — &4 "2 Z an + : ( )MH. (7.11)

Proof. For x > 0, we have that

Pr{C,(t) <z} = Pr {ttan% O < x}

z\"™
t

1 s T arctan( ) e
_ L, Sm_zn/ cot™= 0 df. (7.12)
2 s 0

By taking the derivative of (7.12) with respect to = we readily have the density
(7.10). In the same spirit of the previous calculation we obtain the result for z < 0.

By means of the substitution tanf = y we reduce (7.12) to the form

wg (G
Pr{C,(t) <z} = o L _dy

T Jo y o 1+y?

x

1
2

- 14‘ Sin% i(_l)k /<t) y2k71+% dy
2 s

k=0 0
1 nsinXt & (E)an+1
= — 2n S AN P A— <t 7.13
R Sy <l 0

which coincides with (7.11). The intermediate step shows why the cumulative func-

tion can be written as in (7.11) for |z| < t. O

Remark 7.2.2. The density (7.10) has the alternative form

Pn(2,t) = %/ e By (—2"2%") dz, (7.14)
0
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Figure 7.1: The probabilty function (7.9) of the r.v. © (left column) and the related
distribution of C,(t) (right column). The dotted lines represent the uniform law

and the Cauchy density.
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where

Ra>006>0
=Yty e

k=0

is the Mittag-LefHler function, see for example Haubold, Mathai and Saxena (2011).
The representation (7.14) permits us to show that it satisfies the Laplace equation

of order 2n. Since

aQn
wEZn,l ( ZanQn) — —Z2nE2n71 ( 2’2”1'2”)

we have that

8271 o0
oy / B_ZtEQn 1 ( x2n22n> dz
0

o0
= —/ e 2" Eypy ( xznzzn) dz
0

82n o]
= _8t2n/ €7ZtE2n71( x2n22n) dz.
0

The probability density (7.10) is an unimodal function which for n — oo converges

to the uniform law in (—¢,¢). For increasing values of n it takes the form of a

rectangular wave as figure 7.1 shows.

Remark 7.2.3. The distribution function of C,(t), t > 0, can be represented in
terms of hypergeometric functions for all w € R without the restriction (%)2 <1.
For w > 0 we have that

1 msing- (v ¢2n7]

2 0 t2n xQn x

Pr{C,(t) < w} =

In the above steps we denoted by

v(a,z) = / e ‘et dt
0
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the incomplete Gamma function. By
(@) (b)x 2*
Cla+k)T(+k) 1 2k

T(ctk)  B(ab) kI’

F(a,b;c;2) =

NE

k=0

NE

>
I

0

we denote the hypergeometric function. In the last step we used formula 6.455, page
657, of Gradshteyn and Ryzhik (2007), that is

* 1 - T (p+v) ( a
" te Py (v, ax da::a—F Lu+viv+1,—— |,
/0 v 0m) v(a+ B) : a+p

valid for R (a+ 5) > 0, R(B) > 0, R (n+v) > 0. With little changes we can see
that (7.15) holds also for w < 0. By means of formula (see Gradshteyn and Ryzhik
(2007), 9.131, page 1008),

Fla,bic;2) = (1—2)" " Flc—a,c—b;¢;2)

the cumulative function (7.15) can also be written as

L

1 nsin w 1 1 1 w?n
Pr{C,(t) <w} = 5 +——= P 5 g g T |-
2 T (w2n+t2n)2n 2n' 2n" 2n tn + z

(7.16)

We note that, for n = 1, the function (7.16) coincides with the expansion of the

arctangent function,

1 1 w 113 w?
see Gradshteyn and Ryzhik (2007), 1.641, pag. 60 1 1 w
= — 4+ —arctan —.
2 7 t

By applying the following formula

z

F(a,b;c;z):(l—z)bF(b,c—a;C' ),

T2 —1

we can rewrite the distribution function (7.15), for 1:—; <1, as

1 sin = 1 1 2n
Pr{CL(t) < w) = 3+ ”‘MF(l 1 _n+1,—w—)
n

T t t2n

_ sin(%)( . +%Z(_1>k<1>k(%>k1w")

&+ 1), 5 o

_ msin (%) T il o (&), w2+
Bl @ <2nsin (£) +Z( 1) (M)k f2nk+1

2n
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nsin (2—) 00 w2k
- . 7.17
T <2n Sll'l L + g 27’Lk’ + 1 ¢2nk+1 ( )

2n

In (7.17) we retrive the result (7.13) which was obtained without resorting to the

hypergeometric functions.

Other useful representations of the cumulative function of C,,(¢) can be given in

integral form as

Pr{C,(t) < w} = 7 sin (2_) ( ‘7'(' +i (—l)k w2nk+1>
k=

™ 2n sin (21) Ink + 1 ¢2nk+1

1 nsin o- w o
_ T 2n - d —u(2nk+1)
2 s Z ( t ) /0 we

B 1 n81n(2n) o) LW €—2nuw2n k
T2 T/O duc ?Z<_t2—")

k=0

1 3 T e’} t2n71
=57 nSL(Q")w/ due™ : (7.18)
0

_|_

T t2n + w2ne—2nu

Formula (7.18) can be also rewritten as

1 mnsin (X o0 o n
=5+ Mw/ du e_“/ dze * Eop <— (we_u)2 Z%)
T 0 0
_ 1 nsin wi k w?nk /OO d e_ztzgnk /OO du 6—u(1+2nk)
2 — 2nk: +1) 0
1 nsm > 1)kw?n* >
_ 1 d —zt 14+2nk—1
5T QU;;I‘%Mrkl 1+2nmu£ o
1 nsin (3) o ( )MH
- nsm 5y )
o Z 2nk + 17

k=0
which coincides with (7.12).

Remark 7.2.4. In force of formula 3.738 pag. 430 of Gradshteyn and Ryzhik (2007),

we can give a representation of the characteristic function of (7.10) as follows

S 2n sin = *° cos Bx
/ ezﬁxpn(a:, t)dx = —2" 2n- 1/ —6 dx
- 0

2 2
. ™ 720 4 t2n

1 . (2k—1)7 2k —1 2k — 1
= Sin% ; €7|5‘t81n ( kgn) Sin ((Q—n)ﬂ- + |ﬁ| tCOS %) ) (719)

which coincides, for n = 1, with the characteristic function of the Cauchy distribu-

tion.
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Remark 7.2.5. Other generalizations of the Cauchy are obtained by considering

two different types of r.v.’s. The first one is

. t tan s
Co(t) = o ?’ ©€(03) (7.20)
—t tann |©| ©ec(-%,0),

where © has uniform law. The distribution function of (7.20) is

N T A S

Pr{Cn(t) <x} =2 " .

i farctan(ff)n ’ <l

and thus the density reads
n—1 2n—1
. n |z t

n(T,t) = — | — _—, R, , N, 21
Dn(x,t) W(t) n s >0,n € (7.21)

and possesses the following representation

n—1 o0
D (x,t) = n (%) /0 e " Eona (—m2”22”) dz.

0

In Figure 7.2a we give a picture of density (7.21) for different values of n. It is

interesting to note that the distribution is bimodal with two symmetric maxima at

1

— 1\ 2

xz:l:t(n ) , n > 1.
n+1

Furthermore, the characteristic function of the distribution (7.21), in force of formula
3.738 of Gradshteyn and Ryzhik (2007) pag 430, reads

© " L @k—Dr 2k —1 2k —1
/_Oo ¢Pp, (x,t) do = ;e_wtsm Gebr (% + |8 t cos %) .

For the r.v.
Co(t) = ttan©, (7.22)
with © endowed with the distribution ¢, (#) given in (7.9), we have that

. d
Do (x,t) = %Pr{ttan@ < x}

d 1 s T arctan ¥ -
= - [5 iealor / cot™n |6 d@]
T m

Wl

n—1

mn =~ t t n
— M <—> . (7.23)

T a4+t \ |zl
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n=2 n=2

© ©
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0.0
0.0

-10 -5 0 5 10 -10 -5 0 5 10

(a) (b)

Figure 7.2: The probability density function of C,(t), (A), and C,(t), (B), for
different values of n.

Remark 7.2.6. Since the following identity holds

n—1 9 1 22n $2n
n |x| - | |n71 ® 6755 i e s p
— | — —— = nlx s
T\t t2n  g2n 0o V2rs V2rsd

for the hyperCauchy (7.21) a subordination similar to that of the classical Cauchy

law can be established and reads
Pr {an(t) € dx} = / Pr{é(s) € dx} Pr{T;» € ds},
0
where

|B(s)|, B(s) >0,

B(s) =
%) —|B(s)|, B(s) < 0.

With B(s) we denote a standard Brownian motion and Ti» is defined as

Tin = inf{s >0 : B(s) = t"}

Now we pass to the derivation of the moments of (7.9).
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Theorem 7.2.7. For 2n > 2k + 1, k > 0, we have that

sin % ok
sin (%557)
t2k‘
- (7.24)

km T i kT
cos - + cot 35 S

n

EC2 (1) =

Proof.

o0 2k
EC2¥(t) = ~sin 21152”1/ —————dx
s n oo

. T _ _ 2k+1 _
= — 2 Lgp ¢ e Yy T Ty
7r 2n 0
PEL) T2 7o,
— sin —t
T 2n

L

S 5 2%

n (%07

]

Remark 7.2.8. For k = 1, formula (7.24) gives the variance of the hyperCauchy

L g
EC2(t) = Var Cy(t) = —o2ny2 —

i 37w - "
sin 57 1+2cosn

The last expression shows that the variance is a decreasing function of n.

Furthermore we have the following interesting relationships:

Eci(nfl) (t) _ t2n72

Y

EC«Q(H—Q) (t) sin % t2(n—2) t2n—4v C (t) t2n_2
pu— —_— — a n — ,
! sin 3—2 ' 1+ 2cos”
t*Var C,, (1)

EC,(t) = :
a(t) 2t% cos & — Var C,,(t)

For the distribution (7.23) it is possible to evaluate only the moment E ‘5n(t)‘
by performing the following calculation

n—1

~ sin &= [ t t\ "
B[Cuo] = = | ’”C‘m(m) "
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Sln I Q_Z:BZ
132 +t2

m 14y
1 s oo oo
y=x2 S5~ o 1, 1
= n ¢ e v x2 T e " dy dr
™ 0 0

7.3 Distributional properties of the hyperCauchy

In this section we consider a number of r.v.’s related to the hyperCauchy previ-
ously introduced. We start by examining the properties of the reciprocal of the

hyperCauchy.

7.3.1 Distribution of the reciprocal

It is well known that the symmetrical Cauchy r.v. Ci(t), ¢ > 0, has the property
that

1

ol = ().

|

)

For the hyperCauchy r.v.’s Cy(t), C,(t) and C,(t) we have the following theorem

Theorem 7.3.1. We have that

i)

1 nsin =~ 21 2n—2
Pr{——5 €dw, = 2 <E> dw
Cn (?) T $2n + w2n t

w 2n—2
_ (7) Pr{C,(t) € dw}, weR,t>0, (7.25)

1 ~
Pr¢ — €dwp = PrqC,(t) € dw we R t>0,
{Cn(%) } { J



185 Higher-order Laplace equations

Proof. The density of

reads

. 0o 1 2n—1
vl 1) = i&/ 16

dw 7 1 g 4 a?n
w

nsing- ¢! (w ) 2n—2
— , eR,t>0, 7.26
T 2w\t v (7.26)
and for n = 1 we retrive the previous result of the classical Cauchy r.v.. The density
1
(7.25) has a bimodal structure (with maxima at x = 4+ (n — 1)2 ¢) as illustrated in

figure 7.3a.

Instead, the r.v. an(t) preserves the fine property of the classical Cauchy distri-
bution because

1 n 0o - (l)anl

t w

and so, by taking the derivative with respect to w we get

1 n—1 t2n—1
prd b cget o (e,
C, (%) T\t t2n + w?n

which coincides with the law of C,,(t). For the law of the r.v. C,(t) we get that

1 S 1 1 et
Pr = <wb = Xm — 5 (L) dz,
&) )y e
and thus
1 sin =~ ¢ |w] £
P — d = ——2n — d 7.27
r{cne)E “’} P () 2

Distributions (7.26) and (7.27) are presented respectively in fig 7.3a and 7.3b, for

different values of n and the dotted line represents the classical Cauchy density.
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Figure 7.3: The probability density function (7.26), (A), and (7.27), (B), for two

different values of n.
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7.3.2 Distributions of the ratio

For the ratios of the three types of hyperCauchy distributions dealt with so far we
have the following theorem.

Theorem 7.3.2. In the following table we have the ratios of the r.v.’s and the
corresponding densities

r.v. density for w € R;t >0
Wn(t) = tg%gg mn(w,t) = %tan %t%
/Wn(t) = t%gg t%n(w,t) = %bg (%)Qn
Wa(t) = %8 1, (w) = tan%hl”' — (1 - w2_%>

Proof. We give a hint of the derivation of the densities above. For w > 0,

wx
t

Ol (t) 1 t2n—1 t2n—1
P t—2 2 2 d .
' { CZ (t) 2 + n Sln 2n 7T2 / IL‘/ t2n + x2n 2n + y2n

The density is therefore

1 o0 1 2
mn(w7t) — 2n2 Sin2 (1) _2/ d$£t4nf2 ; - -
/s Joo ot T ey (u)

2n?sin® (&) S ¢42 | [ axdx wn [ rdr
o $2n _ qp2n t 0 $2n + 2n $2n 0 £2n + (wQ"m%) ’

t2n
(7.28)

and with the change of variable “* = y in the second integral of (7.28) we obtain

2n Sll’l2 t4n 2 2n t2 o)
w,(w,t) = (5:) = (1 — w__> / dz —~
0

t2 w2n t t2n U)2 t2n + xQn
v=ty 2n” sin” (Zn) 7r12 pn=3 (1 _ w?? ﬁ > d Yy
t2 w2n t2n—2 t2n Yy 1 + an
2 s 1 n—
_ 2n7sin *(3) = (#2172 — p2=2) t? 1
o t2n _ w2n t2n ]_ + y2n
T 1 t2n 2 2n 2 t 1
- (2) % (-
s 2n g 2 n
n T t2n 2 w?n—?
= —tan —t————F—. 7.29
2T 2n 2 — wn ( )
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For the r.v. /Wn(t) the density reads

~ on? [P g 2l AN t2n-1 wr\ "1
g = 20 (7T Ty Pyt
tQ”

72 Jy tt g a \i +(u)™ \ 2
2n23ngn-t oo gl dx
- 2 /0 120 4 20 pan (wx)%
(5)"=v 200 1 1 1 W4
2 t2n2n Jo 14yt +wny

_ ntnwn—l /oo 1 w2n d
) (th _ an) 0 1+y $2n _|_w2ny Yy

nt"w" ! £\
= —— 1] — . 7.30
s () (730

7-‘-2 (th _ w2n

For the r.v. Wn(t) the density, not depending on ¢, has a structure different from

the previous ones and is obtained by means of the following calculation

A 2 00 n—1 n—1
~ sin 5 - t t\ t t n
to,, =2 —2 — | = — | — d
(w) ( 0 ) /0 2 + 22 (a:) 12 + w2a? (wa:) v
Sin21 2 t2+2<n771) o0 €T x72(n771)
=2 4 — 5 dx
T wi Jo 2+t +wia?
.2 Q(n;l) co 219 o0 2
Sl 5 - t°\n n n
:2( ;”) — / —f de—w2/ —2x 5 dx
us w (1—w?) \Jo 2°+1 0 t*t+w

B 2(sin %)2 £2(5) 7r wrhm
™ WS (1—w?) \ 22 wsinT 262 asin®

_ Ll “’_) (1-u). (7.31)

27 m%(l—w2

Similar calculation performed for w < 0 yield the previous distributions for w €
R. ]

Remark 7.3.3. We note that by setting n = 2 in the law to,(w,t) we retrive the
standard Cauchy density. Indeed

1 T 2 —w?
tUQ(w,t) = ;tan Ztm
1t

T2+ w?’

This means that if Cj(¢) and C3(t) are two independent random variables with law
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the distribution of

is a standard Cauchy.

Furthermore we have that the distribution (7.30) coincides with formula (4.6) of
D’Ovidio and Orsingher (2010) for n = 1. We can check that the r.v.

()

where C}, C? are two independent Cauchy r.v.’s, possesses distribution (7.30). In

other words we have the following equality in distribution

JGal) 14 (10%@))%

o2t)  \tCR(D)

Remark 7.3.4. In order to check that the density (7.31) integrates to unity we

perform the following calculation

tanzl oo ‘IU‘TIL 1 <1 —w27%> dw tanzl 9] w% 1 < —’UJ2 %) dw
L (1-u?) I (1 —w?)
1 - 1w 1(1—w2’%) 1 o wn—! (1—w2 n)
= —tan — dw + — tan — dw.
™ 2n J, 1 —w? T 2n /4 1 —w?
(7.32)

With the change of variable y = i in the second integral of (7.32), we get

1 4 9_2
/ w,(w)dw = %tan% i 1 dw +

—00

2 1
ol (1 — y2—;> yn
Ly U Kl
0 Yy
9 T [ w1 (1 — w2_%>
d
7T 2n J,o 1 —w? v

2 =t
— Ztan g (w%’l — w’%H) w2k
m 2n 0
k=0

1

1 _1
w2kt w2k—5+2

2k+1 2k—142

k=0 0
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Figure 7.4: The probability density function tv,(w, ), (A), fo,,(w, t), (B), and 1, (w),

(C), for different values of n.
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2 m > %

Considering the relationship (see Smirnov (1964) pag 410)

(e o]

2 2
zcotz = 1—24 (7.34)

“ k2712 — 22

s

and setting z = -,

we get

0o 2
1cot1 = 1—2—2(2”)

N2
2n 2n — k2n? — (%)
© 2
-3 ot
2 17
k=1 (2k) n?
and thus
T T 2 — 1
Zcot— =n— = —_— 7.35
2 o T n;@k)?—# (7:35)

Considering (7.35) we can rewrite (7.33) as follows

RS 2 T = %
/_ ,(w) dw = —tan (n_z—(QkV—#)

o0 k=1
2t 7T(7T t7T> 1
= — n— — —_— - .

oo (9,

The previous calculation yields an interesting integral represention of the cotan-

gent function. Indeed, in light of (7.33) and (7.34) we can write

1 & 2z
otz =2 =D g
1

For a representation of (7.29), (7.30) and (7.31), see Fig. 7.4a, 7.4b and 7.4c.
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7.3.3 The higher-order arcsine law

It is well-known that for the classical Cauchy r.v., C(t), holds the following rela-
tionship (see Chaumont and Yor (2003) pag. 104)

t id. 1 1
Zi(t) = 5 = — 0<w<t.
L+(Git)” 7

w(t—w)
which is known as the arcsine law. For the hyperCauchy we get similar relationships.

[l

Theorem 7.3.5. We have the following distributions.

7.0 probability density for 0 < w <t
sin X N
Znlt) = ety (- ) e
Z\n t — At _ 1
( ) 1+<|Cnt(t)|)2 m/ (t—w)
Zalt) = —— M (t—w)r

Proof. We get for 0 < w < t,

= n [ lz\"" 2!
T Ji(te)2m t Lo + xem

and thus

Zn(w, t) dw = Pr{Zn(t) € dw} — 1

For the r.v. C,(t) the distribution becomes

Pr{Z,(t) < w} = 2% t:_w);n tzi’;_‘;%dx
and
Zn(w,t)dw = Pr{Z,(t) € dw} = Sir;%w_;n (t—w)5 " dw,
Similar calculations for Zn(zﬁ) yield
Pr{Zn(t) € dw} = % (t — w)i—l e
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Figure 7.5

n=2 n=7

00 02 04 06 08 1.0

The density
sn(w,t) = Za(w,t) = —20 (t — )7

is a Beta with parameters (% -1, —%) and for increasing values of n its asymmetry
increases, as shown in Fig. 7.5 for t = 1 (the dotted line represents the classical

arcsine law).

7.4 The Hyperbolic case

Let us consider the Poincaré half-plane Hy = {z,y : € R,y > 0} (see for example
Gruet (1996), Lao and Orsingher (2007)) endowed with the metric
ds* = M
Y

We assume that a particle is shooted from the point O(0,0), see figure 7.6a, on the
r-axis (representing the infinite of Hj ), and moves along the geodesic line joining O
with an arbitrary point P on the half-circle centered at O, denoted by Cp, and with
arbitrary radius ¢. The hyperbolic distance n between P and @) (Q is the intersection
of the vertical geodesic line through O and the half-circle Cp), does not depend on
t, because the half-circumferences centered at O form a system of horocycles, and
will be denoted by 1. Thus the hyperbolic distance 7 is obtained by evaluating the

line integral

5/ (@(9)" + (v/(5))” ™
n = /@ \/ o) Y ds, CNS (0,—)

= /2 ds = —logtang, (7.36)
o 2

sin s
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Table 7.1: In the following table we sum up our results on the hyperCauchy func-

tionals
Variable Law Transformation Law of the transformation
nsin% $2n—1 1 nsinﬁ $2n—1 w 2n—2
Cn(t> T t2”+m2” Cn<%) T t2n+w2n ( t )
C,}L(t) n - t(t2n72_w2n72)
tC% (t) 27 tan 2n 12n —q2n
t S oy (t_w)zln 1w o
2
14 (1900 )
for0<w<t
—~ —1 —1
% (t) n_t2n-1 Jz| n 1 n_t2n-1 |w| n
n T t2"+:132" + 671(%) T t2"+w2" t
CL(t) ntPw? 1 t\2n
t@%(t) w2 (t2n—w?2n) IOg (w)
1 _1
t Lw=2 (t —w)2
Cn (1)) n ™ ’
1+( o )
forO0<w<t
n-1 n—1
5 (t) sin 7— ¢ t\ " 1 sin - ¢ Jw[)
n ™ t24x? \ |z Cn(%) T t24w? t
arlz(t) 1 7w |w|n 29—
o2 (1) 5 VAL o Gy L —w™
¢ Mon (t —w) W
EXONS
1+< & )
forO0<w<t
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where © is the random angle formed by OP and the z-line. Formula (7.36) can be
rewritten as

e = tan —
2

which is the celebrated Lobachevsky law for the angle of parallelism.

— | T

Q S

) o
(a) (b)
Figure 7.6: The probability density function of C,(t), (A), and C,(t), (B), for

different values of n.

If © is uniformly distributed in (0, ), the non-negative random variable 7 (rep-

resenting the hyperbolic distance of P from Q)

—log tan %, S
log tan %
has distribution function

0
Pr{n <w} = 2Pr logtan— < w} = 2Pr {O > logtan§ > —w}

= 2Pr{1 >tan— >e w} = 2Pr{g >0>2arctane_w}
3

d@ 4
= / = 1— —arctane™", w > 0. (7.37)
2arctane—w T ™
The density related to (7.37) reads
4 e 2 dw
vin € du} 71te2 " T Tcoshw’ v

If we consider the symmetric r.v. (see fig 7.7)

~

©
n = —logtan PL O c (0,m), (7.38)

we obtain that
1 dw

Prin € dw} = mcoshw’

w € R, (7.39)
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with distribution function

~ 2
Pr{n <w} = 1— —arctane ™.
s
The distribution (7.39) appears in Feller (1966) pag. 503 and emerges in the

analysis of the successive overshoots by a Cauchy process in Pitman and Yor (1986).

The r.v.’s n and 7 can be also viewed on the Poincaré disc, where the shooting
point O is on the circumference and 7 represents the distance between @) and P (see
figure 7.6b).

Figure 7.7: The density of the hyperbolic r.v. (black line) is compared with the
standard normal (which has high concentration of the probability around zero) and

the Cauchy law.

We give a derivation of the characteristic function of (7.39) different from the

series expansion of Feller (1966). Our approach is based on the residue theorem.

Theorem 7.4.1. The characteristic function of (7.39) is written as

1

Ee = .
cosh %’r

(7.40)

Proof. The integral (7.40) can be evaluated by means of the residue theorem applied

to the function ‘
ezﬁwz

I(z) = cosh7z’ zet

By considering the contour of Fig. 7.8a we have that

T BT ] i B (r+iy) dy i (ati) g 0 eiBm(=r+iy) dy
o | =t =
_, coshmx o cosh(r +iy) , coshm(x+1) ; coshm(—r+iy)
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= 2mi Resf(z)\zzé,

where Resf(z)|,_: is the residue of the pole at z = %, the contour of integration is
2
represented in Fig. 7.8a. By taking the limit for r — oo the second and the fourth

integral disappear and thus

fe’) eiﬂmﬂdx o] eiﬂmﬂ—ﬁwdx _pm
—l— _— = 26 2
—oo COosh o COshmx

00 iBrx
By (& . _ B
(1+e >/OOCOSh7T:L“_2€ o

In conclusion we have that

/ > gifme J 2= 1
Tr = =
_ o coshmz 14 e b cosh %” ’
which is the desired result. ]
From (7.40) we obtain that
T 2
Varfi = (—) .
arn 5

The even-order moments of 7 can be expressed in terms of the Euler numbers Fs,

~on T 2n
]E772 = <§> | Eanl

in view of formula 3.523 pag 376 of Gradshteyn and Ryzhik (2007). The Euler

numbers have generating function

1 > Ak T
= E,—, t] < —. 7.41
cosht ; n! g 2 ( )

Formula (7.41) gives, for [t| < 7, a possible representation of the density (7.39).

% y=i % y=2i

T

(a) (b)

Figure 7.8: The contours of integration for Theorems 7.4.1 and 7.4.2.
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7.4.1 Distributional Properties of the hyperbolic distribu-

tion

Theorem 7.4.2. Let m; and ns be two independent copies of (7.38). Thus the

distribution of

N2 = M + 1, (7.42)
18 given by
Prif, € dr} = — 2" g (7.43)
P2 &A% = b '
Proof. In view of (7.40) we have
Pr {7, € dr} dm/w < (7.44)
r T} = — ———dz. :
2 21 J_ o cosh2%7r

The inverse Fourier transform appearing in the right-hand side of (7.44) can be

evaluated by means of the residue theorem, applied to the function

—ixz

e

f(z) = z € C, (7.45)

)
cosh? %

along the contour of the form in Fig. 7.8b. In the same spirit of Theorem 7.4.1 we

1 T eTirw J —-r e—iq}(w—‘r%) 4 2 e—iw(r—l—iy) J
2w Wt w + ———dy +
2 /_T cosh? % /T cosh? % (w + 21) /0 cosh 7r(r—2i-zy) Yy

0 g—ia(—r+iy) ‘
‘|‘/2 Wdy = zResf(z)\Z:i

get

i cosh

and taking the limit for » — oo we obtain

/OO g lew dw — i Resf(z>|z:i —_ . e T Resf(z)|zzi . (746)

2 wr _ 2 :
o cosh™ &% 1—e% 2sinh x

The residue in z = ¢ is given by

Resf(2)|_, = lim -~ [(z e 6—]

z—i dz cosh? =
d 9 26—72:52

= lim— [(z - -2

oot dz {(z i) 1+ cosh 7TZ:|

P —2(z—0) iz +4(z—1i) 2m(z—i)’sinh(rz)
= lime -

2 1+ coshmz (14 cosh7z)’

22xi . | 4(z—14) om (2 — i) sinh 7z
= ——e® +lime - 5

2 2 i 1+ coshmz (1 + cosh z)
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aylor 2220 . 4(z —1i on? (z —i)®
TLl . v + llm e~ irz 7r2< ) . + . ( )2 -
(R A [P B Y
224 "

where, in the last step, we used the following Taylor’s series expansions in a neigh-
borhood of the point z = ¢

2
z2—1 .
( 5 ) 40 ((z—1)%)

sinhmz = —(z —i)m+o0(2—1).

1+ coshmz = —

In conclusion, considering (7.46) and (7.47), we obtain

-~ 2z

]

Remark 7.4.3. In order to check that (7.48) integrates to unity we refer to formula
3.521 pag. 375 of Gradshteyn and Ryzhik (2007) obtaining

< 2
——dr = 1.
/_OO N

For a picture of distribution (7.43) see Fig. 7.9.

0.4

0.3

0.2

0.1

0.0

Figure 7.9: The dotted line represents the hyperbolic distribution (7.39) and the
bold one represents the density (7.48) of the sum 7 + 7.

In general, for
ﬁn:ﬁ1+ﬁ2++ﬁna TLEN,
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we have, in force of formula 3.985 pag 512 of Gradshteyn and Ryzhik (2007),

anfj@—jﬂﬂdw, n=2k2<keN
Pr {ﬁn € dw} -
(Qk)!er:oshw Hle [1;)_22 (2T_;1)2i| dw? n =2k + 1, k e N.
(7.49)

The proof of (7.49) is based on the evaluation of the integral

/f(z) dz, ze€C,
r

where .
—irz

(&

f(z):w, z €C,

COS D)

and the contour I' is that of figure 7.8b. The proof follows the same line of Theorem

7.4.2 and we arrive at

00 —ilwzT 2z 00 —iwT
/ ‘ dw — < / ‘ dw = 2mi Resf(2)|,_;

wr 1) nwn
oo cosh %% (=)™ J_ cosh™ &

where Resf(z)]

therefore

. is the residue of f(z) at z = 4. The inverse Fourier transform is

1 oo e—iw:p i
9 dw = Resf(z)|._..
2w o0 cosh” % 1+ (_1)n+1 o2t f( )|zfz

The evaluation of Resf(z)|,_, leads to (7.49). For n = 2 we clearly retrive the result
of Theorem 7.4.2.

A particle performing a random walk on the geodesic line QP of figure 7.6a, after

n steps occupies the position 7,, with distribution (7.49) and characteristic function

1

Eel = ——
cosh™ %

We present now some transformation of the hyperbolic distribution of 7. We
start by showing that sinh 77 has Cauchy distribution. We have for the r.v.
O (n) = sinhp
that

Pr{sinhn < y} = Pr{n < argsinhy} = Pr {77 < log (y +Vyr+ 1)}
/10g(y+\/1+y2> dr

mcoshx

oo
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and thus

Pr{O(n) edyt 1 1 LY 2
dy Ty+ 1+ y? V1+y? elog(y+\/1+y2) +e—log(y+\/1+y2)
1 y+V/1+y 1
Ty +1+y/1+y?/1+y°
1
m(1+y?)

Furthermore, considering the r.v. coshn we get, for w > 1

2 arg cosh w d
Pr{l < coshn <w} = —/ cosfl
T Jo x

9 /log(w+\/w2—1) dr

7 Jo cosh z’

and thus the density reads

2 d
Pr{coshn € dw} = = w > 1. (7.50)

Twyvw? -1’
The distribution (7.50) integrates to unity since

1
w2 Y

2 /00 dw 1 /1 dy

™)1 wyw?—1 o Vy(l—y)

The last step suggests a relationship between the r.v. coshn and the arcsine law.
The r.v.

1
Y = 5
cosh®n

possesses arcsine distribution, as the following detailed calculation shows

1
Pr{Y <w} = Pr {77 > argcoshﬁ}

B 2/°° dz
7r log(ﬁJrﬁm) cosh x

2 / o dx
- 9
™ —% log w+10g(1+\/1—w) cosh z

and thus

Pr{Yedw}:lllJr 1 2
wo VI—w[l+VI—w] | o (1 +VI—w) + Vo=
_2VI—w(l+VIi-wt+w) Vol +v1-—w)

T w/l—wl+vV1-w) 1+vV1I-w?+w

dw T
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11+ VT—w 1 11

= = = - 0<w<1.
TVuvT—w (VI-w+1)  7yw/l-w v
(7.51)
Remark 7.4.4. Result (7.51) can be also obtained observing that
1 1 1
Y = = = (7.52)

cosh’n 1 +sinh?y 1+0(n)?*

and we have shown that O possesses Cauchy distribution. The transformation (7.52)

is the classical way to obtain the arcsine law from the Cauchy distribution.

Remark 7.4.5. Let us recall the hyperbolic version of the Pythagorean theorem
which reads
coshacoshb = coshc,

where ¢ is the hypotenuse of the right triangle with sides a and b. Considering a and
b distributed as (7.39) their hyperbolic cosine has law (7.50). The random length of

the hypotenuse is therefore written as

2\*1 [v dx
Pr{coshn; coshny € dw} = dw | — —/ dz
teoshm " J (7?) w i V1?2 — 1V w? — 2
- log(w—i—\/wQ—l) 1
r=cohy dw/ dy.  (7.53)
0 Vw2 — cosh?y
Remark 7.4.6. Considering the r.v.
~ )
n = —logtanai, a >0,
with © uniformly distributed in (0, 7) we get
~ 2 e od 1 d
Pr{n e dw} = —e—i = - w e R. (7.54)

9
am] +e o ma cosh 2

The density (7.54) is a generalization with paramater o of (7.39).

7.4.2 The area of hyperbolic random triangles

It is well known that the area A of an hyperbolic triangle is given by
A=rn—(a+p+7)

where a,  and v are the angles pertaining to vertices not lying on the (z-axis). A

triangle which has three vertices on the x-axis has area A = .

Let us consider the triangle with vertices O, P, and @ in Fig. 7.6a or 7.6b, thus

™

the area K is given by K = § — a where « is the angle of the vertex @, formally

we have K € (0, g)
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Table 7.2: For the hyperbolic r.v. 77 we have the following table of distributional

relationships for the related hyperbolic function.

Variable | sinh7n cosh tanh iy tanh? 7
: 1 2 1 1
DGDSIty m(1422) w222 —1 m/1—22 ny/2(1—2)
zeR z>1 -1<z<1l |[0<z<1
Reciprocal ﬁ Flhﬁ cothn coth?
: 1 2 1 1
DenSlty m(1422) mV1—22 m|z|Vz2—1 mzy/z—1
ze€R |0<z<1]|zeR\[-1,1] z>1

Theorem 7.4.7. For the random area K of the hyperbolic triangle O PQ) where PQ
has length n with distribution (7.39), we have that
2
Pr{K € dw} = dw

w1+ sinw’

w e (0, f) . (7.55)

Proof. In view of formula

A
tan — = tanh a tanh 9
2 2 2

where a, b are the sides of an hyperbolic right triangle of area A, we have
K
tan — = tanh Q
2 2
For w >0

Pr{K <w} = Pr {77 < 2argtanhtan%}

14sin w

9 [fle e 1
= — / dx
T Jo coshz

COosw

4
= 1 — —arctan ———,
T 14+ sinw
and thus

2 dw

In view of formula 3.791 pag. 448 of Gradshteyn and Ryzhik (2007) we have

2 (2 2
EK:—/ Lc&z—logz
0

T 1+sinx T



2/ A

0 n}2

Figure 7.10: The distribution (7.55) of the random area K.
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