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Introduction

Over the recent years, an increasing interest in undelisigittte multi-scale nature of many
physical phenomena has been registered. A wide range obptera we experience every-
day, as well as applications in industrial processes, ua/ahultiple length-scales ranging
from macroscopic to molecular. For instance, applicatiohmetals and liquids at micron,
and even nano, scales are multiplying rapidly, afidres are in progress in the materials
and mechanics communities to measure and characterizebtevior. The dficulty in
understanding the wide spectrum of rich phenomenologegsaite observed, comes indeed
from the fact that phenomena take place #iiedéent space and time scales. An insight into
these problems requires a multidisciplinary approachpsipg from mechanical engineer-
ing to mathematical physics, from molecular dynamics tortiealynamics, each acting on
different length-scales. The interaction and the constanb&tdbetween these fields are
leading to a more organic understanding of the dynamicsgibnagrn multi-scale phenom-
ena. From the analytical viewpoint, an investigation of tirgtale problems requires the
application of diferent techniques, including pde and ode methods (such deragsti-
mates and compactness arguments), matched asymptotiaaséxp, and variational ap-
proaches (including relaxation and subeliential techniques). All this apparatus has been
applied in this dissertation to twoftrent physical phenomena which we describe in the
following sections. The first one concerns the dynamics dhimeindergoing small plastic
deformation in the framework of strain-gradient plasyicitve are interested in theffects

of two different length-scales which have been introduced in recedelsowith a partic-
ular attention to the feature that smaller specimens appeaave higher relative strength
and hardness. The second one concerns the spreading oflatdnom plain solid sur-
face where both surface friction (at the liquid—solid ifdaee) and contact-line friction (at
the triple points where liquid, solid, and vapor meet) arecaated for. Common to both
physical processes is the presence of at least two paraneteose fects are of partic-
ular interest in this dissertation and which contribute iifiedtent ways to characterize the
dynamics of the systems under consideration.
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0.1 A multi-scale problem in strain-gradient plasticity

An increasing number of experimental evidences, includiage from torsion in micron-
dimensioned wires, nafmicro-indentation, and bending of micron-dimensionead-filim
(see e.q.[47, 83, 71, 84]), all show that, over a scale whitbnels from about a fraction
to tens of microns, the strength of metallic components gadeg inhomogeneous plastic
flow is inherently size-dependent: generally speaking,dier’ specimens appear to be
"stronger”. Among the many evidences we mention a seriesrsidn experiments reported
in [47] on copper wires of equal length and diameter rangimogif17Qm down to 12im.
The wire are twisted (with some rate) well into the plasticga, measuring the torqu@
and the twist (i.e. the angle of rotation per unit lengéh)

T T T T

20=12um

15 pm

400 20m -

al
(MPa) 2a=170 pm
200}

Figure 0.1:A series of experimental curves from [47]. Hegeis the torque needed to attain a twksin a
wire of radiusa (here twist and radius are denoted®yandR, respectively).

The torsion data in Fig. 0.1 have been displayed in the fQR° vs ®R whereR
the radius. The non-dimensional gro@R may be interpreted as the magnitude of the
shear strain at the surface of the wire. The gr@R® gives a measure of the shear stress
across the section of the wire in the same average senseheladres been governed by a
continuum theory with no constitutive length parametechsas conventional plasticity is,
all the curves of Fig. 0.1 would be the same and, by dimenkmmmsiderations, the torque
Q needed to impart a twi€ to a wire of radiusk should obey

Q
= f(RO®) (0.1.1)
where the functiorf (-) depends only on the material constituting wire. As notice7],
the experimental curves observed in Fig. 0.1 violate (), aad show that thinner wires
have higher relative strength in the sense that a higheifgpaork input, Q/R®, is needed

to induce the same straiR@, in a thinner wire.

Though several observed plasticity phenomena displayfantive size &ect whereby
the “smaller” is the size, the “stronger” is the responsassical plasticity theory cannot ac-
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count for such experimental results, it being invariantwéspect to spatial rescalings, i.e.,
neither any material intrinsic length-scale enters thestitartive law nor such sizefiects
are predicted. This drawback has led to the developmenteofids that can capture such
phenomena via dependencies on plastic-strain gradidrtsphtinuum gradient plasticity
theories[2, 3, 23, 40, 46, 47, 58, 60, 61].

In this dissertation we are concerned with small-strairotles, and we focus on a
theory for isotropic materials introduced by Gurtin [60Bkmorated in one space dimension
by Gurtin, Anand, Gething, and Lele in [6], and developed hytd, Anand, and Fried in
[61] and [62]. Starting from the classical decompositiortte# strain tensor into the sum
of an elastic strainE®, and aplastic strainEP, size dfects are incorporated through two
distinct mechanisms:

e an energetic mechanisnby adding to theelastic energy densityy(E®), a defect
energy densityyq(curlEP). In the framework of the Gurtin—~Anand theory, d&#l
coincides with the Burgers tensor [6888.1-2] and provides a macroscopic descrip-
tion of “geometrically—necessary dislocations” (see §&8j for a discussion). This
introduces amnergetic length-scald. which measures the contribution of the defect
energy density to the system.

« adissipative mechanisnby including a dependence &EP in the dissipation-rate
density This introduces adlissipative length-scalé (not necessarily microscopic)
which measures the contribution of the dissipation-ratesity to the system.

As will be shown in details in Chapter 1, Gurtin and Anand midslenainly grounded
on themicroforce balance
To=TP-divKkP, (0.1.2)

equipped with termodinamically consistent constitutie&ations for themicro-stresse3 P
andKP, of the form

. p _ alﬁd
EP en = Sup
TP=YENP G K=K | ‘WZE R
KdiSS: f Y(E )g(d )W

whereY(-) is the flow resistancey(:) is the rate-sensitivity and

dP := /|EP]2 + (?|VEPP

is the effective flow-rate The aim of Chapter 1 and Chapter 2, which are based on results
obtained in [33] and [4], is to investigate, qualitativelydaguantitatively, the role aéner-
getic length-scale landdissipative length-scaléwith respect to scalefiects. To this aim,

we will decouple the two length-scales:
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e neglecting dissipativeffects ¢ = 0) allows us to focus on thetfects of the energetic
length-scaleL: in particular, we concentrate our attention on the devalemt of
boundary layers neaiQQ and on an increase of the strain-hardening rate wif8,
§12];

e neglecting energeticfiects = 0) allows us to focus on the strengthenirftgets of
dissipative strain-rate gradients.

0.1.1 The case = 0: Torsion problem

To focus on the role of the energetic length-sdale Chapter 1 we rule out dissipative size
effects by setting = 0. To reduce the complicated structure of the Gurtin-Anardieh
(0.1.2)-(0.1.3), we also assume constant flow resistdhead rate-sensitivityg. Under
these simplifying assumptions, the flow rule (0.1.3) is egjeint to the following dierential
inclusion:

TP e d6(EP) = (A e RYS: O(EP) - 0(EP) 2 A: (EP-EP) VEPe R3S ). (0.1.4)

By (0.1.4), after an explicit computation &P the Gurtin—~Anand flow rule (0.1.2) reads as:
: 1 - :
To + uL? (AEP — sym(VdivEP) + §(1 + n)(div divEP)I + ncurlcurIEp) € 95(EP) (0.1.5)

where—-1 < n < 1 is a dimensionless parameter. Note that whes 0 the resulting
law characterizes, according to the terminology of [62¢ ltevy—Mises plastic response
Looking closely to the energetic scalffexts at the level of the one-dimensional problem
is not appropriate, as the true role of the Burgers tensar ¢thl of a vector field) can
not be fully understood in such framework. Instead, it see@asonable to investigate
different symmetries which preserve the multi-dimensionalneadf the problem. A first
analysis suggests that, among these symmetries, the nb@stsiting one is given by the
torsion problenfor a thin metallic wire, for which experimental evidences also available
(see above). We model a wire as an infinite right-cylin@grof radiusR, subject to null
tractions at the boundary and null initial conditions foe tlvist ® and theplastic—shear
profile yP = |EP|. The aim of Chapter 1 consists in quantifying tHeeets of the energetic
lengthscaldl on the torqueQ that must be applied to induce a twitwith plastic—shear
profile yP and which is given by the following expression:

R
Q=2 fo (@0 - Y)o*de. 0.1.6)

An important assumption we make is that tiadst ® is monotone:® > 0. This property
is inspired both by the aforementioned experimental olagienv and by the fact that, be-
cause of the homogeneity of degree one of the dissipatiendextsity, the system (0.1.5)
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is undfected by a monotone time re-parametrization, hence it allalso to replace the
dependence aofP on time with a dependence on the twist. Furthermore, sineeyltem

does not contain intrinsic timescales, the ratio betweeretiergetic length-scaleand the

diameter R assumes a crucial role. In order to highlight the role of fhasameter, we
introduce anormalized energetic lengthscale

@=L
A= 4 > & (0.1.7)

In torsional symmetry the flow rule (0.1.5) reduces to a phdifferential inclusion
for the normalized plastic-shear profilg and thenormalized twis®, that in terms of the
normalized variables reads as:

Py 1oy 1 ay| .
az(a—rzﬁa—?—r—ﬂ)—werea’a—g’ in (0, 1) x (0, o), (0.1.8a)

complemented by the initial-boundary conditions

y(r,0)=0 and %(1, 0) + @ =0 ford>0andre(0,1), (0.1.8b)

the latter arising from requiring a null microscopic traction the boundary. To construct
and characterize solutions to (0.1.8), we will work with katige effective energyunctional

1 ’ 2 1
E(y,0) = %fo (y2+/12(y’2+yr—y+(%) ))rdr—efo yr2dr

and a relativalissipationfunctional

1
P6) = fo i dr

in the natural space

S 1 g)2
H:=C((0,1]) ', where |l ::f(; (g’2+(F) )rdr.

Inspired by [72], writing (0.1.8) in its subfiierential formulation, we show the natural
equivalence between this and an evolutionary variatioreguality. This enable us to define
the energetic solutiony, of (0.1.8):

Definition 0.1. Lety € W([0, +e0); H). We say thay solves(0.1.8)if y(0) = 0 and
(Dy&(y,0),7y =) 2 2(y) - 2(y) forall yeH

for almost every > 0.



It follows from known results that thisnergetic solutiorexists and is unique [72]. The
main result of Chapter 1 is an explicit characterizationhi$ £nergetic solution, given in
terms of solutions of suitable boundary-value problemse&hegimes are identified:

e an initial elastic regimewhered € [0, 1] andy = 0O;

e an intermediateelasto-plastic regimewhered € [1,0,), y = 0in [0, ¢y, andy :=
vg > 0in (cy, 1] where the pairdy, y,) solves:

’7 1 /
/lz(y +y _%)_yzl—er on (G, 1)

(Z6)7(co) = v'(cs) = 0 (0.1.9)
Y (1) + @ =0.

Herecy (representing the left-endpoint of the plastic regionnisidditional unknown
which is determined together with(at variance with the case= 0, whency is given
by 1/6). When@ reaches the critical twist, (up to which (0.1.9) is well posed), the
elasto-plastic boundary hits the origin= 0, and the wire becomes fully plastified.
Hence we have:

¢ an ultimateplastic regimewhered > 6,, andy :=%, > 0in (0, 1] wherey, solves

ﬂz(yﬂ Ly rlz)_y —1-6r on(Ql)
)0 -0 (0.1.10)

which is well posed for alb € R.

Extendingyy to (0, 1),
ye(r) == 0 if r € (0, cq,

and patchingy, andy, together,

0 if 6e[0,1]
y(r,0) := () if 6e (L6 (0.1.11)
Yo(r) if 6> 6y,

we obtain the announced characterization of the energatitien:

Theorem 0.1. The functiony defined by(0.1.11)is the unique solution 0f0.1.8)in the
sense of Definition 0.1. Moreoverte Lip([0, +0); H).

The characterization of given by Theorem (0.1) allows us to work out a formal asymp-
totic expansion ag — 0 (for fixed8) which confirms:
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¢ the presence of two boundary layers of wi@fx), near the external boundary of the
wire and near the boundary of the plastified region;

e that the energetic scale is responsible for size-depersdemin-hardening, with the
thinner wires being harder.

We also obtain a scaling law for the critical twist in termseokrgetic scal@:

0, for 1<« 1 (0.1.12)

L
V62
0.1.2 The casé = 0: Traction problem

The dfects of the dissipative length-scdlenay be singled out by focusing on the case 0

in the reducedne-dimensionamodel introduced by Gurtin, Anand, Lele and Gething in
[6]. This theory alleviates most of the intricacies of thdl fuodel (0.1.3) and describes
a body in the form of a strip of finite width undergoing simple shear with a given shear
stressr. Under a simplified set of constitutive relations, the oimaahsional theory leads
to a nonlocal flow rule in the form of a nonlinear partiaffdrential equation for thplastic
strainvy:

) (t,X) € (0,00) X I, (0.1.13)

T+ 1202y = L2 — (%0, (25
é)xT = O

where

&P = 190 + 0,002

The flow rule (0.1.13) is to be considered together withédhitioundary condition8yy|s =
0 andy(0, X) = yo(X), and with a traction condition given by imposing the constanspace
and time) tractionr = 7,. These assumptions formally lead to the followitwnstrained
boundary-value problerfor u = dyy:

— u _p2l
—\/W ( '\/U2+[2(U')2) (0114)
ulpg =0, fudx=1

where the primes denoteft#irentiation with respect tg. The presence of the normalized
mean constraint is due to the scaling invariance of (0.1.W4th respect to the transforma-
tion u — au (@ # 0), which, in essence, expresses the rate—independenfeldf3). In

this framework, a sample may then be said testvengerthan a second one (made of the
same material) if a higher stressis needed to generate the same mean plastic flow. On
the other hand, of course a material samplenmllerthan a second one if the ratig|l| is
higher. Hence,smaller is stronge€ris equivalent to say that

(A) 7 is increasing with//|l].
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This is exactly what the numerical simulations performed6hindicate. With a view
toward establishing a variational description of (0.1, &4)formulated in [6] as a conjecture,
we are led to consider the following variational problemeTissipational functional

F(u) = JIC VU2 + £2(w)2 dx; (0.1.15)

(B) has a minimum valuer,, over all admissible fields such thaulg =0 andfI u=1;
(C) any minimizing fieldau is a solution of (0.1.14)

The natural space to analyze the problem is the space oidusawith bounded variation.
In some cases, it will be harmless to work in a bounded, opdrcannected se@ c RN
with Lipschitz boundary rather than in an interval. By rdsmax, we may assume without
loss of generality that = 1. We thus define

BV.(QQ) = {u € BV(QY) : JC udx = 1}.
Q
Extending the (0.1.15) tb(Q) and encoding the boundary conditions into the problem we
define a functionaF° : LY(Q) — [0, +oo] as
w2+ [VuRdx if ue WH(Q
+o0 if ue LY(Q)\ W (Q).

We note that for a smootithe integrand in (0.1.15) coincides with the norm of R *-
vector {1, Vu). Hence we will show that the relaxation Bf coincides with the total varia-
tion of theRN*1-valued measurau(Du), denoted by(u, Du)| (see [5, Definition 1.4]):

Theorem 0.2. Let F° be defined by2.1.5) Then
= { Joy YU+ VU2 dx + D%l (Q) + [, ludHN-1  if ue BV(Q)
o u) = ¢

+00 if uel}(Q)\BV(Q).
(0.1.16)
Furthermore, for all ue BV(Q) it holds:
Fe(u) = |(u, DU)[(Q) + f ud#HNt (0.1.17)
0Q

= sup{fQ u(s—divt) dx+ fag ut - ndHN1: (s t) € COQ), II(S lleo < 1}. (0.1.18)

Here Vu and DSu denote the absolutely continuous, resp. singular, paBwfvith
respect to the Lebesgue measure. Standard direct methtiuks edlculus of variations and
the foregoing discussion enable us to answer positivelyato(B). The 1-homogeneity of
F° enables us to identify a relation between the value of thermim, the shear stress,
and the Lagrange multiplier of the constrained minimizagmwoblem,rq, as follows (see
Proposition 2.1 and Remark 2.1 in Section 2.1.2):
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1 _
Proposition 0.1. Lettg := — min F°. Then
P o |Q| BV.(Q)
Un € BV.(Q)

TOXQ € aﬁ(um).

Unm € argminfF°
BV.(Q)

Hereyq denotes the characteristic function of the @eanddF° the subdiferential of F°
which we characterize at least in the sense of distributiasst has been done for other
problems with linear growth in the gradient [7, 8]. Ideniify 9F° with the right-hand side

of (0.1.14), Proposition 0.1 shows thas, seen as a Lagrange multiplier for the constrained
minimization problem, is uniquely determined over all pbkesminimizers, a fact which
corresponds to a weak, but dimension-independent, anewé) (see below for the one-
dimensional case). We use the characterizatiomngofiiven in Proposition 0.1 to infer a
monotonicity property of the shear stress with respect ¢odilssipative length-scale, and
consequently to yield4), as follows:

Theorem 0.3(“Smaller is stronger”) Let
1 ={xeRN: x/1eQ).
The functiom — T, is decreasing (strictly if N= 1).

Such property confirms that the strain-gradient theory undesideration is able to model
the experimental evidence that smaller samples have higlaive strength.

In one space dimension, where the model is proposed, westrable to give a complete
answer to part@) proving uniqueness, regularity, and qualitative prapsrof the mini-
mizer in the spac&B\/(I) = BV,(l) n SB\(I) through:

Theorem 0.4. The functionalF° has a unique minimizer @ SB\/(I). The minimizer u is
even, strictly decreasing if®, @), smooth in I, and it solves the Euler-Lagrange equation
(0.1.14) (with ¢ = 1 andt, = 7 defined by Proposition 2.1). Furthermore
lim ux) >0 and Ilim uU(X) = —co.
X—a~

X—a~

Besides non-generic domains (such adNasphere, where we expect results similar to
those in Theorem 0.4 to hold), we believe that the multi-disienal problem will not have
smooth minimizers in general, as the mass constraint majupeosolutions which jump
down to zero in the interior. Hence, in general the corredpanEuler-Lagrange equation
will not be satisfied by minimizers.

0.2 A multi-scale problem in lubrication theory

Wetting and spreading phenomena are of key importance iry patesses, both natural
and industrial. For example, in coating a liquid onto a solith the deposition of pesticides
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on plant leaves, it is essential that the liquid dynamicaligts (or not) the solid surface.
Though theories for the description of wetting phenomena haen extensively developed,
the actual physics that govern them still remain uncleaayodPart of this diiculty stems
from the contact-line paradox arising in Navier-Stokesagigms: the no-slip condition
with a constant viscosity leads to a force singularity ateading contact lines [67, 41].
To remove this paradox many models proposed the introdudti@ “microscopic length-
scale” [39, 75, 22]. In many theories, afiextive slip condition at the liquid-solid interface
is postulated to occur, for example the Navier slip conditib= BU, at the liquid-solid
interface, = 0 (hereU is the fluid’s horizontal velocity in a two-dimensional framork
andu is the viscosity). The ratio/B is to be understood adiéction cogficientbetween the
liquid and the wall. But as confirmed by recent investigatibg Qian, Wang and Sheng [78]
and by Ren and E [80], these slippage models fail to desdnddynamicsiear the contact
line region Among the variety of suggested models, we are concernddanitdéfective
continuum model proposed by Ren and E [80] and by Ren, Hu aBd]&r{ which a further
source of friction is encoded, coming from the deviationtad tontact angl® from its
static value®s. In the simplest case of a linear friction law, this modehsiinto in the
following conditions:

Dy(cos® —cos®s) = UcL if ®s >0 (partial wetting) 0.2.1)
Dy(cos® —1) = maxUc.,0} if ®s =0 (complete wetting) o

HereUc, is the speed of the contact ling,denotes the liquid-vapor surface tension, and
1/D is an dfective friction codficientat the contact line Of interest to us is to discuss the
dynamics of spreading with respect to the two paramebexsdd, which represents the nor-
malized counterpart d andD. This is done in Chapter 3 and Chapter 4 which are based on
results obtained in [31, 32, 30] . First of all, we reduce thmplexity of the Navier-Stokes
system while retaining theffects of both capillary forces and frictional forces (vissou
friction in the bulk, surface friction at the liquid-solichterface, and contact-line friction
at the liquid-solid-vapor interface), considering thisdabin the lubrication regime (see
e.g. [75, 53, 70]). In the lubrication approximation, theesuling of thin droplets may be
modeled by a class of fourth order free boundary problemghiemormalized height of
the liquid film, h(t, X), and the extent of the wetted regior,s(t), S(t)) (for simplicity, we
assumeh to be symmetric with respect to= 0):

he+ (hU)x = 0, u = (M + bh)hye  in (O, S(1)
= Q = i =
h=0, gst) = lim u at x = (t) (0.2.2)

hX:hXXX:0 a.tX:0

By formal asymptotic expansions of the traveling wave sohg to (0.2.2) (see Section
3.4) we know that fronts can only advance in tmenplete wetting regimeharacterized by
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0s = 0: therefore the free boundary condition (0.2.1) reduces to

d(n%-63) = %f at x = (t). (0.2.3)

0.2.1 Asymptotic analysis

In the absence of contact-line friction, i.e/dl= 0, the dynamics (0.2.2) are known to be
influenced only logarithmically by the slippage model, adleat intermediate timescales
(see [65] fords > 0 and [34] for the case of rough surfaces): more precisely,

03 ~ 62 + 39 Iog(%g) (0.2.4)

whiered, is themacroscopic contact anglelefined as the slope of the unique even arc of
parabola having the same mass and support at its zero. ledirae of complete wetting
(9s = 0), this leads to the following scaling law, which is ofteifereed to as the logarithmic
correction to Tanner’s law [85] (see also [17] and [52]):

1/7
S~ { ¢ - ] for sglog(bi) <t<b™. (0.2.5)
log () S
Note that the appearance of an intermediate timescalelisoreane hand, it takes a certain
time for the droplet to forget its initial shape; on the othand, for large timek < b on the
whole support, hence the evolution is governed by slippégeeaands will scale liketY/6.
Again in complete wetting, analogous logarithmic cormetsi were obtained by de Gennes
[39] for a related model in which the contact angle conditiemeplaced by the action of
van der Waals forces.

In the presence of contact-line friction the situation isrenoomplicated and more than
one intermediate scaling law appears. This is due to thendigmee of the scaling laws
on whethers is zero or not, and on the relation between the two normalgsdmeters
b andd. To give a more precise quantitative description of thesdirgg laws, a matched
asymptotic study is worked out in Chapter 3, relating the nesmopic contact angle to
the speed of the contact line. It turns out that a crucial ®lplayed by the parameter
k = dM/b?, which may be seen as a measure of the relative strength faceuiriction
versus contact-line frictionM is the mass of the droplet). Let us fix for simplicity = 1
and discuss separately the case of complete and partiahguett

If s = 0 the dynamics is governed by the following laws:

o for a stronger contact-line frictiom, < b?, the system bypasses the moderate timescale
dominated by viscous friction and the droplet displays @myearly timescale domi-
nated by contact-line friction and a final timescale doneddty surface friction:

dnl/s if§<<t<<b—5 andsy < B
SN{() : b (andso < 2) 026)

GYYe i t> B
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o for a stronger surface frictio? < d the droplet displays an early timescale dom-
inated by contact-line friction, a moderate timescale dmtdd by viscous friction
(which is logarithmically corrected by surface frictiors, ia the case of zero contact-
line friction, see (0.2.5)), and a final timescale domindigdurface friction:

1/5 T 1 1
(dt) . if 3 <t< T L (ands3 < dlog%)
S~ t - 1 -7 0.2.7)
(Iogﬁ) if 1062 S <t<xb
GYYS  if t> b

The lower bounds on the initial times, as already discussauespond to the time that the
system needs to “forget” its initial shape and to relax to asiystatic configuration.

If 6s > 0, the profile of a spreading droplet converges (expondyjtitd the unique steady
state with given mass and contact angdeast — +oc0. We concentrate our attention to the
case of a persistent macroscopic profile for all times:

0s > b?, i.e. bs, < 1.

For suficiently large times, also in partial wetting the contantliriction plays no role and
the system evolves according with the Cox-Hocking relaftbB.4). However there are still
intermediate timescales which are influenced by contaetfliction:

() if d < 6s, then (0.2.4) is preceded by an early timescale dominatezbbtact-line
friction;

(ii) if 6s < d, then (0.2.4) is preceded by an early timescale dominatezbbtact-line
friction and a moderate timescale dominated by viscousidric

These results highlight the role of the threshold parandis. In addition we are able to
guantify the time in which (0.2.4) takes over: up to a lodariic correction, it reads as:

Klg/z if d<0s
0.24) = t> 1 it o d

9;/2|Ogl/6(‘;_§) s< 0

The scaling laws in (0.2.6) and (0.2.7) may already be ptediby a simple heuristic

argument (se€3.8). However, in this simple argument one has to assafpgori that
the microscopic contact angleis “relatively close” tod,,. Now, especially in complete
wetting where the slope might vary abruptly near the corltaet this strong assumption
could be not valid and a discrepancy between fiiecéive and microscopic contact angles
may occur. To overcome this drawback §®9 we work out a detailed matched asymptotic
study of (0.2.2)-(0.2.3). From the pioneering works of Hagk[65, 66] and Cox [34],
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quite a few works has been devoted to matched asymptoticspited-dependent contact
angle conditions [56, 43, 63]. However, none of them inclu@&2.3), and the scaling
assumptions used are not always sharp or easy to reconstdgsice, here we extend,
modify and simplify the asymptotic in a way which includes2(3) and keeps track of
all the assumptions used (we actually argue for a much marergkrelation, potentially
applicable to dferent boundary conditions, between speed and contact)aligeassume
that the evolution within the liquid’s bulk is “slow” and gsiastatic, in the sense that

0<f9 <1 and bs< 1l (0.2.8)

The second inequality in (0.2.8) ensures (via mass corts@nyadhath(t, -) > b on most of
its support. Then the asymptotic yields

6 + 35 Iog(%g) if b< s and s <« 6°
O ~ s (0.2.9)
39 |og(%) if bB3<Ss and s > 63,

Of course, (0.2.9) recovers the earlier results in when 6s (see (0.2.4)). When instead
bs> 1 but the evolution is “slow”, an asymptotic relation betwasandd may be obtained:

3
(%) ~6 if bs>1 5 < b, and > 0. (0.2.10)

Ode arguments then enable us to pass from (0.2.9) and (Pi.1e early and moderate
scaling laws in (0.2.6) and (0.2.7). In the particular caggk< 0, (0.2.5) is also recovered. A
different asymptotic which assumes a quasi-selfsimilar profitke solution is adopted for
the long-time scaling law. In this, as well as in earlier apyotic studies, the local behavior
near the contact line is described by an advancing travaleag, that is, a solution of

—U = (f2+bf)fy, f>0 in (0, +o0),
{ ( ) fece ( ) 0.2.11)

f=0 f,=6 at£=0

whose profile is determined by “matching” it to the bulk ragiorhe matching condition
selects the solution to (0.2.11) which displays the “lifiéap to a log-correction) behavior
at infinity. Though it is quite clear from the heuristics incBen 3.4 that such traveling
wave exists and is unique, we were unable to find a proof initaeture. Therefore we
provide it in Section 3.6. Actually, we will prove the follamg, slightly more general result:

Theorem 0.5. For any# > 0 and any Ue C([0, +o0)) non-negative, bounded, and such that
inf U > 0if 6 = 0, there exists a unique solutionefCL([0, +o0)) N C3((0, +0)) of (0.2.11)
such that f(£) —» 0as¢ — +oo.
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0.2.2 Existence of weak solutions

In Chapter 4, we perform a first analytical study for a gerneedlversion of problem (0.2.2)-
(0.2.3):

he + (M(h)heodx =0, h>0, h even  in (Qt) x (—s(t), S(t))
_o0 &0 < lim M) _
P h=0, §t) = X'LT@) Mo at (Qt) x {x=s(t)} 0.2.12)
§t) = d(h2 - 63) at (Qt) x {x = s(t)}
h(0, X) = ho(X), ho even in €s(t), s(t)),

where

m e C*((0, o)) N C([0, o)), with m(h) ~h" (n>0) ash— 0and m> 0in (0, ).

(0.2.13)
Thin-film equations with zero contact angle (i.e., replgci@.2.12) by hy = 0) have been
widely studied in the past two decades, and some resultdsarezailable for a constant,
non-zero contact angle. We refer to Section 4.2 for a disoussThe main interest of
our study lies in trying to capture a speed-dependent cbatagle condition in a weak
formulation of ). To this aim, the starting point is to translate the problemithe fixed
domainl = (-1,1):

Vi — zyw + é(m(v)vyyy)y =0, v>0, veven in (Ot) x |
. . m(V) Vyyy
=0, §t) = lim — = at (Qt =1
v=0, )2 MY S Qt) x{y=1} 0.2.14)
V.
's(t):d[?y—eg) at (Qt)x{y=1}
V(0,y) = vo(y), Vo even inl.

Besides the specific form of the free boundary condition, veeiterested in this fixed-
domain formulation since it might have the potential to gighprovements in theory of
thin-film equation. In this formulation, the surface enefggctional is given by

V2
E(V(t)) = % j; [Ey + seg] dy.

As formally shown in§3.5, a sifficiently smooth solution to (0.2.14), is such that

d [H(RLLY LY 1
E - | | =—- —m()\2,, = E(Vo). 2.1
VO) + 5 fo [ o 6|+ f o, STy = E0) (0.2.15)
Our main result is the following:
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Theorem 0.6. Let m as in(0.2.13) For any \y € H(l), even and non-negative, and any
so > Othere exists a pair of functior(, v), with ve C2:5([0, co) x T) N L2 ([0, c0); HX(1)),
v > 0, and se HY((0, »)), s > 0, which solveq0.2.14)with initial datum \s in the sense

that, for all T > 0, it holds that:
(i) v € LA((0,T); (HY(1)));
(ii) vyyy € L2 ({v> 0}) and Vm(V)vyyy € L3({v > O});

(iii) for all ¢ € L2((0, T); HL(1))

T T s T 1
f <V, > dt:f f—yvyga+f f—m(v)vyyygay; (0.2.16)
0 o Ji S o Ji st

(iv) V(0.y) = vo(y) in HY(1);
(v) 1) =0in L%(0,T);
(vi) viseven;

(vii) v dissipates ) in the sense that
1 (. 1
E(v(t)) + >4 fo &+ f o gm(v)vzyyys E(vo). (0.2.17)

The kinematic condition in (0.2.14) is captured in its wealri of mass conservation. The
free boundary condition (0.2.14)that is

dsty (%,
== d(? _ 93)’ (0.2.18)

is encoded only very weakly, in the form of the energy ineiqu#0.2.17). More precisely,
the extent in which (0.2.18) is recovered is the followinf:thie solution had dHticient
additional regularity, such that on one hand (0.2.17) watisfeed as an equality, and on
the other hand the formal computations leading to (0.2.J&ewigorous, then the solution
would satisfy (0.2.18). A further weakness of Theorem OiBid we are not able to prove
thatv > 0 a.e. in (QT) x I. In this respect, it is important to notice that even for trellw
known case of a zero-contact angle condition, the stand#@rdpy estimates in our fixed-
domain framework would not yield a.e. positivity of the d@dn, since there the support
of the test functions is fixed in the-variable, that is, receding in thevariable whens
increases. This points to the necessity of a refinement o$tdnedard entropy estimates
(see§4.8 and (0.2.22) below), localized in such a way that theftesttion “follows” the
free-boundary. We hope to come back to this topic in the &jtand we leave it here as an
open question.
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A merit of our approach is the construction of approximatgajutions 6,v) in which v
is positive and(s,V) satisfy the free boundary conditigi®.2.18) These approximating
solutions are constructed as follows: we modify the mabtkrm

m(t)t*
om(t) + 7 + om(7)r4’

Mso(7) =6 + TER, (0.2.19)

for somes > 0 ando > 0, and we raise the initial datum of an height 0. Note that the
approximationmy,- corresponds to nowdays standard modification (see [16] Hd), [to

obtain positive solutions given a positive initial datunhigleads to

. 1 _

Vi Syw+ FMeMyly =0 in (0 x(0.1)

Vy = Vyyy =0 at (Qt) x{y=0}

V=g, Wy =0 at (@) x{y=1} (0.2.20)
2

's(t):d(v—sg—eg] at (Qt) x{y=1}

v(0,y) = vo(y) + & in (0,1).

The mentioned positive approximating solutions are okthiioré = 0 ande = o-. In order
to prove the existence of solutions (0.2.20), we considemptioblem withprescribedfree
boundarys(t):

Vi — Zyvy + é(nk(,(v)vyw)y =0 in (0t)x(0,1)

Vy =Vyyy =0 at (Qt) x{y=0} 0.2.21)
V=g, Wy =0 at Q) x{y=1

V(0,y) = Vvo(y) + & in (0, 1),

where indeed the free-boundary condition (0.2.18) is readovSinces is fixed (i.e., the
contact-angle condition does not hold), the dissipatikgctiire given by (0.2.15) is lost, so
only local existence to (0.2.21) is avaible. To capture thetact-angle condition (0.2.18)
and obtain local existence for the free-boundary problemapply a fixed point argument,
which from the technical viewpoint, is the hardest part & #ork and the crucial one.
Once this condition is recovered, then also the dissipatiugcture given by (0.2.15) is,
and some a-priori estimates, implying additional regtyaand global existence, follow. To
investigate sign property of solutions to (0.2.20), we adbe technique proposed in [13].
Itis based on the introduction of an auxiliary functi@rsuch thaG” (y) = m and which
provide the following entropy-type estimate (uniform withsspect ta )

SUp<T fo ' Gos(V(t) +C1 f fQT Voy < Cle,T) forall T < co. (0.2.22)
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This allows to pass to the limit a— 0 obtainingpositivesolutions to P, o). Finally we
pass to the limit as = o — 0 (in a nowadays standard fashion) and complete the proof of
Theorem 0.6.
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Chapter 1

Torsion In strain gradient plasticity:
energetic scale ffects

1.1 Introduction

At the micron scale, metallic components undergoing noifetm plastic flow are known
to display size—dependent behavior: generally speakisignalier” specimens appear to
be “stronger”, with smaller specimens being, in generabrgfer. Among the many ev-
idences, of particular interest to us is a series of torsieements, reported in [47].
During these experiments, the wires are twisted (monotdigi@and with the same rate)
well into the plastic range, and the relationship betweegqueQ and twist® (angle of
rotation per unit length) is recorded. The inability of centional plasticity in capturing
size dfects is medicated in strain-gradient plasticity theotieeugh an explicit appearance
of the plastic—strain gradient in the field equations [2, 3,40, 46, 47, 58, 60, 61]. This
chapter is concerned with small-strain theories, and wesfon a theory for isotropic ma-
terials developed by Gurtin and Anand in [61]. For additlatetails, we refer to the recent
monograph [62], where the theory is expounded.

1.1.1 Conventional plasticity

We begin by recalling the field equations from standard sratikhin plasticity theory for
isotropic materials, with specific reference to flow thesm@emmonly used for metals. In
small-strain plasticity, the unknowns are tlisplacementi(x, t) € R and theplastic strain

EP(x,t) € Rg’xs:;m Theelastic strainE®(x, t) € R3:3, defined by

E® := synVu - EP (1.1.1a)
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determines the stre3{x, t) € R3:3 through the constitutive equation
_ We
OE®’
wherey(E®) is theelastic energy densitfsee (1.2.18)).
andu, « > 0. When body forces are null, the stress obeyddahee balance

T We(E®) == plES® + SxtrE®?, (1.1.1b)

divT = 0. (1.1.1¢)

Flow rules adopted in small—strain metal plasticity haysdslly the form
EP

To = Y@)(E) ..

(1.1.2)

whereY(:) > 0 is theflow resistancee’(x,t) = fOt|Ep(x, t)|dt is the accumulated plastic

strain, andg(-) is a (dimensionlessjate—sensitivity function The simplest choice for the
. : m

rate—sensitivity function is the power lay(iEP|) = (%) , Wheredy > 0 is areference rate

and the parameten > 0 is a measure of rate dependency: rfoe 0, we havey(-) = 1 and

the flow rule (1.1.2) is notféected by a monotone time re-parametrization.

1.1.2 The Gurtin—Anand model

Ultimately, the the inability of (1.1.1)—(1.1.2) at capghg size dfects is due to its invariance
under the scalingk — ax, u — au (¢ > 0). In the Gurtin—Anand theory [61, 62], size
dependence is achieved by replacing (1.1.2) with a flow hdeexplicitly accounts for the
plastic—strain gradient in two ways:

1) anenergetic scale dependencand a correspondingnergetic lengthscale,lare
introduced by adding to the elastic energy densityefect energy density

Ya(VEP) = ul?((1 - n)lcurlEP? + plcurlEP — (curlEP)T ?) (1.1.3)

(cf. [62, Egs. (90.41)—(90.42)] with, = n), where-1 < n < 1 is a dimensionless
parameter. In the framework of the Gurtin—Anand theonjERcoincides with the Burgers
tensor [628§88.1-2], which provides a macroscopic description of getoicadly—necessary
dislocations.

2) adissipative scale dependenemd a correspondingjssipative lengthscalé are in-
troduced by a dependence of the dissipation-rate densipatial derivatives of thplastic
strain-rate EP. Thedissipation-rate densitis given by:

- . t
6 = Y(EP)g(dP)dP, where dP:= /|IEP]Z + (2|VEP2 and EP(xt) ::f dP(x, s)ds.
0

More specifically, Gurtin and Anand replace (1.1.2) with mhieroforce balance

To = TP —divKkP, (1.1.4a)
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and with the following constitutive equations for thkastic stressSIP(x,t) € Rgxs:;m and the
plastic microstres&P(x, t) € Rgfsixn?;
p _ OYd

—p en =
T = Y(Ep)g(dp)%, KP = K2, + KP ovER (1.1.4b)

diss VEP
KEiss = (?Y(EP)g(dP) @

1.1.3 The goals

Quite a few &orts have been put into the mathematical analysis of th@yhéesides [79],
which deals with the (much more tractable) case in whichéairdy is present, in [54] the
concept of “energetic solution” [72] is implemented forgtinodel in the rate—independent
case (which follows by formally substituting(-) = 1 in (1.1.4b)). However, we are not
aware of analytical studies aiming to qualify and quantifg scale ffects induced by
andL. To our knowledge, only dimensional and numerical obsemedre available so far
[60, 6], suggesting:

(a) the development of boundary layers n@@r at least in case of no flux of the Burgers
vector throughvQ [60, §10.2];

(b) anincrease of the strain-hardening rate Wifié, §12];

(c) anincrease of the strengthening witf6, §12].

The goal of this chapter is to obtain a more robust validatibtine role of the energetic
lengthscalel with respect to the observation in (a) and (b). To this aimwg)assume
constant flow resistance and we rule out dissipative sieets by setting:

Y() = V2k (1.1.5a)
=0, ie. d’=|EP, (1.1.5b)

wherek > 0 is theyield strength under pure shea2) we take the rate—independent limit
g(s) = 1, so that(EP) = V2kIEP|, and we replace the first of (1.1.4b) with

TPeR33 and|TP| < V2k if EP=0
0.sym (1.1.5¢)

TP = «/ékl—% if EP % 0.

It is not hard to check that (1.1.5c) is equivalent to theoiwlhg differential inclusion [64]:

TP e 5(EP) = (A e R3S - 6(EP) -6(EP) = A: (EP-EP) YEPe RIS} (1.1.6)
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Using (1.1.5) and (1.2.19), after an explicit computatidnk® (see§l1.2) the flow rule
(1.1.4) becomes

To +uL? (AEP — sym(VdivEP) + (1 + n)(div divEP)I + ncurlcurlEP) e a5(EP).  (1.1.7)

Note that wherL = 0 the flow rule (1.1.7) reduces to (1.1.6) witiR replaced byTo; the
resulting law characterizes, according to the terminolofj62], the Levy—Mises plastic
response

Though the &ects in (a) and (b) seem to be observable, at least quaditgtialready
at the level of the one-dimensional theory proposed in [&],wish to explore them in a
multidimensional setting where the role of the Burgers aeiias the curl of a tensor field)
should become more transparent on one hand and experimesiiéts are available on the
other hand. One such setting is, of course, that otdngion problem which has already
been studied in the context of other strain—gradient mliggttheories [47, 58, 23], and
which we introduce now.

1.1.4 The torsion problem
We model a thin metallic wire as anfinite right-cylinder
Or = {X = (0cosp,0sing,2) € R®: 0 € [0, R), ¢ € [0, 27)} (1.1.8)

subject to null tractions at the bound#i@r (see (1.2.1%)below). Denoting byé 1, &2y, &3))
the local orthonormal frame (see (1.2.3)) associated tayhiedrical coordinatesd ¢, 2),
we write down the followingAnsatz

u(o, ¢,z t) = zZ0(t)oe) (¢) (1.1.9a)
EP(0. ¢.1) = ¥P(0, t)symle) (¢) ® e3)), (1.1.9b)

where both théwist ® and theplastic—shear profile” satisfy the null initial conditions:
®(0)=0, »°(,0)=0. (1.1.10)

The stress field that results from (1.1.9) and (1.1.1a—5f&s the balance equation (1.1.1c)
and the null-traction condition for the standard forcesrédwer, as we shall see §1.2.3,
the torque that must be applied to induce a t@stith plastic—shear profilg® is given by
the following expression:

R
Q=2 fo (@0 - Y)o’de. (1.1.11)

An important point to be made at first is that the system (li%.@ndfected by a mono-
tone time re-parametrization. This property is best exgtbivhen the twist isnonotone

®>O,
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an additional working assumption that we make in this thesmleed, this assumption
enables us to replace the dependence®Pobn time with a dependence on the twist by
performing the substitutionjP(o,t) — yP(0, ®). A second point is that, since the system
has no intrinsic timescale, the only parameter that maiels ratio between the energetic
lengthscald. and the diameterR2 To highlight the role of this parameter, we introduce a
normalized energetic length scaleproportional toL/R (see (1.4.1) below), and we work
with the following normalized variables:
0 _0 P

k
y:==—, where yy:=—, 0Oy:= a7

r==, 6:=—, : : .
R By Yy 7 R

(1.1.12)

The constantgy and®y are theyield shearand theyield twist respectively.

We show in§1.3 that, under the Ansatz (1.1.9), the flow rule (1.1.7) ceduo a partial
differential inclusion in one dimension that, in terms of thenmalized variables (1.1.12),
reads:

/12(82)/ 19y 1

0 .

where
(-1} if s<0

dld =19 [-1,1] if s=0
{1} if s> 0.

The assumption (1.1.10) and the null microscopic tractioth@ boundary (see (1.2.17))
yield

¥(1,6)

dy
v(r,00)=0 and 5(1,9)+ >

=0 for6>0andr e (0,1). (1.1.13b)

1.1.5 Solution of the torsion problem:L = 0

To get a first insight in the problem, it is convenient to cdesithe case. = 0. Then
(1.1.13a) reduces to

er—yea‘%’ in (O,R) (1.1.14)

and there is no associated boundary condition. The uniquéico of (1.1.14) with the
initial conditiony(r, 0) = O is given by

y(r,6) = (6r — 1),, (1.1.15)
where §), = maxs, 0}. From (1.1.15), two regimes may be identified:
1) anelastic regimewheref € [0, 1] andy = 0;
2) anelasto—plastic regimavhered € (1, +), ¥y = 0in [0, 1/6], andy > 0 in (1/6, 1].
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Thus, arelastic—plastic boundarjocated ar = 1/0 separates the region wheye= 0, the
so—calledelastic core from the rest of the body, whene> 0. As @ increases, the elastic
core shrinks down, but never disappears.

In terms of normalized variables, (1.1.11) is best writtsrQa= Q.q, whereQ, :=
2krR® and

1
q:= 3f (0r — y)redr (1.1.16)
0
is thenormalized torqueOn substituting (1.1.15) into (1.1.16), we obtain, fior 1,
q=1-326"2 forall 6> 1. (1.1.17)

Notice thatq(d) — 1 asf@ — ~. Thus,Q, is theultimate torquethat a wire can withstand
according to the Levy—Mises theory.

1.1.6 Solution of the torsion problem:L > 0

When strain-gradientfiects are accounted for, an expression for the torque asesiapl
(1.1.17) is not available. In order to get some insight, wedne detailed characterization of
the solution of (1.1.13). 1§1.4 we note that (1.1.13a) has a natural formulation in terins
an evolutionary variational inequality (see Definition)1dnd hence it has a unique solution
(see Proposition 1.1). Our main contribution is§ih.5, where we show that the unique
solutiony of (1.1.13) may be characterized in terms of solutions ofable boundary-
value problems (see Theorem 1.1). As a by-product, our aggtsmprovide an explicit
construction of the solution; this construction allows agdentify three regimes:

1) an initialelastic regimewhered € [0, 1] andy = O;

2) an intermediatelasto-plastic regimewhered € [1,60,), ¥ = 0in [0, cy], andy > 0 in
(Co, 1];

3) an ultimateplastic regimewhered > 6, andy > 0 in (0, 1].

A relevant feature is apparent from 3): the sample becomigs fdlastified wheno
attains acritical twist 6,, in contrast with the caske = 0, where plastic strain vanishes on
(0,1/6).

1.1.7 Energetic scaleféects

The characterization given by Theorem 1.1 allows for an easyputation of the plastic
profile and the torque. Numerical results given in Figurecbifirm both the presence of a
boundary layer nea?Q and the higher relative strength of thinner wires. In additithey
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Figure 1.1: On the left, plots of for 1 = 0.1 and#=% = &, 15, 7. 1, 2,4 (from bottom to
top); on the right, plots of normalized torque vs. normaliasist for4 = 0,0.1,0.2,0.4,0.8
(from bottom to top).

show the presence of a boundary layer ngathe left-endpoint of the plastic region. The
characterization given by Theorem 1.1 also allows to gfiatitese &ects in terms of the
(normalized) energetic lengthscaleln §3.9, we develop a formal asymptotic expansion as
A — 0 (for fixed ). First we show that

cw ~ 2-1 ford<1 andde(L0,), (1.1.18)
y ~ or—1-3239-1)e T for i<l 1-r<landg>1 (1.1.19)

Expansions (1.1.18) and (1.1.19) show the appearance ofdaoy layers of widthO(1)
nearr = ¢y andr = 1, respectively. Using (1.1.18) and (1.1.19), we obtainadisg law for
the critical twist

01 ~ % for 1< 1, (1.1.20)

and we quantify the higher relative strength of thinner wing finding the estimate

1- 5+ 4+ 320-1) if 1<o<-L
a(e) ~ for 1< 1. (1.1.21)

V61
91220p _ : 1
1+3529(00-1) |f9>\@

Comparing (1.1.21) with (1.1.17) and returning to the orddjivariables, we see in particular
that Q/Q. is proportional to [/R)2. We remark that the theory under scrutiny does not
predict any ultimate torque: we conjecture that a defectggnéensity with linear growth,
as deduced in [49], may recover such feature.

1.1.8 Non-symmetric plastic distortion

The identification of cuEP as the macroscopic counterpart of the Burgers vector hinges
on the assumption that, in the decompositdun = H® + HP, the plastic distortionHP be
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symmetric. If this assumption is dropped thdR = EP + WP, with EP symmetric and
WP skew-symmetric. Thus, the additional kinematical unknatf(x,t) € R33, the so-
calledplastic spin enters the theory [60]. As pointed out in [61], the ensuiogvftule is
then much more complicated; not surprisingly, well-pos=ssrhas not been established for
such model, unless one includes appropriate hardening 2, or restricts attention to
particular symmetries [19]. 181.7 we show that the trivial generalization of (1.1.9) with
WP = 0 provides a solution also to the flow rule proposed in [60fgrely = %ML2|curIH P2

is postulated. This seems to indicate that, contrary to \itaition may suggest, plastic
rotations do not fiect the outcome of a torsion experiment.

1.2 Problem setup

1.2.1 Preliminaries

We adopt the following terminology and typographical carti@n: we use boldface small
prints @, b, etc) to denote elements @2, and we refer to them as “vectors”; we use
boldface capitalsA, B, etc) to denote elements @33, and we call them “tensors”; we
use double struck capitals\( B, etc) to denote elements @&**3<3, and we call them
“second—order tensors”. We denote the components of thirvacthe tensorA, and
the second—order tensdr in the corresponding standard basis By,((A)ij, and @)ij,
respectively.

We use a single, a double, and a triple dot, to denote therqmalduct between vectors,
tensors, and second-order tensors, respectively, that is= (a)i(b)i, A : B = (A)ij(B)ij,

AB = (A)ijk(B)ij. We maintain thatAa); = (A)ij(@);, and @a)ij = (A)ijk(a)k. We denote
by Rg;ﬁ] andR3*3 the sets oymmetric resp. traceless second—order tensors, and we let
RyS = Ry NRES, Likewise we denote b33 andR3** the set of third—order
tensors that are symmetric, resp. deviatoric, with resjgettte first two indices, and we let

3x3x3 _ p3x3x3 3x3x3
Ro,sym =Ry N Rsym .

We denote bya®b the tensor defined componentwise Bpb)i; = (a)i(b)j. In a similar
manner, we denote by ® b ® c the third—order tensor with componentssg b ® ¢)ijx =
(@)i(b)j(C)k. In particular, we have

(a®@b)c=(b-c)a (1.2.2)
We denote by sy® and Ag, respectively, thesymmetric partand deviatoric partof any

tensorA, namely, symk = 3 (AT +A), andAo = A — 3tr(A)l, wherel is the identity
matrix; given that&® b)" = b ® a, and that trA® b) = a - b, we have

sym(a@b):%(a@b+b®a) and @@b)o:ac@b—%(a-b)l. (1.2.2)
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For x € R2, we denote byd, ¢, 2) its cylindrical coordinates,
X = (0C0Sp, 0SNG, 2), (0,¢,2) € (0,+0) x [0, 27) X R.
and we introduce the locflame-field vectors

ey (¢) = (cosg, sing,0), ep)(¢) = (—sing,cose,0), ez =(0,0,1). (1.2.3)
It follows from (1.2.3) that
C’) .
& - &jy = ¢ and % C €y = Eij3, (1.2.4)
whered;; andejj are, respectively, the Kroenecker and Levi—Civita symb®le denote
components in the frame—field (1.2.3) as follows:

@ =a-ejp, (Aip =Aepej, Ak = Afe@) ® €(jy ® Eky- (1.2.5)
Although these componentsfidr, in general, from those in the standard basis, the usual
representation formulas in terms of components apply:

a=(@mei, A=A)ipen®ej, A= (A S e&j) ® e, (1.2.6)
along with the usual component—wise multiplication rules:
(Aa)iy = (A)aj@)) and  Aa)ij) = (A)ijk) (@) (1.2.7)

Given scalar function$ andg depending o\, resp.A, we use the notatioé% andgeg to
denote the second—order, resp. third—order, tensors ddfine

f f(A
(5_) _otA) (@) _ 994) (1.2.8)
oA iy A A )iy OAdik
Given a tensor field\, we define its curl using local components:
(curlA)ipy=¢ia (VA)jik)- (2.2.9)

If A is symmetric, then the following identity holds [59, Eq. JIt3
curlcurlA = —AA + 2synmVdivA — VVIrA + (AtrA — divdivA) |. (1.2.10)

We next summarize some useful rules of tensor calculus, trsee later on. Given a vector
field a(o, 6, 2), its gradientVa can be represented as:

oa 1loa oa
Va= — -— — . 1.2.11
a C,)Q63)6(1)+Q6¢®e(2)"‘C,)Z@e(3> ( )
A similar formula holds for a tensor field(p, 6, 2). Moreover,
: oA 10A 0A
A=— - —€3). 1.2.12
dvA = 2 &1+ - 5580 T 58 ( )
The implication
Alo. ) = al0)symz) (4) ® &3) = divA =0 (1.2.13)

is easily verified using (1.2.1), (1.242Y1.2.4), and (1.2.12).
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1.2.2 Balance equations and traction conditions

Let IT denote an arbitrary subregion of body under scrutiny. @GwAtiand’s discussion
of the associated mechanics, which is nonstandard, is maséoe belief that the power
expended by each independent kinematical field be explessilterms of an associated
force system consistent with its own balance. Bearing indntiirat the goal in the strain-
gradient plasticity is to account for gradient of plasti@st-rateVEP, we use the principle
of virtual power to deduce the underlying balance laws. @&bast with the choice of
descriptorsE® andEP, we therefore assume that the power is expended internally b

e anelastic stres§ power-conjugate t&®,
e an plasticmicrostressTP power-conjugate t&P,
e a (third-order)polar plastic microstres&P power-conjugate t¥EP.

So the assumption, central to the Gurtin—Anand theory [8lthat the internal power
expended withifdT has the form

Win(II) = f {T TE®+ TP EP+ KPEVEp}dV.
11

SinceEP is symmetric and deviatoric, we may assume without loss négaity thatkP is
symmetric and deviatoric in its two first subscripts. Theingal power is balanced by power
expended externally by tractions that the exterior of tipgcgl partll exerts at the boundary
oI and body forces acting withill. As is standard, we consider, as power conjugates for
the macroscopic velocity, amacroscopic surface tractioiy and an externahacroscopic
body forceb, presumed to account for inertia and each of whose workimgrapanies
the macroscopic motion of the body. The internal power 2).2ontains term&EP , and

— based on experience with other gradient theories — we a&s#uah power is expended
externally by amicrotraction Kj, conjugate to the plastic stral®, and whose working
accompanies the flow of dislocations across the surfacessi§€tent with such assumption
is the following form of the external power:

wext(n)sz-Uvarf {tn-0+Kp : EP}dS.
11 oIl

Again sinceEP is symmetric-deviatoric, we assume thgt is symmetric-deviatoric. The
principle of virtual powers applied to arbitrary body payislds the standard—force and the
micro—force balances:

divT +b=0, divkKP-TP+To=0, (1.2.14)
along with relations between stresses and tractions:

to = Tnn, K]'[ = Kpnn on oIl (1215)
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wherenyp denotes the outward unit normal &bI. To arrive at an evolution problem for
displacement and plastic strain, we shall supplement tlenba statements (1.2.14) with
constitutive equations for the stress descripiorg®, KP, and with specifications fds, tq,
andK q.

1.2.3 The 3D problem

We now specialize the theory to the cylindeg described by (1.1.8). Therquesustained
by the cylinder is, by definition,

Qi=ggz- er<1> X T edS, (1.2.16)
z

whereX is any cross section @i (for instancez = QrN{z = 0} will do). We neglect inertia
and other body forces, and we require the lateral side ofytleder to be traction—free:

Tn=0
0N IQR, (2.2.17)
KPn=0

n is the outward unit normal t6Qg. We suppose that the cylinder is made of an isotropic
material.
The most general quadratic expressions compatible with symmetry are: for the
elastic energy,
1
We(E®) = ulESP + §/<|trEe|2, (1.2.18)

whereEg is the deviatoric part oE® andu, « > O; for the defect energy,

1
wq(VEP) = E,uLZ ((2 - n)lcurlEP? + plcurlEP — (curlEP)T?), (1.2.19)

(cf. [62, Egs. (90.41)—(90.42)], with, = ) whereL > 0 is the energetic lengthscale and
-1 < n < lis adimensionless parameter. It follows from (1.1.1b} @n2.18), that

T = 2uES + ktr(E®)I. (1.2.20)

The constitutive equations for the stress descriptors ameady been given in (1.1.4b).
In view of (1.1.5), they reduce to
a(VEP)
OVEP
When worked out in components with the aid of (1.2.8) and.@),2he constitutive
equation (1.2.2%)turns into

TPeds(EP) and KP = (1.2.21)

1
(KP)jap) = HL? [(VEp)u’qp) -5 ((VEp)<qu> + (VEp)<qu>)

1
+§(l +1)8jq(VEP)rpry — g(gipqgjrs + €ipj8qrs)(VE)<isr>] (1.2.22)
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(cf. [62, EQ. (90.47)]), so that
. ) . 1 p
divKkP = uL“|AEP — sym(VdivEP) + 5(1 + n)(divdivEP)I + ncurlcurlEP|.  (1.2.23)

(see also [62, Eq. (90.64)], with= n, which however contains a typo).

Substituting (1.2.23) and (1.2.21into (1.2.14) we obtain (1.1.7). The system gov-
erning the evolution of displacementx,t) and plastic strainEP(x,t) in the cylinderQg
is

divT =0 in Qg x (0, +o0)

divKP + To € 45(EP) in Qg x (0, +0)

Tn=0 on 9Qr X (0, +0) (1.2.24)
KPn=0 on 0QRr X (0, +0)

EP(-,0)=0 in Qr,

where stres3 (x.t) € R3s3 and polar microstres&P(x, t) € R3** are related to displace-
ment gradient and plastic strain through (1.2.20) andZ2)2.

1.3 The torsion problem

We now argue that the ansatz (1.1.9)-(1.1.10) yields a abeleiss of solutions of the bulk
system (1.2.24). As explained in the Introduction, we replawith ® as independent
variable: we henceforth maintain that a superimposed dobtds partial dtferentiation
with respect t@®. In place of (1.1.9), we then write

(1.3.1)

{u(g, $.2.0) = 200e)(¢)
Ep(Qv b, G)) = yp(Q7 G))Sym(e<2> (¢) ® e<3>)

Our first task is to verify that the stregsresulting from (1.3.1) satisfies (1.2.24and
(1.2.24). To begin with, we use (1.2.4) and (1.2.11) to obféin= zOey ® &1y — 20e1y ®
&2 + 00ep ® 3y, whence

Symvu = 00 sym(ep) ® €3)). (1.3.2)

By combining (1.1.1a) with (1.3.3)and (1.3.2), we get
E® = (00 - yP)symez) ® €3)). (1.3.3)

On substituting (1.3.3) in (1.2.20), sinc&f = 0 we find
T = 2u(®0 — YP)symez) ® e3)). (1.3.4)
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From (1.2.13) and (1.3.4) we conclude that (1.2,2d¥atisfied. Furthermore, sinne= e,
on 0Qg, and since syn®z, ® e3y)eqy = 0 by (1.2.1)—(1.2.2), we conclude that (1.2.24)
holds true.

Our next task it to show that, under (1.3.1), (1.2,24)translated into

L2 (8% 19yP P . .
P pl - = (2L + =Z2E _ L) ckalpP O,R 1.3.5
1@ =) +pu(1-n)= (aQZ AR Qz)e aly®| in (O.R), (1.3.5)

and that the initial condition (1.2.24and the null-microtraction condition (1.2.243re
translated into
p oyP 1
Y?(0,0)=0 and %(R, Q) + §7p(R @) =0. (1.3.6)

First, we observe that, by (1.2.18% has null divergence:
divEP = 0. (1.3.7)
Thus, since &P = 0, the identity (1.2.10) yields
curlcurlEP = —AEP.
Hence, on recalling (1.2.23), we see that (1.2,2d§luces to
To+ u(1—n)L2AEP € 95(EP). (1.3.8)

Next, using the tensorial version of (1.2.11), and (1.2 find from (1.3.1) that

ayP .
VE" = G_Z)Sym(e@ ® &) @ e —0 YPsymeny ® &) ® €. (1.3.9)

Then, using the identity (1.2.12) with = VEP we arrive at

. FPYP 1oyP AP
AEP = divVEP = [ — + === — = |sym(ey, ® . 1.3.10
( 5% 090 QZ) yme ® &3) ( )
From (1.3.4), taking into account (1.2.2) and (1.2.8e see thalo = T. Hence, plugging
(1.3.4) and (1.3.10) into (1.3.8), we obtain that the indng1.2.24) is equivalent to:

—— +-— —Z||sym 96(yPsym ,
07 o0 &2 ym(ep) ® €g) € d5(y"sym(ep) ® &3)))

(1.3.112)
granted the ansatz (1.3.1). Now, denotingadbgnd3 any pair of scalars, and b& # 0 a

second-order tensor, we have

L2 (82P 1ihP 4P
2o+ -0y (55 + 575 5)

aA € 06(BA) © a € %aw. (1.3.12)
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Sincelsym(eg ® e3))| = % (1.3.12) implies that (1.3.5) is equivalent to (1.3.11)da
hence to (1.2.24) Finally, we consider the null micro—traction conditiond24),. Since
n = &, from (1.2.4)_, (1.2.5) and (1.2.7) we havKQn)“-q) = (Kp)<jqp>(n)<p> = (Kp)<jq1>.
Thus, by (1.2.6)KPn = (KPn)(jq &y ® €q = (KP)(jqu&j) ® &q- By working out (1.3.9)
and (1.2.22), it turns out that all componerk®)jq1) vanish, except for

L2 P 1
p _ (P e R O A
(KP)23n = (KP)321) > (1 77)( %0 + 57 )
Therefore, we conclude that
oy 1
XPn = ul?(1 - n) (% v Eyp) syme) © &), (1.3.13)

and hence (1.2.24)yields the null-microtraction condition (1.3%6)Finally, (1.3.6) fol-
lows immediately from (1.2.24)

By (1.2.18) and (1.3.3), and sintg&ym(y, ® eg)> = 1, the elastic—energy density
is: Yo = pE® 1 E® = 5(0© — ¥P)2. Moreover, using (1.3.9) and (1.2.9), we find that
(curlEP)4jy, = 0ifi # jand

14P 1oyP 1(0yP P
CUrlEP)13y = ==, (curlEP)2p = —=——, (curlEP)s3 = = [— + —|.
(curlE)ay = —5 . (CurlE) 2z = ~5 90 (curlE) @3 = 5 20 o

Thus, by (1.2.19) the defect—energy density is:

L2 P\ yoayr  [(yPV
samuzt-nl (o) <250+ (5] )

By integrating the free—energy density= v + /g OVEr any cross-section 6fg, we obtain
thefree energy per unit lengtalong the cylinder axis:

R1 L2 (8yP\* v 0yP P\
rir=on [ Yo oS 2 (2

By (1.3.1),5(EP) = \/§k|sym(e<1> ® e2)IYPl = klyP|. Again, integration over any cross
section ofQR yields thedissipation rate per unit lengtalong the axis:

R
D) = 2nk fo 9] ocl.

1.4 Formulation and solution to the torsion problem

1.4.1 Normalization

We pass to the normalized variables (1.1.12), we introdueadrmalized length scale

. |@A-pL
A= 4/ R (1.4.1)
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and we define the linear operator
. b, Y Y
L)f = /12 (’y + T - r_2) -. (142)

By virtue of (1.1.12), the partial ffierential inclusion (1.3.5) and the conditions (1.3.6) are
equivalent to (1.1.13), which we rewrite for convenience:

Ly +6redlyl in (0,1) x (0, +c0)
Y(L6)+ @ =0 foro>0 (1.4.3)
¥(r,0)=0 for r € (0, 1),

where nowy = 39 In terms of the normalized variables the torque (1.1.1h)km@written
as in (1.1.16), and free energy and dissipation-rate areesged resp. by (y°,0) =
E.F(y.0) andD(P, 0) = £.9(y, 6), where&, := 2rRL,

F(y.6) = fo 1%((9r y)2+/12(y +7r7 (?)2))rdr,
and .
96) = fo Fird.

We'll find it more convenient to work with theffective energy

92
E(y.0) = 9’(%9)—5

1 2 1
- 1f (y +/12( yy+(z) ))rdr—@f yr2dr.
2 r r 0

1.4.2 The evolutionary variational inequality

The structure of’ suggests that the natural functional setting for (1.4.8)désspace

H:=CF(@.1]) ", where lgl = fo 1(g,z+(g)2)r "

Lemma 1.1.
suphy® < Iyllg and lim y(r) =0 forall yeH. (1.4.4)
(0’1) r—0t

Proof. Sincelly||y is finite, a sequence, — 0" exists such thag?(r,) — 0 asn — +co.

For anyr > rp,
r r 1/2 ry2 1/2
0 -7l = o [ | <( [ rorver) ([ Zar) <.
n
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Passing to the limit as — +oco we obtain (1.4.4). Passing to the limit as — +co and as
r — 0", in this order, we obtain (1.4.4) O

A simple computation shows that,&(y, 0) € H’ is given by

<Dyéa(7’ 9)7 &) = a(y’ ’?) - <£(9)7 &)v (145)

where(, -) denotes the duality pairing betwekh andH, a: H x H — R is the symmetric
bilinear form defined by

1 Sy -
a(y.?) := f (y; + 22 (ﬁ, N % + g)) r dr, (1.4.6)
0

and/(0) : H — Ris the linear form defined by

1
{£(6),y) =0 f ry dr. (1.4.7)
0

On the other hand, a formal integration by parts shows thatigf a smooth solution to
(1.4.3), then

©,60n 0.7 = - [ Ly + onyrer
This suggests to write (1.4.3) in issibdfferential formulation
0%2(y) + D,&(y,6) 3 0, (1.4.8)
whered? is defined by
§€dZ(y) = (E&ry-nz=20)-20() VyeH.

We can thus recognize in (1.4.5) and (1.4.8) the standarnd&of anevolutionary varia-
tional inequality

Definition 1.1. Lety € W-X([0, +c0); H). We say thay solves(1.4.3)if ¥(0) = 0 and

C
aly. ¥ —y) = €O).7-v) = 2()- 2(3) forall 7eH (1.4.9)
for almost every > 0.

The proof of the next Lemma is standard; however, we repmduior completeness
and later reference.

Lemma 1.2. The bilinear forma HxH — R defined in(1.4.6)is continuous and coercive.
Furthermore,

1 ,y,’)"/ /12
a(y. ) = f (y«y a2 (y'«y + r—z))rdr +SyW5() forally,jeH.  (1.410)
0
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Proof. The reformulation (1.4.10) follows from noting that

1
f 5 +7y)dr TE® L @5) forally,y e H.
0

In view of (1.4.10), coercivity is immediate, and contiryufbllows on recalling (1.4.4)
i

According to [64, Theorem 7.3] the Lipschitz continuity @fwith respect to the norm
| - |ly and Lemma 1.2 give existence and unigueness:

Proposition 1.1. There exists a uniqug e Wli’é([o, +00); H) that solveg1.4.3)in the sense
of Definition 1.1.

1.5 Characterization of the solution

To characterize the solution to (1.4.3) we first try to get edrimts from the explicit result
available in the standard torsion problem, that is, whea 0. In terms of normalized
variables (1.1.12), the solution far= 0 is given by (1.1.15), and has the following property:
for eachd > 1 there exists aplasto-plastic radius £such that

{j/(r, 0)=0 andy(r,0) =0 ifr €[0,c,), w50

y(r,0) >0 and y(r,0) >0 ifr e(cy1].

Moreover,cy = 1 if 6 € [0, 1]. When looking for a solution of (1.4.3) for> O, it is natural
to search first among plastic profiles consistent with (}.5br all fixedd > 1, a plastic
profile consistent with (1.4.3) and (1.5.1) must satisfy

1
/12 (’)/” + F ’r rlz) —y=1-6r on (Ce’ 1)’ (152)

along with the boundary condition (1.4,3nd the left—-end condition
lim y(r,6) =0, (1.5.3)
r—cy

the latter being implicit in the choice &f as ambient space @, = 0. There is however, an
extra condition coming from (1.4.3) and fropt, 6) € H, namely,

r

lim y'(r,0) =0 forcy > 0. (1.5.4)
—>C§

This condition is necessary fon— y(6,r) to be continuous acrosg: without such conti-
nuity, r — y’/(6,r) would not be square-integrable acreagswhereas all the other terms in
(1.4.3) are.
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By putting together (1.5.2), (1.5.3), and (1.5.4), and theroafree condition (1.4.3)
we obtain the following free boundary problem:

Az(y”+%7’—rlz)—7=1‘9r on (s, 1)
(Z6)y(cs) = ¥'(co) = O (59
v+ %2 -0

Herecy is an additional unknown to be determined together wittat variance with the
cased = 0, whengy is given by 16). It turns out that £7)) is well posed up to aritical
twist 8,:

Lemma 1.3. LetA > 0. There exists a&ritical twist 8, > 1 such that Problen{%?,) has a
unique solution

(Co.v0) € (0, 1) x C*([cy, 1])

for all 6 € (1,0,), and has no solution faf > 6,. Furthermore:

() cyis strictly decreasing and uniformly Lipschitz continuauigh respect t@, and

lim ¢y = 0;
9—)9;

LLEE
(i) cog<l/0forall g€ (1,0));
(iii) e > 0in (cy, 1] for all 6 € (1,0,);
(iv) if 1 <61 <62 <0, thenyy, <yp, In[Cy,1].

It follows from part (i) in the above Lemma that, asttains the critical twist,, the
elasto-plastic boundary hits the origin= 0. Hence one expects that e 6, the plastic-
shear profile solves

/12(3/’ N }y, _ l)_y: 1-6r on(Q1)
@000 (15.6)

which is well posed for alp € R:

Lemma 1.4. LetA > 0. For all 6 € R there exists a unique solutign, € H of (%) in the
sense that

1
aly,y) = f (0r — Lyyrdr forall y€H,
0

with a(-, -) given by(1.4.6) Furthermore:

18



(i) 7o € C*((0,1]) n C([0, 1]) with %,(0) = O;

(i) if 61 < 62, theny, <%y, in (0, 1].
To construct a candidate solution for alf 0, we extendy, to (0, 1) by setting:

vo(r) := 0 if r € (0, ¢y,
and we patchy, andy, together by defining:

0 if 9e[0,1]
y(1,60) =1 yo(r) if 6€(L6,) (1.5.7)
Yo(r) if 6> 6,

The resulting function turns out to be the right candidate:

Theorem 1.1. The functiony defined by{1.5.7)is the unique solution of1.4.3)in the sense
of Definition 1.1. Moreovely € Lip([0, +o0); H).

In the rest of this section we prove Lemma 1.3, Lemma 1.4, drebiiem 1.1.

Proof of Lemma 1.3We introducey(q), ¥(1) andy 2 as the solutions of the following
auxiliary problems:

{ Lyor) =1 { Ly(r) =-r { Lya() =0 (1.5.8)

Y0 =751 =0 | yo@)=vyHD =0 | @) =1 yy1)=-3

It follows easily by comparison (see e.g. the proof of (ividwg thaty ), —y1) andy ) are
positive, decreasing and convex in 1.
If a pair (c, y), with ¢ > 0, is a solution of £%), theny may be represented by

Y =Y0) + 0y + @y (1.5.9)

for @ € R, and the boundary conditions (1.%%nply:

{ 0y(1)(€) + 2¥2)(©) = —¥(0)(C) (1.5.10)

97’{1)(0) + CL’)/EZ)(C) = _VZQ)(C)-
Viceversa, ife andc > 0 are such that (1.5.10) holds, them), with y given by (1.5.9),
is a solution of ¢%).
We now fixc € (0, 1) and consider (1.5.10) as a linear systenvim). Its determinant
is given by
6(€) = y0)(©)¥(2)(©) — ¥@(C)¥(1)(©).
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Using (1.5.8), it is easily seen thasatisfies

o) = _&:) ’ Cyf;(C) n @5 (1.5.11)
5(1) =0

which may be integrated explicitly:
1 1
5(c) = ——3 r?ye(r)dr forall ce (0,1]. (1.5.12)
Cc
Note thats < 0 in (0, 1) sincey(p) > 0: therefore, for ang € (0,1), (1.5.10) has a unique
solution,

~70»© +¥2(@70)© v

a0 = 59 =3 (1.5.13)
o 0©@79© +70©@ry(© &)
CL’(C) = 5(0) = @

In order to inver®, with the help of (1.5.8) we notice that the numerataf @ solves

i Y0 y(©) .
Y@=+ n 01 (1.5.14)
v(1) =0,
which, as before, may be integrated explicitly:
1 1
v(C) = ST rye)(rydr  forall ce (0,1]. (1.5.15)
C
Therefore
A S A C T C R LA C

5%(c)
(1.5.11)(1.5.14) y(L(C)(é(c) - cv(0))

12562(c)
Ik Yrir - Q)y(z)(r)dr
2

(fcl rzy(z)(r)dr)

(1.5.12(1.6.15) <0 forall ce(0,1),(1.5.16)

—Cy(2)(C)

which implies tha¥ is invertible.
We now notice that, letting = r/1, the equation satisfied by, becomes the so—called
modified Bessel equation of order 1

o a2
72

dr2

y+rdy -+ Py =0
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whose general solution is a linear combination of thedified Bessel functiong(k) and
K1(X); in particular, it is such thaty(»(f) - C > 0 asr"— 0* [1, p. 374,§9.6.1 and p.375

9.6.7-8].
Then
lim 9(c)=-C,<0 (1.5.17)
c—0*
and, after simple computations using de I'Hopital’s rule,
1
— -] r)dr
im 7(0) = ~y)(1) Jim ke V(i)( ) _ 1 (1.5.18)
= -2 rend)
Since (by (1.5.16)¥ is continuous in (01), (1.5.17) and (1.5.18) imply that
9(c)<-C, <0 forallce (0,1). (1.5.19)
In addition, recalling (3.2.6), (1.5.12), and (1.5.15),
1
— s)ds
im 8c) = lim M -1, (1.5.20)
c—1 c—1 fc 827(2)(S)d5
1
— s)ds
im ) = lim %SVL() = 0, < +oo. (1.5.21)
c—0 c—0 J(': 827(2)(S)dS

Combining (1.5.19), (1.5.20), and (1.5.21), we see thafuhetion
01 (L6)30—c=cy€e[0,1)
is strictly decreasing and uniformly Lipschitz continupitsuniquely determines the solu-
tion of (%),
Yo 1= Y(0) + Oy() + @(Co)y(2)- (1.5.22)
Sincec, > 0, the regularity ofy, follows at once from that of g), y(1) andyz).

In order to prove (ii)-(iv) we make three observations. fridifferentiating (1.5.1Q)
with respect tac and subtracting (1.5.19Wwe obtain@(c)y(l)(c) +a’(C)y(2)(c) = 0, whence

Yoo . d_ Y)(©)

, ie. —a(g) =-—""—>0. 1.5.23
Y@ %" = 00 (1:5:29)
Combining (1.5.23) with (1.5.22) (evaluatedrat 1) we obtain the following monotonicity

property:

@) = -6(0)

1<01<62<0;, = y5(1)<yy(1) (1.5.24)

Second,
y can not have a non-positive local minimum irfg11). (1.5.25)
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Indeed, at a local minimum poimng € (1/6, 1) we would have

Y/(r0) = (712

+ %]y(ro) +1-6rg<0,
o

which is impossible. Third,

y(1) > 0. (1.5.26)

Indeed, ify(1) < 0 theny’(1) = —y(1)/2 > 0, whilst if (1) = 0 theny’(1) = 0 and, as
above;y”’ (1) < 0 (sinced > 1). Sincey(cy = 0), both would contradict (1.5.25).
We are now ready to prove (ii)-(iv).

(i) We first show thatcy, < 1/6. We recall thaty’(cy) = 0 and we note thap”’(cy) =
1 - 6cy. If by contradictioncy > 1/6, theny”(cy) < 0, hencey would be negative in a
right-neighborhood oy, in contradiction with (1.5.26) and (1.5.25). If, insteagl=
1/6, theny”(cy) = 0O: differentiating the equation, this implies thét(cy) = -0 < 0
and yields a contradiction as in the previous case.

(iii) We next show thaty > 0 in (cy, 1]. If not, sincey(cy) = 0 andy(1) > O, by (1.5.25)
v must have a non-positive minimum poimt € (cy, 1/6]. On the other hand, by (ii)
v"(cg) = 1-06cy > 0, hencey is positive in a right-neighborhood af. Sincey(rg) <
0,v has a positive maximum in € (cy, ro) € (g, 1/6). But theny’’(r;) > 1-6ry, > 0,
a contradiction.

(iv) Finally, we show that (1.5.24) can be strengthened to:
1< 01 <6 <0, = Yo, < Yo, in [Cgl, 1]

Letd = 6, — 6, > 0. The diferencey = vy, — vp, satisfies

{ Ly+6r=0 in (cy. 1], (1.5.27)

YD) +31) =0

Sincecy is strictly decreasing, (iii) implies that(cy,) > 0. By (1.5.24) we also have
¥(1) > 0. If y had a non-positive minimum &4 € (cy,, 1), by (4.8.6) we would have

1 1) —
Y’ (ro) = (ﬁ + —2]7(ro) —0rg <0,
o

which is impossible. Hencg > 0 in [cy,, 1] and the proof is complete.

Proof of Lemma 1.4Let f € H” be defined by
1
£, %) ::f y(@r — D)rdr, forall ¥ € H.
0
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According to Lemma 1.2, and to the Lax-Milgram Theorem, ¢hexists a unique function
v = 4 € H satisfying

aly,y) =«f,y) forall y€eH,

that is to say,

1 1 1 ~ 1 ~ 1
f 50r - rar 210 f yyrdr + 22 f («/«7+Z—Z) rdr+%1.5.28)
0 0 0

for all ¥ € H. Choosing firsye CZ((0, 1)) in (1.5.28), we see thate H2 ((0, 1]) and that

loc
A2 (ry” +vy — %) —ry=@-6r)r ae.in (Q1), (1.5.29)

i.e. the equation in4?;) holds. Choosing them € C°((0,1]) in (1.5.28), integrating by
parts and using (1.5.29), we see that

Y (1)5(1) = ~5y(W)5(0).

hence the boundary condition i4) holds, too. It follows immediately from linear ODE
theory thaty, € C*((0, 1]); together with (1.4.4), (i) holds. Finally, (ii) follogsby compar-
ison arguments analogous to those used in the proof of LemBnading thaty(0) = 0 for
all 6.

Proof of Theorem 1.1We extend the definition af, with

_{ 1 if 0€[0,1] (1.5.30)

10 if >0,

We lety(:) = y(-,6) andc = ¢y when no confusion arises. A few preliminary observations
are inorder. Lea: HxH — R be asin (1.4.6). We already know from Lemma 1.4 that

1
aly,y) = f (0r = L)yrdr forall yeH andallg>6,.

0
Foro € (1,0,), we recall thaty € C*([c, 1]) is such thaty = 0 in (0, ¢) and

Ly=1-r0 if re(cl)
¥(©) =9'(c)=0 (1.5.31)
yQ)+ & =0
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Hence, for every € H we have

(15.31a)

1
fc (-Ly)yrdr

1 ~
(142 f [—/12 (7”5/r +y'y - yr—y) + Wr] dr
C

(15.31b)

1
f (r6—1yyrdr

j;l [/12 (7'7' + T—Z) + 777] rdr — 2%/ (1)5(2)

(15310 j; ! [ /12(7,5/ N 7;_2’) +y;7]rdr N /127(1)237(1)

(1.4.10) .
= ay,y).

In view of (1.5.30), we conclude that

1
aly,y) = f (0r — L)yrdr forall y e H andall 6 > 0. (1.5.32)
C

It follows from (ii) of Lemma 1.3 and (1.5.30) that
cy <1/6 forall 6¢€ (0, +c). (1.5.33)
We are now ready to complete the proof. First we show unifoipsdhitz continuity inH:
Ily(-,62) = y(-,01)|ln < Clo2— 61| forall 0<6; <6, (1.5.34)

Let 0 < 01 < 62, ¥i(-) := ¥(-,6i), andc; := ¢g. By (i) in Lemma 1.3¢; < ¢;. By Lemma
1.2,

ly2=yillZ, < aly2—vy1y2-71)

1 C1
(1.5:32) f (62 - 61)(y2 — y2)r?dr + f (621 — L)yordr.
0 &

In (cp, €1), using (1.5.33) we havéyr — 1 < 6,¢1 — 1 < 0. Therefore

1/2
2 ! Y2 —y1\?
lly2 = villy < (62— 61) — rdr]  <lly2 — y1lln(62 — 61)
0

which yields (1.5.34). Now (iv) of Lemma 1.3 and (ii) of Lemrhal imply that
Y =0, (1.5.35)
and the definition of implies that
(0 =0 in (O,cy) if cg>0. (1.5.36)
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It remains to show (1.4.9). By (1.5.34),€ H for a.e.# > 0. Thus, for ally’e H and
a.e.f0 > 0 we have

1
~ . 1.5.32 ~ .
ay.y-y) ¥ f ©Or - 1)F - )rdr
C

1 C 1
- fo or2(y — y)dr — fo or2(y — v)dr — fc (y — 3)rdr

C 1 1
G4 00), 7 - ) - f or25dr - f yrdr + f yrdr
0 c c
(1.5.35)(1.5.36) o c o 1 1
2 0.5 -9) - f or2fldr - f Firdr + f yird
0 c 0

(1.5.33) o 1 1
3 e 5-9 - fo Firdr + fo firdr.

To prove uniqueness, let andy, be two solutions with the same initial condition. Then,
for y = y1 — y» we have

d a.)

o = arY) =ab - ¥a) - alyz 1 - )

= —a(ys,y2 —v1) — aly2,y1 - 72)
< —(U6),y2 = y1) + D(y2) — (1) — L(O), 1 —v2) + D(y1) — D(y2)
=0

and the result follows from the coercivity ef-, -).

1.6 Formal asymptotic ford < 1

For a fixedd, we lety(-) := y(-, 8) denote the solution characterized in Theorem 1.1,Gand
asinLemma 1.3.
1.6.1 The bulk
We expandy and (foré < 6,) ¢y in powers ofd < 1:
y=y0+Ay1+..., Cy=Co+AC1+....
At leading order, we see from (1.5.5) and (1.5.6) that
vo(r) =(0r - 1), and cp=1/6.

Due to the incompatibility ofyp with the boundary conditions at= 1/0 and atr = 1,

a boundary layer will form near each of the two points. In thgstion we address these
local behaviors, and we use the former to determine thergaalider value of the torque
fora <« 1.
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1.6.2 The boundary layer near the free boundary

Foro < 6,, we zoom into the free boundary with the help of the changeadables

y(r) = Ag(x), x:= % (.e.r =cy+ axand & = 2d),

which leaves the slope invariant:(r) = g«(x). Therefore we will use
0 = yu(ro) = Xiryoo ox(x) forall ro € (1/6,1) (1.6.2)
in order to matctg with the bulk solution,yg. Neglecting the condition at = 1, (1.5.5)
reads as
Oxx + A(Co + AX) 0« — A3(Cy + AX) 729~ g = (1~ 6(Cy + X))
{ 9(0) = 9x(0) = 0.

We expandyandcin powers ofd: g =go+Ag1+...,Cc=1/60+ Ac1 +.... Atleading order
in 1 we have

(1.6.2)

{ (Go)xx = Go = 7 (1= 6(Co + ACy + AX)) = —6(C1 + X) (1.6.3)

90(0) = (90)x(0) = 0.
The general solution of the ODE (1.6,33 go = 6(cy + X) + a€* + be; the initial conditions

(1.6.3) yield:
Jo = 0(C1 + X) — 36(1 + c1)€* + 26(1 — cr)e™.

Using the matching condition (1.6.1) yields = —1. Therefore
Co = % —1+0(% and g=6(x—1+e*)+0(1) fori<1 andd<6, (1.6.4)

the former coinciding with (1.1.18).

As we will see, in order to quantify the dependence of theuergni we need to work
out the next order correction 1. It follows from (1.6.2) and (1.6.4) that

(91)xx + 6(do)x — G1 = —6C2
{ 91(0) = (91)x(0) = 0. (1.6.5)

The general solution of the ODE (1.6,53 g; = ae“+ be ™ + 62 + 6c, — #2xe™>/2; the initial
conditions (1.6.5)yield

6>  6co 3% 6\ o 0
gl——(z+7)ex—(7+7)e +0 +9C2—Exe .
The matching condition for the slope requirgs)¢ be bounded ag — +o0. Hencec, =
-0/2 and

1 0
Gy~ 5= A= 5/12 fori< 1 and 6 < 6,. (1.6.6)
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1.6.3 The boundary layer nearmr =1

Here we motivate the expansion (1.1.19). We zoom intol with the help of the change
of variables

1-r .
W) =0-1+29(), x==—= (ier= 1-axandd = -1,

which again leaves the slope invariant (up to the sign). dfoee we'll use as matching
condition:

lim gx(X) = —6.
X—+00
Neglecting the boundary conditionsrat ¢y, it follows from (1.5.5) and (1.5.6) that
{ Oxx — AL = AX)71gx — 2(1 - AX)2g—g=6x+ 11— X% - 1)
9x(0) = 3(6 - 1+ 29(0)).
We expandy in powers ofd: g = go + 401 + .... At leading order im we have
{ (go)xx — Qo = 6X
9(0) = 3(6 - 1).

The general solution and the matching condition ygjd= —0x + %(1— 30)e . In terms of
the original variables,

1 1 r
y~ 6= 1- 6%+ SA(L-30)e™ =6 -1-6(1-1) + E/1(1—36?)«3‘17
and (1.1.19) follows. In particular,

Y1)~ 01— %4(39 ~1) for A< 1 (1.6.7)

1.6.4 The asymptotic for the torque

For 1< 6 < 6,, we have
(1.1.16) 1 2
q() =7 3| (Or—vy)yedr
o

Co 1
(143) 3f or3dr + 3f (r2 — 220 +ry - y)) dr
0 Co

30
- ch+1—c93—3/12([r2y’]%9 —f
cy

1

u¢+ww)

3

4. c 9
23 1 = (4= 300) + A25(D)
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Foré > 0,, we have instead
(1.1.16) ! 2
q() =7 3| (Or—y)edr
0

1
(143) 3](; (r2 - 220% + 1y — y)) dr

9
23 4, Poy(2),

Plugging (1.6.6) and (1.6.7) (in its leading order fori) = (6 — 1)(1+ o(1))) yields, after
straightforward computations,

1- L +32,9209-1) if 9e(L6,)
q(o) ~{ a2 ! for 1<« 1

1+ 29 -1) if >0,

Note that theD(1)-term in the expansion fa# < 8, vanishes, which points for the afore-
mentioned necessity of a second-order expansi@g. @incey € Lip([0, «); H), g need be
continuous across = 6,: therefore

! + 30 <]l < 60 !
49?1 20, \/6/1’

which yields (1.1.20) and (1.1.21).

1.7 Plastic spin

In the small-strain theory proposed by Gurtin in [60], thaspk distortiorHP := Vu — H®
is not symmetric:

HP = EP + WP, EP symmetric WP skew-symmetric (1.7.2)

The defect energy andfective flow rate considered in [60] are:

Wa = suL?curHP,  resp. dP = \/|EP|2 + YIWP2 + (2]VEP2, (1.7.2)

wherey > 0 is a constitutive parameter that measures the importdndisgipation associ-
ated to plastic rotations (see also [9] for a discussionérctise of simple shear). Note that
(1.7.2) generalizes (1.2.19) in the particular cgse 0. Within our working assumptions
(1.1.5), Gurtin’s theory leads to the following flow rule:

. 1, :
To+ uL?[AHP — VdivHP + 3(dv d|va)I) € 85, (HP), (1.7.3)
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where now the dissipation & (HP) = V2k{/|EPI2 + yIWPJ2 and
85, (HP) = (Ao € RY 1 6,(HP) —6,(HP) 2 Ao 1 (HP — HP) v HP e RF).

As announced in the Introduction, a solution of (1.7.3) &dily constructed by taking the
solution of (1.1.7) fom = 0 and by settingVP = 0. Indeed, ifEP is given by the ansatz
(1.1.9), withyP solving (1.3.5)—(1.3.6) witly = 0 andWP = 0, then

aéX(Hp) = 65X(Ep) = {Ag e RY®: 5X(ﬁp) - 5X(Ep) >Ao: (HP-EP) VHP e R33).

We decomposéi® as in (1.7.1) and we use thé,;(EP) = §(EP), thato(EP) = 6(HP) <

5,(HP) and thatAo : HP = Ag : EP if Ag € R3S - then

86, (HP) 5 {Ag e RIS - 5(EP) - 6(EP) = Ao : (EP - EP) VHP e R3?)

0,sym *
={Ao¢ Rggm: S(EP) - 6(EP) > Ao : (EP - EP) VEP € Rg’xs:;’/
(1.1.6) )

. 1.3.8 1.3.7
AS(EP) 391, + uL?AEP 307, + uL? (AEP - VdivEP + 1 (div divEP)!)
= To + puL? (AHP — VdivHP + (divdivHP)I)  (sinceWP = 0).
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Chapter 2

Mass constrained minimization of a
one-homogeneous functional arising
In strain-gradient plasticity

2.1 Introduction

2.1.1 The model

This chapter stems from the following conjecture, formediin [6]:

Conjecture. Let | = (—a, @). The functional

F(u) = f VU2 + £2(w)2 dx (2.1.1)

(@) has a minimumz,, over all u such that
ulgr = 0, qudx =1; (2.1.2)
|

(b) any minimum u is a solution of

_ u - 52( u ) . (2.1.3)
V&2 + 2(u)? V&2 + e2(ury?

The conjecture originates from a strain-gradient theopladticity introduced by Gurtin
in [60] and developed by Anand and Gurtin in [61] (see alsqd)[62

In order to investigate the role of the dissipative lengtakst, it is convenient to look at
a reduced one-dimensional model, introduced in [6], whildviates most of the intricacies
of the full model in [60, 61] but yet may allow to extract itssesce: it describes the plastic
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strainvy in a strip of finite width|I| undergoing simple shear with shear stresk the case
of null internal-variable hardening (which is of interestr®) and after a suitable rescaling,
this model leads to the following evolution equation fary):

1252y = Q4 _ p2g (90
{H oy = - Cox(%*) (t,%) € (0,00) X1, (2.1.4)

é)xT:O

where

d= 00 + ox302

which holds provided the strip is “fully plastified”, i.edyy > 0 in | . The evolution is
complemented by initial-boundary conditions of the form

at7|(')| = O, 7(07 X) = ’)/()(X),

and by either “displacement” or “traction” condition. Thedter, which is of interest here,
amounts to prescribe the stresat the boundary off (and hence everywhere since, in view
of (2.1.4), 7 is spatially constant).

SettingL = 0 allows to isolate and analyze the dependence of the floweodidisipative
length-scalef. Assumingm = 0, imposing a constant (in spaaadtime) tractionr,, and
letting u = dyy, the evolution (2.1.4) reduces to (2.1.3) (with primes diengyodifferentiation
with respect t).

Using the scale invarianae— au (a # 0), we may normalize the mean of the plastic
flow to one. Such normalization leads to the problem consitién the conjecture and is
natural in order to capture scalffexts. Indeed, we can then say that a sampiranger
than a second one (made of the same material) if a highes strissneeded to generate the
same mean plastic flow. On the other hand, of course a sangpigaiterthan a second one
if the ratio¢/|1| is higher. Hencesmaller is strongers equivalent to say that

(c) ¢ is increasing with¢/|l].

This is exactly what the numerical simulations performefbirindicate.

2.1.2 Main results

The goal of this part is to provide a rigorous validation &, (b), and €). By the rescaling
X = X/€, we may assume without loss of generality that 1. In some cases, it will be
harmless to work in a bounded, open and connecte@ setRN with Lipschitz boundary
rather than in an intervdlc R. Givenu : Q — R, U denotes its extension by zero:

— U if xeQ
U(X)_{o if xeRN\ Q.
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First of all, we extend the function& given by (2.1.1) toL1(Q) and we encode the
boundary conditions (2.1.2)let F° : LY(Q) — [0, +0] be defined as

JuZ +VuRdx if ue WH(Q
Fo(u) = Jo 0" () (2.1.5)
+o0 if ue LY(Q)\ W (Q)
We recall that the relaxatio® of a functionalG : L1(Q) — [0, +co] is defined by
G(u) = inf {IinmJirnf G(un) : Un € LY(Q), uy — uin Ll(Q)} (2.1.6)

and thatG is lower semi-continuous with respect to th§Q)-topology. The relaxation of
F° is characterized as follows:

Theorem 2.1. Let F° be defined by2.1.5) Then

Fu) - { o, VU2 + VU2 dx + DU (Q) + [, luldHNif ue BV(Q)

+00 if uel}(Q)\BV(Q).
(2.1.7)
Furthermore, for all ue BV(Q?) it holds:
) = (@DDIEY) = (0.DW@)+ [ ju™? (2.1.8)
oQ

= sup{f u(s—divt) dx+f ut - ndHN1: (s t) € COQ), 1I(S, t)lleo < 1}. (2.1.9)
Q 0Q
Let
BV.(QQ) = {u € BV(Q) : JC udx = l}.
Q

The positive answer to par) of the conjecture follows from Theorem 2.1 and standard di-
rect methods (for related results see, for instance, [5aBd]the references quoted therein):

Corollary 2.1 (Existence of minimizers)There exists at least one minimizerfof among
all u € BV.(Q).

In order to introduce the results concerning paldsand €) of the conjecture, it is
convenient to have the notion of sulffdrential at hand. To this aim, we let

_ __b
p_ ma)qzaN}a q_ p_ls

HereHN-1 denotes theN-1)-dimensional Hausdfiirmeasure (with a slight abuse of notation, we hereafter
identify uwith its trace ordQ), n is the outward unit normal @Q, Vu andD*u denote the absolutely continuous
part and the singular part &fu with respect to the Lebesgue measure, respectiy¢benotes the total variation
of a measure: (see [5, Definition 1.4]), € t) denotes th&®N+1-vector @ 1, ..., ty), and {, DU) denotes the
RN*1-valued measurai¢N, D.T,.. ., DyU) (with another slight abuse of notation, we hereafter iifigmat £N-
integrable functionu € L*(Q, RN) with the measure £N).
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and we hereafter consider the functiopal L9(Q) — [0, +co] defined by
(T, DO)|(RN) if ue BV(Q)
o) = { +00 if ueLYQ)\BV(Q).
The subdiferential of¢ at uy,, denoted byié(un) c LP(Q), is defined by:

(2.1.10)

u' € dg(uy) f U* (U — Unm) dX + ¢(Um) < ¢(u) for all ue LYQ). (2.1.11)
Q

Remark 2.1. Classical embedding theorems imply that(®Y c L9(Q) c LY(Q), so that
the functionalp coincides with the restriction to4(Q) of the relaxatiorF°. Hencep andF°
have the same minimum and the same minimizers iBVand the identification§2.1.8)
and (2.1.9)continue to hold.

We start the discussion ob)(and €) with a characterization of the minimum value,
which crucially relies on the 1-homogeneity @f
1
Proposition 2.1. Lettg := — min ¢. Then
P = o e ?
Um € BV.(Q)
Taxa € 0¢(Um).

Hereyq denotes the characteristic function of the QetProposition 2.1 already pro-
vides a weak answer th) 7q, seen as a Lagrange multiplier for the constrained mini-
mization problem, is uniquely determined over all possihlaimizers, a fact which would
yield (b) if one could identifyd¢ with the right-hand side of (2.1.3). We slightly postpone
this discussion, and we first notice that the characteadmati ¢, given in Proposition 2.1
already allows to justifyd) through a scaling argument:

Un € argming <—
BV.(Q)

Theorem 2.2(“Smaller is stronger”) Let
Q= {xeRN: x/1€Q).
The functiom — 7, is decreasing (strictly if N= 1).

Let us now return to partbj of the conjecture. In one space dimension, where the
conjecture is formulated, we are able to give a complete angwpart b) in the space
SB\/(I) = BV.(I) n SB\(1),

whereu € SB\(]) if and only ifu € BV(l) and the singular part of its variation is given only
by the jump part. This means that

du = [u(¢) - u(x)]ox,
ieN
wherex; are the jump points df, 6y is the Dirac mass concentrated xrandu(x") are the
left, resp. right, limits ak;. We prove the following:
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Theorem 2.3. The functionaly given by(2.1.10)has a unique minimizer & SB\.(l).
The minimizer u is even, strictly decreasing®ea), smooth in I, and it solves the Euler-
Lagrange equatioii2.1.3)(with ¢ = 1andr, = 7, defined by Proposition 2.1). Furthermore

lim u(x) >0 and Ilim U (X) = —co.
X—a~ X—a~
Note in particular thati jumps atdl, in the sense that it does not attain the boundary
value zero abl: this observation confirms the numerical simulations pentad in [6].

Besides non-generic domains (such asNasphere, where we expect results similar
to those in Theorem 2.3 to hold), we believe that the multiehisional problem will not
have smooth minimizers in general, as the mass constrantpnoaluce solutions which
jump down to zero in the interior. Hence, in general the gpoading Euler-Lagrange
equation will not be satisfied by minimizers. However, yés$ ijpossible to characterize the
subdtterentialdg at least in the sense of distributions, as it has been dorgtfer problems
with linear growth in the gradient [7, 8]. To this aim, we let

X(@Q) ={ze (L>(@)" : divze LP(Q)]

and we recall that for any € BV(Q2) and anyz € X(Q) the functional ¢, Du) : CZ°(2) —» R
defined by

((z,Du),¢>>:—quodivzdx—fuz-Vgadx
Q Q

is a Radon measure which is absolutely continuous with medpgDu| (see [7,§C.2]).
Furthermore, the tracez]n] € L*(0Q) of the normal component af € X(Q) is well
defined (se€2.7). We may now state the characterizatiodof

Theorem 2.4(Characterization of¢). Let ue BV(Q) and ve LP(Q). Then ve d¢(u) if
and only if there existés, z) € L*(Q) x X(Q2) such that:

(i) s Dlle < 1,

(i) v=s—divz inLP(Q);

(iii) ¢(U)ZLSUdX+ js;d(z, Du)+j;Q ulz, n]d?{N‘lzLuvdx.

A recent discussion on the existence, the (non-)uniqueraass the Euler-Lagrange
equation of minimizers of the total variation with mass aitt £onstraints may be found
in [68]. The thesis is organized as follows. In Section 2.2gie the proofs of Theorem
2.1 and Corollary 2.1. 1§2.3 we prove Proposition 2.1 and Theorem 2.2§2m4 we look
at the uniqueness part of Theorem 2.3. Namely, we show tlyatnamimizer is positive in
| and can not have jump points In these two properties, combined with the (not strict)
convexity ofg, sufice to give uniqueness of the minimizer®B\V. In §2.5 we prove the
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regularity part of Theorem 2.3. The crucial observationhiat,t though solutions to the
Euler-Lagrange equation need not be concave, their sqoateloes: this gives an a-priori
Lipschitz bound in the interior for solutions of suitablepagximating problems, and thus a
smooth minimizer in the limit. 1r§2.6 we use ode methods to characterize the solutions of
(2.1.3): as a consequence, we show thpimps andy’ blows up at the boundary. Finally,

in §2.7 we prove Theorem 2.4.

2.2 Relaxation results and existence of a minimizer

In this section we prove Theorem 2.1 and Corollary 2.1. Warbegth the counterpart of
Theorem 2.1 when boundary conditions are neglected.

Lemma 2.1. Let Ac RN be an open, bounded set, and lgt AL(A) — [0, +o] be defined
as

Ju V@ +[VuRdx  if ue WhH(A)
Fa(u) = (2.2.1)
+00 if u e LY(A) \ WE(A).
Then its relaxatiorF 5 (see(2.1.6) is characterized by
— U2 + |Vul2 dx + |DSul(A)  if u € BV(A
Fa(u) = Ja * A (2.2.2)
+00 if ue LY(A)\ BV(A).
Proof. The result is an immediate consequence of Theorem 3.2 in [36] o

In order to prove Theorem 2.1,we need to notice thaiatisfies the so-called “funda-
mental estimate” (see [37, Def. 18.2]).

Lemma 2.2. Let A be the family of open subsets @f For everye > 0 and for every
A LA, Be A, with A € A”, there exists a constant M 0 with the following property: for
every yv € LP(Q) there exists a cut#ff ¢ between Aand A’ such that:

Faus(pu+ (1= ¢)v) < (1+&)[Far(u) + Fe(V)] + e(lull a(s) + IMILz(s) + 1) + M[lu= VI y(s),
(2.2.3)
where S= (A” \ A’) n B.

Proof. The lemma is an immediate consequence of [37, Theorem 19th]g) = ||,
Ci=C=C3=0C=1,anda=0. O

Now we can extend the result in Lemma 2.1 to the case of honeogesnDirichlet
boundary conditions.

2a cut-df ¢ betweenA’ and A” is a functiony € C3(A”)such that 0< ¢ < 1in A” andy = lina
neighborhood o'
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Proof of Theorem 2.1Let

o(U) = { Jo, VU2 + VU dx + DU (Q) + [, luldHNT if ue BV(Q)

+00 if ue LY(Q)\ BV(Q).
(2.2.4)
First of all we prove the equivalences in (2.1.8) and (2,1.8) that
@®(u) = |(T, DU)I(RN) = |(u, DU)I(Q) + f ludHN-1 (2.2.5)
0Q

= sup{fgu(s—divt) dx + fm ut - ndHN1: (st) € CP(Q), [I(S Dl < 1%2.2.6)

for all u € BV(Q). By the Radon-Nikodym Theorem [5, Theorem 1.28],00u) may be
uniquely decomposed into the sum Yu) + (0, D5U), which are absolutely continuous, resp.
singular, with respect tg#N*1. Since the two measures are mutually singular, we obtain

(T, DO)|(RN) = f VU2 + |Vuzdx + |DSTI(RM). (2.2.7)
Q
Furthermore (see [5, Corollary 3.89])
IDSTI(RN) = [DSul(Q) + [unHN 1| (6Q) = DSul(Q) + f ujdHN-1
0Q

and the first equality in (2.2.5) follows. The proof of the @ad one is even simpler and we
omit it. For the latter, we just need to recall the charaztgion of the total variation of a
Radon measure [5, Proposition 1.47],

(@ DU)|(RN) = sup{ fR (@dx+t-dDD) : (1) € CT®M), (s Dl < 1},

and, sincaiis supported 2, the integration by parts’ formula for BV functions [5, (3)§

f t-dDU:ft-dDu:f ut-nd‘HN‘l—fudivtdx.
RN Q oQ Q

We now show thatb = F°. Firstly we prove thatb < F°. For this, it siffices to show
that @ is lower semi-continuous. Indeed, sind¢u) < F°(u) for all u € LY(Q), we then
have that

®(u) < liminf ®(u,) < liminf F°(u,) for all u, — u e LY(Q).
N—+oco N—+o0
Let A be an open ball such thét c A. We have

) @29 fV|U|2+IVU|2dX+|DSUI(A) if ue BV(Q)
= A

+0o if ueLYQ)\BV(Q).

®(u
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It follows from Lemma 2.1 thatb(u) = Fa(U) for all u € LY(Q), and sinceF, is lower
semi-continuous, als® is.

We now prove the opposite inequalifiy?(u) < ®(u). If u ¢ BV(Q) the inequality is
trivial. Else, let{W,} ¢ W-1(Q) be an optimal sequence for the relaxatiorFef i.e.

Wi - uin LYQ) and Fo(u) = im Fo(#). (2.2.8)

Let
Qn={xe Q. dist(x,0Q) > 1/n}

(with n suficiently large so thaf, is not empty), letA, be an open set with Lipschitz
boundary such tha®, c A, andA, c Qu,, and letB, = Q \ A,. Lemma 2.1 in [25] (with
A = B, w = uandé = u) guarantees that a sequereg} c WH1(B,) exists such that

kIim Wnk = U in LY(Bn), Wnk=u on 4B, and limsup| [VWykldx < |Dul(By).
—+0o k—+oc0 Bn
(2.2.9)

We apply Lemma 2.2 witlk = 1/n, A” = Q, A’ = Qo, andB = B,,. Note thathAY UB = Q
and thatS = (A” \ A)n B = Q\ Qp, =: Sp. Then for alln suficiently large there exists
My > 0 such that for ank € N there exists a cutfdy,x betweenQ,, andQ such that

Fo (pnilt + (L= gndWnt) < (1+ ) (Fa() + Fa, (#ne)

1,
= (IMndlags,y + Wi,y + 1)
+ MW = WnllLys,)- (2.2.10)

Setzyk = enkWik + (1 — pnk)Wnk- By definition,z,klso = Wnklao = U; in addition,
f Zoj — uldx = f W — uldx + f lonk(Wk = U) + (1 = @n i) (Wnk — U)ldx
Q QZn Q\QZn
< f VW — uldX + f (IWic — ul + [Wnk — udx,
Qon Bn

hencez,x — uin LY(Q) ask — +co. Therefore, passing to the limit &s— +co in (2.2.10)
we obtain

— (2.1.6) L .
Fa(u) < liminf Fo(znk) < lim supFq ()

k—+o0

1, (— . 1
@+ ﬁ) (Fg(u) +lim supFBn(wn,k)) + - (1 + 2||u|||_1(5n)) ,

k—+o0

(2.2.8),(2.2.9)
<

and since

. ) (2.2.9)
limsupFg,(Wnk) < limsup | (IWnkl + [VWnil) dx < lujdx + |Dul(By),

k—+oc0 k—+co JBp Bn
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we have that for alh there existk(n) such that

Fal0) - 3 < Faln < 1+ 1) (Fal0) + [ i 10U + 7 (2+ s,

for all k > k(n). Defining the diagonal sequenge = z,kn) and using the monotonicity
of positive measures (see e.g. [5, Remark 1.3]), we condhaez, is also an optimal
sequence for the relaxation Bf which in addition attains the boundary value:

Zn—uin LYQ), z =uondQ, and Fq(u)= lim_Fa(z). (2.2.11)

On the other hand, again Lemma 2.1 in [25] (this time witk- 0 in Q andd = u on
AQ) guarantees that, € W-1(Q) exists such that

Va=Uo0ndQ, vy,—0in LY(Q), and limsup| |[Vvyldx < JujdHN-1L.
N—+o00 Q o0Q

Finally, letu, = Zy — Va. By constructioru, € W, () andu, — uin LY(Q). Hence, using

also triangle inequality,

— eie 16)221) . .
F(u) < fimin F°(un)(216)£(221)llnm|nf Fo(tn) < liminf (Fa(z) + Fa(n)).
— +00 —+00 —+00
(2.2.13)
We note that

. . (2212) N_1
limsupFq(vn) < limsup | (val + [VVR))dx < f [uldH"
Q 0Q

N—+o00 N—+o0

Hence, passing to the limit as— +oo in (2.2.13) and using (2.2.11) we conclude that

P <Fa@ + [ ugH" = o),
oQ
and the proof is complete. m|

The existence of a minimizer can now be obtained by standmedtdnethods: we
present its proof for completeness.

Proof of Corollary 2.1. Assume tha{u,} € BV.(Q) is a minimizing sequence fdf°. By
the growth condition and the Rellich’'s Theorem there exasgsbsequence, still denoted by
{un}, such that, — u € BV(Q) andu, — uin LY(Q). In particular,

1= Iim fundx=fudx,
N—+oo Jo O

so thatu € BV,(Q). Corollary 2.1 now follows from the lower semi-continuiby F°. m|
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2.3 Characterization and monotonicity of the minimum
In this section we prove Proposition 2.1 and Theorem 2.2.

Proof of Proposition 2.1 We recall thauy, is @ minimizer ofg in BV,(Q) and

_ $(Um)
TQ = o (2.3.1)
By (2.1.11), the constant function— toya(X) belongs tad¢(uy) if and only if
TQ f(u — Um) dX + ¢(Um) < ¢(u) for all ue LP(Q). (2.3.2)
Q

If un € BV.(Q) andtoya(X) € d¢(uny), then by (2.3.2)(um) < ¢(u) for all u € BV.(Q),
henceur, is a minimizer. Let us look at the converse.ul BV(Q) theng(u) = +o and
(2.3.2) is obviously true. Ifi € BV(Q) and £, u < 0, then

(231)

o fg (U ) A%+ 0(Um) B2 () Jg (U= U)X + 9(Um) < 0 < B(U)

hence (2.3.2). Else, singeis positively 1-homogeneous amug, is a minimizer inBV,(Q)

we have
u
p(u) = (Jf;UdX)d)(J%udx] > (Jgudx)qb(um)
3 B (231) . B
= ot +{ f, o= 1) otun) 2 oun) 70 [ - un) o
hence (2.3.2) holds for all € LP(Q). m|

Proof of Theorem 2.2The proof relies on a scaling argument. Assulnes Ay, letu; be a
minimizer of¢ in BV,(14,Q2), and let

1 1
=10 = ——ao(U) = —— [ |(U;, DU Q) + u-d?'—(N‘l).
e = e = g (|(. )IAQ) fwim| '
Let
A1
u(x) = up (—x) € BV,(12Q).
A2
ThenDu = %Dul and
ffaN N1 A1
I(u, DU)|(B) = ((ﬁ) up, (£) Dul) (/l—ZB) (2.3.3)
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for any Borel seB c Q. Therefore

1
T, = (U2, DuR)|(A2Q +f u x|d7—(N‘1x)
) T (( D))+ [ el
< Nl (l(u, Du)|(12Q) + f |u(x)|d‘HN‘1(x)) (sinceu, is a minimizer)
519 A(A20)
(2.3.3) 1 1\N 1 \N-1 P N-1
- /12N|Q| (((/li) Us, (/11) Dul) (/llQ) + »[3(/129) |U1 (/é X)| dH (X))
3 1 p h o N-1/¢
- T (|(u1,T;Du1)|(alﬁ)+7; [ o IOH )
< Nl (I(Ul, Duy)l (19) + f IUl(ﬁ)IdWN_l(f()) (sinced; < A2)
719 A(uQ)

and the latter inequality is strict if minimizers are not stamnt, a fact which is true ¥l = 1
(see Theorem 2.7 i§i2.6). m|

2.4 Uniqueness of minimizers irSBV.

In this section look at the one-dimensional ca3e; | = (—a, a). We prove:
Theorem 2.5. The functionalp given by(2.1.10)has at most one minimizeraiSB\,(1).

The argument for Theorem 2.5 is based on two lemmas. Firglghow that, along
minimizers,¢ does not degenerate linin the sense that:

Lemma 2.3. Any minimizer e BV.(l) of ¢ is positive in 1.

This property allows to evaluate the variationgoalong competitors of a minimizer in
I. A suitable choice of such competitors yields:

Lemma 2.4. No minimizer ue BV.(l) of ¢ jumps in the interior of I.

The proofs of Lemmas 2.3 and 2.4 will be given at the end of $kigtion. We now
prove Theorem 2.5.

Proof of Theorem 2.5Let u; andu, be two minimizers irSB\,(l) and set
U=uU;—Up, U=tup+(1-tu, te(01).
Sinceg is convex andy; are minimizers, we have
d(U) = ¢(ur) = p(up) forall te (0,1), (2.4.1)
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i.e. U is a minimizer for every € (0, 1). Note that
U =tup+ (L-tu,,  ddu = tdSug + (1 - t)dup,
and the same holds for Then set

f(sp)= &+ P2

In view of Lemma 2.4 and sinag € SB\,(l), we have

$(Un) — o) _ f F(Uten, Uty p) = F(u, )
h | h

By Lemma 2.3u;, being a minimizer, is strictly positive ihfor everyt € (0, 1), hence

dx + ug(@”) — (@) + ug(—=a™) — ux(—-a™).

f(Ut+h, u{+h) - f(uta u{)
h

In addition, taking into account that

— Osf (U, u)u+ dpf(u, UU” a.e.inl ash — 0.

If(s p) — (S0, Po)l < Is— Sol + P — Pals

it follows , ,
f(Ut+h, ut+h) - f(uta ut)

h
Therefore we may use Lebesgue’s dominated convergenceetheéo conclude that

< Jul +u'| € LY(1).

%Mm%ifﬁJumww+8ﬂamwwﬁdX+mw1—uﬂdﬁ+mbﬂﬂ—uxﬂf)

By the same argument, we obtain

d2 7 / / /
@‘p(ut) = fl(agf(ut, UDU? + 2050 f (W, up)ud + 05 F (U, ug) (U )2) dx. (2.4.2)
A simple computation of the integrand in (2.4.2) shows that

2
/ /
(U]_U2 - Uzul)

d2
a2’ = J, (- wpe ™

In view of (2.4.1), this implies that
wmu, = wpu; a.e.inl.
Sinceuy; are absolutely continuous and positive jiwe obtain
log(u1) = log(u) + C, i.e. u; =Cup.

Recalling the constraint on the mass which must be satisfiedibimizers, it follows that
C = 1. Henceu; = u, and the thesis is achieved. O
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We conclude the section with the proofs of Lemmas 2.3 and 2.4.

Proof of Lemma 2.3We proceed in three steps.

() Every minimizer is non-negativé. not, we would have

M = fu+ dx > fudx: 1 (2.4.3)
| |

But then, lettingu™= u, /M € BV,(l), we obtain

% ([ \/mdx +[d%u (1) + Jup () )l + |U+(a_)|)

(2.4.3)

1
Md’(u) < ¢(u),

¢(0)

IA

in contradiction withu being a minimizer.

(I No minimizer is zero in an open setdl. Assume itis, and led = (X, X1) C | be
a maximal interval such that= 0 a.e. inJ. Sincefudx =1, we havel c |. Hence, up to
exchangingx with —x we may assume without loss of generality that

—a<Xp<X<a U=0 ae.in K, x), uz0 in (-a,Xp). (2.4.9)

We construct a re-scaled function of the form

. { Au(—a +
a(x) =

u(x) if x1 <x<a.

Xo+a T
X1+a(X+a)) if —a < X< Xt

We chooseéA such that mass is conserved: since

1% X1 Y
f tidx Af u(—a+x0+a(x+a)) dx+f u(x) dx
—a —a X1+« X1

X0 @
At f U(R)ds + f u(x) dx,
XO +a - X1

we let
Xo + @

X1+ a
Then, using (2.4.4), for the absolutely continuous parheffunctional we have

@ Xo @
2
A2 42 _ Xo+a Xita 2 (Xta\ 2 4o 2 N2
f ¢ + re dx lef (Xo+a) u +(X1+a) u dx+]): VU2 + (u)? dx
— - 1

X0 o
f w/u2+(%)2 w2 d>2+fx V2 + (1)2 dx
o .
245
@29 fa VU2 + (u)2dx. (2.4.6)
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The same argument holds for the singular part,

Id%Cill(~a, @) = &g ldull(~a, xo] + [[d°ull[ X1, @) < [Id°ull(~a; a), (2.4.7)

X1+a

and the boundary part

0((=a) ") + 18(a ")l = g lu((=a) ) + (@)l < Ju((=a) )| + lu(")!. (2.4.8)

X1+a

Summing (2.4.6)-(2.4.8) we see thgti) < ¢(u), thus¢(li) = ¢(u) sinceu is a minimizer.
On the other hand,

U =0 a.e.in €a,xp)
¢(0) =¢U) & { [dU(-a.%) =0
u((=)")I =0

which implies thatu = 0 in (-, Xg). This contradicts (2.4.4) and completes the proof of
().

(1) Conclusion. We argue by contradiction. Up to exchangirgvith —x, we may
assume without loss of generality that there exigts | such thati(x;) = 0. Fore > 0 to
be chosen later, let

a=inf{¢ : UllLegexg) < &)

In view of (Il) and sinceu(x;) = 0, choosing suficiently small we have
—a<a and X -a< 3.

We now distinguish two cases. ufx;) = 0, we let
b = sudé : ulle(x.e) < )

As before,
b<a and b-xy<1/2

for & sufficiently small. If insteadi(x;) > O, we choose so small that < u(x}) and we let
b = Xg. In conclusion, we have

—a<a<xXx<b<a b-a<l, (2.4.9)

and
u@)>e>u@), ub)<e<ud). (2.4.10)

LetK = (a, b). We define the function

= | "
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where we choose
fl udx

J udx+[Kle

S0 thatfI tidx = fludx. By definition ofa andb, fK udx < |K|e, henceA < 1. Therefore
o0 -0® > [ VEEF LR+ U@ D) +lu@) - @)+ 1u) - ub')
K

— A(Kle + |u@) - & + le — u(o™)]). (2.4.11)

We recall thatu > 0 (by step [()) and thatu(x;) = 0 (by assumption). 1ti(xj) = 0 and
b > Xg, we have

fb Yu2 + u2 dx + |dSul(a, b) > |dul(a, b)
> [u(@") — u(xg)l + lu(xg) — u(xg)l + lu(xg) — u(b™)| = u@") + u(b").
If insteadu(xj) > 0 andb = Xo,

b Xo
f VU2 + w2 dx + [d°ul(a, b) = f VU2 + w2 dx + |d°ul(a, Xo)
a a
> |dul(a, Xo) > u(@") — u(xg)l = u@@") = u(@") + u(b")
(sinceu(b”) = u(x;) = 0). Hence, in both cases, (2.4.11) may be rewritten as

¢(u) — (@) > -AKle+u@)+u@) - u@) - Au@) - &
=:Mg
+ u(b™) +ub™) — ub®)| — Ale — u(b®)|.
=:Mp

In view of (2.4.9) and (2.4.10), we have

Ma

-AKle +u@) +u@) —u@) - Au@) - &)
(1-Au@) +As(L - K|]) > 0

and
Mp = u(b™) + u(b*) — u(b™) — A(u(b™) — &) = (1 - A)u(b*) + A= > 0.

Henceg(u) > ¢(Ti), which is a contradiction. |

Proof of Lemma 2.4We argue by contradiction. Up to exchangirgvith —x, we may
assume that there existg € | such thatu(x;) > u(xj). Then, fore > 0 let

[ A in (-a, Xo)
Ug(X) - { AS(U(X) + g) in (XO, a’)’

44



where we choose
fl udx

Jjudx+ (e - xo)
so that the mass in preserved. We have

A8:

X0
00) = Afu-a')+ [ VTR U0 %) + UOG) - (U05) + &) +
+ f U 92T W) dx+ [ul(x. @) + (U(a™) + 5)).
Xo

By Lemma 2.3u > 0in|. Hence, arguing as in the proof of Theorem 2.5, we have

d dA. “«
o0 = (Gelo) 6+ 0 [

u? + (u)?

Since
dA, a— Xg

AO = 1’ _|8=0 = - )
de fludx

we obtain

d _ 2% Y k< (e-xg)|1- 24
Um0 = )+ J. T s xO)[l ]

Sinceu is not constant (it has a jump in the interiogfu) > fludx: hence the latter factor
is negative, in contradiction with being a minimizer. i

2.5 Existence of a smooth minimizer

The goal of this section is to prove that there exists a mir@émfor the one-dimensional
problem which is smooth in the bulk. As in the previous settioe letQ = | = (—a, @),
a > 0.

Theorem 2.6(Existence of a smooth minimizerYhere exists a minimizer u gfin BV.(l)
which is smooth in | and solves

= — —( u ) in 1. (2.5.1)
Y2+ ()2 {2 + (0)2

Furthermore u is even and non-increasing®a).

Our approach is based on a-priori concavity estimates, @rsfirit of the arguments
developed in [24]. However, we shall not prove that the minénis concave, but rather
that its square root = /uis. To this aim, by letting

(W) = | fo(uu)dx, wh f. = 2+ p? + 22,
¢ (U) fl(uu)x where f.(s p) + p%+&°p
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we relax the minimum problem into one which is well posed m $hace

H. () = {ue H3(1) : fudx: 1}.

Lemma 2.5. For any ¢ > 0, there exists a minimizer,wf ¢, in H.(l). Furthermore, y
may be chosen to be even, non-increasin@jr) and positive in I.

Sincef, € C?((0, +0) x R) andu, is positive in the bulky, is a smooth solution of the
Euler-Lagrange equation, with uniform bounds in BV; in diddli, the Lagrange multiplier
U is larger than one:

Lemma 2.6. The minimizer pigiven in Lemma 2.5 is smooth in |. Furthermore, there exists
e = 1 such that

—02 F(Ug, U — OO Fo(Ug, U, + Osfo(Up, W) = p1p N 1, (2.5.2)
p c/Ve p e/ Ve &

and a positive constant C exists such that

f JU2+(W)?2dx < C. (2.5.3)
|

The core of the argument is the concavity ..

Lemma 2.7. Let . be as in Lemma 2.5. Theyfu, is concave in |.

In turn, concavity yields a uniform sup-bound gpand a uniform lower bound ou.
Lemma 2.8. Let u. be as in Lemma 2.5. Then there exists a positive constantiCtisat
¢
0

sup |uL(X)| <
X|<a—6

forall 6 € (0,a).

Furthermore 1
Us(X) > e (@—|x)? forall xel.

The proofs of lemmas 2.5-2.8 will be given at the end of thidiea. We now prove
Theorem 2.6.

Proof of Theorem 2.6For everye > 0 letu, € H.(I) be the minimizer ofp. given in
Lemma 2.5. Using the bounds in lemmas 2.6 and 2.8, up to agukisee we have
Us — U in WE=(1) n BV(I).

loc

By the lower semi-continuity a, for all G € H.,(I) we have
¢(u) < lim iQf é(ug) < lim iQf ¢s(Ug) < lim iQf o:(0) = ¢(0).
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By density, the inequality holds for all € BV.(I); henceu is a minimizer of¢. Because of
the properties ofl., u is even, non-increasing in [@), and positive if.

By Proposition 2.17; € d¢(u). On the other hand, sinceis positive inl and Lipschitz
continuous on compact subsetsloffor anyn € C2(I) the functionh — ¢(u + hy) is
differentiable ah = 0O: therefore

f( - + u ’) dx f dx
n n =T 1 Ux,
NV +u2 V2 + u2 |

which means that

4 ) R ) (2.5.4)
V2 +u2/ V2 + w2
Sinceuis even, (2.5.4) implies that
’ X
v ‘T'X+f Y dy—e)ewWte()  (255)
VU2(x) + u?(x) 0 Vu2+u?

Let nowK e |. We have

<1-6 < (U)PA-1-6)7<1-6>~%

u/
Il = |———=
YU? + ()2

Hence, choosing so small that
. 2
I 2oy (L = (1= )2) < (1= 6)? (.Qf u) ,

we have
6(X)) <1-¢6 forall xe K. (2.5.6)

In K we may therefore invert (2.5.5) with respectut¢x), and by the arbitrariness &f we
btain that
obtain tha u)

u'(X) Y
It follows from (2.5.5), (2.5.6), and (2.5.7) that is well defined and belongs 16 (K).
Henceu e V\/If;g"(l) andu solves the Euler-Lagrange equation point-wise. A stantlaad-
strap argument then implies thats smooth inl. m|

a.e.inl. (2.5.7)

We conclude this section with the proof of lemmas 2.5-2.8.

Proof of Lemma 2.5We divide the proof into various steps.

(). The proof of existence is standard, but we reproduceritife sake of completeness.
Let us fixe > 0. Note thatf, is continuous irR x R and convex with respect o, since

s
2¢ _ S 2
Opfe = (Sz+p2)3/2+28.
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Therefore (see [35, Theorem 3.44) is (sequentially) weakly lower semi-continuous and
coercive onH.(l). Let now{u,} be a minimizing sequence. Then, up to a subsequence,
Un — U, in H3(1) andu, — uin L*(I). Henceu, € H.(1) and, by the lower semi-continuity

of ¢, Ug IS @ minimizer.

(ii). The proof thatu, is non-negative is completely analogous to that of Lemma 2.3
therefore we omit the details.

(iii). Let us extendu, by zero outside of, and letu} be the Schwarz symmetrization
of u, (see [27,§3.3]). By definitionu} is even, non-increasing in [@), and zero outside
of I. We claim thatu} is also a minimizer ofp.. Letu, € C(I) such thatu, — u, in
Hé(l). Sincell(u?) llizgy < llupllzqy (see [27, Thm. 4.3]), there exists a subsequence such
thatuy — win Hé(l) andu® — win L%(1). By the non-expansivity of the symmetrization
(see [27, Cor. 3.1]luy — UZllL2qy < llun — Uglli2gy: hencew = u}. Sincef, is convex and
non-decreasing with respect fofor all (s, p) € [0, +00)?, ¢-(UF) < ¢.(un) (see [27, Thm.
4.3]). Therefore, the weak lower semi-continuityggfimplies that

(ZJS(U;) < Ilnrﬂj_gj ¢s(u:) < niToo ¢£(Un) = ¢£(us)-

Finally, £ ux dx = { u. dx (see [27, Thm. 3.1]). Henag is also a minimizer.

(iv). It remains to prove that} is positive inl. To this aim, we could argue as in the
proof of Lemma 2.3, but in view of (iii) we may provide a simpergument. Assume by
contradiction that there exiss> 0 such thau > 0in [0, — 6) andu} = 0in (o — 6, @).
Let

-0
V(X) = Aui(Ax), A= 2701
a

Thenv andu} have the same mass and, sirce 1,

0.0 = A [ e (anyz + mef(uey (antzax 2a [ uzy (a2 ox

a—0 -0
_ *\2 2 *1/12 82 3 *\/12
= [ e st a a1 o
< o.(U).

in contradiction withu} being a minimizer. o

Proof of Lemma 2.6Letn € C(l) such thatfI ndx = 0. Sinceu, is positive and continu-
ous inl, u.+hn > ¢ > 0in suppfg) € | for hsuficiently small. In additionfl(us+hn) dx=1
for all h. In [c, +o0) x R, the functionsf,, dsf, andd, f, are smooth and grow at most lin-
early with respect t@: thereforeh — ¢.(u, + hp) is differentiable ah = 0, and since., is

a minimizer we have

d / / ’
0= gttt + )| = [ (0c8 0t + 95T 0 E)) ¢

48



By the arbitrariness af, this shows that there exists € R such that

(Opfolie ) = Osfu(Us ) — s (2.5.8)

u (o9
= ————— e =y € L7(1).

In turn, taking into account the symmetry wf, this means that

1

V09 + 0P

+2«92)u;(><)= fo p:(y)dy ae.in (Qa).

In particular
u;,(X)] < % fllgosl(y) dy forallxel,

thereforeu, € W-(l). We may now argue as in the proof of Theorem 2.6 to concluae th
U. € C*(l) andu, solves the Euler-Lagrange equation (2.5.2).

Sinceu, € W%(l) with zero boundary conditions, we may now multiply (2.5t8)
U, and integrate over. After one integration by parts, and recalling tlj%ms dx = 1, we
obtain

Mg = Jcluaua dX = f(apfa(uaa Ué) : u"g + asfa(uaa u;;) ) ua) dX
| |

_ i 2 ’\2 1 _
=10 (¢£(us)+e fl(us) dx) > |||qﬁg(us) > chusdx_ 1.

Finally, (2.5.3) is immediate: taken any"H, (1), we have

f JU2 + yzdx+ &2 f U2 dx = 6o(Uy) < o) < 4a(@) =: C.
| |

m
Proof of Lemma 2.7Letv, = /U, and
0:(S P) = S/ + 4p? + 4s2Sp?, (s, p) € [0, +00) X R.
Simple computations starting from (2.5.2) or, more simpbserving that
V, minimizes fgs(vs,%) dx among allv? € H3(I) s.t. fvz dx =1,
yield
—3%95(%,\/8)\/8' — 050p0e(Ve, Vo)Ve + 0586(Ve, Vi) = 2u:Ve N I (2.5.9)
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Fors> 0, we have
1

I 2 2
0s0s = (82+4p2)1/2(232+4p)+88 spt.
2 _ 483 2
apgg = m + 8¢ 32 >0
16p°
asapg«S = m + 16928p

Hence (2.5.9) may be rewritten as
\/8/ = GS(VS9\/;)’
where

(_2/~1£S+ CV)Sgs - p : asapgs)
S+ 6sp’ )
(& +4p2)37

pez1 s® + 6sp’
(_l e 4p2)3/2)'

(9[2)95(8, p) : Gs(sa p)

28(—,11‘9 - 4%p% +

A simple computation shows that
S+ 6sp < (2 +4p?)%? o 0<125°p* + 64p°.
ThereforeG,(s, p) < 0 for all (s, p) € [0, +0) xR, which means that, in concave il. O

Proof of Lemma 2.8We first prove the Lipschitz bounds. Singe= +/U. is concave, the
differential quotients are decreasing:

Ve(Xa) = Ve(¥) V(¥ > Ve(X2) = Ve(X)
X1 — X ARG Xo — X

for all x; < X < Xo.

In particular, choosingy = —a@ andx, = a, we have

ul
2vu

for everys e (0, ). In terms ofu, = V2, the last inequality reads as

1 1 2
= [V.(X)| < Vz(X) maxy —, < — sup Vo(xX) forall|x <a-¢
V091 w0 ma| k<2 sup w9 foralli <o

4
UL(X)] < = sup u(x) forall|x <a-34,
X|<a—6

and the Lipschitz bound follows from Lemma 2.6 (singeare uniformly bounded ih).
We now prove the lower bound. Singgis concave and, = 0 ondl, v, assumes its
maximum in a point, € |. Because of the constraint,

1= f V2 dx < VA(Xe). (2.5.10)
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Again because of concavity,

. a— X a+Xx)| 25100  [fa-X a+X
Vo(X) > min{dve(X) ,Ve(Xe) > min ,
@ — Xg a4+ X =X @+ X
. . -X a+X 1
> inf mln{a—,a—} = — (- 1Ix)
Inl<a a-n a+n 2a
which proves the lower bound. ]

2.6 The smooth minimizer jumps at the boundary
In this section we complete the proof of Theorem 2.3 by shguwlirat:
Theorem 2.7. The minimizer u given in Theorem 2.6 is strictly decreasing such that

lim u(x) >0 and Ilim U (X) = —co.
X—a~

X—a~

In order to prove Theorem 2.7, we first characterize the wisitto the Euler-Lagrange
equation.

Lemma 2.9. For all = > 1 and all A > 0 there exists a unigue maximal solutionau
C2([0, X)) of

T= ! - [ el )’ in 1
Y2+ )2 w2+ (u)? (2.6.1)
ul0) = A, u)=0.

Furthermore x < oo, U is strictly decreasing if0, x;), and

. -1 .
lim u(x) = == 0, Ilim U (x)=—co. (2.6.2)
X=X, T X=X,
Proof. Since (2.5.1) is invariant under— u/A, we may assume without loss of generality
thatA = 1. We rewrite the first equation in (2.6.1) as

12
"o u 1 2 72 3/2
u _2?+u—1?(u +Uu ) ,
so that existence and uniqueness of a classical local soligr the Cauchy problem (2.6.1)
is a standard result. Moreover, singé(0) = 1 -t < 0, we haveu < 0 in a right-
neighbourhood ok = 0. As long asu’ < 0, we may useal as the independent variable:
letting

v(u) = u2(x(u)) + u?, (2.6.3)
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we have

V' (U)

2u" (X(W)U” (U)X (u) + 2u = 2 (U’ (x(u)) + u)

2 1 2
2(2“— +u—1 (U + u’2)3/2 + u) == (Zv— ZV3/2)
u u u u

andv(1) = 1. We letw(u) = u”v, with vy to be chosen later, and we compute

W (u)

2
W UV = 0 (2\/_ £v3/2) -
1 1
= = (yw+ 4w — 277" V¥2) = = (yw + 4w — 27u~ 202
u(y + 7 ) u(y + . )

We choosey = -2, so thatw(u) is a solution of a first-order separable ode:

(2.6.4)

uw (u) = 2w — Tw3/?)
w(l) =1

An integration gives

u2
W = T e
which in terms ofv(u) reads as
A
v(u) .

T @+ ru-1))
Recalling (2.6.3), this gives

’ U4 2
YT Narru-ne

o uA-)((r+ - 2ur - (1- 7)) ,
= - s 1) as long asu’(x) < 0.

One easily checks that

QA-D)(WPE+1)-2ur+(r-1))>0 forall UE[T_l,l]
T+1

whereas

-1 -1
l+r(u—1):0<=>u=T e(T ,1).
T 7+1

Thereforeu’(x) never changes sign and blows up for a positive value af other words,
there exists; € (0, +c0] such that

. -1 _
imu(¥)=~—=>0 and limu'(x) = —co,
X=X, T X=X

and of course these two conditions imply that< +oo. m|
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We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7The minimizeru given in Theorem 2.6 satisfies (2.6.1) #af, @),
and is even and positive. Henaecoincides inl = (—a, @) with the solution obtained in
Lemma 2.9 withA = u(0). Therefore, in order to prove Theorem 2.7 iffkaes to show that
Xr = a, whereJ = (—X;, X;) 2 | is the maximal interval in which the solution of (2.6.1) is
defined. We argue by contradiction and we assumeatkak.. Then we may define

- Xz A fIUdX
0(x) = AuBx) forall xel, whereB=— and = = —— <1 (2.6.5)
@ B [judx
Of course A is chosen so that mass is conserved:
- A o Ao
fudx:Afu(Bx)dx: Efu(x)dx:fudx.
| | J |
The functionu'satisfies the following equation:
MY - R — (2.6.6)

[ ~ B2 [~ ~

Letl, :=[-a + &, a — g]. We multiply (2.6.6) byu'and integrate ovel,. By an integration
by parts we obtain

Tf G dx
le

f ® f GO
e JO2 + ()2 \/ : (u’)2 ()2 + g ()2
f A 02+ g(u’)2 dx — 1 (u’)2

Since the first derivative blows up at the boundary, passrigd limit ase — 0 we get

Tj;adx=j;,/02+é(n/)zdmé(n(-a)m(a)),

which in terms ofu reads as follows:
T% fudi = g(u(—xT) +U(X,) + f VU2 + (u’)zdi) = gm(u).
J J

Therefore, recalling Proposition 2.1,

¢j(z) ¢}(E)' (2.6.7)
J
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We now show that, sinceis decreasing, the function

Jo Ve ()2 dx+ ut)
fot udx

is strictly decreasing, which contradicts (2.6.7) and thuses the theorem. Indeed,
(VI + (WO +u®) (f; udx) - (5 VU2 + )2 dx+ u) u(t) .
<
( fot udx)2

(Y2 + 2 +u(®) _ u
fot u? + (W)2 dx + u(t) fot udx
which is true in view of the following chain of inequalities:
(Y2 + (WP +u (M) (VP + W) +u(®) u+ul+w) - u
fot VU2 + (w)2dx + u(t) fot udx fot udx fot udx

where in the last equality we have used the monotonicityiaf[0, x.). m|

t>0- F(t) =

F(t) =

if and only if

2.7 The subdfferential of ¢

In this section we prove Theorem 2.4. To this aim, we recak (§,§C.2]) that for any
u e BV(Q) and anyz € X(Q) the functional g, Du) : CZ°(2) — R defined by

{(z, Du),<,a>:—quodivzdx—fuz-Vgadx (2.7.1)
Q Q

is a Radon measure which is absolutely continuous with oegpéDul. Furthermore, there
exists a linear operator, p] : X(Q) — L*(dQ2), such that

[z, N]lleo < 112Zl]cos (2.7.2)
which represents the trace € of the normal component afin the sense that
f Wdivzdx+f d(z, Dw) :f u[z, njdHN"1  forall ze X(Q), we BV(Q). (2.7.3)
RN RN 0Q

We will need the following estimate:

Lemma 2.10. For all u € BV(Q), all s€ L*(Q2), and allz € X(Q), it holds:

fg (sudx + d(z, Du))‘ < I(S, 2)lleo|(u, DU)|(L2). (2.7.4)
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Proof. Let {u,} ¢ WH1(Q) be an optimal sequence for Lemma 2.1, that is,

f‘/uﬁ+|Vun|2dx—>f W+ [vudx + [D%u@) #H X b)) (2.7.5)
Q Q

asn — +oo. Up to a subsequence, we also have that-> u weakly in BV(Q2) and in
L%(Q): hence

N—+o0

((z, Du), ¢) @D jim (—fungodivzdx—funz-vgodx): lim fgoz-Vundx
n—-+oo Q Q Q

for all ¢ € CZ(Q2). Therefore

) (2.7.5)
[ otouaxdz.ow)| = fim | [ (st + 2 T "< (s 2kl DUI@)
Q —lJa
and the conclusion follows from the arbitrarinesspof o

We also recall that given a normed sp&ceand a functional : E — [0, +o0], the polar
transformationof v is defined by

Y E* > [0,+0], y(u)= sup{% S Ve E}, (2.7.6)

whereE* denotes the dual d&, with pairing (-, -), and where we use the convention that
0/0 =0and Qoo = 0. For anyv € LP(Q), let

UV) ={(s2 e L"(Q)NX(Q) :v=s-divz a.e. inQ} (2.7.7)

and
Y LP(Q) = [0, +00],  ¢(v) = inf{I(S 2l : (82) € U(V)} (2.7.8)

with the usual understanding thafv) = +oo if U(v) = 0. The proof of Theorem 2.4 is
based on the following result.

Proposition 2.2. Lety be defined by2.7.8) Theny = ¢.

In the next lemma we summarize some properties of the palasformation which we
need. The proofs may be found in [7, Lemma 1.5, Prop. 1.6 aedfEm 1.8].

Lemma 2.11. Let E be a normed space, and Ee its dual.
(i) if 1,2 1 E - [0, +o0] are such thatyy < o, thenyy > o.
If ¢ is convex, lower semi-continuous and positive homogenefodegreel, then:
(i) dle = v
(i) v e ay(u) if and only ify(v) < 1and(v, uy = y(u).
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We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2.The polar transformations @f and¢ are given respectively by

¥ L9(Q) = [0,+00],  w(u) = sup{m Ve Lp(Q)}
b b w(v) b

¢ LP(Q) - [0,+],  $(V) = sup{fQUVOIX S ue Lq(Q)}.
T )

We first argue thay > ¢. Letv € LP(Q). If y(V) = +co the claim is obvious, hence we
assume that(v) < . Forany §,z) € U(v), we have

- uvdx u(s—divz) dx
) = sup JowdX 17 su o uC )
veLa@) ¢(U) ueLa(Q) ¢(u)
|, u(s — div z) dx
= sup
ueBV(Q) ¢(u)
2.7.3) fQ usdx + fQ d(z, Du) — fag Uz, n] dHN-1
= sup
ueBV(Q) ¢(u)
(27.4)(272) (S Dlleol(u, DUYIR) + [1Zlleo [ IUIAHN
< sup
ueBV(Q) #(u)
© sale sup RO g M ergesio
B ue BV(Q) ¢(u)

(since otherwisg(u) = +oo)

(S Dlleo-

The inequality now follows taking the infimum over afl ¢) € U(v):
é(V) < inf o = (V).
P(v) < L (S, 2lleo = ¢(V)

To prove the opposite inequality, we note thiais convex, lower semi-continuous and
positive homogeneous of degree 1. Therefore, by Lemma B.atd i), v < ¢ if and only
if ¢ <. Letus define

D= {(s, 2) e C*(RMY) ! (s DIl < 1}.

Then
— uvdx u(s - divz) dx
yu)y = supfQ > su fQ( - )
velr(@ WY(V)  (spep  Y(s—divz)
J;, u(s — div z) dx (by defrition ofy)
> su efinition o
> (5Dl y W

v

sup | u(s-divz)dx (by definition of D).
(s,2eD JQ
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If u¢ BV(Q), then (see [5, Prop. 3.6])
sup{f udivzdx:zeCy (Q;RN), 1Zl|eo < 1} =400
Q

and therefore (choosing= 0) ¥(u) = +c. Otherwise, integrating by parts (here, sizde
smooth, the classical theory of BV functiondfites, see e.g. [5, (3.85)]) we get:

Y(u) > sup (fgusdx+fgz-dDu+faguz-nd?{'\"l) “29 p(u).

(s,2eD
O

The characterization @fp given by Theorem 2.4 now follows from paiii § of Lemma
2.11.

Proof of Theorem 2.4Since¢ is convex, lower semi-continuous and positive homogeneous
of degree 1, parti{) of Lemma 2.11 implies that

ov) <1
J, uvdx = ¢(u).

By Proposition 2.2y = ¢ wherey is defined in (2.7.8). Therefor&v € LP(Q)

Ve dp(u) {

W<l = yW <l & AseUM: (8Dl < L.

In addition, by (2.7.3) we obtain

¢(u):fuvdx:fsudx+fd(z, Du)+f u[z, n]dHN?
Q Q Q 0Q

and the proof is complete. m|

2.8 Appendix

In this appendix we sketch the derivation of the partid@fedential equation (2.1.4) from
the full model in (0.1.2)-(0.1.3). Leix(y, 2) denote rectangular cartesian coordinates. We
restrict attention to the plane-strain shearing of a bodigkvbccupies a strip of finite length
| in the y-direction, but is unbounded in the andzdirections. The plane-strain shearing
condition means

Tn=7e on IR x| xR)

with T constant in space and time. We make the ansatz that thealspdmt vector has the
formu = (u(y, 1), 0,0). Accordingly, the ansatz f&® andEP are

0  »y.t) O
E® = [y8(y,1) 0 0
0 0 0
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and

0 P(y.t) O
EP=[y(y,t) 0 0.
0 0 o0

Thus the decomposition (1.1.1a) reduces to

ou
e._ - _.p
y : ay y

with v® andyP theelastic and plastic straineespectively. The explicit derivation of (2.1.4)
is based on the assumptions that the regime is fully pladtifie. the plastic strain satisfies
P> 0in | and thaty = 0. Under these assumptions (1.1.6) reads as

—p —p
To +uL? (AEP - sym(VdivEP) + 1(div divEP)! ) = Y(Ep)% - (2div (Y(EP):—T)) (2.8.1)

wheredP = +/|EP|2 + £2|VEP|2. SinceyP = yP(y, 1), it follows that divEP = 0, hence (2.8.1)
reduces to

—p =p
To+ uL?AEP = Y(Ep)% - f2div [Y(Ep):—f] . (2.8.2)

One easily sees thaiy = T, hence dif = 0. Together with the boundary conditions, this
implies that

Under the further assumption of a constant flow resistaf(de= V2k, after simple com-
putations we conclude that (2.8.2) translates into

oyyP

VP
T+ ul?0%)P = vk % - £Zay(w)] (2.8.3)

which, after a suitable rescaling, provides (2.1.4).

58



Chapter 3

Droplets spreading under
contact-line friction: asymptotic
analysis

3.1 Introduction

3.1.1 The model

Understanding the dynamics of wetting phenomena of drepletsolid substrates is still an
ongoing challenge. The fiiculty comes from the classical theory of fluids. Indeed, & th
Navier-Stokes equations, the constant viscosity coupli#d ano-slip boundary condition
at the liquid-solid interface results in a nonphysical silagty at moving contact lines,
i.e. an infinite rate of energy dissipation [67, 41]. Many misdhave been proposed in
order to remove this singularity (see e.g. [39, 75, 22]). &lthem introduce at least one
“microscopic” lengthscale in the problem. The most commppraach is to introduce
effective slip conditions at the liquid-solid interface: thmplest slippage model, the so-
called Navier slip, reads as

U = uBU, atthe liquid-solid interface; = 0. (3.1.1)

Here we adopt a two-dimensional framework, ) € R x R, with the solid substrate at
, = 0, U denotes the horizontal component of the velocity field witthie liquid phasey
denotes the liquid’s viscosity and > 0 is the so-called slip length. The ratigR.is to be
understood as a friction cficient between the liquid and the solid.

Away from the contact linerhere the liquid, the solid and the surrounding vapor meet,
slippage models for single-phase flows have survived amsix crosscheck by MD sim-
ulations (see e.g. [86] and the discussion in [78, 80]). H@arerecent investigations by
Qian, Wang and Sheng [78] and by Ren and E [80] have confirnsdribar the contact
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line region slippage models such as (3.1.1) cease to provide a valaipiésn of the dy-
namics: there, the main driving force which is responsibietie slip is the unbalanced
Young's stress. Of particular interest in this note is thatdbution by Ren and E [80]
and by Ren, Hu and E [81]. There, by a combination of molecdyaramics and contin-
uum thermodynamics, arffective continuum model is derived, in which the unbalanced
Young’s stress results from the deviation of the contaclea@gfrom its static valueds.
Such deviation drives the motion of the contact line in a wémch, in the simplest case of
a linear friction law, reads as follows:

Dy(cos® — cosOs)
Dy(cos® —1) = maxUc.,0} if ®s =0 (complete wetting)

UcL if ®s >0 (partial wetting)

(3.1.2)

HereUc_ is the speed of the contact ling,denotes the liquid-vapor surface tension, and
1/D is an dfective friction codficient at the contact line Note that the dynamic contact
angle is strictly larger than the static one if the wet regégapands, smaller (or equal, in
complete wetting) if it contracts.

All together, (3.1.1) and (3.1.2) introduce two parameiarthe problem,B and D,
which account for theféective friction at the liquid-solid and liquid-solid-vapmterfaces,
respectively. The general goal of this chapter is to disthesdtect of these parameters
on the evolution of a droplet, assumed for simplicity to bmyetric, which spreads over
an horizontal substrate. To this aim, it is convenient tauard the regime of lubrication
approximation, which we introduce now.

3.1.2 Lubrication approximation and its dissipative strudure

Lubrication approximation (see e.g. [75]) is a tool to regltive complexity of the Navier-
Stokes system while retaining th&exts of both capillary forces and frictional forces (vis-
cous friction in the bulk, surface friction at the liquidtisbinterface, and contact-line fric-
tion at the liquid-solid-vapor interface). Lubricationpapximation is based on a separation
of the (macroscopic) lengthscales, which (in the presefi@amntact line) has been rig-
orously justified in two model cases [53, 70]. Namely, thedgpvertical lengthscal&

is assumed to be much smaller than the typical horizontagthecaleX, and the typical
timescale is chosen so to retain thEeets of both surface tension and viscosity:

g X<< ,

Introducing new independent variables according to the@lksoaling,

Tfé)’

txd=(f5
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and performing a careful asymptotic expansiog (8ee Section 3.3), one obtains a limiting
evolution which consists in a fourth order free boundanbfem for the normalized height
of the liquid film, h(t, X), and the extent of the wetted regios, (t), s, (t)):

he+ (hu)x = 0, u= (h? + bh)hyxx, h >0 in (s_(t), (1)
. 3.1.3
h=0 ds.(t)= lim u at x = s.(t) (3.1.3)

x—8; (H)*
and the free boundary condition (3.1.2) translates into
+ %% if 65 >0

dn2-g2)={  © at x = s.(t). (3.1.4)

( X S) { max{i%,o} if 5=0 N

Hereu represents the normalized mean horizontal velocity ofithéd phaseds = ¢ 10g

is the normalized static contact angle, and

_ 3uB _ 3DuX

Tz T2z

Now, it follows from a simple asymptotic expansion near thetact lines (see Section 3.4)
that the equation in (3.1.3) does not possess recedinglitrgweaves with zero contact
angle (see [21, 28] for the general structure of travelingasdor thin-film equations): in

other words, for instancé?d% > 0 whenevehy = 0 atx = s, (t). Therefore (3.1.4) simplifies
to

b

d
d(n2-62) = id—‘? at X = s, (t). (3.1.5)

The free boundary problem (3.1.3)-(3.1.5) preserves tahtive structure of the orig-
inal system. The energy

(®
E(h(t)) = f o %(h§+9§)dx (3.1.6)

s ()
corresponds, to leading order in lubrication approxinmtito the surface energy of the
droplet, and accounts (via; and the Young’s law) for all the three surface tensionfitoe
cients (liquidsolid, liquidvapor and solitapor) which enter into the system (see e.g. [20]).
As formally shown in Section 3.5, a ficiently smooth solution to (3.1.3)-(3.1.5) is such
that

d 01 , 1 (({ds_\* (ds,\ s 2
aj;(t) E(hx-i-es)dX——% (E) +(E) —j;(t) _h+bdx (317)

or, equivalently,

d 01 d s.()
af&m S+ e)dx = —2 [ (e, 5-(0) - 68)% + (e, . (0) - 62)°] - L O
(3.1.8)
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The two terms at the right-hand side of (3.1.7) encode thedifferent means of free
energy dissipation: the latter, which is standard in thisl fieepresents viscous friction both
in the liquid’s bulk and at the liqujdolid interface; the former instead represents fricabn
the contact lineand is specific to the free boundary condition proposed ih |88 expected,
it vanishes when thefiective friction codficient 1/d does.

3.1.3 Scaling laws without contact-line friction

Assume now that the droplet is symmetric, ise.= —s, = s, and has unit mass, i.e.
M=1

(the case of a generdd can be easily recovered by scaling, §8¢€7). In classical models,
(3.1.5) is replaced by its frictionless counterparft £ O:

hy=-0s at x= g(t),

which amounts to assume an instantaneous enforcement ibbegom at the contact line.

In this case, the droplet’s dynamics are known to be influgraody logarithmically by

the slippage model, at least at intermediate timescaless fabt has been first observed
by Hocking fords > 0 (see also Cox [34] for the case of rough surfaces) by matched
asymptotic methods. More precisely, in [65] a relation isagied between the contact-line
velocity and themacroscopic contact angl®y,, defined there as the slope of the unique
even arc of parabola having the same mass and support atdts ze

P89 = 25~ ). = 405 9] = 55 (3.1.9)

In the present two-dimensional case, it reads as follows:
57
63 ~ 63 + 3¢ Iog(F). (3.1.10)

In the cas&s = 0, the same logarithmic correction was obtained by Hocknf$6] and
leads to the following scaling law for the speed of the canliae, which is often referred
to as the logarithmic correction to Tanner’s law [85]:

. 1/7
s~ . (3.1.11)
[Iog(ﬁ)]

The scaling law (3.1.11) was then inferred in [17] by &etient formal argument which
used quasi-selfsimilar solutions, and rigorously deriied52] for the boundary of the
“macroscopic support”,«a(t),a(t)) = {h(t,-) > b}, i.e. replacings(t) by a(t) in (3.1.9)
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and (3.1.11). In the latter two contributions, the time vawdof validity of (3.1.11) is also
obtained:

3(7) Iog(é) <t<b™. (3.1.12)

Note that the appearance of an intermediate timescalelisoreane hand, it takes a certain
time for the droplet to forget its initial shape; on the othand, for large timek < b on the
whole support, hence the evolution is governed by slippégeeaands will scale liketY/S.
Again in complete wetting, analogous logarithmic cormusi were obtained by de Gennes
[39] for a related model in which the contact angle conditismeplaced by the action of
van der Waals forces.

3.1.4 Scaling laws with contact-line friction

In the presence of contact-line friction the situation isrencomplicated, since the scaling
laws will depend not only on whethég is zero or not, but also on the relation between the
two parameterd andd. In particular, due to presence of two parameters, more dhan
intermediate scaling law should be expected in generakdddin [81], formal considera-
tions based on the dissipation relation (3.1.7) have beekasiamut in the complete wetting
regime,®s = 0. Three timescales are identified:

- an early stage, dominated by contact-line friction, wrste~ t%/°;

- amoderate stage, dominated by viscous friction, wiséje- t1/7;

- a final stage, dominated by surface friction, whs(tg ~ t*/6.

Such behavior has been validated by numerical simulati6i§3.5.3)-(3.1.5). The goal of
this contribution is to give a more precise and more quaivialescription of these scaling
laws, in the spirit of (3.1.10), (3.1.11) and (3.1.12), aivg also the case of partial wetting
(see§3.2.2). As a by-product, we will obtain a matched asymptetipansion of solutions
to (3.1.3)-(3.1.5) for a wide class of free boundary condii relating the speed and the
contact angle.

3.2 Results and outline

3.2.1 Traveling waves

In Section 3.4 we heuristically classify the traveling-wasolutions to (3.1.3)-(3.1.5), i.e.
the solutions to

—U=(f2+bf)fy, f>0 in (0, +o0),
{ ( ) fece ( ) (3.2.1)

f=0 f,=6 at £=0.
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In particular, we argue that (3.1.3) is expected to have gusniadvancing front which
displays a “linear” (up to a log-correction) behavior atmitff. This is an important pre-
requisite, since in the case of a spreading droplet, thé lmteavior near the contact line is
that of an advancing traveling wave, whose profile is deteechby “matching” it to the bulk
region. This procedure has been followed in the past by matipes [65, 66, 34, 56, 43, 63]
in order to obtain qualitative information on the macroscaglynamics. In all of these
papers, the matching condition indeed selects the solutiai3.2.1) which displays the
“linear” behavior at infinity. Though it is quite clear frorhe heuristics in Section 3.4 that
such traveling wave exists and is unique, we were unable doafiproof in the literature.
Therefore we will provide it in Section 3.6 (see also [31h fact, it is harmless to consider
a velocity fieldU which, instead of being constant, varies smoothly betwenlimiting
positive values. Thus, we will prove the following, slighthore general result:

Theorem 3.1. For any# > 0 and any Ue C([0, +o0)) non-negative, bounded, and such that
inf U > 0if # = 0, there exists a unique solutionef C1([0, +0)) N C3((0, +0)) of (3.2.1)
such that f(£) - 0as¢ — +co.

Its proof follows the general approach of [45], where a samdquation was considered
in a bounded domain: the proof of existence is based on thstremtion of a solution
operator via the Green’s function, whereas uniquenesssreli estimates of the solution’s
behavior near the domain’s boundaries. However the detidikr quite a bit from those in
[45], due to the unboundedness of the domain and tfierdnt boundary conditions (both
at zero and at infinity).

3.2.2 Scaling laws

From Section 3.7 on, we restrict our analysis to the case pifreretric droplet: hence we

look at
he + (hu)x = 0, u = ("% + bh)hyyy in (0, 5(t))

= Q = i =
h=0, st X_I!%i u at x = g(t) (3.2.2)
hy = hyxx =0 at x=0
with the contact-line condition
ds
2 2\ _ _
d(h%-63) = 5 atx=s0. (3.2.3)

In §3.7 we perform a renormalization of (3.2.2)-(3.2.3) whiaghttights the crucial role

of the parameter
dMm

“=

which may be seen as a measure of the relative strength aicsuiriction versus contact-
line friction. In summarizing the further results of thisagher (see also [32]), we assume
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once again that
M=1

and we disregard universal constants.

Scaling laws in complete wetting

If 65 = 0, we will argue that:

(A) for a stronger contact-line frictiord < b?, the droplet displays an early timescale
dominated by contact-line friction and a final timescale dw@ted by surface friction:

45 if 3 «t< B (andsy < B
s~{( ) A (andso < ) (3.2.4)

o6
GYYe i t> B
(B) for a stronger surface frictiol? < d, the droplet displays an early timescale dom-

inated by contact-line friction, a moderate timescale dw@idd by viscous friction,
and a final timescale dominated by surface friction:

15 PR 1 1
(dt) / if K < m (ands% < @)
1/7
s~ (. S - (3.2.5)
(Iogﬁ) if 002 S <t<xb
(bt)/® if t>b'.

The scaling laws in (B) quantify those predicted in [81]. Aimdifference may be noted:

e for a stronger contact-line friction, case (A), the systgipasses the moderate timescale
dominated by viscous friction.

One also notices that:

e for a stronger surface friction, case (B), the moderatenmegs logarithmically cor-
rected by surface friction, as in the case of zero contaetdriction (see (3.1.11)-
(3.1.12));

¢ all timescales, besides the final one, depend both on swafeten contact-line fric-
tion.

As already pointed out i§3.1.3, the lower bounds on the initial times are real: thay co
respond to the time that the system needs to “forget” itsainthape and to relax to a
quasi-static configuration.
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A heuristic argument and its limitation

In §3.8 we present, in the case of complete wetting, a simplasteargument based on the
dissipation relation (3.1.7) and already used in this fraork (see the discussion §8.8).

It turns out that this argument is already capable to prg@i@.4) and (3.2.5). However,
it relies on quite a heavy hypothesis: the quasi-staticliguim configuration ofh (see
(3.1.9)) must be postulatap to the contact-line This corresponds to assumiagpriori
that the microscopic contact anglas “relatively close” tod,,. Such fact may not be true,
especially in complete wetting, since the slope might vémyptly near the contact line. It
should instead be demonstrated: indeed, the discrepahegdre éfective and microscopic
contact angles is probably the main object of interest ig thatter, especially in this case
where a speed-dependent contact angle condition is ptestula

Matched asymptotic analysis

In order to overcome such a strong limitation,§i®.9 we work out a matched asymptotic
study of (3.2.2)-(3.2.3). After the works of Hocking [65,]6d of Cox [34], matched
asymptotic with speed-dependent contact angle conditians been extensively performed
in the past [56, 43, 63]. However, none of them includes 83,2nd the scaling assump-
tions used are not always sharp or easy to reconstruct. Heamwe extend, modify and
simplify the asymptotic in a way which includes (3.2.3) ame s track of all the assump-
tions used. Up to the extent we need for (3.2.3), we may armgua father general relation
between speed and contact angle,

Ihy(t, () = 6 = 6(S(t),6s), 626 for § 20, (3.2.6)

which makes the results potentially applicable tfietent boundary conditions and there-
fore, we believe, of independent interest. The asymptstlzased on the assumptions that
the evolution is “slow” and quasi-static, and yields thédwaing: if

0<f9 <1 and bs<x1, (3.2.7)

then
#+3slog(L) ifb<w ands <

63 ~ o ' (3.2.8)
3g Iog(T) if ®<s’s ands > 6,

wheredn, is defined as in (3.1.9). The first assumption in (3.2.7) dagisthe droplet spreads
and spreads slowly: in particular, it rules out of the analym initial timescale during
which the evolution is governed by the droplet’s initial gpaThe second one ensures (via
mass conservation) thaft,-) > b on most of its support, which motivates callidg a
macroscopic contact angléf course, (3.2.8) recovers the earlier results in [65,v@6én
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0 = 0s. In §3.9 we also obtain an asymptotic relation betwsamdg, valid whenh <« b
but the evolution is “slow” and quasi-static:

3
(%) ~ 6 if bs>1 9 < b, and > 0. (3.2.9)

In §3.10 and§3.11 we consider the specific contact-angle condition&3ié.the regime
of complete wetting, and we use ode arguments to pass fraBj3and (3.2.9) to the
early and moderate scaling laws in (3.2.4) and (3.2.5). éngarticular case/d = 0,
(3.1.11)-(3.1.12) are also recovered. The scaling lawsofoyg time are obtained i§3.12
by a diferent asymptotic which assumes a quasi-selfsimilar profilihe solution. As a
consequence, one may conclude thatando are indeed “relatively close” to each other,
which a-posteriori justifies the heuristic argument démaitiin§3.2.2.

Scaling laws in partial wetting

In the case of partial wettings > 0, the profile of a spreading droplet converges (exponen-
tially, see§3.13) to the unique steady state with given mass and comgle @ ast — +oo:
assumingM = 1,

3 ) _[3
hag(sfo—xﬁ and ST So= 20

We focus on the most interesting case of

ast — +oo.

Os > b%, i.e. bs, <1,

which guarantees the persistence for all times of a macpisgoofile. In§3.13 we argue
that, for sificiently large times, the system evolves according with tbg-Bocking rela-
tion (3.1.10) between thefective and the microscopic contact angle. Hence, also tiapar
wetting the contact-line friction plays no role for largmés. However, it turns out that there
are still intermediate timescales which are influenced byaxd-line friction. We illustrate
the results in words foM = 1, neglecting a (logarithmically short) transition timakec(the
reader is referred t§3.13 for the precise statements):

() if d < 6s, then (3.1.10) is preceded by an early timescale dominatexbtact-line
friction;

(i) if 6s < d, then (3.1.10) is preceded by an early timescale dominatexbtact-line
friction and a moderate timescale dominated by viscousidric

These results identify the raty6s as threshold parameter in the partial wetting regime. In
addition, the upper bounds on the timescales permit to gydhe time in which (3.1.10)

67



takes over: again up to a logarithmic correction, the amaips$3.13 shows that

= if d<6s
(3.1.10) = t>{ ° 4

7/21~1/6( fs
0% Iog/(b—z)

if 05 < d.

3.3 Lubrication approximation

Consider a Newtonian liquid placed over a flat solid surfacd surrounded by vapor
(assumed to have zero viscosity). Letandy denote the viscosity of the liquid and
the liquid-vapor surface tension, respectively. We cagrsal one dimensional geometry,
(£,0) € R x (0, ), with the solid substrate coinciding witlf = 0}. The region occupied

by the liquid at timer is denoted by.(r), andL = U..gL(7). The so-called “lubrication ap-

proximation” of the Navier-Stokes equations is based orparsgion of the (macroscopic)
length scales: the typical vertical length scales much smaller than the typical horizontal
length scaleX, and the typical time-scale is chosen so to retain ffects of both surface

tension and viscosity:

g X<< ,

Introducing new independent variables according to the@lsoaling,

and performing a careful asymptotic expansios (g8ee e.g. [75, 81], the limiting evolution
is described by the normalized thickness of the liquid film,

h(t, X) := %Ll {¢>0: (t,x ) el)),

and the normalized average horizontal velocity

T
u(t, x) := —f U(t, x,2)dz.
X Jiz>0: tx0)eL)

Namely, one obtains
h + (hu)x = 0, u = (h? + bh)hyyy in {h> 0}, (3.3.1)
whereb = 3uB/Z and

(h(t) > O} := {x: h(t,x) >0}, {h>0}:=| Jih(t) > O}
>0

We now translate (3.2) in the lubrication regime. Lefh(t) > 0} = (s_(1), s.(t)). By
symmetry reasons, it flices to consider the left contact line= s_(t): let therefore

0 := hy(t, s_(1)).
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At x = s_(t) we have
O =tanEh) ~ 0 for e < 1.

Accordingly, let®s = £s. Because of the scaling) = %u = %s3u. Therefore (3L.2)
reads as

%éu — Dy (cosEf) — cosghs)) ~ %ZDy(eg ~6%) at ¢ s (t).

- 3DuX -
Lettingd = 5=, we obtain

u~d@: -6% at s ().
By symmetry, we conclude that the lubrication approxinmatid (3.1.2) is

u==xd(hf-63) atx=s.(t). (3.3.2)

Collecting (3.3.1) and (3.3.2) and including the kinemataditions'(t) = u at x = s.(t),
we obtain the free boundary problem (3.2.2).
3.4 Traveling waves
A traveling wave solution to (3.1.3) is of the form

h(t,x) = f(£), &=x+Ut

whereU € R is the wave speed and, of course(t) = —Ut ands, (t) = +c0. HenceU > 0
(U < 0) correspond to an advancing (resp. receding) front. 8utisy into (3.1.3) and
integrating once, we obtain thatsolves

—U = (f2+bf)fe, >0 in (0, +o0),
¢ (3.4.1)
f=0 f=6 at£=0,
with 6 to be determined using (3.1.4), which now reads as
U if 6s>0
d(6? - 2) = ° (3.4.2)
max{U, 0} if s =0.

The admissible behaviors of the solutions to (3.4.1) gea may be easily ascertained
by formal expansions (see [21] and the detailed analysig8hfpr the casd) < 0). Near
the contact line,

8U ~3/2 if 0=
£(6) ~ B To=0andU=0 " el (3.4.3)
0¢ — sé2logé if 6> 0

69



In particular, as is well-known, traveling waves with= 0 only exist ifU > 0. Therefore
(3.4.2) simplifies to
d(6? - 63)=U

for all fs. Rewriting it, we determiné:

0= ,/% +62. (3.4.4)

It follows immediately from (3.4.4) thaly > —d¢Z, i.e. a front can not recede too fast.
In addition, (3.4.4) implies that fronts can only advance!he complete wetting regime
characterized bys = 0. On the other hand, (3.4.4) with= 0 implies thatU < 0. Hence
the former behavior in (3.4.3) is excluded (besides théairaaseU = 0), and we conclude
that

f(&) ~ 0¢ - 2b9§ logé asé— 0 forany U > —d62. (3.4.5)

The local behavior given by (3.4.5) will be used in Sectiob B order to motivate the
aforementioned dissipative structure of (3.1.3).
For largeé there is a one-parameter family of quadratic behaviors,
f(&) ~ AL + —— J AeR
6A2E’ ’
plus a single “linear” (logarithmically corrected) onelf> 0O:

(&) ~ BU)3¢(logd)Y® asé— +o0 if U >0, (3.4.6)

These heuristics suggest that for duhy- —deé there is a one-parameter family of traveling-
wave solutions, a unigqueness criterion being a suitabléiton at+co. In Section 3.6 we
will make this assertion rigorous by proving Theorem 3.1foBethat, let us use (3.4.5) in
order to formally infer the dissipation relation (3.1.7).

3.5 The dissipative structure

We now formally show that, for sficiently smooth solutions, the dissipation relation (3}1.7
holds. For the ease of the presentation, we argue in the ¢assyonmetric droplet, the
extension to the general case being harmless. We thus eoi(3i@.2)-(3.2.3). LeE(h) be
the symmetric version of (3.1.6). We have

d s’(t)
SEMW)

222 (h2(t, S(t) + 6?5) +f hxhydx

t)
=g”maw)ewmmﬁtj‘mmm (3.5.1)
0
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Sinceh(t, s(t)) = 0 for all t, we have
he(t, s(t)) = —s'(D)hx(t, S(t)).

Therefore, using the boundary conditions in (3.2.2)-@,2the two boundary terms in

(3.5.1) combine into

SO sy + )+ b = S s0) + ) - <ML ()

s S 62 - e o)

_ = 2
= 20|(s’(t)). (3.5.2)
For the integral term in (3.5.1), after one integration bytpave obtain
s(t) s(t)
- hthydx = hyx(hu)xdx
0 0
= [hhd SO - f (h® + bPA)R2,,dx. (3.5.3)

The boundary term in (3.5.3) is zero at zero. sit), we assume thdt has the same local
expansion of a traveling wave (see (3.4.5)): then, With|hy(t, S(t))] andé = S(t) — X,

. e s(t)
X_I!g(ly h(t, X)hyx(t, X)u(t, X) = g“_% - (9§ ——logé- ¢ (t)) (3.5.4)

Combining (3.5.2)-(3.5.4) into (3.5.1) we conclude that

s(t)
%f t %(hz 98)d _ (S,(t))z f (h3 th)hXXX X,
0

and the symmetric versions of (3.1.7) and (3.1.8) followesbing that

(h®+ bhz)hxxx = h(h* + bh)hxxx h “bh_ h+b

and using boundary conditions.

3.6 Proof of Theorem 3.1

Scaling both the unknown function and the independent bierias
v(r) =b (), r=bly,
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(3.2.1) may be rewritten as follows:

V"=—-——v>0 in (0, +c0)

V2 +V
v=0,V =6 atr=0 (3.6.1)
v/ =0 asr — +oo,

where throughout this sectidndenotes the derivative with respectrto Hence, we will
equivalently show that for ang > 0 and any non-negativel € C([0, +)) such that
U < Uy, andU > Ug > 0if 8 = 0, there exists a unique solutiore C1([0, o)) N C3((0, c0))
of (3.6.1). We split the proof into various steps.

3.6.1 Approximating problems

For anye > 0, let us consider the following approximating problem:

0] .
v = - in re(0,1/¢e)
V5 + Ve
(Pe) Vo=s, V.=0  atr=0
v, =0 atr =1/e.

We associate tdR;) the following linear problem:

v = f in (0,1/e)
(PL,) Ve=¢, V., =0 atr=0
v, =0 atr =1/e.

We also introduce the Green’s function associated to theogemeous part oRL,):

Gerrr = 0(r — 1) on (01/g) x(0,1/¢e)
G.(0,t) =G, (0,t) =0
Gerr(1/e,1) = 0.

Simple computations show th@t, is in fact independent of, and is given by

Gin)y=5—rt ifrxt
G(r,t) = G(r,t) = (3.6.2)
G (nt)=-% if r<t.

It is standard to check that for arfye C([0, +0)) the function
1/e
r—e+0r +f G(r, t) f(t)dt
0
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is aC3((0, +o0))-solution of PL,).

To prove the existence of a solution #,§, we apply Schauder’s fixed point theorem.
Let S be the closed, bounded and convex subset of the real BanacbXp- C([0, 1/£])
defined by

S={geC(0,1/e]) : e<g< M, (3.6.3)

whereM, > 0 is a constant to be chosen below. ®we define the (nonlinear) operater
by setting

F:Sag—vVv, where v(r):=g+0r - fl/sG(r t)U—(t)dt
' ’ ' 0 M +ot)

Note thatv € C([0, 1/¢]) andG,, < 0. Sinceg > ¢ > 0, we then have

V/(r)>0, V(r)>6, and v(r)>e+6r forall r€[0,1/e]. (3.6.4)
In addition
Ye u(t) (36.2(36.3) (Y U, U,
Vi == Gl o —dt= . 3.6.5
(r) j; rr (r, )gz(t) " g(t) < j(; - = ( )
Hence ;
V53+§+za:; M,

so thatF(S) c S. Together withv(0) = ¢ andVv'(0) = 6, (3.6.4) and (3.6.5) imply that
F(S) is a bounded subset @2([0, 1/¢]): in particular, by the Ascoli-Arzela Theorem,
F(S) is relatively compact it©9([0, 1/¢]), and the existence of a fixed powtfollows from
Schauder’s fixed point theorem:

u()

1/e
Vs(r) =&e+0r — L G(r,t)m

dt, (3.6.6)
and from (36.4) we also have

v.(r) >0, V.(r)>6, and v.(r)>e+06r forall re[0,1/e]. (3.6.7)

3.6.2 Existence fow >0

We now pass to the limit as | 0 in the approximating probleni(). First we consider the
cased > 0. It follows from (36.7) that

VA(E) + Ve(t) = (e + 01)2 + (s + 6) = (e + O) (L + & + 6t) > 6t
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Therefore

@52) r u(t) Ye o u(t)
w0 "8 o [t g

"Ly Ye dt
9+U1(f0 i t”j; (e+9t)(1+s+9t))

<
B r e+0/¢e e+ 0r
- 9+U19(1+Iog(1+8+9/8) IOg(1+s+9r))
r 1
< 0+ Ul@ (l+ Iog(1+ a)) (3.6.8)

Similarly,

1/e 1/e 1/e
V() = f &<u1f %sulf ad _Y (3.6.9)
r r & r

V2(1) + V(t) 022 = g2
Together withv,(0) = ¢, the estimates (8.8) and (3.6.9) imply that
”Vg”cl([O’R]) + HV«SHCZ([R‘l,R]) <Kgr forall R>0.

Then, by the Ascoli-Arzela theorem, a subsequence (whigldavnot relabel) exists such
that
Ve =V in Cioc([0, +0)) N C2((0, ).

loc
In particular,v(0) = 0. By (3.6.7),v > 01in (0, =): hence, passing to the limit in the equation
of (P,) we see that satisfies the diierential equation in (8.1). Finally, (3.6.7), (3.6.8) and
(3.6.9) imply that

r 1 , Ul
esx/(r)59+ulé(1+log(1+a)) and OsV(r)sﬁ, (3.6.10)

hence the boundary conditions are satisfied. This provesxiktence of a solution to (3.6.1)
if 9> 0.

3.6.3 Existence fow =0

In the cas& = 0, we begin noting that

(362366) fr 5(2r _t)U(t)dt+ ré fl/s U(t)dt

0 VA(t) + Ve(t) 2 Je VA + velt)
Uo ff t2r —t) 367 Uq r3
e L S L A
2 Jo VA(t) + Vi(t) 3 VA(r) + vi(r)

Ve(r)

\%

Hence
V2(r) +VE(r) = CMr3, (3.6.11)
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where here and in the rest of this pr@»t 1 denotes a generic positive constant, indepen-
dent ofe andr. The bound in (3.6.11) implies that

v, >Ct min{r, r3/2}, (3.6.12)
which in turn yields

(92 if r<1
V2 4+,

v

ct min{r2 +rrdy r3/2} =c!
2 ifr>1

c! max{r3/2, rz}.

U Ye U
0 = [ wme

Therefore

< C rtm l/810|t<cl/2 3.6.13
< o t:ﬁ? +r r t?)? <Cr ( .D. )
and, similarly,
1/e 1/e
vI(r) = f ZUﬂ < Cf d_2t < E (3.6.14)
ro Va(t) + ve(t) root r

The argument is now identical tib, with (3.6.8) and (3.6.9) replaced by (3.6.13) and
(3.6.14), respectively.
3.6.4 Uniqueness

Let vy andv, be two solutions of (8.1) and letw = vi — v». Thenw satisfies

" o_ 1 1 ;
w —U(m—m) In (O,+OO)
w(0) = w(0) = 0

wW’(r) >0 asr — +oo.

Since the functiov ﬁ/ is decreasing and is non-negative,

1 1
ww” = U (v — v2)(v2

- )= 0. (3.6.15)
5 + Vo V1 + V1

Let us define the auxiliary function

2
h(r) := ww’ — \NI?
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Note thath’(r) = ww”’ > 0, i.e.his increasing. We claim that

h(0) = 0.

(3.6.16)

If (3.6.16) holds, then the monotonicity bfimplies that thah(r) > 0 forr > 0. Thus

W2
W\I\/’Z7ZO r> 0.

As a consequence of .15) and (36.17),

0< w'w = ((V\/,)Z),.

(3.6.17)

On the other handy”(r) — 0 asr — +co, which implies thatv’” = 0: sincew(0) = w'(0) =

0, we conclude thaw = 0.

It remains to show (8.16). In view of (3.6.10) and (3.6.12),

or if 6>0
v > for r <1
c32 fog=0

Hence
L if >0
0<-V"(r)= 2U <U{ " for r < 1.
V2 + Vi Cr32 if =0
Consequently, we have that
—logr if 6>0
0<V'(r) <G for r<1/2
r=1/2 if =0

(Ci depends omthrough, sayy;’(1/2)) and after two other integrations

—-r?logr if 6>0
0<vi(r)—or <G for r <1/2.
Crd/2 if =0

Therefore, for < 1/2 we have

ww’|

3.6.18)3.6.19) [ r2log?r if 6>0
< C
r if =0

}—>0 asr — 0,

and (3.6.16) follows sincer’(0) = O.
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3.7 Renormalization

In the rest of the Chapter we perform the qualitative analg§i(3.2.2)-(3.2.3). It is conve-
nient to scale all quantities in such a way that the mass igdittanequation is parameter-
free: .
M M ~ M™ .
= —X d s=—§ h=bh, t=-—t
X=X and s b § , i
In particular, the nonlinearityn(h) = h® + br? turns intom(h) = h® + h2: the transition
between the two regimes of, h ~ b, in the new variables occurs bt~ 1. The free

boundary condition (3.2.3) reads as

dM [, M? ds . a
F(hé_ﬁeé)za atX:S(f).

Hence, introducing the parameters

M dM
as = EHS’ k= F

and removing all hats, (3.2.2)-(3.2.3) read as

he + (hu)x = 0, U = (h? + h)hyy h> 0 in (0, s(t))

hy = hyxx = 0 atx=0 (3.7.1)
_ — L _ 2 2 _

h=0, s(t) = xﬂ’;'&)- utt.) =k(hZ-a3)  at x=s()

and the dissipation relation (3.1.7) transforms into

d (01, 1,02 (0
aj; E(hst)olx_—z—k(s'(t)) —j; X (3.7.2)

3.8 A heuristic argument in complete wetting

As we mentioned earlier, in the case of complete wetting tadirgy law (3.1.11) was first
observed by Hocking [66] and then rigorously derived in [&#]the boundarna(t) of the
“macroscopic support”,Ha(t), a(t)) = {h(t,-) > b}. While Hocking uses careful matched
asymptotic expansions, the heuristic behind the rigoressits in [52] is much simpler:
it relies on the energy dissipation mechanism encoded By2Band it is inspired by that
used by de Gennes in [39]; more recently, Glasner [55] hasgivdetailed interpretation to
these heuristic in terms of gradient flows. The essentigplffication consists in assuming
that most of the energy is contained and dissipated in theaseapic support (though near
its boundary). This allows to avoid all the subtleties of toiang” with a microscopic
region near the contact line. However, (3.7.2) containsra tehich actsat the contact line
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Hence, in revisiting the heuristic in the present case, srferced to argue in the whole
support €s(t), s(t)) rather than just on the macroscopic one.

The crucial assumption is that the evolution is quasi<statithe sense that the droplet’s
profile is, at leading order, in equilibrium given mass anplpsut:

1 2
h~ g(sz—x) (3.8.1)

(here and after we disregard universal constants). Thea,diyple computation,

d ® s

— | h2dx~-=.

dt fo XX~ — S
In order to compute the rate of dissipation ing@)), we pick the simplest possible form of
the velocity fieldu such thau = 0 atx = 0 andu = S'(t) atx = (t):

XS
u~—.
S

s u2 5/2 X2
— _dx~ = f —dx+f xzdx).
j(; h+1 82( ey D {h<1}

In view of (3.8.1), the first integral on the right-hand sidezéero ifs > 1. Simple compu-
tations using (3.8.1) then yield

Then

s 2 2(s)?logl if sx1
0 % XN{ s(i’)Z - if s> 1 (582)
Plugging (3.8.1) and (3.8.2) into (3.7.2) we obtain
¢ [ -EL_(s)logl if s<1
_gw{ _g—s(s’)z if s> 1,
that is,
1 N{ £ Plogl if s<x1 (3.8.3)
g % +& if s> 1.
We note that
% > sﬁlog—i = % > & Iogé (3.8.4)
% > = % > s (3.8.5)

Hence we must distinguish two cases.
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(1). If k< 1, then (3.8.4) is always satisfied fex 1, and (3.8.3) reads as

1 % if s< 3
S~

_ (3.8.6)
S if s> %

We assume thaty < 1/k, so that both the regimes in (3.8.6) are seen. Then, solgi8gg)
renders s

k)5 ~ (k)5 if R <t<

s~{50+( )1~ (k) k<i<is (3.8.7)

t1/6 if t> k_16
(2). If k> 1, then (3.8.5) is never satisfied fer> 1, whereas fos « 1 (3.8.4) may
be inverted as follows:

(3.8.4) = L e

klogk
Therefore (3.8.3) reads as
. % if < —klc}gk
P $log ifﬁ(«sz«l
P if s> 1.

Assuming thatsy < ﬁ( and solving this ode (se§8.11.2 for details) yields

S0+ (K5 ~ (k)25 if % <t m
1/7 _
s (,O;%) if m <t<x1 (3.8.8)
tH° if t> 1.

Returning to the original variables, (3.8.7) and (3.8.8hcie with (3.2.4), resp. (3.2.5).

It must be pointed out that (3.8.1) implicitly postulatesttithe microscopic contact
angled is “close” tofn. To convince the reader we note that, had we used the eguiivale
formulation of (3.7.2),

d (01, @re71) K, s 2
aj; Ehxdx = —EhX|XZS(t)—j; m-dx’

with the contact-angle given by

hx|x=s;(t) (SE.l)_és (3.8.9)
we would have obtained exactly the same result. But the [adet(B.8.9) is not legitimate
a priori and should instead be demonstrated: the slope naaglitabruptly near the con-
tact line, and such discrepancy is indeed the main issue tdabified within this theory.
Therefore, in the next section we work out a formal asymetstiudy which avoids such
postulate.
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3.9 Matched asymptotic and the macroscopic contact angle

We work under the more general boundary condition (3.2.68)¢clvunder the normalization
performed in (3.7) reads as

Ihg(t, s(t))| = a(S(t),as), a(S,as) Zas for § Z0. (3.9.1)

Note that the contact-angle condition in (3.7.1) is inchliie(3.9.1) by letting

a(s,as) = ﬂ% + cz%. (3.9.2)

The asymptotic is based on two main assumptions:

(I) the evolution within the liquid’s bulk is “quasi-static

() the evolution within the liquid’s bulk is “slow”.

The former is of a qualitative nature. In order to make it mprecise, it is convenient
to introduce a variable transformation whiclffdis from those used in earlier studies and
yields sharp scaling assumptions. It fixes the free boundagdypreserves mass:

1 X
h(t, X) = @H(t,y), y= @ €(0,1).
Then
Y (yH)y — s'Hi = (H® + sH?)Hyyy)y  in (0, 0) x (0, 1). (3.9.3)

A quasi-static evolution of the liquid’s bulk means thatcept maybe for a region where
H < 1, H depends on time only through the modulations giversbypds'. Hence (3.9.3)
reads as

() (YH)y ~ (H® + sH)Hyy)y,

which may be integrated once with respecy{romy = 0), obtaining
(°S)yH ~ (H3 + sH?)Hyy, in (0,1). (3.9.4)

We now think ofH and its derivatives to b®(1); then (3.9.4) shows a scaling-wise natural
way to quantify the notion of a “slow” evolution within thegliid’s bulk:

g <«1lif s<1 (3.9.5)

and
9 <« 1if s> 1. (3.9.6)
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Note that four conditions are to be imposed Fbrwhereas (3.9.4) is of third order: we'll
use

S(t) 1

to determineH, and
Hyly=1 = —a§’ (3.9.8)

to determine a relation betweerands'. Provided (3.9.5) holds, we obtain the following
asymptotic:

3\2 a® + 39 log(s) if 1 <syands < a®
(g) ~ (3.9.9)
35 log(s(s)Y3) if 1 <SS and s > o
If instead (3.9.6) holds, then
3
(%) ~a® if a>0. (3.9.10)

Returning to the original variables we obtain (3.2.8) an@.@. In the rest of the section
we provide the details for both. The first one is by far lessai.

3.9.1 Slow evolution with a macroscopic profile: the outer ggansion

We first consider the case< 1, which in view of mass conservation implies thts> 1 in
the liquid’s bulk, i.e., a macroscopic profile exists. Sisce 1, (3.9.4) and (3.9.8) simplify
to

(s°S)yH ~ H3Hyy, in (0,1) (3.9.11)

and
Hyly=1 =0, (3.9.12)

respectively. In view of (3.9.5), we expaitlin powers ofs’s’”:
H = Ho(y) + (°S)H1(y) + l.o.t.
At zeroth order, (3.9.11) and (3.9.7) read as

Holywy=0 in (0,1).
{( Oy =0 I @) (3.9.13)

1
(HO)y|y:0 =0, H0|y:1 =0, fo Ho(y)dy = %
A simple calculation shows that the solution of (3.9.13) is
3
Ho(y) = Z(l —yA).
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Since the contact-angle condition (3.9.12) can not befiatisve proceed to first order. For
H1, we obtain
_ _1& i
{ (Ha)yyy = lé = sy N (01)

(Huyly=0. Haly-1 = 0, [ Ha(y)dy = 0.
Three integrations yield, after lengthy but straightfordvaomputations,
Ha(y) = —(1 Y+ 5 ((1+Y) log(1+y) + (1-y)log(l-y)-2log2),

whereB = (H1)yy(0) has to be determined via the mass constraint. After aitiaioll
calculus exercise, one sees tBat —4/9: therefore

2 y
3 1
~ ~3+3 s og Iog( y) asy— 1 (3.9.14)

Hy ~ (H0+ss’H1)y=—§y+365’(——y+ Iog(l+y))

SinceHy has a logarithmic singularity as— 1, yet we can not impose the contact-angle
condition (3.9.12). This points to the necessity of an inegpansion which permits to
cancel the singularity by a suitable matching. Before pedo®y we observe that, in terms
of the original variables, (3.9.14) reads as

3

hy ~ —
T o2

; s4s’log( X) for —— 1 (3.9.15)

3.9.2 Slow evolution with a macroscopic profile: the inner egansion

Near the free boundary we follow [65, 66] and use the scalfragtaveling wave,

h(t.x) = £(¢). &=s()-x

We impose the touchdown conditiof(0) = 0, the contact angle conditiof, = o até = 0,
and the kinematic conditiorf, = fu = 0 at¢ = 0. Then, after one integration, we see that

for eacht > 0
s

ffé:f = —m for €>0
ff =a até = 0.

In order to achieve a matching with the solution in the outgian, f: must be no more than

logarithmically large at infinity. This singles out the un@solution of (3.9.16) such that
fee = 0 asé — +oo, as given by Theorem 3.1 §8.2.1. A simple asymptotic expansion of
(3.9.16) shows that this solution is such that

f(€) ~ (39)3¢(logé)t® asé — +o0 if & >0. (3.9.17)
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In order to infer the asymptotic form df up to order 0 ir¢, we distinguish two regimes.
Q).8= % < 1. In this case we rescale (3.9.16) according toa¢, so that

frnr = — ﬂ

&~ T2 (0 =1,

and we linearize aroungl= 0: f = fo + Bf; + .... Atleading order ir8 we have

fo=¢&. (3.9.18)
At first order ing we have
(W= g5z o1 €0 RO=(0=0
After two integrations (using the boundary conditions), at¢ain
() = (L+d)log(1+8) - Elogs = (1+2) (Iog$+ Iog(1+ ;)) ~&logé
~ 1+logé asé — +oo. (3.9.19)
Recombining (®.18) and (39.19), we see that
fe ~ (fo+Bf)e ~ 1+ B(1+logé) foré > 1.
Recalling thap < 1, in terms of the outer variable the previous expressiodsaa follows:
—hy ~a + % log(a(s—x)) for a(s—x)> 1. (3.9.20)

(2). 8= 5 > 1. Inthis case we scale (3.9.16) according te (s')*3¢, so that

1 1
f”é”_- = —ﬁ, fé(O) = W

At leading order in3~Y/3 we obtain that

1
fezz = —f7 N (0,+00)

. R (3.9.21)
£(0) = f(0) = O, gllT f;2(6) = 0.

Theorem 3.1 guarantees that (3.9.21) has a unique solatiohthe asymptotic in (3.9.17)
yields
fe ~ log?3@) asé — +co.

In terms of the outer variables, this means that

—hy ~ (Slog(s(s—0%)"" for (s—x%> 1. (3.9.22)
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3.9.3 Slow evolution with a macroscopic profile: the matchig

In the outer region, where > 1, the velocity fieldu = (h2 + h)hyxx ~ h2h,«x has the same
scaling ofhd. Therefore, in order to get a relation between the velogitythe macroscopic
contact angle, it is natural to cube the expressions oltdirehy. For the outer profile, at
order one ins’ we find from (3.9.15) that

3\ S
3 .= - _
h3 (232) + 39 Iog(s_x) for (s—x) < s (3.9.23)
For the inner profile, (3.9.20) (at order onediia®) and (3.9.22) yield
—a® - 35 log(a(s— x)) for (s—x) > 1 if & <a®
hd ~ (3.9.24)
-35'log ((s)*3(s- X)) for (s-x) > Fm i §>ad

Having carefully tracked the scaling assumptions both éndtiter and in the inner region
allows to simplify the matching with respect to [65, 66]. &adl, we just have to notice
that the range of validity of the expansions (3.9.23) anf.23) overlap if 1<« so when

s < @ and ifs°s > 1 whens > o3. In these cases we may equate them, and after a
cancelation of the log(— X) terms we obtain (3.9.9).

3.9.4 Slow evolution without macroscopic profile
Sinces > 1, H® + sH? ~ sH?, so that (3.9.4) takes the form

Because of (3.9.6), we expattlin powers ofs’s: H = Hg + (S°S)H1+l.0.t.. At zeroth
order, as ir§3.9.1 we recover

Hoy) = (1Y)

This solution meets the boundary conditidtipfy = —a s provideda > 0, and in terms of
the original variables we obtain (3.9.10).

3.10 Intermediate scaling law in complete wetting without ontact-
line friction
As a first example, which we shall anyway need later on, wevecihe well-known loga-

rithmic correction to Tanner’s law stated in (3.1.11)-(32) in the case that = 0. We will
neglect universal constants.

Sincea = 0, only the second regime in (3.9.9) is relevant. Hence, if

sx1 (3.10.2)
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and if
g « 1, £ > 1, (3.10.2)

then 1
i s'log(s’s). (3.10.3)

We now analyze (3.10.1)-(3.10.3) in thg §) plane. First of all, we make (3.10.3) explicit
(in what follows we shall often use this type of argument; wevjzle its details here once
for all):

é ~glog(s’s) é ~ %5 log (s’ G2,

= ;~s3s’

Slog(3)
— g (3.10.4)

$log (1)

Then we observe that
(3.10.4) 1
—

log(3)

3.10.4 1
1< s’s ((=>) s3log(—s) <1l &= s«<1

L9 «1 <1l < sx1,

Hence (3.10.1)-(3.10.3) are equivalent to (3.10.1) anti)(@). If (3.10.1) is initially true,
i.e. 5 := §(0) < 1, we may integrate (3.10.4): since

(37 log (%))/ G0V S 09 (%) g,

we obtain
7 1 . 7 1
s’ log p ~ 1t provided s;log S <t (3.10.5)

We now check for how long (3.10.1) remains true:

s<1l & «x1 = <]l &= tx1,

log ()

and in this case (3.10.5) may be inverted as before, yielding

s ~ ! provided Sg Iog(i) <t<x1land <1 (3.10.6)
Iog(%) S0

Note that the time window is not empty sineg < 1. Returning to the original variables
we recover (3.1.11)-(3.1.12). Large timescales will belyaeal in§3.12.
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3.11 Intermediate scaling laws in complete wetting with cotact-
line friction

We now focus on the specific boundary condition proposed®hif8the case of complete
wetting,as = 0. In view of (3.9.2), we then have

a = +9s/k (3.11.2)
We will neglect universal constants, and argue that:

() if k< 1ands < £, then

s(t) ~ (k> if % <t k—](;; (3.11.2)

() if k> 1andsy < m, then

1/5 H 1
(kt)/ if §<<t<<m

(t) ~ (3.11.3)

17
(W) if m«t« 1.
Note that the time windows in (3.11.2) and (3.11.8)e not empty in view of the assump-
tions onsy. Returning to the original variables and lettity = 1 we obtain the early and
moderate timescales in (3.2.4) and (3.2.5). Large timescalll be analyzed in the next
section.

The rest of the section is devoted to showing that (3.9.9Xar&d10) imply (3.11.2) and
(3.11.3). In§3.11.1 we show that, under (3.11.1), (3.9.9) and (3.9.1®¥quivalent to

S ~ g if s« % for k<1, (3.11.4)
k if &< i
g~ o for k> 1 (3.11.5)
Wg(—é) if Klogk < 82 < 1

In §3.11.2 we easily infer (3.11.2) and (3.11.3) from (3.114( €3.11.5).

3.11.1 The ode’s fors
Plugging (3.11.1) into (3.9.9), we obtain that if

sx1 (3.11.6)

and
LY <« 1, (3.11.7)
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then

1 [(9)+2510g(52) it keSS andK<s
= ~ (3.11.8)
$ s Iog(s°’s’) if 1 <s’s ands <k
The relation in (3.11.8)may be split into two regimes:
3/2 . 1/2
1 { (%) (&) > log(5F)
_ 1/2
s glog(£2) it ()" <log(£E).
Therefore (3.11.8) is equivalent to
(£)" it k< and ()" > log(SE)
1
$~ Slog(SE) it k<Y and 1<(g)" <log(32) (3.11.9)
Slog(s’s) if 1< ands <k
Plugging (3.11.1) into (3.9.10), we obtain
1 ()2
i (E) if >0, 9 <1, and s> 1. (3.11.10)
We now analyze each regime in (3.11.9) and (3.11.10).
e Within (3.11.9), we have
1 s\ k
Hence
k< s°8 (3<i§l) k<<§ — (3.11.6)
s \"? oS euw 1 (1
— > —_— — _— > —
i3 9\ "k k2~ 9\ 2
1 1
= szlog(g) < (3.11.12)

and (3.11.7) is absorbed by (3.11.6) and (3.11.12):

3.11.11 1 (3.11.6
Y <« 1 (<:> : <y (z : (3.11.12)

We now distinguish two cases. K < 1, (3.11.6) guarantees that (3.11.12) holds, and
(3.11.4) follows fors < 1 (the window 1« s < % in (3.11.4) will follow from (3.11.10)).
If k> 1, we may rewrite the constraint in (3.11.12) as

& Iog(%) N 5 <1 (3.11.13)

1
k klogk
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Hence (3.11.13) enforces (3.11.6) and (3.14lf8)ows.
e Within (3.11.9)» we have

i s'lo s’s :}i st,Io ﬁ
& I\ ke~ Tk 9\ k)
Then
kf<1 = 9>k (3.11.14)
and in this case
i s’Iog(szs,) = ﬁ !
$° k K- ks'log ()
1
= gd~— (3.11.15)
s‘ﬂog(é)
In particular,
(5)1/2 < Iog(ﬁ) (3<i§5) —1 < Iog2 !
k3 k k3 log () ks*log ()
(311.14) 1 <o 1
f—
as <1o% (g
Cae 1 szlog— (3.11.16)
k £’

Together with (3.11.6), (3.11.16) implies that (3.1%2.8)seen only if 1<« k. In this case,
the constraints in (3.11.9)may be written as follows:

g\12 $’s\ (111631115 1 151 1
1<<(k3) - |Og( > ) = el R i 32|09§3 11.17)
@ 1 5 « 1 (311.18)

k3log® k <° k3logk
By (3.11.17) we deduce that | ~log(%). Therefore (3.11.15) reads as
& 5

Lt
Slog (%)

and holds provided (3.11.6), (3.11.7), (3.11.14) and (38)lare satisfied. Noting that
(3.11.6) is implied by (3.11.18) (sinde> 1) and that

(3.11.19)

6 (3.11.19)
311.7) < ¢s9I<1 < '(3.11.6)

(3.11.14) = kf<«1=k/?d«1 & (3.11.18)
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we conclude that
1 ) 1 6

~ if < S <« —— andk>1 (3.11.20)
Slog (%) k3log® k k3logk

e For (3.11.9} we argue exactly as i§3.10: we obtain that (3.11.19) holds provided
s < k3 and (3.11.6) are satisfied. Now

¥ <k = k_13<< s‘”og(—i).
Because of (3.11.6), also (3.113% seen only if 1<« k, and in this case
1
k3logk’
Combining (3.11.6), (3.11.20), and (3.11.21) we obtaia1®).
e Within (3.11.10), we have

§ <k = £> (3.11.21)

s’~§ if >0, 9 «<lands> 1.

Since

I ~ks<x 1l &= s< ﬁ

the regime in (3.11.10) is not empty onlykif« 1, and (3.11.4) follows for k s « %

3.11.2 The timescales

We now infer from (3.11.4) and (3.11.5) the scaling lawssgiven by (3.11.2) and (3.11.3).
() If k s 1andsy < 1/k, it follows from (3.11.4) that

%

S ~ g+ 5kt ~ kt provided t > o

and

s<<1 — i !
k ke’

whence (3.11.2).
() If k > 1, we assume thal < ﬁ( so that both regimes in (3.11.5) are seen.
According to (3.11.5), we have

S ~ §+ 5kt~ kt provided t > % (3.11.22)
which holds as long as
1 (31122 1\
SZ < w — tx (m) = 1. (31123)
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Ast ~ t;, the free boundary enters the second regime in (3.11.55hnias already been
analyzed irn§3.10: it follows from (3.10.6) that

Y7
t(l)} if max {tl, s/ Iog(é)} <t<x1l ands <1, (3.11.24)
t

S(t) ~ [
log

with initial conditions; := S(t;) = (kt;)Y/®. Note thats; < 1 sincek > 1 andlt; is given by
(3.11.23). Since

1 s

7 (3.11.5) (3.11.22)
log|— == Wty
S g(sl) K 1

the lower bounds onhin (3.11.24) coincide. Therefore we conclude that

17
S(t) ~ [ ] if h <t<l (3.11.25)

log (%)

Gathering (3.11.22), (3.11.23) and (3.11.25) we obtaib1(3).

3.12 Long time scaling laws in complete wetting

The asymptotic of this section is based on two main assunmatio

(I) the timescale is “large”;

(I) the evolution is “quasi-selfsimilar”.

We will argue that

s(t) ~tY8 if t> max{1,k—16}. (3.12.1)

Comparing (3.12.1) with (3.11.2) and (3.11.3), we see thatwhole remaining range of

timescales is covered by (3.12.1). In terms of the origiralables, we obtain the final
timescale in (3.2.4) and (3.2.5).

We now motivate (3.12.1). In complete wetting,— 0 ast — +oo: henceh <« 1
everywhere for sfliciently large times, and conservation of mass implies that

s> 1, (3.12.2)

which partially encodes (1). Sind® + h? ~ h? everywhere, we may replace the equation in
(3.7.1) with

ht + (PPhuo)x = 0. (3.12.3)
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Following (1), we introduce the selfsimilar variable trémsnation of (3.12.3) which pre-
serves mass:

h=t1®f(ty), y=xt'®e(0a(t), wherea(t)=t"ogt).

Then
Liyf)y —tf = (f2fy)y, >0 in (0,a
{G(Y )y t = (F fyyyly ] 0 (3.12.4)
fy|y:0 = fyyy|y:0 =0, f|y:a: 0, fO fdy =1/2
while the boundary condition reads as
120 = —( lim ft 3.12.5
y|y:a—Wy_|gl(t) vyl - (3.12.5)

Since (3.12.5) is not time independent, an exact selfsirpiiafile does not exist. However,
if
kt/® > 1 (3.12.6)

(which completes (1)), the contact-angle condition is oalyperturbation offyly—a = O.
Hence we assume théts quasi-selfsimilar in the sense that it has an expansitimediorm

f(t.y) = fo) + () fuy) + ...,

which encodes (ll). Then, at leading order, (3.12.4) reads a

iyfy = f2fon, >0 in (0,a
{Gyo 0 Ty 3 (3.12.7)

foyly-0 = foyyyly-0 = O. foly-a = O. foyly-a = 0. [’ foy)dy = 1/2

As is well-known [14], (3.12.7) has a unique solutiofg,@). Therefore, recalling (3.12.2)
and (3.12.6), we obtain (3.12.1).

3.13 Partial wetting with contact line friction

In the case of partial wettingys > 0, the profile of a spreading droplet converges to the
unique steady state with mass 1 and contact anglesst — +co:

3 5 3 3
h— g(sfo— )+» ST Sw = E’ s -0 ast— +oo. (3.13.1)

We focus on the most interesting case of

(3.13.1)
as>»1 & s<sox1, (3.13.2)
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which guarantees the persistence for all times of a macpisgoofile. Because of < 1,
(3.9.10) may be ignored and we only have to look at (3.9.9)iclwkwve rewrite for the
reader’s convenience:

3\2 a® + 39 log(s) if 1 <syands < a®
(_sZ) N (3.13.3)
2 39 log(s(s)3)  if 1 <SS and § > oS,
In view of (3.13.1), for sfficiently large times (3.13.3) reduces to
13 a2 + 35 log(ses) (3.13.4)
o) TS gisas). i

which is equivalent to the well-known Cox-Hocking relatibetween the féective and the
microscopic contact angle. In terms of the original vaeabit coincides with (3.1.10).

The relation (3.13.4) yields an exponential convergencgtofs,,. Indeed, let

s 3 § t 21 log ast.
= — = — Cl’ .
V 205 2a7 008

In view of (3.13.1) and (3.13.2), log§s) ~ log(+/as) ast — +co. Hence (3.13.4) reads as

ds 1-8
df &

An integration shows that 2 §f) ~ e asf — +oo, i.e.

8(17
3 s(t) ~e P ast— +oo, Di= 4| ——.

In order to infer the timescale of validity of (3.13.4), wevhao give a closer look to
(3.13.3) in order to identify the intermediate scaling lamisch precede (3.13.4). We will
argue that:

() if [klogk| < as, then

s(t) ~ (k)¥°  for i <t

k ka/g/T
(i) if k < as < klogk, then
' 1
(kt)/> if % <t I
s(t) ~ RN _ . 1
('09(%)) i Zog7k S U< ealFiog @2 to.
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(iii) if as < k, then

(ky/5 it S <t<
s(t) ~ oY _
(@)

1
K7/2log>2k

1
K7/210g>2 k

1
aé/z |Ogl/eas

Preliminarily we observe that

1/2 _
a= 1[% + ag ~ { (%) s> ka% (3.13.5)
as if &< ka%.
Because of (3.13.5), (3.13.3) coincides with the case ofptetm wetting as long as >
ke, Therefore (3.11.2) and (3.11.3) hold under the additicoaistraints thas < 1 and
s > ka%: imposing them, a few simple computations vyield (i), (iihda(iii) up tot = t,.
Whens < ko2, thene ~ as and (3.13.3) coincides with (3.13.4). Instead, (3.13:3)
yields

t v 1
) ~| —— if — <tk 1
0 (loge)] elog ik

with the additional constraints tha < s’ < ke3 and thats®s’ > 1. Hence this regime
is seen only ifes <« k: in this case, a few more computations imposing the boundlen

speed yield (iii).
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Chapter 4

Droplets spreading under
contact-line friction: existence of
weak solutions

4.1 Introduction and main results

In this Chapter we consider the thin-film equation with theefboundary condition pro-
posed in [80] and discussed in Chapter 3:

§t) =d ((hx|x=s(t))2 - 6%) (4.1.1)

where the superposed dot denotes the material time deevator simplicity, we consider
the case of a symmetric droplet ing(t), s(t)). Furthermore, we replace the mobilityh) =
h® + bI? discussed in Chapter 3 by a more general mobility:

he + (M()hy)x =0, h> 0, h even  in (Ot) x (—s(t), S(t))
—o gt = lim M) _
G h=0, §t) = ng(gr o at (Qt) x {x=s(t)} (4.1.2)
) =d(n2 - 62) at (Qt) x {x = s(t)}
h(0, X) = hp(X), hg even in E5(t), s(t)),
where
me C*((0, o)), with m(h) ~h", n>0 ash— 0. (4.1.3)

The parameten > 0 is related to the slip condition imposed at the liquid-cgaiterface:
in particular the equation with = 2 corresponds to Navier slip,= 3 means no slip, while
n € (0, 3) models various relaxed slip conditions. The case withl may also be seen as
the lubrication approximation of the two-dimensional H8leaw flow in half-space [53].
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The energy is given (see (3.1.6)) by

s(t) 1
E(h) = f ~(hZ + 63) dx. (4.1.4)
_S(t)z
Arguing exactly as in Section 3.5, one sees that solutiorfP)dformally satisfy
d (01 SO
— ~(n2 92d=———f h)h2,, dx. 4.15
| 2B o= S | mos (@15

We translate the problem on the fixed domhie (-1,1) by using the simple change of
variable «
=— €| 4.1.6
Y= 30 (4.1.6)

and by defining the new function

v(t,y) = h(t, yqt)), 4.2.7)

so that

Then the free boundary condition is replaced by

t) = d((vy|§1)2 - eé), (4.1.8)
and the system (4.1.2) reads as
Vi — Zyvy + é(m(v)vyyy)y =0, v>0, veven in (Qt) x |
oyl V70 's(t\)/zz m@%y a@Oxy=1 o
's(t):d(?y—eé) at (Qt)x{y=1
V(0,y) = vo(y), Vo even inl.

The surface energy functional (4.1.4) in the new varialdesplaced by

1 (V%
E(V) = = f [—y + seg] dy, (4.1.10)
2 1\ S
and the energy balance (4.1.5) reads now as
di1 (% g 1
g == : 111
dt2f|[5+ses]dy i Im(v)\/Zyyydy (4.1.11)

We let
{v> 0}y :={(t,y) edom) : t<T, v(t,y) > 0}

and we denote by -,- > the duality pairing betweerH'(Q))” andH(Q). Our goal is to
prove the existence of non-negative weak solution®{ it the following sense:
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Theorem 4.1. Let m be as ir(4.1.3) For any \y € H(l), even and non-negative, and any
s > Othere exists a pair of functions, v) with v e C7:3([0, c0) x 1) N L= ([0, co); H(1)),

loc
v > 0, and se HY((0, )), s> 0, which solvegP,) with initial datum \ in the sense that,
forall T > 0O, it holds that:
(i) v € L((0, T); (HY(1)));
(ii) vyyy € L2 ({v> 0}) and Vm(V)wyyy € L2({v > 0});

(iii) for all ¢ € L2((0, T); HL(1)

T T s T
f <V, > dt:f f—yvyga+f f—m(v)vyyygay; (4.1.12)
0 o Ji S o Ji st

(iv) V(0,y) = vo(y) in H*(1);
(V) Mt,1)=0in L2, T);
(vi) viseven;

(vii) v dissipates E in the sense that

1 1
E(w(t +—f‘32+ff —m(V\2,, < E(Vo). 4.1.13
(V) + 55 | o STy < E0) (4.1.13)
. . .. . m(v) Vyyy . L
The kinematic conditiong(t) = I|m1 V2 is captured in its weak form of mass
y—)

conservation, which may be obtained from testing (4.1.¥23:b

xqﬂWUW=%[wmw. (4.1.14)

The free boundary condition (4.1.8) is encoded only veryklyein the form of the energy
inequality (4.1.13). By “very weakly” we mean the followini the solution had sfiicient
additional regularity, such that on one hand (4.1.13) watisfied as an equality, and on the
other hand the formal computations in Section 3.5 were oige(cf. (3.1.8)), so that

tg(Vi(1) 1
E(v(t)) + fo E[y? —9§]+ f {V>O}t§m(v)v§yy = E(vp), (4.1.15)

then the (4.1.8) would be implied. A further weakness of Thao4.1 is that we are not
able to prove that > 0 a.e. in (QT) x |. In this respect, it is important to notice that even
for the well-known case of a zero-contact angle conditibie, standard entropy estimates
(see§4.2) in our fixed-domain framework would not yield a.e. po#i of the solution,
since there the support of the test functions is fixed inxvariable, that is, receding in
they-variable whersincreases. This points to the necessity of a refinement dfttrelard
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entropy estimates, localized in such a way that the testiumtfollows” the free-boundary.
We hope to come back to this topic in the future, and as sucleawelit as an open question.

A merit of our approach is the construction of approximatsautions €,v) in which v
is positive ands, v) satisfy the free boundary conditiq#.1.8). More precisely, they are
(suitably symmetrized) strong solutions ($€e3) of the following problem:

Vi — Zy\/y + é(m(,(v)vyyy)y =0,v>0 (t,y) € (0,0) x (0,1)
Vy = Vyyy =0 (t,y) € (0,00) x {y = O}
(P, V=0 M)y =0, (ty) e Qo) x{y=1  (4.1.16)
2
's(t)=d[vgy—e§,] (ty) € (0.00) x ly = 1]
v(0,y) = Vo(y) + o, in (0,1).

Hereo > 0 andm, is (a simple modification of) the standard regularizationtfon-film
equations: following [16] and [10], we let

We believe that this approximation is a good candidate farsistent scheme that captures
the main features of the limiting problem. An even more cstesit candidate would emerge
from replacing the boundary conditiom{(V)vyyy)ly-1 = O (a zero-flux condition) by the
stronger kinematic conditios®s(t) = (mTnyyy) ly-1: indeed, since solutions oP() are
positive, and therefore smooth, a control on the trace ofl tHerivative is conceivable.
However, at present we have to leave it as a further openignest

Besides the specific free-boundary condition, this chagiands as a first investigation of
different formulations for thin-film equations, which lie in tveten the weak and the classi-
cal ones. We believe that this kind of formulations has theital to yield improvements

in the theory, e.g. conditions for the uniqueness of globaakvsolutions, and therefore
deserves to be explored. It should be noted in this respatttis approach to the problem
raises some new technical issues: these are describedtior€@, where both the proof
of Theorem 4.1 and the plan of this chapter are outlined. ®dfwat, however, let us give a
brief overview on thin-film equations.

4.2 An overview on thin-film equations
Thin-film equations are fourth-order degenerat@udion equations of the form
ht + (m(h)hxxx)x = 0 (4.2.1)
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wherem(h) = h" for n > 0 (for simplicity, we adopt a one-dimensional frameworkheT
diffusion codficientmis positive forh > 0, but vanishes at zero. Bywe denote its growth
exponent near zero. Equation (4.2.1) can be seen as thdéyp®taf a family of parabolic
equations of higher order which arises in several apptinatio material sciences and fluid
dynamics, and in whiclh(t, X) is required to be non-negative. For instance, in the Cahn-
Hilliard model of phase separation for binary mixtureglays the role of the concentration
of one component (see [44]). As we have seen in Chapter 3 ricailon theoryh denotes
the height of a viscous droplet spreading on a solid surfaaeghich inertia is negligible
and the dynamics are governed by viscosity and capilladtgefs. Instead, as discussed
in Section 4.1, the exponentis related to the slip condition imposed at the liquid-solid
surface.

The second-order counter-part of degeneratesion equations is the well-knovporous
medium equatioitsee e.g. [77, 87]):

h — ad(h) = 0, (4.2.2)

whered’(h) > 0 forh > 0 and¢(h) ~ h™ash — 0. Herem > 1 makes the equa-
tion degenerate. Comparing (4.2.1) to (4.2.2) some siitidaremerge: for instance, both
equations are parabolic and in divergence form, with a neali difusion codficient which
provides instantaneous smoothing of the solutions in regwhereh is positive. However,
strong diferences emerge, too. The most crucial one is the lack of adsppaor maximum
principle, which in general does not hold for higher-ordguations: for instance, classical
solutions to the linear non-degenerate parabolic equdiionhyyxx = 0 may in general
change sign even in the case of strictly positive initiabdas].

In spite of the lack of comparison principle, the degenemicthe operator ak — 0
allows to establish a special form of “minimum principlehetexistence of non-negative
solutions starting from a non-negative initial datum. Twiss first proved in 1990 by Bernis
and Friedman [13]. In this pioneering paper, in one spacedsgion they were able to show
the existence of nonnegative and Holder continuous wehkkisos for all valuesn > 1,
provided that the initial data were nonnegative, and pasitof solutions forn > 4. We
point out once again that this kind of a weak maximum prireciigl due to the nonlinear
and degenerate structure of (4.2.1), and is not common tthfauder parabolic equations.
The positivity of solutions was later extendedita 7/2 by Beretta, Bertsch, and Dal Passo
[10] and by Bertozzi and Pugh [16], where a rich structure wdligative and regularity
properties of solutions to (4.2.1) are also shown, depgndimthe growth exponemt The
approach in these papers relies on two essential estimitesfirst one is the well-known
energy estimate

1 f h2(t) dx + f f m(h) [Ny dxdts} f h2(0) dx. (4.2.3)
2 Ja (h>0}¢ 2 Ja
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The second key a-priori estimate is a class of integral ialtigs, so called “entropy esti-
mates”, which play an important role also for proving resuh finite speed propagation
of support (see e.g. [10, 16, 18, 12, 11]). The simplest fofrantropy estimate can be
formally obtained by testing the equation with a funct®ftfy) that satisfies

1
G'(y) = —.
v) )
Then q
I f G(h) dx = — f h2, dx. (4.2.4)
More generally, choosinG such that
., ha+n—l
G"(h) = EOR

one arrives at the entropy estimates of the form

d ha+1

l R e
for @ € (3-n2-n). In particular, as shown in [10, 16], it follows from (4.2.8)at
an initially positive solution remains positive for all tea if n > % (.e. a+1< -2).
This feature may then be used to build up an approximatinggohare and construct non-
negative “entropy” solutions to (4.2.1) for€n < 3, as limits of solutions of approximating

problems with very carefully modified initial data and mdtisls, such tham(h) ~ h* as
h— 0.

f I(h“F),4dx (4.2.5)

Let us point out that the growth exponent 3 appears to be a borderline value with
respect to the qualitative behavior of solutions to (4.2H9r instance, in [14] it is proved
that compactly supported source type solutions (i.e. molstthat start as a Dirac mass at
the origin and spread out in a self-similar way while preseythe mass) do not exist for
n > 3. Technically, this is reflected by the entropy estimatesnf> 3 there is nar > -1
such that the entropy estimates hold, heyfd:lg” is unbounded for compactly supported
initial data.

The entropy inequality (4.2.5) guarantees that entropytieois have sflicient regularity to
ensure the zero contact angle condition for almost eudfence the solutions constructed
in [13, 10, 16] may be seen as weak solutions of the followneg-boundary problem:

he + (M(h)hyxxx)x = 0, h > 0, in (0,t) X (s-(t), s+ (1))
L m)
h=0 5= lim =5 M at @Yxix=s.) (4.2.6)
hy=0 at (Qt) x {x = s.(t)}
h(0, X) = ho(X) in (s-(t), s¢(1)).
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The theory of entropy solutions described so far was latemaled to higher space dimen-
sions in [38, 18, 57], where newfilculties arise: for instance, not strong enough being the
norms controlled by energy and entropy estimate, Holdetigoity (or even boundedness)
is lost and the identification of the limit becomes hardere Eistence of weak solutions
with non-zero contact angle is instead much less invesiiyah the case = 1, it was ob-
tained in one space dimension by Otto [76] for a prescribeditipe contact angle; results
in this direction for a generin were obtained in [20]. More recently, a study of (4.2.6) as
a classical free-boundary problem has been initiated:ajjlexistence of classical solutions
with initial data close to the equilibrium solutiox)¢ (with s, = +c0) were obtained in
[51] (see also [50]). In [69], analogous results have bedringd the case af = 2 with

a prescribed, non-zero contact angle, for initial dataechasthe traveling-wave solution.
So far, we have not been able to extend the latter result tadke of the free-boundary
condition (4.1.1): the reason is that, whiig(t, s, (t)) = —1 is linear and (scaling-wise) of
low order, condition (4.1.1), rewritten in form of

1/ .

is nonlinear and (scaling-wise) of highest order (it defgenid the trace of the third deriva-
tive for a fourth-order problem).

Though the analytical development for entropy solutionsdss sufficiently well estab-
lished, many questions remain unanswered. Among the mastematically intriguing
problems there is of course the (non-)uniqueness of ensofions for 0O< n < 3. We
refer to [10] for an example of non-uniqueness. Anothertantting question is to identify
a threshold condition on the exponensuch that initially positive solutions carannot de-
velop finite-time singularities of the form(t, X) — 0 ast T t* < oo, a phenomenon which
was observed numerically and by matched asymptotics infdrs$uticiently small val-
ues ofn. Among the open problems are also a more robust notion of welakions with
non zero contact angle, regularity properties (such asragtyt and even boundedness) in
higher space dimension, and the development of a full thebgjassical solutions for the
formulation (4.2.6).

4.3 Plan of the proof of the main result

The proof of Theorem 4.1 is based on a multi-step approximggtrocedure. As we said,
a solution to P,) will be obtained as limit of solutions tdP(). In turn, a solution toR,)
will be obtained as limit, ag — 0, of problems in which we replace theffdisivity m,,
which is itself degenerate as— 0 and unbounded as— o, by an approximating family
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of non-degenerate and boundeéasivitiesmg,, :

|T|n+4

ot + 4 + o704’

Mso(7) =0+ TER, (4.3.1)

for somes > 0 ando > 0. We also need to raise the initial datwgof an heighte > O.
Letting
Q=(0,1), Q=(01t)xQ,

we consider the following problems:

Vi — ZYVy + é(m&a(v)vyyy)y =0, in Q
Vy =Wy =0 at (Qt) x{y =0}
(Peso)d V=26 Vyyy=0 at (Qt) x{y=1} (4.3.2)
V2
's(t)=d(?y—9§] at (Qt)x{y= 1)
V(0,y) = Vo(y) + &, in Q.

Letting
H1 Q) = (ve HY(Q) st v(1)= ¢

a solution of P s is defined as follows

Definition 4.1. LetT>0,£> 0,6 > 0, o > 0. Let \y € HY(Q) be non-negative ancys- 0.
A pair of functiong(s, v), with ve L*([0, T); H}(Q)) and se H(0, T), is called a solution
of (Pes.0-) in (O, T) with initial datum g if

(i) vi € L3([0, T); (HX(Q)));
(i) v e L%((0,T), H3(Q));

(iii) forall ¢ € C®([0,T)x Q)

T : 1
f <V,@> dt= ff §yVy90— ff = Ms o (V)Vyyyepy; (4.3.3)
0 Qr S Qr st

(iv) V(1) = gin L2(0, T);
(v) (0) = 0in L2(0,T);
(Vi) M(O.) = Vou(y) in HY(Q);

Vi (t. 1)
&

(Vi) s(t) > 0in [0, T] and §(t) = d[ + eg) in L2(0,T).
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In order to obtain global existence fd?P{(s.), we firstprescribethe free boundarg(t)
and consider the following problems:

¢ 1 .
Vi 20+ M (Duply =0 in Q
(Pesog)] = =0 2t @0xiy=0 (4.3.4)
V=g, Wy =0 at (Qt)x{y=1
V(0,y) = Vvo(y) + & in Q,

where indeed the free-boundary condition (4.1.8) is rerdoire Section 4.5 we prove local
existence of solutions forP¢s.s) (see Proposition 4.1). The reason for these solutions
to be only local is that, oncs is fixed (i.e., the contact-angle condition does not hold),
the dissipative structure is lost (compare (4.1.15)). IotiBa 4.6 we apply a contraction
argument to obtain a local existence result fey {-) (see Proposition 4.3). This is, from the
technical viewpoint, both the hardest part of the work amdcttucial one in order to capture
the contact-angle condition. Once this condition is recedgethen also the dissipative
structure is, and local existence can be upgraded to glotisteace (see Proposition 4.4
in Section 4.7). In Section 4.8 we prove an entropy-typevest for solutions toR. )
which is uniform with respect t6 (see Lemma 4.5): this allows to pass to the limifas 0
obtainingpositivesolutions to P, o) (See Proposition 4.5). Finally, in Section 4.9 we pass
to the limit ase = o — 0 (in a nowadays standard fashion) and complete the proof of
Theorem 4.1.

4.4 Preliminaries

We frequently use the following interpolation inequalktidue to Gagliardo-Nirenberg (see
[48], [73], and [74]). We consider the one dimensional casel we letd) denote the j-th
order derivative.

Theorem 4.2 (Gagliardo-Nirenberg inequalities}.et0 < g < p,1 <r < oo, me N,
j € [L.m- 1], such that! < m+ %) and let I c R be an interval. Positive constants >
exist such that the following inequality holds for alel (1) such thato™u € L"(1):

ap
f|aiu|p dx < Cy (flamulr dx) (f|u|q dx)
| | |

whereq is given by

(1-)p

’ +c2( f| Ul dx)g 4.4.1)

1 1 1
—=j+a ——m)+(1—a)—. (4.4.2)
= ival; ;

Furthermore, G = 0if | is unbounded or if .= 0 somewhere i,

The particular cases we are interested in are the followinego

102



M If j=0,p=0co,m=2,r = q= 2, andu vanishes somewhere Inthe corresponding
inequality reads as:
suplul < [ull16%ully’”. (4.4.3)

If ou(0) = 0, replacingu by du we get

supldul? < llaully a3l (4.4.4)

@i) If j=1,p=r=qg=2,m= 2the corresponding inequality follows

lullz < Callully ?162uly® + Callullz. (4.4.5)
Replacingu by du we get
192Ul < Callouly?163ully/? + Calldulla. (4.4.6)

We recall here the following interpolation Theorem by Simon

Theorem 4.3. ([82], Corollary 8.4) Let Xc B c Y with compact imbedding > B (X,
B and Y are Banach spaces). Let F be boundedP{®.[T; X) wherel < p < o, and R
be bounded in £(0, T;Y). Then F is relatively compact in(0, T; B). Let F be bounded in
L*(0,T; X), and Rk be bounded in {0, T; Y) where r> 1. Then F is relatively compact in
C(0, T; B).

4.5 Local existence of solutions for approximating problera with
a prescribed free boundary

The aim of this section is to show local existence of weaktgmis to P s s). We will use
the following assumptions osl

f &<k?® and O<sp<s(t) Vt (4.5.1)
0

for some positivek and sy,

Proposition 4.1. Let my,, € C(R, [6,67Y]) and s satisfying4.5.1) Suppose T< Tsk (see
Lemma 4.2) andve H(Q). Then there exists a weak solutioreVL*((0, T); H}(Q)) N
L2((0, T); H3(Q)) to (P,.s..s) in (0, T) with initial datum \ in the following sense:

ffOT <V, >= foT §M¢ + foT érm,(,(v)vyyy,ay (4.5.2)

for all ¢ € L%((0, T); HY(Q)). Furthermore ye L?((0, T), (HX(Q))") and
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(i) v(0) = voin HY(Q);
(i) Av(t,0) = 0in L2(0, T);
(i) v(t, 1) = &in L2(0, T).

The strategy for Proposition 4.1 is based on a density argtwiéh respect te: Indeed,
after having proved the existence for smosft), we will extend this result for the general
hypothesis (4.5.1) os. So the starting point will be to prove (by a Galerkin type hnoef)
the following existence result fae C1(0, T).

Proposition 4.2. Let T > 0. Let € HX(Q) and let n3,, € C}(R, [6,671]) for somes > 0.
We suppose
seCHO,TINH3(0,T), (0)=s and O<sp<s (4.5.3)

for some positive constants, . Then there exists a weak solution v of(R)s.s) in
(O, T) with initial datum \¢ in the sense of Proposition 4.1.

In the course of the proof of Proposition 4.2 we will use thiofeing interpolation
inequality:

Lemma4.1.

’ fo ta(t) fg yfygydedt‘ < t1/2( f az):i(sup f fzs;: f )1/2 (4_;4)
cele) o) (el )LL)

Proof. Inequality (4.5.4) is obtained by using Holder inequality

[ < ([ ([ ]
ISR
([ LA
(Ll oL

IA

IA

I
- LU
e[ pulumd
e el L)
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Proof. For notational convenience in this proof we 8et= vy. We will use (, v) to indicate
the scalar producﬁ2 ouov. First of all we pass to a zero boundary condition for the wmkm
function aty = 1, by defining the function(y, t) = v(y,t) — &: then (4.3.4) reads as

O — —iyﬁV+ éa(’m(vw%) =0 in Qy
O — 930 — —
o=0v=0 at (QT) x{y=0} (4.5.5)
0=0%=0 at (QT) x{y=1}
Y0, y) = vo(y), in Q

wherem(V) := ms,(V + €). For notational convenience we remove all hats, exceptaha
m, and we proceed by analyzing the following problem:

Vi — §y6v+ ga(fﬁ(v)a?’v) =0 inQr
— A3y — _
) ov=0°v=0 at (QT) x{y=0} (4.5.6)

v=0%v=0 at(QT) x{y=1)

V=\g at{t =0} x Q.
We set

HY(Q) = {ve HY(Q) : V(1) =0}

and

H3(Q) = {ve H3(Q) : v(1) = 0 anddv(0) = 0}

which take into account the essential boundary conditidhg spaces are equipped equiv-
alent norms

IMIh1(q) = lloVilL2(q)
and
Ml = lVilLa) + 18Vl
respectively. The Galerkin discretization consists idaeipg the infinite-dimensional space
H3(Q) with a finite-dimensional spadéy:
Vn € H3(Q), dimWy = N < oo.

In order to define/y, we now construct a suitable Hilbertian basisHif{(Q). To this aim,
we wish to define a linear solution operator

T HY(Q) — H(Q)
with T(g) = v solving the problem
v+otv=g inQ
ov=0=0 at{y=0} (4.5.7)
v=93v=0 at{y=1}.
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In order to do so, we formally multiply the equation in (456§ —6°w with w € H3(Q).
After integrations by parts we obtain the following weaknfor

f VoW dy + f OvoPwdy = — f go>w dy. (4.5.8)
Q Q Q
This naturally leads to define the linear continuous fumatid. : H3(Q) — R by
L(w) := —f gd>w dy
Q
and the bilinear operatar: H3(Q) x H3(Q) — R as follows:

a(v,w) := f Avow dy + f 3vow dy.
Q Q
So the variational equation (4.5.8) can be written in therabsform of
a(v,w) = L(w) forallwe H3(Q). (4.5.9)

Being an equivalenH3-norm, it follows immediately thaf is continuous and coercive.
Therefore, by the Lax-Milgram theorem, for agye H3(Q) there exists a unique element
v € H3(Q) such that (4.5.9) holds. This implies that there exists iguenweak solution
v e H3(Q) of (4.5.7) in the weak sense (4.5.8). This allows us to defiae follows:

T(g) :=V.

By a bootstrap argument, we in fact have C®(Q): Indeed, sinces,w andg € H3(Q),
from (4.5.8) we have

f vowdy = f (v — g)d?w dy.
Q Q

Henced®v e H3(Q), which impliesv € H8(Q). Thereforev e C5(Q), and iterating this
argument, th&€*-regularity is achieved. Integrating by parts (4.5.8) alds

fg (v + 8% — g)a>w dy + [03v(1)0°w(1) — 53v(0)8?w(0)] = O. (4.5.10)
Choosing a suitably smooth test functipr= 6w, we havev + 9*v — g = 0 a.e. inQ, and
consequently (4.5.10) implies that

0*V(1)p(1) - 3°*v(0)¢(0) = 0
for all ¢ € C*(Qr). From the arbitrary o we deduce
d%v(0) = 93v(1) = 0. (4.5.11)

In contrast to the essential boundary conditions, the ¢mmdiin (4.5.11) follow from the
variational equation (4.5.8), hence it is not necessarynfaose them explicitly ow in the
definition of the space (i.e., they are of “natural’ type). Wleserve thall satisfies the
following properties:
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e T is self-adjoint:
We letw = T(f); integrating by parts we have:

fa(T(g))af =fgav6f :—fgazvf
—Lazv(w+84w):—LGZVW—LEJZVG“W

= f 9w v — f Pwdtv = — f (v + d*)o°w = — f go*w
0 o 0

f Agow = f A(T(F))dg = (g, T()). (4.5.12)
Q Q

(T(9). )

e T is compact:
Let llglly3q) < C. From (4.5.7) and recalling that € C3(Q), we have the further
conditions
o*v(1) = 0 andd®v(0) = 0. (4.5.13)

Multiplying the equation in (4.5.7) by®v, integrating by parts, and using Holder
inequality, we obtain

fg (0°v)? + f (8°v)? = fg aga5vs( fg (af’v)?)l/2 ( fg (ag)z)l/z.
LWW+LWWsLmﬁ

On the other hand, choosing= vin (4.5.8), it easily follows that

@+ [ @< [ o0

and since/(1) = 0, we conclude that

Then

IT@lHs@) = IMIks@) < 9llq) < I9llh3q),
henceT is compact.

T being a self-adjoint and compact operator in the Hilbercepd(Q) we conclude that
H3(Q) admits an Hilbertian basig/k)> ,, consisting of eigenfunctions af [26, Theorem
(VI.11)]:

pary
Tk = Wk, A ER. (4.5.14)
Substituting (4.5.14) in (4.5.7Y satisfies the following spectral problem
—p + 0% =0, inQ
Wk =3%=0, at{y=0} (4.5.15)
b= =0,  atly=1
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whereuy = 1;—?“ Multiplying the equation in (4.5.15) b§?yy we have

2 3 2 _
ukfgwwk) +f9(a W2 =0

which, from the coercivity, impliegx > O for allk > 0. LetVy = spariyo, ..., ¥n}. Without
loss of generality, the eigenvalues are ordered so thai§< uy < ..., and, after a suitable
Gram-Schimdt orthonormalization process, the eigenfanstare taken to be orthonormal
in HX(Q), i.e.

(wi,wj)=L6wi8¢j = Gij. (4.5.16)

Note that, from (4.5.15) and (4.5.16),

Yo = ?(1— yo).

Fix now an integeN. LetVN(t,y) be an approximated solution belongingvig, namely
N
Wt y) = > alOuy) inQr. (4.5.17)
k=0

We want to select the unknown dﬁeientsal':'(t) (0O <t<T,k=0,..,N) by plugging
(4.5.17) into the problem (4.5.6). We first notice that

d o 5.16),
G0 = [ adon= ) 80 [ awon“E8w, (4.5.18)
dt Q j,k=0 Q
Assuming for a moment that' is a solution of P), by integration by parts we obtain
N
-2 &0 [wPuedy=- [ Woruy
k=0 Q Q

[y + Zomeyn .y

d N
&(V 2 WK)

: 1
_3 f yovN o2y dy + = f AmVMN)3N)0%y dy.  (4.5.19)
SJa st Ja
From the boundary conditions and an integration by partshtaim
~N d N S N 12 1 == Ny a3, N 43
a ()= (V') =—— | YOV oY dy— — | MV )IV o7y dy (4.5.20)
dt S Jo st Q
on0<t<Tforallk=0,..,N. The initial conditionv"(0) = VN(0,y) = Vj) reads as
ay(0)= (vy,vk) k=0,..,N. (4.5.21)
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Collecting (4.5.18) and (4.5.20), we obtain the followingial value problem for the coef-
ficientsal':

ay(t) = _3 f yovN a2y — 1 f mvN)a3vN a3y (4.5.22)

SJa st Ja
with initial condition
ay (0) = (v, vk (4.5.23)

for all k = 0,...,N. Sinces € C(0,T), the right hand side of (4.5.22) is locally Lips-
chitz with respect ta\ = (a’(;‘,...,am). Therefore, according to the standard existence
theory for ordinary dierential equations, there exists> 0 and a unique functioa(t) =
(@) (t). ... al(t)) satisfying (4.5.22) and (4.5.23) forOt < 7. This leads to the local exis-
tence of a functiowN satisfying (4.5.21) and (4.5.20). These locally defineditsohs can
be extended to the whole time line as a consequence of ther gstimates oraL\'(t), in-

dependent oN, that shall be proved in the next step. From the choice ofitfenéunctions
Yk we have

d [ (ovN)? 4517) © .
T L 5 = L oMo =70 L N (O)ay jay (Do

j.k=0

N N
> AR 0 [ won= Y o
Q k=0

j.k=0

d & @0y
&

: (4.5.24)
dt — 2
Thus, in view of (4.5.23), we have
N N 2
(a (M) AOWN)2
> akz :f( 2). (4.5.25)
k=0 Q

Integrations by parts in (4.5.22) lead to

Ny2 . .
%fg(avz) :_z—ss(avN(l))2+Z_SSL(GVN)Z_éL/m(VN)(a3VN)2 (4.5.26)

and integrating in time we have

fg (aVNZ(t))Z + f th é’rﬁ(v'\')(ae’v'\')2

O Ny2 t ¢ ¢
- L ( \'20) —% fo z(av'\'(l))2+% f fQ SOV (4.5.27)

In particular we can estimate

j: ;z(GVN(l))Z (4.5.3)3(4.4.4) c j: ( L(év'\')z)m ( L(63VN)2)1/4

Ny2 3Ny 2
< C(,th(av ) +ant(6 V') (4.5.28)
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for all @ > 0. Choosingr suficiently small, and using again (4.5.3) amcke [6,571], from
(4.5.27) we obtain that

L((?VN(I))Z ff (@3N < f( Cth(GVN)Z. (4.5.29)

Hence a Gronwall argument yields

Nt 2
f @O, f @WM2Z<cCr forallte (0,T), (4.5.30)
a 2 Q
independently oN. Then (4.5.25) implies that
N t 2
> @ ( Y ccr foralte @) (4.5.31)
k=0
In particular from (4.5.30) we have
||VN|||_‘>°((O’T)’H3-(Q)) <C (4.5.32)
and
||VN||L2((O’T)’H§(Q)) <C. (4.5.33)

The estimate in (4.5.31) allow to extend globally the solutio (4.5.22) to (0T) for an
arbitraryT > 0. Our task now is to pass to the limits— co. Giveng € L?((0, T); H1(Q)),
lety e L2((0, T); H3(Q)) be defined by
1y
w= [ [ etyayay (4.5.39)
y
so thatdy(0) = w(1) = 0. LetPN be the projection on the subspaég of H3(Q):
N
=" b b = (@ 0. (4.5.35)
k=0
Multiplying (4.5.20) byby, summing from O td\ and integrating in time, it follows that

f f wWatPNy = f f §y6vN82PNw+ f f i’n‘q(v'\')a3vNa3F>'\'¢. (4.5.36)
o Qr S Qr §*

By (4.5.4), (4.5.20) and (4.5.30) we have that
‘f §yav'\'azP'\'zp
Q S

After integrations by parts we have

< Cl¥llL2(o.my: 13- (4.5.37)

[ #udtoc=- [ Puotoc=- | Punc=m [ ovpm=pon  @5.38)
Q Q Q Q
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and by (4.5.35)

fg(a?»pw)z _ fz bjbkd®y 03wk

j-k=0
(4.5.38) ijz'uj < ijz’uj - f(aiﬂﬁ)?. (4.5.39)
j=0 j=0 &
Thus
. 1/2 1/2
Uf gfﬁ(VN)aSVNaISPNJ/ C(f fﬁ(vN)(aSVN)Z) (ff ((’)3PNt//)2)
o Qr

1/2
4530 (f (aSPNJ/))

(4.5.39)
< CHI?[’”LZ((O,T);HE(Q))' (4540)

Gathering (4.5.37) and (4.5.40) we obtain

‘ f f V02| < Clvllzorynzey Tor ally e L3((0, T); H3(Q)) (4.5.41)
and sinced?y = —¢p
‘ J[L e = Cletusannay foralle € L@ ;@) (4.5.42)
Hence
IV 2oy Hx@yyy < C (4.5.43)

Collecting (4.5.32), (4.5.33), and (4.5.43), and using@imompactness criterion (see The-
orem 4.3 in Section 4.4), a subsequence (still indexelllogan be selected in such a way
that

WS v inL¥((0, T); HX(Q)), (4.5.44)
W — v inL%(0, T); H3(Q)), (4.5.45)
W S v inC([o, T); L2(Q)), (4.5.46)
W= v in LA, T); (HX(Q))). (4.5.47)

which in particular impliesij — (iii) of Proposition 4.1. We want now pass to the limit as
N — oo in the weak formulation (4.5.36). By (4.5.47), we have thalla— oo:

N 425N N 72 T 2, _(4534) T
ff vtapzpsz Vt6¢—>f <V, 0 > = —f <Vi,¢>. (4.5.48)
Qr Qr 0 0
1
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From (4.5.45) and the regularity ofwe have
mvN) — m(v) in L%(Qr) asN — co. (4.5.49)

Indeed

f f AN — W) < f f Ssuplm AW —viZ < C f f W 2 4259
Qr Qr Qr

asN — oo. Thus (4.5.49) and (4.5.45) allow to pass to the limit in thiedt integral of
(4.5.36):

f f L mM)aWN PNy S f f L iatvaty 4239 f f L iwoae. (4.5.50)

Now for the first term of the right hand side in (4.5.36) we have

f f SyanN 2PNy 559 f f Syovety 23 _ f f Syove. (4.5.51)
Qr S Qr S Qr S

Combining (4.5.48) and (4.5.50) with (4.5.51) enables ugass to the limit and obtain a
weak solution in the following sense:

T .
f Vg >= f f Syévp + f f L ot (4.5.52)
0 Qr S Qr st

for all ¢ € L2((0,T), HL(Q). It follows that the original function/(y,t) = U(y,t) + ¢ is a
solutionvto (P, s..s) in the sense of Proposition 4.1. O

In order to pass from Proposition 4.2 to Proposition 4.1, soseful a priori estimates
are presented in the following lemma:

Lemma 4.2. Let v be a solution t¢P, s,.s). Suppose g € CL(R,[s,67]) and (4.5.3)
Then the following a priori estimates hold

\ 0 qu/ 0
y
sup —=d +f —V2 < Cf —d forall t< — =T 4.5.53
t fg S y Q $ W o S y Ckt ok ( )

IMllL2oy:(H2@)) < C(,K, sm).  (4.5.54)

Proof. Here and afte€ > 1 denotes a universal constant. SineelL?(0, T; H3(Q), choos-
ingy = —%’ in (4.5.2) we obtain on the left hand side:

t t ¢
1 o1 it 5
_j;§<vt,8v>_23jg;(8v)|o+j;282Lv§,.
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Therefore

(- L3l Ly (12
S Qt_“fgté My (2, ffg
t sVZ(l)
= - My (V) Vyy
(4.4.4)S(4.3.1) ft (f )3/!‘(73\\; )1/4\/_6[ iVZ
e e T
fo(25)1/4(23f ) ( fvz) “5[@55 by (4.5:59)

Using Holder and Joung inequalities, we obtain

A

IERIATR: f 25)"a) - ([, 300

vy
SlthLz_de = (26)1/4

2 5V2 v 5
il L o s
KL/ 2\3/4 1/4 s
= @ (S P ] f) o 5% dydt) - JJq § 0
k4/3 1/3
< 51}3 sup(f yd)——ff 5 Vayy dy (4.5.56)

K3t
Now if — 5 < C1then (4.5.53) is recovered. We now show (4.5.54):

-
f <V, > dt‘ ‘ff Vi
0 Qr

s
‘foT gyVy‘P +
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IA

—Ms - (VVyyyy| = 11 + 12. (4.5.57)



We note that
5\1/2

L9 ()
A
w5 ()

@ ([f )

=
IA

IA

and that
1
P < ‘ f f gmé,cr(V)VynyOy dY‘
Qr
1 1/2 1 1/2
< ( f f ;m&,-(v)soi) ( [ f gma,o-(v)viyy)
1/2 A2 1/2
(4.5.53)
< C||90|||_2([0,T);H1(Q))- (4.5.59)
Inserting (4.5.58) and (4.5.59) in (4.5.57), (4.5.54)dalé. m|

The last task is to extend by a density argument Propositto4he case of satisfying
(4.5.1), which will leads us to Proposition 4.1.

Proof of Proposition 4.1.Let s, € C1(0, T) be such thas, > s, and
sy—s inHY0,T) asn-— . (4.5.60)

By Holder inequality

Isn(8) — S(t)|<flsn SI<(f Ee S|)l/ztl/2<o(1)t1/2

so that
Sy — s uniformly in (0, T) asn— co. (4.5.61)

Let v, be the solution of R ss,) obtained in Proposition 4.2. From (4.5.53) and (4.5.54)
we have, respectively,

supf dy+ffq§§nyyy_ f O”ydy<cf dy (4.5.62)
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for all t < Tsx and
||Vnt|||_2((0,T6’k);(|.|*1(g))/) <C. (4.5.63)
It follows from (4.5.62) and (4.5.63) that for a subsequefstd denoted as,) we have, as

n — oo:

Vn — Vv in L®((0, Ts); HY(Q)), (4.5.64)
Vi — Vv in L2((0, Tsk); H3(Q), (4.5.65)
Vit — W in L%((0, Tsk); (HY())). (4.5.66)

From the regularity given in (4.5.64) and (4.5.66), by Sinemmpactness criterion (see
Theorem 4.3 in Section 4.4) we have:

Va — v in C([0, Tsk); L3(Q) (4.5.67)

asn — oo, Which, in particular, impliesi); both (i) and {ii) are given by (4.5.65) and the
continuity of the trace operator. Our last task is to pasfédimit asn — oo in the weak
formulation

Tok 5 1
f < Vnt,p >= ff —YVhyp + ff — M5, (Vi) Vinyyyoy (4.5.68)
0 Qryy S Qryy S

for all ¢ € L%((0, Tsk); HY(Q)). Firstly from (4.5.66) and (4.5.67) we obtain

Tsk Tsk
j; < Vpt, ¢ >— L <V,p> asn-— oo, (4.5.69)
Then, by definition (4.3.1), it follows that, is globally Lipschitz inR, namely
supim;,| < C (4.5.70)
which together with (4.5.67) leads to

Ms (V) — M- (V) in L3(Qr,) (4.5.71)

asn — oo as proved in (4.5.49). Hence combining (4.5.71) with (&b.énd (4.5.61),
implies that as — oo

1 1
f f — Ms - (Vn)Viyyypy — f f 2 Moo (Vyyey. (4.5.72)
or, St or,
Finally using (4.5.61) and (4.5.60) combined with (4.5.64) have
S S
ff — Yy — ff ~-YW¢ asn-— co. (4.5.73)
Qr, Sn Qr, S

Collecting (4.5.69), (4.5.72) and (4.5.73), we obtain (Z.and Proposition 4.1 follows. o
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4.6 A fixed Point result

In this section we prove:

Proposition 4.3. For anye, 8,0 > 0O there exists a solutiogs, v) to problem(P, ) (see

(4.3.2) in the sense of Definition 4.1 for T fgaiently small.

Proof. Letk > 1 andT > 0 to be chosen later, and fi, € (0, 2]. We set

St ={se HY0.T) : I3z <k S(0) = o, S Sp}-

Givens e Sr, letv be the solution of R s s) given in Proposition 4.1. We writé < g,
resp. f < g, if a constanC > 1 independent ok and of T < Tsx (may depend o#, Vo,
Sm, S0, &, d, Lipschitz constant ofns) exists such that < Cg, resp.Cf < g. The a-priori

bounds translate into:

(4553) = supf ff

(4.5.54) = IVill2op:Hi@)y) S

We observe that

j; e nfd L f t( L \/5)3/2( f "iyy)l/2
e[ e

(4.6.1)
s 1 forTx 1l

Hence it is well defined:

t (2 1
§(t)=so+dj;(%—9§] dr =: F(9).

t 4.6.5 t
f & (s " 1s f (vy(t, 1))*at
0 0

(4.6.4)
< 1<k forT<1

In addition

for k sufficiently large and, consequently
&t) > s - do2t — Cdt2 > % for T < 1.
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Therefore the inclusiofr (St) € St holds. From now ork is fixed once for all ands, <
also include dependence &nWe claim that ifT is small enough, then F is a contraction in
St, i.e. there existg < 1 such that

151 - Sllzmy < LlISL — Slli20) (4.6.7)

for all s1,s € Sy. Let (s1,u) and (s, V) be two pairs. Defines = 5 — s, w=u-v,

§=5 - %. We have:
f[wﬂ] "
ol & 8

j:'ézdt

<
sfo(ﬁ ﬁdtﬁufov;‘(l)%%dt
<

t t
[ GO+ a+sws [ o a

2

1/
(4.2.3) t”“(ftwﬁ(l) dt) 4132 ft'sz (4.6.8)
0 0

where in the last inequality we have used

t \2 t
32:( )N( -32).
IVERV
Note that as in (4.6.4)

[wwas [sur [ “’5)3/2 {IA szy)l/z e (4.6.9)

Hence (4.6.8) turns into

[easlonfaf ([ s e o

We will now bound the energy of in terms ofs. We formally write the equation for the
difference as follows :

. . L L
W — %yuy + %yvy + g(ma,(r(U)uyyy)y - g(w,g(V)vyyy)y =0. (4.6.11)

After few calculations,

| o .
= Ly ¢ (z _ %)yvy - g Mo~y
%(mﬁ,g(u)va)y - g(w,(f(v)va)y " g(w,(f(v)va)y L

1 1 %
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Sow formally solves the following equation

' 1 1
W — %)’Wy + yvy S (g - g)y\/y + g(m&,cr(U)Wyyy)y +
+ %((ma,U(U) Ms - (V))Vyyyly + ( g %) (Msr(WVyyy)y = 0 in (0,1). (4.6.13)

We translate (4.6.13) into the weak formulation by testihé @) withwy. We obtain

[ =~ [, 2w [ =52 [ (3o
[, f FL UL [ fq ()~ M )y
ff ( )nm(v)wywva (4.6.14)

Our aim is now to obtain an estimate of the form

LHS::SlthLgdy+thW2Wy§ R (4.6.15)

with the remainder terms iR which may be absorbed on the left hand side. We have for
the first term in (4.6.14)

§ (4.5.4) 14
gy\/\/ywyy s t7%(LHS) <I(LHS) forT <« 1 (4.6.16)
Q

wherel is a small universal constant (shy= 1/1000) fixed once for all. For the others
terms in (4.6.14) (except for the fourth one, which is ourrenm we have:

3 (4.5.4)(4.6.1) t\1/2
‘f —yvywyy‘ < t”“(f 52) (LHS)Y2
oS 0

t
< If;c,2+|(LHS) for T<1 (4.6.17)
0

) =l5 ==

(4.5.4)
<t (sups) (LHS)Y?
t

1/2
ao{[[¢) ansre
0

t
If's2+I(LHS) for T<1l (4.6.18)
0

IA

IA
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< (w5 UL
"2 (supe)( [ v
< o[9[ "

(4.5.4)
<

|ﬂc; (% B é] My o (V)Wyyy My

t
If'sZ+I(LHS) for T<1 (4.6.19)
0

Sincemis Lipschitz,

| f f L (Mo () = My (V)Wagy iy
QS

< st3p|m§,(,(u) - m(;,(,(v)|( f th szyy)l/z ( ffq Wzyyy)l/z

4.6.1
(s : (sup|w|)(LHS)1/2. (4.6.20)
t’y
Noting that
1 1/2
supwl < w(l) + f |wy|s( f w§) : (4.6.21)
y y Q
taking the sup irt, we obtain
1/2
sup|w| < (supf ) (4.6.22)

Therefore (4.6.20) turns into

| f f L (Mo () = My (V) Wogg iy
QS

Unfortunately, however, this is not enough to absorb oneftehiand side. Hence we need
a bound on syp Iw| which depends os. To do this, we usev as test function in (4.5.2),
obtaining as before

fQW?ZdYE, = f yWW/+ff Mw\mﬁff (———)yww (4.6.24)
f Lt gmé,cr(u)wyyywy + f »[C.Q[ g(m(;(,(u) — M. (V) VyyyWy

(-2
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Setting
supf w2 =R,
t Jao

we now estimate the terms Ry in a similar fashion as those R

. 1/2 1/2
S1 1/2
[l 2] < e(sum ] (sun 3
1/2 1/2
<t (Sl{lpj;zwz)+t (Sltjpfgvﬁ)
< tl/z(supfwz)+tl/2LHS (4.6.25)
t Q
$-% (4.6.1) 1/2( \Nz)l/Z( t -52)1/2
I, 25 27 o ) (f
t
< tl/z(supfwz)+tl/2f & (4.6.26)
t Q 0

(1 1 (4.6.1) 1/2( )1/2
T e e A S R BT
t
< t(fo 32)+t(Slthwi2) (4.6.27)

1 1/2 1/2
| f th gn@g(u)wyyywy < 2 ( f th wzyyy) (Slth fg vv§)
(42'4) tY2(LHS) (4.6.28)

[z = e[ en

4.6.22)(4.6.1
o2 )tl/Z(LHS) (4.6.29)

1/2 1/2
1/2
< (sunsl([J, 3] (o )
4.6.1) t\1/2
& S)/?
< t(j; ) (LHS)

< t(ft 32) +t (LHS). (4.6.30)
0

1 1
‘th(Ei - g)mé,a(V)VyyyWy
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Fort < 1,3 - Ct¥2 > 1. Hence, collecting (4.6.25)-(4.6.30) in (4.6.24) and abisg on
the left-hand side we conclude

t
1/2 : 1/2
SlthLWzst (fo 32)+t (LHS). (4.6.31)

Now, by interpolation, we have

1/2 1/2
st s ([ ([4)" [
y Q Q Q
< 2w+l fwz. (4.6.32)
o 7] 12\Ua
Taking the sup int
t
sup|W|2 (4.6.31%(4.6.32) |2(LHS) + Ilztl/z (f 24 (LHS))
ty 0
t
< I2(LHS)+I2(f'sz+(LHS)) forT<1 (4.6.33)
0
Therefore, from (4.6.20),
1 (4.6.33) t
f f g(mﬁ,(,(u)—md(,(v))wyyyvyyy < I(LHS) + | f & (4.6.34)
Qt 0

Combining now (4.6.16)-(4.6.19) and (4.6.34) into (4.6.44d sincd < 1, we obtain the
desired estimate of the form (4.6.15). More precisely preduces to:

sup [ v+ [ viyea [@

Hence (4.6.10) reads as t t
fézdtstl/zf'sz (4.6.35)
0 0

i.e. the contractivity (4.6.7) far < 1. Applying Banach Fixed-Point Theorem, there exists
a unique fixed poins € St such that

F(s)=s
that is 2
1
5= d(ﬁ - eg] in L%(0, T)
2
and the boundary condition is recovered. m|
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4.7 A-priori estimates and global existence for the approxnat-
ing problems

Given a solution toR, s.-), in the sense of Definition 4.1, we have (choosing s as test

function in (4.5.2))
fgsvdy |; fq('sv+ s\v)
[, v+ [,
[l s s [T =
fsv(l)—sj;' (4.7.1)

fsvdy:fsovody+g(s(t)—so). (4.7.2)
Q Q

We are now ready to exploit the dissipative structure of tieblem, obtaining the following
a-priori bounds.

Therefore

Lemma4.3.Lete > 0,6 >0,0 >0, 5> 0, and \, € Hé(Q) such thatfQ Vg > 0. Thena
positive constant C, depending only [pdMg.||4: and g, exists such that any solutids, v) of
(Pes.o) in the sense of Definition 4.1 satisfies for adl {0, T):

st)>c™t (4.7.3)
stjpfgvs <C, (4.7.4)
t
fo fg M5 (WVGyy < C, (4.7.5)
t
f g<cC, (4.7.6)
(2
f 0y 03)° < C, 4.7.7)
IMllL2 .1y H2(@)y) < G (4.7.8)
H$| C if 95 >0 (4 - 9)
(o) S . .
{ C(1+ Vi) ifos=0.
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Proof. Letv be a solution of R, 5-) in the sense of Definition 4.1. Testing (4.3.3) wﬁlgg
and arguing as in the proof of Lemma 4.2 we obtain

2

V2t t V2(t, 1) 1
y A
Y- [ s - My (VV2n, 4.7.10
[ k=] 5= fqugw,mw (4.7.10)
03 |t t 62
2| = — 4.7.11
fQ > o fofgsz (4.7.11)
Hence, recalling (4.1.10),

eW = 5 fg (fshseg) o = - f (yly— ] f f MW, (47.12)

and sincer satisfies the contact-angle condition, we conclude that

Note that

E(v)|; - —% fo ‘e f th ér%(v)vzyyy (4.7.13)
as long ay is defined, i.e. fot < T. As long as it is defined (in particulag(t) > 0), we
also have

12 1/2
Wy = fvy<s+J_[f S(t)]
@ e Vs, (4.7.14)

where C depends only dg||y: andsy. On the other hand, it follows from (4.7.2) that
) [v=s [ ore(s)-%)> % [ (no-)>0 (4.7.15)
Q Q Q
provided [, V.0 > &. Combining (4.7.14) and (4.7.15),
s(t)(e + C+/s(t)) > C 2
which implies that
st)>Cct (4.7.16)

Using (4.7.16) into (4.7.13) and arguing as in the proof adp@sition 4.1, we obtain
(4.7.3)—(4.7.9). O

We now show that inequalities (4.7.3)-(4.7.9) yield a umifocontrol on a suitable
Holder norm ofvin Qr.
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Lemma4.4.Lete >0,6 >0,0>0,5>0,and g € Hcl)(Q) such thatfQ Vo > 0. Thena
positive constant C, depending only [pdMg.||4: and g, exists such that any solutids, v) of
(Pe.s.0) in the sense of Definition 4.1 satisfies:

Mt y1) -Vt y2)] < Clyp-yal"? forally,y,€Qte[0,T) (4.7.17)
V(t1,y) = V(to,y)l < Clti -t/ forally e Q,t;,t, € (0, T) (4.7.18)
Mt,y) < C in Qr. (4.7.19)

Proof. From (4.7.4) it follows that

Y2 Yo 1/2
h@w%ﬂWﬂsf|mwmf4f|mﬂ ly1 - yaI*?

Y1 Y1

\V? 12 474 1/2
< (Sltlpf vyl ) lyr = Yol < Clyr - Yo7~ (4.7.20)
Q

Therefore (4.7.17) is achieved. (4.7.19) follows immegliatrom Poincare inequality,
v(t, 1) = &, (4.7.4) and the embeddirtg(Q) c L*(Q). For the Holder continuity in time
we consider a non-negative cuf-tunctiony € C°(R) such that

suppl) c (-2,2) andfga(s) ds=1,
R

and we sel;(y) = 0 1p(571y), for somes > 0 to be chosen later. We have

IA

M(t2. ) - V(t.9) fg ooy — DMz, ) - Vtz.y)l dy

+

] fg o5y — PMt2.y) — vt y)| dy

+

L @5y = VIVt y) = Y(tr. Y) dy =: 11 + 12 + 13, (4.7.21)

For the first and the third terms we have

4.7.17)

IA

|1+|3

O\ uyl/2
c fg ooy~ Y- Y2 dy

= e[yt a5
= C L 0(2)(62)% dz
< csv2 (4.7.22)
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For the second term we have

= fg ooy = D2 Y) - it )|

= fQ 905()’—)_’)( j:l ’ wi(r.y) dr) L ’ fg es(y — Y)«(r.y) dxdr

433) |t $ t2 1
< f f 0s(y = Y)=yW f f so(sy(y—y)grm,g(V)vyw
t, JO S . JOQ
= 15+15. (4.7.23)

t2 S | | (% rs1 (y-y
LL%W—WEYW‘—L LES‘P(T)YW
12, 1/2
‘2 e (4 ([" [)

0 11 Q

4.7.4)

+

We note that

<

/ —
I, =

< Co ity — M2 (4.7.24)
and
o 1
15 = f f ?S%y(y_)_/)m&,o-(v)vyyy‘
11 Q
(4.7.3) to 12 b , 1/2
< c( [ nk,o-(v)vzwy) ( [ m(;,a(vx%yw—yd))
t1 Q 11 Q
(4.7.5)(4.7.19) t2 1/2 t 1/2
< C(f fé“‘gof,) 505‘2(f f¢§)
t1 Q 11 Q
< Coty — toY2|suppes| /2 = Co™3/2|ty — t,|"/2 (4.7.25)
which imply
I, < Co Yty — ]2 + C5~32ty — V2. (4.7.26)

Combining (4.7.23) and (4.7.26) in (4.7.21), we obtain

IV(t2, y) = V(tz, Y)l

IA

CE 32ty — toY? + 674ty — oY% + 6Y7)
C(673ty — o2 + 6Y/2). (4.7.27)

IA

Minimizing the right-hand side of (4.7.27) with respecttgields (4.7.18) . Indeed, setting
At = t; — to we consider the function

f(6) = 6-32(At)Y2? + 6172,
Deriving with respect té@ we obtain

3 1
F'(6) = =507 (anH2 + So72
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so that the minimizer is
Omin ~ (At)l/4-

Therefore
f(Omin) = F((AD)Y?) ~ (A)Y/®
and (4.7.18) follows. ]

We are now ready to prove the following.

Proposition 4.4. Lets > 0,6 > 0,0 > 0, % > 0, and € HY(Q) such that[, v, > 0.
Then there exists a pas, v) which solvegP.s.) in (0,T) for all T < oo in the sense of
Definition 4.1. Furthermore, estimaté$.7.3}+(4.7.9)and (4.7.17}(4.7.19)hold true.

Proof. By Proposition 4.3, there exists a pas; \{) which solves P.s,) in the sense of
Definition 4.1 up to a certaim > 0, which we assume w.l.o.g. to be maximal. If by
contradictionT < oo, by (4.7.6), (4.7.9), (4.7.4) and (4.7.19) we may find a sqbeace
tn — T such thats(t,) — s(t) andv(t,,y) — vr(y) in HX(Q). We may therefore apply
Proposition 4.3 with initial datunar (y) andsr(0) = S(T), obtaining a solutiongr (t), vr) in
Q7 for someT’ > 0. But then

” S(t) t<T ” v(t,y) t<T
= V(t,y) =
s { sst—-T) te(T, T+T) *y) { vit-T,y) te(T, T+T)

would solve P.s.) in (0, T + T’), in cotradiction with the maximality of . m|

4.8 The limit 6 — 0: Entropy estimates and positive solutions of
approximating problems
The aim of this section is to pass to the limit&as> 0, obtainingpositivesolutions of the

approximating problemsX ) = (Po. ). Crucial to this aim is the following entropy-type
estimate:

Lemma 4.5. Letd, e, 0 > 0, vp € HY(Q) non-negative witrfQ Vo> 0, >0, and let v be
a global solution of Problen{P, ;) as given by Proposition 4.4. Then positive constants
C>1land Qe,T) > 1 exist such that

sup | Ggs(v(t) +Ct f f Voy <Cle,T) forall T < oo, (4.8.1)
t<T JQ Qr

Proof. We introduce the functions

A A
Gug(7) = f f - 51(7"’) dr”dr, (4.8.2)
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whereA > ||v, || (Ais uniform in view of (4.7.19)), so that

1
G, = —. 4.8.3
T,0 mg,(; ( )

Using SG(’US(V) as test function in (4.3.3) we obtain

t

[stleg(v)L f < W, SG, 45(V) >+ff 5G,5(V)

JIL s [[ gormmmestngy+ [ s
(4.8.3) fot.s[meé(v)]o- f th 5Gyo(V) + f th Wy + f th 5Gy5(V)
_ fot 5Gy.5(e) + fo té[vyvyy]; - f th évgy (4.8.4)

Sincem,5(¢) > " we have

(A—s)2 A2
Goale) = f f mms(r) my.s(€) = &’ (4.8.5)
Therefore, recalling (4.7.6) and (4.7.3), we obtain
t ~ t 1
fQG O+c 1ffqv§y < C(g,t)+cfo[|vyvyy|]o, (4.8.6)

where in this proofC denotes a generic universal constant. In order to estirhatether
V2
boundary term, we recall the boundary conditift) = d( vt _ 6%) Hence we have

Ivy(t, 1) = (S() + 92) S(t) a.e. in L%0, T).

Therefore (we drop time-dependence for notational comevers):

f JG +62)<

vA(1)

€ 3+ 03)S
f —————IVVyllLo @

(4_;_9) ( f 1+ 32)) ( f HVZVW”if(Q))
“29 ( f [v? yyHif(Q))

t
fo V(v (L) N ST 2 (1) wy(L)



We observe that

VPl < ’ ]2 VZVyy‘ + fg (V)|
= ngzvyy +L2VyVVyy+LV2VYW
< ( [ w)l/z( [ vgy)l/2+( [ v2v§)1/2( [ vgy)”2+( [ wvzyw)l/(i.sj)

Therefore, recalling the uniform bounds in Proposition 4.4

fot MWD S Uot (fg "5Y)2/3 ’ (fg o’ dt)2/3)3/4 e

We recall once again (see (4.7.19)) that the solutionsfgdit., < C. Since

mys(v) < CV* forall|v < C,

LS et
3_12 [tl/3 ( f th v )2/3 + 173 ( f th %,5(v)v2yyy)2/3]3/4
S o

Using Young's inequality and the uniform bounds of Proposié.4 we conclude that

t
fo IVy(Lvyy (1) < C(e, T) + C 1 f th Voy- (4.8.10)

Plugging (4.8.10) into (4.8.6) we conclude that

fg Gos(U(t)) +C* f fq Voy < Cle, T) + fg Gos(Vor)

and sinces < Vg, < C, the proof is complete. O

in fact we have

t
fo % (Vi (L)

A

IA

IA

We are now ready to pass to the limitéas> 0. Namely, we will prove the following:

Proposition 4.5. Leto, e > 0. For any non-negativegve H(Q) with vao > 0, a pair of
functions(s, v) exists which solves Proble(®R. o) in (0, T), for all T > 0, in the sense of
Definition 4.1. Furthermore

v>0in Qg
and v satisfies the estimates in Proposition 4.4.
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Proof. Letvs be a global solution ofR; s,-) as given by Proposition 4.4, and [Et> 0. In
view of (4.7.17)-(4.7.19), the Ascoli-Arzela theorentoals to select a subsequence (still
indexed bys) such that

Vs — v in C25([0,T)x Q) asé— 0. (4.8.11)

The right-hand side of (4.8.1) is uniformly bounded withpest tos. Thereforevsyy — vy
in L2(Qr). Passing to the limit in (4.8.1) and using lower semi-amity we see that

iqu QG(T(v(t)) +foTV2W< 0. (4.8.12)

SinceG, (V) ~ v2asv — 0, the Holder continuity ofs implies thatv > 0 in Qr for
all T > 0. Because of this bound, the problem becomes essentialyf@mly parabolic
one, and it is therefore straightforward to pass to the lasis — 0 and complete the
proof, as done in the proof of Proposition 4.1. We only not ) holds: sincev; and
v are bounded irL?((0, T); (HX(Q))"), resp. L%((0, T); H3(Q)), uniformly with respect to
8, Simon’s compactness criterion (see Theorem 4.3 in Sedtidnimplies thaty; — v
strongly inL2((0, T); H2(Q)), hencevsyly-1 — Wly=1 in L?(0, T) by the continuous embed-
ding HY(Q) c L?(0Q). O

Remark 4.1. We observe thaymay be used as test function(#3.3) Therefore, arguing
as in the proof of(4.7.13) the energy estimate continues to haklan equality

1 V(Zry 1 t. 1 _ 1 V%(Ty
[Boo [ [ Snertnva-i[ Do was

4.9 The limit o — 0: Proof of the main result
We lete = 0. The aim of this section is to let — 0 in (P,.) and thus prove Theorem 4.1.

Proof of Theorem 4.1Let V, be a global solution off, ) with initial datumvy,-, as given
in Proposition 4.5, let = (-1,1), Q; = (0,t) x I, and let

[ty if ye[o,1]
Vo (L.Y) ‘{ Ut -y) if ye[-1,0)

Note that we have, € L2 ([0, «); H3(1)) since ¢)yly-o = 0. In the course of the proof

C will denote a generic positive constant independent.dh view of (4.7.17)-(4.7.19), the
Ascoli-Arzela theorem allows to select a subsequendeiffstexed byo) such that

V, — v in C2E([0,T]x1) forallT>0aso — 0. (4.9.1)
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In particular, we also have that
m,(V,) — m(v) uniformly in [0, T] x | forall T>0aso — 0. (4.9.2)

Bounds (4.7.4), (4.7.3), (4.7.6), and (4.7.8) imply, respely, that (for a subsequence)

Vy — v in L2((0, T);H(1)) forall T>0aso — 0, (4.9.3)
s, — s in HY((0,T)) forall T>0aso — O, (4.9.4)
S — s> 0 uniformlyin (QT) forall T >0aso — 0, (4.9.5)
and
Vot =V in L2((0,T); (HY(1))) aso — 0. (4.9.6)
We recall (see (4.7.5)) that
o My-(Vo )Vayyy < C (4.9.7)

forall T > 0. We want now to prove that the weak formulation (4.1.12kppassing to
the limit aso — 0 in

T .
f < Vi, > dt = ff &yvgygo + ff irn(T(vU)vayy«,oy (4.9.8)
0 or S o S

for all ¢ € L?((0, T), HY(1)). It follows from (4.9.6) that

T T
f <Vyt, > dt — f <V, o> dt aso — 0. (4.9.9)
0 0

From (4.9.3), (4.9.4), and (4.9.5) we easily see that

f f %Wo-y%p_> f f Zy\/ySO aso — 0. (4.9.10)
Qr Qr

Finally, we show that

3 = f f L o (Vo oy — f f L vy asc—0.  (4.9.11)
or S (>0 S*

For (4.9.11), we use the argument in [13], which is nowad#gsdard for thin-film equa-
tions. Given a compact sé&t € {v > 0}, by (4.9.1) we have mjav > 0. By the uniform
convergence (4.9.1) we in fact have

minv in K
K

NI =

Vo =

for o < o(K). Sincem, is increasing, it follows from (4.9.7) that
f fK V2 < C(K) for o < o (K). (4.9.12)
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Hence a subsequenog — 0 (depending oK) exists such that
Voyyy — fin L2(K).

Given any sequence;, with this property, for ally € C°(K) we have

[t [ o

and passing to the limit as— co we can identifyf = v,y in L?(K). Therefore the whole
sequence converges\gy in K, and the arbitrariness & implies that

Voyyy = Vyyy in LE (lv>0}) aso — 0. (4.9.13)

For a fixedn > 0, we splitJ,- as follows:

1 1
Jor = ff —mo-(Va-)Va-yyy(Py + f —m(,(v(,)v(,yywy = J(’r + JC’;. (4.9.14)
) S (v<n} S

From (4.9.13), (4.9.5), and (4.9.2) we obtain

1 o—0

J. = f f{ - gmg(vg)vgyyygoy — f f{ - ém(v)vyyygoy. (4.9.15)

By Holder inequality, and since, < 2 in {v < n} for o < o(n) suficiently small, we have

o 1 4.73) 1/2 \Y2
37| = ‘ f f{v L EM ey S C( f fQT mg(vg)v(iyyy) ( f - mg(vg)soy)

(4.7.5) 12 L\
29 of s me] ([[L 4]
V-€(0,217) Qr

limsup|J/| < 0,(1) asp— 0.
o—0

Therefore

Hence, passing to the limit in (4.9.14) @as— 0, recalling (4.9.15) and using the arbitrari-
ness ofy we conclude that

f fQT %ma(va)vgyyy(ﬁy — f f{ ol ém(v)vyyygoy as o — 0. (4.9.16)

Combining (4.9.9), (4.9.10) and (4.9.16) we pass to thetlasic — 0 in (4.9.8) and
(4.1.12) is recovered. Finally, the energy estimate is anéatiate consequence of (4.8.13)
and lower semi-continuity. m|
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Appendix A

The Burgers tensor

A.0.1 The discrete viewpoint

Plasticity crystal arise in response to the motion of distimns, and dislocation-induces
defectiveness of a crystal may be characterized btirgers vector, a geometric quantity

that measures the closure failure of circuits in the atoraitice. Both dislocations and
they accompanying Burgers vector are microscopic questitlThere are no dislocations
in a continuum theory. Even so, the microscopic definitiorthef Burgers vector may be
lifted, almost without change,to form a macroscopic kingoah concept appropriate to a
continuous body undergoing plastic deformation. Consadam-dimensional crystal lattice
as displayed in the following figures:

— —0—0—0—0—08——
.
L & @eO=e=s L
\ | ‘ | | |
N ‘1_\_._fﬁ‘—:-
\ \ /
\-\‘1_\@}!_1_:‘,
O Nee e

Figure 1.1:A closed path in a lattice with a dislocation at the point neai

In Fig. 12 it is shown the deformed lattice with a dislocation at thenpmarked with
the symbol®, while Fig. 11 shows the undeformed defect-free crystal lattice. Censid
a clockwise closed circuit, thBurgers circuif with starting and ending lattice point the
purple one, that lies in the deformed lattice and surrouhdslislocation. Then, because of
the presence of the dislocation, the same circuit in the fonohked defect-free lattice starts
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Figure 1.2:A undeformed defect-free crystal lattice

at pointS and ends af, and is therefore not closed. The vedbalosing the circuit in Fig.
1.2 and directed from the end poiRtto the starting poin§ is called theBurgers vectar

A.0.2 The continuum viewpoint

In formulating the constitutive equation for the free eryegg we not only consider the
standard dependence on the elastic stEfinbut we also consider a dependenceyadn
VEP via dependence on the Burger tensor

G := curleP

which is a measure of thmacroscopic Burger vector

Assume that is the boundary curve on a smooth oriented surfade the body, with
unit normae for S. Because byHP represents the distortion of the lattice due to the for-
mation of dislocations, the corresponding integrationuadbl” in the distorted lattice is
represented through Stokes’ Theorem by the integral

b(l“):fer dx:fs(cural)TedA. (A.0.1)

This integral is nonzero, as the plastic distortiéh is not the gradient of a vector field, and
we associate the vector measure

(curlHP)Te dA

with the Burgers vectorcorresponding to the boundary curve of the surface-elemdat
Thus, in this sense the tensor field

G = curlH? (A.0.2)

which we refer to as thBurgers tensor, provides a local characterization of the Burgers
vector. SpecificallyG"e provides a measure of the (local) Burgers vector for thendlhi
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with unit normale, and may be viewed as the local Burgers vector, per unit éoe#)ose
dislocations lines that pierdé. Since cuVu = 0,

G = —curlH®

a relation often referred as tfiendamental equation of the continuos theory of dislostion
The relation (A.0.2) seems most relevant to theories oftipiasinvolving plastic-strain
gradients.
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