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Abstract

Ever since the development of liquid rocket engine, there has been a need to pre-
dict the peak heat flux that affects the engine material and thus to control the wall
thermal behaviour of rocket engine. To prevent thermal failure, the engine is gen-
erally cooled by means of a coolant that flows in passages that line the hottest part
of the engine (i.e., combustion chamber and nozzle wall). This is the fluid-cooling
system. If the coolant is one of the propellants, once it passes through the cool-
ing circuit, it can be injected into the combustion chamber or it can be dumped
overboard. The former case is referred to as Regenerative cooling system while
the latter as dump cooling system. In case of high performance cryogenic rocket
engine (such as LO2/hydrogen and LO2/methane engines) the coolant working
pressure is supercritical and thus it behaves far from a liquid or a perfect gas. The
fluid-cooling system (often referred to regenerative cooling because of the limited
application of the dump cooling) of cryogenic rocket engines, is the technological
background of this Ph.D. thesis.

It is common and well confirmed practice in industry to analyze wall thermal
behaviour of liquid rocket engine by means of simple and fast tools based on semi-
empirical relationships. These relationships are generally calibrated by means of
data collected in experimental tests of subscale engines. Industrial tools provide
reasonable results but they are not able to accurately describe many phenomena
that occur in the hot-wall/coolant environment, such as three-dimensional effects,
asymmetric heat flux distribution in the material and supercritical behaviour of
the coolant. For that reason, to circumvent the uncertainties of the design tools,
regenerative systems are often over dimensioned. Moreover, these tools are deeply
related to the engine for which they have been calibrated and thus they cannot be
easily extended for a new generation of engines.

In last years new approaches have risen; in fact new geometry configuration
(i.e., high aspect ratio cooling channels) and new coolants (such as methane) to be
used in the next future, have imposed more accurate analysis tools, such as three-
dimensional Navier Stokes solver to describe coolant flow and three-dimensional
Fourier analysis to describe wall thermal transmission. Simplified approaches are
always used since, due to the limited computer power, three-dimensional tools
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2 ABSTRACT

are not suitable as design tools. However, accurate three-dimensional analysis
can be integrated with simple and fast design tool in order to better describe and
comprehend the phenomena that occur in the hot-wall/coolant environment.

The aim of this study is to present and provide suitable theoretical and nu-
merical tools able to describe the thermal behaviour that occur in regenerative
cooling system, with special regard to the subcritical/supercritical coolant flow
inside cooling channels. This aim has been achieved in three steps:

• A suitable mathematical description of thermophysical properties of coolants
has been adopted. According to this mathematical modeling, computer sub-
routines describing the thermophysics of typical coolants (such as hydrogen
and methane) have been implemented (see Chap. 2)

• A suitable physical and mathematical model able to describe both the wall
thermal behaviour and the coolant flow that occur in regeneratively cooled
rocket engines has been developed and implemented in a numerical code.
The model is an extension of the typical 1D-model (see Chap. 3) in the
sense that it is able to describe the coolant and fin thermal stratification that
occurs in high aspect ratio cooling channels (see Chap. 4). For that reason
this model will be referred to as a “quasi 2D” model. The coolant thermo-
physical properties have been provided by means of the above mentioned
hydrogen-methane subroutines. The code has been successfully validated
with respect to the literature data.

• At last, a Navier Stokes solver able to describe the high Reynolds num-
ber turbulent flow of generic fluid in three-dimensional cooling channels
has been developed (see Chap. 5). This numerical tool has been success-
fully validated by comparison with exact solutions and literature data (see
Chap. 6). Furthermore three-dimensional flow fields for a cryogenic fluid
(methane) have been computed to analyze the coolant behaviour inside
straight channels with rectangular cross section and to discuss the channel
aspect ratio effect on the cooling performances (see Chap. 7).



Chapter 1

Introduction

In this introductive chapter the problem of thrust-chamber cooling for space-
engine is discussed. Once the different techniques currently employed in this aim
are shown (see Sec. 1.1), the attention is focused on the regenerative cooling sys-
tem (see Sec. 1.2). Then the critical aspects that characterize coolant flow inside
cooling channels are discussed (see Sec. 1.3). For that reason thermal analysis
of regenerative system is a challenging task and, up to now, a research field little
deepened (see Sec. 1.4).

1.1 Cooling techniques for rocket engines

The adequacy of a rocket motor depends almost entirely upon its ability to perform
without damage at high temperatures for the operating duration to which it is
subjected.

Because of high combustion temperatures (2500 K to 3600 K) and high heat-
transfer rates from the hot-gas to the chamber wall (1 MW/m2 to over 160
MW/m2), a “cooling system” must be employed [21]. The primary objective
of a “cooling system” is to prevent the chamber and nozzle walls from reaching
such temperature that they will no longer be able to withstand the imposed loads
or stresses, thus causing the chamber or nozzle to fail. Most wall materials lose
strength and become weaker as temperature is increased. With further heating, the
walls would ultimately fail or even melt. Cooling thus reduces the wall tempera-
tures to an acceptable value [47]. The meaning of “cooling system” is generalized
to include any scheme designed to limit the wall temperature, even if no fluid
coolant is employed [26].

Cooling also helps to reduce the oxidation of the wall material and the rate
at which walls would be eaten away. The rates of oxidizing chemical reactions
between the hot-gas and the wall material can increase dramatically with wall
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4 CHAPTER 1. INTRODUCTION

temperature. This oxidation problem can be minimized not only by limiting the
wall temperature, but also by burning the liquid propellants at a mixture ratio
where the percentage of aggressive gases in the hot-gas (such as oxygen) is very
small, and by coating certain wall materials with an oxidation-resistant coating
[47].

The cooling of rocket engines can be accomplished in a variety of ways. In
the following, the main cooling techniques are presented.

Heat sink cooling

The most direct way to limit the internal surface temperature is to provide a suf-
ficiently thick chamber or nozzle wall with the necessary heat capacity to soak
up the heat transferred during the prescribed firing duration. The thrust cham-
ber does not reach a thermal equilibrium, and temperatures continue to increase
with operating duration. The heat absorbing capacity of the hardware determines
its maximum duration. The rocket combustion operation has to be stopped just
before any of the exposed walls reaches a critical temperature at which it could
fail. The most suitable materials for this type of cooling are those for which the
product specific heat x thermal conductivity x density has high values. The best
material from this standpoint is copper [57]. The foregoing criterion is not, how-
ever, a unique guide to motor construction, since considerations of strength and
weight are frequently of greater importance. In any case, as the required operat-
ing duration for an uncooled motor is raised, the requisite motor weight becomes
excessive for practical use. Consequently, even if heat-sink system has the advan-
tages of simplicity and cheapness of manufacture, for durations greater than 10 to
20 seconds, it results in a weight penalty [26]. This method has mostly been used
with low chamber pressures and low heat transfer rates since this type of motors
weights more than rocket motors of equal thrust output that employ regenerative
cooling.

Regenerative cooling and dump cooling

Regenerative cooling, the most widely applied method, utilizes one or possibly
both of the propellants fed through passages in the thrust-chamber wall for cool-
ing, before being injected into the combustion chamber. This cooling system en-
ables lightweight, thin metal, combustion chambers and nozzles. A variation of
this method is the “dump cooling”: a small percentage of the propellant, such as
the hydrogen in a LO2/LH2 engine, is fed through passages in the thrust chamber
wall for cooling and is subsequently dumped overboard through openings at the
rear end of the nozzle skirt. Because of inherent problems, such as performance
losses, this method has only limited application [21].
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Film cooling and transpiration cooling

Film cooling and transpiration cooling are supplementary techniques that are used
occasionally with regenerative cooling method to locally augment its cooling ca-
pability. With film cooling method wall surfaces are protected from excessive
heat by a thin film of coolant or propellant introduced through orifices around the
injector periphery or through manifolded orifices in the chamber wall near the
injector and sometimes in several more planes toward the throat [47]. Transpira-
tion cooling method is essentially a special type of film cooling: a coolant (either
gaseous or liquid propellant) is introduced through porous chamber walls at a rate
sufficient to maintain the desired temperature of the combustion-gas-side chamber
wall [47].

Ablative cooling

In this process, combustion-gas-side wall material is sacrificed by melting, vapor-
ization, and chemical changes to dissipate heat. As a result, relatively cool gases
flow over the wall surface, thus lowering the boundary-layer temperature and as-
sisting the cooling process. In addition, the ablative material is usually a good
thermal insulator, keeping to a minimum the heat transmitted to the outer struc-
ture. Ablative cooling has been used in numerous designs, initially mainly for
solid-propellant system, but later, equally successfully, for short-duration and/or
low-pc liquid systems [21].

Radiation cooling

With this method, heat is radiated away from the surface of the outer thrust-
chamber wall. It has been successfully applied to very small, high-temperature-
material combustion chambers and to low-heat-flux regions, such as nozzle exten-
sions (i.e., diverging nozzle exhaust sections beyond an area ratio of about 6 to
10) [21].

Selection of the best cooling method for a given thrust chamber depends on
many considerations. There are no simple and fast rules. However, the main
factors that influence the selected design approaches will be the following [21]:

Propellants

The properties of the combustion products, such as temperature, specific heat,
weight, viscosity, etc., have a direct influence on the heat-transfer rate and thus
affect chamber cooling requirements and methods. The properties and flowrates of
the propellants determine whether they are suitable for regenerative, transpiration,
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dump, or film cooling. Consequently, the propellants involved will be a primary
consideration in the design of a chamber cooling system.

Chamber pressure

The effect of chamber pressure on the heat flux in a nozzle is in general an in-
crease in the heat flux with increasing pressure due to a progressive increase
in higher heat-transfer rates with increasing combustion-gas density (i.e., higher
combustion-gas mass flowrates per unit area of chamber cross section). Regenerative-
and film-cooling methods are usually combined to meet the stringent requirements
of high-chamber-pressure applications.

Propellant feed system

The type of propellant feed system used in an engine determines its pressure bud-
get. In a turbopump-fed engine, a large pressure drop is usually available for
chamber cooling. The availability of this pressure drop permits the use of regen-
erative cooling, which requires sufficient pressure to force the coolant through
the cooling passages before entering the injector. A pressure-fed engine usually
has more stringent pressure limitations and operates at relatively lower chamber
pressures. This suggests the application of film, ablative, radiation cooling or
combinations of these techniques.

Thrust-chamber construction material

The properties of the thrust-chamber materials will profoundly affect the cooling-
system design. Strength at elevated temperature and thermal conductivity will
determine the suitability of a given material for regenerative cooling. For film-
cooled chambers, higher allowable material working-temperatures are desired, for
lower film-coolant flowrates. The application of radiation cooling to a chamber
largely depends on the availability of high-temperature (2000 K and up) materi-
als. The success of ablative cooling entirely depends on the availability of suitable
materials.

In practice, the design of the thrust-chamber cooling system is a major link in
the complete engine design. It cannot be treated independently, without consider-
ation of other engine system aspects. For instance, optimization of the chamber
pressure of a high-performance engine may be largely limited by the capacity
and efficiency of the chamber-cooling system. In turn, chamber pressure affects
other design parameters, such as the nozzle expansion ratio, propellant feed pres-
sure, and weight. Because of the complex interrelations between these factors,
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the complete analysis of chamber-cooling systems is a specialized field, requiring
thorough knowledge of heat transfer, fluid mechanics, thermodynamics, materials,
and structures.

1.2 Regenerative cooling
To cool the walls of a regenerative rocket engine, the fuel (e.g., hydrogen, kerosene,
methane) or the oxidizer (e.g., oxygen) is passed through cooling channels that are
machined in the wall. Finally the heated coolant is injected into the thrust cham-
ber (see Fig. 1.1) or goes to turbine. This cooling technique is used primarily with
bi-propellant chambers pressure and high heat transfer rates [47].

Figure 1.1: Vulcain flow schematic (from [1]).
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The term regenerative cooling is intended to convey the fact that the heat ab-
sorbed by the coolant propellant is not wasted but augments the initial temperature
and the energy level of the propellant prior to injection; this increase in the internal
energy of the liquid propellant can be calculated as a correction to the enthalpy
of the propellant. However, the overall effect on rocket performance is usually
very slight. With some propellants the specific impulse can be 1% larger if the
propellants are preheated through a temperature differential of 100 to 200 K [47].
This method is called regenerative cooling because of the similarity to steam re-
generators. A large number of successful motors of this type have been built.

Regenerative cooling, appears currently to be an efficient approach to the so-
lution of the heat problem. It has the advantage that, once the cooling system
has been developed correctly, the engine can be operated for long durations (sev-
eral minutes at a time) without damage [57]. Furthermore, these motors can be
made extremely light in weight, the thrust-weight ratio markedly increasing with
the larger thrusts. However, it has to be kept in mind that regenerative system
permits only limited throttling with most coolants, has reduced reliability with
some coolants (e.g., hydrazine) and requires increased pump power because of
the large pressure drop at high heat-flux levels. The trade-off among these as-
pects makes regenerative cooling interesting for large high-pressure, high heat-
flux thrust chambers and for expander (and expander-bleed) cycle engines [47].

A typical value of the integrated heat flux over the entire surface is about 2%
of the heat of combustion for a small engine (thrust < 5000 N ). This percentage
is considerably smaller for larger thrust motors, because the combustor volume
increases approximately in proportion to the mass flow, while the surface of com-
bustor increases only as the two-thirds power for similar shapes. The practicability
of running a rocket engine continuously with only regenerative cooling, using ei-
ther one or both propellants, is directly the results of this low percentage of heat
transfer. None of the common propellants can absorb more than few per cent of
the heat of combustion without vaporizing or decomposing and thus becoming
unsuitable as coolants [26].

Chemical changes in the liquid coolant can seriously influence the heat transfer
from hot walls to coolant. Cracking of the coolant, with an attendant formation of
insoluble gas, tends to reduce the maximum heat flux and thus promotes failure
more readily. Hydrocarbon fuel coolants (methane, kerosene) can break down and
form solid, sticky carbon deposits inside the cooling channel, impeding the heat
transfer. Some propellants, such as hydrazine, can decompose spontaneously and
explode in the cooling passages if they become too hot [47].

The choice of the material for the inner wall in the chamber and the throat
region, which are the critical locations, is influenced by the hot-gas resulting from
the propellant combination, the maximum wall temperature, the heat transfer,
and the feed system. For high-performance and high heat transfer, regeneratively
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cooled thrust chambers, a material with high thermal conductivity and a thin wall
design will reduce the thermal stresses. Copper is an excellent conductor and it
will not really oxidize in fuel-rich non corrosive gas mixture, such as are produced
by oxygen and hydrogen below a mixture ratio of 6.0. The inner walls are there-
fore usually made of a copper alloy (with small additions of zirconium, silver, or
silicon), which has a conductivity not quite as good as pure (oxygen-free) copper
but has improved high temperature strength [47].

The wall temperature on the hot side of the cooling channels in a regener-
atively cooled combustion chamber can be reduced increasing the coolant side
surface area relative to the hot-gas side surface by the use of extended surfaces
or “fins” (see Fig. 1.2). An increase in the number of passages, and therefore the
surface area of the passages that circumferentially line the outer wall of a combus-
tion chamber, necessarily increases their aspect ratio. In turn the material between
them, known as rib, functionally becomes a fin. High aspect ratio cooling chan-
nels (HARCC) have shown a great potential of influencing positively both the
temperature field and the pressure loss [10, 53]. Round tubes do not possess this
interesting and convenient geometry.

Figure 1.2: Schematic of cooling channels geometry.
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1.3 Coolant flow: critical aspects
In this thesis we focus on the channel flow of cryogenic coolant, because it is the
most challenging and (up to now) the less comprehended phenomenon that occurs
in the regenerative cooling systems. Its main critical aspects are [54]:

• In cryogenic engines, the coolant is generally the liquid fuel, and the ele-
vated pressures required in the combustion chamber are sufficient to ensure
that the fluid remains pressure supercritical over the entire length of the
cooling passage: this means that all fluid properties are strong functions of
both the pressure and the temperature.

• If the fluid enters the cooling channel with a subcritical temperature (such as
for methane) it must kept in mind that as it passes throughout critical tem-
perature, the fluid parameters show large variations and exhibit maximum
values. For instance specific heat and isothermal compressibility appears to
approach infinity at critical point.

• For the temperature and pressure range of interest, the density of the cryo-
genic coolant varies by an order of magnitude, as it moves from a predomi-
nantly “liquid-like” regime (at the manifold inlet) to a predominantly “gas-
like” regime (at the chamber injectors or turbine). Thus the coolant behaves
neither as a liquid (i.e., incompressible fluid) nor as a perfect gas (high
compressible fluid). This variable flow regime implies strong compressibil-
ity effects that have a dramatic effect on the fluid-dynamic flowfield, and
hence, on the heat transfer.

• Due to the pressure condition of the coolant, its Reynolds number can be as
high as 106−107 [14]. This implies that the coolant flow is highly turbulent
and thus it must be described by proper turbulence modeling.

• The geometry of the cooling passages is strongly three-dimensional, espe-
cially in the case of high aspect ratio cooling channel [49, 53, 28]. As a
consequence the coolant flow shows many three-dimensional features, such
as inefficient heat transfer at the channel corner.

• The passages are not heated uniformly around their periphery, but they are
heated from one side only. This implies a strong thermal stratification in the
coolant flow, along the radial direction.

• The highly conductive wall material of the combustor body provides a strong
fin effect between adjacent coolant passages that makes them more effec-
tive. This effect in enhanced as the aspect ratio increases.
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• The curvature introduced into the coolant passages by the converging-diverging
shape of the thrust chamber generates vortices that enhance the heat trans-
fer inside the passages. In fact, in the presence of temperature stratification,
these vortices transport cool fluid from one side to the other side of the
channel cross section, thereby increasing the heat transfer.

1.4 Thermal analysis
An essential part of the design and realization of liquid rocket engines is the ther-
mal analysis, which is necessary to predict the peak heat flux from the combustion
gases to the engine wall and to ensure the structural integrity of the combustion
chamber. The need for thermal analysis is especially important in reusable en-
gines, where an effective and efficient cooling system is crucial to extend the
engine life, or in expander-cycle engines, where coolant warming provides the
available power for turbo-machinery. In these cases, usually regenerative cooling
is considered. Moreover, the analysis of the cooling channel flow is essential to
predict not only the efficiency of the coolant, but also the coolant temperature and
pressure at the channel exit. Those parameters are of great importance for the
design of the injectors and of the coolant pump.

At the present time, a comprehensive thermal model aiming to estimate rocket
wall temperature and heat-flux and coolant flow behaviour is rather complex, be-
cause it must account for different phenomena coupled with each other: convec-
tion from hot-gas to the wall, conduction within the wall, and convection from
the wall to the cold fluid. The coupling of these processes is strongly non-linear
because coolant and hot-gas heat transfer depend on the fluid pressure and tem-
perature and on wall temperature. Further complications arise from the necessity
of properly describing the coolant channel-flow (see Sec. 1.3).

Moreover, it has to be considered that the design of a regenerative system is
based on optimization process that consists of many calculation loops which in-
clude the thermal and fluid mechanics analysis of the coolant flow in the cooling
channels as well as the thermal analysis of the wall structure [44]. In case of opti-
mization, approaches based on one-dimensional models heavily relying on empir-
ical relationships are therefore the most suitable [14]. In fact, with these methods
the complexity of the cooling system can be faced and the main parameters that
affect the problem can be reasonably well described.

One of the main drawbacks of conventional one-dimensional calculation meth-
ods is that an ideal mixing of the thermal energy into the coolant channel cross
section is assumed. This implies that when a significant radial thermal stratifica-
tion takes place, like in the case of HARCC, a significant error arises [49]. To cir-
cumvent these limitations a “quasi 2D” modification of a typical one-dimensional
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approach can be considered [53, 36]. This approach consists in a computational
tool able to describe the coupled hot-gas/wall/coolant environment that occurs in
most liquid rocket engines and to provide a quick and reliable prediction of ther-
mal stratification phenomena in cooling channels. However it is still an approach
widely relying on empirical relationships even if it allows to compute the radial
stratification of both the wall and the coolant flow temperatures.

If a more detailed fluid dynamic and thermal analysis of the coolant flow is
necessary, it has to be considered that the temperature stratification of the cooling
channels is a major three-dimensional effect that occurs in this environment and
it strongly influences the heat transfer efficiency of the coolant [49]. Another
important three-dimensional effect that characterizes the HARCC channel flow is
the presence of vortices in the channel cross section that influence the heat transfer
(see Sec. 1.3). To describe and understand these three-dimensional peculiarities,
since the early nineties, many researchers have studied three-dimensional flow
of cryogenic fluids in cooling channels, using appropriate Navier Stokes solvers
[55, 54, 28]. To simplify the problem and to avoid time-consuming computations,
low-Re duct flows without the coupling between the coolant flow and the wall
thermal conduction have been analyzed first. These studies have qualitatively
shown the importance of such three-dimensional phenomena in cooling passages.
More recently a new interest on thermal and coolant flow analysis has risen. This
is due to the increased computer memory and power and to the practical interest
in the design of high-performance combustion chambers, with particular regard
to the cryogenic expander-cycle engines [25, 22, 34]. This interest has also led
to the development of coupled three-dimensional coolant/wall analysis [50, 25];
however, in spite of the massive computer power used, the considered coolant
flow conditions are still far from the actual industrial conditions (Re up to 107 and
strong wall temperature gradient).



Chapter 2

Real fluid thermodynamics

In the cryogenic rocket engines (such as LO2/hydrogen or LO2/methane), the liq-
uid coolant (hydrogen or methane) flowing in the cooling channels of the regener-
ative system always has to pass through the near-critical region. In the near-critical
region, large changes in the fluid properties (such as specific heat and thermal
conductivity) greatly influence the heat transfer characteristic. In most systems,
particularly those fed from a turbopump, the coolant pressure is supercritical so
that the fluid behaviour cannot be well described neither under the perfect gas
hypothesis (that is, p = ρRT ) nor under the perfect liquid hypothesis (that is,
ρ = const). Hence, specific equations for the equation of state and the transport
properties must be introduced to better describe the real fluid thermodynamics.

In this chapter the thermophysical description of pure substances is presented,
with special regard to the subcritical and supercritical state (Sec. 2.1). Then
some equations of state to describe the pressure-volume-temperature behaviour
and the thermodynamic properties of pure substances are discussed (Sec. 2.2).
Finally proper equation of state to describe the hydrogen and methane subcriti-
cal/supercritical regime is chosen and some thermophysical properties diagrams
for methane, one of the most promising propellants for future applications, are
shown (Sec. 2.5). In particular, hydrogen has been used as working fluid in the
“quasi 2D” computations presented in Chap. 4 and methane has been used as
working fluid in the “3D” computations presented in Chap. 5.

2.1 pvT behaviour

A fluid is a system that can be identified by two independent thermodynamic vari-
ables. Some examples are: perfect gas, liquid, vapour, etc. A pure substance (such
as H2 and CH4) is a fluid since the three variables pressure-volume-temperature
(pvT ) are related by an equation called equation of state in the general form:

13
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f (p, v, T ) = 0

This equation describes the behaviour of the pure substance at the thermo-
dynamic equilibrium and reduces the three variables pvT into two independent
variables.

Considering pressure and temperature as independent variables, a typical dia-
gram that describes the behaviour of a pure substance is shown in Fig. 2.1.

Figure 2.1: pT diagram of a pure substance.

In this diagram the solid, liquid and vapour states are clearly shown and the
lines that bound these states represent the two-phase regions. Since the change of
state is an isobaric/isotherm process with variable density and phase composition,
in the pT -diagram the two-phase transition is simply represented by a line.

The triple point represents the thermodynamic state in which the three phases
(solid, liquid and vapour) coexist. Below this point it is possible to transform a
solid into a vapour (or vice versa) only by a temperature change. It is the case of
carbon-dioxide (CO2) which, having a triple-point temperature of 216.55 K and
a triple-point pressure of 5.17 bar, at room pressure (' 1 bar) carbon-dioxide it
can be directly converted into a solid (i.e., condensation) by heat subtraction.

Regarding the solid-liquid transition, this phase boundary in the pT phase di-
agram of most substances, such as the one shown above, has a positive slope.
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This is due to the solid phase having a higher density than the liquid, so that in-
creasing the pressure increases the melting temperature, that is the temperature
at which metal melts. However, in the phase diagram for water the solid-liquid
phase boundary has a negative slope. This reflects the fact that ice has a lower
density than water, which is an unusual property for a material.

In the pT -diagram, the phase boundary between liquid and vapour does not
continue indefinitely. Instead, it terminates at a point on the phase diagram called
the critical point. This reflects the fact that, at extremely high temperatures, the
liquid and gaseous phases become indistinguishable, in what is known as a super-
critical fluid. The critical point represents the thermodynamic point over which a
difference between the gaseous and liquid state does not exists.

From a molecular point of view it is possible to say that for subcritical tem-
peratures, as pressure increases (having constant temperature) the energy of the
intermolecular force increases while the kinetic energy (related to the tempera-
ture) remains constant. When the interaction energy exceeds the kinetic energy a
new bond between the molecules arises and the vapour transforms into a liquid.
Over the critical temperature, however, the kinetic energy is so high that an in-
termolecular bond cannot be created and no change of state occurs, whatever is
the pressure level. Hence, the weaker is the intermolecular bond, the lower is the
critical temperature. This bond is weak in the case of helium (Tc ' 5 K) while,
due to the hydrogen bond, it is strong for water (Tc ' 647 K).

For a subcritical temperature, a vapour can be transformed into a liquid by
compression of the fluid and a two-phase transition occurs. For a supercritical
temperature, on the contrary, a gas (i.e., low density fluid) can be transformed
into a liquid (i.e., high density fluid) by compression without any abrupt density
change (two-phase transition). Since, in this case, it is not easy to distinguish
the gaseous state to the liquid state, the regime above the critical temperature
is referred to as supercritical state. In this regime (T > Tc), however, a low
pressure fluid (p� pc) is a gas-like supercritical fluid while a high pressure fluid
(p ≥ pc) is a liquid-like supercritical fluid. A gas-like fluid is characterized by
low density, low viscosity and high thermal compressibility (i.e., attitude of a
fluid in increasing density by an isothermal compression). A liquid-like fluid,
on the contrary is characterized by high density, high viscosity and low thermal
compressibility.

In the near-critical state, defined approximately by 1 < T/Tc < 1.5 and 1 <
p/pc < 1.5, the thermodynamic properties of the fluid show large variations. For
instance specific heat at constant pressure and isothermal compressibility appears
to approach infinity at the critical point (see Sec. A.6).

Considering pressure and volume as independent variables, a typical diagram
that describes the behaviour of a pure substance is shown in Fig. 2.2.

In this diagram the two-phase transitions are clearly represented by surfaces
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Figure 2.2: pv diagram of a pure substance.

and the triple point is, as a matter of fact, an isobaric/isotherm line in which solid,
liquid and vapour states coexist. Moreover, the supercritical state is well bounded
by the critical isotherm and the thermodynamic critical point (Tc and pc) can be
identified by the thermodynamic relations:

(
∂p

∂v

)
T

∣∣∣∣
Tc,pc

= 0

(
∂2p

∂v2

)
T

∣∣∣∣
Tc,pc

= 0

(2.1)

Note that the first relation affirms that the isothermal compressibility

β = −1

v

(
∂v

∂p

)
T

is infinite at the thermodynamic critical point.
In Tab. 2.1 triple point, critical point and normal boiling temperature Tb (tem-

perature of liquid/vapour transition at atmospheric pressure) of some pure sub-
stances are considered.
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Tt [K] pt [mbar] Tc [K] pc [bar] ρc [kg/m3] Tb [K]
H20 273.16 6.1 647.10 220.64 322 373.12
N2 63.18 125 126.19 33.96 313.3 77.35
H2 13.84 70.4 33.19 13.15 30.12 20.39
O2 54.36 1.52 154.58 50.43 436.1 90.19
F2 53.56 22 144.41 51.72 592.86 85.04
CH4 90.1 117 190.56 45.99 162.66 111.67
He 2.17 50.7 5.19 2.27 69.64 4.23
CO2 216.55 5170 304.13 73.77 467.6 194.75
C12H26 263.5 0.0063 658.1 18.17 227 489.3

Table 2.1: Thermodynamic properties of some pure substances.

Note that a substance having a critical temperature over the room temperature
(288 K) is a liquid if the normal boiling temperature Tb is over the room temper-
ature while it is a vapour if Tb is below the room temperature. The former case is
the case of water or kerosene (which is a mixture of many hydrocarbon molecules,
among which dodecane C12H26), while the latter one is the case of carbon diox-
ide which can be easily liquefied by compression. A substance having the critical
temperature below room temperature is a supercritical fluid and thus it can be liq-
uefied only by temperature subtraction. This is the case of cryogenic propellants
(H2, O2, CH4) that can be stored in liquid state only at low temperatures.

2.2 Equation Of State

2.2.1 Perfect gas EOS

The simplest equation of state for a pure substance is the perfect gas law:

p = ρRT

where p is the pressure, ρ is the density, R is the gas constant (where R =
</W , < is the universal gas constant and W is the molecular weight) and T is the
temperature.

This law can be derived from the kinetic theory of gas and is based on the
hypothesis that the molecules are rigid, pointwise particles that interact with each
other only by means of collisions. This hypothesis is verified for a rarefied gas; in
this state the molecules are so far that no attractive/repulsive force arises and they
interact only by collisions. For a “real” fluid this molecular regime occurs at high
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temperature (i.e., high kinetic energy) and low pressure (i.e., low intermolecular
interaction energy):

p

pc
� 1 and

T

Tc
� 1

It is the case of hydrogen at room conditions (T = 288 K and p = 1 bar)
because its critical state is: Tc = 33.19 K and pc = 13.15 bar.

2.2.2 Van Der Waals EOS

The simplest modification of the perfect gas law in order to describe the fluid
behaviour of supercritical fluids is the Van Der Waals equation of state:

p =
ρRT

1− bρ
− aρ2 (2.2)

The Van Der Waals equation of state is based on the idea that the pressure of
a fluid results from the sum of repulsive and attractive forces:

p = prepulsive + pattractive

The repulsive part is represented by ρRT/(1 − bρ) and the attractive part by
aρ2. The Van Der Waals equation is based on the idea that pressure on a container
wall, exerted by the impinging molecules, is decreased because of the attraction by
the mass of molecules in the bulk gas; that attraction rises with density. Further,
the available space in which the molecules move is less than the total volume
by the excluded volume b due to the size of the molecules themselves. For that
reason the coefficient a is called ”intermolecular attractive force coefficient” and
b is called ”molecular size coefficient”. These two coefficients can be determined
from the critical state relations, Eq. (2.1):

a =
9

8
RTcvc

b =
vc
3

where vc is the specific volume at the thermodynamic critical point: vc = 1/ρc.
Eq. (2.2) is an example of the law of corresponding states. This principle

expresses the generalization that equilibrium properties which depend on inter-
molecular forces are related to the critical properties in a universal way. In 1873,
Van Der Waals showed it to be theoretically valid for all pure substances whose
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pvT properties could be expressed by a two-constant equation of state. Corre-
sponding states holds well for substances that can be characterized by the inter-
molecular force only, that is, substances containing spherically symmetric molecules
(for example, CH4). Moreover, upon semi-empirical extension, this principle
holds for many other substances where molecular orientation is not important,
i.e., for molecules that are not strongly polar or hydrogen-bounded [39].

The relation of pressure to volume at constant temperature is different for dif-
ferent substances; however, corresponding states theory asserts that if pressure,
volume, and temperature are related to the corresponding critical properties, the
function relating reduced pressure to reduced volume becomes the same for all
substances. The reduced property is commonly expressed as a fraction of the
critical property:

pr =
p

pc
, vr =

v

vc
, and Tr =

T

Tc

Thus, the universal equation of state can be written in the general form:

f (pr, vr, Tr) = 0

This equation can also be written with respect to the compressibility factor Z:

Z = Z (pr, Tr) or Z = Z (vr, Tr)

The compressibility factor is a non-dimensional parameter that expresses the
deviation of the substance behaviour from the perfect gas one and it is defined as:

Z =
p

ρRT

For a perfect gas Z = 1. For real gases, Z is normally less than 1 except at
high reduced temperatures and pressures. The above equation can also be used to
defineZ for a liquid; in this caseZ is much less than unity. Its universal behaviour,
according to the “corresponding states principle”, is often presented by means of
the so called “compressibility chart” (Fig. 2.3) in which the compressibility Z
is a function of the reduced pressure pr, having the reduced temperature Tr as a
parameter.

Since the Van Der Waals law is a two coefficients equation of state, it can be
written in the universal way via the compressibility factor:

Z (vr, Tr) =
1

1− 1/3vr
− 9

8Trvr

The Van Der Waals equation of state well describes the supercritical behaviour
of substances with spherically symmetric molecules and it can be used, as first
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Figure 2.3: Generalized compressibility chart (from [39]).

approximation, to describe the supercritical behaviour of more complex molecules
(such as polar, heavy, or hydrogen bounded molecules) even if equations of state
with more coefficients are necessary for more accurate predictions. At last, Van
Der Waals equation is not adequate to describe the near-critical or subcritical pvT
behaviour.

2.2.3 Benedict Webb Rubin EOS

To better describe pure substance behaviour for both supercritical and subcritical
(i.e., liquid and vapour) behaviour, a modified Benedict-Webb-Rubin equation of
state is often used [8, 56]:

p(ρ, T ) =

Ni∑
i=1

Ai(T ) · ρi +

Nj∑
j=1

Bj(T ) · ρ2j+1 · e−γρ2

where Ai(T ) and Bj(T ) are polynomial functions in T and 1/T , whose co-
efficients are determined by least-squares interpolation of empirical data. These
family of equations depend on many coefficients (up to 32) depending on the ac-
curacy required.
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The main difficulty with these or any experimental-data curve-fit equations is
determining other properties such as specific heat at constant pressure cp, since
this requires state equation derivatives which can be not very satisfactory near the
critical point. In this case some correction is required for the cp evaluation. Up
to date, this family of equation of state represents the more accurate and efficient
way to determine the pressure-volume-temperature behaviour of a fluid. For that
reason this kind of equations has been used to describe hydrogen and methane
pvT behaviour (see App. B and C)

2.3 Transport properties
The evaluation of the transport properties (viscosity and thermal conductivity) of
a fluid is of great importance to describe its cooling properties. Since the coolant
flow is often a high density subcritical/supercritical flow, the rarefied-gas model
for transport properties is not accurate and thus transport properties are evaluated
considering two contributions: rarefied-gas term and dense-fluid term. In the case
of viscosity:

µ = µ0 (T ) + µd (ρ, T )

where µ0 represents the rarefied-gas term and, according to the molecular ki-
netic theory, is an increasing function of the temperature only, while the dense-
fluid term µd is negligible for ρ→ 0 (rarefied gas) and is predominant in the case
of dense-fluid.

In Fig. 2.4 the viscosity of carbon dioxide is shown: at low pressure the vis-
cosity is essentially an increasing function of the temperature (gas-like behaviour),
while at high pressure it is a decreasing function of the temperature (liquid-like
behaviour). Viscosity is very sensitive to pressure in the near critical state (i.e.,
1 < T/Tc < 2).

The thermal conductivity behaviour is similar to that of viscosity, but an anoma-
lous trend is present in the critical point vicinity: thermal conductivity seems to
reach infinite value in the critical point (see Fig. 2.5).

This behaviour is not well understood and the thermal conductivity behaviour
must take into account this anomalous spike. Thus thermal conductivity can be
modeled in the following way:

k = k0 (T ) + kd (ρ, T ) + ∆kc (ρ, T )

where k0 is the rarefied-gas contribution, kd is the dense-fluid contribution
and ∆kc is the critical enhancement. This latter term is zero outside the critical
point region and can be neglected if we are not interested in the critical point
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Figure 2.4: Viscosity diagram of carbon dioxide (from [39]).

behaviour. This is the case of the hydrogen and methane used in the regenerative
cooling channels: since their working pressure is supercritical along the whole
cooling circuit, they never pass through the critical point vicinity. Quite close
to the thermodynamic critical point, viscosity also exhibits anomalous behaviour.
Unlike thermal conductivity, where the anomalous behaviour is very strong, the
anomalous behaviour of viscosity appears quite weak. For that reason it is always
ignored.

2.4 Thermodynamic relations

In Sec. 2.2 the generic equation of state p = p(ρ, T ) has been discussed. Now we
want to focus on the thermodynamic variables, such as enthalpy h, internal energy
e, entropy s, specific heats cp and cv, and speed of sound a. These variables can
be easily determined as functions of ρ and T using the equation of state in the
general form p = p(ρ, T ) and its derivatives:
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Figure 2.5: Thermal conductivity diagram of carbon dioxide near the critical point
(from [39]).

• Entropy:

s (ρ, T ) = s0−R ln

(
ρRT

p0

)
+

∫ T

T0

cp0(T )

T
dT+

∫ ρ

0

[
R

ρ
− 1

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

• Enthalpy

h (ρ, T ) = h0 +
p− ρRT

ρ
+

∫ T

T0

cp0(T )dT +

∫ ρ

0

[
p

ρ2
− T

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

• Internal Energy
e(ρ, T ) = h(ρ, T )− p

ρ

• Specific Heat at Constant Volume

cv(ρ, T ) = cp0(T0)−R−
∫ ρ

0

[
T

ρ2

(
∂2p

∂T 2

)
ρ

]
T

dρ
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• Specific Heat at Constant Pressure

cp (ρ, T ) = cv (ρ, T ) +
T

ρ2

(
∂p
∂T

)2

ρ(
∂p
∂ρ

)
T

• Speed of Sound

a (ρ, T ) =

√
cp
cv

(
∂p

∂ρ

)
T

where cp0(T ) is the perfect gas specific heat and it is a function of the tem-
perature only and T0, p0, s0 = s0(p0, T0), and h0 = h0(T0) are the perfect gas
reference variables (generally: T0 = 298.15 K and p0 = 1.01325 MPa).

The derivation of the above relations are presented in App. A while in App. B
and App. C the equation of state used to evaluate hydrogen and methane behaviour
are presented.

Note that the above relations can be computed analytically by differentiating
the BWR polynomial equation of state with respect to temperature and density
and by integrating the BWR equation of state and its derivatives

2.5 Methane
In this chapter the main features of methane as a space fuel will be described. Then
some thermodynamic diagrams, obtained using the equation of state presented in
App. C, will be shown.

2.5.1 Methane as a fuel for space propulsion
The advancements of space industry asking for high performance and low cost
engines, drive researches towards new propellant combinations. Recent studies
show LO2/methane and LO2/LNG (LNG: liquefied natural gas) propellant pair
as a promising alternative to LO2/kerosene, due to the high performance, good
response to environmental constraints, high reusability potential and system flex-
ibility they present. Reduced costs of supply (essentially valid for LNG), tanks,
handle and safety systems make LO2/methane and LO2/LNG engines a poten-
tial competitor also to pure cryogenic engines (LO2/hydrogen) [22]. Although no
known LO2/methane engines have been flown for aerospace applications, space
agencies in the United States, Russia, Europe and Japan have been considering
methane fueled propulsion system for various applications; these include: first
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stage, second stage, booster, upper stage and in-space main propulsion system
[44].

Methane is a low density hydrocarbon which has advantages similar to both
kerosene and hydrogen and thus could be a convenient trade between them. Its
critical temperature is 190.56 K and its critical pressure is 51.72 bar. For that
reason at room conditions (T = 298 K, p = 1 bar) methane is a low density
supercritical gas (ρ = 0.64 kg/m3) and liquefies at temperatures below 111.51 K
(normal boiling point temperature) with a density of 423 kg/m3.

The operational condition relative to the critical condition of the propellant
used for cooling is an important parameter when assessing the thermodynamic
state of the fluid: liquid, near critical or supercritical fluid. Hydrogen is typi-
cally operated in the supercritical gas regime, methane in a so called transcritical
regime, and kerosene well below the critical temperature in the liquid regime.
Since physical properties are known to considerably change in the vicinity of the
critical state of a fluid, coolant flow parameters and characteristics are likely to
vary stronger for methane than for kerosene. In practice, methane enters the en-
gine’s cooling circuit in a liquid state (Tcc,in/Tc < 1) and leaves it in a supercritical
state (Tcc,exit/Tc > 1), whereas kerosene remains in a liquid state throughout the
entire cooling circuit (Tcc,exit/Tc = 0.6) [38].

More precisely, according to [44], in a LO2/methane expander cycle, liquid
methane is stored in tank at pressure of p = 1.7 bar and at the subcritical tem-
perature of T = 111 K. Then methane is pumped in the cooling channel circuit
at 130 bar with a temperature of 130 K. Along the cooling channels methane is
heated and thus becomes supercritical (Tcc,exit = 530 K); finally, after the expan-
sion in the turbine it is injected in the combustion chamber at 60 bar.

Methane, as a rocket fuel, has many performance and property characteristics
that make it desirable for applications in aerospace propulsion. Out of common
hydrocarbons, methane (in combination with liquid oxygen) has the highest vac-
uum specific impulse of about 370 seconds; in comparison, kerosene, the closest
chemical hydrocarbon has a vacuum specific impulse of about 355 seconds [44].
Moreover, methane is a “soft” cryogenic that is not corrosive (very low percent-
age of sulfur compounds) and has a very low toxicity; thus it is easier to store,
requires less insulation and fewer handling concerns than comparable hydrogen
fuel systems. Liquid methane is about six times denser than liquid hydrogen; thus,
methane tanks weigh much less and/or require less storage volume than compara-
ble hydrogen tanks. Furthermore, methane has exceptional heat capacity proper-
ties that provides “superior cooling properties”; methane fuel has lower pressure
drops in regenerative cooling channels as compared to kerosene fuel. Addition-
ally, methane is a natural gas that is relatively easy to extract on Earth and is about
5 to 10 times cheaper to acquire and store than liquid hydrogen [44].

Methane, as most hydrocarbon molecules, is known to exhibit sooting and
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coking. These two phenomena are well known in each combustion device using
hydrocarbon as propellants. While soot is a combustion product due to heavy
aggregates of carbon molecules, coke is formed due to thermal decomposition
of hydrocarbons in the boundary layer of ducts and cooling channels. In existing
LO2/kerosene engines formation of carbon layer on the hot-gas side of combustion
chamber has been observed with the global effect of: heat transfer insulation,
increase of radiative heat due to black body radiation, and change in throat shape.

Soot has a dramatic effect on turbine blades erosion in engines using fuel rich
gas generator, too. The presence of a broad set of aliphatic compounds in the
inlet mixture reduces the time required for complex compound formation, while
the presence of aromatic compounds works as agglomeration point around which
more complex aromatic molecules might be created and evolve to soot [22].

Coking decomposition of the molecule exhibits when a hydrocarbon based
propellant (such as kerosene and methane) gets in contact with metallic surfaces
at elevated temperatures. For that reason coking problem is generally present in
the ducts of regenerative cooling circuits. According to [22], wall temperature
limit to generate coking is 970 K for methane and 560 K for kerosene. More-
over, the process of coke formation is quite insensitive to pressure, especially at
higher temperatures. At last, methane coking and soot decomposition are of min-
imal concern as compared to kerosene and other complex hydrocarbon fuels; this
allows for reusability, multiple-restarts and longer burn times.

2.5.2 Methane diagrams
Using the equation of state presented in App. C, pvT and transport properties
behaviours of methane have been plotted. The accuracy of the used equation of
state is in perfect agreement with the data published by the National Institute of
Standards and Technology (NIST) [2].

In Fig. 2.6 the typical pressure-volume-temperature diagram is presented. The
volume axis is in logarithmic scale to better value the two-phase region (empty
zone in the lower part of the diagram). The critical isotherm (190.53 K) bounds
the subcritical (i.e., liquid and vapor) region from the supercritical region. It is
clear that in the liquid regime (high density) the isothermal compressibility is very
low since the subcritical isotherms are almost vertical (

(
∂p
∂v

)
T
→ ∞), while in

the supercritical region the isotherms slope is less pronounced (higher isothermal
compressibility). Finally, for temperature far over the critical temperature the
isotherms almost shape as hyperbolas and the pvT behaviour can be described by
the hyperbolic law of perfect gas: T ∝ pv.

In Fig. 2.7 the compressibility chart (Z vs p) is presented. The compressibility
is a non-dimensional parameter which is defined as the deviation from the perfect
gas equation of state: Z = p/ρRT . For subcritical fluid (T < Tc) Z is almost lin-
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Figure 2.6: Methane PVT diagram.

ear with pressure, having very high compressibility (up to 3) for high pressurized
liquid (beyond 20 MPa) and very low compressibility for low pressure region
(vapor and liquid). For supercritical fluid (T > Tc) Z is a decreasing-increasing
function of pressure. For high temperature the fluid is almost an ideal gas and
compressibility is close to the ideal value (Z = 1).

In Fig. 2.8 the isothermal compressibility behaviour is shown on the two-
dimensional diagram p-v. Note that the low compressibility in the high density
region is clear, such as the high compressibility (theoretically infinite) at the criti-
cal point (see App. A for more details).

In Fig. 2.9 the molar specific heat at constant pressure is shown on the two-
dimensional diagram p-v. As theory states (see App. A) cp reaches an infinite
value at the critical point. Differently from isothermal compressibility, this pecu-
liar behaviour protrudes far over the critical pressure (4.6 MPa); hence, along an
isobar, the specific heat exhibits a peak at a temperature close to the critical one.

This behaviour is clearly shown in Fig. 2.10 (cp vs T ). In particular, as pres-
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Figure 2.7: Methane compressibility chart.

Figure 2.8: Methane isothermal compressibility diagram.
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Figure 2.9: Methane molar heat at constant pressure diagram.

Figure 2.10: Methane specific heat at constant pressure behaviour.
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sure increases, the specific-heat peak reduces while the temperature of maximum
cp increases. This temperature is called pseudo-critic since it can be considered as
a boundary between the “liquid-like” behaviour and the “gas-like” behaviour of a
supercritical fluid. For that reason, the locus of the pseudo-critic temperatures can
be considered as an extension of the vapour/liquid phase boundary beyond the crit-
ical temperature (see Fig. 2.1). In case of thermally perfect gas (high temperature),
specific heat is an increasing function of temperature and is not affected by pres-
sure. This different behaviour between the high density fluid (strong dependency
from pressure and temperature) and perfect gas (weak dependency from tempera-
ture only) well demonstrates that the fluid operating in high density regime must
be described using proper theory and equation of state.

Figure 2.11: Methane specific heat at constant volume behaviour.

In Fig. 2.11 specific heat at constant volume vs temperature is presented. Note
that, even if cv does not reach infinite value at the critical point, its behaviour
shows a peak value close to the critical temperature. However, this peak is less
pronounced than for cp.

In Fig. 2.12 the behaviour of the speed of sound is shown having temperature
on the x-axis and pressure as parameter. Over 300 K the speed of sound is almost
insensitive to the pressure and its dependency to temperature is well predicted by
perfect gas theory (a ∝

√
T ). Since isothermal compressibility is very low in

the high density region (low temperatures) the speed of sound in this region is far
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Figure 2.12: Methane speed of sound behaviour.

higher than for low density fluid (a2 ∝ 1/β). Moreover in this region speed of
sound is a decreasing function of temperature and it reaches a minimum in the
near critical region (since the isothermal compressibility is maximum).

Viscosity behaviour on the two-dimensional diagram p-v and versus temper-
ature is shown on Fig. 2.13 and Fig. 2.14 respectively. Viscosity dependency on
pressure is weak for both supercritical and subcritical region. Obviously this rule
does not apply in the near critical region. In the supercritical region viscosity
is a weak increasing function of temperature (µ ∝

√
T as kinetic theory states)

while in the subcritical region viscosity is a decreasing function of temperature.
In fact gas molecules are excited by temperature and then transport properties
(i.e. molecules shock frequency) are magnified while liquid intermolecular bonds
are destroyed by temperature excitement, hence reducing the transport capability
of the liquid molecules. Moreover, due to the different liquid/gaseous molecule
bond, liquid transport properties are much higher (up to 20 times) than gas trans-
port properties.

Thermal conductivity behaviour on the two-dimensional diagram p-v and ver-
sus temperature is shown on Fig. 2.15 and Fig. 2.16 respectively. Since thermal
conductivity is a transport property, its behaviour is similar to that of viscosity.
The only difference relies on the critical point enhancement (see Sec. 2.3). In the
equation used, this behaviour is modeled in a very simple and rough way (see
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Figure 2.13: Methane viscosity diagram.

Figure 2.14: Methane viscosity behaviour.
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Figure 2.15: Methane thermal conductivity diagram.

Figure 2.16: Methane thermal conductivity behaviour.
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App. C for more details) since it does not affect the transcritical methane flow
in cooling channels; in fact, in that environment, while temperature is transcriti-
cal, pressure is not: methane does not pass through critical point. Therefore, the
irregular behaviour of thermal conductivity is slightly visible on Fig. 2.15.



Chapter 3

1D model

The objective of this chapter is to analyze the regenerative cooling system by
means of a one-dimensional steady-state model. In fact hot-gas and coolant flow
can be treated as one-dimensional flows coupled each other by means of radial
heat transfer through the wall material. The hypothesis of one-dimensional model
implies that the variables that describe the flow are functions of the streamwise
direction only. For that reason, their value must be considered as the mean value
in the cross section. In case of duct flow (such as the hot-gas and coolant flow),
the considered mean value is the “bulk” value, defined as:

φb =
1

ṁ

∫
A

ρuφ dA

where φ is the generic flow variable, ṁ is the mass flow rate through the duct
of section A and ρ and u are the density and velocity of the flow. Note that ρ, u
and φ varies across the sectionAwhile φb is the mean value. The one-dimensional
approach is based on the “bulk” variables and thus in what follows the subscript b
is omitted.

The “simple and fast” one-dimensional tools have been widely used in in-
dustrial practice and many cooling systems have been designed using this ap-
proach. The one-dimensional model is strongly based on semi-empirical relations
to describe hot-gas and coolant convective heat transfer and coolant pressure loss.
These relations are generally calibrated by means of data collected in subscale
engine tests and thus they are strongly related to the operative working conditions
of the considered engine.

In this chapter the one-dimensional approach is described since it is the ba-
sis of the “quasi 2D” model presented in Chap. 4. Moreover, the simple one-
dimensional model can be used to show the effect of channel aspect ratio on cool-
ing performances (see Sec. 3.6)

35
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3.1 Physical and mathematical modeling
Heat transfer in a regeneratively cooled thrust chamber can be described as the
heat flux between two moving fluids, separated by a solid wall. In its simplest
form regenerative cooling can be modeled as a steady heat flux from a hot-gas
through a solid wall to a cold fluid. This problem can be divided up into three
sub-problems, which are defined as follows:

• The turbulent chemically reacting flow of a mixture of gases in a rocket
engine, including combustion chamber and converging-diverging nozzle.

• The heat conduction through the wall of the rocket engine between the hot-
gas and the liquid coolant.

• The turbulent flow of the coolant in the channels surrounding the rocket
engine.

These subproblems are coupled by the two steady-state balances of three heat
fluxes:

• heat flux from hot-gases to the wall (see Sec. 3.2)

• heat flux through the wall (see Sec. 3.5)

• heat flux from the wall to the coolant (see Sec. 3.3)

3.2 Hot-gas expansion
The hot-gas flow is formulated on the basis of a one-dimensional isentropic ex-
pansion (i.e., one-dimensional flow model with variable area of the cross section).
Depending on the model refinement, the chemical reactions can be considered or
not. In the numerical tool proposed in Chap. 4 the hot-gas flow is considered with
chemical reactions and its thermodynamic and transport properties are evaluated
using the software CEA [30, 31, 3]. Combustion conditions are obtained with the
assumption of chemical equilibrium of the combustion products. The hot-gas ex-
pansion is then calculated assuming chemical equilibrium or frozen composition
(freezing point at chamber or at throat conditions). The expansion of the hot-gas is
considered independent of the wall temperature, because the heat transfer from the
hot-gas to the wall causes very little change in the gas temperature (see Sec. 1.2).

The convective wall heat fluxes qw is generally expressed as the product of a
heat transfer coefficient h and a driving potential which represents the difference
of the energy levels between free stream and wall. The object of this “separation of
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variables” is to arrive at a coefficient hwhich is independent of both the difference
and the absolute levels of the energy in the free stream and wall.

For a high-speed flow (such as the hot-gas case) the driving potential is based
upon the recovery temperature:

qw = h (Taw − Tw) (3.1)

where Taw is the adiabatic wall temperature (or recovery temperature) and Tw
is the wall temperature at the hot-gas side. Note that qw is considered positive if
the heat flux exits the hot-gas. The adiabatic wall temperature can be expressed
as:

Taw = T

(
1 + r

γ − 1

2
M2

)
(3.2)

where M is the free stream Mach number, T is the free stream temperature,
γ is the specific heats ratio and r, the recovery factor, has been shown by both
theory and experiment to be related to the Prandtl number; for turbulent boundary
layers [7]: r = Pr1/3.

Regarding heat transfer coefficient, experience gained from the turbulent bound-
ary layer calculation methods in rocket nozzle (Bartz et al. [7]) has shown that the
variation of the local mass flow rate per unit area at the edge of the boundary layer
is the dominant variable affecting the heat transfer distribution. Variations in ve-
locity and temperature across boundary layer exert only a secondary, although not
negligible, effect.

Starting with the assumption that the local heat-transfer coefficient is princi-
pally dependent on local mass flow rate per unit area, one obtains:

h ∼ (ρu)m (3.3)

where ρ and u are the free stream density and velocity. Eq. (3.3) can account
for mass flow rate variations by proper selection of m while it ignores the effect
of boundary layer development. From [5] the proper value of the exponent m is
0.8.

Bartz suggested that by selecting some linear dimensional variable that varies
in even a rough approximation to the variation of the boundary layer, a closed-
form correlation-equation could be found that might approximate the results of a
more complex analysis reasonably well. Such an equation was developed [6] by
selecting the local diameter D at the station of the nozzle of interest as the linear
dimension (only near the nozzle entrance for an initially thin boundary layer this
selection appeared to be qualitatively inappropriate).

The equation proposed by Bartz is the familiar Nusselt-Reynolds type equa-
tion:
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Nu = C Re0.8Pr0.4

where:

• Nu =
hD

k
is the Nusselt number

• Pr =
µcp
k

is the Prandtl number

• Re =
ρuD

µ
is the Reynolds number

The Nusselt and Reynolds numbers are based on the local diameter D, which
was assumed to be the characterizing linear dimension. The value of 0.4 is arbi-
trarily selected as that frequently used for modifications of Reynolds analogy for
Pr near unity.

Thus the closed-form approximation is complete except for an arbitrary con-
stant C. The value of C might be selected so as to force agreement of the closed-
form equation and results of a boundary-layer solution (or of an experiment) at one
particular point in the nozzle. Bartz evaluated C to be 0.026 by forcing agreement
at the throat with first-approximation results for a particular nozzle configuration
(the value of C as determined from an iterative solution [6] of the same nozzle
configuration was 0.0225). For other nozzle configurations and conditions this
constant would vary, but fortunately it does not very drastically.

The simple closed-form equation proposed by Bartz for rapid estimation of
rocket nozzle convective heat transfer coefficient is therefore:

Nu = 0.026 Re0.8Pr0.4 (3.4)

The problem of where to evaluate the physical properties arises since in gen-
eral large temperature differences are present across the boundary layer of rocket
nozzles. If properties are evaluated at the film temperature (as proposed by Bartz
et al.) Eq. (3.4) can be solved for h to give:

h =
0.026

D0.2

(
µ0.2cp
Pr0.6

)
f

(ρfu)0.8 (3.5)

where the subscript f denotes properties evaluated at edge composition (i.e.,
the composition outside the boundary layer) and at the film temperature, that is the
arithmetic mean between bulk temperature T (at the edge of the boundary layer)
and wall temperature Tw:

Tfilm =
1

2
(T + Tw)



3.2. HOT-GAS EXPANSION 39

Based on Eq. (3.5) Bartz made some simplifying assumptions to make it even
simpler to use:

• It is assumed that both cp and Pr do not vary appreciably with temperature
and they can be evaluated at stagnation conditions (denoted by 0). The
properties whose variations must be accounted for are only µ and ρ.

• µf and ρf can be evaluated in terms of the stagnation and static tempera-
ture values, respectively. Introducing the factor σ (which contains the cor-
rections for property variation across the boundary layer) the Eq. (3.5) be-
comes:

h =
0.026

D0.2

(
µ0.2cp
Pr0.6

)
0

(ρu)0.8 σ

with:

σ =

(
ρf
ρ

)0.8(
µf
µ0

)0.2

• Assuming that ρ ∼ 1
T

and µ ∼ T ω (with ω = 0.6) the value of σ can
be evaluated in terms of T0, Tw and M (using the quasi one-dimensional
relations):

σ =
1[

1

2

Tw
T0

(
1 +

γ − 1

2
M2

)
+

1

2

]0.8−ω/5 [
1 +

γ − 1

2
M2

]ω/5
• Finally the equation for h can be put in a form suitable for rocket nozzle

computations by evaluating ρu in terms of c∗ (characteristic velocity) and A∗
A

(using the quasi one-dimensional relations) where A∗ is the cross-sectional
area at the nozzle throat:

h =

[
0.026

D0.2
∗

(
µ0.2cp
Pr0.6

)
0

(pc
c∗

)0.8
](

A∗
A

)0.9

σ (3.6)

Eq. (3.6) is the final form proposed by Bartz [6] and it is one of the most used
approaches to estimate the nozzle convective heat transfer. Note that the factor in
brackets is a constant through the nozzle, leaving only A∗

A
and σ to be evaluated at

each station.
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It is important to remember that the constant C = 0.026 has been determined
for a particular rocket nozzle and so it may be modified to obtain a better agree-
ment with numerical or experimental data, when available.

Note that, as the hot-gases parameters are estimated via the one-dimensional
isentropic expansion law, at each axial position the wall heat flux qw (Eq. (3.1),
(3.2), and (3.6)) is only a function of the unknown temperature Tw.

3.3 Coolant flow
The coolant flow is modeled by means of the steady-state laws of mass, momen-
tum and energy, taking into account the effects of heat transfer and friction. A
one-dimensional flow model along the axial direction is assumed for the coolant
flow, that is, the velocity vector is composed by the axial component only and
the flow variables are functions of the abscissa x only. The integral steady-state
coolant governing equations are:



d

dx

∫∫
A

ρudA = 0 =⇒ mass eq.

d

dx

[∫∫
A

(
ρu2 + p

)
dA

]
dx− pdA

dx
dx = −

∫∫
Sw

τwdSw =⇒ momentum eq.

d

dx

[∫∫
A

(ρuh0) dA

]
dx =

∫∫
Sw

qwdSw =⇒ energy eq.

where ρ(x) is the density, u(x) is the axial velocity, p(x) is the pressure and
h0(x) is the stagnation enthalpy (h0 = h+u2/2). The channel cross section has an
area A(x) and a perimetrical area Sw(x) = Pw(x)dx (Pw is the perimeter) along
which the shear stress τw originates and across which the heat flux qw passes. The
shear stress τw and the wall heat flux qw can be related to the flow variables by the
skin friction factor f and the heat transfer coefficient h, respectively:

τw =
1

8
ρu2f

and

qw = h(Tw − T )

where Tw(x) is the wall temperature and T (x) is the coolant temperature. Note
that the convective heat flux qw is described by means of a transfer coefficient
form (as already seen in Sec. 3.2 for the hot-gas convective heat transfer) and
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the shear stress τw is expressed by means of the Darcy definition of the friction
factor; both h and f can be estimated using proper semi-empirical relations (see
Sec. 3.4). Finally, the coolant governing equation based on the one-dimensional
steady-state model are:

d

dx
(ρuA) = 0 =⇒ mass eq.

dp

dx
+ ρu

du

dx
+

1

2
ρu2 f

Di

= 0 =⇒ momentum eq.

ρuA
dh0

dx
= h(Tw − T )Pw =⇒ energy eq.

(3.7)

whereDh = 4A/Pw is the hydraulic diameter. In case of circular cross section
Dh is equal to the geometric diameter of the cross section; otherwise it represents
a reasonable characteristic length of the cross section. In the coolant energy equa-
tion the hypothesis of constant wall heat flux around the channel perimeter is
assumed, and thus the heat transfer rate entering in the coolant has been expressed
as: ∫∫

Sw

qwdSw = qwPwdx

where qw is the constant heat flux that enters the coolant. In case of non
uniform heat flux distribution along the channel perimeter the above expression is
simply expressed as: ∫∫

Sw

qwdSw = dQw

where dQw is the heat transfer rate entering the coolant.

3.4 Coolant semi-empirical relations
Semi-empirical relations must be used to describe the skin friction factor f and
the heat transfer coefficient h for the coolant flow.

Literature offers many formulas obtained by fitting of experimental data which
are correlated using the typical dimensional theory; in the case of flow inside duct,
the main non-dimensional numbers are:

• Reynolds number Re =
GD

µ
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• Nusselt number Nu =
hwD

k

• Prandtl number Pr =
µcp
k

where G = ρu is the mass flow rate per unit area, D, the diameter of the
duct, is assumed as the characteristic linear dimension, and µ, k, and cp are the
viscosity, thermal conductivity and specific heat at constant pressure of the fluid.
Experimental data are often referred to straight and smooth duct with circular
cross section and constant properties (i.e., adiabatic and low velocity flow) and
the fluid can be laminar or turbulent. Generally these formulas are modified by
correction factors accounting for non-circular cross section, roughness, variable
properties, entrance effects, asymmetric heat flux and duct curvature. Regarding
flow regime, we are interested in turbulent flow only because it is the actual flow
regime in regenerative cooling channels. In fact in this application Reynolds num-
ber is of the order of 106 − 107 [14] while under “usual” conditions the critical
Reynolds number above which the flow is turbulent and below which the flow is
laminar, is:

Recritical = 2300

In this framework we have neglected entrance effect and duct curvature effect
since these effects are often modeled ambiguously and they seem to be too much
sensitive to the experimental conditions. In the following subsections the other
effects that deviate heat transfer and friction loss from the standard conditions
will be briefly discussed.

3.4.1 Skin friction and heat transfer at constant properties
Consider the heat transfer solution for the case of fully developed flow with con-
stant properties in a circular tube with constant heat flux at wall. This situation is
not physical because it is possible to have constant properties flow only in the adi-
abatic case; anyway it is possible to solve the non-adiabatic governing equations
considering constant properties. The results obtained in this way will be repre-
sentative of real case with little wall heat flux, so that flow properties vary slightly
along the tube cross section.

The analytical calculations made by Petukhov [35] over the range 104 < Re <
5 · 105 and 0.5 < Pr < 2000 are described by the interpolation equation:

Nu =
(f/8)RePr

k1 (f) + k2 (Pr) (Pr2/3 − 1)
√
f/8

(3.8)

where
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f = (1.82 log10Re− 1.64)−2

and

k1 (f) = 1 + 3.4f

k2 (Pr) = 11.7 + 1.8Pr−1/3

The disagreement of the predicted analytical Nu with Eq. (3.8) is within 1%.
If in Eq. (3.8) k1 (f) and k2 (Pr) are taken constant and equal to 1.07 and 12.7
respectively, the equation becomes simpler but the disagreement is within 5−6%.
The divergence of the experimental data from predictions of Eq. (3.8) does not
exceed 5− 6% (except for a few points).

Empirical equations of the following type are widely used in practice:

Nu = c RemPrn (3.9)

Comparing this equation with Eq. (3.8), it is easy to see that using constant
c, m and n it is impossible to describe with a reasonable accuracy the change of
Nusselt number with Re and Pr over a wide range of these parameters. A direct
comparison of Eq. (3.9) with experimental data leads to the same conclusion. An
equation of the type Eq. (3.9) can be used only assuming that c, m and n are
functions of Re and Pr. Parameters c, m and n can be considered constant only
for small variations ofRe and Pr. An example of empirical formula with constant
parameters is the well known Dittus’s and Boelter’s equations [12]:

Nu = 0.023 Re0.8Pr0.4 (3.10)

This equation is reasonably accurate for 0.7 < Pr < 120, 10000 < Re <
120000 and x

D
> 60 (i.e., far from the duct inlet).

3.4.2 Non circular cross section
Channels in regenerative system have a cross sectional area far from the circular
one, especially for high aspect ratio channel.

It has become customary to base the Reynolds and Nusselt number for such
cross sections on a length which is called “hydraulic diameter” and which is de-
fined by the equation:

Dh =
4A

Pw
where A is the cross-sectional area and Pw is the wetted perimeter. The whole

wetted perimeter must be used also in the case when only part is heated or cooled
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[13]. With some caution, we may use Dh directly in place of the circular tube
diameter when calculating turbulent heat transfer and skin friction coefficients.
The results obtained by substituting Dh for D in turbulent circular tube formulas
are generally accurate within±20% and are often within±10%. Worse results are
obtained for duct cross-sections having sharp corners, such as an acute triangle
[29].

3.4.3 Roughness

Previous discussions have assumed the wall to be smooth. Manufacturing and
operating conditions are often far from ideal, leading to the duct walls that are
rough.

An inherent difficulty in investigations of the influence of surface roughness is
caused by the fact that no satisfactory geometric description of a rough surface by
a limited number of parameters has been found as yet. It is generally assumed that
the most important parameter is the ratio of the average height of the roughness
elements to the tube diameter: ε/D. In his extensive experiments on friction in
tubes with rough surfaces, Nikuradse produced a defined roughness pattern by
gluing sand of fairly uniform size to the tube surface to form a cover which was
made as dense as possible. Friction factors determined in this way are plotted in
Fig. 3.1 with Reynolds number on the abscissa and with ε/D as parameter.

It can be seen that in laminar flow and in turbulent flow with small Reynolds
numbers, the roughness has no influence on friction. The tube wall in this range is
said “hydraulically smooth”. This fact can be visualized as being caused by a sit-
uation in which the roughness elements are completely embedded in the laminar
sub-layer. Roughness on a pipe wall can disrupt the viscous and thermal sublay-
ers only if it is sufficiently large. As the Reynolds number increases, the viscous
sublayer becomes thinner and smaller levels of roughness influence f . The impor-
tance of a given level of roughness on friction and heat transfer can be determined
by comparing ε to the sublayer thickness (for more details concerning the laminar
sublayer in turbulent flow see [43, 29]). The thickness of the laminar sublayer
for a constant properties flow is around 30 times µ

ρ·u∗ (where u∗ =
√
τw/ρ is the

friction velocity). The roughness Reynolds number is defined:

Reε =
ρu∗ε

µ
= . . . = Re

ε

D

√
f

8

Experimental data shows that the smooth region (i.e., f depends onRe alone),
transitional region (i.e., f depends on both Re and ε/D), and fully rough region
(i.e., f depends on ε/D alone) seen in Fig. 3.1 corresponds to the following ranges
of Reε [29]:
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Figure 3.1: The Moody chart for the friction factor for fully developed flow in
circular tubes.


Reε < 5 hydraulically smooth

5 ≤ Reε ≤ 70 transitionally rough
70 < Reε fully rough

To evaluate the friction factor for commercially rough pipes the correlation of
Colebrook [11] (it is an interpolation fit of the Moody’s diagram)

1√
f

= −2 log10

(
0.27

ε

D
+

2.51

Re
√
f

)
can be used in the turbulent range.
In the fully rough regime, Bhatti and Shah [9] provide the following correla-

tion for the local Nusselt number:

Nu =
(f/8)RePr

1 +
√
f/8

(
4.5Re0.2

ε Pr0.5 − 8.48
)

which applies for the ranges Re > 104, 0.5 ≤ Pr ≤ 10 and 0.002 ≤ ε
D
≤

0.05.
Since the roughness has the effect of augmenting heat transfer and skin fric-

tion, the heat transfer coefficient on a rough wall can be several times that for a
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smooth wall at the same Reynolds and Prandtl number. The friction factor, and
thus the pressure drop will also be higher. Nevertheless, designers sometimes de-
liberately roughen tube walls so as to raise h and reduce the surface area needed
for heat transfer.

3.4.4 Variable properties

The heat transfer and flow friction solution considered in the previous sections
have been based on the assumption that the fluid properties remain constant through-
out the flow field. When applied to real heat transfer problems this is obviously an
idealization, since the transport properties of most fluids vary with temperature,
and thus will vary over the flow cross section of a tube. Constant properties flow
is possible only in the case of adiabatic wall and low velocities.

Fluid properties depend mainly on temperature, except in the near-critical and
supercritical state where pressure dependence becomes relevant.

The temperature-dependent-property problem is further complicated by the
fact that the properties of different fluids behave differently with temperature. For
gases, the specific heat varies only slightly with temperature, but the viscosity and
thermal conductivity increase as about the 0.8 power of the absolute temperature.
Furthermore, the density varies inversely with the first power of the absolute tem-
perature. On the other hand, the Prandtl number does not vary significantly with
temperature.

For most liquids the specific heat and thermal conductivity are relatively inde-
pendent of temperature, but the viscosity decreases very markedly with tempera-
ture. This is especially true for oils, but even for water the viscosity is temperature-
dependent. The density of liquids, on the other hand, varies little with temperature.
The Prandtl number of liquids varies with temperature in much the same manner
as viscosity.

For engineering applications it has been found convenient to use the constant-
property analytic solutions, or experimental data obtained with small temperature
differences, and then to apply some kind of correction to account for properties
variation. Fortunately most of the variable-properties results indicate that fairly
simple corrections will generally suffice.

In general, one-phase forced-convection heat transfer process for cryogenic
coolants may be described by the same scaling parameters as one found useful for
other substances

To describe the variable properties effect the correlations proposed by Petukhov
[35] have been considered. The analytical heat transfer results that he carried out
for air and hydrogen in a smooth-wall pipe with circular cross section can be cor-
related by the equation:
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Nub = Nub0 · θn (3.11)

where

n = − (a log10 θ + 0.36)

andNub andNub0 are the Nusselt numbers for variable and constant gas prop-
erties respectively, evaluated at bulk temperature Tb and θ = Tw/Tb is the temper-
ature ratio parameter.

For cooling (Tb/Tw > 1) , a = 0. For heating (Tb/Tw < 1), a = 0.3.
Eq. (3.11) describes the heat transfer with an accuracy of ±4%. For simplicity
we can take n to be constant for heating also. Then, when n = −0.47, Eq. (3.11)
describes the analytical results within ±6%.

The analytical skin friction results that Petukhov carried out for air and hy-
drogen in a smooth-wall pipe with circular cross section can be correlated by the
equation:

fb = fb0 · θm (3.12)

where fb and fb0 are the friction factors with variable and constant physical
gas properties respectively. It should be noted that, contrary to the case of heat
transfer,

Re∗w = Rew
ρw
ρb

greatly affects the friction factor. In fact

m = −0.6 + 5.6 (Re∗w)−0.38

for heating and

m = −0.6 + 0.79 (Re∗w)−0.11

for cooling.
Eq. (3.12) describes the calculated results within 2 − 3%. If in Eq. (3.12) m

is taking as −0.52 for heating and −0.38 for cooling, this equation describes the
calculated data within 7% accuracy.

The analytical calculations by Petukhov for air and hydrogen were made over
a range 0.37− 3.7 for θ and 104 − 106 for Re∗w.

Literature offers many empirical relations to describe the supercritical hydro-
gen heat transfer coefficient and friction factor inside regenerative cooling chan-
nels [33, 20], but it has been preferred to use Eq. (3.11) and (3.12) since they
are based on analytical results and are not characterized by any specific working



48 CHAPTER 3. 1D MODEL

conditions. Moreover, since Eq. (3.11) and (3.12) are valid for two strongly dif-
ferent fluids (air and supercritical hydrogen), they could be used for many other
substances, such as methane.

3.5 Heat conduction through the wall
Heat is transferred from the hot-gas (subscript hg) to the coolant (subscript co) via
the solid wall, made of internal wall, fins and external wall (Fig. 3.2).

Figure 3.2: Schematic of cooling channels geometry.

The one-dimensional model relies on the heat transfer balance between hot-
gas, wall and coolant for steady-state condition. In fact the hot-gas heat transfer
rate by convection affects the wall (dQw,hg), is transmitted by conduction through
the wall (dQw) and is transported by convection to the coolant (dQw,co). For
steady-state condition these heat transfer rates must be equal:

dQ = dQw,hg = dQw = dQw,co (3.13)

where dQ is the heat transfer rate along the axial distance dx. Neglecting the
presence of fins, the terms in the above heat balance equation are:

dQw,hg = qw,hg · 2πr · dx

dQw = qw · 2πr · dx

dQw,co = qw,co · 2πr · dx

(3.14)
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where qw,hg is the heat flux by convection from the hot-gas to the wall (see
Sec. 3.2), qw is the heat flux by conduction through the internal wall , qw,co is
the heat flux by convection from the wall to the coolant (see Sec. 3.3), and r
is the internal radius of the thrust chamber. Note that in the above expression
(Eq. (3.14)), the case of no-fins has been considered, since the heat transfer to
the coolant flows through the internal wall only. This case is often referred to as
“cooling jacket” case.

The heat flux by conduction can be expressed as:

qw =
kw
sw

(Tw,hg − Tw,co)

where Tw,hg and Tw,co are the wall temperature at the hot-gas side and coolant
side respectively, kw is the wall thermal conductivity and sw is the internal wall
thickness. This equation represents the analytical solution of the one-dimensional
heat conduction in a radial direction and without the effect of the radius, that is,
the heat conduction is considered to occur in a one-dimensional manner along a
plane wall. The effect of curvature is neglected since the wall thickness sw is
considered small if compared to the nozzle radius r.

The heat transfer balance Eq. (3.14) gives:

qw,hg = qw = qw,co

This expression is similar to Eq. (3.13) but with heat fluxes instead of heat
transfer rates. This heat flux balance is not realistic because it does not take into
account for the enhanced heat transfer due to the presence of the fins.

Using the classic fin analysis [23], the fin effectiveness (ε) is defined as the
ratio of the heat flux transferred through the fin to the heat flux that would exist
without the fin:

ε =
qw fin

qw/o fin

Considering the fin effect, the heat transfer rate from the wall to the coolant
becomes:

dQw,co = qw,co N a dx+ qw,co ε N t dx (3.15)

where qw,co is the heat flux at the base of the channel and thus the first part
of the above expression represents the heat transfer rate through the channels and
the second represents the heat transfer rate through the fins. In particular, N is
the number of the channels and t is the thickness of the fin. The trivial relation
2πr = N(a+ t) gives:
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dQw,co = qw,co 2πr dx+ qw,co (ε− 1)N t dx

If the fin is not considered (“cooling jacket” design), ε = 1, and the above
expression reduces to Eq. (3.14). The effectiveness ε for a one-dimensional fin
with adiabatic tip is:

ε =

√
2kw
hcot

tanh (mb), where m =

√
2hco
kwt

If mb is greater than 2 the fin is considered “tall” and:

ε '
√

2kw
hcot

Note that due to the fin presence (i.e., due to the non-uniform heat flux dis-
tribution along the channel periphery), the coolant energy equation (3.7) must be
written as:

ρcoucoA
dh0,co

dx
=
dQw,co

dx

where dQw,co is the heat transfer rate that enters the cooling channel.

3.6 High Aspect Ratio Cooling Channels: 1D model
In this section the effect of cooling channel aspect ratio on cooling efficiency will
be discussed using the simple one-dimensional model described in the previous
sections. The aspect ratio is defined as height to width ratio of a rectangular
passages:

AR =
b

a

Past researchers have all found a significant increase in cooling efficiency with
high aspect ratio channels (normally defined as such when AR > 4 [49]). Today
the use of rectangular channels is common practice in the design of regenerative
cooling systems.

In particular, increasing the cooling channel aspect ratio, the wall temperature
on the hot side of the cooling channels can be reduced by substantially increasing
the coolant side surface area relative to the hot-gas side surface through the use of
extended surfaces or “fins”. Channel aspect ratio can be increased by increasing
the number of passages. In turn, the material between them, known as the rib,
functionally becomes a fin.
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Considering the steady-state heat transfer rates balance Eq. (3.13) in the pres-
ence of fin, assuming a generic section where temperatures Taw,hg and Tco are
known, the wall temperature at the coolant side can be evaluated as:

Tw,co =
Taw,hg + Tco φ

1 + φ

where

φ =
hco
h′hg

a+ εt

a+ t
, and h′hg =

hhg

1 +
hhg
kw/sw

The hot-gas heat flux qw,hg can be related to the coolant heat flux using Eq. (3.15):

qw,hg = qw,co
a+ εt

a+ t

The wall temperatures Tw,hg and Tw,co, such as the heat fluxes qw,hg and qw,co
are strongly affected by channel section geometry. Since the effect of the channel
aspect ratio on these parameters is not clearly visible on the above expressions, a
practical example has been considered. The throat section of the European rocket
engine (Vulcain) has been taken as a guideline for an engine dimensioning. The
Vulcain engine is a LO2/LH2 cryogenic engine propelling 1100 kN and having a
regenerative system for the thrust chamber cooling. The main parameters of the
selected throat section are:

r 0.130 m
b 0.010 m
sw 0.001 m

The total cross sectional area of cooling channels and fins is Atot = 2πr b =
0.0082 m2. This cross sectional area is divided into the cooling channels area
(Aco = N a b = 0.0058 m2) and the fins area (Afin = N tw b = 0.0024 m2).
Increasing the number N of cooling channels (considering Aco and Afin as con-
stants), the channel aspect ratio necessarily increases while the quantity of wall
material remains constant (i.e., the weight of the engine is fixed). The hydro-
gen thermodynamic conditions in the cooling channel are pco = 130 bar and
Tco = 70 K and its mass flow rate per unit area is ρcouco = 8500 kg/m2 s. The
coolant heat transfer coefficient has been evaluated using the semi-empirical rela-
tion Nuco = 0.011 Re0.8

co Pr
0.4
co where the Nusselt number Nuco and the Reynolds

number Reco are based on the hydraulic diameter (see Sec. 3.4 for more details):
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Dh =
4A

Pw

where A = a b is the cross sectional area of a rectangular cooling channel
and Pw = 2(a + b) is its perimeter. Note that the above semi-empirical equation
is the classical Dittus-Boelter [12] correlation Nu = 0.023 Re0.8Pr0.4 in which
the coefficient 0.023 has been reduced to 0.011 in order to take into account the
variable property effect (see Eq. 3.11) with the sample value Tw/T ∼ 5.

The hot-gas heat transfer rate hhg = 26000 W/m2 K has been considered for
the throat section. This value has been chosen via Eq. (3.1), considering a heat
flux qw,hg = 70 MW/m2, a wall temperature Tw,hg = 750 K and an adiabatic
wall temperature Taw,hg = 3450 K. These values represent the typical operat-
ing conditions of the Vulcain engine at the throat section [14]. Finally, the wall
thermal conductivity of copper alloy (kw = 390 W/m K) has been selected.

Figure 3.3: Wall heat transfer vs channel AR.

In Fig. 3.3 and Fig. 3.4 the effect of the aspect ratio on the wall heat flux and
wall temperature is clearly visible: the hot-gas side wall heat flux qhg increases as
the aspect ratio increases while the heat flux at the base of the channel qco strongly
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decreases. This opposite behaviour is not erroneous: since the wall heat transfer is
transmitted to the coolant through the channel base and fin, increasing the number
of fins the heat flux distribution between the channel base and the fin changes and
thus the channel base is less affected by heat flux. As a consequence the coolant is
heated in a more efficient way because the wall heat flux is better distributed along
the coolant perimeter. This implies that the entire mass flow rate of the coolant
flow is heated, increasing the cooling efficiency. On the contrary, in the case of
low aspect ratio, cooling efficiency is poor because only a part of the coolant mass
flow rate (close to the channel base) is affected by heat transfer while the rest is
not.

Figure 3.4: Wall temperature vs channel AR.

Regarding wall temperature, Fig. 3.4 shows that, as wall heat flux qw,hg in-
creases with aspect ratio, the wall temperature decreases. This effect on wall
temperature is very sensitive: wall temperature can be reduced of 300 K as the
aspect ratio changes from 2 to 8.

Having in mind Fig. 3.3 and Fig. 3.4 it seems that the increase of channel
aspect ratio has no drawbacks and the greater is the channel aspect ratio the bet-
ter is the cooling efficiency in terms of wall temperature and coolant warming.
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As a matter of fact there is an optimum aspect ratio since coolant pressure loss
is strongly affected by channel aspect ratio. Using the simple one-dimensional
model for the coolant flow in channel, the pressure loss can be expressed as (see
Eq. 3.7):

dpco =
1

2
ρcou

2
co

fco
Dh

dx

where fco is the wall friction factor and it is a weak decreasing function of the
Reynolds number (see Sec. 3.4 for more details). The effect of the aspect ratio on
pressure loss is clearly visible on Fig. 3.5.

Figure 3.5: Pressure loss vs channel AR.

The pressure loss behaviour of Fig. 3.5 is due to the different area to perime-
ter distribution of the cooling channel as the aspect ratio changes. In fact, as the
number of channels increases (i.e., increase of the channel aspect ratio), the total
cross sectional area of the coolant flow remains unchanged while the total chan-
nel perimeter increases thus generating greater pressure loss. Pressure loss can
augment as much as five times as aspect ratio changes from 2 to 8. Since a good
design of an engine must take into account both wall thermal behaviour and re-
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quested pump power (i.e., coolant pressure drop), an optimum aspect ratio must
be found. This optimum aspect ratio depends on the engine cycle type (expander
cycle, gas generator cycle, preburner cycle, etc.) and on the operating conditions
of the engine (combustion chamber and coolant manifold conditions). In particu-
lar, it is a crucial design parameter for an expander cycle engines since the coolant
warming (highAR demand) provides the available power for turbopump (lowAR
demand).





Chapter 4

“Quasi 2D” stratification model

The objective of this chapter is to propose and provide a computational tool for the
description of the wall and coolant behaviour that occurs in regeneratively-cooled
rocket engines in the case of high aspect ratio cooling channel (HARCC). As al-
ready seen in Chap. 3, numerical tools able to describe the thermal behaviour of
regenerative cooling system are generally based on one-dimensional models rely-
ing on semi-empirical relationships. One of the main drawbacks of conventional
one-dimensional calculation methods is that an ideal mixing of the thermal en-
ergy into the coolant channel cross section is assumed. This implies that when a
significant radial thermal stratification takes place, like in the case of HARCC, a
significant error arises [49]. The objective of this chapter is to overcome the above
limitation of simplified approaches by developing a computational tool able to de-
scribe the coupled hot-gas/wall/coolant environment that occurs in most liquid
rocket engines and to provide a quick and reliable prediction of thermal stratifica-
tion phenomena in cooling channels. This approach, which is an extension of that
presented by Woschnak and Oschwald [53], is still widely relying on empirical
relationships. Nevertheless, it allows to compute the radial stratification of both
the wall and the coolant flow temperatures. This result is obtained by consider-
ing the one-dimensional steady-state evolution of the hot-gas flow as already seen
in Sec. 3.2, and a “quasi 2-D” flow evolution through the cooling channels. The
basic idea of the “quasi 2D” model is to consider the one-dimensional approach
for the coolant mass and momentum equation (as already seen in Sec. 3.3 while
coolant and wall energy equations depend on the radial direction too. This permits
to describe the strong temperature stratification that occurs in case of HARCC. As
in the case of one-dimensional model, steady-state condition is assumed and thus
hot-gas, wall, and coolant behaviours are coupled by heat balance from hot-gas to
wall and from wall to coolant. The approach is developed for any fluid evolving
through cooling channels, by considering any equation of state, and thus com-
pressible gas, supercritical fluid and liquid can be considered as coolants.

57
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4.1 Heat conduction through the wall
Heat is transferred from the hot-gas to the coolant via the solid wall, made of
internal wall, fins and external wall (Fig. 4.1). If steady-state operation is assumed,
the heat flux entering the internal wall qw,hg (see Sec. 3.2) must be equal to that
leaving it, and a simple steady-state wall heat transfer balance can be written:

Figure 4.1: Schematic of cooling channels geometry.

qw,hg =
kw
sw

(Tw,hg − Tw,co) (4.1)

where kw and sw are the wall thermal conductivity and thickness, respectively,
and Tw,co is the coolant-side wall temperature. Note that a one-dimensional radial
heat transfer through the internal wall of thickness sw has been considered. Then,
the heat transfer balance through the fins is computed by assuming again steady-
state operation:

∂

∂y

(
kwtw

∂Tw
∂y

)
= 2qw (4.2)

where y is the radial direction, tw is the fin thickness, Tw is the wall temper-
ature and qw is the heat flux from the fin to the coolant. This equation assumes
one-dimensional heat transfer in the radial direction, a non uniform fluid temper-
ature, a fin thickness that is much smaller than its axial length, and infinitely tall
fin. For an actual “fin” in this type of cooling channel the infinite height assump-
tion is approximately valid because the tip is nearly adiabatic in most cases. The
boundary conditions at the bottom (y = 0) of the fin is, according to (4.1):
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qw,hg = −kw
∂Tw
∂y

∣∣∣∣
y=0

(4.3)

which means that the radial heat flux entering the fin balances with that en-
tering the wall from the hot-gas side (qw,hg). At the top (y = b) of the fin the
boundary condition is:

0 = −kw
∂Tw
∂y

∣∣∣∣
y=b

(4.4)

which is the adiabatic condition, that is, the external wall is assumed adiabatic.
Note that in the wall balance equation (4.1) the heat flux from the hot-gas qw,hg

is, as a matter of fact, a function of the unknown variable Tw,hg, since the hot-
gas flow properties are completely evaluated by the one-dimensional isentropic
expansion law (see Sec. 3.2).

4.2 Coolant flow
The cooling channel flow model is developed by using the steady-state conserva-
tion laws of mass, momentum, and energy, taking into accounts the effects of heat
transfer and friction. As mentioned above a “quasi 2-D” flow model is assumed
for the coolant flow. This model considers a one-dimensional evolution for the
velocity u = u(x) (the only component of velocity considered is the axial one)
and the pressure p = p(x), whereas temperature is left to vary also in radial direc-
tion: T = T (x, y). The other thermodynamic variables are obtained by suitable
equations of state (EOS), which are written in the general form:

p = Fp(ρ, T ) and h = Fh(ρ, T ) (4.5)

The coolant flow governing equations are thus written on the basis of the above
model.

Coolant mass equation

The steady-state integral mass conservation equation through the channel cross
sections is:

d

dx

∫∫
A

ρudA = 0

where ρ is the coolant density, A is the cross section area and x is the axial di-
rection. Considering the “quasi 2-D” flow model the mass conservation becomes:
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ρ u A = ṁ (4.6)

where

ρ =
1

A

∫∫
A

ρdA (4.7)

is the average coolant density through the channel cross section and ṁ is the
mass flow rate.

Coolant momentum equation

The steady-state integral momentum equation through the channel cross sections
is:

d

dx

[∫∫
A

(
ρu2 + p

)
dA

]
dx− pdA

dx
dx = −

∫∫
Sw

τwdSw

where the left part of the equation represents the momentum flux and the axial
component of the pressure force acting on the surface of the channel, while the
right part is the integral skin friction force acting on the channel surface (Sw).
Considering the mass equation (4.6-4.7) and the “quasi 2-D” flow model (p and u
are uniform through the channel cross section), the momentum equation becomes:(

ṁ
du

dx
+ A

dp

dx

)
dx = −

∫∫
Sw

τwdS (4.8)

where the shear stress τw can be related to flow variables by the skin friction
factor f :

τw =
1

8
ρu2f

The skin factor f is estimated using a proper empirical correlation (see Sec. 3.4).

Coolant energy equation

The steady-state integral energy equation through the channel cross sections is:

d

dx

[∫∫
A

(ρuh0) dA

]
dx =

∫∫
Sw

qwdSw (4.9)

where h0 is the stagnation enthalpy (h0 = h + u2/2), and qw is the heat flux
entering in the coolant through the wall Sw. This is the equation used in the
one-dimensional approach. In the present approach, as the temperature is left to
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vary in the radial direction, some equation suitable to the evaluation of T must be
found. As thermal stratification depends on the heat flux through the fluid in radial
direction and on the heat flux exchanged with the channel walls, the hypothesis is
made of splitting the height of the channel in tiny slices of height dy, all having,
at the same abscissa x, the same values of u and p. To solve for T (y), the balance
equation (4.9) has to be written for a slice of height dy rather than for the whole
channel height (see Fig. 4.2):

d

dx

[
ρuh0a(y)dy

]
dx = 2qw(y)dydx+ qc(y)a(y)dx− qc(y + dy)a(y)dx (4.10)

where only the dependency of variables on y has been emphasized, because
all variables depend on x.

Figure 4.2: Heat fluxes in a slice of cooling channel of width a and height dy.

The equation (4.10) becomes a differential equation for T if it is possible to
express qw(y) and qc(y) as a function of T (y). As regards to qc(y), this can be
made according to Kacynski [24]. If it is assumed that qc(y) is due to the turbulent
mixing:

qc(y) = −kt
∂T

∂y

where kt is the average turbulent conductivity in the radial direction, which
can be obtained as a function of the Reynolds number Re and of the fluid thermal
conductivity k. For instance in case of hydrogen kt can be expressed as:

kt
k

= 0.008 Re0.9

With this hypothesis (4.10) becomes:

∂

∂x
(ρh0ua) =

∂

∂y

(
kta

∂T

∂y

)
+ 2qw (4.11)
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Finally the wall heat flux can be related to the coolant and wall temperature
using a transfer coefficient form (see Sec. 3.6):

qw = h (Tw − T )

where h is the heat transfer coefficient and Tw is the wall temperature. The
coefficient h is estimated using a proper empirical correlation (see Sec. 3.4). Note
that, since we are considering thermal stratification in the radial direction, h is a
function of the abscissa y and thus its value is estimated for each radial abscissa
by means of a proper semi-empirical correlation of the form (see Sec. 3.4):

Nu = Nu

(
Re, Pr,

ε

Dh

,
Tw
T

)
In particular, Tw

T
is the local value at the abscissa y while Nu, Re, and Pr are

evaluated using their average value in the channel cross section and the hydraulic
diameter Dh of the channel cross section is considered as the reference length.

The boundary conditions at the bottom and at the top of the cooling channel
are:

qw,hg = −kt
∂T

∂y

∣∣∣∣
y=0

and 0 = −kt
∂T

∂y

∣∣∣∣
y=b

(4.12)

which are the same as those (4.3-4.4) used for the fin and are therefore consis-
tent with the hypothesis of axisymmetric temperature distribution on the internal
and external walls. The conditions (4.12) state that the heat flux qw,hg enters at the
channel bottom and that the channel top is adiabatic.

4.3 Computational strategy
The governing equations can be discretized considering a 2D grid: M nodes (i =
1, ...,M ) for the axial discretization and N nodes (j = 1, ..., N ) for the radial
discretization. The computations proceed starting from the entrance of the coolant
at the manifold and moving along the axial direction. The solution at each axial
position is computed iteratively from that at the previous one.

To simplify the calculations, the empirical coefficients fco and hco (the sub-
script co means coolant) are evaluated at the previous axial position. This is a
minor hypothesis since the variation of the empirical coefficients between con-
tiguous axial positions is negligible.

Moreover, the EOS equation has been linearized around the actual value of the
density ρco and temperature Tco.
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Using this hypothesis the governing equations are written for each value of i,
assuming known the solution at the previous axial position (i − 1, or the channel
inlet condition). The overall system of equations can be divided into two groups:

• 3N linear equations: coolant energy (4.11), fin (4.2), EOS (4.5) with respect
to the variables T jco, T

j
w and ρjco (j = 1, ..., N );

• 3 non-linear equations: coolant mass (4.6) and momentum (4.8), wall bal-
ance (4.1), with respect to the variables uco, pco, and Tw,hg.

To solve the system of equations, the following computation strategy is used
at each axial station:

1. A first tentative value for uco, pco, Tw,hg is chosen: these values are taken
from the previous axial station;

2. The 3N linear equations system, considering having uco, pco, Tw,hg as pa-
rameters, is solved for T jco, T

j
w, ρ

j
co;

3. The 3 non-linear equations system is solved for a new value of uco, pco, Tw,hg,
considering T jco, T

j
w, ρ

j
co as parameter;

4. The new value of uco, pco, Tw,hg is used for step 2 and the procedure is re-
peated until these values remain unchanged.

Note that the equations of state have been considered linear equations because
at each iteration step they are linearized around the sought solution.

4.4 Validation and results: hydrogen test case
The validation of the described numerical tool is made with respect to the test
cases presented by Le Bail and Popp [28], where the coolant flow in the regen-
erative channels is computed using a numerical solver for the parabolized Navier
Stokes equations; turbulence has been modeled by an algebraic model which ac-
counts for wall roughness effects too. This is one of the few papers in the literature
in which some data of a regeneratively cooled engine have been published. The
test cases address the regenerative cooling of the thrust chamber of Vulcain en-
gine, with two different channel geometries. The main properties of the flow and
the main features of the nozzle and cooling channels are reported in Table 4.1,
whereas more details can be found in the reference paper [28].
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propellants LO2-LH2

chamber pressure 100 bar
chamber mixture ratio O/F = 5.9

coolant H2

inlet coolant temperature 48.7 K
inlet coolant pressure 137.9 bar
maximum channel aspect ratio for case A ARmax =8.5
maximum channel aspect ratio for case B ARmax =7
wall roughness ε =5µm

Table 4.1: Data for the test case of Le Bail and Popp [28].

Figure 4.3: Coolant pressure (left) and coolant temperature (right) for test cases
A and B.
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Figure 4.4: Wall heat flux (left) and wall temperatures (right) for test cases A and
B.

The coolant flows in the opposite direction with respect to hot-gas and cooling
channels are divided into three sections of constant height (width varies accord-
ing to the nozzle radius). Test case B is different from test case A only because
channels have 15% lower height.

The computations of test cases A and B carried out with the present model
have been obtained by including classical correlations for the skin friction fac-
tor (fco) and heat transfer coefficient (hco). In particular, Petukhov’s correction
of Colebrook equation is used for the skin friction factor [35] and Bhatti-Shah
expression, again with Petukhov’s correction accounting for the variable tempera-
ture across the channel section, is used for the heat transfer coefficient [35, 9] (see
Sec. 3.4).

The results obtained with the present model for test cases A and B are dis-
played in Fig. 4.3 and 4.4. Fig. 4.3 shows coolant pressure (left) and coolant aver-
age temperature (right), compared with the data published in [28] while Fig. 4.4
shows wall heat flux (left) and wall temperature (right) at the hot-gas side and
coolant side for test case A only. The behaviour of coolant pressure shows a good
agreement with the reference results in both test cases. Note that the pressure loss
is 14 bar for test A and 22 bar for test B. The behaviour of coolant average tem-
perature shows a larger discrepancy. This is due to the different input data: LeBail
and Popp [28] used the wall heat flux as an input while in the present computa-
tions wall heat flux is an output obtained via the wall energy balance. The wall
heat transfer imposed in the reference 3D-computations has a peak of 60 MW/m2

at the throat while a value of 70 MW/m2 has been obtained here. This heat flux
mismatch leads to a difference of 20% in coolant exit temperature between present
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and published data [28]. Regarding wall temperature, its value has a maximum
at the nozzle throat due to the peak value of heat transfer coefficient in that lo-
cation (see Eq. (3.3). Moreover, due to the high heat flux value, the temperature
difference in the internal wall can be as high as 170 K; as a consequence the
maximum wall temperature at the coolan-side is 660 K. Internal wall made of
high-conductivity material (such as copper alloy) and with low thickness (1 mm
in this test case) is due to the necessity of reducing wall temperature differences.
In fact, in case of strong differences, material is prone to high thermal stresses
which could result in a structural failure.

Besides to the average evolution of variables along the cooling channels the
present models provides the prediction of thermal stratification of coolant and
fin. The results obtained for test case A are shown in Fig. 4.5-4.6. In particular,
Fig. 4.5 shows the evolution, along the channel of thermal stratification. It can
be noticed that a significant stratification takes place in the present test case, es-
pecially at the channel exit. An example of cooling channel and fin width and
thermal stratification is shown in Fig. 4.6. The solutions are referred to channel
throat and exit.

Figure 4.5: Coolant (left) and fin (right) temperature stratification for test case A.

The results show reasonable agreement with data published in the literature. In
fact, it has to be considered that input data are slightly different and that the model
relies on empirical relationships for skin friction factor, heat transfer coefficient,
and turbulent thermal conductivity. The accuracy of the predictions is strongly
dependent on the accuracy of these relationships.

A possible way to improve the knowledge of this relation and to use correctly
the model presented in this chapter is to validate empirical models on simple chan-
nel flows by fully 3D Navier-Stokes simulations and then use the model for the
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Figure 4.6: Coolant and fin temperature stratification at throat (left) and exit (right)
section for test case A.

full length of cooling channels and/or in optimization programs.

4.5 Results: methane test case

The present tool has been used to evaluate the heat transfer in a LO2/methane
rocket engine. Since methane engines are a new trend for aerospace applications
(see Sec. 2.5.1), no experimental data have been published yet. For that reason,
an example test has been carried out on the Vulcain engine with the only goal of
comparing, on a quality level, the cooling efficiency of methane with respect to
hydrogen.

The cooling channels geometry is the same presented in [28] withARmax =8.5
and the main properties of the flow and the main features of the nozzle and cooling
circuit are reported in Table 4.2.

Note that, while pressure conditions (chamber and cooling channels inlet),
geometry and wall roughness are the same of the hydrogen test case, chamber
mixture ratio and cooling chamber inlet temperature differ from the hydrogen
case to better reproduce methane operative conditions. Moreover, for both test
cases, the entire fuel mass flow rate has been used in the cooling circuit: 33 kg/s
in the hydrogen case and 70 kg/s in the methane case.

In Fig. 4.7 wall heat transfer and wall temperature (on hot-gas side and on
coolant side) along the axis are shown. As expected, using the same Vulcain
chamber and channel geometry, methane is a less efficient coolant with respect
to hydrogen. In fact, in case of methane, the wall heat flux is lower (qmax =
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propellants LO2-LCH4

chamber pressure 100 bar
chamber mixture ratio O/F = 3

coolant CH4

inlet coolant temperature 190.6 K
inlet coolant pressure 137.9 bar
maximum channel aspect ratio ARmax =8.5
wall roughness ε =5µm

Table 4.2: Data for the methane test case.

70 MW/m2 in the case of hydrogen and qmax = 47 MW/m2 in the case of
methane) and hence the wall temperature is higher.

Figure 4.7: Wall heat flux (left) and wall temperatures (right) for methane test
case.

Coolant and fin temperature stratification at the inlet, throat, and exit sections
are shown in Fig. 4.8, Fig. 4.9, and Fig. 4.10 respectively. As expected, the high
aspect-ratio cooling channel geometry induces an evident thermal stratification
even in the case of methane. Temperature stratification becomes more relevant as
the coolant moves from the inlet section to the exit section. However, in the last
section the upper part of methane is not yet heated; this means that only a part of
the fluid has been effectively used as a coolant. A good design should minimize
this inefficiency by proper selection of channel and fin dimensions.



4.5. RESULTS: METHANE TEST CASE 69

Figure 4.8: Coolant and fin temperature stratification at inlet section for methane
test case.

Figure 4.9: Coolant and fin temperature stratification at throat section for methane
test case.

Figure 4.10: Coolant and fin temperature stratification at exit section for methane
test case.





Chapter 5

Numerical method

In this chapter we want to introduce a CFD tool to simulate the three-dimensional
coolant flow inside cooling channels. In particular, this tool must be able to
describe the turbulent flow of a generic fluid, since the coolant thermodynamic
characterization is not straightforward. In fact coolant thermodynamics must be
modeled by proper equation of state (see Chap. 2) far from the equations of state
implemented in standard CFD tool (that is, perfect gas or perfect liquid equation
of state). However, the flow of a generic fluid is described by classical governing
equations, that are, mass, momentum and energy equations (Sec. 5.1 and 5.2).
The fluid characterization does not affect the general treatment of the governing
equations since these principles describe the mechanical and thermal behaviour
of a generic moving fluid; for that reason an home-made finite volume numerical
tool (Sec. 5.3 and Ref. [16]) able to describe perfect gas flow has been acquired
and modified in order to simulate a generic fluid flow (i.e., the prefect gas as-
sumption has been removed). Many modifications have been carried out, mainly
the Riemann Problem solver (Sec. 5.4) and the boundary conditions treatment
(Sec. 5.5). In the present code the generic fluid thermodynamic characterization
is performed by means of a database (Sec. 5.6) so that the evaluation of fluid prop-
erties is independent from the complexity of the selected equation of state. Finally
(Sec. 5.7) the Spalart-Allmaras turbulence model is presented. This one-equation
eddy-viscosity model has been easily integrated in the CFD tool since, as a matter
of fact, it is an extra governing equation that can be discretized using the finite
volume approach.

5.1 Governing equations

A finite volume numerical scheme solves the governing equations written in a
general integral form. Using the integral formulation, the governing equations are

71
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often referred to as “conservation laws”. This form of the governing equations de-
rives directly from the physical principles that describe the behaviour of a moving
fluid:

• conservation of mass

• momentum balance

• conservation of energy

The conservation laws are applied to a fluid element which is a small “blob”
of fluid that contains the same material at all times as the fluid moves. This fluid
element, often called material element, defines a control volume V and a control
surface S. Since the fluid element deforms as it moves, its volume and surface
change shape and position and thus they are functions of time: V = V(t), S =
S(t). In what follows the conservation laws for a one-phase inert flow will be
presented and discussed.

Conservation of mass

The conservation of mass principle states that the total amount of mass of a fluid
element does not change in time t, that is:

d

dt

∫
V(t)

ρ dV = 0

where ρ is the density of the fluid.

Momentum balance

The momentum balance principle states that the momentum variation in time of a
fluid element is equal to the total force acting on the volume V and on the surface
S, that is:

d

dt

∫
V(t)

ρ u dV =

∫
V(t)

ρ f dV +

∮
S(t)

t dS (5.1)

where u is the velocity vector and ρu is the fluid momentum per unit volume.
The first term on the right side represents the sum of the forces acting on the
volume V (f is the volumetric force per unit mass) while the second term is the
sum of the forces acting on the external surface S (t is the surface force per unit
area).

The i-th component of vector t can be expressed as a function of the stress
tensor σij:
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ti = σij nj

where nj is the j-th component of the vector n, that is the unit vector orthogo-
nal to the surface S and it is considered positive as it is outward-facing the volume
V . The stress tensor can be decomposed into two parts: the spherical tensor (based
on the pressure p) and the viscous stress tensor τij:

σij = −p δij + τij (5.2)

where δij = 0 if i 6= j and δij = 1 if i = j. In case of Newtonian fluid, the
viscous stress tensor can be expressed by:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij (5.3)

where ui is the i-th component of the velocity u, xi is the i-th orthogonal axis,
µ is the dynamic viscosity and λ is the second viscosity coefficient. Assuming the
Stokes hypothesis, the two viscosity coefficients can be related by:

3λ+ 2µ = 0

Finally Eq. (5.1) becomes:

d

dt

∫
V(t)

ρ ui dV +

∮
S(t)

p nj δij dS =

∫
V(t)

ρ fi dV +

∮
S(t)

τij nj dS

Note that in this thesis the Newtonian fluid hypothesis is always considered
valid.

Conservation of energy

The conservation of energy principle states that the total energy variation in time
of a fluid element is equal to the heat transfer rate entering through the surface S
and the total work made by the forces acting on the volume V and on the surface
S, that is:

d

dt

∫
V(t)

(
e+

1

2
uj uj

)
ρ dV =

∫
V(t)

ρ fj uj dV +

∮
S(t)

ti ui dS −
∮
S(t)

qj nj dS

(5.4)
where the total energy per unit volume is: E = ρ

(
e+ 1

2
uj uj

)
; e is the specific

internal energy and q is the vector of heat flux, considered positive as it is outward-
facing the volume V . Note that the total energy is composed by internal energy
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and kinetic energy only, since no other types of energy affect the flow that we
intend to investigate.

The heat flux, using the Fourier’s law, can be related to the temperature gradi-
ent by:

qj = −k ∂T
∂xj

(5.5)

where k is the thermal conductivity of the fluid. Finally, using the stress tensor
definition (Eq. (5.2)), Eq. (5.4) can be written as:

d

dt

∫
V(t)

E dV +

∮
S(t)

p uj nj dS =

∫
V(t)

ρ fj uj dV +

∮
S(t)

(τij ui − qj) nj dS

5.2 Vectorial form of the conservation laws
Mass, momentum and energy equations can be written in a compact, vectorial
form:

d

dt

∫
V(t)

U dV +

∮
S(t)

Pj nj dS =

∫
V(t)

Q dV +

∮
S(t)

Gj nj dS

with:

U =

 ρ
ρui
E

 , Pj =

 0
pδij
puj

 ,

Q =

 0
ρfi
ρfjuj

 and Gj =

 0
τij

τijui + k ∂T
∂xj


The above formulation is based on a fluid element which occupies the volume

V and that moves as the flow-field evolves. The integral conservation principles
can be written for a fixed volume V (bounded by a surface S), if the Reynolds
transport theorem is applied:

d

dt

∫
V

U dV +

∮
S

Fj nj dS =

∫
V

Q dV +

∮
S

Gj nj dS (5.6)

where the vector Fj is defined by:

Fj = Uuj + Pj
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The Reynolds transport theorem for a generic variable φ is:

d

dt

∫
V(t)

φ dV =
d

dt

∫
V
φ dV +

∮
S
φ u · n dS

Eq. (5.6) is the vectorial form of the conservation laws, where U is the vector
of conserved variables, Fj is the vector of the Eulerian fluxes, Gj is the vector
of viscous fluxes and Q is the vector of external forces. Since in the application
we have in mind the volumetric external forces (such as gravity) can be neglected,
from now on the vector Q is zero. The variables ρ, ρui, and E are called con-
served variables because they originate from the conservation laws (i.e., integral
governing equation).

Note that, up to now, no hypotheses upon the nature of the fluid have been
made. In fact, the above conservation laws are valid for a generic fluid and they
can describe a liquid, such as a perfect gas or a supercritical fluid.

The vectorial equation Eq. (5.6) is composed by two scalar equations (mass
and energy) and one vectorial equation (momentum) while it depends on six scalar
variables (ρ, p, T , e, µ, k) and one vectorial variable (u). Thus four fluid property
relations must be added to close the system of equations:

• equation of state: EOS

• energy equation of state: e-EOS

• viscosity equation of state: µ-EOS

• thermal conductivity equation of state: k-EOS

The characterization of the fluid arises from these relations; in case of perfect
gas the following equations of state are considered:

• EOS: p = ρRT

• e-EOS: e = cvT

• µ-EOS: µ = cost

• k-EOS: k = cost

where R is the gas constant and cv is the (constant) specific heat at constant
volume. In case of non perfect gas, more complicated equations of state must be
considered. For example, the equations proposed in App. B and C must be used
in case of cryogenic fluid.

The introduction of EOS permits to relate the fluid properties. As a conse-
quence, the conserved variables U can be assumed as the independent variables
and the fluxes Fj and Gj can be expressed as functions of U : Fj = Fj(U) and
Gj = Gj(U).
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5.3 Finite volume numerical scheme
A finite volume numerical scheme is based on the discretization of the governing
equations written in the integral form (i.e., “conservation law” form).

The physical domain is divided into cells (finite volumes) that are character-
ized by the average value of the flow variables. The average value is advanced in
time by the evaluation of the fluxes at the boundaries of the cell.

5.3.1 1D Euler equation
The finite volume numerical scheme is here illustrated for the one-dimensional
non-stationary Eulerian flow:

d

dt

∫ x
i+1

2

x
i− 1

2

Udξ + Fi+ 1
2
− Fi− 1

2
= 0 (5.7)

that is Eq. (5.6) in case of one-dimensional physical domain and of absence of
viscous fluxes (Gj = 0). In Eq. (5.7), U is the vector of conserved variables and
F is the vector of Eulerian fluxes; Fi− 1

2
and Fi+ 1

2
represent the fluxes evaluated

at the cell interfaces xi− 1
2

and xi+ 1
2

respectively.

Figure 5.1: Generic finite volume in the one-dimensional time/space domain.

Fig. 5.1 represents a one-dimensional time/space domain characterized by the
generic finite volume i, n which is bounded in space by interface xi− 1

2
between
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cells i− 1 and i and by interface xi+ 1
2

between cells i and i+ 1.
The conserved variables average value in a cell is defined as:

Ũi =
1

∆x

∫ x
i+1

2

x
i− 1

2

Udξ

and thus Eq. 5.7 becomes:

dŨi

dt
= − 1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
(5.8)

Integration of the above equation across time step ∆t = tn+1 − tn, gives:

Ũn+1
i = Ũn

i −
1

∆x

∫ tn+1

tn

(
Fi+ 1

2
− Fi− 1

2

)
dτ (5.9)

where Ũn+1
i represents the conserved variables average value in the cell i at

the new time step n + 1 which it can be easily evaluated if a proper estimation
of the fluxes Fi+ 1

2
and Fi− 1

2
is given. In the finite volume scheme a three step

strategy is applied:

• reconstruction of the variables value at the cell interfaces

• local evolution of the solution at the cell interfaces

• evolution of the cell average variables (by Eq. (5.9))

Reconstruction

In the reconstruction step a certain distribution of the variables in the cell must
be provided. In the finite volume scheme proposed by Godunov [17] the cell
variables are considered as piecewise constant (Fig. 5.2) and thus in Eq. (5.9) the
average value Ũ is equal to the local value U .

Using this type of reconstruction the method is first-order accurate in space. If
a linear piecewise reconstruction is used for the variables, a second-order accuracy
in space is reached (Fig. 5.3).

The slope of the linear cell reconstruction is selected with respect to the aver-
age values of the cell Ũi and of the contiguous cell Ũi−1 and Ũi+1. Since the linear
cell reconstruction can originate non-physical oscillations and thus unstable so-
lution, a slope limiter must be employed to ensure the stability of the numerical
scheme (TVD condition). In the present code, a minmod slope limiter has been
considered. If r is the ratio between the slope at the previous cell and the slope at
the actual cell, the minmod limiter is:
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Figure 5.2: Piecewise constant value of the conserved variables.

Figure 5.3: Piecewise linear distribution of the conserved variables.
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Ψ = max (0,min (r, 1))

That is: if the slope sign of the local cell is the same of the previous cell, the
minimum slope is considered for the local cell; otherwise a flat slope is considered
for the local cell (Fig. 5.4).

Figure 5.4: Minmod slope limiter effect on linear piecewise distribution.

Local evolution

In the local evolution step the vector of fluxes at the interfaces must be evaluated.
The Eulerian flux vector Fi+ 1

2
is evaluated by a Riemann problem (see Sec. 5.4)

between the right state UR
i+ 1

2

and the left state UL
i+ 1

2

where UR
i+ 1

2

is the value of

the solution reconstruction in the cell i + 1 at the space abscissa xi+ 1
2

and UL
i+ 1

2

is the value of the solution reconstruction in the cell i at the space abscissa xi+ 1
2
.

The solution of the Riemann problem provides the interface solution URP
i+ 1

2

and

thus the interface flux Fi+ 1
2

= F (URP
i+ 1

2

).
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Global evolution

The solution of the Riemann problem is constant between time tn (initial time of
the Riemann problem) and time tn + ∆t. After that time the waves originated
from the contiguous Riemann problems interact, and thus the interface solution is
not constant any more (Fig. 5.5).

Figure 5.5: Waves originated by Riemann problem at the interface xi+ 1
2
.

If λmax is the fastest wave velocity originated by the Riemann problem, the
time step ∆t must satisfy the condition (called CFL condition):

∆t ≤ ∆x

λmax
(5.10)

where ∆x is the cell spacing. Condition Eq. (5.10) ensures that the solution
at the new time step tn+1 = tn + ∆t is consistent with the previous time step
solution. If the interface fluxes are constant through time ∆t (that is, Eq. (5.10) is
satisfied), Eq. (5.9) can be written as:

Ũn+1
i = Ũn

i −
∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
(5.11)

The above equation represents the third step of the finite volume scheme: the
evolution of the cell average variables. In fact, once the previous time step solution
Ũn
i is known, the new solution Ũn+1

i is evaluated by means of the interface flux
difference Fi+ 1

2
− Fi− 1

2
.
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5.3.2 3D case
Eq. (5.11) is valid for the one-dimensional case. In the three-dimensional case
the generic finite volume is represented by a hexahedral cell (Fig. 5.6) which is
characterized by its volume, the unit vectors orthogonal to the cell surfaces and
the area of the six lateral surfaces.

Figure 5.6: Hexaedral three-dimensional cell.

The six Eulerian fluxes at the cell interfaces must be evaluated to compute the
new time step Ũn+1

i,j,k . The flux at the generic interface is simply evaluated con-
sidering a one-dimensional Riemann problem between the two adjacent cells that
overlook the interface; in particular, the scalar velocity considered in the Riemann
problem (see Sec. 5.4) is the velocity component that is orthogonal to the interface
surface.

5.3.3 Control of time accuracy
Using a linear cell reconstruction a second-order accuracy in space is reached, but
using the time integration of Eq. (5.11) time accuracy is first-order. Time accuracy
can be controlled and augmented by using Eq. (5.8):

dŨi

dt
= − 1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
= F

(
Ũi

)
(5.12)

where the fluxes Fi+ 1
2

and Fi− 1
2
, by means of the Riemann problem, are con-

sidered as functions of the conserved variables vector Ũi. The above expression is
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an ODE (Ordinary Differential Equation) and thus the desired time accuracy can
be reached by classical ODE numerical integrators. The method of integrating the
finite volume scheme by means of Eq. (5.12) is referred to as method of lines.

Considering an explicit integration by means of the Runge-Kutta methods, the
second and third order time accuracy schemes are (neglecting the subscript i and
the tilde˜):

• 2nd order (Heun scheme):

Un+1 = Un +
∆t

2
[F(Un) + F(UI)]

UI = Un + ∆t F(Un)

• 3rd order (Shu-Osher scheme [45])

Un+1 =
1

3
(Un + 2UIV )

UIV = UIII + ∆t F(UIII)

UIII =
1

4
(3Un + UII)

UII = UI + ∆t F(UI)
UI = Un + ∆t F(Un)

In the present code the Shu-Osher time integration has been chosen. Using this
scheme, the stability condition is CFL ≤ 1 where the CFL number is defined as:

CFL =
∆t S

∆x
(5.13)

where S is the maximum wave velocity that originates from the interface Rie-
mann problem. Every finite volume has its time step ∆t:

∆ti = CFL
∆xi
Si

where ∆xi and Si are the local cell spacing and wave velocity. If the global
time step ∆t seen in Eq. (5.12) is the minimum between the entire space domain
at time tn (that is, ∆t = min

i
∆ti), time accuracy is preserved but the smallest cell

(i.e., the one with smallest ∆ti) slows down the time evolution of the biggest cells.
This problem becomes critical in case of stretched grids where the biggest cell can
be 10000 times (or even more) the smallest one. If the steady-state solution is the
only goal of the computation, time accuracy can be sacrificed by considering the
local time step ∆ti for every finite volume. Using this method, convergence to
steady-state solution is reached much faster.
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5.3.4 Viscous fluxes
In case of viscous flow, the viscous fluxes must be added in Eq. (5.7):

d

dt

∫ x
i+1

2

x
i− 1

2

Udξ + Fi+ 1
2
− Fi− 1

2
= Gi+ 1

2
−Gi− 1

2

that is Eq. (5.7) in case of one-dimensional viscous flow where Gi+ 1
2

and
Gi− 1

2
represent the viscous fluxes evaluated at the cell interfaces xi+ 1

2
and xi− 1

2
.

The evaluation of the viscous fluxes is similar to the one of the Eulerian fluxes
since the cell variables (Ũi in case of conserved variables) provide the value of
the variables at the interface (Ui+ 1

2
in case of conserved variables). Finally, the

viscous fluxes are determined by the intercell values: Gi+ 1
2

= G(Ui+ 1
2
). In

case of Eulerian fluxes, the interface value is determined by the Riemann problem
while in case of viscous fluxes a second order central differencing is used and
thus the variables at the contiguous cells are needed (Ũi−1, Ũi, and Ũi+1 in case
of conserved variables):

Gi+ 1
2

= G

(
Ũi+1 + Ũi

2

)
and Gi− 1

2
= G

(
Ũi + Ũi−1

2

)
The stability condition in case of pure viscous flow,

d

dt

∫ x
i+1

2

x
i− 1

2

Udξ+ = Gi+ 1
2
−Gi− 1

2

is:

∆tvisc =
K∆x2

ν

where ∆x is the cell spacing, ν is the kinematic viscosity andK is a coefficient
that must satisfy the condition: K ≤ 0.3. In the present code the integration time
step ∆t is the minimum between the Eulerian time step ∆teul (i.e., CFL condition
Eq. (5.13)) and the viscous time step ∆tvisc. This choice ensures the stability for
both the Eulerian and the viscous fluxes.

5.4 Riemann problem
As already seen in Sec. 5.3, the finite volume numerical scheme is based on the
solution of the Riemann problem. In fact the intercell Eulerian flux Fi+ 1

2
at the

generic interface xi+ 1
2

is the flux evaluated at the intercell variable URP
i+ 1

2

:
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Fi+ 1
2

= F
(
URP
i+ 1

2

)
where URP

i+ 1
2

is the solution of the Riemann problem:

URP
i+ 1

2
= RP

(
UL
i+ 1

2
,UR

i+ 1
2

)
The Riemann problem is the interface solution (x = 0) of the one-dimensional

problem: 
Ut + F (U)x = 0

U(x, t = 0) =

{
UL if x < 0
UR if x > 0

(5.14)

where Ut + F (U)x = 0 is the one-dimensional differential form of the Eu-
lerian conservation law (Eq. (5.6)) and U(x, t = 0) is the initial condition of the
Riemann problem. The interface solution of the problem Eq. (5.14) is a function
of the two piecewise left and right initial conditions UL and UR and thus it is
represented by:

U (x = 0, t) = URP = RP
(
UL,UR

)
The function RP can be evaluated using an exact solver or an approximate

solver. To better comprehend the characterization of the Riemann Problem, in the
next subsections the one-dimensional Eulerian problem for a generic compressible
fluid will be introduced and then some approximate Riemann solver for a generic
fluid will be presented.

5.4.1 1D Euler equation with a generic EOS
The Euler equations in conservative differential form are:

∂U

∂t
+
∂F (U)

∂x
= 0

setting:

U =

 ρ
ρu
E

 , F (U) =

 ρu
ρu2 + p
u(E + p)

 and E = ρ

(
1

2
u2 + e

)

where U is the vector of conserved variables and F (U) is the vector of fluxes.
If e denotes the internal energy, then some law (an Equation Of State) is required
to close the whole system:
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p = p(ρ, e)

In this framework the EOS has density and specific internal energy as inde-
pendent variables. This formulation does not limit the results here presented since
the properties of the Euler equations are not related to the chosen independent
variables of the EOS.

The conservation laws can be also written in the quasi-linear form:

∂U

∂t
+ A(U)

∂U

∂x
= 0

where the Jacobian matrix A(U) is:

A(U) =
∂F (U)

∂U
=

 0 1 0
K − u2 u(2− k) k

(K −H)u H − ku2 u(1 + k)


setting:

H =
E + p

ρ
, k−1 = ρ

∂e

∂p

∣∣∣∣
ρ

and K = a2 + k(u2 −H)

The speed of acoustic waves a is given by the following thermodynamic rela-
tion:

a =

√√√√√√√√
p

ρ2
− ∂e

∂ρ

∣∣∣∣
p

∂e

∂p

∣∣∣∣
ρ

The eigenvalues of the Jacobian matrix A(U) are: λ1 = u − a, λ2 = u and
λ3 = u+ a; the right eigenvectors are:

r1(U ) =

 1
u− a
H − ua

 , r2(U) =

 1
u

H − a2

k

 , r3(U) =

 1
u+ a
H + ua


Note that the generic EOS p = p(ρ, e) must satisfy the physical restrictions:

ρ > 0 and a ∈ <. This latter constraint ensures that all the eigenvectors of the
Jacobian matrix are real (i.e., hyperbolicity of the conservation laws).

In an alternative way, Euler equations can be rearranged and thus may be writ-
ten in a non conservative form, when restricting to smooth solutions. For example,
the primitive variables formulation is:
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∂W

∂t
+ A(W )

∂W

∂x
= 0

where W is the vector of primitive variables and F (W ) is the vector of fluxes
referred to primitive variables:

W =

 ρ
u
p

 , A(W ) =

 u ρ 0
0 u 1/ρ
0 ρa2 u


The left eigenvectors associated to the eigenvalues λ1 = u − a, λ2 = u and

λ3 = u+ a of the Jacobian matrix A(W ) are:

r1(W ) =

 1
−a/ρ
a2

 , r2(W ) =

 1
0
0

 , r3(W ) =

 1
+a/ρ
a2


This formulation has the advantage to be strictly related to the 2nd field invari-

ants, which are the flow variables that are transported across the wave λ2 = u (see
[48] for more information).

Euler equations can also be written using the wave variables formulation:

∂V

∂t
+ A(V )

∂V

∂x
= 0

where V is the vector of wave variables and A(V ) is the Jacobian matrix
referred to the wave variables:

V =

 ϕ
u
s

 , A(V ) =

 u a 0
a u T/ρ cp
0 0 u


where s is the entropy, T is the temperature, cp is the specific heat at constant

pressure, and ϕ is defined as:

dϕ =
a

ρ
dρ

This formulation has the advantage to be strictly related to the 1st and 3rd

field invariants, which are the flow variables that are transported across the wave
λ1 = u− a and λ3 = u+ a respectively (see [48] for more information).

The left eigenvectors associated to the eigenvalues λ1 = u − a, λ2 = u and
λ3 = u+ a of the Jacobian matrix A(V ) are:
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r1(V ) =

 1
−1
0

 , r2(V ) =

 1
0

−
ρa ∂e

∂p |ρ
T

 , r3(V ) =

 1
+1
0


Note that the eigenvalues are always the same, whatever is the set of the vari-

able used to express the governing equations [15].

5.4.2 Riemann problem for a generic EOS
The Riemann Problem is:

Ut + F (U)x = 0

U(x, t = 0) =

{
UL if x < 0
UR if x > 0

In solving the Riemann Problem we shall frequently make use of the vector
W = {ρ, u, p}T of primitive variables, that is:

Wt + F (W )x = 0

W (x, t = 0) =

{
W L if x < 0
WR if x > 0

For the case in which no vacuum is present, the exact solution of the Rie-
mann Problem has three waves which are associated to the three eigenvalues of
the Jacobian matrix of the system: λ1 = u− a, λ2 = u and λ3 = u+ a (Fig. 5.7).

The three waves separate four constant states, which from the left to the right
are WL (data on the left side), W∗L, W∗R, and WR (data on the right side). The
unknown region between the left and the right waves, the star region, is divided
by a contact discontinuity (which is the wave λ2 = u). The left and the right
waves can be either shock or rarefaction waves. Both pressure p∗ and velocity u∗
between the left and right waves are constant, while the density has two constant
values: ρ∗L and ρ∗R. More precisely, the three waves originated from a Riemann
Problem are:

Contact discontinuities

The contact wave is a discontinuous wave associated with the 2nd characteristic
field (λ2 = u) whose Generalized Riemann Invariants are:{

u = const
p = const
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Figure 5.7: Schematic of the generic Riemann problem.

A contact wave is a discontinuous wave across which both pressure and ve-
locity are constant but density jumps discontinuously as do variables that depend
on density, such as specific internal energy, temperature, entropy, etc.

Rarefaction waves

A rarefaction wave is a smooth wave associated with the 1st and 3rd characteristic
field across which ρ, u and p change. The wave has a fan-type shape and is
enclosed by two bounding characteristics corresponding to the head and the tail
of the wave. Across the wave the Generalized Riemann Invariants apply.

The Generalized Riemann Invariants associated with the 1st characteristic field
(λ1 = u− a) are: {

u+ ϕ = const
s = const (5.15)

The Generalized Riemann Invariants associated with the 3rd characteristic
field (λ3 = u+ a) are: {

u− ϕ = const
s = const (5.16)

Eq. (5.15) and Eq. (5.16) are not useful because variable ϕ is a non-physical
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variable which has been introduced with the only goal to write the above Gener-
alized Riemann Invariants in a close form. We want to give an approximate form
of these relations that will allow us to use these relations in Sec. 5.5.

The differential form of the above expressions is:
du±adρ

ρ
= 0

ds = 0

The hypothesis of small differences between the two states across the rarefac-
tion wave is made. This hypothesis is acceptable in case of the Riemann problem
that arises at the interfaces of a finite volume method, since the differences be-
tween two adjacent cells are small.

The speed of sound for a generic fluid is (see Sec. A.5):

a2 =

(
∂p

∂ρ

)
s

=
cp
cv

(
∂p

∂ρ

)
T

= γ

(
∂p

∂ρ

)
T

where γ is the ratio of specific heats and, for a generic fluid, it is a function
of pressure and density: γ = γ(p, ρ). A generic fluid can be modeled in a trivial
way: p = ZρRT where the compressibility factor Z is considered constant. Thus
the speed of sound becomes:

a2 = γ
p

ρ
(5.17)

Using the isentropic transformation law dp = a2dρ (from the definition of the
speed of sound), the relation between pressure and density along an isentropic
transformation is:

dp

p
= γ

dρ

ρ

Moreover, differentiating the speed of sound a2 = a2(p, ρ), the relation du ±
adρ
ρ

can be rearranged in the following way:

du± da

δ
= 0

where δ is a function of pressure and density:

δ(p, ρ) =
1

2

[
ρa

(
∂a

∂p

)
ρ

+
ρ

a

(
∂a

∂ρ

)
p

]
(5.18)
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Finally, the Generalized Riemann Invariants associated with the 1st and 3rd

characteristic field become: 
du± da

δ
= 0

dp

p
= γ

dρ

ρ

In case of perfect gas, γ = cost, δ = (γ− 1)/2, and thus the above expression
can be integrated in a close form:

u± a

δ
= const

p

ργ
= const

(5.19)

In the case of a generic fluid, Eq. (5.19) can also be used if a constant value
for γ and δ is assumed. For example, if a state (referred with ) is known, γ can be
evaluated by means of Eq. (5.17) and δ by means of Eq. (5.18).

Shock waves

The shock wave is a discontinuous wave associated with the 1st and 3rd charac-
teristic field. All three quantities ρ, u and p change across a shock wave. Across
the shock wave the Rankine-Hugoniot conditions apply: given a system of hyper-
bolic conservation laws: Ut + F (U)x = 0 and a discontinuous solution of speed
Si associated with the λi-characteristic field, the Rankine-Hugoniot Conditions
state:

F (UR)− F (UL) = Si(U
R −UL) (5.20)

where UL and UR are the respective states immediately to the left and right
of the discontinuity. The velocity Si must satisfy the entropy condition [48]:

λi(U
L) > Si > λi(U

R)

5.4.3 Approximate riemann solver for a generic EOS
Since the exact solution of the Riemann problem is a non trivial and time con-
suming computation, we want to provide an approximation of the interface so-
lution URP

i+ 1
2

of the Riemann problem (Eq. (5.14)). The need of an approximate
evaluation is critical in the case of a generic fluid where the close form of the
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Riemann problem does not exist. Several approximate Riemann solvers exist for
ideal gas. We decided to extend the PVRS, HLL, HLLC and Roe Riemann Solver
to a generic fluid.

Primitive Variables Riemann Solver (PVRS)

This family of Riemann solvers is based on the linearized form of the Euler equa-
tions, using the primitive variables:

Wt + AWx = 0 (5.21)

where A = A(W ) is the Jacobian matrix evaluated at the constant state W .
Eq. (5.21) is a linear hyperbolic system which is a good approximation of the
non linear Euler equations if it is assumed that the initial data W L and WR and
the solution WRP of the Riemann problem are close to the constant state W .
Eq. (5.21) can be solved considering the Rankine-Hugoniot conditions (Eq. 5.20)
across the waves of speed λ1 and λ3 (where λi are the eigenvalues of the matrix
A). With this assumption the star region solution is:

p∗ =
1

2
(pL + pR) +

1

2
(uL − uR)ρa

u∗ =
1

2
(uL + uR) +

1

2
(pL − pR)/(ρa)

ρ∗L = ρL + (uL − u∗)ρ/a

ρ∗R = ρR + (u∗ − uR)ρ/a

where the constant state W can be given by:

ρ =
1

2
(ρL + ρR) and a =

1

2
(aL + aR)

The Riemann problem is finally given by:

WRP =


W L if 0 ≤ SL

W ∗L if SL ≤ 0 ≤ S∗

W ∗R if S∗ ≤ 0 ≤ SR

WR if SR ≤ 0

where SR, SL, and S∗ are the speeds of the three waves originated by the
Riemann problem which can be computed by the following algorithm:
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SL =

 uL − aL if p∗ ≤ pL

uL +
p∗ − pL

ρL(u∗ − uL)
if p∗ > pL

S∗ = u∗

SR =

 uL + aL if p∗ ≤ pR

uR +
p∗ − pR

ρR(u∗ − uR)
if p∗ > pR

Note that if p∗ < pk (k=L,R), the wave is a rarefaction and then the wave
speed Sk corresponds to the characteristic speed of the head of the rarefaction. If
the wave is a shock (p∗ > pk) then the wave speed corresponds to the shock speed
(as obtained from the mass and momentum Rankine-Hugoniot relations).

This PVRS based on the Rankine-Hugoniot conditions supplies a very good
approximation of the Riemann problem in the case of double shock solution. A
PVRS accurate in the case of double expansion can be formulated by considering
the generalized Riemann Invariants (Eq. (5.15) and (5.16)) instead of the Rankine-
Hugoniot conditions.

HLL Riemann solvers

The central idea is to assume a wave configuration for the solution that consists
of two waves separating three constant states. This assumption is strictly correct
only for hyperbolic systems of two equations. The estimated intercell solution is
given by:

Ui+ 1
2

=


UL if 0 ≤ SL

UHLL if SL ≤ 0 ≤ SR

UR if SR ≤ 0

where SL and SR are the fastest signal velocities perturbing the initial states
left and right and UHLL is the HLL star region, given by:

UHLL =
SRUR − SLUL + F L − FR

SR − SL

and F L = F (UL) and FR = F (UR) are the left and right fluxes. Note that
some assumption must be made to evaluate the velocities SR and SL (see, for
example, the evaluation proposed for PVRS).
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HLLC Riemann solvers

The shortcoming of the HLL scheme is the lack of the contact wave. This defect
may be corrected by restoring the missing wave. This Riemann Solver is the
HLLC scheme where C stands for Contact and is given by:

Ui+ 1
2

=


UL if 0 ≤ SL

U ∗L if SL ≤ 0 ≤ S∗

U ∗R if S∗ ≤ 0 ≤ SR

UR if SR ≤ 0

where the star region estimation is given by:

U ∗k =

 ρ∗k

ρ∗ku∗k

E∗k

 = ρk
(
Sk − uk

Sk − S∗

)
1
S∗

Ek

ρk
+ (S∗ − uk)

[
S∗ +

pk

ρk(Sk − uk)

]


with k=L and k=R.
Note that an evaluation for p∗, u∗, and the wave velocities SR, SL, and S∗

must be provided (see, for example, the evaluation proposed for PVRS).

The Riemann solver of Roe

Roe’s approach replaces the Jacobian matrix A(U) by a constant matrix Ã =
Ã(UL,UR) so that the problem: Ut + ÃUx = 0

U(x, t = 0) =

{
UL if x < 0
UR if x > 0

is a linear system with constant coefficients which can be solved exactly. After
algebra, the intercell flux is:

Fi+ 1
2

=
1

2
(F L + FR)− 1

2

m∑
i=1

α̃i|λ̃i|K̃i

where λ̃i = λ̃i(U
L,UR) are the real eigenvalues and K̃i(U

L,UR) are a
complete set of linearly independent right eigenvalues of the linearized matrix
Ã(UL,UR) and α̃i(UL,UR) are the wave strengths. All these variables are func-
tion of a fictitious tilde state defined as follow:
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

ρ̃ =
√
ρLρR

ũ =

√
ρRuR +

√
ρLuL√

ρR +
√
ρL

H̃ =

√
ρRHR +

√
ρLHL√

ρR +
√
ρL

Note that the pressure p̃ can be obtained by the inversion of the thermodynamic
relation:

H̃ =
1

2
ũ2 + e(p̃, ρ̃) +

p̃

ρ̃

The Roe’s solver gives an entropy violating solution in case of transonic rar-
efaction wave. Thus, the Roe’s solver must be modified so as to avoid entropy
violating solutions. This is usually referred to as an ”entropy fix”.

Note: the four Riemann solver here described have been tested on a simple
one-dimensional Eulerian problem. No appreciable differences between the four
Riemann problem have risen and thus, for the multidimensional computations
presented in the following chapter the PVRS, has been chosen in order to reduce
the time computation. In fact PVRS is one of the simplest Riemann problem
solver that can be implemented in a numerical code.

5.5 Boundary conditions

The Eulerian and viscous fluxes at the interface must be evaluated by considering
the variables in the contiguous cells that overlook the interface. As a consequence,
the interface fluxes at the boundaries of the physical domain cannot be computed
and thus some boundary conditions must be employed.

In the case of viscous fluxes, a “shell” of ghost cells is considered. These ghost
cells surround the physical domain, thus permitting the evolution of the boundary
viscous fluxes. The variables in the ghost cells are assigned depending on the
boundary condition (wall, inflow/outflow, etc.). This approach is valid even for
Eulerian fluxes but in the case of inflow/outflow condition a special treatment is
required: a fictitious Riemann problem at the boundary interface is considered.
This treatment has been adapted for the general fluid case and thus it is presented
in the following subsections.
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5.5.1 Supersonic outflow

In the case of supersonic outflow (u > a) the three waves λ1 = u− a, λ2 = u and
λ3 = u+ a are directed outwards the physical domain (see Fig. 5.8).

Figure 5.8: Schematic of the Riemann problem in case of supersonic outflow.

For that reason the solution at the interface (ρint, uint, and pint) is directly
given by the known inside solution, i.e.:

ρint = ρI
uint = uI
pint = pI

where I means “inside”.
Hence, in the case of supersonic outflow, no boundary conditions must be

provided.

5.5.2 Supersonic inflow

In the case of supersonic inflow (u > a) the three waves λ1 = u− a, λ2 = u and
λ3 = u+ a are directed inwards the physical domain (see Fig. 5.9).

For that reason the solution at the interface (ρint, uint, and pint) is completely
given by the external conditions, i.e.:
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Figure 5.9: Schematic of the Riemann problem in case of supersonic inflow.


ρint = ρO
uint = uO
pint = pO

where O means “outside”.
The outside state must be assigned since it is unknown. In the present code

a typical choice for the supersonic inflow condition has been adopted: stagnation
state and Mach number Ma. This approach is widely adopted because the stagna-
tion inflow condition (for both supersonic and subsonic flow) represents the reser-
voir condition of most practical application (coolant at inlet manifold, hot-gas at
combustion chamber, etc.). The stagnation state (referred with t) is characterized
by two thermodynamic variables (pressure pt and speed of sound at, in the present
code) and it can be related to the static state by means of the following relations: ht = h+

u2

2
= e+

p

ρ
+
a2Ma2

2
st = s

In the case of a generic fluid, the static state (identified by p and ρ) can be
computed from the stagnation state (pt, and at) and the Mach number Ma using
the following algorithm:

• the stagnation density ρt is evaluated by reversing the function at = a(pt, ρt)
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• the stagnation enthalpy ht and entropy st are evaluated by the direct evalua-
tion of the thermodynamic relations ht = e(pt, ρt)+pt/ρt and st = s(pt, ρt)

• solving the non linear system: ht = e(p, ρ) +
p

ρ
+

1

2
a2(p, ρ)Ma2

st = s(p, ρ)

it is possible to determine the static state (p, and ρ), having ht, st and M as
parameters.

5.5.3 Subsonic outflow
In the case of subsonic outflow (u < a) two waves (λ2 = u and λ3 = u + a) are
directed outwards the physical domain while the third (λ1 = u − a) inwards (see
Fig. 5.10).

Figure 5.10: Schematic of the Riemann problem in case of subsonic inflow.

The inside state is known while the outside pressure pO is assigned. To evalu-
ate the interface solution some assumption are made:

• the wave λ1 = u− a is an expansion wave

• p∗I = pO
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These hypotheses are valid as long as the Riemann problem at the outflow
interface is weak (that is, WO 'WI).

By using the relations of Sec. 5.4.2, the interface solution is evaluated as:

ρint = ρ∗I = ρ∗I

(
pO
pI

)1/γ

uint = u∗I = uI +
aI − a∗I

δ

pint = p∗I = pO

where a∗I = a(p∗I , ρ∗I) and γ and δ are computed via Eq. (5.17) and Eq. (5.18),
evaluated at the inside state I .

5.5.4 Subsonic inflow
In the case of subsonic inflow (u < a) two waves (λ2 = u and λ3 = u + a) are
directed inwards the physical domain while the third (λ1 = u − a) outwards (see
Fig. 5.11).

Figure 5.11: Schematic of the Riemann problem in case of subsonic outflow.

The inside state is known while the stagnation pressure pt and stagnation speed
of sound at are assigned as boundary conditions. As seen in Sec. 5.5.2 this im-
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plies that the stagnation enthalpy ht and entropy st are assigned. To evaluate the
interface solution, some assumptions are made:

• the wave λ3 = u+ a is an expansion wave

• the wave λ1 = u − a is adiabatic and isentropic (i.e., ht,O = ht,∗O and
st,O = st,∗O)

These hypotheses are valid as long as the Riemann problem at the outflow is
weak (that is, WO 'WI).

By using the relations of Sec. 5.4.2, the following iterative algorithm must be
employed to find the interface pressure pint = p∗O:

1. a first trial value for p∗O is provided

2. p∗I = p∗O, that is the contact discontinuity λ2 = u relation

3. ρ∗I = ρI

(
p∗I
pI

)1/γ

, that is the expansion wave λ3 = u+ a relation

4. u∗I = uI +
aI − a∗I

δ
, that is the expansion wave λ3 = u+ a relation

5. u∗O = u∗I , that is the contact discontinuity λ2 = u relation

6. ρ∗O, inverting the thermodynamic relation st = s(p∗O, ρ∗O)

7. p∗O must satisfy the thermodynamic relation ht = h(p∗O, ρ∗O) + u2
∗O/2;

otherwise a new value for p∗O is provided and the procedure restarts from
step 2

Once the convergence is reached, the interface solution is:
ρint = ρ∗O
uint = u∗O
pint = p∗O

5.6 Generic EOS
Using a conservative formulation of the governing equation implies that the generic
equation of state must have density and pressure as independent variables:

T = T (ρ, p) (5.22)
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Having ρ and p as the independent thermodynamic variables is not a limitation
since all the fluids of our interest can be modeled in that way. The only constraint
lies in the limit case of perfect liquid (i.e., ρ =const). Expressions similar to
Eq. (5.22) must be considered for the eEOS, µEOS, and kEOS (see Sec. 2.3 and
2.4). Moreover, since the Riemann solver (see Sec. 5.4) and the boundary condi-
tions treatment (see Sec. 5.5) require the evaluation of other variables than temper-
ature, specific internal energy, viscosity and thermal conductivity, more equations
of state must be provided; these extra equations are: the specific heat at constant
pressure EOS, the speed of sound EOS and the entropy EOS.

The thermodynamic properties of the generic fluid are stored in a database.
The use of a database is necessary since the direct evaluation of the properties
in a CFD code is impracticable because the time required to evaluate properties
at one flow condition can be much larger than the time required to complete a
single time step [50]. However the discretization of the thermodynamic properties
must be performed efficiently and accurately; in fact, in subcritical/supercritical
condition fluid properties change dramatically even for small density and pressure
variations.

Figure 5.12: Schematic of the thermodynamic-database grid.

The database for the generic variable A(p, ρ) is given by a two-dimensional
grid with regular discretization ∆p and ∆ρ (Fig. 5.12) where Ai,j is the stored
thermodynamic variable, which is computed from the equation of state A =
A(ρ, p):
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Ai,j = A(ρi, pj)

This kind of discretization permits to find the position i, j of the desired den-
sity ρ and pressure p in a direct and thus very efficient way:

i = Int
(
ρ− ρmin

∆ρ

)

j = Int
(
p− pmin

∆p

)
where Int(<) is the function that gives the integer part of the real number <

and ρmin and pmin are the minimum value of density and pressure of the two-
dimensional thermodynamic grid (i.e., ρmin = ρi=0 and pmin = pj=0). Once
the position i, j is known, the sought value A = (p, ρ) is given by a bilinear
interpolation of the variable at positions i, i+ 1, j, j + 1 (Fig. 5.13):

Figure 5.13: Schematic of the thermodynamic-database grid.

A = a+ b δρ+ c δp+ d δρ δp

where:
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

a = Ai,j

b =
Ai+1,j − Ai,j

∆ρ

c =
Ai,j+1 − Ai,j

∆p

d =
Ai,j + Ai+1,j+1 − Ai+1,j − Ai,j+1

∆ρ∆p

and

δρ = ρ− ρi and δp = p− pi
Since many polynomial form of the equation of state have the form A =

A(ρ, T ) (such as the Van Der Waals and MBWR EOS), this function must be re-
verted to obtain an EOS with pressure and density as independent variables (i.e.,
such as Eq. (5.22)). The inversion can be made by an iterative method such as
the Newton method. Since this operation is made apart from the CFD solver, this
time consuming computation does not affect the efficiency of the CFD numerical
solver.

5.7 Turbulence modeling
The turbulent flow is a flow regime which is characterized by strong fluctuations,
both in time and in space, of velocity, temperature, pressure, etc. These fluctua-
tions are chaotic, non stationary and three-dimensional since they occur both in
the direction of the main flow than in the transversal directions. Eq. (5.6) can
describe laminar flow as well as turbulent flow because it describes every scale
of motion that characterizes the flow behaviour. The difference between lami-
nar and turbulent flow is that the former is characterized by “large” scales only
while the latter is characterized by both “large” and “small” scales. Moreover, the
“small” scales of motion that characterize the turbulent flow cannot be neglected
because they influence the average main flow (biggest scales of motion). In fact,
the “small” scales transport and dissipate the energy of the main flow. Unfortu-
nately, in case of turbulent flow, extremely fine computational grids are necessary
to capture the smallest scales of motion and thus the computer resources do not
suffice to describe the turbulent phenomena. This limitation of Eq. (5.6) relies on
the fact that, in case of turbulent flow, the computational grid must have dimen-
sion proportional to Re3 while in usual problems Re = 106−109. For that reason
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a turbulence modeling to describe the macroscopic effect of the “small” scales is
generally adopted while Eq. (5.6) describes the biggest scales (i.e., average main
flow). This simplified approach is adopted considering the generic variable φ as
composed by two part: a mean value φ and a fluctuation (in time) φ′:

φ = φ+ φ′

where

φ(t) =
1

T

∫ +T/2

−T/2
φ(t+ τ)dτ

and time T is much bigger than the period of turbulent fluctuations. The above
decomposition is called Reynolds average modeling and the averaged Eq. (5.6) are
called Reynolds Averaged Navier Stokes (RANS) equations. In case of compress-
ible flow the Favre decomposition is used:

φ = φ̃+ φ′′

where

φ̃(t) =
ρφ

φ
=

1

T

1

ρ

∫ +T/2

−T/2
ρ φ(t+ τ)dτ

where φ̃ is the average value and φ′′ is the fluctuation. Using this decom-
position on Eq. (5.6), the governing equations are called Favre Averaged Navier
Stokes (FANS) equations [51]. These equations present an additional term in the
momentum and energy equation:

−ρ ũ′′i u′′j and ρ ũ′′jh
′′

called Reynolds stress tensor and Reynolds flux, respectively. These terms
represent the macroscopic effect of the turbulent fluctuations (u′′i and h′′) which
must be modeled using a proper turbulence model. Bussinesque supposed that the
Reynolds turbulent terms can be related to the velocity and temperature gradients
(as for the Newtonian-fluid law Eq. (5.3) and the Fourier’s law Eq. (5.5)):

− ρ ũ′′i u
′′
j = µT

(
∂ũi
∂xj

+
∂ũj
∂xi

)

ρ ũ′′jh
′′ = − kT

∂T̃

∂xj
= −µT cp

PrT

∂T̃

∂xj

where µT and kT are the turbulent dynamic viscosity and thermal conductivity
which can be related via the turbulent Prandtl number:
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PrT =
µT cp
kT

where cp is the specific heat at constant pressure; a reasonable value for PrT
is 0.9. Differently from the molecular properties (µ and k), the turbulent dynamic
viscosity and thermal conductivity are not properties of the fluid, since they are
related to the flow behaviour and they can be much higher than the molecular
properties: µT � µ and kT � k. For that reason turbulent flow is considerably
different than laminar flow (in which µT = kT = 0).

The turbulence models that use the hypothesis of Bussinesque are called “eddy
viscosity models” and they must provide a reasonable evaluation of the turbulent
property µT (while kT can be evaluated considering a constant value for PrT ).
The eddy viscosity model can be algebraic (also called “zero equation model”) or
can be described by one equation or two equations. A typical zero equation model
is the Baldwin-Lomax model [4]; it has the advantage of a direct evaluation of the
turbulent properties and thus it requires low computational cost. Two equations
models are the k − ε model [27] and k − ω model [52] in which two transport
equations are employed: one to describe the behaviour of the turbulent kinetic
energy k and one to describe the dissipation of the kinetic energy that occurs at
the smallest scales of motion.

In the adopted numerical scheme the one-equation Spalart-Allmaras [46] tur-
bulence model has been used. This one equation model affects the computational
time much more than an algebraic model, but it was chosen because it is strictly
“local” in the sense that the coefficients in the equations depend only on quantities
that can be computed from the distance to the nearest wall and from the velocity
field and its gradient in each point. This property is important when, as in the
rectangular channel flow, geometrical configurations include more than a single
wall. Zero equation models does not provide these advantages.

5.7.1 Spalart-Allmaras model
In the one-equation Spalart-Allmaras model [46] the kinematic turbulent viscos-
ity νT = µT/ρ is computed by a partial differential equation. In particular, this
equation is a function of the intermediary variable ν̃ that is related to νT by:

νT = ν̃ fv1(χ)

where χ is the ratio between the two kinematic viscosities, χ = ν̃/ν, and fv1

is a damping function:

fv1(χ) =
χ3

χ3 + c3
v1
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The constant cv1 is set equal to 7.1.
The partial differential equation that describes the behaviour of the intermedi-

ary variable ν̃ is:

Dν̃

Dt
= bprod(S, ν̃, d)− bdest(ν̃, d) +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2] (5.23)

where S is the modulus of the vorticity, d is the distance from the wall and σ is
set equal to 2/3. The last term of Eq. (5.23) is the diffusion term and the constant
cb2 is calibrated to 0.662. The functions bprod and bdest describe the production
and destruction of the turbulent viscosity. In the Spalart-Allmaras model, the pro-
duction of turbulent viscosity is related to the vorticity. This is a good assumption
for the flow close to the wall.

The production function is:

bprod = cb1 S̃ ν̃

where

S̃ = S +
ν̃

κ2d2
fv2(χ)

and fv2 is a second damping function:

fv2(χ) = 1− χ

1 + χfv1(χ)

and κ is the Von Karman constant (κ = 0.41). The calibration constant cb1 is
set equal to 0.135.

The destruction function is directly related to the wall distance d:

bdest = cw1fw(r)

(
ν̃

d

)2

where r is a characteristic length:

r =
ν̃

S̃κ2d2

and the function fw(r) is:

fw(r) = g(r)

[
1 + c6

w3

g6(r) + c6
w3

]1/6

where:
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g(r) = r + cw2

(
r6 − r

)
The calibration constants are:

cw1 =
cb1
κ2

+
1 + cb2
σ

cw2 = 0.2
cw3 = 2

where cw1 has been chosen to balance the production and destruction term.
Since a finite volume numerical scheme has been adopted, the turbulence

equation Eq. (5.23) must be written in the “conservative law” form (i.e., integral
form for a fixed volume):

d

dt

∫
V
ν̃ dV +

∮
S

ESAdS −
∮
S

RSAdS −
∫
V

GSAdV =

∫
V

HSAdV

where GSA (expressed in non-conservative form) and RSA (expressed in con-
servative form) are the diffusion terms, ESA (expressed in conservative form) is
the convective term and HSA is the production term (it is a source term expressed
in non-conservative form):

GSA =
cb2
σ

(∇ν̃)2

RSA =
ν + ν̃

σ
∇ν̃ · n

ESA = ν̃ (u · n)

HSA = bprod(S, ν̃, d)− bdest(ν̃, d)

The above equation can be integrated as seen in Sec. 5.3.



Chapter 6

Validation

With advances in computing power, engineers increasingly rely on modeling and
simulation for the design, analysis, and certification of engineering systems. Vali-
dation provides the primary means by which the overall accuracy of computational
simulations can be assessed. Validation can be separated into two parts, code vali-
dation and solution validation. Code validation is used to find coding errors in the
discrete solution to a given set of governing equations and boundary conditions.
Code validation can be assessed by comparison to exact analytical solutions, com-
parison to highly accurate numerical benchmark solutions, and code-to-code com-
parisons. Solution validation (or numerical error assessment) is concerned with
quantifying the numerical error of a given simulation. Solution validation should
be performed for each application of the code that is significantly different than
previous applications. For steady-state problems, the two main aspects of solution
validation are iterative convergence and grid convergence. The former deals with
the marching of a solution in pseudo-time toward a steady-state, whereas the lat-
ter addresses the adequacy of the mesh on which the discrete equations are being
solved. The spatial order of accuracy is also an important metric for assessing the
errors due to spatial resolution.

In this chapter, code validation and solution validation have been performed on
two-dimensional turbulent test cases for both perfect gas and supercritical fluid.
Solution verification has been achieved by an analysis of iterative convergence
and grid convergence (for both perfect gas and supercritical fluid). These solu-
tions have been compared with analytical solution, thus providing the validation
of the code. At last, the code has been also validated by means of literature solu-
tion concerning a two-dimensional channel flow that presents some topics of the
“actual” three-dimensional flow in cooling channels (such as supercritical fluid
and strong wall temperature gradient).
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6.1 Turbulent flat plate: perfect gas
In Chap. 5 a finite volume numerical scheme able to treat a general fluid described
by a tabular EOS has been presented. The numerical scheme has been imple-
mented on an pre-existing home-made finite volume numerical tool for perfect
gas [16].

In this section we want to demonstrate the grid convergence and to compare
the numerical solution with analytical solution for the original code, that is, perfect
gas case with the EOS considered in the analytical close form. The numerical test
case considered here is the low-Mach number turbulent flow on a flat plate for
Reynolds number (based on the flat plate length) Re = 107. The considered fluid
is the air treated as a perfect gas. The computational domain is a rectangle whose
length is 3, width is 1 and the leading edge is 1.5 dimensionless units from the
inlet section (Fig. 6.1). The no-slip condition is applied to half length of the lower
side while the symmetry condition to the remaining part.

Figure 6.1: Computational mesh in dimensionless units.

The subsonic inflow is characterized by the stagnation pressure p0 = 1.02828 bar
and the stagnation speed of sound a0 = 348.57 m/s (that is, T0 = 302.4 K) while
the subsonic outflow is characterized by the static pressure p = 1 bar. As a con-
sequence, the flow far from the wall has a Mach number Ma = 0.2. Finally, the
wall of the flat plate is adiabatic.

The numerical solutions were computed on three grid levels, the finest mesh
being 64x64. The medium and coarse levels were obtained by removing every
other vertex from the previous finer level, that is grid halving. The cells are clus-
tered to the wall using a hyperbolic function in the whole boundary layer. The law
parameters are set to yield a fine mesh width ∆ymin at the wall and ∆ymax in the
far field. More details about the meshes used are reported in Tab. 6.1.
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nxm mesh 64x64 (fine mesh) 32x32 (medium mesh) 16x16 (coarse mesh)
∆ymin 0.5 10−5 1.1 10−5 2.7 10−5

∆ymax 0.087 0.173 0.340

Table 6.1: Characteristic data of meshes, in dimensionless units.

The dimensional lengths can be assessed by imposition of the Reynolds num-
ber (Re = 107). For these flow conditions the unit non-dimensional length is
equal to 1.5m and thus, for example, ∆ymin of the finest mesh (64x64) is 7.5 µm.

The qualitative convergence behaviour for the dimensionless velocity profile
in a selected test section is reported in Fig. 6.2. This section, which is located at
1.3125 unit from leading edge, is far enough from the leading edge to consider
the local flow sufficiently non affected by the leading edge effects and thus the
existence of a similar non-dimensional velocity profile is guaranteed.

Figure 6.2: Numerical and exact-analytical solution for the turbulent boundary
layer.

The non-dimensional velocity profile is a similar solution that occurs in turbu-
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lent boundary layer along a flat plate and for a compressible fluid, i.e. ρ = const,
(see [29] for more details). The present test case has been performed for an incom-
pressible fluid, i.e. ρ 6= const but, as a matter of fact, a low-Mach number flow
is almost a constant-density flow, i.e. ρ ' const. As a consequence, the obtained
solutions can be compared with the incompressible turbulent velocity profile.

The similar solution can be achieved if velocity and transversal axis (y-axis)
are related to the friction velocity:

u∗ =

√
τw
ρ

and the characteristic length

y∗ =
ν

u∗

where τw is the skin friction at wall and ν is the kinematic viscosity.
In the laminar sublayer, that is the layer close to the wall in which, due to the

law velocity, the turbulent viscosity can be neglected, the dimensionless velocity
profile is:

u+ = y+ for y+ ≤ 7

where u+ and y+ are the dimensionless velocity and length. This solution is
called linear law.

Sufficiently far from the wall, the turbulent viscosity is much superior than the
molecular viscosity. As a consequence, molecular viscosity can be neglected and
the dimensionless velocity profile is:

u+ =
1

κ
ln (y+) +B for y+ ≥ 30

where κ is the Von Karman constant (κ = 0.41) and the coefficient B is set
equal to 5.5. This solution is called logarithmic law.

Fig. 6.2 exhibits a good agreement between the exact-analytical solution and
the numerical solution. Moreover, numerical solution converges to the exact solu-
tion asymptotically, that is, as grid is refined the error between the numerical solu-
tion and the continuum solution decreases. These results, good approximation of
the exact solution and asymptotic grid convergence, guarantee both solution and
code validation.

Now we want to provide a quantitative estimation of the grid convergence er-
ror. This estimation can be computed by means of the Richardson extrapolation
[40]. The Richardson extrapolation procedure is a technique in which three dis-
crete solutions on different grid levels are used to obtain a solution extrapolated to
the zero mesh size. These Richardson extrapolated values can be used as a more
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accurate solution, or more important, as an approximation to the exact continuum
solution, which can then be used to obtain error estimates in the discrete solutions.
The underlying assumption in the Richardson extrapolation procedure is that the
discrete solution f on a mesh level k have a single dominant error term of order
p, that is:

fk = fexact + gph
p
k +O(hp+1

k ) (6.1)

where fexact is the exact continuum solution, gp is the coefficient of the p-th
order term and hk is some measure of the grid spacing on mesh level k. Validation
of the numerical code can be assessed if the order p approximates the spatial
order of accuracy of the numerical scheme. When three discrete solutions with
a constant grid refinement factor (r = h2/h1 = h3/h2) are used, the system of
equations found from the above equation can be solved for the order of accuracy
to give the following relationship:

p =
ln ε32/ε21

ln r

where ε21 and ε32 represent differences between the discrete solutions:

ε21 = f2 − f1 and ε32 = f3 − f2

Finally, an extrapolated estimation of the exact solution can be given by:

fexact =
rpf1 − f2

rp − 1

The required condition for applying general Richardson-type extrapolation is
that the grids are sufficiently refined to be in the asymptotic grid convergence
range, that is, the higher-order term in the Eq. 6.1 is small. Since numerical solu-
tions were obtained for three grid refinement levels by grid halving, from mesh 1
(64x64, fine mesh) to mesh 3 (16x16, coarse grid), the refinement factor is r = 2.

The quantitative convergence behaviour for the skin friction coefficient Cf in
the selected test section is reported in Table 6.2.

Cf,16x16 0.2693
Cf,32x32 0.2526
Cf,64x64 0.2493
Cf,extra 0.2485

p 2.3342

Table 6.2: Cfx100 and measured order of accuracy p at x = 1.3125.
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It is evident that the numerical solutions are in the asymptotic range and that
the measured order of accuracy of the numerical solution is close to the formal
order of accuracy of the numerical scheme (pformal = 2).

Note that, in order to compute the order of accuracy and the extrapolated es-
timation of the exact solution, the point value of the solution at each level was
interpolated on the vertex of the coarsest grid by means of a bilinear interpolation
(note that, the scheme being cell centered, the control points for different grid
levels do not coincide). This operation affects the numerical solution by a second-
order error term whose coefficient is the same for each grid size; therefore this
interpolation does not corrupt the accuracy of the numerical solution.

Analysis of the spatial order of accuracy is a good evidence of the solution
validation, even if iterative convergence analysis should be also provided. The
standard method for assessing iterative convergence is to monitor the L2 norms
of the residuals for the governing equations over the entire domain. The residuals
should approach zero as iterative convergence is achieved.

Figure 6.3: Mass equation residual for the three mesh refinements.

A solution can be considered fully iteratively converged, within the precision
of the computer used, when the residuals are reduced to machine zero (approxi-
mately 15 orders of magnitude for a double-precision computer). However, the
practice of monitoring iterative convergence does not necessarily provide infor-
mation on the iterative error in a given flowfield quantity but the reduction of
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the residuals to machine zero provides confidence that the iterative errors in the
solution variables are small. Furthermore, for engineering calculations, it is not
always necessary, or even possible, to converge the solution to machine zero.

The iterative convergence behaviour for the three mesh refinements is pre-
sented in Fig. 6.3 for the mass equation residual defined by:

1

N

N∑
i=1

∣∣∣∣ρn+1 − ρn

tn+1 − tn

∣∣∣∣
where the sum in the above relation is extended over the entire finite volumes

N of the grid and n is the generic iteration in the pseudo-time t. For this test
case the mass equation residual has been reduced by approximately 12 orders of
magnitude on all grid levels and it converges to machine zero by approximately
500000 iterations for coarsest grid and 2000000 for finest grid. The larger number
of iterations for this downstream location is indicative of the hyperbolic nature of
the problem.

6.2 Effect of the EOS discretization
In this section we want to demonstrate that the finite volume numerical scheme for
a generic fluid described in Chap. 5, reproduces the perfect gas case as accurately
as the pre-existing numerical tool for perfect gas [16]. As a matter of fact, this
comparison is a code-to-code comparison and thus it is an important assessment in
demonstrating that the numerical method presented in Chap. 5 is well formulated
and that its implementation has been performed without relevant coding errors.
Moreover, since the EOS must be provided in a tabular form having density and
pressure as independent variables (see Sec. 5.6), the code-to-code comparison
will also give an estimation of the error introduced by the discretization of the
equations of state.

The code-to-code comparison has been performed on the same two-dimensional
turbulent flat plate flow presented in Sec. 6.1, using the medium size mesh 32x32.
Three numerical solutions have been performed, each one characterized by a dif-
ferent discretization of the EOS (see Tab. 6.3).

Density discretization step is refined from EOS mesh 1 (∆ρ = 0.10 kg/m3)
to EOS mesh 3 (∆ρ = 0.01 kg/m3) while pressure discretization step is fixed
(∆p = 2000 Pa). We decided to focus on density discretization only because the
exact solution of the flat plate flow is p = const and thus pressure discretization
affects the numerical solution in a minor way.

The dimensional velocity profiles in the test section (Sec. 6.1) for the three
tabular-EOS solutions and the analytical-EOS solution are shown in Fig. 6.4.
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EOS mesh ∆ρ [kg/m3] ∆ρ/ρ ∆p [Pa] ∆p/p
1 0.10 8.6% 2000 2%
2 0.05 4.3% 2000 2%
3 0.01 0.9% 2000 2%

Table 6.3: Density and pressure discretization step for the computed solution and
their percentage value with respect to the flat-plate, low-Mach solution: p = 1 bar,
ρ ' 1.16 kg/m3.

Figure 6.4: Velocity profiles at the test section, for the tabular-EOS solutions and
the analytical-EOS solution.
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Differences between these solutions are almost not discernible from Fig. 6.4.
However, the error of the tabular-EOS solutions with respect to the analytical EOS
solution is not negligible; for example at the height y = 7.5 10−5 m the velocity
errors are summarized in Tab. 6.4.

EOS mesh velocity error
1 1.3%
2 0.4%
3 0.3%

Table 6.4: Velocity percentage error with respect to the analytical-EOS solution,
in the test section and height y = 7.5 10−5 m.

Concerning the skin friction coefficient, its error with respect to the analytical-
EOS is reported in Tab. 6.5.

EOS mesh Cf error
1 0.12%
2 0.06%
3 0.03%

Table 6.5: Cf percentage error with respect to the analytical-EOS solution, in the
test section.

The Cf error is very small since a discretization density step ∆ρ/ρ of 8.6%
(mesh 1) produces a 0.12% error in the skin friction coefficient. This little influ-
ence of the EOS table discretization on the numerical solution (with special regard
to the wall variables) is very promising and thus wall parameters (such as skin
friction and heat transfer coefficient) can be computed with enough confidence
for engineering applications. However, the discretization of the thermodynamic
properties must be performed accurately, especially in the transcritical fluid con-
dition since fluid properties change dramatically (and often they present a peak
value) even for small density and pressure variations.

6.3 Turbulent flat plate: supercritical fluid
In Sec. 6.2 the present numerical code has demonstrated the capability to describe
a perfect gas flow (described by means of a tabular EOS) within the same accu-
racy of solution obtained by means of standard numerical tool (i.e., tools using
the analytical perfect gas EOS). Now we want to validate the numerical code and
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the solution in the case of supercritical fluid (i.e., high density fluid). In partic-
ular, we will demonstrate that the present numerical code maintains the formal
spatial order of accuracy (i.e., 2nd order) even in the case of supercritical fluid and
that the obtained solution well approximates the analytical solution. These results
will be achieved using the same analysis (Richardson extrapolation and compar-
ison with incompressible analytical solution) and the same geometrical test case
(two-dimensional flat plate) already seen in Sec. 6.1. Moreover, similarly to the
cited test case, a low Mach number turbulent flow on a flat plate with a Reynolds
number Re = 107 has been considered. The fluid is the methane described by the
equation of state presented in App. C. Since the Reynolds number is the same of
the test case presented in Sec. 6.1, the dimensionless geometry of meshes remains
unchanged (see Tab. 6.1). The subsonic inflow is characterized by the stagnation
pressure p0 = 80 bar and the stagnation speed of sound a0 = 440 m/s (that is,
T0 = 300 K) while the subsonic outflow is characterized by the static pressure
p = 77.78 bar. As a consequence, the flow far from the wall has a Mach number
Ma = 0.2. Finally, the wall of the flat plate is adiabatic. Imposing the Reynolds
number Re = 107 for this flow conditions, the unit non-dimensional length is
equal to 17.2 mm; for example ∆ymin of the finest mesh (64x64) is 0.086 µm.

Figure 6.5: Numerical and exact-analytical solution for the turbulent boundary
layer.
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The qualitative convergence behaviour for the dimensionless velocity profile
in the selected test section (located at 1.3125 unit from the leading edge) is re-
ported in Fig. 6.5. This figure exhibits a good agreement between the exact-
analytical solution for the incompressible flow and the numerical solution. More-
over, numerical solution converges to the exact solution asymptotically. These re-
sults guarantee both solution and code validation for the supercritical high-density
flow regime and thus give confidence on the results presented in the next chapter.

Al already see in Sec. 6.1, a quantitative estimation of the grid convergence
error is given by Richardson extrapolation procedure applied to the skin friction
coefficient Cf (see Tab. 6.6).

Cf,16x16 0.2765
Cf,32x32 0.2559
Cf,64x64 0.2505
Cf,extra 0.2485

p 1.9200

Table 6.6: Cfx100 and measured order of accuracy p at x = 1.3125.

It is evident that the numerical solutions are in the asymptotic range and that
the measured order of accuracy of the numerical solution is close to the formal
order of accuracy of the numerical scheme (pformal = 2). To reduce to a minimum
influence the effect of the EOS discretization on the numerical solution, the EOS
have been discretized with a very high accuracy: ∆ρ/ρ = 0.03% and ∆p/p =
0.05%.

6.4 2D channel test case
In this section we want to validate the present numerical tool using literature so-
lutions concerning two-dimensional channel flow that presents some topics of the
“actual” three-dimensional flow in cooling channels (such as supercritical fluid
and strong temperature gradients). This validation has been performed using the
CFD results presented for a 2D test case by Wennerberg et al. [49]. In the lit-
erature it is not easy to find numerical or experimental solutions of real fluid in
a channel with a strong wall temperature gradient. The test case concerns two-
dimensional flow with asymmetric heating as shown in Fig. 6.6: the cold wall is
adiabatic, while the hot is at T = 900 K. The duct has a length to height ratio
L/D = 50 and the flow Reynolds number based on D is 42000. An inviscid
wall is assumed before the channel entry, in order to have the same boundary con-
ditions provided in Ref. [49]. The considered fluid is the supercritical nitrogen,
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its inlet temperature is 152.8 K and its inlet pressure is 7.6 MPa (note that the
nitrogen critical point is Tc = 126.5 K and pc = 3.399 MPa).

Figure 6.6: Geometry and boundary conditions for asymmetrically heated two-
dimensional channel flow (the plot is not in scale: channel height is enlarged 10
times with respect to channel length).

Unfortunately some data necessary to reproduce the test case are not avail-
able. In particular, the exit pressure and the equation of state used for supercritical
nitrogen are not provided in Ref. [49]. For that reason the validation has been
performed only on a quality level, assuming an exit pressure of 5.3 MPa which
has been chosen on the basis of the exit velocity profiles presented in Ref. [49].
Moreover, a channel height of 0.035 mm has been obtained from Reynolds num-
ber and the inlet density and viscosity. For the present computations both the Van
Der Waals equation of state and a fictitious perfect gas law are assumed for the
supercritical nitrogen. The computational grid is made of 151(stream direction)
x 64(cross direction) volumes, which are clustered toward the walls to accurately
describe the turbulent boundary-layers.

The results obtained for both perfect gas and supercritical fluid assumption
are shown in Fig. 6.7 and Fig. 6.8. In particular, the exit velocity and tempera-
ture profiles are shown in Fig. 6.7 where also results of Ref. [49] are shown for
the sake of comparison. The present code well reproduces the reference velocity
profiles (both for perfect gas and real fluid) and the temperature profile, showing
the typical velocity peak near the hot wall caused by the expansion of the heated
fluid.

The Mach number and density profiles on the channel centerline (both for
perfect gas and real fluid) are shown in Fig. 6.8. A maximum difference of 5% in
the Mach number between the present and reference simulations is probably due
to the uncertain inlet/outlet conditions, while the large differences on the density
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(a) Velocity profiles at channel exit for super-
critical nitrogen and perfect gas.

(b) Temperature profile at channel exit for su-
percritical nitrogen.

Figure 6.7: Comparison between the present computations and the results pub-
lished in Ref. [49].

(a) Mach number profiles on channel centerline
for real fluid and perfect gas.

(b) Density profiles on channel centerline for
real fluid and perfect gas.

Figure 6.8: Comparison between the present computations and the results pub-
lished in Ref. [49].
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profile of the real fluid is due to the inaccuracy of the Van Der Waals equation
of state; in fact the density profiles for the trivial case of perfect gas are in good
accuracy. Moreover, the density error of the Van Der Waals equation with respect
to the online NIST database [2] in the nitrogen supercritical range can be as large
as 30%.



Chapter 7

3D results

In this chapter, three-dimensional straight channel flow is analyzed using the CFD
code presented in Chap. 5 and 6. The selected working fluid is the methane in its
subcritical/supercritical thermodynamic state; more precisely, pressure is super-
critical while temperature is transcritical. This is the typical methane flow regime
in cooling channel (see Sec. 2.5.1). Many computations with different inflow con-
ditions (in terms of stagnation pressure and temperature) and wall temperature
distribution have been performed in order to analyze their effect on coolant flow
behaviour (velocity field, temperature stratification, etc.) and on coolant perfor-
mances (pressure loss, wall heat flux, etc.). Moreover, the aspect ratio effect has
been analyzed considering different aspect ratios (from 1 to 8) for each test case.

7.1 Test cases description

To show the channel aspect ratio effect, four different cross section geometries
have been considered. More precisely, the channel sections have the same area
while the base and the height are varied in order to get different aspect ratios: 1,
2, 4, and 8. The channel area is kept constant with the intent on comparing flows
with the same mass flow rate if the inflow, outflow, and wall boundary conditions
are kept constant. Obviously this intent is not fulfilled since the aspect ratio has
a strong effect on the skin friction and heat flux affecting the flow and thus has
a strong effect on the entering mass flow rate. However, the choice to have con-
stant cross sectional area seems to be appropriate as it permits to compare cooling
systems with the same weight (see Sec.3.6).

The cross sectional area is A = 0.08 mm2 and the length of the channels,
which is constant for all test cases, is L = 30 mm. Since

√
A/L ' 100 it

is possible to say that the channel is long enough to ensure that, sufficiently far
from the inlet section, the flow is fully developed. This means that the flow is

121
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not affected by the inlet configuration (in case of rocket engine applications, it
is the type of connecter between coolant manifold and cooling channels). The
dimensions of the four channel geometries are summarized in Tab. 7.1.

AR A [mm2] L [mm] b [mm] h [mm]
1 0.08 30 0.2828 0.2828
2 0.08 30 0.2 0.4
4 0.08 30 0.1414 0.5657
8 0.08 30 0.1 0.8

Table 7.1: Channel dimensions (in terms of cross area A, length L, base b, and
height h) for the selected aspect ratios.

Channel dimensions are much smaller than in actual application; in fact, the
height of a “real” cooling channel with high aspect ratio (that is AR > 4) is typ-
ically around 1 cm while in our computations the maximum height is ten times
smaller. Small dimensions have been selected with the intent on reducing the flow
Reynolds number (based on the hydraulic diameter) to one order of magnitude.
In fact the high Reynolds number of the actual rocket engine cooling channels
(up to 4 · 106 in case of hydrogen channel flow [14]) represents a computational
challenge because of the very thin boundary layers, thus requiring extremely fine
grids and long computation times [50]. To avoid these difficulties, without loos-
ing sight of the main phenomena that occur in cooling channels, the dimensions of
the channel have been selected so that the maximum Reynolds number is 3 · 105.
However, the computed channel flows show many features of the “real” cooling
passages: high aspect ratio of the cross section (defined “high” when greater than
4), high wall temperature differences that induce thermal stratification, and re-
alistic flow conditions (supercritical pressure and transcritical temperature). Six
test cases have been considered: three having the same inlet stagnation pressure
while inlet stagnation temperature varies and three having the same inlet stagna-
tion temperature while inlet stagnation pressure varies. Exit pressure is the same
for the six test cases. Concerning wall temperature distribution, on the hot side
(that is the bottom wall) the imposed wall temperature is 600K (for all test cases),
while on the cold side (that is the top wall) the imposed wall temperature is equal
to the stagnation inlet temperature of the coolant. Then a linear distribution of
temperature is imposed on the side wall to simulate the fin effect. The boundary
conditions for the six test cases are summarized in Tab. 7.2. Note that the cold
side wall temperature is equal to the stagnation inlet temperature to simulate the
adiabatic wall condition of the “real” cooling channels. In fact, to avoid a discon-
tinuity of the wall temperature distribution, the direct imposition of the adiabatic
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wall condition on the top wall has not been considered. As a consequence of this
choice, a non-zero heat flux is present on the top wall.

Test Case p0,in [bar] T0,in [K] pexit [bar] Tw,cold [K] Tw,hot [K]
1 90 220 70 220 600
2 90 183 70 183 600
3 90 130 70 130 600
4 90 180 70 180 600
5 100 180 70 180 600
6 110 180 70 180 600

Table 7.2: Boundary conditions for the six test cases.

Every geometric configuration is characterized by a three-dimensional com-
putational grid composed by NxMxL volumes in order to discretize the coolant
flow along the base (N volumes), the height (M volumes) and the length (L vol-
umes) of the channel. Since the flow is symmetric with respect to the vertical
centerplane, only one-half of the physical domain is discretized and a symmetric
flow condition is imposed as boundary condition on the channel centerplane. The
NxMxL volumes are clustered near the walls to accurately describe the turbulent
boundary layers (i.e., the non-dimensional parameter y+ at wall must be of or-
der 1). The mesh distribution of the four geometric configurations are shown on
Fig. 7.1 and their computational dimensions are summarized in Tab. 7.3.

(a) Cross sectional meshes of the four channel
configurations.

(b) 3D mesh of the generic channel configura-
tion (the figure is not in scale).

Figure 7.1: Computational meshes schematic.
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AR N/2 (base) M (height) L (length)
1 25 50 30
2 24 50 30
4 22 54 30
8 20 60 30

Table 7.3: Number and distribution of the volumes used to discretize the four
channel configuration.

7.2 Flow description
In this section the flow behaviour of the methane inside cooling channel is de-
scribed. This description is based on test case 3 with particular regard to the
highest aspect ratio configuration (that is, AR= 8). This test case is of great inter-
est since flow conditions reproduce the real methane working conditions in rocket
cooling channels (see Sec. 2.5.1). In fact, methane enters the channel having a
supercritical stagnation pressure p0,in = 90 bar and a subcritical stagnation tem-
perature T0,in = 130 K while wall temperature ranges from 600 K at the hot-side
to the nearly adiabatic value 130 K at the cold-side.

The peculiar three-dimensional behaviour of the flow is shown by pressure,
temperature, density, streamwise velocity, specific heat at constant pressure, speed
of sound, compressibility factor and Mach number fields in Fig. from 7.2 to 7.9.
These figures show the evolution of the variables at different sections, from the
inlet toward the exit, which are located every 5 mm along the channel streamwise
direction.

Methane enters the channel in a subcritical liquid-like state (its density is over
400 kg/m3) and along the channel it is accelerated by hot wall heating, thus creat-
ing an asymmetric behaviour of the flow. However, the pressure distribution (see
Fig. 7.2) is one-dimension like, regardless of the evident three-dimensional ge-
ometry of the channel and of the asymmetric thermal boundary conditions. This
behaviour, induced by constant sectional area of the channel, characterizes all the
24 three-dimensional computations performed in this framework.

Fig.7.3 shows temperature stratification at different cross sections: note that
the high temperature flow region, induced by the hot wall boundary conditions,
grows as the fluid moves from the inlet to the exit section but it remains close to the
hot wall along the whole length. For that reason, the fluid far from the bottom wall
is nearly at the inlet condition and a pronounced thermal stratification occurs. This
effect is due to the high inertia of the flow with respect to the thermal diffusivity
of the coolant flow. Since the inertia is high when the density is high, in case of
transcritical flow (high-density flow) the thermal diffusivity is less effective than
in a low-density flow (such as test case 1).
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Fig.7.4 shows density stratification along the channel flow. Note that density
varies more than one order of magnitude, from the gas-like density 22 kg/m3 at
T = 600 K to the liquid-like density 405 kg/m3 at T = 130 K. Thus, in a
cross section two different thermodynamic behaviours coexist. This phenomenon
is clearly visible in Fig. 7.5 where the compressibility factor along the channel
is presented: close to the hot-wall, methane behaves like a compressible fluid
(i.e., a gas) since Z ' 1 while close to the cold wall methane behaves almost
like an incompressible fluid (i.e., a liquid) since Z � 1. Between these two
regions, fluid is characterized neither like a gas nor like a liquid. The highly
different thermodynamic behaviour in a single channel cross section proves that
an adequate “non-standard” numerical techniques must be employed to describe
the peculiar flow inside cooling channels. For example, in Ref. [37] the strong
difference between coolant flow behaviour described by perfect gas law and a
proper equation of state is highlighted.

The analysis of Fig. 7.6 clearly shows that the streamwise velocity is asym-
metrically distributed; in fact the heating from the hot wall implies a greater ac-
celeration of the flow near the bottom wall than near the top wall.

Note that, since every channel section has a constant pressure while tempera-
ture ranges from the minimum value 130 K to the maximum value 600 K, ther-
modynamic parameters variation across a channel section is similar to the isobaric
properties variation seen in Sec. 2.5.2. For that reason, speed of sound (Fig. 7.7)
and specific heat at constant pressure (Fig. 7.8) show a peak value in a given
cross section. The peak value is a minimum in case of speed of sound and it is
a maximum in case of specific heat and, for a given pressure (that is, for a given
section), the peak value occurs at the pseudo-critic temperature. Since the pseudo-
critic temperature is close to the critical temperature (Tc = 190.53 K in case of
methane), a peak value of many thermodynamic parameters in a given cross sec-
tion is expected for a transcritical flow regime. For that reason, this behaviour is
not present in the case of fully supercritical working condition, like in the case
of hydrogen in cooling channels. Obviously, the methane peak value of cp (up
to four times the “normal” value) is of great advantage to cooling performances
since specific heat is a direct measure of heat absorbing capacity of the fluid.
However, methane peak value of specific heat is less than half of that of supercrit-
ical hydrogen. This means that methane is a less efficient coolant with respect to
the hydrogen and then more coolant mass flow rate is needed (for a comparison
between methane and hydrogen cooling performances see also Sec. 4.5).

Finally, Fig. 7.9 shows Mach number field along the channel flow. Comparing
streamwise velocity field (Fig. 7.6) and Mach number distribution in the last chan-
nel section, it is clear that high Mach number region is wider than high streamwise
velocity region. It is a direct consequence of the wide low speed of sound region
that is present in the channel cross section (see Sec. 7.7).
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Figure 7.2: Pressure contour plots of various cross section of the channel, for test
case 3 and AR= 8.
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Figure 7.3: Temperature contour plots of various cross section of the channel, for
test case 3 and AR= 8.
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Figure 7.4: Density contour plots of various cross section of the channel, for test
case 3 and AR= 8.
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Figure 7.5: Compressibility factor contour plots of various cross section of the
channel, for test case 3 and AR= 8.
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Figure 7.6: Streamwise velocity contour plots of various cross section of the chan-
nel, for test case 3 and AR= 8.
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Figure 7.7: Speed of sound contour plots of various cross section of the channel,
for test case 3 and AR= 8.
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Figure 7.8: Specific heat at constant pressure contour plots of various cross section
of the channel, for test case 3 and AR= 8.
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Figure 7.9: Mach number contour plots of various cross section of the channel,
for test case 3 and AR= 8.
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7.3 Parametric analysis: aspect ratio effect
In this section, we want to describe how wall heat transfer and skin friction vary
with different geometric configurations (that is, AR= 1, 2, 4, and 8). In particular,
the attention is focused on test case 3. In Fig. 7.10 wall heat flux on the side and
bottom wall are respectively presented.

At first glance, it is evident that wall heat flux (such as skin friction) is neg-
ligible in the proximity to the channel corners. This three-dimensional effect is
due to the enlargement of the boundary layers in this zone. In fact, the side-wall
boundary layer and the bottom-wall boundary layer interact in the corner zone
thus reducing velocity and temperature gradients at wall. Wall heat flux at the
side wall presents a maximum value close to the bottom wall which significantly
reduces when aspect ratio increases. Moreover, the heat flux distribution along
the side wall tends to become flat at high aspect ratio. This means that high aspect
ratio geometric configuration distributes wall heat transfer in a better way and thus
coolant is heated more efficiently (i.e., coolant absorbs more heat from hot-gas).
Note that, since a temperature distribution is imposed on the wall, a small amount
of heat entering from the wall is present in the proximity of the top wall. Obvi-
ously, in the real applications, this minor effect does not occur since the top wall is
adiabatic. Concerning wall heat flux distribution on the bottom wall, as the aspect
ratio increases the heat flux reduces. Thus, it is possible to say that high aspect
ratio cooling channel absorbs heat flux mostly from the side wall then from the
bottom wall.

Skin friction distribution on the side wall and on the bottom wall is presented
in Fig. 7.11. Skin friction clearly increases whith aspect ratio, thus confirming that
high aspect ratio configuration optimizes cooling performances in spite of larger
pressure loss (that is, larger skin friction). Note that on the side wall skin friction
has a maximum value is the cold wall region. This is due to the smaller boundary
layer displacement in the cold zone than in the hot zone. To better comprehend
the aspect ratio effect on heat transfer and friction loss, on Fig. 7.12 the average
heat transfer rate and friction force per unit length are presented. Heat transfer
rate and friction force per unit length of channel are defined by:

dQ

dx
=

∫
Pw

qwdPw and
dT

dx
=

∫
Pw

τwdPw

where Pw is the perimeter of a given cross section at the abscissa x. In
Fig. 7.12 the area below the curve dQ/dx represents the heat transfer rate ab-
sorbed by the coolant along the entire length of the channel, while the area below
the curve dT/dx represents the friction force acting on the coolant along the entire
length of the channel. As already noticed in this section, Fig. 7.12 clearly confirms
that both friction force and coolant-flow heat-absorbing capacity increase with as-
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(a) Wall heat flux distribution on the side wall, for test case 3.

(b) Wall heat flux distribution on the bottom wall, for test case 3.

Figure 7.10: Wall heat flux distribution along the periphery of the channel.
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(a) Skin friction distribution on the side wall, for test case 3.

(b) Skin friction distribution on the bottom wall, for test case 3.

Figure 7.11: Skin friction distribution along the periphery of the channel.
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(a) Heat transfer rate per unit length of channel, for test case 3.

(b) Friction force per unit length of channel, for test case 3.

Figure 7.12: Heat transfer and friction force along the channel streamwise direc-
tion.
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pect ratio. The latter effect is the fin enhancement effect (see also Sec. 3.6) which
is due to the perimeter increase with aspect ratio; in fact, having a constant cross
sectional area, from AR= 1 to AR= 8, the perimeter increases by 60%. However,
in Fig. 7.12 the fin enhancement effect is dimmed by the fact that, due to the cho-
sen inflow conditions (see Sec. 7.1), mass flow rate decreases when aspect ratio
increases. To better value the fin enhancement effect, in Fig. 7.13 the heat transfer
rate per unit length and unit mass flow rate is presented. Its definition is:

1

ṁ

dQ

dx
=

1

ṁ

∫
Pw

qwdPw =
1

m

dE

dx

Figure 7.13: Heat transfer rate per unit length of channel and per unit coolant
mass flow rate, for test case 3.

This parameter is of great importance since it represents the thermal energy E
absorbed by the unit mass of coolant m in the unit length of channel and it can
be considered as a concrete estimation of coolant efficiency. Looking Fig. 7.13,
it is easy to say that coolant efficiency is more than doubled when aspect ratio is
increased from 1 to 8. Thus, it is confirmed that high aspect ratio configurations
have a positive influence on cooling performances. This influence is due to both
the perimeter increase of the channel section and the uniform distribution of the
heat flux around the channel periphery. In fact, in the case of AR= 1 and 8 the
former effect can justify an increase of the cooling efficiency by 60% only.
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(a) Coolant temperature increase along the channel length, for test
case 3.

(b) Coolant pressure loss along the channel length, for test case 3.

Figure 7.14: Heat transfer and friction force along the channel streamwise direc-
tion.



140 CHAPTER 7. 3D RESULTS

The channel configuration effect on heat transfer rate and friction force influ-
ences the coolant flow also. This influence is clearly visible on coolant tempera-
ture increase and pressure loss (see Fig. 7.14). In these figures temperature and
pressure at a given section are evaluated using the “bulk” average definition:

Tb =
1

ṁ

∫
A

T ρudA and pb =
1

ṁ

∫
A

p ρudA

As a consequence of what seen in this section, the highest is the aspect ratio
the highest is the coolant temperature increase and pressure loss. For example,
temperature increase through the exit and inlet section is 83 K for AR= 8 case
and 44 K for AR= 1 case while pressure loss is 18 bar for AR= 8 and 15 bar for
AR= 1.

7.4 Parametric analysis: inlet temperature effect
In this section the methane flow behaviour of test cases 1, 2, and 3 is described
to evaluate the inlet temperature effect. In these test cases the inlet stagnation
pressure and exit pressure are kept constant (p0,in = 90 bar and pexit = 70 bar)
while inlet stagnation temperature is varied: T0,in = 220K for test case 1, T0,in =
183 K for test case 2, and T0,in = 130 K for test case 3. In Tab. 7.4 the mass flow
rate per unit area, heat absorbed per unit mass, and pressure loss for test cases 1,
2, and 3 are summarized. At first glance, it is evident that, as already noticed in
the previous section, for a given test case mass flow rate strongly decreases with
aspect ratio. This is due to the higher friction force and heat transfer rate that affect
channels with higher aspect ratio. Comparing different test cases with the same
channel geometric configuration (i.e., the same aspect ratio) it is also evident that,
as the inlet stagnation temperature decreases, the mass flow rate increases due to
the higher fluid density. With respect to heat absorbed and pressure loss for a
given test case, they increase with aspect ratio (as already seen in the previous
section), but for a given channel configuration the inlet temperature effect is not
straightforward. This is particularly true for the heat absorbed by coolant since
pressure loss is little affected by inlet stagnation temperature. In fact, as a matter
of fact, test cases 1, 2, and 3 have the same pressure gradient p0,in−pexit and for a
given channel aspect ratio the skin friction acts on the same surface. Heat absorbed
has not a monotonic tendency since it is a minimum for test case 2 and it is a
maximum for test case 1 (except for AR= 8). This anomalous trend is probably
due to the different thermal boundary conditions of the considered test cases. In
fact, to study the inlet temperature effect, also the temperature distribution along
the channel periphery is varied: wall temperature ranges from 220K to 600K for
test case 1, from 183K to 600K for test case 2, and from 130K to 600K for test
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T0,in [K] AR ṁ
A

[ kg
m2 s

] E
m

[kJ
kg

] ∆p [bar]

220 1 9220. 203.4 15.89
220 2 8857. 230.0 16.23
220 4 7892. 352.7 17.04
220 8 6691. 368.9 17.76
183 1 16797. 172.3 15.75
183 2 15746. 201.2 16.23
183 4 13153. 275.5 17.40
183 8 10041. 401.1 18.61
130 1 23184. 188.4 14.87
130 2 21636. 212.2 15.16
130 4 18430. 283.0 16.49
130 8 13844. 397.7 18.15

Table 7.4: Mass flow rate per unit area, heat absorbed per unit mass and pressure
loss along the channel, for test cases 1, 2, and 3.

case 3. Thus, these different thermal conditions do not permit to easily quantify
the inlet temperature effect on the heat absorbed by the coolant.

In Fig. 7.15, 7.16, and 7.17 the temperature and velocity contour plots, as well
as wall heat flux and skin friction distributions in the last cross section, for the
test cases 1, 2, and 3 are shown. In particular, every figure is divided into two
parts; on the upper part temperature field of the last channel section is shown
and wall heat flux distribution is represented as a vector field applied along the
periphery of the channel cross section; wall heat flux is positive if the vector is
directed outward the channel section; on the lower part, streamwise velocity field
of the last channel section is shown and skin friction distribution is represented as
a vector field applied along the periphery of the channel cross section. Note that
the vector length are based on the same scale and thus vectors of different figures
can be directly compared.

Fig. 7.15, 7.16, and 7.17 clearly point out that temperature stratification is
more effective if the inlet stagnation temperature is higher. In fact, in test case
1 temperature contour lines are flatter than test case 2 and 3. This temperature
behaviour implies that temperature gradients inside the channel cross section, and
thus wall heat transfer, are smaller. The condition of flat temperature distribution
is a sort of “equilibrium” condition in which coolant is at the same wall tempera-
ture condition and thus there is no need to transfer heat flux any more (adiabatic



142 CHAPTER 7. 3D RESULTS

(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.15: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 1.
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(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.16: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 2.
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(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.17: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 3.
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condition). Test case 1 with aspect ratio 8 is close to this “ideal” condition; in
fact, temperature contour lines are almost horizontal and wall heat flux is highly
reduced. The equilibrium condition is hardly reached in case of strong wall tem-
perature differences because of the long time required to diffuse heat in case of
strong differences between coolant temperature and wall temperature. This can be
easily explained by considering the common fact that between two bodies at dif-
ferent temperatures, both the heat transfer rate and the time required to reach ther-
mal equilibrium are higher if theirs temperature difference is higher. As a direct
consequence, the lower is the inlet temperature, and thus the higher is the gradient
between coolant and wall temperature, the more is the heat transfer rate through
the wall. Moreover, it is easy to notice that, for a given test case, high aspect ra-
tio configuration leads to a more pronounced thermal stratification. This implies
that wall heat flux distribution along the side wall is more regular and it is not
characterized by the peak value that is present in case of low aspect ratio (see also
Sec. 7.3). Note that temperature stratifies more effectively in case of high aspect
ratio because the channel base dimension becomes negligible with respect to the
height dimension and thus the flow variables differences along the base-direction
are of secondary effect with respect to that along the height-direction. It can be
said that, in case of high aspect ratio, the problem reduces to a two-dimensional
flow: streamwise-direction and height-direction flow. Thus, the simplified “quasi
2D” tool presented in Chap. 4 seems to be a promising tool to describe high aspect
ratio coolant flow since it is based on realistic assumption (i.e., thermal stratifica-
tion along the channel height-direction).

As already pointed out, stagnation inlet temperature has a minor effect on skin
friction and thus coolant pressure loss. Fig. 7.15, 7.16, and 7.17 confirm this trend
even if skin friction distribution along the periphery of the channel is slightly
different as inlet temperature varies. Concerning streamwise velocity plots, tem-
perature stratification induces a velocity peak value close to the bottom wall. In
fact, close to the bottom wall the low-density, high-temperature flow region is ac-
celerated more than the high-density, low-temperature flow region close to the top
wall, due to the induced thermal expansion by the hot wall.

Fig. 7.18 shows the coolant streamwise velocity on the channel centerplane
and at last cross section, for AR= 1, and 8. These figures clearly show that
velocity peak value is more pronounced in case of higher aspect ratio and lower
inlet temperature. Note that streamwise velocity is higher when inlet temperature
is higher even if mass flow rate is lower (see Tab. 7.4). This is due to the strong
density dependence on temperature, in case of subcritical/supercritical fluid; for
example, methane density (for a pressure of 90 bar) varies from 150 kg/m3 at
T = 220 K (test case 1) to 400 kg/m3 at T = 130 K (test case 3). Finally we can
resume the inlet temperature effect by saying that when it decreases, mass flow
rate strongly increases while pressure loss is affected in a minor way.
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(a) Streamwise velocity on the channel centerplane, for AR= 1.

(b) Streamwise velocity on the channel centerplane, for AR= 8.

Figure 7.18: Streamwise velocity on the channel centerplane and at last cross
section.
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7.5 Parametric analysis: inlet pressure effect
In this section the methane flow behaviour of test cases 4, 5, and 6 is described to
evaluate the inlet pressure effect. In these test cases the inlet stagnation tempera-
ture and exit pressure are kept constant (T0,in = 180 K and pexit = 70 bar) while
inlet stagnation pressure is varied: p0,in = 90 bar for test case 4, p0,in = 100 bar
for test case 5, and p0,in = 11 MPa for test case 6. In Tab. 7.5 the mass flow rate
per unit area, heat absorbed per unit mass, and pressure loss for test cases 4, 5,
and 6 are summarized.

p0,in [bar] AR ṁ
A

[ kg
m2 s

] E
m

[kJ
kg

] ∆p [bar]

90 1 17534. 172.9 15.56
90 2 16414. 201.6 16.11
90 4 13687. 275.5 17.32
90 8 10378. 401.0 18.58
100 1 21883. 169.8 22.89
100 2 20517. 198.4 23.70
100 4 17131. 271.6 25.56
100 8 13042. 394.9 27.47
110 1 25605. 168.4 30.11
110 2 23985. 196.9 31.22
110 4 20051. 270.0 33.69
110 8 15313. 392.0 36.25

Table 7.5: Mass flow rate per unit area, heat absorbed per unit mass and pressure
loss along the channel, for test cases 4, 5, and 6.

At first glance, it is evident that, for a given channel geometry (i.e., the same
aspect ratio), mass flow rate increases with the inlet stagnation pressure. This ef-
fect is mostly due to the increasing inlet density with the inlet pressure. Moreover,
pressure drop is strongly driven by stagnation inlet pressure since the difference
p0,in − pexit is a direct measure (for a given aspect ratio) of the pressure gradient
imposed along the channel. On the contrary, heat absorbed by coolant is affected
by inlet pressure in a minor way; however, it slightly reduces as p0,in increases.

As already shown in the previous section, in Fig. 7.19, 7.20, and 7.21 the
temperature and velocity contour plots, as well as wall heat flux and skin friction
distributions in the last cross section, for test cases 4, 5, and 6, are shown.

For a given channel aspect ratio, temperature stratification is little affected by
inlet pressure variation. However, since heat transfer coefficient (as well as wall
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(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.19: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 4.
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(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.20: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 5.
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(a) Temperature contour plots of last cross section and wall heat flux
distribution of last cross section.

(b) Streamwise velocity contour plots and skin friction distribution
of last cross section.

Figure 7.21: Velocity and temperature fields and wall heat flux and skin friction
distribution of test case 6.
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friction factor) is strongly affected by mass flow rate (as a first approximation,
h ∼ (ρu)0.8 [12]), wall heat flux increases with inlet pressure. It is confirmed
by Fig. 7.22 in which heat transfer rate per unit length along channel streamwise
direction and for the given aspect ratio 8 is plotted.

Figure 7.22: Heat transfer rate per unit length of channel, for test cases 4, 5 , and
6, with AR= 8.

Fig. 7.19, 7.20, and 7.21 also show that the inlet stagnation pressure effect for
a given channel geometric configuration on streamwise velocity distribution and
on skin friction is straightforward: due to the increasing mass flow rate the peak
value of streamwise velocity and skin friction increases.

Finally, we can resume the inlet pressure effect saying that as it increases, mass
flow rate increases as well as coolant pressure drop. Heat absorbed by coolant is
affected by inlet pressure in a minor way.





Conclusions

The physical models and the numerical tools carried out in this thesis have per-
mitted to analyze the regenerative cooling, with particular regard to the cooling
channel flow. In fact, the capability of predicting wall thermal behaviour, as well
as coolant fluid-dynamics is of great interest in order to prevent thermal failure of
the engine and to minimize the requested coolant pump power. In particular, in
case of cryogenic engines with high aspect ratio cooling channels, the description
of coolant flow is a critical issue due to the strong thermal stratification that occurs
in this type of channels and the real-fluid behaviour of cryogenic coolants (such
as hydrogen and methane). Thus non standard and innovative numerical tools
have been studied and developed. The computations obtained with these tools are
of great interest since they have pointed out many peculiar phenomena occurring
in such technological environment, which are hardly seen in scientific literature.
The activity leading to this results can be summarized into three steps described
as follows.

As a first step, a proper physical and mathematical model has been selected
to describe the thermodynamic behaviour of the coolant. In fact, since in many
applications the coolant is one of the cryogenic propellants (such as hydrogen
or methane), its behaviour can be described neither by perfect gas law (that is,
p = ρRT ), nor by perfect liquid law (that is, ρ = const). Moreover, even if in
actual applications coolant pressure is always supercritical, the wide variation of
coolant working conditions (pressure drop of tens of bar along cooling channel
and temperature gradient of up to 600 K in a channel cross section) imposes the
use of highly accurate polynomial equation of state based on many coefficients (up
to 32), which is referred to as “Modified Benedict-Webb-Rubin” equation of state.
This equation, as well as proper equations to describe viscosity and thermal con-
ductivity, has been implemented on computer subroutines to represent hydrogen
and methane thermodynamic behaviour. The implemented subroutines provide re-
sults which are perfectly in line with the data published by N.I.S.T. Moreover, they
are able to describe the one-phase hydrogen and methane behaviour of both high-
density fluid (that is, subcritical temperature, liquid-phase region), low-density
fluid (that is, subcritical temperature, vapour-phase region), and the supercritical
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fluid (that is, supercritical temperature region).
As a second step, the coupled hot-gas/wall/coolant behaviour that occurs in

regenerative cooling system has been described by a simple and fast “quasi 2D”
tool. This tool is an extension of one-dimensional physical model based on semi-
empirical relations. In fact, while hot-gas expansion and coolant dynamic be-
haviour is considered one-dimension like (along the streamwise direction), wall
and coolant temperature behaviour is also analyzed in the radial direction. It per-
mits to take into account the strong wall and coolant thermal stratification that
occurs in high aspect ratio cooling channels. In particular, wall thermal stratifica-
tion has been described by means of a simple one-dimensional model in the radial
direction and the coolant thermal stratification has been modeled by means of the
Kacynski turbulent thermal conductivity. The name “quasi 2D” model has been
chosen since it highlights that, even if the model is one-dimensional, it considers
temperature as a two-dimensional variable. The capability of predicting coolant
and wall thermal behaviour with a single, although simplified, tool is the most
interesting and original property of the “quasi 2D” model. This promising model
has been validated with respect to the regenerative cooling system data of the
European rocket engine, Vulcain, which operates with hydrogen as coolant. A fic-
titious methane-based cooling system has been considered for the same engine for
the sake of a qualitative comparison between hydrogen and methane as coolants.
This comparison has shown that both coolants exhibit a strong temperature strat-
ification in the channel cross section and that methane is a less effective coolant
with respect to the hydrogen thus indicating that methane-based cooling-system
design for future engines is a critical issue.

As a third step, a proper finite volume numerical tool in order to describe the
turbulent three-dimensional flow inside cooling channels has been build up. The
flow model is based on Navier Stokes governing equations written in a conserva-
tive form and without any thermodynamic characterization of the working fluid
(i.e., equations of state). This general treatment of the governing equations al-
lows to describe the flow of a generic fluid by means of a proper thermodynamic
database. The database can be easily built using the above mentioned subroutines
for hydrogen and methane thermodynamic description. Particular efforts have
been focused on the Riemann problem solver and on boundary condition for a
generic fluid. The most interesting and original property of this numerical tool is
that it can describe the flow of a generic one-phase compressible fluid since any
type of equation of state can be implemented. The CFD numerical tool has been
validated with respect to exact solutions and numerical solutions published in lit-
erature, for both perfect gas and supercritical fluid. The validation proved that
the considered CFD tool is well modeled and implemented and that it is adequate
to describe coolant flow inside cooling passages (that is, three-dimensional, high-
Reynolds turbulent flow of a non perfect fluid with strong temperature gradients).
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Three-dimensional computations have been performed on straight channels hav-
ing methane as working fluid. The channel is long enough to ensure that the flow
far from the inlet section is fully developed. Many computations have been per-
formed in order to analyze the effect of the main parameters: channel cross section
aspect ratio, and the inlet stagnation temperature and pressure. Methane working
conditions are the same than in “real” applications since pressure is supercritical
(pressure ranges from 110 bar to 70 bar) while temperature is transcritical (tem-
perature ranges from 130 K to 600 K). Channel cross section aspect ratio has
been varied from 1 to 8. Moreover, to avoid long computational time, coolant
flow Reynolds number has been reduced by one order of magnitude than in actual
applications. This implies that cooling channel dimensions are much smaller than
the real ones. However, the main phenomena that characterize methane as coolant
have been pointed out:

• A strong methane thermal stratification has been noticed, particularly in the
high aspect ratio cases (that is, AR= 4, and 8)

• The streamwise velocity exhibits an asymmetric peak value due to the asym-
metric wall temperature distribution. This peak value is more pronounced
as temperature gradients in a channel cross section are stronger.

• Due to the transcritical working condition of methane, specific heats presents
a peak value inside the channel cross section thus influencing the heat ab-
sorbing capacity of the coolant flow.

• Increasing channel aspect ratio, coolant efficiency increases (that is, coolant
heat absorption increases). As a drawback, coolant pressure drop increases.

• High aspect ratio cooling channel exhibits a more regular distribution of
wall heat flux distribution along the channel periphery than low aspect ratio
cooling channel.

• Due to the boundary layer enlargement, wall heat transfer is inefficient at
the channel corner.

• Inlet temperature mostly affects mass flow rate and wall heat transfer rate
absorbed by coolant.

• Inlet pressure mostly affects mass flow rate and coolant pressure drop.

The computations performed are of great interest since the peculiar behaviour
of transcritical methane inside cooling channels is not yet presented in scientific
literature. In fact, up to now, only hydrogen and nitrogen have been considered as
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working fluids in cooling channel CFD computations; those fluids do not possess
the methane peculiar behaviour since their working condition is “fully” supercrit-
ical (i.e., both temperature and pressure over the critical value).

In conclusion, even if this work can be considered as a first effort in describing
the regenerative cooling environment, the presented models have shown a great
potential and thus they are promising tools for the design of regenerative cooling
system: the “quasi 2D” tool permits to describe in a simple and fast way the main
parameters that affect the coupled hot-gas/wall/coolant environment and thus it
can be used in an optimization process while the CFD three-dimensional tool can
be used to better characterize the three-dimensional behaviour of the coolant flow
only. In particular, the semi-empirical relations that affect the “quasi 2D” tool can
be tuned by means of the more accurate three-dimensional CFD tool.



Appendix A

Thermodynamic relations

In the following sections, the thermodynamic relations presented in Sec. 2.4 are
derived. The subject of this appendix can be found in [42].

A.1 Constant volume specific heat
The specific heat capacity at constant volume cv is defined as:

cv =

(
∂e

∂T

)
v

where e is the specific internal energy, T is the temperature and v is the specific
volume (v = 1/ρ, where ρ is the density).

Considering the specific internal energy and entropy as functions of specific
volume and temperature and differentiating these relations:


e = e (T, v)

de =

(
∂e

∂T

)
v

dT +

(
∂e

∂v

)
T

dv = cvdT +

(
∂e

∂v

)
T

dv


s = s (T, v)

ds =

(
∂s

∂T

)
v

dT +

(
∂s

∂v

)
T

dv

(A.1)

From the first principle of thermodynamics, de = Tds− pdv, the entropy and
internal energy derivatives can be related:
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

(
∂s

∂T

)
v

=
cv
T(

∂s

∂v

)
T

=
p

T
+

1

T

(
∂e

∂v

)
T

(A.2)

A second differentiation of the entropy, considering that the mixed second
derivatives are equal, gives:

1

T

(
∂e

∂v

)
T

=

(
∂p

∂T

)
v

− p

T

and thus Eq. (A.1) becomes:
ds =

cv
T

+

(
∂p

∂T

)
v

dv

de = cvdT +

[
T

(
∂p

∂T

)
v

− p
]
dv

(A.3)

A second differentiation of the internal energy, considering that the mixed
second derivatives are equal, gives:(

∂cv
∂v

)
T

= T

(
∂2p

∂T 2

)
v

Using density instead of specific volume:(
∂cv
∂ρ

)
T

= − T
ρ2

(
∂2p

∂T 2

)
ρ

Integrating this relation along a generic isotherm T , from the rarefied-gas state
(ρ→ 0) to the actual state, we obtain:

cv(ρ, T ) = cv0 −
∫ ρ

0

[
T

ρ2

(
∂2p

∂T 2

)
ρ

]
T

dρ

where the subscript T in the integral indicates that it must be computed having
constant temperature, while density ranges from zero to the actual value ρ.

The term cv0 is the specific heat at constant volume for a rarefied gas (ρ→ 0)
and thus it is a function of the temperature only: cv0 = cv0(T ).

Considering the thermodynamic theory of perfect gas, cv0 can be linked to the
specific heat at constant pressure via the gas constant R (R = </W , where < is
the universal gas constant and W is the molecular weight of the fluid):
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cv0 = cp0 −R

where cp0 is the rarefied-gas specific heat. Finally, the specific heat at constant
volume

cv(ρ, T ) = cp0 −R−
∫ ρ

0

[
T

ρ2

(
∂2p

∂T 2

)
ρ

]
T

dρ

can be computed from the generic equation of state in the form p = p(ρ, T ),
its derivatives and a function that describes the specific heat for the rarefied gas
cp0 = cp0(T ).

A.2 Constant pressure specific heat
The specific heat capacity at constant pressure is defined by:

cp =

(
∂h

∂T

)
p

where h is the specific enthalpy: h = e+ pv.
Considering the specific enthalpy as a function of pressure and temperature

and differentiating this relation:
h = h (p, T )

dh =

(
∂h

∂p

)
T

dp+

(
∂h

∂T

)
p

dT =

(
∂h

∂p

)
T

dp+ cpdT

Moreover, considering Eq. (A.3), the differential of the equation of state writ-
ten in the form v = v(p, T ) and that dh = de+ pdv + vdp, gives:

dh =

[
cv + T

(
∂p

∂T

)
v

(
∂v

∂T

)
p

]
︸ ︷︷ ︸

cp

dT +

[
v + T

(
∂p

∂T

)
v

(
∂v

∂p

)
T

]
︸ ︷︷ ︸

( ∂h∂p )T

dp

Using the triple-product rule for the equation of state in the general form
f(p, v, T ) = 0 (

∂v

∂T

)
p

(
∂T

∂p

)
v

(
∂p

∂v

)
T

= −1 (A.4)
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the specific heat at constant pressure finally becomes:

cp = cv − T

(
∂p

∂T

)2

v(
∂p

∂v

)
T

Using density instead of specific volume gives:

cp = cv +
T

ρ2

(
∂p

∂T

)2

ρ(
∂p

∂ρ

)
T

The specific heat at constant pressure can be computed from the derivatives of
the generic equation of state in the form p = p(ρ, T ) and from the specific heat at
constant volume.

In the case of perfect gas (i.e., rarefied gas, ρ → 0), the equation of state is
p = ρRT and the relationship between cp and cv becomes:

cp = cv +R (A.5)

as already stated in the previous section.

A.3 Entropy

We intend to compute entropy changes from a reference state s0(ρ0, T0). There-
fore, the integral:

s(ρ, T ) = s0(ρ0, T0) +

∫ ρ,T

ρ0,T0

ds (A.6)

must be considered. Room conditions are often chosen as reference state:
p0 = 1.01325 bar and T0 = 298.15 K.

The entropy is a state functions, and this allows us to choose any integration
path. The path described in Fig. A.1 is considered here: an isothermal expansion
to zero density, followed by an isochoric heating, and by an isothermal compres-
sion. In this situation, heating takes place in a region where the fluid can be
considered as a perfect gas, since the density approaches zero.

Eq. (A.6) is then written:
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Figure A.1: Integration path for the calculation of a state function from the refer-
ence state to the actual state.

s(ρ, T ) = s0(ρ0, T0) +

∫ 0,T0

ρ0,T0

ds︸ ︷︷ ︸
isotherm

+

∫ 0,T

0,T0

ds︸ ︷︷ ︸
isochoric (perfect gas)

+

∫ ρ,T

0,T

ds︸ ︷︷ ︸
isotherm

(A.7)

Considering Eq. (A.3) in terms of density instead of specific volume, gives:

ds =
cv
T
dT − 1

ρ2

(
∂p

∂T

)
ρ

dρ

And thus the entropy differential for an isochoric process is:

ds = − 1

ρ2

(
∂p

∂T

)
ρ

dρ

and for an isothermal process is:

ds =
cv
T
dT

Then the integral Eq. (A.7) becomes:
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s = s0 −
∫ 0

ρ0

[
1

ρ2

(
∂p

∂T

)
ρ

]
T0

dρ+

∫ T

T0

[cv
T

]
ρ=0

dT −
∫ ρ

0

[
1

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

Considering that for the perfect gas (ρ → 0) the specific heat at constant
volume is a function of the temperature and using Eq. A.5, the above relation
becomes:

s = s0 −R ln

(
T

T0

)
+

∫ T

T0

cp0(T )

T
dT −

∫ 0

ρ0

[
1

ρ2

(
∂p

∂T

)
ρ

]
T0

dρ+

−
∫ ρ

0

[
1

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

(A.8)

Although this equation is correct, it cannot be directly solved in this form.
In fact, with an equation of state of the Benedict-Webb-Rubin-type, the analyti-
cal computation of integrals in Eq. A.8 leads to the indeterminate form∞−∞.
Therefore, some additional terms must be introduced to remove the ambiguity:

s = s0 −R ln

(
Tρ

T0ρ0

)
+

∫ T

T0

cp0(T )

T
dT +

∫ 0

ρ0

[
R

ρ
− 1

ρ2

(
∂p

∂T

)
ρ

]
T0

dρ+

+

∫ ρ

0

[
R

ρ
− 1

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

(A.9)
where the term ∫ ρ

ρ0

R

ρ
dρ =

∫ 0

ρ0

R

ρ
dρ+

∫ ρ

0

R

ρ
dρ

has been added to the entropy equation.
Using Eq. A.9 entropy can be computed by differentiating the BWR-type

equation of state with respect to temperature. Eq. A.9 can be further reduced;
in fact the reference state is, as a matter of fact, a perfect gas condition (T0 � Tc
and p0 � pc, where subscript c means “critical”) for many common fluids, such
as N2, O2, air, H2, CH4, etc. This implies that along the isotherm-T0 the fluid
behaves like a perfect gas (p = ρRT ) and then the integral
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∫ 0

ρ0

[
R

ρ
− 1

ρ2

(
∂p

∂T

)
ρ

]
T0

dρ

is zero.
Finally the entropy can be computed as:

s = s0 −R ln

(
ρRT

p0

)
+

∫ T

T0

cp0(T )

T
dT +

∫ ρ

0

[
R

ρ
− 1

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

where we have considered p0 = ρ0RT0

A.4 Internal energy and enthalpy
As with the entropy in the last section, the specific internal energy changes from
a reference state e0(ρ0, T0) are computed by:

e(ρ, T ) = e0(ρ0, T0) +

∫ 0,T0

ρ0,T0

de+

∫ 0,T

0,T0

de+

∫ ρ,T

0,T

de

Considering Eq. A.3 in terms of density instead of specific volume, gives

de = cvdT +

[
p

ρ2
− T

ρ2

(
∂p

∂T

)
ρ

]
dρ

And thus the internal energy differential for an isochoric process is:

de = cvdT

and for an isothermal process is:

de =

[
p

ρ2
− T

ρ2

(
∂p

∂T

)
ρ

]
dρ

A treatment paralleling that for entropy gives the following results for internal
energy:

e = e0 −R (T − T0) +

∫ T

T0

cp0(T )dT +

∫ ρ

0

[
p

ρ2
− T

ρ2

(
∂p

∂T

)
ρ

]
T

dρ (A.10)
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Replacing the specific enthalpy definition (h = e+ p/ρ) in the above equation
gives:

h = h0 +
p− ρRT

ρ
+

∫ T

T0

cp0(T )dT +

∫ ρ

0

[
p

ρ2
− T

ρ2

(
∂p

∂T

)
ρ

]
T

dρ

As for entropy, the reference state has been considered as a perfect gas condi-
tion (p0 = ρ0RT0).

Note that, differently from entropy, the specific internal energy and enthalpy
reference state e0 and h0 are related to the reference temperature only: e0(T0) and
h0(T0); in fact, since the reference state is a perfect gas state, Eq. A.10 becomes:

e = e0 −R (T − T0) +

∫ T

T0

cp0(T )dT

This equation states that the internal energy is a function of temperature only
and then: e0 = e0(T0). Similar conclusion can be achieved for the enthalpy.

A.5 Speed of sound
The definition for the speed of sound a is:

a2 =

(
∂p

∂ρ

)
s

As for other thermodynamic variables, we want to express the speed of sound
as a function of a generic equation of state written in the form: p = p(ρ, T ). This
goal can be achieved considering the specific enthalpy and entropy as a function
of pressure and temperature, and differentiating these relations:


h = h (p, T )

dh =

(
∂h

∂p

)
T

dp+

(
∂h

∂T

)
p

dT =

(
∂h

∂p

)
T

dp+ cpdT


s = s (p, T )

ds =

(
∂s

∂p

)
T

dp+

(
∂s

∂T

)
p

dT
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From the first principle of thermodynamics written in terms of enthalpy (dh =
Tds+ vdp), the entropy and internal energy derivatives can be related:

(
∂s

∂T

)
p

=
cp
T(

∂s

∂p

)
T

=
1

T

(
∂h

∂p

)
T

− v

T

A second differentiation of the entropy, considering that the mixed second
derivatives are equal, gives:(

∂h

∂p

)
T

= v − T
(
∂v

∂T

)
p

and thus: (
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

The entropy differentials with respect to pressure and temperature and with
respect to volume and temperature (Eq. (A.3)) are:

ds =
cp
T
dT −

(
∂v

∂T

)
p

dp

ds =
cv
T
dT +

(
∂p

∂T

)
v

dv

(A.11)

Along an isentropic path (and considering density instead of specific volume)
the above equation becomes:

cp
T

+
1

ρ2

(
∂ρ

∂T

)
p

(
∂p

∂T

)
s

= 0

cv
T
− 1

ρ2

(
∂p

∂T

)
ρ

(
∂ρ

∂T

)
s

= 0

and then:

a2 =

(
∂p

∂ρ

)
s

=

(
∂p

∂T

)
s

(
∂T

∂ρ

)
s

= −cp
cv

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
p

Finally, using Eq. (A.4), the speed of sound becomes:
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a2 =
cp
cv

(
∂p

∂ρ

)
T

In the critical point, since
(
∂p
∂v

)
T

= 0, the speed of sound reaches the limit
value of zero.

A.6 Isothermal compressibility
The isothermal compressibility is defined by:

β = −1

v

(
∂v

∂p

)
T

It represents the capability of compressing a fluid at constant temperature. It
is a very low coefficient for a liquid, while it increases for low pressure gas (i.e.,
rarefied gas).

Using the first principle of thermodynamics and considering the internal en-
ergy and entropy as a function of pressure and specific volume (Eq. (A.11)), the
following expression is given:

cp − cv = vT
α2

β

where

α =
1

v

(
∂v

∂T

)
p

is the thermal expansion and represents the tendency of a fluid to increase in
volume when heated. Since β is positive for all the substances (no expansion is
allowed during a compression), the term cp − cv is always positive. This implies
that the specific heat at constant pressure is always bigger than the specific heat at
constant volume (cp ≥ cv). The limit case (cp = cv) is reached in two situations:
T → 0 and α = 0. The latter case occurs when density reaches a maximum value
for a given pressure. This is the case of water at the temperature of 4 ◦C under
room pressure 1 bar.

In the critical point, since
(
∂p
∂v

)
T

= 0, the isothermal compressibility reaches
an infinite value (i.e., the speed of sound is zero) and then cp − cv → ∞. This
means that in the critical point the specific heat at constant pressure is infinite
while the specific heat at constant volume is finite.



Appendix B

Hydrogen thermodynamic
properties

The hydrogen molecule is composed of two hydrogen atoms. There are two quan-
tum states modifications of hydrogen molecules called ortho-hydrogen and para-
hydrogen. The differentiating feature of these two molecules is the relative ori-
entation of the nuclear spin of the individual atoms. The spins may be in the
same direction or they may be in opposite directions, because the nuclear spin is
a quantized motion and therefore only certain motions are allowed.

The molecules with anti-parallel (opposed) nuclear spin have even quantum
numbers, are in the lowest energy state, and are called para-hydrogen. Conversely
the molecules with parallel (aligned) nuclear spin have odd quantum numbers, are
in a higher energy level, and are called ortho-hydrogen.

The percentage of ortho-para concentrations in the mixture is temperature de-
pendent (see Fig. B.1 from [41]). The term equilibrium hydrogen is, as the name
implies, the equilibrium concentration at a given temperature. At low tempera-
tures the thermal equilibrium favors the para modification. At 20.267 K the equi-
librium composition is 99.7% para and only 0.3% ortho-hydrogen. Conversely,
the equilibrium composition near ambient temperature is 75% ortho and 25% para.
This composition is usually designated normal-hydrogen.

The conversion of ortho-hydrogen to para-hydrogen is an exothermic process.
The amount of heat given off in the conversion is temperature dependent. The
conversion of a non equilibrium ortho-para composition to an equilibrium com-
position is a very slow process in the absence of a catalyst, a sharp gradient in
magnetic field, or external radiation. For example at 80 K the half life of the
conversion is greater than a year.

In general the larger differences in the properties of ortho- and para-hydrogen
will occur in the derived properties where heat is important. Properties like en-
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Figure B.1: Hydrogen composition at equilibrium (from [41]).

thalpy, specific heat capacity and thermal conductivity show large differences (see
Fig. B.2 and Fig. B.3 from [32])

Figure B.2: Specific heat difference between para and normal hydrogen, for all
pressures (from [32]).
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Figure B.3: Thermal conductivity difference between para and normal hydrogen
with pressure as parameter (from [32]).

Hydrogen used in rocket propulsion applications is carried as a liquid in the
para-modification because of boil-off problems typical of normal- or ortho-hydrogen.
Commercially available liquid hydrogen, however, may contain up to 5 or 10 per
cent unconverted ortho-hydrogen [18]. For that reason, in case of rocket propul-
sion applications, the hydrogen thermodynamic properties are generally referred
to para-hydrogen. Para-hydrogen thermodynamic equations are taken from [19].

B.1 Para-hydrogen equation of state

A 20-term modified Benedict-Webb-Rubin (MBWR) equation of state is used to
represent the pressure-volume-temperature surface of para-hydrogen:

p (ρ, T ) =
6∑
i=1

Ai (T ) · ρi +
2∑
j=1

Bj (T ) · ρ2j+1 · e−cρ2

The terms Ai(T ) and Bj(T ) are polynomials in T and 1/T :
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A1 (T ) = RT

A2 (T ) = n1T + n2 +
n3

T
+
n4

T 2
+
n5

T 3

A3 (T ) = n6T + n7 +
n8

T

A4 (T ) = n9T + n10

A5 (T ) = n11T + n12

A6 (T ) = n13

B1 (T ) =
n14

T 2
+
n15

T 3
+
n16

T 4

B2 (T ) =
n17

T 2
+
n18

T 3
+
n19

T 4

c = n20

where R is the gas constant: R = </W , < is the universal perfect gas con-
stant: < = 8.314 J/K mol and W is the molecular weight.

If p is in [MPa], T in [K] and ρ in [g/cm3], the coefficients for para-hydrogen
are:

R = +0.41260486 · 10+1

n1 = +0.44446150 · 10+2

n2 = −0.38659604 · 10+4

n3 = −0.10966550 · 10+6

n4 = +0.12080022 · 10+7

n5 = −0.54747655 · 10+7

n6 = −0.33278647 · 10+3

n7 = +0.81345734 · 10+5

n8 = +0.26294257 · 10+6

n9 = +0.30063983 · 10+5

n10 = −0.33024955 · 10+7

n11 = −0.24686707 · 10+6

n12 = +0.47555234 · 10+8

n13 = −0.12064332 · 10+9

n14 = −0.49289827 · 10+8

n15 = +0.15925894 · 10+10
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n16 = −0.87182365 · 10+10

n17 = +0.66330266 · 10+11

n18 = +0.16366622 · 10+11

n19 = −0.12954419 · 10+14

n20 = +0.10500000 · 10+4

The reference temperature, pressure, enthalpy and entropy are, for para-hydrogen:
T0 = 20.268 K, p0 = 1 MPa, h0 = 209.9406 J/g and s0 = 21.17642 J/g K.

The para-hydrogen rarefied-gas specific heat at constant pressure is:

c0
p =

4∑
i=0

mi · T i

where (if c0
p = [J/g K]):

m0 = +0.1031200 · 10+2

m1 = 0
m2 = 0
m3 = 0
m4 = 0

for T ≤ 40 K;

m0 = +0.14759936 · 10+2

m1 = −0.2197388
m2 = +0.32100769 · 10−2

m3 = −0.12061502 · 10−4

m4 = +0.57121808 · 10−8

for 40 K < T ≤ 150 K;

m0 = +0.66557899 · 10+1

m1 = +0.15621077
m2 = −0.86913643 · 10−3

m3 = +0.18972274 · 10−5

m4 = −0.14418461 · 10−8

for 150 K < T ≤ 500 K and

m0 = +0.14411486 · 10+2

m1 = −0.71767870 · 10−3

m2 = +0.18638538 · 10−5

m3 = −0.53065470 · 10−9

m4 = +0.46649305 · 10−13
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for T > 500 K.
The critical parameters for para-hydrogen are:

Tc = 32.976K
pc = 1.2925Mpa
ρc = 0.03143 g

cm3

B.2 Para-hydrogen transport properties
For para-hydrogen rarefied-gas viscosity µ∗ in [g/cm s], a two-part fit is used,
having temperature T in [K]:

µ∗ = 8.5558

(
T 3/2

T + 19.55

)(
T + 650.39

T + 1175.9

)
for T ≤ 100 K and

µ∗ = 1.779 T 0.6835

for T > 100 K.
The viscosity is then:

µ =
[
µ∗ + A eB/T

]
· 10−6

where A eB/T is the viscosity excess for low temperatures:

A (ρ) = 10

(
5.7694 + ln ρ+ 65 ρ3/2 − 6 · 10−4 e127.2ρ

)
B (ρ) = 10 + 7.2

[( ρ

0.07

)6

−
( ρ

0.07

)3/2

− 17.63 eR(ρ)

]

R (ρ) =


−58.75

( ρ

0.07

)3

if ρ ≤ 0.0776
g

cm3

−80 if ρ > 0.0776
g

cm3

At elevated temperatures (rarefied-gas behaviour): µ→ µ∗.
The excess function k − k∗ for para-hydrogen is nearly function of density

alone:

k − k∗ =


ρR · 10−7 if ρR ≤ 0.1

10P

A
if ρR > 0.1

(B.1)
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where A = 0.003782125 if k = [W/cm K] and ρR is the reduced density
ρR = ρ/ρc. The function P is a polynomial in ρR:

P (ρR) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4

where x = log10 ρR and:

c0 = −6.82428539
c1 = +1.26994786
c2 = +1.88960889
c3 = +4.30610645
c4 = +2.70581484

The rarefied-gas thermal conductivity k∗ for para-hydrogen can be represented
as:

k∗ =


kA if T < 150K

x kB + (1− x) kA if 150K ≤ T ≤ 250K
kB if T > 250K

where x = 0.01(T − 150) and:

kA = 10−4 kroder · exp

[
C1Bρ+

(
C2 +

C3

T − 9

)
ρ2

]
kB = 4.184 (k − k∗) + 3.3383 · 10−5 T 0.72872

where:

C1 = 0.988531118
C2 = 32.088694
C3 = −910.140989

B = = 39.6− 2

√
248−

(
T

10
− 17

)2

and kroder is a linear interpolation of tabulated values, by Roder [19], depen-
dent on T alone:
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kroder (13.000 K) = 1.193034427
kroder (17.020 K) = 1.377540965
kroder (19.587 K) = 1.509985427
kroder (25.100 K) = 1.950137728
kroder (30.010 K) = 2.337542117
kroder (33.063 K) = 2.550526989
kroder (40.145 K) = 3.050483187
kroder (59.187 K) = 4.384607008
kroder (79.845 K) = 5.986458489
kroder (99.852 K) = 7.970123593
kroder (122.909 K) = 10.33669308
kroder (153.000 K) = 12.74322809

To evaluate anomalous thermal conductivity for para-hydrogen the parameter
β must be introduced:

β =
|1− TR|0.35

|1− ρR|
where TR = T/Tc.
Within the region 0.4 ≤ ρR ≤ 1.6 the anomalous thermal conductivity, which

must be added to the thermal conductivity expressed by Eq.(B.1), can be computed
by using the following formulas:

kanom =



3.05 · 10−5 √ρR
|1− ρR|1.71 if β < 0.4

[
1 +

0.9

β1/0.35

]0.6
3.05 · 10−5

|1− TR|0.6
√
ρR

if 0.4 ≤ β ≤ 3

3.05 · 10−5

|1− TR|0.6
√
ρR

if β > 3

Outside this region, kanom = 0



Appendix C

Methane thermodynamic properties

C.1 Methane equation of state

A 32-term modified Benedict-Webb-Rubin (MBWR) equation of state is used to
represent the pressure-volume-temperature surface of methane:

p(ρ, T ) =
9∑
i=1

Ai(T ) · ρi +
6∑
j=1

Bj(T ) · ρ2j+1 · e−γρ2

The terms Ai(T ) and Bj(T ) are polynomials in T , 1/T , and
√
T and γ is a

constant related to the fluid critical density ρc:

A1 (T ) = <T

A2 (T ) = n1T + n2

√
T + n3 +

n4

T
+
n5

T 2

A3 (T ) = n6T + n7 +
n8

T
+
n9

T 2

A4 (T ) = n10T + n11 +
n12

T

A5 (T ) = n13

A6 (T ) =
n14

T
+
n15

T 2

A7 (T ) =
n16

T
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A8 (T ) =
n17

T
+
n18

T 2

A9 (T ) =
n19

T 2

B1 (T ) =
n20

T 2
+
n21

T 3

B2 (T ) =
n22

T 2
+
n23

T 4

B3 (T ) =
n24

T 2
+
n25

T 3

B4 (T ) =
n26

T 2
+
n27

T 4

B5 (T ) =
n28

T 2
+
n29

T 3

B6 (T ) =
n30

T 2
+
n31

T 3
+
n32

T 4

γ =
1

ρ2
c

where < is the universal perfect gas constant: < = 0.831434 10−2 kJ/K mol.
If p is in [MPa], T in [K] and ρ in [mol/l], the coefficients for methane are:

n1 = +0.9898937956 · 10−5

n2 = +0.2199608275 · 10−1

n3 = −0.5322788000
n4 = +0.2021657962 · 10+2

n5 = −0.2234398926 · 10+4

n6 = +0.1067940280 · 10−4

n7 = +0.1457922469 · 10−3

n8 = −0.9265816666
n9 = +0.2915364732 · 10+3

n10 = +0.2313546209 · 10−6

n11 = +0.1387214274 · 10−3

n12 = +0.4780467451 · 10−2

n13 = +0.1176103833 · 10−4

n14 = −0.1982096730 · 10−3

n15 = −0.2512887756 · 10−1

n16 = +0.9748899826 · 10−5
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n17 = −0.1202192137 · 10−6

n18 = +0.4128353939 · 10−4

n19 = −0.7215842918 · 10−6

n20 = +0.5081738255 · 10+3

n21 = −0.9198903192 · 10+5

n22 = −0.2732264677 · 10+1

n23 = +0.7499024351 · 10+5

n24 = +0.1114060908 · 10−2

n25 = +0.1083955159 · 10+1

n26 = −0.4490960312 · 10−4

n27 = −0.1380337847 · 10+1

n28 = −0.2371902232 · 10−7

n29 = +0.3761652197 · 10−4

n30 = −0.2375166954 · 10−9

n31 = −0.1237640790 · 10−7

n32 = +0.6766926453 · 10−6

The reference temperature, pressure, enthalpy and entropy are, for methane:
T0 = 298.15K, p0 = 0.101325MPa, h0 = 10018 J/mol and s0 = 186.266 J/K mol.

The methane rarefied-gas specific heat at constant pressure is:

c0
p

<
=

7∑
i=1

mi T
i−4 +m8

m2
9 em9/T

T 2 (em9/T − 1)
2

where, if c0
p = [J/K mol]:

m1 = −1.8044750507 · 10+6

m2 = +7.7426666393 · 10+4

m3 = −1.3241658754 · 10+3

m4 = +1.5438149595 · 10+1

m5 = −5.1479005257 · 10−2

m6 = +1.0809172196 · 10−4

m7 = −6.5501783437 · 10−8

m8 = −6.7490056171
m9 = +3.0000000000 · 10+3

The critical parameters for methane are:

Tc = 190.53K
pc = 4.59797Mpa
ρc = 10.150mol

l
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C.2 Methane transport properties
The functional form for the viscosity is:

µ(ρ, T ) = µ0(T ) + µ1(T )ρ+ µ2(ρ, T ) (C.1)

The first term of the expansion is the rarefied-gas term which is, according to
the molecular theory of gases:

µ0(T ) =
5

16

1

σ2Ω

√
WκT

1000πNa

where µ0 is measured in [Pa s], W = 16.043 g/mol is the methane molecular
weight, κ = 1.38054·10−23 J/K is the Boltzmann’s constant, T is the temperature
in [K],Na = 6.0221415·1023 1/mol is the Avogadro’s number, σ = 3.68·10−10 m
is the methane collision diameter and Ω is the dimensionless collision integral. Its
value can be computed by:

Ω(T∗) =
1

9∑
i=1

ci T∗
(4−n)/3

where T∗ = T/Tmin is the dimensionless temperature, and Tmin is the temper-
ature at which the molecule potential energy function reaches a minimum. In case
of methane Tmin = 168.1 K and the coefficients ci are:

c1 = −3.0328138281
c2 = +16.918880086
c3 = −37.189364917
c4 = +41.288861858
c5 = −24.615921140
c6 = +8.9488430960
c7 = −1.8739245042
c8 = +0.2096610140
c9 = −0.0096570440

The second term of Eq. (C.1) represents the contribution of the moderately
dense fluid, that is:

µ1(T ) = f1 + f2

[
f3 − ln

(
T

f4

)]2

where the coefficients fi are:
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f1 = +0.16969859271
f2 = −0.13337234608 · 10−1

f3 = +0.14000000000 · 10+1

f4 = +0.16800000000 · 10+3

The third term of Eq. (C.1) represents the contribution of the dense fluid, that
is:

µ2(ρ, T ) = eF (ρ,T ) − eG(T )

where:



F (ρ, T ) = G(T ) +
(
e3 + e4T

−3/2
)
ρ0.1 +H(ρ)

i=7∑
i=5

eiT
−i+5

G(T ) = e1 +
e2

T

H(ρ) =
√
ρ
ρ− ρc
ρc

The coefficients ei are:

e1 = −0.1620427429 · 10+2

e2 = +0.4270589027 · 10+3

e3 = +0.1402596278 · 10+2

e4 = −0.3916837745 · 10+4

e5 = −0.3477099090 · 10−1

e6 = +0.2136542674 · 10+2

e7 = +0.1436802482 · 10+4

The functional form of the thermal conductivity is:

k(ρ, T ) = k0(T ) + k1(ρ, T ) + ∆kc (C.2)

where the rarefied-gas thermal conductivity, according to the molecular theory
of gases, is given by:

k0(T ) =
µ0

W

[(
c0
p −

5

2
<
)(

g1 +
g2

T∗

)
+

15

4
<
]

where k0 is measured in [W/mK], µ0 in [µPa s] and the rarefied-gas specific
heat c0

p and the universal gas constant are measured in kJ/K mol. The coefficients
gi are:
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g1 = +0.1346953698 · 10+1

g2 = −0.3254677753

The second term of Eq. (C.2) represents the contribution of the dense fluid,
that is:

k1(ρ, T ) =
(F0(T ) + F1(T )ρ) ρ

1 + F2(T )ρ

where: 

F0(T ) =
3∑
i=1

di T
1−n

F1(T ) =
6∑
i=4

di T
4−n

F2(T ) =
8∑
i=7

di T
7−n

The coefficients di are:

d1 = +0.2325800819 · 10−2

d2 = −0.2477927999
d3 = +0.3880593713 · 10+2

d4 = −0.1579519146 · 10−6

d5 = +0.3717991328 · 10−2

d6 = −0.9616989434
d7 = −0.3017352774 · 10−1

d8 = +0.4298153386

The third term of Eq. (C.2) represents the critical enhancement contribution to
the thermal conductivity, and it can be modeled as:

∆kc =
h1

h2 + |∆Tc|
e−(h3∆ρc)

2

where ∆Tc =
T

Tc
− 1, ∆ρc =

ρ

ρc
− 1 and the coefficients hi are:

h1 = +6.626 · 10−4

h2 = +2.295 · 10−3

h3 = +5.075
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