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The endocannabinoid system 

The endocannabinoid system consists of G-protein coupled cannabinoid receptors that can 

be activated by cannabis-derived drugs and small lipids called endocannabinoids (ECs). 

Anandamide and 2-arachidonyl glycerol are considered as the principal ECs; however, the EC 

family also includes alsovirodhamine, noladin ether, N-arachidonoyldopamine (NADA), 

homo-linolenylethanolamide (HEA), docosatetraenylethanolamide (DEA), and other related 

compounds such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Moreover, 

the endocannabinoid system comprises the genes encoding CBRs, and the enzymes involved 

in their synthesis (NAPE-PLD, PLA2, PLC, DAGL, PI-PLC and Lyso-PLC) and degradation (FAAH, 

MAGL) (Ahn et al, 2008). 

Until few years ago, CB1 has been believed to be the unique CB receptor subtype of the 

brain, limiting the expression of CB2 receptors to the immune system (Belvisi et al, 2008; 

Costa, 2007; Galiegue et al, 1995; Griffin et al, 1999; Howlett et al, 2002; Ibrahim et al, 2003; 

Lynn and Herkenham, 1994; Munro et al, 1993). More recently, CB2 expression in the brain 

and its potential involvement in addiction, eating disorders, neuropsychiatric disorders have 



General introduction 

 
2 

been provided (Ishiguro et al, 2010a; Ishiguro et al, 2010b; Ishiguro et al, 2007; Onaivi, 2009; 

Onaivi et al, 2008a; Onaivi et al, 2008b; Roche and Finn, 2010). 

Given their lipidic nature, ECs are not stored in vesicles but are synthesized “on demand” 

from membrane phospholipid precursors in response to an increase in postsynaptic 

intracellular calcium ([Ca2+]i) alone, or combined with activation of postsynaptic GPCRs, such 

as group I metabotropic glutamate receptors (mGluRs) (Maejima et al, 2001; Varma et al, 

2001) or M1/M3 muscarinic acetylcholine receptors (mAChRs) (Kim et al, 2002; Ohno-

Shosaku et al, 2003) and immediately released from postsynaptic neurons. They travel 

retrogradely through the synaptic cleft and engage presynaptic cannabinoid receptors, 

generally suppressing neurotransmitter release from axon terminals (Wilson and Nicoll, 

2001b). In some regions, e.g., hippocampus and amygdala, the highest densities of CB1 

receptors are on axon terminals of interneurons co-expressing GABA and cholecystokinin 

(CCK) (Katona et al, 1999; Marsicano and Lutz, 1999). In other regions, such as in the 

cerebellum, CB1 receptors are more equally distributed on both excitatory and inhibitory 

terminals 

Increases in postsynaptic [Ca2+]i typically triggers short-term forms of CB1-mediated 

suppression of synaptic transmission: depolarization-induced suppression of inhibition (DSI) 

(Ohno-Shosaku et al, 2001; Wilson et al, 2001b) or excitation (DSE) (Kreitzer and Regehr, 

2001) based on the type of terminals involved. Both DSI and DSE are mediated by brief 

(~secs) stimulation of CB1 receptors, which prevents transmitter release by increasing K+ 

conductance (Kreitzer et al, 2002) or by inhibiting voltage-gated Ca2+ channels (Diana et al, 

2002; Hoffman and Lupica, 2000; Kreitzer et al, 2001; Wilson et al, 2001a). On the other 

hand, pharmacological activation of mGlu receptors triggers CB1-mediated long-term 

synaptic depression (ECs-LTD), during which the synaptic transmission is reduced 

(Chevaleyre and Castillo, 2003; Gerdeman et al, 2002). 

Endocannabinoid system, memory and cognition 

Due to the localization of cannabinoid receptors in brain regions such as the 

hippocampus, the basolateral amygdala and the prefrontal cortex (Breivogel and Childers, 
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1998; Katona, 2009; Mackie, 2005), which are strictly associated with both cognitive and 

emotional processes  (Laviolette and Grace, 2006a; McLaughlin and Gobbi, 2011; Tan et 

al, 2011; Viveros et al, 2007) and to the capability of the endocannabinoid system to 

modulate synaptic plasticity, it is not surprising that this system could play a pivotal role 

in the modulation of emotional memory processing. 

It is well establish that CB1 receptors are importantly involved in neural plasticity 

mechanisms related to the processing, consolidation and extinction of emotionally salient 

cognitive events (Abush and Akirav, 2010; Akirav, 2011; Campolongo et al, 2009a; 

Campolongo et al, 2009b; Laviolette et al, 2006a; Laviolette and Grace, 2006b; Mackowiak et 

al, 2009; Marsicano et al, 2002). Animal studies have demonstrated that the 

endocannabinoid system may affects short-term memory by altering the mechanisms 

responsible for these processes within the hippocampus, by selectively affecting encoding 

processes (Barna et al, 2007). Moreover, the important involvement of other subcortical 

structures, for instance the amygdala, in the modulation of the memory consolidation 

mechanism in an endocannabinoid-dependent manner processes has been firmly 

established as well (Campolongo et al, 2009b). 

Outline 

In the first 2 years of the PhD program , at the Department. of Physiology and 

Pharmacology “V. Erspamer” – Sapienza University of Rome, I have investigated the role 

of the endocannabinoid system in the regulation of emotional memory processes in rats. 

In a first line of research I have focused my attention on the effects induced by general 

anaesthetics on memory consolidation and their putative interaction with the 

endocannabinoid system. There is extensive evidence that the occurrence of traumatic 

experiences associated with perioperative awareness or intensive care unit ICU treatment 

could result in stress-related disorders such as posttraumatic stress disorder and impaired 

long-term health-related quality of life outcomes (Kapfhammer et al, 2004a; Schelling et 

al, 2003). In order to identify whether anaesthetic drugs, used in ICU, could be 

responsible of these effects, in Chapter 1, I have investigated the effects of propofol on 

memory consolidation of aversive events. Propofol is a a commonly used agent for 
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general anaesthesia and for sedation in patients undergoing intensive care treatment 

(Jones et al, 2007) and known to exert inhibitory action on fatty acid amide hydrolase, the 

enzyme that degradesthe endocannabinoid anandamide (Patel et al, 2003).  

In Chapter 2 I have investigated the effect induced by the prototypical endocannabinoid 

transport inhibitor, AM404, on memory recognition and short-term memory and whether 

such effects depend on different levels of emotional arousal. This study was expired by 

the evidence that cannabinoid compounds may influence emotional processes depending 

on the level of environmental aversiveness at the time of drug administration (Haller et 

al, 2009).  

Growing evidence demonstrates that the endocannabinoid system in the basolateral 

complex of the amygdala (BLA) is one important actor generating and coordinating 

emotional cognitive responses (Campolongo et al, 2009b; Lee et al, 2006a, b; Milton et al, 

2008a; Milton et al, 2013; Theberge et al, 2010).  

In order to expand these findings, I spent the third year of my PhD program in the 

laboratory directed by Prof. Barry Everitt at Department of Psychology, Downing College, 

University of Cambridge, UK. My research in Everitt’s lab evaluated the role of the 

endocannabinoid system in the BLA in the reconsolidation of conditioned fear memory 

using a classic Pavlovian conditioning approach. Memory reconsolidation is the process by 

which previously consolidated memories become destabilized at retrieval, and require 

restabilization in order to persist in the brain (Lewis, 1979; Nader, 2003). Previous 

findings suggest that pharmacological manipulation before or immediately after retrieval, 

could prevent (Debiec et al, 2002; Nader et al, 2000; Taubenfeld et al, 2009; Wang et al, 

2009) or enhance the expression of conditioned fear responses (Lee et al, 2006b). In 

Chapter 3 we firstly elucidated the neurochemical basis of reconsolidation processes - 

destabilization and restabilization - and the role of different subtypes of NMDAR, GluN2B-

NMDARs andGluN2A-NMDARs in BLA. Subsequently, in Chapter 4, we studied how the 

manipulation of reconsolidation process by altering the endogenous cannabinoid tone in 

BLA after retrieval could influence expression of fear-related response. 



General introduction 

 
5 

Chapter 5, summarizes and discusses the findings of this thesis and provides conclusions 

and future perspectives. 
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ABSTRACT 

Background: Propofol is associated with postoperative mood alterations and induces a 

higher incidence of dreaming compared with other general anesthetics. These effects 

might be mediated by propofol’s inhibitory action on fatty acid amide hydrolase, the 

enzyme that degrades the endocannabinoid anandamide. Because propofol is also 

associated with a higher incidence of traumatic memories from perioperative awareness 

and intensive care unit treatment and the endocannabinoid system is involved in 

regulating memory consolidation of emotional experiences, the authors investigated 

whether propofol, at anesthetic doses, modulates memory consolidation via an activation 

of the endocannabinoid system.  

Methods: Male Sprague-Dawley rats were trained on an inhibitory avoidance task in 

which they received an inescapable foot shock upon entering the dark compartment of 

the apparatus. Drugs were administered intraperitoneally immediately or 30, 90, or 

180min after training. On the retention test 48 h later, the latency to reenter the dark 

compartment was recorded and taken as a measure of memory retention.  

Results: The anesthetic doses of propofol administered after training significantly 

increased latencies of 48-h inhibitory avoidance performance (483.4  181.3, 432.89  

214.06, 300 and 350 mg/kg, respectively; mean  SD) compared with the corresponding 

vehicle group (325.33  221.22, mean  SD), which is indicative of stronger memory 

consolidation in propofol treated rats. Administration of a non-impairing dose of the 

cannabinoid receptor antagonist rimonabant blocked the memory enhancement induced 

by propofol (123.39  133.10, mean  SD). Delayed administration of propofol 90 and 180 

min after training or immediate posttraining administration of the benzodiazepine 

midazolam or the barbiturate pentobarbital did not significantly alter retention.  

Conclusions: These findings indicate that propofol, in contrast to other commonly used 

sedatives, enhances emotional memory consolidation when administered immediately 

after a stressful event by enhancing endocannabinoid signaling. 
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Introduction 

Propofol is a commonly used agent for general anesthesia and for sedation in patients 

undergoing intensive care treatment (ICU). It is known to reduce postoperative nausea 

and vomiting1 and is associated with postoperative mood alterations and a higher 

incidence of dreaming compared with other general anesthetics. However, the use of 

propofol for general anesthesia or for sedation of critically ill patients in the ICU is not 

universally successful with respect to preventing traumatic memories from perioperative 

awareness and ICU treatment2. There is extensive evidence that the occurrence of 

traumatic experiences associated with perioperative awareness or ICU treatment could 

result in stress-related disorders such as posttraumatic stress disorder and impaired long-

term health-related quality of life out comes3,4. One clinical study, investigating propofol’s 

effects on memory, reported that propofol inhibits conscious memory processing in 

human subjects soon after memory encoding and that it impairs the encoding of material 

into long-term memory.5 In another study, propofol administration to rats induced 

amnesia of training on an inhibitory avoidance task.6 However, in both studies propofol 

was administered before learning, thus revealing propofol’s effect on the encoding of new 

information. No studies are available regarding propofol’s effects on the consolidation of 

traumatic memories. However, because patients often have experienced stressful events, 

such as preoperative fear and anxiety, car accidents, myocardial infarctions, or acute 

respiratory distress shortly before induction of general anesthesia or sedation with 

propofol, it is crucial to investigate the effects of propofol administered shortly after the 

acquisition of new information, a time window when the memory trace is consolidated 

into stable long-term memory. Propofol inhibits the enzyme fatty acid amide hydrolase, 

which is known to degrade endocannabinoids, especially anandamide.7 Like propofol, the 

endocannabinoid system recently has been shown to be crucially involved in mood 

control in animals 8,9 and the regulation of nausea and vomiting in humans during stress.10 

Thus, some of the mentioned propofol effects could be attributable to an activation of the 

endocannabinoid system. 11 Propofol administration to mice has been shown to increase 

endocannabinoid content within the brain, an effect that could not be detected with 
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other sedative agents, such as midazolam or thiopental.7 In addition, endocannabinoid 

plasma concentrations increased moderately in patients undergoing propofol anesthesia 

but decreased in patients undergoing general anesthesia with a volatile agent such as 

sevoflurane 12 or isoflurane.13 The endocannabinoid system consists of endocannabinoid 

ligands, the endogenous cannabinoid receptors 1 and 2 (CB1 and CB2), and enzymes 

involved in the synthesis and metabolism of endocannabinoids.14 Endocannabinoids (i.e., 

anandamide and 2-arachidonoylglycerol) are synthesized on demand through cleavage of 

membrane precursors and serve as retrograde messengers at central synapses.15 They 

bind to CB1 receptors on axon terminals to regulate ion channel activity and 

neurotransmitter release 16 and are degraded intracellularly by specific enzymes: 

anandamide is mainly degraded by fatty acid amide hydrolase and 2-arachidonoylglycerol 

by monoacylglycerol lipase.17 CB1 receptors are highly expressed in several brain regions 

and in lower densities outside the brain.18,19 In contrast, CB2 receptors have a more 

restricted distribution and are found mainly on immune cells and in low numbers in the 

brainstem20 and some other brain regions.21 Both CB1 and CB2 receptors primarily signal 

through inhibitory G proteins.22 Recent evidence indicates an important role for 

endocannabinoids and CB1 receptor activation in enhancing the memory consolidation of 

emotionally arousing experiences.23,24 Moreover, it recently has been shown that the fatty 

acid amide hydrolase inhibitor URB597 enhances memory acquisition and consolidation in 

rats.2 These findings suggest that propofol might modulate memory consolidation of 

emotionally arousing experiences via an interaction with the endocannabinoid system. To 

investigate this issue, in a first experiment, anesthetic doses of propofol were 

administered to rats by intraperitoneal injection, immediately and 30, 90, and 180 min 

after aversively motivated inhibitory avoidance training, a widely used animal model to 

assess drug effects on emotional memory consolidation. In a second experiment, we 

evaluated whether the propofol effect on the consolidation of inhibitory avoidance 

memory is specific for this anesthetic by administering anesthetic doses of the 

benzodiazepine midazolam or the barbiturate pentobarbital immediately after inhibitory 

avoidance training. In the last experiment, we investigated whether the memory-

enhancing effect of propofol depends on concurrent CB1 activity by administering a 
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nonimpairing dose of the CB1 receptor antagonist rimonabant 30 min before Propofol 

injection; we also studied whether propofol administration modulates endocannabinoid 

release in rats.  

Materials and Methods 

Animals 

Male adult Sprague-Dawley rats (350–450 g at the time of training; Charles River 

Laboratories, Calco, Italy) were housed individually and maintained in a temperature-

controlled environment (20°  1°C) under a 24-h light-dark cycle (7:00 AM to 7:00 PM lights 

on) with unlimited access to food and water. All procedures involving animal care or 

treatments were approved by the Italian Ministry of Health (Rome, Italy) and performed 

in compliance with the guidelines of the US National Institutes of Health and the Italian 

Ministry of Health (D.L. 116/92), the Declaration of Helsinki, and the Guide for the Care 

and Use of Mammals in Neuroscience and Behavioral Research (National Research Council 

2004).  

Drug Treatment 

2,6-Diisopropyl phenol (propofol, 250, 300, or 350mg/kg), purchased from Sigma-Aldrich 

(Milan, Italy), was dissolved in a vehicle containing 100%sesame oil. Midazolam(30, 50, or 

70 mg/kg; Ratiopharm, Ulm, Germany) was dissolved in saline, and pentobarbital (60, 70, 

or 80 mg/kg; Sigma-Aldrich, St. Louis, MO) was dissolved in a vehicle containing 40% 

propylene glycol (1,2-propanediol), 10% ethanol, and 50% distilled water. Drug solutions 

were freshly prepared before each experiment and administered by intraperitoneal 

injection in a volume of 1 ml/kg immediately after the training trial. To control for time 

specificity, propofol was administered to different groups of rats either 30, 90, or 180 min 

after the training trial. To assess whether CB1 receptors are involved in mediating the 

propofol effect on memory consolidation, the CB1 receptor antagonist rimonabant (1 

mg/kg; donated by the National Institute of Mental Health, Chemical Synthesis and Drug 

Supply Program, Bethesda, MD) was dissolved in a vehicle containing 5% polyethylene 
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glycol, 5% TWEEN 80, and 90% saline9 and administered immediately after training, 

whereas propofol was given 30 min later.  

Behavioral Studies 

Inhibitory Avoidance Apparatus and Procedures. Rats were trained and tested in an 

inhibitory avoidance apparatus consisting of a trough-shaped alley (91 cm long, 15 cm 

deep, 20 cm wide at the top, and 6.4 cm wide at the bottom) divided into two 

compartments, separated by a sliding door that opened by retracting into the floor. The 

starting compartment (31 cm long) was made of opaque white plastic and illuminated by 

a lamp; the shock compartment (60 cm long) was made of two dark, electrifiable metal 

plates and was not illuminated.26 Training and testing were performed during the light 

phase, between 10:00 AM and 2:00 PM, and were conducted in dim light conditions in a 

sound-attenuated room. Animals were handled 1min each for 2 days before the training 

day. For training, the rats were placed into the starting compartment of the apparatus, 

facing away from the door, and were permitted to explore the apparatus. After the rats 

stepped completely into the dark compartment, the sliding door was closed and a single, 

inescapable foot shock (0.35 mA) was delivered for 1 s. The animals were removed from 

the shock compartment 15 s after termination of the foot shock. Retention was tested 48 

h later. On the retention test trial, the rats were placed into the starting compartment, 

and the latency to reenter the shock compartment with all four paws (maximum latency 

of 600 s) was recorded and used as a measure of retention. Longer latencies were 

interpreted as indicating better retention.27 Immediately after the training and testing of 

each animal, the apparatus was cleaned with a 70% ethanol solution. To be included in 

the test phase, rats they had to reach a minimum criterion on the training test (before 

treatment), which is 60 s maximum to step in the dark compartment of the maze. All the 

analyses were performed by the same observer, who was unaware of animal treatment. 

Sleeping Time.  

Sleeping parameters were determined in different groups of rats. To determine sleeping 

onset and recovery, immediately after anesthetic administration each rat was placed on 
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its back once every 30 s until it was unable to right itself within 30 s. Sleeping onset was 

defined as the interval between anesthetic injection and the time the rat was unable to 

turn itself upright at least twice within 1 min. Then each rat was left undisturbed on its 

back until it spontaneously regained its righting reflexes, defined as having at least three 

paws under its body. Complete recovery of the righting reflex was defined as the rat being 

able to turn itself upright. The time between loss and recovery of righting reflex for each 

rat was defined as sleeping time (cutoff180 min).28 All of the analyses were performed by 

the same observer, who was unaware of animal treatment. Endocannabinoid 

Measurement In accordance with Patel’s protocol in mice,7 rats were treated with 

propofol (300 mg/kg, intraperitoneally) or with its vehicle and killed 8 or 40 min after 

administration. Brain and plasma samples were subjected to a lipid extraction process, 

and the endocannabinoid content of the lipid extracts was determined using isotope-

dilution liquid chromatography-mass spectrometry as described previously.12 The brain 

tissue was collected and stored at 80°C. Before the extraction process, tissues were 

weighted and homogenized in polypropylene tubes (Sarstedt, Numbrecht, Germany) and 

kept in ice water. Five hundred µl of the described homogenized tissue solution was 

transferred to a 2-ml Eppendorf tube, and 20 µl of internal standard and 1 ml methyl 

tertiary butyl ether (Sigma-Aldrich, Italy) were added to extract the endocannabinoids. 

The mixture was vortexed for 1min and centrifuged at 12,000g for 6min. The clear 

supernatant was transferred into a clean 5-ml polypropylene tube (Sarstedt) and 

evaporated under vacuum at 37°C. The residue of all evaporated samples was 

reconstituted in 100 µl acetonitrile, vortexed for 30 s, and sonicated in 4°C water for 

15min. A 20 µl aliquot of the clear solution was used for liquid chromatography-tandem 

mass spectrometry analysis. All samples were injected in duplicates.  

Statistical Analysis  

The training and retention latencies of rats were analyzed with one-way ANOVA. Time-

dependent effects of propofol, the interactions between propofol and rimonabant, and 

propofol effects on endocannabinoid concentrations were analyzed with two-way 

ANOVAs. The source of the detected significances was determined by Tukey–Kramer post 

hoc tests. To determine whether learning had occurred, paired t-tests were used to 
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compare the training and retention latencies of the vehicle groups. Sleeping parameters 

were analyzed with Kruskal-Wallis one-way ANOVA on ranks or Mann–Whitney U test 

because of their non normal distribution. StatView software (SAS Institute, Cary, NC) was 

used to conduct statistical analyses. Normal data are expressed as mean ± SD; 

nonparametric data are expressed as median and percentiles. Two-tailed testing was used 

for all the analyses. P values of 0.05 were considered statistically significant. The number 

of rats per group is indicated in the figures and tables. 

Results 

Posttraining Administration of Propofol Enhances 48-h Inhibitory Avoidance Retention 

Performance 

This experiment examined whether immediate posttraining administration of propofol 

would enhance 48-h retention performance of inhibitory avoidance training. Average 

stepthrough latencies for all groups during training (i.e., before footshock and drug 

treatment) were 17.6±13.7 s (mean±SD). One-way ANOVA for training latencies revealed 

no significant differences between groups (F3,46=0.93, P=0.43). The 48-h retention 

latencies of rats given vehicle immediately after training were significantly longer than 

their entrance latencies during the training trial (t=5.59, P 0.0002), indicating that the rats 

retained memory of the shock experience. As shown in figure 1, propofol induced dose-

dependent retention enhancement. One-way ANOVA for 48-h retention latencies 

revealed a significant treatment effect (F3,43=7.82, P=0.0003). Post hoc analysis indicated 

that rats treated with the higher doses of propofol (300 or 350 mg/kg) had significantly 

longer retention than did those treated with vehicle or with 250 mg/kg propofol (P<0.01 

and P 0.05 for 300 and 350mg/kg, respectively). The lower dose of propofol (250 mg/kg), 

which did not induce anesthesia, did not induce retention enhancement. Three of 12 rats 

given 350 mg/kg propofol died of respiratory depression.  
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Fig. 1. Effects of posttraining administration of propofol on retention of an inhibitory avoidance 
response. Step-through latencies (mean±SD) on a 48-h retention test. Immediate posttraining 
administration of propofol (300 mg/kg) enhanced memory retention. Data are expressed as mean 
± SEM * P<0.05; ** P<0.01 versus vehicle; # P<0.05; ## P<0.01 versus 250 mg/kg propofol (n=12, 
vehicle; n=13, 250 and 300 mg/kg propofol; n=9, 350 mg/kg propofol). 

Propofol Administered Immediately or 30 min (but Not 90 or 180 min) after the Training 

Enhanced 48-h Inhibitory Avoidance Retention Performance 

To examine whether propofol influences the consolidation phase of memory processing, 

rats were treated with Propofol (300 mg/kg) immediately or 30, 90, or 180 min after 

training. Average step-through latencies for all groups during training, before foot shock 

and drug treatment, were 16.6 ± 13.0 s (mean ± SD). Two-way ANOVA for training 

latencies revealed no significant differences between groups (main effect of treatment 

F1,78=0.77, P=0.38; main effect of time of administration F3,78=2.0, P=0.12; interaction 

F3,78=1.54, P=0.21). Two-way ANOVA for 48-h retention latencies revealed a significant 

main effect of Propofol (F1,78=17.64, P=0.0001) as well as a significant main effect of time 

of administration (F3,78=3.76, P=0.014). Moreover, there was a statistically significant 
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interaction effect between treatment and time of administration (F3,78=4.76, P=0.0042). 

As shown in figure 2, post hoc analysis indicated that rats treated with propofol either 

immediately or 30 min after training had significantly longer retention latencies than did 

those given vehicle (P<0.01). Retention latencies of rats injected with propofol 

immediately or 30 min posttraining were significantly longer than were those of rats given 

propofol 180 min after the training (P<0.01).  

 

 

 

 

 

 

 

 

 
 
Fig. 2. 
Effects of immediate and delayed posttraining administration of propofol on retention of an 
inhibitory avoidance response. Step-through latencies (mean±SD) on a 48-h retention test. Rats 
injected with propofol immediately or 30 min posttraining showed retention latencies longer than 
those of rats injected with vehicle at the corresponding time point and with propofol 180 min after 
training. Data are expressed as mean ± SEM ** P<0.01 versus the corresponding vehicle group; ## 
P<0.01 versus rats injected with propofol 180 min after training (n=10, vehicle 30 min and 300 
mg/kg propofol 90 min; n=11, all other groups).  
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Posttraining Administration of Midazolam or Pentobarbital Does Not Enhance 48-h 

Inhibitory Avoidance Retention Performance 

To determine whether the propofol effect on inhibitory avoidance memory enhancement 

is specific for this anesthetic, rats were treated with anesthetic doses of midazolam (30, 

50, or 70mg/kg, intraperitoneally) or pentobarbital (60, 70, or 80 mg/kg, intraperitonelly) 

immediately after inhibitory avoidance training. For midazolam, average stepthrough 

latencies for all groups during training, before footshock and drug treatment, were 

17.7±13.9 s (mean±SD). One-way ANOVA for training latencies revealed no significant 

differences between groups (F3,34=0.17, P=0.92). As shown in figure 3A, one-way ANOVA 

for 48-h retention latencies indicated that midazolam did not significantly enhance 

retention latencies (F3,34=0.09, P=0.97). For pentobarbital, average step-through latencies 

for both groups during training, before foot shock and drug treatment, were 17.2±14.2 s 

(mean±SD). One-way ANOVA for training latencies revealed no significant differences 

between groups (F3,34=0.34, P=0.79). As shown in figure 3B, one-way ANOVA for 48-h 

retention latencies indicated that pentobarbital did not significantly enhance retention 

latencies (F3,34=0.21, P=0.89).  

 

Fig. 3. Effects of posttraining administration of midazolam or pentobarbital on retention of an 
inhibitory avoidance response. Step-through latencies (mean±SD) on a 48-h retention test. 
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Immediate posttraining administration of midazolam (A) or pentobarbital (B) did not enhance 
memory consolidation. Data are expressed as mean ± SEM. (n=9, 30 mg/kg midazolam and 70 or 
80 mg/kg pentobarbital; n=10 vehicle, 50 or 70 mg/kg midazolam and 60 mg/kg pentobarbital) 

The CB1 Antagonist Rimonabant Blocks the Memory-enhancing Effect Induced by 

Propofol 

This experiment examined whether the memory-enhancing effect of propofol depends on 

a concurrent activation of CB1 receptors. To address this issue, we investigated whether 

the CB1 receptor antagonist rimonabant (1 mg/kg) administered intraperitoneally 

immediately after inhibitory avoidance training would block the retention enhancement 

induced by propofol given 30 min later. Average step-through latencies for all groups 

during training, before foot shock and drug treatment, were 15.2±11.8 s. The 48-h 

retention latencies of rats given vehicle after training were significantly longer than their 

entrance latencies during the training trial (P=0.0001). As shown in figure 4, posttraining 

administration of rimonabant blocked the retention enhancement induced by propofol 

(300 mg/kg). Two-way ANOVA for 48-h retention latencies revealed a significant 

rimonabant plus propofol interaction effect (F1,27=11.70, P=0.002). Post hoc comparison 

revealed that retention latencies of rats given propofol alone were significantly longer 

than were those of vehicle-treated rats (P<0.01). Most importantly, retention latencies of 

rats given an otherwise non impairing dose of rimonabant together with propofol were 

significantly shorter than those of rats treated with propofol alone (P<0.01).  
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Fig. 4. Effects of the CB1 antagonist rimonabant on the memory-enhancing effects induced by 
propofol. Stepthrough latencies (mean±SD) on a 48-h retention test. Immediate posttraining 
administration of the cannabinoid receptor antagonist rimonabant (1 mg/kg) blocked the memory 
enhancing effects of propofol (300 mg/kg). Data are expressed as mean ± SEM. ** P<0.01 versus 
the corresponding vehicle group; ## P<0.01 versus the corresponding propofol group (n=7, 1 mg/kg 
rimonabant+vehicle propofol; n=8, all other groups) 

Sleeping Time 

Table 1 shows the effects of propofol, midazolam, and pentobarbital on sleeping 

parameters. Kruskal-Wallis ANOVA revealed no statistically significant effect on sleeping 

onset (H6=10.27, P=0.11). However, Kruskal-Wallis ANOVA revealed a statistically 

significant effect for sleeping time (H6=19.64, P=0.002). Post hoc comparisons (Mann–

Whitney U test with Bonferroni correction) revealed that rats given 50 mg/kg midazolam 

slept for a shorter amount of time than did rats given 70 or 80 mg/kg pentobarbital or 

those given 350 mg/kg propofol. None of the rats treated with the lower doses of 

midazolam (30 mg/kg) or propofol (250 mg/kg) lost righting reflex. Table 2 shows the 

effects of rimonabant on propofol in inducing anesthesia. Mann–Whitney U test showed 

no difference between rats pretreated with rimonabant compared with rats pretreated 
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with vehicle on sleeping onset or time induced by propofol (U=5.0, P=0.11; U=11.000, 

P=0.75, respectively), indicating that the anesthetic effect of propofol is independent from 

the indirect activation of the endocannabinoid system.  

 

*P<0.05 vs. 350 mg/kg propofol and 70 or 80 mg/kg pentobarbital. 

 

 

 

Endocannabinoid Measurement 

Two-way ANOVA for propofol effects on Endocannabinoid content revealed a statistically 

significant interaction between treatment and time of administration (F1,19=7.1, P=0.015). 

Post hoc comparisons revealed that Propofol increases anandamide concentrations in rat 

brains 8 min after administration (P< 0.05, table 3).  
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* P<0.05 versus vehicle-treated rats (8 min). 

Discussion 

The current findings indicate that propofol, at anesthetic doses, enhances memory 

consolidation of inhibitory avoidance training in rats when administered immediately 

after the training experience. This memory enhancement is blocked by coadministration 

of the CB1 cannabinoid receptor antagonist rimonabant, suggesting that the enhancing 

effect of propofol on memory consolidation depends on an indirect activation of CB1 

receptors. In contrast, midazolam and pentobarbital, two anesthetics that do not increase 

endocannabinoid signaling,7did not enhance the consolidation of memory of inhibitory 

avoidance training. The current findings may appear at odds with preclinical and clinical 

findings indicating that propofol induces amnesia. For example, Veselis et al. 5 reported 

that propofol inhibits conscious memory processes in human subjects soon after memory 

encoding and that it impairs the acquisition or encoding of material into long-term 

memory. In addition, propofol has been reported to induce amnesia of training in rats on 

the same inhibitory avoidance task used in the current study.6 However, a critical 

difference between these investigations and the current study is that in the human 

studies, memory function was assessed shortly after drug administration, whereas in the 

preclinical study, rats were given the drug before training. Therefore, acute 

pharmacologic effects could have influenced directly both the acquisition and retention of 

the training. In contrast, in our study the drug was administered after the training and was 

not present during the acquisition phase. Thus, the enhancing effects of propofol on 

retention performance in our study are likely mediated by specific influences on the 
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consolidation of memory of the training experience.29 The use of posttraining drug 

manipulation is a widely accepted method for effectively dissociating memory processes 

from secondary behavioral effects of non-associative nature, such as those related to 

sensory sensitivity.30 Because retention testing took place 48 h after training and drug 

treatment, these findings further exclude residual pharmacologic effects as having a direct 

influence on behavior during retention testing. Moreover, the effect of post-training 

propofol administration on retention enhancement was time dependent: propofol 

administration immediately or 30 min after inhibitory avoidance training resulted in 

memory enhancement, whereas administration of Propofol 90 or 180 min after training 

was ineffective. Together these findings provide evidence that propofol enhances time-de 

pendent processes underlying the consolidation of memory for emotionally arousing 

experiences. The posttraining drug administration protocol used in the current article has 

a translational value to humans. Acute sedation or even the induction of anesthesia 

immediately after a traumatic experience (e.g., in the consolidation phase of a traumatic 

memory) is a common clinical scenario in emergency medicine and in the ICU. Our 

findings demonstrate that propofol is able to enhance memory consolidation when 

administered immediately after the exposure to a traumatic event and that this effect on 

memory depends on an indirect activation of the endocannabinoid system. In accordance 

with the behavioral data, we also found that propofol administration increases 

anandamide concentrations in the rat brain 8 min after injection, whereas anandamide 

plasma concentrations remain unaffected. Our data are in accordance with preclinical and 

clinical evidence. Patel et al.7 demonstrated increased concentrations of anandamide in 

the mouse brain after systemic administration of propofol in contrast to the 

administration of benzodiazepines, barbiturates, or volatile anesthetics; the effect of 

propofol on anandamide concentrations is mediated by an inhibition of fatty acid amide 

hydrolase, the major degradation enzyme of anandamide.7 In humans undergoing general 

anesthesia, plasma concentrations of the endocannabinoid anandamide remained 

unchanged during Propofol anesthesia but were significantly reduced during anesthesia 

with volatile agents.12,13 The basolateral complex of the amygdala (BLA) appears to be a 

critical site for mediating drug effects on memory performance, including those of 
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propofol. One study reported that permanent neurotoxic lesions of the BLA produced 

with N-methyl-D-aspartate blocked the amnestic effect of pretraining propofol 

administration of rats trained on an inhibitory avoidance task.6 We recently have shown 

that the endocannabinoid system in the BLA is involved in the enhanced consolidation of 

inhibitory avoidance memory and that CB1 activity within the BLA is essential for 

mediating glucocorticoid effects on long-term memory.23–31 Based on these findings, a 

newmodel has emerged.32–33In this model, stress-induced glucocorticoids bind to 

membrane-bound receptors in the BLA that activate a G-protein signaling cascade that 

induces endocannabinoid synthesis. The ensuing release of endocannabinoid ligands 

could diffuse to local -aminobutyric acid–mediated (GABAergic) terminals and inhibit -

aminobutyric acid release onto noradrenergic terminals in the BLA. The end result of this 

process is an increased norepinephrine release within the BLA and subsequently an 

enhancement of emotional memory consolidation. Many sedative and anamnestic effects 

of general anesthetics, including those of propofol, crucially depend on -aminobutyric acid 

release. The current findings demonstrate that the enhancing effects of propofol 

onmemory consolidation depend on concomitant CB1 receptor activity, so we 

hypothesize that the anamnestic effects of propofol are mediated by an 

endocannabinoid-induced inhibition of γ-aminobutyric acid release, resulting in a more 

pronounced memory consolidation during stressful conditions when glucocorticoid 

signaling is high.34  The pharmacokinetic properties of midazolam, pentobarbital, and 

propofol differ to a large extent, but all three drugs share the pharmacodynamic 

capability to potentiate -aminobutyric acid neurotransmission.35 Our results showing that 

rats treated with midazolam (50 mg/kg) slept less than did rats treated with propofol (350 

mg/kg) or pentobarbital (70 or 80 mg/kg) are in accordance with clinical evidence showing 

that midazolam has a shorter half-life than Propofol and barbiturates.35  However, neither 

rats treated with the higher dose of midazolam nor the ones treated with pentobarbital 

showed differences in the sleeping parameters compared with those treated with 

propofol. Although Propofol enhances memory consolidation through an activation of the 

endocannabinoid system, the anesthetic effect of Propofol does not depend on this 

activation. The CB1 receptor antagonist rimonabant blocks the propofol-enhancing effect 
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on memory consolidation but does not influence propofol’s effects on sleeping. On the 

whole, these data suggest that, unlike midazolam and pentobarbital, propofol induces 

selective effects on memory consolidation, which are linked to the activation of the 

endocannabinoid system and not related to the potentiation of GABAergic 

neurotransmission. These findings, together with the results showing that midazolam and 

pentobarbital, at anesthetic doses, did not influence memory consolidation strongly 

corroborate the hypothesis that propofol’s effects on memory consolidation are not 

attributable to a general nonspecific anesthetic effect. In summary, our study 

demonstrates that propofol enhances memory consolidation via an endocannabinoid-

mediated mechanism. These effects are markedly different from those of other direct 

GABAergic agents such as midazolam or pentobarbital. These findings from animal 

experiments suggest that propofol should be used with caution in individuals during the 

aftermath of an acute traumatic event and may help to explain the increased incidence of 

aversive memories from intraoperative awareness seen in patients undergoing total 

intravenous anesthesia with propofol.36 Likewise, the findings suggest that pharmacologic 

manipulation of endocannabinoid signaling could be a useful intervention aimed at 

blocking memory consolidation immediately after a traumatic event.  
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Abstract 

Cannabinoid compounds may influence both emotional and cognitive processes 

depending on the level of environmental aversiveness at the time of drug administration. 

However, the mechanisms responsible for these responses remain to be elucidated. The 

present experiments investigated the effects induced by the endocannabinoid transport 

inhibitor AM404 (0.5-5 mg/kg, i.p.) on both emotional and cognitive performances of rats 

tested in a Spatial Open Field task and subjected to different experimental settings, 

named High Arousal and Low Arousal conditions.  

The two different experimental conditions influenced emotional reactivity independently 

of drug administration. Indeed, vehicle-treated rats exposed to the Low Arousal condition 

spent more time in the centre of the arena than vehicle-treated rats exposed to the High 

Arousal context. Conversely, the different arousal conditions did not affect the cognitive 

performances of vehicle-treated animals such as the capability to discriminate a spatial 

displacement of the objects or an object substitution. 

AM404 administration did not alter locomotor activity of the animals exposed to both 

environmental conditions. Interestingly, AM404 administration increased the emotional 

reactivity of rats exposed to the High Arousal condition but did not influence emotionality 

of rats exposed to the Low Arousal condition. Moreover, AM404 administration 

influenced the cognitive parameters depending on the level of emotional arousal: it 

impaired the capability of rats exposed to the High Arousal condition to recognize a novel 

object while it did not induce any impairing effect in rats exposed to the Low Arousal 

condition. 

These findings suggest that drugs that enhance endocannabinoid signalling induce 

different effects on recognition memory performance depending on the level of 

emotional arousal induced by the environmental conditions. 

 

Keyword: Cannabinoid system, endocannabinoids, AM404, emotionality, short-term 

memory, cognition. 
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Introduction 

The endocannabinoid system is a crucial regulator of central nervous system (CNS) 

function (Cravatt et al., 1996; Di Marzo and Matias, 2005; Pacher et al., 2006; Trezza et al., 

2008b; Campolongo et al., 2009b,c, 2011; Bisogno and Di Marzo, 2010; Hill and McEwen, 

2010). Endocannabinoids are released from post-synaptic neurons in an activity-

dependent manner, travel retrogradely through the synaptic cleft and activate 

presynaptic cannabinoid type 1 receptors (CB1), thus suppressing neurotransmitter 

release from axon terminals (Wilson and Nicoll, 2002). Among the endogenous 

cannabimimetic signaling molecules, anandamide (N-arachidonoylethanolamine, AEA) 

and 2-arachidonoylglycerol (2-AG) stand out as the first identified and most intensively 

studied (Ueda et al., 1995, 2011; Di Marzo, 1998; Piomelli, 2003; Waku, 2006). Receptor 

activation by endocannabinoids ends by the removal from the synaptic cleft operated by a 

transport system present in neural and non-neural cells (Di Marzo et al., 1994; Beltramo 

et al., 1997; Hillard et al., 1997) followed by hydrolysis operated by fatty-acid amide 

hydrolase (FAAH, that hydrolyzes anandamide) or monoacylglycerol lipase (MAGL, that 

cleaves 2-AG) (Desarnaud et al., 1995; Hillard et al., 1995; Ueda et al., 1995; Cravatt et al., 

1996). Interestingly, while the endocannabinoid hydrolyzing enzymes have been fully 

identified and cloned, the functional properties of the putative transporter have been 

only partially characterized (Hillard and Jarrahian, 2003; Yates and Barker, 2009; Fu et al., 

2011) and its molecular identity remains still unknown. CB1 receptor is crucially involved 

in neural plasticity mechanisms related to the processing, consolidation, and extinction of 

emotionally salient cognitive events (Marsicano et al., 2002; Laviolette and Grace, 

2006a,b; Campolongo et al., 2009a,b; Mackowiak et al., 2009; Abush and Akirav, 2010; 

Akirav, 2011; Hauer et al., 2011). This fits well with the notion that CB1 receptors are 

highly expressed in brain structures including the basolateral amygdala (BLA), the medial 

prefrontal cortex (mPFC) and the hippocampus (Breivogel and Childers, 1998; Mackie, 

2005; Katona, 2009), strictly associated with both cognitive and emotional processes 

(Laviolette and Grace, 2006a; Viveros et al., 2007; McLaughlin and Gobbi, 2011; Tan et al., 

2011).  
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Animal studies have demonstrated that the endocannabinoid system modulates 

recognition memory by altering the mechanisms responsible for this process within the 

hippocampus and selectively affecting the encoding stage (Barna et al., 2007). Moreover, 

the important involvement of other structures, for instance the amygdala, in the 

modulation of memory consolidation and extinction for emotional events has been firmly 

established (McGaugh, 2000; Vianna et al., 2004; Clarke et al., 2008; de Oliveira Alvares et 

al., 2008, 2010; Campolongo et al., 2009b; Ganon-Elazar and Akirav, 2009;Manwell et al., 

2009; Roozendaal and McGaugh, 2011). In line with the widespread distribution of CB1 

receptors throughout the limbic system, it has been extensively demonstrated that 

cannabinoid compounds also induce diverse effects on anxiety- and fear-related 

behaviors (Trezza et al., 2008a, 2012; Micale et al., 2009; Moreira and Wotjak, 2010; 

Terzian et al., 2011). Interestingly, cannabinoid effects on emotionality are biphasic, as it 

is also reported by cannabis abusers (Fant et al., 1998;Hall and Solowij, 1998; Bolla et al., 

2002; Curran et al., 2002). The classical explanation to this phenomenon is often provided 

by the use of different doses of cannabinoid drugs, with low doses generally inducing 

anxiolytic-like effects and high doses often causing the opposite. A new and appealing 

explanation to this phenomenon is now emerging, underlying that these opposite effects 

may also depend on previous experiences, the context of use and the level of emotional 

arousal at the time of drug administration/consumption (Akirav, 2011; Sciolino et al., 

2011). Drugs that interfere with endocannabinoid degradation increase ongoing 

endocannabinoid signaling in a temporarily and spatially restricted manner (Janero et al., 

2009). However, preclinical evidence has shown that indirect cannabinoid agonists can 

also induce biphasic effects on behavior, depending on the emotional state of the subject. 

For instance, it has been recently demonstrated that the FAAH inhibitor URB597 does not 

affect anxiety under mildly stressful circumstances but has robust anxiolytic-like effects in 

highly aversive testing conditions (Haller et al., 2009). These finding leaves open the 

possibility thatinhibitors of endocannabinoid transport, which prolong endocannabinoid 

actions by preventing endocannabinoid access to intracellular hydrolyzing enzymes 

(Beltramo et al., 1997; Kathuria et al., 2003), may influence both emotional and cognitive 
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processes depending on the level of environmental aversiveness at the time of drug 

administration.  

To address this issue, in the present study we investigated the effect of the prototypical 

endocannabinoid transport inhibitor, AM404 in a non-aversive task, the Spatial Open Field 

test under two experimental conditions differing by the level of emotional arousal at the 

time of testing. The Spatial Open Field task has been extensively used (Poucet et al., 1986; 

Thinus-Blanc et al., 1987; Poucet, 1989, 1993; Ricceri et al., 1999, 2002; Scattoni et al., 

2004; de Bartolo et al., 2010) and permits to assess both emotional and cognitive 

parameters, in terms of reactivity to a spatial or an object novelty, by exploiting the 

natural propensity of rodents to explore the environment. The High Arousal condition 

(HA) was obtained by testing rats in an empty arena under white light illumination 

without previous handling, while the Low Arousal emotional processes (Laviolette and 

Grace, 2006a; Viveros et al., 2007; McLaughlin and Gobbi, 2011; Tan et al., 2011).  

Animal studies have demonstrated that the Endocannabinoid system modulates 

recognition memory by altering the mechanisms responsible for this process within the 

hippocampus and selectively affecting the encoding stage (Barna et al., 2007). Moreover, 

the important involvement of other structures, for instance the amygdala, in the 

modulation of memory consolidation and extinction for emotional events has been firmly 

established (McGaugh, 2000; Vianna et al., 2004; Clarke et al., 2008; de Oliveira Alvares et 

al., 2008, 2010; Campolongo et al., 2009b; Ganon-Elazar and Akirav, 2009;Manwell et al., 

2009; Roozendaal and McGaugh, 2011). In line with the widespread distribution of CB1 

receptors throughout the limbic system, it has been extensively demonstrated that 

cannabinoid compounds also induce diverse effects on anxiety- and fear-related 

behaviors (Trezza et al., 2008a, 2012; Micale et al., 2009; Moreira and Wotjak, 2010; 

Terzian et al., 2011). Interestingly, cannabinoid effects on emotionality are biphasic, as it 

is also reported by cannabis abusers (Fant et al., 1998;Hall and Solowij, 1998; Bolla et al., 

2002; Curran et al., 2002). The classical explanation to this phenomenon is often provided 

by the use of different doses of cannabinoid drugs, with low doses generally inducing 

anxiolytic-like effects and high doses often causing the opposite. A new and appealing 

explanation to this phenomenon is now emerging, underlying that these opposite effects 
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may also depend on previous experiences, the context of use and the level of emotional 

arousal at the time of drug administration/consumption (Akirav, 2011; Sciolino et al., 

2011). Drugs that interfere with endocannabinoid degradation increase ongoing 

endocannabinoid signaling in a temporarily and spatially restricted manner (Janero et al., 

2009). However, preclinical evidence has shown that indirect cannabinoid agonists can 

also induce biphasic effects on behavior, depending on the emotional state of the subject. 

For instance, it has been recently demonstrated that the FAAH inhibitor URB597 does not 

affect anxiety under mildly stressful circumstances but has robust anxiolytic-like effects in 

highly aversive testing conditions (Haller et al., 2009). This finding leaves open the 

possibility that inhibitors of endocannabinoid transport, which prolong endocannabinoid 

actions by preventing endocannabinoid access to intracellular hydrolyzing enzymes 

(Beltramo et al., 1997; Kathuria et al., 2003), may influence both emotional and cognitive 

processes depending on the level of environmental aversiveness at the time of drug 

administration.  

To address this issue, in the present study we investigated the effect of the prototypical 

endocannabinoid transport inhibitor, AM404 in a non-aversive task, the Spatial Open Field 

test under two experimental conditions differing by the level of emotional arousal at the 

time of testing. The Spatial Open Field task has been extensively used (Poucet et al., 1986; 

Thinus-Blanc et al., 1987; Poucet, 1989, 1993; Ricceri et al., 1999, 2002; Scattoni et al., 

2004; de Bartolo et al., 2010) and permits to assess both emotional and cognitive 

parameters, in terms of reactivity to a spatial or an object novelty, by exploiting the 

natural propensity of rodents to explore the environment. The High Arousal condition 

(HA) was obtained by testing rats in an empty arena under white light illumination 

without previous handling, while the Low Arousal condition (LA) was obtained by 

extensively handling the animals before testing in an arena with the ground loaded with 

familiar bedding, under a dim red lighted room. By manipulating the experimental 

conditions and the tone of endogenous cannabinoids, this study may help to explain how 

the interaction between endocannabinoids and environment could influence recognition 

memory in rats. 
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Materials and Methods 

Animals 

Male adult Wistar rats (300 g at the time of testing, Charles River Laboratories, Italy) were 

housed in groups and maintained in a temperature-controlled environment (20 ± 1°C) 

under a 12-h light/12-h dark cycle (7:00 am to 7:00 pm lights on) with unlimited access to 

food and water. All procedures involving animal care or treatments were approved by the 

Italian Ministry of Health and performed in compliance with the guidelines of the US 

National Institutes of Health (NIH) and the Italian Ministry of Health (D.L. 116/92), the 

Declaration of Helsinki, the Guide for the Care and Use of Mammals in Neuroscience and 

Behavioral Research (National Research Council 2004) and the Directive 2010/63/EU of 

the European Parliament and of the Council of 22 September 2010 on the protection of 

animals used for scientific purposes. 

Drug Treatments  

N-(4-Hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404, 0.5-1-5 mg/kg), 

purchased from Tocris Bioscience (UK), was dissolved in a vehicle containing 10% 

polyethylene glycol, 10% Tween-80 and 80% saline. Drug solutions were freshly prepared 

before each experiment and administered by intraperitoneal injection in a volume of 1 

ml/kg 15 minutes before the beginning of the task. 

Spatial Open Field procedures 

The apparatus consisted in an open-field arena made of black Plexiglas (80 x 80 x 60 cm) 

surrounded with a visually uniform environment. A video camera above the field was 

connected to a video recorder. Experiments were performed between 10.00 am and 2.00 

pm. The test schedule consisted of six 5-min sessions, separated by 3-min delays during 

which the subjects were returned to their home cage (fig.1). During session 1, each rat 

was placed into the centre of the empty arena to allow it to become familiar with the 

apparatus and to record baseline levels of locomotor and exploratory activity. Starting 

from session 2, three different objects were simultaneously present in the open field: 
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Object A, a dark metal parallelepiped (4 cm high x 13 cm wide x 9 cm long); Object B, a 

transparent Plexiglas cube with holes regularly distributed on the sides (height = 10 cm); 

Object C, a grey plastic square (10 x 10x 10 cm) with a central triangle forming a 90° 

angle. During sessions 2-3, the A, B and C objects were placed in the arena. In session 4, 

the spatial test session, the configuration was changed by moving two objects: object B 

replaced object A which was itself displaced at the periphery of the apparatus. In session 

5, the configuration of the objects was unchanged to let the rats habituate to the new 

arrangement of the objects. In the last session (session 6) one of the familiar, non-

displaced objects (object C) was replaced by a new object (object D, which consisted of a 

black-and-white plastic cylinder, height = 13 cm; diameter = 6 cm (fig. 1).  

We exposed the rats to two experimental conditions, named High Arousal (HA) and Low 

Arousal (LA) conditions. In the HA condition (experiment 1), the test was performed 

under normal light (30-40 lux), rats were not handled and tested in an empty arena (no 

bedding). In the LA condition (experiment 2), the test was performed under dim red light 

(2 lux) condition, rats were extensively habituated to the experimenter and to the 

injection procedure for 1 week before the experiment (every day, 1 min per each rat) and 

tested in an arena with the ground loaded with familiar bedding.  

 

 

 

 

 

 

 

 



 Chapter 2 
  

 
42 

 

 

 

 

 

 

 

 

 

FIGURE 1 Spatial Open-Field procedure. Schematic diagram representing the object configuration 
in the Spatial Open-Field test: (A) session 1, open field without objects; (B) session 2, habituation 
session with three stable objects; (C) sessions 3–4, spatial change discrimination sessions where 
object B displaced object A (session 4); (D) session 5–6, object novelty sessions where object D 
replaced object C (session 6). 

Statistical Analysis 

Data collection was performed from the same observer who was unaware of animal 

treatment using the Observer XT software (Noldus, the Netherland). During the first 

session, frequency and/or duration of the following responses were measured: crossings, 

rearings and time spent in the centre of the apparatus. From sessions 2 to 6, object 

exploration was measured as total time spent by the animal in contact with an object (1 

sec as minimal contact was considered) throughout all sessions 2-6.  
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The total time spent by rats investigating all objects throughout all sessions has been 

considered as an indicator of general investigative activity. A contact was defined as the 

subject's snout actually touching an object. In session 4, the spatial arrangement of the 

objects was modified and response to spatial change was assessed by comparing the 

mean time spent in contact with both Displaced (DO) and Non-Displaced (NDO) Objects in 

session 4 minus the mean time spent in contact with the same object in session 3. A 

discrimination index of the response to the spatial change was obtained by subtracting 

the NDO value to DO value. Finally, the response to the non-spatial novelty was assessed 

by comparing mean time in contact with the Substituted Object (SO, unfamiliar) and Non-

Substituted Objects (NSO, familiar) in session 6 minus the mean time spent with objects 

located in the corresponding position in session 5. A discrimination index of the response 

to the non-spatial novelty was obtained by subtracting the NSO value to SO value. 

Unpaired t-test was used to compare the behavioural performance of vehicle groups. 

One-sample t tests were used to determine whether the discrimination index was 

different from zero. A probability level of <0.05 was accepted as statistically significant. 

Results 

Different arousal conditions influenced emotional behaviour and object exploration but 

did not alter cognitive performances of vehicle-treated animals 

Unpaired t-test showed that the different arousal context did not affect the locomotor 

activity of the vehicle groups. Both crossing (fig. 2A) and rearing (fig. 2B) frequencies did 

not statistically differ between the two groups (t=-0.66; p=0.52; t=1.09; p=0.29). 

However, unpaired t-test showed that the different arousal conditions influenced the 

emotional behaviour of vehicle-treated animals exposed to the different experimental 

contexts. Rats treated with vehicle and exposed to a High Arousal condition (HA group) 

spent less time in the centre of the arena than vehicle-treated rats exposed to a Low 

Arousal context (LA group) (t=-4.11; p=0.0005, fig. 2C).  
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FIGURE 2 Effects induced by different arousal conditions on locomotor activity and emotional 
behavior of vehicle-treated rats. Locomotor activity: number of crossing (A) and rearing (B) in 
session 1. Emotional behavior: time spent in the center of the arena in session 1 (C). **P < 0.01. 
Data are expressed as mean ± SEM. (High Arousal: HA n = 10; Low Arousal: LA n = 15) 

Unpaired t-test showed that rats treated with vehicle and exposed to a HA context spent 

less time investigating objects than vehicle-treated rats exposed to a LA context (t=-4.41; 

p<0.0001, fig. 3A). Additionally, unpaired t-test showed that both vehicle groups did not 

differ in the discrimination index for a spatial object displacement in session 4 (t=0.60; 

p=0.55, fig. 3B) and for the substitution of the objects in session 6 (t=0.47; p=0.64, fig. 

3C). However, One-sample t tests revealed that while both vehicle groups were able to 

discriminate the object novelty (veh-HA, t=4.49, P=0.0015; veh-LA, t14=2.61, P=0.02, fig. 

3C) they did not respond to a spatial rearrangement (veh-HA, t=1.10, P=0.30; veh-LA, 

t=0.16, P=0.88, fig. 3B). 
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FIGURE 3 Effects induced by different arousal conditions on object investigation and cognitive 
performances of vehicle-treated rats. Total investigation time of all objects through sessions (A) 
spatial change discrimination (B) and object novelty discrimination (C).**P < 0.01. Data are 
expressed as mean ± SEM. (High Arousal: HA n = 10; Low Arousal: LA n = 15) 

AM404 administration did not alter locomotor activity and emotional behaviour in rats 

exposed to different arousal conditions 

AM404 administration did not alter the locomotor activity of rats exposed to either a HA 

or LA condition. One–way ANOVA for crossing (fig. 4A) and rearing (fig. 4B) frequencies in 

session 1 for AM404-treated rats exposed to a HA condition did not show a statistically 

significant difference (F3,36=0.60; p=0.62; F3,36=1.44; p=0.25, respectively). Moreover, one–

way ANOVA for the number of crossings (fig. 4C) or rearings (fig. 4D) in session 1 did not 

show a statistically significant difference between vehicle- and AM404-treated rats 

exposed to a LA condition (F3,50=0.97; p=0.42; F3,50=2.21; p=0.10, respectively). AM404 

administration did not affect the emotional reactivity in rats exposed to either a HA or LA 

condition. Indeed, one-way ANOVA showed that vehicle- and AM404-treated rats did not 

differ  for the time spent in the centre of the arena in session 1 (HA condition: F3,36=1.25; 

p=0.31; fig. 5A; LA condition: F3,50=1.18; p=0.33; fig. 5B).  
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FIGURE 4 Effects of AM404 administration on locomotor activity in rats exposed to high arousal 
(HA) or low arousal (LA) conditions. Number of crossing (A) and rearing (B) of rats exposed to HA 
or LA conditions (C, D, respectively) in session 1. Data are expressed as mean ± SEM. (HA: veh n = 
10, 0.5mg/kg n = 11, 1 mg/kg n = 10, 5 mg/kg n = 9;LA: veh n = 15, 0.5mg/kg n = 12, 1 mg/kg n = 
14, 5 mg/kg n = 13). 
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FIGURE 5 Effects of AM404 administration on emotional behavior in rats exposed to high arousal 
(HA) or low arousal (LA) conditions. Time spent in the center of the arena by rats exposed to HA (A) 
or LA conditions (B) in session 1. Data are expressed as mean ± SEM.(HA:veh n = 10, 0.5mg/kg n = 
11, 1 mg/kg n = 10, 5 mg/kg n = 9; LA: veh n = 15, 0.5mg/kg n = 12, 1 mg/kg n = 14, 5 mg/kg n = 
13). 

AM404 administration influenced object exploration depending on the different arousal 

condition 

One–way ANOVA showed that administration of AM404 influenced the object 

investigation measured over all sessions in rats exposed to a HA context (F3,193=2.62; 

p=0.05). Post-hoc analysis revealed that rats treated with a lower dose of the indirect 

agonist spent less time investigating the objects compared to their respective vehicle 

group (p<0.05, fig. 6A). On the other hand, one –way ANOVA revealed that AM404-

treated rats exposed to a LA context spent the same amount of time investigating the 

objects as the vehicle-treated animals (F3,265=0.54; p=0.66; fig. 6B). 
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FIGURE 6 Effects of AM404 administration on object investigation in rats exposed to high arousal 
(HA) or low arousal (LA) conditions. Total investigation time of all objects by rats exposed to HA (A) 
or LA (B) conditions through sessions 2–6. *P < 0.05. Data are expressed as mean ± SEM. (HA: veh 
n = 10, 0.5mg/kg n = 11, 1 mg/kg n = 10, 5 mg/kg n = 9; LA: veh n = 15, 0.5mg/kg n = 12, 1 mg/kg n 
= 14, 5 mg/kg n = 13). 

AM404 administration did not influence spatial change discrimination while it altered 

object novelty recognition in rats exposed to different arousal conditions. 

One–way ANOVA showed that administration of AM404 did not influence the rat 

capability to discriminate the object displacement under both the HA (fig. 7A) or LA 

(fig.7B) experimental conditions (F3,36=1.176; p=0.34; F3,50=2.24; p=0.095, respectively). 

However, one–way ANOVA showed a statistical significant effect on the capability of the 

rats to discriminate a novel object under a HA condition (F3,36=4.32; p=0.01; fig. 8A). Post-

hoc comparisons revealed that rats administered with AM404 0.5 and 1 mg/kg were not 

able to discriminate the new object as vehicle-treated rats did (p<0.05). One–way ANOVA 

revealed that AM404 administration to LA exposed rats did not influence the capability of 
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the rats to discriminate the new object compared to the vehicle group (F3,50=0.26; p=0.85; 

fig. 8B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 7 Effects of AM404 administration on spatial change discrimination in rats exposed to high 
arousal (HA) or low arousal (LA conditions. Spatial change discrimination index of rats exposed to 
HA (A) or LA (B) conditions. Tim spent in contact with Displaced (DO) and Non-Displaced (NDO) 
Objects in session 4 minus the mean time spent in contact with the same object in session 3. A 
discrimination index was obtained by subtracting the NDO value to DO value. Data are expressed 
as mean ± SEM.(HA:veh n = 10, 0.5mg/kg n = 11, 1 mg/kg n = 10, 5 mg/kg n = 9; LA: veh n = 15, 
0.5mg/kg n = 12, 1 mg/kg n = 14, 5 mg/kg n = 13). 
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FIGURE 8 Effects of AM404 administration on object novelty discrimination in rats exposed to high 
arousal (HA) or low arousal (LA) conditions. Object novelty discrimination index of rats exposed to 
HA (A) or LA (B) conditions. Time spent in contact with Substituted Object (SO, unfamiliar) and 
Non-Substituted Objects (NSO, familiar) in session 6 minus the mean time spent with objects 
located in the corresponding position in session 5. A discrimination index was obtained by 
subtracting the NSO valuetoSOvalue.*P < 0.05. Data are expressed as mean ± SEM. (HA: veh n = 10, 
0.5mg/kg n = 11, 1 mg/kg n = 10, 5 mg/kg n = 9; LA: veh n = 15, 0.5mg/kg n = 12, 1 mg/kg n = 14, 5 
mg/kg n = 13 
 

Discussion 

The present findings demonstrate that: (1) different levels of environmental aversiveness 

strongly influence the emotional reactivity of untreated rats without affecting the 

cognitive performance in the Spatial Open-Field test; (2) endocannabinoids affect 

recognition memory of rats in the Spatial Open Field test depending on the level of 

emotional arousal induced by the environmental conditions. The Spatial Open-Field is a 

non-aversive test that permits to assess several behaviors which are indicative of the 

emotional state of the animal as well as the reactivity to both spatial rearrangement 

(spatial novelty) or the replacement of one familiar object with a new one (object novelty, 

as in the classical object recognition task) (Poucet et al., 1986; Thinus-Blanc et al., 1996). 

This test exploits the natural propensity of rodents to explore the environment without 

using rewards or punishments.  

Previous studies have shown that naive rodents respond to a new spatial displacement or 

substitution by renewed exploration of the entire environment and/or by selective 

reinvestigation of the displaced/substituted objects (Poucet et al., 1986; Thinus-Blanc et 

al., 1987; Poucet, 1989, 1993; Ricceri et al., 1999, 2000, 2002; Scattoni et al., 2004; de 

Bartolo et al., 2010). The one-day six-session assessment of the task used in our study 

permits to determine pharmacological effects on short-term memory as well as on 

emotional reactivity of the subject. Activation of emotional responses, triggered by 

stressful stimuli, is crucial in the modulation of contextual learning and memory 
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performances (McGaugh and Roozendaal, 2002; McGaugh, 2004; Morris, 2006; 

Campolongo et al., 2009b; Hill et al., 2010). There is evidence that behavioral responses to 

the environmental stimuli are strictly dependent on the emotional reactivity induced by 

the environment itself (Blanchard et al., 2001; Haller et al., 2009). The environmental–

induced arousal is critically involved in assessing the novelty and salience of the external 

stimuli in terms of relevance for the adaptation and survival (Poucet, 1993; Biegler and 

Morris, 1996; Breivogel and Childers, 1998). Thus, when compared with a previous 

experience, a novel information recognized as highly relevant is committed to and stored 

by the memory (Lemaire et al., 1999). However, the mechanisms underlying 

themodulation of responsiveness to the environment and its evaluation in evolutionary 

terms both under LA or HA contexts remain to be elucidated. Based on previous findings 

(Szeligo and Leblond, 1977; Sahakian et al., 1982; Morato and Castrechini, 1989; Griebel 

et al., 1993; Escorihuela et al., 1994; Hall et al., 1998; Varty et al., 2000; Haller et al., 

2009), in order to characterize the behavioral responses to different environmental 

situations, we manipulated the experimental context to create two opposite arousal 

conditions by using two different protocols: (1) rats either extensively handled or not 

handled by the experimenter before testing, (2) isolated- or grouped-housed rats; (3) 

bright or dim red light conditions; (4) without or with familiar bedding during the testing 

phase for HA or LA conditions, respectively (for a comprehensive description see 

Materials and Methods). By using these different experimental conditions, we were able 

to induce a high or a low state in the animal, independently of any drug administration. 

To first characterize the behavioral responses of rats to different environmental situations 

in the Spatial Open Field task, regardless of any drug administration, we analyzed the 

performance of vehicle-treated rats exposed to a HA or a LA context. The analysis of the 

first session of the Spatial Open Field task (when no objects were present) showed that 

locomotor activity was not influenced by the two different arousal conditions, while the 

different environmental situations influenced the level of emotional reactivity of the 

animals. Vehicle-treated rats, exposed to the LA context, spent indeed more time in the 

center of the open field than vehicle-treated rats exposed to the HA context. This result 

indicates that the LA environment may induce a lower level of emotional activation (Prut 
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and Belzung, 2003). The view that LA condition induces a lower level of emotional 

activation is also supported by behavioral analysis derived from sessions 2 to 6 of the task, 

in which the rats encountered different objects, also located in different positions in the 

open-field arena. Rats exposed to the LA context spent more time investigating the 

objects than rats exposed to the HA context, suggesting that a lower state of anxiety 

urges animals to better explore the objects (Crawley, 1985). Concerning the cognitive 

performance, the different level of emotional activation derived by exposure to the two 

environmental conditions did not influence the cognitive parameters measured in the 

task. Indeed, vehicle-treated rats exposed to either HA or LA conditions were equally able 

to recognize the object substitution but failed to respond to the object displacement. 

Interestingly, Ricceri and co-workers (Ricceri et al., 2000) showed that only 90-day-old 

mice were able to discriminate a spatial object rearrangement, while 46-day-old mice 

were not. In our study, we used young adult rats; this leaves open the possibility that the 

ability to discriminate a spatial change has to be still developed by rats at this age. 

Moreover, our findings are in accordance with the general assumption that the capability 

to recognize a new setting of the environment is important for the species survival, but 

the impact of the object novelty is more salient than a spatial rearrangement with the 

same objects (Mumby et al., 2002).  

Extensive evidence demonstrates that the Endocannabinoid system is a crucial regulator 

of emotionality and cognition (Marsicano et al., 2002; Laviolette and Grace, 2006a,b; 

Campolongo et al., 2009a,b; Mackowiak et al., 2009; Abush and Akirav, 2010; Akirav, 

2011; Trezza et al., 2012). Although the neurobiological mechanisms underlying 

cannabinoid manipulation of emotional and cognitive functions have not yet been 

completely elucidated, previous evidence demonstrates that the anxiolytic effects 

induced by pharmacological enhancement of endocannabinoid tone strongly depend on 

the emotional state at the time of testing (Patel and Hillard, 2006)and that these effects 

are modulated by the level of emotional reactivity induced by high or low aversive 

experimental conditions (Haller et al., 2009). To further shed light on the role of 

environmental aversiveness in cannabinoid modulation of emotionality and cognitive 

performance, we investigated whether exogenous manipulation of the endocannabinoid 
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system influences rat behavior in the Spatial Open Field task in experimental conditions 

characterized by either a HA or LA state. Our findings clearly show that the effects of the 

endocannabinoid transport inhibitor AM404 on cognitive responses in the Spatial Open 

Field test strongly depend on the level of emotionality at the time of testing. Indeed, 

AM404 administration impaired the rat capability to discriminate between a familiar and 

a new object only in rats exposed to the HA condition. Several studies have shown that 

CB1 receptor agonists produce anxiolytic- (Patel and Hillard, 2006; Scherma et al., 2008) 

or anxiogenic-like (Viveros et al., 2005; Patel and Hillard, 2006) effects, depending on the 

dose tested. Conversely, indirect cannabinoid agonists, that increase ongoing 

Endocannabinoid signaling by interfering with their deactivation, induce anxiolytic-like 

effects without anxiogenic responses also when administered at high doses. For instance, 

the FAAH inhibitor URB597 produces anxiolytic-like effects in the elevated zero-maze and 

in the ultrasonic vocalization test in rats (Kathuria et al., 2003). In accordance with these 

findings, FAAH knockout mice exhibit an anxiolytic-like phenotype in the elevated plus-

maze and in the light-dark box tests (Naidu et al., 2007; Moreira et al., 2008, 2009). 

Anxiolytic-like effects can also be induced by the inhibition of the endocannabinoid 

transport operated by endocannabinoid uptake inhibitors like AM404 (Beltramo et al., 

1997; Beltramo and Piomelli, 2000). Thus, it has been demonstrated that the systemic 

administration of AM404 produces anxiolytic-like effects in three rat models of anxiety: 

elevated plus maze, defensive withdrawal, and separation-induced ultrasonic vocalization 

tests, and these effects are blocked by the administration of the CB antagonist 

rimonabant (Bortolato et al., 2006; Patel and Hillard, 2006). Nevertheless, it should be 

noted that in an another study Moreira and co-workers (Moreira et al., 2007) found that 

co-administration of anandamide and AM404 in the rat periaqueductal gray (a brain 

structure related to aversive response) elicited anxiolytic-like responses in the elevated 

plus maze test, whereas AM404 alone did not. In the present study, we found that 

administration of AM404 did not influence the emotional parameters taken onto 

consideration in the Spatial Open Field test, like the time spent in the central part of the 

arena during the first session of the task. However, it is important to note that, while 

AM404 administration did not influence the investigation of the objects through session 
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2–6 in a context characterized by a low-level of emotional activation, rats treated with the 

lower dose of AM404 and exposed to a stressful environment spent less time 

investigating objects, whereas the higher doses re-established the investigation activity at 

similar level of the vehicle-treated rats. The inhibition or the maintenance of the 

investigative behavior can be related to an anxiogenic or an anxiolytic phenotype, 

respectively (Crawley, 1985). It is possible to speculate that this biphasic effect may 

depend on a differential regulation activity on both GABAergic and gutamatergic neurons 

mediated by different doses of the Endocannabinoid transport inhibitor (Foldy et al., 

2007; Hashimotodani et al., 2007).  

Regarding the cognitive performance, here we show for the first time that a 

pharmacologically-induced enhancement of endocannabinoid tone differentially 

modulates memory recognition in rats depending on different emotional states and 

different nature of the considered cognitive parameters (e.g., either spatial or novel 

object discrimination). Concerning the object displacement, although the results did not 

reach any statistical significance it could be important to note that the treatment effect 

profile resemble a trend of a typical U-shaped dose response curve, in accordance with 

other results showing a similar dose-dependent biphasic response induced by 

cannabinoids, particularly by anandamide (Sulcova et al., 1998) and by the psychoactive 

constituent of Cannabis sativa preparation Δ9-tetrahydrocannabinol (Onaivi et al., 1990; 

Valjent et al., 2001). Concerning the object substitution, the lower doses of AM404 

disrupted the ability to recognize a novel object in a stressful condition (HA) but not in a 

low arousal context (LA). It is well-established that the capability to recognize a new 

setting of the environment is important for species survival, but also that the impact of 

the object novelty ismore salient than a spatial rearrangement with the same objects 

(Mumby et al., 2002). However, the capability to discriminate a novel object in the arena 

can be lost under particular circumstances such as in a more stressful context, after 

repeated exposure to an aversive environment and experimental manipulation of the 

endocannabinoid tone as in the present study (Save et al., 1992;Mumby et al., 2002; 

Hebda-Bauer et al., 2010). These data confirm previous findings showing similar effects in 

humans and laboratory animals where acute or chronic exposure to the psychoactive 
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constituent of cannabis, Δ9-tetrahydrocannabinol, induces impairment in cognitive 

function (Egerton et al., 2006; Ranganathan and D’Souza, 2006; Solowij and Battisti, 2008; 

Campolongo et al., 2009c, 2011; D’Souza et al., 2009; Sofuoglu et al., 2010). In rodents, 

cannabinoid direct agonists induce impairment in several cognitive performances such as 

spatial learning, working memory, and attentional processes (Presburger and Robinson, 

1999;Hampson and Deadwyler, 2000; Verrico et al., 2004; Robinson et al., 2007; Boucher 

et al., 2009, 2011). It is possible to speculate that these effects derive from cannabinoid-

mediated disruption of cortical and hippocampal activity, crucially involved in encoding of 

the stimulus and making cognitive associations (Robbe et al., 2006; Deadwyler et al., 

2007; Robbe and Buzsaki, 2009). The present results confirm the hypothesis that 

cannabinoid drugs, depending on the dose tested and the emotional state of the subject, 

could induce different effects on short-term memory parameters. The dissimilar effects 

induced by exposure to a different emotional state could depend on the activation of the 

hypothalamic-pituitary-adrenal (HPA) axis triggered by a HA context and to the 

subsequent release of stress hormones, such as glucocorticoids. It is well known that this 

axis plays a crucial role in the stress response and that these hormones differentially 

modulate cognitive functions (Roozendaal and McGaugh, 1997; Mizoguchi et al., 2004; 

Atsak et al., 2011). In particular, de Quervain and co-workers (2009) reported that 

elevated glucocorticoid levels, elicited by aversive contexts, impair memory retrieval, and 

working memory.Moreover, further studies, conducted by our group, shed light on the 

crucial role of endocannabinoid signaling in the basolateral complex of the amygdala in 

modulating consolidation of aversive memory by an interaction with the glucocorticoid 

system (Campolongo et al., 2009a,b; Hill et al., 2010; Atsak et al., 2011).  

Taken together, the present findings support the hypothesis of a fundamental role of the 

environment in influencing both the behavioral and cognitive outcomes in the Spatial 

Open Field task. Most importantly, it emerges that drugs that enhance endocannabinoid 

signaling by interfering with endocannabinoid deactivation induce different effects on 

short-term memory performance depending on the level of emotional arousal induced by 

different environmental settings. 
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Abstract 

Signaling at NMDA receptors (NMDARs) is known to be important for memory 

reconsolidation, but while most studies show that NMDAR antagonists prevent memory 

restabilization and produce amnesia, others have shown that GluN2B-selective NMDAR 

antagonists prevent memory destabilization, protecting the memory. These apparently 

paradoxical, conflicting data provide an opportunity to define more precisely the 

requirement for different NMDAR subtypes in the mechanisms underlying memory 

reconsolidation and to further understand the contribution of glutamatergic signaling to 

this process. Here, using rats with fully consolidated pavlovian auditory fear memories, 

we demonstrate a double dissociation in the requirement for GluN2B-containing and 

GluN2A-containing NMDARs within the basolateral amygdala in the memory 

destabilization and restabilization processes, respectively. We further show a double 

dissociation in the mechanisms underlying memory retrieval and memory destabilization, 

since AMPAR antagonism prevented memory retrieval while still allowing the 

destabilization process to occur. These data demonstrate that glutamatergic signaling 

mechanisms within the basolateral amygdala differentially and dissociably mediate the 

retrieval, destabilization, and restabilization of previously consolidated fear memories. 
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Introduction 

Memory reconsolidation is the process by which previously consolidated memories 

become destabilized at retrieval and require restabilization to persist in the brain (Lewis, 

1979; Nader, 2003). The neurochemical basis of reconsolidation has been intensively 

studied, particularly the requirement for signaling at the NMDA subtype of glutamate 

receptor (NMDAR). However, although NMDAR-mediated signaling is required for the 

reconsolidation (restabilization) of conditioned stimulus (CS)–drug (Sadler et al., 2007; 

Brown et al., 2008; Itzhak, 2008; Milton et al., 2008; Milton et al., 2012), CS–spatial 

(Przybyslawski and Sara, 1997), and CS–fear (Pedreira et al., 2002; Lee et al., 2006) 

memories, antagonism at the GluN2B subtype of NMDAR has been shown to prevent the 

destabilization of CS–fear memories, thereby protecting them from the effects of 

amnestic agents (Ben Mamou et al., 2006). These paradoxical, apparently conflicting data 

provide the opportunity to better understand the contribution of signaling at 

glutamatergic receptors to the reconsolidation process.  

NMDARs exist as tetramers, typically composed of two GluN1 and two GluN2 subunits 

(Dingledine et al., 1999). The GluN2 subunits consist of four different types (GluN2A–D), 

of which GluN2A and GluN2B have been the most studied. In addition to differences 

between GluN2A-containing (GluN2A-NMDARs) and GluN2B-containing NMDARs 

(GluN2B-NMDARs) in their sensitivity to glutamate and their activation kinetics, these 

subtypes of receptor also couple to different proteins within the postsynaptic density, 

activating divergent intracellular signaling pathways (Kim et al., 2005; Ivanov et al., 2006; 

Zhang et al., 2008). For example, the C-terminal domain of GluN2B-NMDARs suppresses 

CREB and activates the ubiquitin–proteasome system (UPS), while GluN2A-NMDAR 

activation promotes CREB phosphorylation and is neuroprotective (Hardingham et al., 

2002; Martel et al., 2012). These differences at the molecular level may have important 

functional implications; activation of GluN2B-NMDARs promotes long-term depression 

(LTD), while activation of GluN2A-NMDARs promotes long-term potentiation (LTP) in the 

hippocampus (Liu et al., 2004).  
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The basolateral amygdala (BLA) is required for both CS–fear memory consolidation 

(Campeau and Davis, 1995; Killcross et al., 1997; Koo et al., 2004) and reconsolidation 

(Nader et al., 2000). Furthermore, NMDARs within the BLA have been implicated in both 

memory destabilization (Ben Mamou et al., 2006) and restabilization (Milton et al., 2008) 

processes. Thus, we hypothesized that memory destabilization and restabilization may be 

mediated through the different subtypes of NMDAR within the BLA, GluN2B-NMDARs 

being required for destabilization and GluN2A-NMDARs being required for restabilization. 

Furthermore, since AMPARs are required for memory retrieval (Day et al., 2003; Bast et 

al., 2005; Winters and Bussey, 2005) and because memory reconsolidation can only occur 

when a memory is retrieved (Lewis, 1979; Nader, 2003), we further hypothesized that 

AMPARs would be necessary for the destabilization process. Finally, we investigated the 

effects of reducing presynaptic glutamate release by treatment with an agonist at 

metabotropic 2/3 glutamate receptors (mGlu2/3Rs) on the balance of these mnemonic 

processes. We hypothesized that the memory should neither be retrieved nor 

destabilized, and therefore restabilization of the memory would not be required for it to 

persist.  

Materials and Methods 

Subjects. 

Subjects were 93 male Lister–Hooded rats (Charles River Laboratories) housed in pairs in a 

vivarium on a reversed light-dark cycle (lights on at 1900 h). Subjects were food restricted, 

although not deprived, being fed 25 g per rat of lab chow after training or testing each 

day. Access to water was ad libitum except for when inside the conditioning chambers. All 

procedures were conducted in accordance with the UK Animals (Scientific Procedures) Act 

1986.  

Surgery. 

Rats were implanted with bilateral guide cannulae (16 mm, 24 gauge; Coopers Needle 

Works) located just dorsal to the basolateral amygdala (Fig. 1) as described previously 

(Milton et al., 2008). The coordinates for cannula implantation were anteroposterior − 2.6 
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mm and mediolateral ± 4.5 mm (relative to bregma) and dorsoventral − 5.6 mm (relaƟve 

to dura). A recovery period of 7 days was given before behavioral training and testing 

began.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cannulae placements. All cannulae placements were within the BLA. The placements for 
individual experiments are shown separately. For each placement the white circles represent the 
vehicle/vehicle group, the white squares the vehicle/anisomycin group, the gray circles the 
drug/vehicle group, and the gray squares the drug/anisomycin group where the drugs were IFEN 
(a), NVP-AAM077 (b), LY293558 (c), and LY317206 (d). Coordinates are given from bregma. This 
figure was modified, with permission, from Paxinos and Watson (2004).  
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Intracerebral drug administration. 

Infusions were carried out using a syringe pump (Harvard Apparatus) and 5 µl Hamilton 

syringes connected to injectors (28 gauge, projecting 2 mm beyond the guide cannulae; 

Plastics One) by polyethylene tubing. The rats received two infusions: one immediately 

before the memory reactivation session, and one immediately afterward. All infusions 

were begun 30 s after the insertion of the injectors and performed over 2 min at a rate of 

0.25 µl min−1 (total volume of 0.5 µl side−1). One minute of waiting time was imposed from 

the end of the infusion to the removal of the injectors to allow diffusion of the solution 

away from the infusion site.  

Drugs. 

Rats received either the protein synthesis inhibitor anisomycin or its vehicle as their 

second (post-reactivation) infusion. Anisomycin (125 µg µl−1; Sigma-Aldrich) was dissolved 

in equimolar HCl and then pH balanced to pH 7.4 with NaOH. This dose of anisomycin has 

previously been shown to disrupt memory reconsolidation (Ben Mamou et al., 2006).  

Prior to memory reactivation, rats received infusions of drugs targeting the glutamatergic 

signaling system or the appropriate vehicle. The GluN2B diheteromeric receptor-selective 

(Williams, 1993) NMDAR antagonist ifenprodil (Ascent Scientific) was dissolved in PBS at a 

concentration of 2 µg µl−1; this dose has previously been shown to disrupt memory 

destabilization (Ben Mamou et al., 2006). The GluN2A-preferring (Auberson et al., 2002) 

NMDAR antagonist NVP-AAM077 (Sigma-Aldrich) was dissolved in PBS at a concentration 

of 5 µg µl−1; this dose has been shown to reduce the expression of fear-potentiated startle 

(Walker and Davis, 2008). The mGlu2/3R agonist LY317206 (Doherty et al., 1999) and the 

AMPAR antagonist LY293558 (Ornstein et al., 1993) were both generous gifts from Eli Lilly. 

LY317206 was dissolved in PBS at a concentration of 2 µg µl−1, and LY293558 in ddH2O at a 

concentration of 1.33 µg µl−1. This dose of LY317206 has been shown to reduce fear-

potentiated startle (Walker et al., 2002), and the dose of LY293558 is higher than the 

ineffective doses used previously in the amygdala (Di Ciano and Everitt, 2004).  
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Behavioral procedures 

Testing took place in four conditioning chambers (Med Associates) with the assignment of 

individual conditioning chambers counterbalanced across experimental groups within 

each experiment. Rats were first habituated to the context in a 2 h session in which 

neither the clicker CS nor the shock unconditioned stimulus (US) were presented. 

Following the end of this habituation session, they were returned to the home cage. 

Twenty-four hours later, they were placed back into the same experimental chamber for 

the fear conditioning session; during this time, they were first exposed to the context 

(with no CS or US) for 35 ± 1 min, then exposed to a single CS–US pairing of a clicker (10 

Hz, 80 dB, 60 s) CS and a 0.5 mA, 1 s scrambled footshock US. For the experiment 

investigating the requirement of AMPARs in memory reconsolidation, a different brand of 

experimental chamber (Paul Fray Limited) was used, but it was set up in the same 

configuration as the Med Associates chambers, other than the shock duration (0.5 s). To 

ensure comparability in the strength of learning, five CS-shock pairings were used in this 

experiment. All other aspects of the behavioral procedures remained the same.  

Twenty-four hours following the end of training, the rats were returned to the same 

conditioning chambers for a memory reactivation session. After 1 min of context 

exposure, the clicker CS was presented for 60 s. The session was recorded through a CCTV 

system onto a DVD to allow for offline manual scoring of behavior. Two CS–fear memory 

tests were conducted following the memory reactivation session; these test sessions, 

conducted 24 h and 8 d following reactivation, had the same format as the memory 

reactivation session, except that no drug infusions were given.  

Briefly, and as before (Ben Mamou et al., 2006), if memory destabilization was prevented 

by the pre-reactivation infusion, then anisomycin would not have an amnestic effect 

when it was subsequently infused, since the memory would not be in a destabilized and 

labile state when anisomycin was applied. If memory restabilization was prevented by the 

pre-reactivation infusion, then all experimental groups treated with the drug would be 

predicted to show amnesia at subsequent test, as would a group that had received an 

infusion of vehicle followed by anisomycin. If neither destabilization nor restabilization 
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were prevented by the pre-reactivation infusion, then only the two groups that had 

received post-reactivation anisomycin would be predicted to show amnesia.  

Histology 

At the end of the experiments, the rats were killed with an overdose of anesthetic 

(Dolethal, Vétoquinol) and transcardially perfused through the ascending aorta with 0.01 

m PBS, followed by 4% paraformaldehyde (PFA). The brains were removed and stored in 

4% PFA for at least 24 h before being transferred to a 20% sucrose solution for 

cryoprotection before sectioning. The brains were sectioned at 60 µm and stained with 

cresyl violet. Cannulae placements (Fig. 1) were verified using light microscopy (Leica).  

Data collection and statistical analysis 

Data for the reactivation and test sessions were scored offline and blind to treatment by 

A.L.M. Data from the conditioning session were not recorded because there is no measure 

of conditioned freezing when animals receive only one pairing of the CS with shock. 

However, shock delivery was recorded by the experimenter observing the unconditioned 

response in the conditioning session. Freezing was defined as a cessation of movement 

apart from respiration and was measured instantaneously at 5 s intervals. Freezing during 

the first minute of the session was assessed to provide a measure of fear to the context, 

and the second as a measure of fear to the CS. All data were converted to percentages 

before analysis. Data were analyzed by repeated-measures ANOVA with CS (context vs 

cue) and Session (reactivation vs 24 h test vs 8 d test) as within-subject factors, and Drug 1 

[vehicle (VEH) vs drug] and Drug 2 [VEH vs anisomycin (ANI)] as between-subjects factors. 

For clarity, these are reported in the text using the name of the drug used in the 

experimental group (e.g., Drug 2 is shown as ANI). Where the data violated the 

assumption of sphericity as assessed using Mauchly's test, a correction was applied; the 

Greenhouse–Geisser correction if ε < 0.75, and the Huynh–Feldt correction if ε > 0.75, as 

recommended by Cardinal and Aitken (2006). Where appropriate, further ANOVAs or 

pairwise comparisons were conducted; all pairwise comparisons were adjusted using the 
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Šidák correction, which is a mathematically accurate form of the Bonferroni estimation 

(Cardinal and Aitken, 2006).  

Results 

GluN2B-NMDARs are required for memory destabilization, not restabilization 

Administration of the GluN2B-selective NMDAR antagonist ifenprodil (IFEN) directly into 

the BLA before memory reactivation prevented the destabilization of the CS–fear 

memory. This was shown by the prevention of anisomycin-induced amnesia when IFEN 

was given before reactivation, but not when the vehicle was given before reactivation 

(Fig. 2b). All groups had previously conditioned to the CS, as all rats showed greater 

freezing to the CS than the context in the reactivation and the test sessions [F1, 25 = 33.0, p 

< 0.001, η2 = 0.57]. While the VEH/ANI group showed less freezing than the VEH/VEH 

group at the 24 h test [F(1, 14) = 5.8, p = 0.031, η2 = 0.29], the IFEN/ANI group froze 

comparably to the IFEN/VEH group [F < 1, p = 0.66]. Analysis of the 8 d test was 

complicated by an overall reduction in conditioned freezing [CS × session: F1, 25 = 4.7, p = 

0.04, η2 = 0.16] most likely attributable to the gradual extinction that occurred after the 

last nonreinforced retrieval test. However, while the VEH/VEH and VEH/ANI groups 

showed equivalent conditioned freezing at the 8 d test [F1, 14 = 2.2, p = 0.16], so did the 

IFEN/VEH and IFEN/ANI groups [F1, 11 = 3.4, p = 0.09], consistent with the prevention of 

destabilization of the CS–fear memory by IFEN.  

IFEN did not acutely affect the retrieval of the conditioned fear memory (Fig. 2a); 

collapsing across groups for the first infusion (VEH, n = 16; IFEN, n = 13) there was no 

difference in the level of conditioned freezing shown during the memory reactivation 

session [F < 1, p = 0.95]. These findings confirm the previous report (Ben Mamou et al., 

2006) that GluN2B-NMDARs are required for memory destabilization. 
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Figure 2. Effects of the GluN2B-selective NMDAR antagonist on CS–fear memory reconsolidation. 
Administration of the GluN2B-selective NMDAR antagonist had no effect on the retrieval of the CS–
fear memory at reactivation (a), but it did prevent the destabilization of the CS–fear memory (b). 
Data are presented as means ± SEM. Group sizes (and colors in b) were VEH/VEH, n = 8 (white); 
IFEN/VEH, n = 8 (mid-gray); VEH/ANI, n = 8 (pale gray); and IFEN/ANI, n = 5 (dark gray). In a the 
groups are collapsed with the white bar representing the average of the VEH/VEH and VEH/ANI 
groups, and the gray bar the IFEN/VEH and IFEN/ANI groups. Asterisk (*) denotes p < 0.05.  

GluN2A-NMDARs are required for memory restabilization, not destabilization 

Administration of the GluN2A-preferring NMDAR antagonist NVP-AAM077 (NVP) before 

the memory reactivation session reduced conditioned freezing at subsequent tests 

conducted 24 h and 8 d later (Fig. 3b). All rats had conditioned to the CS, as all groups 

showed greater freezing to the CS than the context in the reactivation and the test 

sessions [F1, 15 = 12, p = 0.003, η2 = 0.45]. Administration of NVP reduced conditioned 

freezing in the subsequent test sessions [CS × Session × NVP: F2, 30 = 4.8, p = 0.016, η2 = 

0.24], but not during the reactivation session. Analyses of individual sessions showed that 

there were no differences between experimental groups during reactivation [CS × NVP: F1, 

15 = 2.3, p = 0.15; CS × ANI: F < 1, p = 0.52; CS × NVP × ANI: F < 1, p = 0.87], but NVP-

treated animals froze less than VEH-treated rats during the test at 24 h [CS × NVP: F1, 15 = 

8.5, p = 0.011, η2 = 0.36]. The effect of NVP was persistent in that there was no overall 

reduction in freezing between the 24 h and the 8 d test [F< 1], although there was a 

reduction in the VEH-treated groups [CS × Session × NVP: F1, 15 = 9.75, p = 0.007, η2 = 0.39; 
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pairwise comparisons showed a reduction in conditioned freezing between the 24 h and 8 

d test in the VEH-treated groups, p = 0.024, but not in the NVP-treated groups, p = 0.22]. 

This is consistent with extinction of the CS–US association in the VEH/VEH group, but not 

in the other experimental groups, which could not reduce freezing any further. Pairwise 

comparisons also revealed that the NVP-treated groups did not differ from the VEH/ANI 

group [all p values > 0.41]. Thus, administration of NVP produced amnesia regardless of 

whether anisomycin was also administered. Furthermore, the amnesia shown by the 

NVP/ANI group supports the view that NVP did not block destabilization, because if it had 

then this group would have shown intact memory.  

NVP did not acutely affect the retrieval of the conditioned fear memory during the 

reactivation session (Fig. 3a); collapsing across groups for the first infusion (VEH, n = 9; 

NVP, n = 10), despite the apparent numerical reduction in freezing in the NVP-treated 

group, there was no statistical difference between freezing levels in the two experimental 

groups [F1, 17 = 2.4, p = 0.14]. However, the NVP-treated group showed levels of freezing 

that did not significantly differ from zero [p = 0.34] consistent with the previous 

observation that this dose of NVP reduces the expression of fear-potentiated startle 

(Walker and Davis, 2008). This result supports our hypothesis that GluN2A-NMDARs are 

required for memory restabilization while not being required for memory destabilization. 
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Figure 3. Effects of the GluN2A-preferring NMDAR antagonist on CS–fear memory reconsolidation. 
Administration of the GluN2A-preferring NMDAR antagonist had no effect on the retrieval of the 
CS–fear memory at reactivation (a), but it prevented the restabilization of the CS–fear memory (b). 
Data are presented as means ± SEM. Group sizes (and colors in b) were: VEH/VEH, n = 4 (white); 
NVP/VEH, n = 5 (mid gray); VEH/ANI, n = 5 (pale gray); and NVP/ANI, n = 5 (dark gray). In a the 
groups are collapsed, with the white bar representing the average of the VEH/VEH and VEH/ANI 
groups, and the gray bar the NVP/VEH and NVP/ANI groups. Asterisk (*) denotes p < 0.05; ns 
denotes nonsignificant differences 

AMPARs are not required for destabilization or restabilization 

Administration of the AMPAR antagonist LY293558 before memory reactivation did not 

reduce conditioned freezing during the test sessions and did not prevent the post-

reactivation anisomycin infusion from inducing amnesia (Fig. 4b). All rats had conditioned 

to the CS, as they showed greater freezing to the CS than the context following training 

[F1, 21 = 37.7, p < 0.001, η2 = 0.64]. LY293558 did not affect freezing in the 24 h test session 

[CS × LY293558: F < 1, p = 0.45], but anisomycin infusion resulted in amnesia [CS × ANI: F1, 

21 = 16, p = 0.001, η2 = 0.44]. Indeed, the group that received anisomycin following 

LY293558 froze less than the group that received vehicle before reactivation [CS × ANI: F1, 

9 = 6.0, p = 0.037, η2 = 0.40], demonstrating that LY293558 did not prevent the 

destabilization of the memory. This anisomycin-induced amnesia was also observed at the 

8 d test [F1, 21 = 7.82, p = 0.011, η2 = 0.27], even though there was extinction of 

conditioned freezing at the 8 d test compared to the 24 h test [F1, 21 = 10.1, p = 0.005, η2 = 
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0.32]. This is consistent with a previous report in which the AMPA/kainate receptor 

antagonist CNQX was shown to leave memory destabilization and restabilization intact 

when given before memory reactivation (Ben Mamou et al., 2006).  

LY293558 acutely reduced conditioned freezing during the memory-reactivation session 

(Fig. 4a); collapsing across groups for the first infusion (VEH, n = 14; LY293558, n = 11), the 

groups given LY293558 before the memory reactivation froze to the CS less than groups 

that had received the infusion of vehicle [CS × LY293558: F1, 23 = 6.8, p = 0.016, η2 = 0.23]. 

Thus, AMPARs are required for memory retrieval but not memory destabilization. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effects of the AMPAR antagonist on CS–fear memory reconsolidation. The AMPAR 
antagonist LY293558 acutely impaired the retrieval of the CS–fear memory at reactivation (a), but 
it affected neither the destabilization nor the restabilization of the CS–fear memory (b). Group 
sizes (and colors in b) were VEH/VEH, n = 8 (white); LY293558/VEH, n = 6 (mid gray); VEH/ANI, n = 6 
(pale gray); and LY293558/ANI, n = 5 (dark gray). In a the groups are collapsed, with the white bar 
representing the average of the VEH/VEH and VEH/ANI groups and the gray bar the LY293558/VEH 
and LY293558/ANI groups. Asterisks (*) denote p < 0.05.  

Blockade of Glu release left destabilization and restabilization intact 

LY317206, an agonist at presynaptic class II/III metabotropic glutamate receptors 

(mGlu2/3Rs), affected neither the destabilization nor the restabilization of the CS–fear 

memory (Fig. 5b). All groups had conditioned to the CS during training, as shown by 

increased freezing during the CS compared to the context [F1, 16 = 29, p < 0.001, η2 = 0.64]. 
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However, although anisomycin produced amnesia as assessed at the 24 h test [CS × ANI: 

F1, 16 = 7.2, p = 0.016, η2 = 0.31], there was no effect of LY317206 on conditioned freezing 

[CS × LY317206: F < 1, p = 0.74], indicating that it did not prevent the restabilization of the 

CS–fear memory. Furthermore, as the LY317206/ANI group showed less freezing to the CS 

than the LY317206/VEH group at the 24 h test [CS × ANI: F1, 10 = 11, p = 0.008, η2 = 0.52], 

the memory destabilized during the reactivation session, and this process was not 

prevented by agonism at mGlu2/3Rs. The anisomycin-induced amnesia observed at 24 h 

persisted at the trend level in the 8 d test [F1, 16 = 4.14, p = 0.059, η2 = 0.21], although the 

data from the 8 d test were compromised by the extinction of conditioned freezing in the 

VEH/VEH group [pairwise comparisons revealed reduced conditioned freezing at the 8d 

test in this group, p = 0.035, but no differences in the other groups, all p values > 0.49]. 

LY317206 did not acutely affect the retrieval of the conditioned fear memory during the 

reactivation session (Fig. 5a); collapsing across groups for the first infusion (VEH, n = 8; 

LY317206, n = 12), there was no statistically significant difference between freezing levels 

in the two groups [F1, 18 = 2.4, p = 0.14] despite the numerical reduction in conditioned 

freezing. Thus, agonism at presynaptic mGlu2/3Rs did not affect the destabilization or 

restabilization and did not produce a statistically significant reduction in the retrieval of 

the CS–fear memory. 
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Figure 5. Effects of the mGlu2/3R agonist on CS–fear memory reconsolidation. The mGlu2/3R 
agonist LY317206 did not prevent retrieval of the CS–fear memory at reactivation (a), and it 
prevented neither destabilization nor restabilization of the CS–fear memory (b). Group sizes (and 
colors in b) were VEH/VEH, n = 4 (white); LY317206/VEH, n = 6 (mid gray); VEH/ANI, n = 4 (pale 
gray); and LY317206/ANI, n = 6 (dark gray). In a the groups are collapsed, with the white bar 
representing the average of the VEH/VEH and VEH/ANI groups and the gray bar the LY317206/VEH 
and LY317206/ANI groups. Asterisk (*) denotes p < 0.05; ns denotes nonsignificant differences.  

Discussion 

The present data support the view that GluN2B-NMDARs and GluN2A-NMDARs within the 

BLA are required for memory destabilization and restabilization, respectively. This is the 

first demonstration of a double dissociation in the function of these two subtypes of 

NMDAR in memory reconsolidation. Furthermore, we also demonstrate a double 

dissociation between memory retrieval (dependent upon AMPARs) and the induction of 

memory lability (dependent upon GluN2B-NMDARs).  

The doubly dissociable involvement of different NMDAR subtypes in destabilization and 

restabilization enables resolution of the apparent discrepant findings in the literature that 

antagonism at GluN2B-NMDARs prevents memory destabilization (Ben Mamou et al., 

2006), but that nonselective NMDAR antagonism with d-APV (Milton et al., 2008) or MK-

801 (Przybyslawski and Sara, 1997; Pedreira et al., 2002; Sadler et al., 2007; Brown et al., 

2008; Itzhak, 2008; Lee and Everitt, 2008; von der Goltz et al., 2009) prevents the 

restabilization of memories. We hypothesize (Fig. 6) that the differential effects of 
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nonsubtype-selective NMDAR antagonists on these mnemonic processes depend upon 

the balance between signaling at GluN2B-NMDARs and GluN2A-NMDARs, since only after 

the brief destabilization process is there a requirement for the longer-lasting 

restabilization process to be engaged. The differences in duration of the two processes, 

subserved by different subpopulations of NMDAR expressed within BLA neurons (Müller 

et al., 2009), would suggest that the nonsubtype-selective NMDAR antagonists tested in 

previous studies appear to be sufficient to prevent GluN2A-dependent signaling, but fail 

significantly to affect GluN2B-dependent signaling.  

Thus, we hypothesize that nonselective NMDAR antagonists exert their amnestic effects 

primarily through GluN2A-containing NMDARs. Consistent with this view are the findings 

that GluN2A-preferring NMDAR antagonists prevent the acquisition of spatial memory (Hu 

et al., 2009) and conditioned fear (Dalton et al., 2012), as do nonsubtype-selective 

NMDAR antagonists (Morris et al., 1986; Davis et al., 1992; Fanselow and Kim, 1994). 

Furthermore, the effects of nonselective NMDAR antagonists on other processes, such as 

cortical oscillations, are more similar to the effects of GluN2A-preferring NMDAR 

antagonists than GluN2B-selective NMDAR antagonists (Kocsis, 2012). Thus, the 

glutamate transmission-dependent destabilization and restabilization processes would be 

predicted to engage parallel, independent molecular mechanisms mediated by the two 

subtypes of NMDAR. This perspective can be integrated with already known mechanisms 

underlying memory destabilization; for example, GluN2B-containing NMDARs recruit the 

ubiquitin-proteasome system via CaMKII (Bingol et al., 2010), thus allowing the protein 

degradation that is required for the induction of memory lability (Lee et al., 2008) 
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Figure 6. Hypothesized glutamatergic mechanisms underlying memory stability. GluN2B-containing 
NMDARs are required for memory destabilization, and IFEN prevents this process. GluN2A-
containing NMDARs are required for memory restabilization, which is prevented by NVP-AAM077. 
The AMPAR antagonist LY293558 reduces memory retrieval but has no effect on destabilization or 
restabilization. The presynaptic mGlu2/3R agonist LY317206 reduces glutamate release, reducing 
memory retrieval via AMPARs but leaving the balance of GluN2A and GluN2B activity intact (thus 
having no effect on destabilization or restabilization).  

Surprisingly, we found a further dissociation in the mechanisms underlying memory 

retrieval (dependent upon AMPARs) and destabilization (dependent upon GluN2B-

NMDARs). These data refute our original hypothesis concerning AMPARs, although they 

are consistent with previous findings that signaling via AMPARs is necessary for memory 

expression and retrieval (Day et al., 2003; Bast et al., 2005; Winters and Bussey, 2005). It 

is perhaps surprising, from a theoretical perspective, that memory retrieval and 

destabilization might be disrupted independently, since reconsolidation theories maintain 

that memories must be retrieved to become once again susceptible to disruption with 

amnestic agents (Lewis, 1979; Nader, 2003). We therefore propose that the processes of 

memory retrieval and memory destabilization are doubly dissociable, but that behavioral 
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procedures used to induce memory destabilization often induce memory retrieval as well. 

This hypothesis clearly warrants further investigation.  

As predicted, the LY317206-induced reduction in glutamate release (Doherty et al., 1999) 

resulted in decreased activity at AMPARs, GluN2B-NMDARs, and GluN2A-NMDARs and 

hence no observable effect on memory retrieval, destabilization, or restabilization. 

Although this is consistent with the mechanisms shown in Figure 6, these data also 

indicate that such drugs are unlikely to have utility in the treatment of maladaptive 

memories that characterize some neuropsychiatric disorders. There has been interest in 

indirectly modulating signaling at NMDARs by reducing glutamate release presynaptically 

since, as has been noted previously (Milton and Everitt, 2010), systemic NMDAR 

antagonists are unlikely to be used clinically because of their problematic 

psychotomimetic side effects. However, our data do support the view that selectively 

targeting GluN2A-NMDARs may provide a useful therapeutic strategy; the 

psychotomimetic effects of systemic NMDAR antagonism are likely mediated through 

GluN2B-NMDARs (De Vry and Jentzsch, 2003), and so it may be possible to develop 

GluN2A-NMDAR-selective therapies that are appropriate for clinical use.  

The results of these experiments reveal the complexity of the glutamatergic mechanisms 

underlying CS–fear memory reconsolidation within the BLA. In summary, GluN2A-

containing and GluN2B-containing NMDARs have dissociable roles in memory 

restabilization and destabilization, respectively. While AMPARs are required for memory 

retrieval, they do not appear necessary for memory destabilization, suggesting that these 

two processes are independently regulated. Furthermore, agonism at presynaptic 

mGlu2/3Rs has no overall effect on the strength of a CS–fear memory. In addition to 

further elucidating the glutamatergic mechanisms underlying the reconsolidation of fear 

memories, these data also further support the possible utility of modulating specific 

glutamate receptors in the clinical treatment of anxiety disorders to disrupt persistent 

maladaptive and intrusive memories.  
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Introduction 

Memory reconsolidation refers to a process through which a previously consolidated and 

recalled memory turns into a labile state and become susceptible to being manipulated. 

Thus, this instability could result in newly strengthened and/or integrated or disrupted 

memories. For example, pharmacological manipulation before or immediately after 

retrieval, could prevents (Debiec et al, 2002; Milton et al, 2013; Nader et al, 2000; 

Taubenfeld et al, 2009; Wang et al, 2009) or enhances the expression of conditioned fear 

response (Lee et al, 2006b). That is, manipulation of reconsolidation process could be 

used as a novel tool to disrupt maladaptive memories in neuropsychiatric disorders, such 

as post-traumatic stress disorder, in humans (Brunet et al, 2008; Debiec and LeDoux, 

2006; Oyarzun et al, 2012; Schiller et al, 2010).  

Growing evidence indicates a fundamental involvement of the endocannabinoid system in 

regulation of memory processing of emotionally salient events (Atsak et al, 2012; 

Campolongo et al, 2009b; Campolongo and Trezza, 2012b; Hauer et al, 2011). This is 

consistent with the localization of cannabinoid receptors (CB) throughout the cortico-

limbic system, in brain regions involved in regulation of learning and memory such as 

hippocampus, basolateral amygdala (BLA) and prefrontal cortex. Recently it has been 

shown that bilateral intra-BLA infusion of the direct cannabinoid receptor agonist 

WIN55,212-2 immediately after inhibitory avoidance training enhances memory 

consolidation in rats (Campolongo et al, 2009b). However, the use of drugs that directly 

bind and activate brain cannabinoid receptors may be limited by their abuse liability. 

Indirect cannabinoid agonists, that increase endocannabinoid signalling by interfering 

with endocannabinoid degradation/transport, are emerging as a new pharmacological 

tool. The enhancing effect on memory consolidation has been confirmed recently by the 

enhancement of memory consolidation, induced by potentiation of the endocannabinoid 

tone, through inhibition of the enzyme responsible of endogenous cannabinoid 

degradation Fatty Acid Amide Hydrolase (FAAH). The indirect cannabinoid agonist 

URB597, a FAAH-inhibitor agent, bilaterally infused in the BLA, enhanced consolidation for 

aversive memory and this effect is prevented by blocking CB1 receptors with infusion of 

the CB1 receptor antagonist AM251 (Ratano et al, 2011). 
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However, the role of endocannabinoid system in memory reconsolidation is still poorly 

understood. Indeed, evidence indicates that the activation or inactivation of 

endocannabinoid receptors bidirectionally modulate memory reconsolidation of aversive 

events (de Oliveira Alvares L. et al, 2008; Kobilo et al, 2007; Lin et al, 2006; Suzuki et al, 

2008). However, while the CB1 receptor agonist, WIN 55,212-2 was reported to impair 

reconsolidation of fear-potentiated startle after CS re-exposure (Lin et al, 2006), the CB1 

receptor antagonist rimonabant did not enhance memory or produce amnesia, suggesting 

that CB1 receptors are not required for memory reconsolidation (Suzuki et al, 2004). In a 

more recent study, Stern and co-workers demonstrate that the phytocannabinoid 

cannabidiol is able to disrupt contextual fear memories when systemically administered 

immediately after memory reactivation (Stern CA et al, 2012) suggesting that the effect 

induced by cannabidiol is possibly dependent on cannabinoid type-1 receptor-mediated 

signaling mechanisms. 

However these poor and contrasting findings do not help in clarifying how the 

endocannabinoid system is involved in reconsolidation process. In order to better 

understand how the endocannabinoid system influence memory reconsolidation, in the 

present study we aimed to evaluate the effects of the endocannabinoid system 

manipulation directly within the basolateral amygdala on reconsolidation of pavlovian 

fear memory in an auditory fear conditioned paradigm, as well as the mechanisms 

underlying memory processing after cue re-exposure during memory recall. Moreover, as 

it is known that CB1 receptors localize presynaptically in the BLA on a distinct 

subpopulation of GABAergic interneurons (Katona et al, 2001), interaction between 

endocannabinoid and GABAergic neurotransmission was evaluated in order to investigate 

the mechanisms underlying the effects on memory reconsolidation after pharmacological 

manipulation of CB1 receptors. 

Materials and Methods 

Subjects.  

112 Male Lister-Hooded rats (300-320 at the time of surgery, Charles River) were housed 

in pairs in a vivarium on a reversed light-dark cycle (lights on at 1900hrs). All subjects 
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were food restricted, but not deprived, being fed 25 g per rat of lab chow after training or 

testing each day starting from the day of surgery. Access to water was ad libitum except 

for when inside the conditioning chambers and during infusion procedure. All procedures 

were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986 and 

the Directive 2010/63/EU of the European Parliament and of the Council of 22 September 

2010 on the protection of animals used for scientific purposes. 

Surgery.  

Rats were anesthetized with intramuscular injection of a mixture of ketamine (80mg/kg) 

and xylazine (10mg/kg) and implanted with bilateral guide cannulae (16mm, 24 gauge; 

Coopers Needle Works Ltd) located just dorsal to the basolateral amygdala as described 

previously (Milton et al, 2008a). The co-ordinates for cannula implantation were AP - 2.6 

mm and ML ± 4.5 mm (relative to bregma) and DV – 5.6 mm (relative to dura). Stainless 

steel obdurators were inserted into both cannulae to maintain patency. A recovery period 

of at least 7 days was given prior to behavioral testing.  

Drug infusion. 

Intra-BLA administration was carried out using a syringe pump (Harvard Apparatus) and 5 

µl Hamilton syringes, connected to injectors (28 gauge, projecting 2 mm beyond the guide 

cannulae; Plastics One Inc.) by polyethylene tubing. All infusions were begun 30 seconds 

after the insertion of the injectors and performed over 2 minutes at a rate of 0.25 µl min-1 

(total volume of 0.5 µl side-1). One minute of waiting time was imposed from the end of 

the infusion to the removal of the injectors to allow the drugs to diffuse from the injection 

site. The CB1 receptor agonist URB597 (Cyclohexylcarbamic acid 3´-carbamoyl-biphenyl-3-

yl ester , Sigma-Aldrich ,30 ng per 0.5 µL per side), the CB1 receptor antagonist AM251 (N-

(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 

carboxamide, Tocris, 300 ng per 0.5 µL per side) and GABAA receptor antagonist 1(S),9(R)-

(−)-Bicuculline methiodide (bic, Sigma, 50 ng per 0.5 µL per side) were dissolved in a 

vehicle (veh) containing 5% polyethylene glycol, 5% Tween-80 and 90% saline. All doses 
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were chosen based on previous studies (Koya et al, 2009) and on data from pilot 

experiments.  

Histology 

After completion of behavioral testing, the rats were killed with a dose of anaesthetic and 

transcardially perfused with 0.01 M PBS, followed by 4% paraformaldehyde (PFA). Brains 

were collected and stored in 4% PFA for at least 24 hours, before being transferred to 20% 

sucrose solution for cryoprotection prior to sectioning. Subsequently, the brains were cut 

to produce 60 µm coronal sections, and stained with Cresyl Violet. The cannulae 

placement assessment was conducted under light microscopy (Leica), and subjects were 

only included in the statistical analysis if the injectors were located bilaterally within the 

BLA, and there was no bilateral damage to the amygdala or any other area of the brain. 

Behavioural procedures. 

Auditory Fear Conditioning was performed in four operant chambers (Med Associates 

Inc.). On day 1 (habituation session), the rats were habituated to the experimental 

chamber for 2 hours and allowed to freely explore the context. On day 2, for fear 

conditioning (conditioning session), the rats were placed in the same experimental 

context as in the habituation session, and exposed to two CS-US pairings. The CS was an 

auditory clicker (10 Hz, 80 dB, 60 s) and the US a mild electric footshock (0.5 mA, 1 s). The 

first CS-US pairing was presented after 35 ± 1 minute from the start of the session, 

followed by a 5± 1 minute interval when a second CS-US pairing was given. The 

conditioning session terminated 5 minutes after the last footshock delivery. On day 3, for 

memory reactivation (reactivation session), the rats were exposed during a brief 2 min 

session to a single presentation of the 60 s CS after 60 s of context exposure. All rats 

received an intra-BLA infusion of the drugs before or immediately after the memory 

reactivation session to evaluate the effect of the drugs on memory reconsolidation 

process. As control, an additional group of non-reactivated rats were habituated and 

conditioned following the same behavioral procedure except for receiving drug injections 

in the holding room on day 3 without being exposed to the reactivation session. The 
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conditioned freezing was tested during a single presentation of the 60 s CS after 60 s of 

context exposure (testing sessions). Testing took place 24 h [post-reactivation long-term 

memory (PR-LTM24h), day 4], and 8 days (PR-LTM8d, day 8) after memory reactivation to 

test long-term memory retention. Freezing behaviour was video-recorded, the 

behavioural outcome subsequently scored offline by an observer unaware of drug 

treatment, and analyzed for freezing. Freezing is defined as the lack of movement except 

for breathing at 5 s intervals to give the percentage time freezing during the CS. Freezing 

during the first minute of the testing session was assessed as measure of fear reaction to 

the experimental context, and during the second as measure of fear to the CS. 

Statistical Analysis 

Data were analyzed by repeated measures ANOVA, with CS (Context vs. Cue) and Session 

(Reactivation vs. PR-LTM24hvs. PR-LTM8d) as within-subject factors, and Treatment (VEH 

vs. URB597 vs. AM251) as between-subjects factors. Where the data violated the 

assumption of sphericity as assessed using Mauchly’s test, a correction was applied; the 

Greenhouse-Geisser correction if ε < 0.75, and the Huynh-Feldt correction if ε > 0.75, as 

recommended by Cardinal & Aitken (2006). Where appropriate, further ANOVAs or 

pairwise comparisons were conducted; all pairwise comparisons were adjusted using the 

Šidák correction, which is a mathematically accurate form of the Bonferroni estimation 

(Cardinal et al, 2006). 

Results 

Pre-reactivation infusion of URB597 and AM251 did not affect retrieval and 

reconsolidation of pavlovian fear memory. 

To evaluate the role of the endocannabinoid system in the BLA on the modulation of fear 

memory reconsolidation, the CB1 indirect agonist URB597 or the CB1 antagonist AM251 

was bilaterally infused into the BLA 30 min before the reactivation session. All 

experimental groups had previously conditioned to CS, as all rats showed a greater fear 

response to the CS than to the context during the reactivation session (F1,25=41.59; 

p<0.001). As shown in Fig. 1, there were no differences in conditioned freezing during the 
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test sessions between animals given URB, AM or vehicle (F2,25=0.98; p=0.39), and though 

conditioned freezing reduced across the test sessions (F2,50=5.83; p<0.005), it did so in a 

similar way across all experimental groups (F4,50=0.06; p=0.99). Pairwise comparisons 

revealed that there was a statistically significant difference in levels of freezing of all 

treated rats between the reactivation session and PR-LTM8d (reactivation vs PR-LTM8d, 

p=0.012) and between PR-LTM24h and PR-LTM8d (PR-LTM24h vs PR-LTM8dPR-LTM8d, 

p=0.02) sessions. This might indicates that repeated exposure without reinforcing could 

activate an extinction process inducing a reduction of the fear response. Moreover, 

ANOVA on the single reactivation session did not reveal a treatment effect on freezing 

levels (F2,25=0.41; p=0.67) showing that the pre-infused drugs did not acutely affect the 

expression of conditioned freezing. Therefore, neither URB597 nor AM251, at the doses 

used, affected retrieval or memory reconsolidation, as all groups showed the same level 

of freezing response over the reactivation and test sessions. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Effects of the indirect CB1 agonist URB597 (30ng/0.5ul) and the CB1 antagonist AM251 
(300ng/0.5ul) on CS–fear memory reconsolidation. Administration of URB597 (30ng/0.5ul) or 
AM251 (300ng/0.5ul) before reactivation session had no effect on the retrieval of the CS–fear 
memory at reactivation and did not alter expression of freezing response 24h or 8d post-
reactivation. Data are presented as means ± SEM. Group sizes were veh, n = 9; URB597 
(30ng/0.5ul), n = 10; AM251 (300ng/0.5ul), n = 9  
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Immediately post-reactivation infusion of the CB1 antagonist AM251 disrupted 

reconsolidation of pavlovian fear memory 

The CB1 antagonist AM251 infused in BLA immediately post-reactivation session 

disrupted memory reconsolidation of pavlovian fear memory. All rats had previously 

conditioned to CS, as all groups showed a greater fear response to the CS than to the 

context during the reactivation session (F1,29=5.52; p<0.001). As shown in Fig. 2, there 

were differences in conditioned freezing during the test sessions between animals given 

URB597, AM251 or vehicle (F2,29=6.00; p=0.007) and across both test sessions (F2,29=4.78; 

p=0.012) and all experimental groups (F4,58=5.53; p=0.001) Pairwise comparisons revealed 

that rats infused with AM251 immediately after the reactivation session froze less when 

re-exposed to the context 24h later (PR-LTM24h vs reactivation p=0.011) and 8 days later 

(PR-LTM7d vs reactivation p=0.001) when compared with the same rats exposed to the CS 

prior to the treatment. Additionally, pairwise comparisons showed that rats administered 

with URB597 had higher levels of freezing when re-exposed to the CS 24h after memory 

reactivation (PR-LTM24h vs reactivation, p=0.041) when compared with the same group 

prior to the treatment. However this fear response was not a persistent effect over the 

time as when re-exposed to the CS 8 days post-reactivation URB597-treated rats showed 

the same freezing response as the same group prior to the infusion (PR-LTM8d vs 

reactivation, p=0.96). Moreover, analyses of single test sessions showed a significant main 

effect of treatment for both PR-LTM24h (F2,29=12.033, p<0.001) and PR-LTM8d 

(F2,29=6.819, p=0.004). Post hoc analysis showed that AM251-treated rats had freezing 

levels significantly lower when compared with vehicle and URB597-treated rats after both 

24h (p=0.005; p<0.001 respectively) and 8d (p=0.038; p=0.004, respectively) the 

reactivation session. Thus, intra-BLA infusion of the indirect CB1 agonist URB597 seems to 

potentially enhance memory reconsolidation while the antagonist AM251 had an 

opposite effect and persistently disrupted reconsolidation of pavlovian fear memory. 
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Fig. 2 Effects of the indirect CB1 agonist URB597 (30ng/0.5ul) and the CB1 antagonist AM251 
(300ng/0.5ul) on CS–fear memory reconsolidation. Administration of URB597 (30ng/0.5ul) 
immediately after the reactivation session had no effect on CS–fear memory reconsolidation both 
24h and 8d after reactivation. AM251 (300ng/0.5ul) persistently impaired memory reconsolidation 
when compared with vehicle and URB597 (30ng/0.5ul)-treated rats after both 24h and 8d after the 
reactivation session (**p<0.01 vs veh; $$$ p<0.001 vs URB597 (30ng/0.5ul)) (*p<0.05 vs veh; $$ 
p<0.01 vs URB597 (30ng/0.5ul)). Data are presented as means ± SEM. Group sizes were veh, n = 10; 
URB597 (30ng/0.5ul), n = 12; AM251 (300ng/0.5ul), n = 10 

Disruption of memory reconsolidation induced by intra-BLA AM251 administration was 

dependent on memory reactivation. 

To establish that the disruption of memory reconsolidation is dependent on the 

reactivation process, different groups of rats were infused with the same doses of URB597 

or AM251 or vehicle, but were not exposed to the memory reactivation session. All rats 

had previously conditioned to CS, as all groups froze more during the CS presentation 

than to the context during the reactivation session (F1,21=23.454; p<0.001). ANOVA did not 

reveal a significant main effect of treatment (F2,21=0.024; p=0.976) but showed a 

significant main effect of session (PR-LTM24h vs PR-LTM8d, F1,21=5.931; p=0.024) and a 

significant interaction session x treatment effect (F2,21=4.572; p=0.022) (Fig. 3). Pairwise 
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comparisons showed a statistically significant decrease of freezing levels between test 

sessions for both vehicle (PR-LTM24h vs PR-LTM8d, p=0.023) and AM251 treated rats (PR-

LTM24h vs PR-LTM8d, p=0.010). However, analysis of single sessions did not show a 

statistically significant differences in freezing response among groups 48h or 8d after 

conditioning (veh vs URB597 vs AM251, F2,21=0.414; p=0.666 and F2,21=1.563; p=0.233, 

respectively). Thus, 48h and 7d after conditioning the fear memory is still consolidated 

and was not altered by drug administrations. Subsequently, the decreasing effect of 

AM251 previously observed on freezing response is dependent on stimulus re-exposure 

during the memory reactivation session. 

 

Fig. 3 Effects of the indirect CB1 agonist URB597 (30ng/0.5ul) and the CB1 antagonist AM251 
(300ng/0.5ul) on CS–fear memory reconsolidation in rats not exposed to reactivation session. 
Administration of URB597 (30ng/0.5ul) or AM251 (300ng/0.5ul) in absence of memory reactivation 
had no effect on the retrieval of the CS–fear memory both 24h and 8d after administration. Data 
are presented as means ± SEM. Group sizes were veh, n = 8; URB597 (30ng/0.5ul), n = 8; AM251 
(300ng/0.5ul), n = 8. 
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GABAergic neurotransmission was necessary to disruption of memory reconsolidation 

induced by intra-BLA AM251 administration. 

In order to investigate the mechanisms underlying the disruptive effect on memory 

reconsolidation induced by blocking CB1 neurotransmission, interaction between 

endocannabinoid and GABAergic neurotransmission was evaluated. All rats had previously 

conditioned to CS, as all groups froze more during the CS presentation than to the context 

during the reactivation session (F1,34=184.041; p<0.001). ANOVA revealed a significant 

main effect of treatment (F3,34=3.122; p=0.039), a significant main effect of session 

(reactivation vs PR-LTM24h vs PR-LTM8d, F3,34=75.682; p<0.001) and a significant 

interaction session x treatment effect (F6,68=4.306; p=0.001) (Fig. 4). Pairwise comparisons 

showed a statistically significant decrease of freezing response between sessions for 

AM251-treated rats (PR-LTM24h vs reactivation, p<0.001; reactivation vs PR-LTM8d, 

p<0.001), for bicuculline infused rats(PR-LTM24h vs reactivation, p=0.011; PR-LTM8d vs 

reactivation, p<0.001), and for rats co-administered with AM251 and bicuculline (PR-

LTM8d vs reactivation, p=0.002). As previously, these differences indicate that the 

conditioned freezing response is progressively weakened after repeated exposure to the 

auditory stimuli in absence of the reinforcement. Interestingly, analysis of single sessions 

revealed that during the reactivation session there was not a statistically significance 

difference in freezing levels among groups in absence of the treatment (F3,34=1.27; 

p=0.300). However, single test sessions analysis, revealed that freezing response change 

significantly 24h and 8d after memory reactivation followed by drug infusions (F3,34=4.683; 

p=0.008). Post hoc showed that after 24h AM251 treated rats froze less when compared 

with vehicle, and bicuculline treated rats (p=0.029; p=0.017) and when compared with 

rats co-infused with AM251 and bicuculline (p=0.045). Thus, we replicated and confirmed 

the disruptive effect on memory reconsolidation induced by the CB1 receptor antagonist 

AM251. Moreover, we discovered that this disruptive effect was reverted by blocking the 

GABAA receptor activity. Here we showed that the disruptive effect on reconsolidated 

memories exerted by CB1 neurotransmission blockade is mediated by the GABAergic 

system. 
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Fig. 4 Effects of the CB1 antagonist AM251 (300ng/0.5ul) or the GABAA receptor antagonist 
bicuculline (Bic 50ng/0.5ul) on CS–fear memory reconsolidation Administration AM251 
(300ng/0.5ul) immediately after the reactivation session persistently impaired the CS–fear memory 
both 24h and 8d after the reactivation session ¤p<0.05 vs veh; ¶p<0.05 vs bic; #p<0.05 vs 
AM251+bic; ***p<0.001 PR-LTM24h vs reactivation and PR-LTM8d vs reactivation; $$$p<0.001 PR-
LTM8d vs reactivation; $p<0.05 PR-LTM24h vs reactivation; &&p<0.01 PR-LTM8d vs reactivation. 
Data are presented as means ± SEM. Group sizes were veh, n = 10; AM251 (300ng/0.5ul), n = 10; 
Bic (50ng/0.5ul), n = 10; AM251 (300ng/0.5ul)+ Bic (50ng/0.5ul), n = 8 

Discussion 

In this study we showed for the first time, to our knowledge, that blocking CB1 receptors 

directly in the BLA disrupted memory reconsolidation of CS-fear memory, based on a 

classical pavlovian associations between environmental conditioned stimuli (CSs) and 

negative reinforcer (unconditioned stimuli, or USs). This disruptive effect on memory 

reconsolidation, which persisted at least 8d after CS-re-exposure, occurred only when the 

CB1 receptor antagonist AM251 was infused locally in BLA immediately after retrieval. 

Administration of same drug at the same dose 30 min prior to memory reactivation did 

not induce an impairing effect on freezing response during retest 24h or 8d later. Local 

infusion of the indirect CB1 receptor agonist URB597 affected expression of fear memory 
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reconsolidation when it was administered prior to memory reactivation, on the other 

hand, it was able to induce only a transient enhancing effect on the freezing response 

when infused immediately after recall. Moreover, infusion of the same drug in non-

reactivated rats did not alter the conditioned freezing response, suggesting that the 

enhancement of memory reconsolidation is a retrieval-dependent process.  

Additionally, we investigated the mechanism underlying endocannabinoid signalling in 

BLA during memory reconsolidation. Katona and co-workers in 2001 showed that CB1 

receptors localize presynaptically in BLA on a distinct subpopulation of GABAergic 

interneurons suggesting that cannabinoids might alter inhibitory synaptic transmission 

(Katona et al, 2001). In this study, Katona and colleagues demonstrated that CB1 receptor 

activation inhibited GABA release, and that this effect was reverted by application of CB1 

receptor antagonist SR141716 (Katona et al, 2001). On the basis of these results, we 

hypothesised that potentiation of memory reconsolidation through endocannabinoid 

inactivation in BLA could be mediated by GABAergic signalling. Our hypothesis has been 

confirmed by local co-infusion of CB1 antagonist AM251 and receptor antagonist 

bicuculline. Indeed, blocking GABAA receptor-mediated signalling reverted the erasing 

effect on memory reconsolidation exerted by AM251, and re-established the expression 

of conditioned fear. 

These findings confirmed our hypothesis that the endocannabinoid system is importantly 

involved in regulation of memory reconsolidation process. Most importantly, our data 

suggest that inhibition or activation of GABAergic signalling in a cannabinoid-dependent 

manner might be a promising neurochemical substrate in modulation of emotional state 

and a new potential target for treatment of neuropsychiatric disorders, such as post-

traumatic stress disorder. 
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Chapter 5 
 
 
 
 
 
 
 
 
 
 
General discussion and conclusion 

The involvement of the endocannabinoid system in the modulation of emotion and 

cognition is broadly described in the literature (Abush et al, 2010; Akirav, 2011; Bortolato 

et al, 2006; Campolongo et al, 2013; Campolongo et al, 2012a; Campolongo et al, 2009a; 

Campolongo et al, 2009b; de Oliveira Alvares et al, 2010). During my PhD program I 

focused my attention on the investigation of the mechanisms involved in such 

modulation.  

Patel and coworkers (2003) demonstrated that systemic administration of propofol 

increased the levels of anandamide in mouse brain while administration of 

benzodiazepines, barbiturates, or volatile anaesthetics did not. Moreover, they showed 

that the effect of propofol on anandamide levels is mediated by an inhibition of the fatty 

acid amide hydrolase (FAAH) enzyme, the major degradation enzyme of anandamide and 

other related compounds. Based on these findings and on the evidence indicating that 

propofol is also associated with a higher incidence of traumatic memories from 

perioperative awareness and intensive care unit treatment (Kapfhammer et al, 2004b), 

we hypothesized that propofol administration could modulate the long-term retention of 

aversive memory. Our findings demonstrate that propofol, in contrast to other commonly 

used sedatives, enhanced memory consolidation when administered immediately after 

the exposure to an aversive event. Importantly, we demonstrated that this enhancing 
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effect on memory consolidation depends on an indirect activation of the 

endocannabinoid system as propofol effect on memory is blocked by co-administration of 

the CB1 receptor antagonist rimonabant. These findings indicate that propofol, at 

anaesthetic doses, enhances emotional memory consolidation when administered 

immediately after a stressful event by enhancing endocannabinoid signalling. On the 

other hand, we found that midazolam and pentobarbital, two sedative/anaesthetic drugs 

that do not increase endocannabinoid signalling (Patel et al, 2003), do not enhance the 

consolidation of memory for inhibitory avoidance training. In accordance with the 

behavioural data, we also found that propofol administration increases anandamide 

concentrations in the rat brain 8 min after injection, whereas anandamide plasma 

concentration remains unaffected. On the whole, our work strongly suggest that propofol 

should used with caution in individuals during the aftermath of an acute traumatic event 

and may help to explain the increased incidence of aversive memories from 

intraoperative awareness seen in patients undergoing total intravenous anaesthesia with 

propofol. 

Drugs that interfere with endocannabinoid degradation increase ongoing 

endocannabinoid signalling in a temporarily and spatially restricted manner (Janero et al, 

2009). However, cannabinoid effects on emotionality often exhibit a biphasic profile, as it 

is also reported by cannabis abusers (Curran et al, 2002; Fant et al, 1998; Hall and Solowij, 

1998). A classical model elucidates this phenomenon referring to the use of different 

doses of cannabinoid drugs, with low doses generally inducing anxiolytic-like effects and 

high doses often causing the opposite (Moreira and Wotjak, 2010). However, a wide 

numbers of studies report evidence that indirect cannabinoid receptor agonists can 

induce biphasic effects on behaviour, depending on the emotional state of the subject. 

Haller and co-workers (2009), for instance, have recently demonstrated that the indirect 

cannabinoid agonist URB597, a FAAH inhibitor responsible of endogenous cannabinoid 

degradation, did not affect anxiety under mildly stressful circumstances but has strong 

anxiolytic-like effects in highly aversive testing conditions . Therefore, a new and 

appealing explanation for the biphasic effects of cannabinoid drugs on behaviour, is now 

emerging, suggesting that these effects might also depend on previous experiences, the 
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context of use and the level of emotional arousal at the time of drug 

administration/consumption (Akirav, 2011; Campolongo et al, 2013; Sciolino et al, 

2011).This finding leaves open the possibility that inhibitors of endocannabinoid 

transport, which prolong endocannabinoid actions by preventing endocannabinoid access 

to intracellular hydrolyzing enzymes (Beltramo et al, 1997; Kathuria et al, 2003), may 

influence both emotional and cognitive processes depending on the level of 

environmental aversiveness at the time of drug administration. Thus, we investigated the 

effect of the prototypical endocannabinoid transport inhibitor AM404 in a non-aversive 

task, the Spatial Open Field test, under two experimental conditions which differed in the 

level of emotional arousal at the time of testing (Chapter 2). We found that different 

levels of environmental aversiveness strongly influence the emotional reactivity of 

untreated rats without affecting the cognitive performance. On the other hand, we found 

that AM404 effects on memory recognition strongly depends on the level of emotional 

arousal. 

There is evidence that behavioural responses to the environmental stimuli are strictly 

dependent on the emotional reactivity induced by the environment itself (Blanchard et al, 

2001; Haller et al, 2009). From an evolutionary point of view, the emotional arousal 

hailing from environmental context is crucially involved in assessing the novelty and 

salience of the external stimuli in terms of relevance for the adaptation and survival 

(Biegler and Morris, 1996; Breivogel et al, 1998; Poucet, 1993). Thus, when compared 

with a previous experience, a novel information recognized as highly relevant is 

committed to and stored by memory (Lemaire et al, 1999). For instance, Mumby and 

colleagues (2002) suggested that the impact of the object novelty is more salient than a 

spatial rearrangement with the same objects . That is why, probably, in our study 

untreated rats exposed to a high or to a low stressful experimental context were equally 

able to recognize the object substitution but failed to respond to the object displacement. 

However, we showed that AM404 administration impaired the capability to discriminate 

between a familiar and a new object in rats exposed to the highly arousal condition. These 

results strongly support the hypothesis that cannabinoids modulation of cognitive 

processes depend on the emotional state of the subject at the time of testing. Moreover, 
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we found that while AM404 administration did not influence object exploration in a 

context characterized by a low-level of emotional activation, rats treated with a low dose 

of AM404 and exposed to a more stressful environment spent less time investigating the 

objects, whereas a higher doses re-established the investigation activity at similar level of 

the vehicle-treated rats. The inhibition or the maintenance of the investigative behaviour 

can be related to an anxiogenic or an anxiolytic phenotype, respectively (Crawley, 1985). 

It is possible to speculate that this biphasic effect may depend on a differential regulation 

activity on both GABAergic and gutamatergic neurons mediated by different doses of the 

endocannabinoid transport inhibitor (Foldy et al, 2007; Hashimotodani et al, 2007). This 

interpretation seems to be in accordance with previous studies showing that the 

activation of the CB1 receptor results in a reduction of neurotransmitter release from the 

pre-synaptic terminal by a retrograde mechanism (Wilson and Nicoll, 2002). Furthermore, 

Laaris and co-workers (2010) report that direct cannabinoid receptor agonists Δ9-THC 

inhibits GABA release (Laaris et al, 2010). Additionally, other researchers showed a CB1 

receptor-mediated inhibition for glutamate release both in rats (Hoffman et al, 2010; 

Wang, 2003) and mice (Kawamura et al, 2006). The opposite effects due to GABA and 

glutamatergic circuits could be explained by a different basal activation of the CB1 

receptors expressed on these sub-populations of neurons. The basal activation of the CB1 

receptors on glutamatergic synapses, which is lower than the basal CB1 receptors 

activation on GABA, suggests that the reactivity to an increase in the endocannabinoid 

tone could make more sensitive glutamatergic neurons than GABAergic neurons (Katona 

and Freund, 2008). Thus, a minimal increase in endocannabinoid levels could inhibit the 

release of glutamatergic neurotransmitters and impair the approaching behaviour 

response, while a higher amount of endocannabinoids could activate the inhibition of the 

GABA terminal leading to the opposite effect.  

It is well established that the hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role 

in stress response and that the stress hormones, such as glucocorticoids, differentially 

modulate cognitive functions (Atsak et al, 2011; Mizoguchi et al, 2004; Roozendaal and 

McGaugh, 1997). Most importantly, modulation of memory consolidation processes is 

clearly affected by manipulation of endocannabinoid signalling via a cross-talk with the 
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glucocorticoid system (Atsak et al, 2011; Campolongo et al, 2013; Campolongo et al, 

2009a; Campolongo et al, 2009b). These results highlight that drugs enhancing 

endocannabinoid signalling by interfering with endocannabinoid deactivation induce 

different effects on short-term memory performance depending on the level of emotional 

arousal induced by different environmental settings. 

In Chapter 3 and 4 it has been evaluated the effect of pharmacological manipulation in 

the basolateral amygdala on memory reconsolidation. The behavioral paradigm which 

more than other is well suits for neurobiological analysis in this context is represented by 

Pavlovian fear conditioning. Fear conditioning is valuable as a neurobiological tool 

because it involves a specific stimulus, under the control of the experimenter, that reliably 

elicits a measurable set of behavioural and physiological responses once learning has 

occurred. In fear conditioning, an emotionally neutral conditioned stimulus, such as a 

tone, is paired with an emotionally potent, innately aversive unconditioned stimulus (e.g., 

an electric shock) during a conditioning or acquisition phase. 

Considerable evidence indicate the BLA as a critical region for the encoding of associative 

memories relevant to affective experiences (Aggleton, 2000; Rosenkranz and Grace, 

2002).  

The first step required for memory reconsolidation is the destabilization induced by 

retrieval which converted a previously consolidated memory from the ‘inactive state’ in to 

the ‘active state’. These ‘active’ memories are newly restabilized back into the ‘inactive’ 

state (reconsolidated) through a protein-synthesis dependent process. Thus, disrupting 

reconsolidation appears to be a valuable target, in terms of therapeutic strategy, in order 

to reduce the impact of maladaptive memories on behavior.  

It is known that NMDAR-mediated signaling is necessary for 

reconsolidation/restabilization of CS-drug (Brown et al, 2008; Itzhak, 2008; Milton et al, 

2008b; Milton et al, 2012; Sadler et al, 2007), spatial (Przybyslawski and Sara, 1997) and 

CS-fear (Lee et al, 2006c; Pedreira et al, 2002) memories. However, this seems to be in 
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contrast with other findings showing that pharmacological blockade of GluN2B subtype of 

NMDAR has been shown to prevent the destabilization of CS-fear memories (Ben Mamou 

et al, 2006). We recently showed that GluN2B-NMDARs GluN2B-NMDARs and GluN2A-

NMDARs are differently involved in the regulation of memory reconsolidation where 

GluN2B-NMDARs is required for memory destabilization while GluN2A-NMDARs is 

required for memory restabilization (Chapter 3). Our results are supported by previous 

findings showing that GluN2A-preferring NMDAR antagonists prevent the acquisition of 

spatial memory (Hu et al, 2009) and conditioned fear (Dalton et al, 2012).  

Increasing clinical evidence links disturbances in endocannabinoid transmission with the 

etiology of psychopathologies, which are characterized by profound disturbances in 

emotional regulation disorders (Bangalore et al, 2008; Cohen et al, 2008; Schneider, 

2008). CB1 receptor expression is found in relatively high concentrations in the BLA 

(McDonald and Mascagni, 2001; Tsou et al, 1998), and, most particularly, within the BLA, 

CB1 receptors are found on inhibitory local GABAergic interneurons (Herkenham et al, 

1990; Katona et al, 2001; Tsou et al, 1998). Functionally, activation of BLA CB1 receptors 

decreases feedforward inhibition via inhibitory interneurons, thereby increasing the 

activity of BLA projection neurons (Pistis et al, 2004). Given that both recall and extinction 

of conditioned fear memories are correlated with increased release of intra-BLA 

endocannabinoids (Marsicano et al, 2002), this suggests a critical role for intra-BLA CB1 

transmission during the processing of emotionally salient information. In chapter 4, we 

showed that CB1-mediated transmission modulates reconsolidation of pavlovian fear 

memory and that this neurotransmission is mediated by GABAergic signalling in BLA. 

Interestingly, we found that pharmacological manipulation of CB1 receptor induced a 

bidirectional effect on expression of fear response, where the indirect agonist URB597 

positively modulates memory reconsolidation, while administration of the CB1-receptor 

antagonist AM251 disrupt retention of fear memory. These findings are in line with 

previous observations which showing that the indirect cannabinoid agonist URB597, 

bilaterally infused in BLA enhanced consolidation for aversive memory and this effect is 

prevented by blocking CB1 receptors with infusion of the CB1 receptor antagonist AM251 

(Ratano et al, 2011). Interestingly, we found that the AM251-dependent disruptive effect 
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is abolished by co-infusion with GABAAreceptor antagonist bicuculline, consistently with 

data revealing the local expression of CB1 receptors on subpopulation of GABAergic 

neurons in the BLA.  

All together these evidence confirm that the endocannabinoid system is crucially involved 

in the regulation of emotional memory processing. Thus, it is reasonable to hypothesize 

that targeting cannabinoid neurotransmission could represent a powerful therapeutic tool 

in treating cognitive disorders linked to emotional distress. 
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