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CHAPTER 2: INTRODUCTION 

Lactoferrin 

Structure 

Lactoferrin (LF) is an 80 kDa glycoprotein belonging to the transferrin (Tf) family of 

iron-binding proteins [1]. It was first discovered more than 60 years ago as a „„red 

protein‟‟ from milk [2], and has been the subject of intensive structural and functional 

studies since it was first purified from human and bovine milks simultaneously in three 

separate laboratories, in 1960 [3-5].  

The amino acid sequence of LF was detected in 1984 [1].  The mature protein consists 

of a single polypeptide chain of about 690 amino acid residues with high homology 

among species. Current sequence databases annotate LF sequences from nine species: 

human, mouse, cow, horse, pig, goat, sheep, buffalo and camel. Crystallographic 

analysis of LF from different species revealed a highly conserved three-dimensional 

structure, but with differences between species [6]. The polypeptide is folded into two 

symmetric globular lobes, which represent its N- and C-terminal halves. These two 

lobes, namely N and C lobes, are linked by a short -helix (H) of about 10-15 amino 

acid residues. Non-covalent interactions, mostly hydrophobic, provide a cushion 

between the two lobes, with C-terminal helix playing a large part. Both lobes have the 

same fold, consistent with their sequence identity of ~ 40 %. In each lobe, two  

domains, meant as N1 and N2, or C1 and C2, enclose a deep cleft within which is the 

metal binding site [6] (Figure 1).  
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Figure 1. Polypeptide folding of human LF. (From Baker E.N. & Baker H.M., Biochimie 2009, 91: 3–

10). 

 

 

All LFs and Tfs so far characterized have essentially identical metal binding sites. Each 

site binds at a remarkably high affinity (Kd=10
-22

 M), but reversibly, one Fe
3+

 ion, with 

Fe
3+

 binding being dependent on the concomitant and synergistic binding of carbonate, 

CO3
2−

 [7]. LF can bind not only Fe
3+

 ions, but also Cu
2+

, Zn
2+

 and Mn
2+

 ions with a 

lower affinity [6]. Despite their structural similarities, LF differs from Tf in several 

important aspects including biological location and iron binding capacity that likely 

contribute to its unique functional activities. 

Isoforms 

Biophysical studies have shown that a large conformational change in LF structure 

occurs during metal binding and release [8]. Because of its ability to reversibly bind 

Fe
3+ 

ions, LF can exist free (apo-LF) or associated (holo-LF) with Fe
3+

. Iron binding 

induces a „„closed‟‟ structure (holo-LF), conformationally rigid and very stable, in 

which the two domains of each lobe enclose the bound Fe
3+

 ion, effectively 

sequestering it from the external environment. Conversely the apo-LF is an “open” 
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form, less stable and less compact, more flexible and prone to thermal denaturation and 

proteolysis [6].   

The comprehension of the structural dynamics of LF is important for the understanding 

of its various biological activities. The conformational changes, which differentiate the 

holo and apo forms of LF, are simple domain movements. For this reason, the majority 

of the molecular surface remains the same, so that binding sites for receptors or 

bacteria, viruses, etc. are likely to be unaffected by iron status. The main difference is 

that the open binding cleft of the apo form offers additional possibilities for molecular 

interactions [6].  

Surface properties  

LF has been described as a molecule with a double face, composed of an internal 

portion, highly conserved between species and endowed with metal binding capacity, 

and a strongly cationic external surface [7]. In fact, all LFs show a strong cationic 

nature characterized by a high isoelectric point (pI~9) which differentiates this protein 

from Tfs (pI~5-6) and influences the ability of LF to bind to a variety of cell types and 

anionic molecules [6].  

The positive charge, mainly concentrated at the N-terminus (1-7 amino acid), in the first 

helix (12-30 amino acid in the human LF) and in the region that connects the two lobes, 

is thought to be crucial for the majority of LF activities, including immunomodulation 

and lipopolysaccharide (LPS) binding [6]. In particular, the major basic region 

surrounds the N-terminus, which is responsible for DNA, heparin, LPS, 

glycosaminoglicans and ceruloplasmin binding [9-11] and the first helix, which 

includes the major portion of the lactoferricin domain, a potent bactericidal peptide 

[12].  
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All LFs are glycosylated with some differences between species [6]. Although 

glycosylation has no influence on LF properties such as iron binding and release, 

thermal stability and folding, most of the glycosylation sites are exposed on the external 

surface of the molecule and have been supposed to play a role in LF interaction with 

viruses, toxins, sialic acid-binding immunoglobulin superfamily lectins and C-type 

lectin receptors (CLRs) on immune cells [7,13,14].  

Expression and release  

LF is very largely distributed in the organism. It is secreted from epithelial cells into 

most exocrine fluids, including tears, saliva, vaginal fluids, semen, nasal and bronchial 

secretions, bile, gastrointestinal fluids, urine, sweat [15] and most highly in milk [5] 

where its concentration in humans varies between 1 to 7 g/l (mature milk and 

colostrum, respectively) [16],  making it the second most abundant protein in milk, after 

caseins [17]. LF is also found in considerable amounts in secondary neutrophil granules 

(15g/10
6
 neutrophils) [18,19], where first appears at the stage of the pro-myelocyte 

[20].  

Because of its widespread distribution in the organism, LF is considered a key 

component in the host first line defense system.  

Similarities and differences of bovine and human LF 

As described above, LF is produced by mucosal epithelial cells in various mammalian 

species. Among them, human (hLF) and bovine (bLF) LF have been shown to exhibit 

the highest degree of structural and functional similarity, and tested for clinical use in a 

variety of animal models and in clinical trials [21-31]. Although both preparations have 

been documented to be efficacious in different therapeutic settings, they may differ for 

some properties that are summarized in Table 1 [32]. 
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Bovine and hLF exhibit a high homology in nucleic acid and amino acid sequences 

(77% and 69%, respectively) as well as in disulfide bonding and secondary structure, 

and both lack of free sulfhydryls [1,33-35]. Moreover, bLF has an iron content 

approximately four-fold higher [36], but a lower thermo-resistance than the human 

counterpart [37]. Crystallography analysis showed that the most striking structural 

difference between hLF and bLF resides in the relative orientation of the two lobes 

[38]. Furthermore, hLF is more resistant to proteolysis than bLF probably due to less 

accessible cleavage sites to trypsin [39,40]. These proteins also differ in the number of 

potential glycosylation sites, with three and five N-linked glycosylation sites present in 

hLF and bLF respectively, but only a part of these potential sites are generally 

glycosylated, two in hLF and four in bLF [41,42]. A differential utilization of these 

sites results in distinct glycosylation variants. Furthermore, specie-specific differences 

in the structure of LF glycans were also reported [43] and have been associated with the 

hLF capacity to induce NF-B activation, a property not found for bLF [44]. 

Accordingly, the sugar composition influences also the ability of hLF and bLF to bind 

molecules. In this regard, it has been reported that bLF, but not hLF, bind to dendritic 

cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) on 

dendritic cells (DCs) [14,45].  

In addition, both hLF and bLF contain a low- and high-affinity LPS-binding site [46] 

and have been shown to bind to bacterial porins thus favoring destabilization of bacteria 

outer membrane [47]. 
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Table 1. Similarities and differences of human versus bovine LF 

LF properties 
Human versus 

bovine 

 
References 

Nucleic acid sequence homology 77%*  [1,34,35] 

Amino acid sequence homology 69%*  [35] 

Secondary structure 100%*  [33] 

Disulfide bonding  100%*  [33] 

Lobe orientation different  [38] 

Glycosylation sites lower  [41,42] 

N-acetyllactoseamine glycans different  [43] 

Iron content lower  [36] 

Thermoresistance higher  [37] 

Proteolysis resistance higher  [39,40] 

DC-SIGN binding lower  [14] 

NF-B activation different  [44] 

LPS binding 100%*  [46] 

Porine binding 100%*  [47] 

 

Summary of the principal experimental observations comparing human and bovine LF.   

* indicates the percentage of similarity. 

(From Latorre D. et al., Biochem Cell Biol 2012, 90(3): 269-78) 

 

LF Receptors on Antigen Presenting Cells  

The cationic nature of LF accounts for its propensity to bind anionic molecules 

resulting in massive binding to mammalian cells and making identification of receptors 

involved in the biological roles of LF very difficult [48]. Although the identification of 

several putative LF receptors (LFRs) reveals considerable variations among species, 

tissues and cell types [49], there is still no clear evidence of a monospecific LFR since 

most molecular targets on the host cells are multiligand receptors and many of them 

were reported as signaling, endocytosis and nuclear targeting molecules [50,51].  

Several studies have described a direct binding of LF to monocytes/macrophages. In 

this respect, mouse peritoneal macrophages (M) were the first cell type stated to 
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express LFRs in mammals [52], and then human monocytes were shown to bind to hLF 

in a reversible, saturable and specific manner [53]. 

At the surface of cells, the sulphated chains of proteoglycans are responsible for the low 

affinity and high density binding of LF (80% of total LF binding). Other important 

receptors are represented by low-density lipoprotein receptor-related proteins (LRPs), 

frequently referred to as scavenger receptors, widely expressed on several cell types, 

including M [54,55]. In addition, nucleolin, a multifunctional shuttling protein present 

in nucleus, cytoplasm, and on the surface of different cells including M [56], has been 

identified as LFR and involved, together with proteoglycans, in the endocytosis and 

nuclear targeting of LF [57]. Furthermore, it has been shown that hLF interacts directly 

with CD14, an LPS receptor involved in the activation of the immune system that exists 

both as a soluble protein (sCD14) found in serum [58], and as a membrane protein 

(mCD14), highly expressed on the surface of monocytes/M [59]. Recently, the 

multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), localized on the surface of M, has been described as a novel LFR in 

Mwhich mediates the trafficking of LF to the endosomal compartment [60]. 

In contrast to monocytes/M, no specific analysis has been yet carried out to define the 

nature of LFRs expressed on DCs. However, different studies have suggested that CLRs 

such as mannose receptor (MR) and DC-SIGN, may represent LFRs on this cellular 

type. In particular, it has been observed that the adjuvant effect of LF in skin 

Langerhans cells (LCs) is inhibited by blocking the MR, indicating this receptor as a 

putative site for LF interaction with this subset of DCs [13]. In addition, it has been 

shown that, by binding DC-SIGN, LF enhances adenoviral infection of monocyte-

derived DCs (MD-DCs) [45] and prevents HIV-1 transmission to T cells [14]. 
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As described above, the capacity of LF to interact with CLRs apparently depends on its 

sugar composition. In this respect, it has been demonstrated that although both bLF and 

hLF interact with the MR, it occurs to a different extent and strongly relates to the 

different composition in relevant sugars [42]. Likewise, hLF, in contrast to bLF, does 

not bind DC-SIGN, as assessed by its lack of capacity to increase adenoviral infection 

[45] and to prevent the DC-SIGN-mediated HIV-1 transfer to CD4
+
 T lymphocytes 

[14]. 

Since most of LFRs described above permit signaling, it has been supposed that the 

mere binding of LF to a cell surface may itself modulate biological effects [50]. 

LF Biological Functions 

LF is an essential element of the innate immunity found only in mammals. This 

exclusive characteristic has suggested that this molecule could be involved in newborn 

nutrition and protection. However, in adult life, because of its structural features and 

capacity to respond to a variety of physiological and environmental changes, LF 

continues to exert a plethora of biological activities [61]. 

LF similarities to Tf have addressed initial research on LF function to its iron-binding 

properties: iron absorption, antimicrobial activity and modulation of iron metabolism 

during inflammation. However, subsequent studies have revealed a large number of 

other possible functions, many of which do not appear to involve iron binding. 

It is now well accepted that LF, in addition to a strong and well characterized 

antimicrobial activity against a broad spectrum of bacteria, fungi, yeasts, viruses and 

parasites [62-64], also exhibits anticarcinogenic activities [25,65], plays a role in iron 

homeostasis [27,66,67] and bone remodeling [68], and shows immunomodulatory 

properties [32,54,69,70] (Figure 2).  
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Figure 2. The wide range of functional properties described for LF. (From Vogel H.J., Biochem Cell 

Biol 2012, 90: 233–244) 

 

Immunomodulatory functions 

The ability of LF to modulate the overall immune response and to protect against 

microbial infection and septic shock has been largely described. In this respect, it is 

noteworthy that LF concentrations markedly increase in biological fluids and locally in 

patients suffering from inflammatory disorders [69]. Despite most LF is released from 

neutrophils at the inflammatory sites, activation of these cells starts during their 

recruitment, which mainly explains why LF concentration in plasma may greatly 

increase during inflammation [54]. This concentration is as low as 0.4 - 2 mg/l under 

normal conditions but increases up to 200 mg/l in septicaemia [71]. LF released in 

blood is rapidly cleared by the liver parenchymal cells [72] and, very recently, the 

scavenger receptor C-type lectin SRCL, widely expressed on endothelial cells, has been 

proposed as a major scavenger of LF both locally at sites of inflammation and 

systemically in the circulation [73]. According to these observations, it may be assumed 

that increased LF in plasma plays systemic effects on the immune system.  
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Since this molecule is released in the apo-form, at the site of inflammation its iron-

scavenging properties can be directed against microbes together with the direct 

microbicidal activity of the molecule [62-64]. In addition to the antimicrobial 

properties, it has been suggested that LF can exert immunostimulatory effects as well as 

immunoinhibitory activities by modulating the overall immune response [32,54]. These 

apparently controversial LF functions rely not only on its capacity to sequester iron but 

also on its property to interact with molecular and cellular components of both host and 

pathogens including endotoxin and its receptors. In this respect, the ability of LF to bind 

LPS or limit its in vitro interaction with receptors (e.g. LPS-binding protein (LBP) and 

sCD14) can explain the versatility of LF molecule, which can efficiently suppress 

endotoxin-induced excessive immune reaction in sepsis or promote, in particular 

conditions, a protective response against pathogen challenge. 

LF biological activity on Antigen Presenting Cells  

Although the cellular and molecular mechanisms accounting for the 

immunomodulatory effects of LF are far from being fully elucidated yet, evidence 

indicates that the LF ability to directly interact with antigen presenting cells (APCs), i.e. 

monocytes/M and DCs, may play a critical role. At the functional level, LF modulates 

important aspects of APCs biology, including migration and cell activation, whereas at 

the molecular level it affects expression of soluble immune mediators, such as 

cytokines, chemokines and other effector molecules, thus contributing to the regulation 

of inflammation and immunity. Hence, LF can influence both innate and adaptive 

immune response.   

LF interacts with monocyte and M, and modulates their functions during inflammatory 

and infectious processes. In particular, in vitro and in vivo studies have shown that LF is 
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able to increase phagocytosis and intracellular killing of different pathogens both in 

mouse and human monocytes/M[74-79]. Furthermore, LF has been described to 

induce the production of superoxide and pro-inflammatory molecules such as nitric 

oxide, TNF, IL-6, IL-12 and IL-8 [77,80-83]. In addition, bLF can stimulate IFN- 

production by murine Mthus mediating the host‟s antiviral response [84]. Although 

exposure of naïve Mto LF results in the induction of some cytokines/chemokines, the 

effects of this molecule on already activated M (i.e. LPS-treated or pathogen infected) 

are more complex. In particular, LPS-induced production of IL-6, TNF, IL-1 and IL-8 

is inhibited by LF, both bovine and human or its fragment lactoferricin B, in various 

human monocytic cell lines [85-87]. Furthermore, it has been observed that addition of 

bLF to spleen Mand J774A.1 murine cell line, stimulated with suboptimal LPS 

concentrations, increased production of IL-12, whereas the secretion of IL-10 was 

decreased [88]. Moreover, LF shows chemoattractant effect that seems to be specific for 

monocyte/Mpopulations [89]. In this regard, a recent study has demonstrated that LF 

synthesized and released by apoptotic cells, selectively induces migration of 

mononuclear phagocytes but not of granulocytes, thus stimulating the resolution of 

inflammation and the tissue microenvironment repair [90]. 

Although the immunomodulatory effects of LF on monocytes/M have been largely 

investigated, limited information are currently available about the activity of this 

compound on DCs. 

Some studies have been carried out to evaluate the role of LF in the regulation of 

epidermal LCs migration. LCs, a subset of DCs, are considered to play a pivotal role in 

the induction and regulation of cutaneous immune responses [91]. In vivo studies have 

shown that both intradermal injection and topical application of LF significantly inhibit 
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allergen-induced LC migration and accumulation at the site of inflammation by 

blocking the IL-1 and subsequent TNF production [92-94]. 

Despite the LF anti-inflammatory properties exerted on LC subpopulation, recent 

studies have described this molecule as a novel maturation factor for human MD-DCs. 

Interestingly, recombinant hLF promotes the maturation and activation of these cells by 

up-regulating the expression of major histocompatibility complex (MHC) class II 

molecules, CD80, CD83, and CD86 and chemokine receptors (CXR4 and CXCR7), the 

production of pro-inflammatory cytokines, and by increasing their capacity to trigger 

proliferation of allogenic T lymphocytes [89,95]. According to these results, among a 

panel of anti-inflammatory drugs tested for their capacity to revert nickel-induced 

maturation and cytokines secretion in MD-DCs, only recombinant hLF failed to inhibit 

DC maturation, as assessed by impaired CD86 up-modulation and CXCL8 production 

[96]. As described above, it has been reported that bLF prevents the MD-DC-mediated 

HIV-1 transmission by blocking DC-SIGN interaction with the viral surface 

glycoprotein gp120 [14]. Likewise, the efficacy of LF to prevent HIV-1 capture by DCs 

was reported for both R5 and X4 HIV strains [97].  

Biological activity of LF-bound LPS: TLR4-dependent and -independent 

effects  

Growing evidence suggests that the LPS-binding capacity of LF provides a dual 

advantage to the host immune response. In fact, on the one hand LF can directly 

sequester LPS or interfere with its interaction with cell surface receptors thus inhibiting 

the excessive host‟s response to endotoxin challenge whereas, on the other hand, it can 

take advantage of the bound LPS to trigger an immune response engaging specific LPS 

receptors. In this regard, the ability of LF to form complexes appears to account for at 
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least some of its immunomodulatory effects, positively or negatively affecting the 

immune response [32,54] (Figure 3).  

 

 
Figure 3. LF–LPS interplay in the modulation of the immune response. LF can directly bind LPS, 

neutralizing its activity, or compete with LPS receptors (i.e. CD14 and LBP) thus preventing its binding 

to Toll-like receptor 4 (TLR4) and the consequent inflammatory response. Conversely, LF, per se or 

complexed to LPS, can interact with TLR4 stimulating a protective immune response against pathogen 

challenge. (From Latorre D. et al., Biochem Cell Biol 2012, 90 (3): 269-78) 

 

 

 

Several in vitro and in vivo studies have demonstrated that LF can inhibit, in a 

concentration- and time-dependent manner, a number of LPS-induced effects. In 

particular, in vitro studies have shown the LF capacity to inhibit the LPS-induced (i) 

cytokines production, i.e. TNF, IL-6, IL-1, IL-8 in different cell types [85-87,98-102]; 

(ii) E-selectin and ICAM-1 expression in human endothelial cells [101,103], (iii) 

proliferation, prostaglandin E2 (PGE2) production, cyclooxygenase-2 (COX-2) and 

matrix metallopeptidase 9 (MMP-9) expression in PBMCs [104]. 
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Moreover, the capacity of LF to modulate the LPS-induced inflammatory process has 

been also well documented in vivo. The protective effect of exogenous LF against 

endotoxin shock in various animal models has been extensively reported [99,105-111]. 

In keeping with the anti-inflammatory effect of LF observed in in vitro studies, serum 

levels of LPS-induced pro-inflammatory factors such as IL-6, TNF, nitric oxide and 

PGE2 were found significantly reduced in LF-treated animals in comparison with 

untreated controls after LPS inoculation [108,112-118]. 

Although the mechanisms responsible for this anti-inflammatory activity have not been 

fully elucidated, at least some of them may be due to the LF ability to avidly bind LPS, 

thus blocking its interaction with cellular membranes or competing with LPS for 

binding to a common receptor.  

However, other studies have proved that LF-bound LPS can retain the capacity to 

stimulate mouse and human cells [119-121]. Accordingly, the LPS bound to LF may 

contribute to LF biological activity by favouring its interaction with cell surface 

receptors. In particular, it has been reported that LF-LPS complexes can still prime 

human monocytes and murine M stimulate B lymphocyte proliferation and exert 

adjuvant activity increasing humoral immune response in mice [119-121]. 

Furthermore, comparative studies, carried out with LPS responsive and LPS hypo-

responsive mice, have demonstrated a strong dependency of the LF-LPS complex 

triggered signals on TLR4, leading to the conclusion that the immunostimulatory 

properties of LF could be due, at least in part, to LPS binding [120]. In particular, LF 

binds the lipid A portion of LPS via charge-charge interaction. As described above, the 

portion of LF that binds anionic molecules, including lipid A, is limited to its N-

terminus arginine rich domain [10]. Thus, it is likely that bound LPS can still expose 

the unbound part of lipid A that is recognized by LPS receptors such as TLR4. Such a 
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LF-LPS complex recognition would result in M activation [120]. Of note, the lipid A 

backbone is also the epitope being recognized in the Limulus assay (LAL), the standard 

method for detection of endotoxin contamination, thus explaining why the LF-LPS 

complex is found to be LAL positive [120,122].  

Collectively, these observations suggest that lipid A can be recognized even after LF-

LPS complex has been formed, and that this complex retains the capacity to activate 

M through TLR4. Thus, LPS may represent an important structural component of LF 

molecule, likely involved in its stabilization or favouring its interaction with receptors 

and accessory molecules. 

Despite LF binding to LPS represents an important aspect, it does not entirely account 

for all immunomodulatory effects of this molecule (Table 2) [32]. Accordingly, it has 

been reported that LF-induced IL-6 secretion and CD40 expression in murine peritoneal 

M is achieved via TLR4-independent and -dependent mechanisms, respectively, thus 

indicating potentially separate pathways for LF-mediated Mevents in innate immunity 

[82]. In keeping with these results, the capacity of LF to induce a type-I interferon 

(IFN) mediated antiviral state, but not TNF production, has been shown to rely on the 

function of TLR4 in responding cells. These results further suggests that this molecule 

may induce M activation via TLR4-dependent and -independent mechanisms [84].   
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Table 2. LF-mediated TLR4-dependent and -independent effects 

 

LF effects References 

TLR4-

dependent 

Type I IFN production in murine M [84] 

Induction of CD40 expression in murine M [82] 

NF-B activation in human monocytes and mouse 

fibroblasts 
[44] 

TLR4-

independent 

Induction of IL-6 production in murine M [82] 

Induction of TNF in murine M [84] 

 
(From Latorre D. et al., Biochem Cell Biol 2012, 90 (3): 269-78) 
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Dendritic Cells 

DCs Origin and Development 

DCs are continuously generated from CD34
+
 hematopoietic stem cells (HSPCs) within 

the bone marrow or the umbilical-cord blood. CD34
+
 stem cells differentiate into 

common lymphoid progenitors (CLPs) or common myeloid progenitors (CMPs) which 

subsequently differentiate into different DC subtypes that differ in location, 

cytokines/chemokines production, receptors involved in antigen uptake and in 

cytokines/chemokines recognition, all factors involved in their immunological functions 

(Figure 4) [91]. CMPs can differentiate into LCs and interstitial DCs, localized in the 

skin epidermis and dermis, respectively [123]. In addition, two types of DC precursors 

are found in blood: monocytes and plasmacytoid DCs (pDCs) precursors, which belong 

to CMPs and CLPs, respectively. DC precursors differ from differentiated DCs both in 

morphological and functional properties. Indeed, they are characterized by the lack of 

DC morphology and migratory ability, by low expression of costimulatory molecules 

and by the failure to induce significant naïve T cells activation [123].  

 

 

 

Figure 4. Human DC subsets in vivo. DC subsets differ in location and in the expression of a set of 

molecules involved in antigen uptake and microbe recognition. (From Ueno H. e al., Immunol Rev 2007, 

219:118-42) 
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The initial characterization of DC populations in humans has been delayed by their low 

frequency in blood (less than 1% of blood mononuclear cells). Hence, different 

experimental protocols have been investigated to induce in vitro DC generation from 

precursor cells [124-127]. Among them, the generation of DCs starting from human 

blood monocyte precursors cultured in the presence of granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-4, is the most widely accepted experimental 

protocol to date [128]. The discovery of techniques to generate DCs in vitro has 

allowed the identification of many of their biological and molecular properties. 

Role of DCs in the immune system 

Antigen recognition and DCs maturation process   

DCs are a heterogeneous population of immune cells of haematopoietic origin highly 

specialized in the handling of antigens (i.e. those from infectious agents and self) and 

their presentation to lymphocytes recognition. 

Thanks to their ability to directly interact on the one hand with pathogens, as well as 

with various innate cell types (such as granulocytes, NK cells and NKT cells) and on 

the other hand with adaptive immune cells (T and B lymphocytes), DCs represent a 

critical link between innate and adaptive immunity and are essential for the 

development of antigen-specific immune responses. However, depending on their state 

of maturation and mode of activation, DCs are also essential for the induction and 

maintenance of immune tolerance [129,130].  

Because of their high plasticity, the local microenvironment and the nature of the 

activating stimuli strongly influence the specific DCs function and, consequently, the 

type of adaptive immune response [91,131]. 
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In the steady state, DCs reside both in peripheral tissues forming an interface with the 

external environment (i.e. skin, gut and lungs), and in lymphoid organs (i.e. thymus, 

bone marrow, spleen, lymph nodes, and Peyer‟s patches) [132].  

In peripheral tissues, they are in an immature state and act as “immunological sensors” 

specialized in the capture of antigens, monitoring the microenvironment and alerting for 

potential dangerous signals. Hence, immature DCs (iDCs) scan peripheral tissues where 

they recognize, take up and efficiently process antigens for presentation, in association 

with MHC molecules, to naïve T lymphocytes at lymphoid organs [131].  

Upon infection or tissue damage, iDCs are rapidly recruited by the “danger signals” 

from pathogens and cytokines/chemokines locally produced at the site of inflammation. 

Numerous agents derived from microbes, dying cells, cells of the innate and adaptive 

immune system can activate DCs (Figure 5). Potential dangerous signals are detected 

by DCs through pattern recognition receptors (PPRs), which bind to a limited set of 

conserved pathogens-associated molecular patterns (PAMPs) that are unique in the 

microbial world. PPRs include cell surface CLRs, intracytoplasmic NOD-like receptors 

(NLRs) and TLRs. CLRs expressed on DCs act as anchors for a large number of 

microbes including viruses, bacteria, parasites and fungi, and allow their internalization, 

but they also act as adhesion molecules between DCs and other cell types, including 

endothelial cells, T cells and neutrophils [132]. Among CLRs, MR and DC-SIGN are 

expressed by MD-DCs [133]. Moreover, NLRs comprise a large family of intracellular 

PPRs, all bearing a conserved NOD domain. Their location suggests a possible role in 

the detection of microbes escaping the surveillance of extracellular or endosomal 

receptors. NOD1 and NOD2 are the best-characterized NLRs. They recognize 

molecules produced during the synthesis or degradation of peptidoglycan [131]. 

Although several receptors recognize microbial structures, TLRs are the only PRRs 
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identified to date that directly mediate full DCs maturation. Thirteen different TLRs 

have been identified in mammals [134]. Some of them (TLRs 1-6 and 11) are expressed 

at the cell surface and recognize different products of bacterial, fungal or protozoan 

origin, including lipopeptides, LPS and peptidoglycans. Others, such as TLRs 3, 7, 8 

and 9, are localized in the endoplasmic reticulum and recognize microbial nucleic acids 

[134]. TLRs can also bind a large set of endogenous ligands, including heat shock 

proteins (HSPs), hyaluronate and heparan sulfate (extracellular matrix breakdown 

products), fibronectin, high mobility group box 1 protein (HMGB1) and modified low-

density lipoproteins [135]. In addition, lysates of dying cells also induce the maturation 

of DCs and enhance their antigen presentation ability. These endogenous activating 

molecules are collectively named damage-associated molecular pattern molecules 

(DAMPs) [91,132]. Distinct DC subsets display different TLRs.  Focusing on MD-DCs, 

they express TLR1, TLR2, TLR3, TLR4, TLR5 and TLR8. During differentiation from 

monocytes to DCs, cells show an up-regulation of TLR3 expression while decreasing 

TLR1, TLR2, TLR4, TLR5 and TLR8 expression [136]. 

 
Figure 5. Regulation of DCs activation. DCs can be activated by numerous agents derived from 

microbes (PAMPs), dying cells (DAMPs), cells of innate immune system and cells of the adaptive 

immune system. Activated DCs migrate to the draining lymph nodes, where they encounter cells of the 

adaptive immune system. (From Ueno H. e al., Immunol Rev 2007 219:118-42) 
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Immature DCs can use several pathways to take up antigens: (i) macropinocytosis, (ii) 

receptor-mediated endocytosis via CLRs or type I (CD64) and II (CD36) Fc receptors 

for immune complexes or opsonized particles, and (iii) phagocytosis of particles such as 

apoptotic and necrotic cell fragments, viruses and bacteria, including mycobacteria as 

well as intracellular parasites [137]. Generally, captured protein antigens are presented 

by MHCs classical molecules (class I and II) that stimulate T α/β lymphocytes while 

lipid antigens are presented by MHC non-classical molecules, such as CD1, and 

stimulate primarily T γ/δ lymphocytes and NKT cells [138].  

Upon antigen recognition and processing, DCs undergo a complex process of 

maturation involving a series of coordinate events, which lead to their phenotypic and 

functional changes. Maturation is a terminal differentiation process that transforms DCs 

from cells specialized for antigen capture into cells specialized for T-cell stimulation. 

The events that take place during the maturation process are essential for understanding 

the control of immunity and tolerance [139]. During this process, DCs decrease their 

phagocytic capability, increase their efficacy to present processed antigens in the 

context of MHC molecules and acquire a migratory phenotype associated with the up-

regulation of the G protein-coupled receptor CCR7, which is the dominant mediator of 

DC mobilization to the T cell compartment of lymphoid organs [140]. In particular, 

DCs undergo (i) changes in morphology such as loss of adhesive structures, 

cytoskeleton reorganization and the acquisition of high cellular motility; (ii) loss of 

endocytic/phagocitic receptors; (iii) up-regulation of costimulatory molecules, such as 

CD40, CD80, CD86, and MHC class I and II molecule expression, (iv) up-regulation 

CCR7 and down-regulation of CCR6 expression and (vi) secretion of polarizing 

cytokines and chemokines [91].  
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Unlike other APCs, DCs are highly specialized for homing efficiently to the T cell 

zones of lymphoid organs and optimal interactions with T lymphocytes. Indeed, in the 

steady state, iDCs migrate at a low rate from peripheral tissues via the blood or lymph 

to the T-cell regions of the lymphoid organs without undergoing activation. Then, they 

present self-antigens to lymphocytes in the absence of costimulation thereby leading to 

peripheral tolerance [130]. Before activation, iDCs can express CCR1, CCR2, CCR5, 

CCR6, CXCR1, CXCR2 and CXCR4, with their expression pattern differing somewhat 

among DC subsets. The migration of mature DCs (mDCs) from the sites of antigen 

capture to T-cell regions of draining lymph nodes, where they contact naïve or memory 

T cells, plays a key role in initiating a specific immune response [141]. In this manner, 

DCs form the key link between innate and adaptive immunity (Figure 6). 

 

Figure 6. DCs and generation of antigen specific T lymphocytes. (A) Features of iDCs. (B) Activation 

and uptake of pathogens through cytokine microenvironment and interaction with PPRs, with consequent 

migration of DCs to lymph nodes. (C) Maturation of DCs. (D) Migration of naïve T cells to paracortical 

area of lymph node. Entry through high endothelial venules (HEV) and chemokine-driven migration of 

lymphoid tissue. (E) Presentation of processed antigens to T lymphocytes (LT), generating activated 

effector cells. (From Cruvinel W. de M. et al., Bras J Rheumatol 2010, 50 (4): 434-61) 
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Stimulation of the adaptive immune responses 

In the lymph nodes, mDCs present on their surface a set of antigenic epitopes in 

association with MHC molecules that reflect the antigenic situation at the site of 

infection. Through the expression of MHC class I and MHC class II molecules, DCs are 

able to interact with naïve CD8
+
 T cytotoxic and naïve CD4

+
 T lymphocytes, 

respectively [141]. The signals that lead to T cell activation are generated at the level of 

the immunological synapse, a specialized area of contact between T cells and DCs, 

where adhesion molecules and T cell receptors (TCRs) form distinct supramolecular 

complexes [130,142]. Three main signals are required before a naïve T lymphocyte 

becomes an effector cell (Figure 7). The first signal is induced by the cross-linking of 

TCR triggered by the appropriate peptide-MHC complex presented on mDCs (signal 1). 

The second signal (costimulation) is mainly induced by the interaction of CD28 on the 

T cell surface and the costimulatory molecules CD80 (B7-1) and CD86 (B7-2) on the 

surface of mDC (Signal 2). The third signal is directed by DC-derived cytokines and 

enables the differentiation of T cells into effector (Signal 3) [133,141]  

 

Figure 7. Signals required for T cells activation and polarization. Upon maturation, DCs become 

capable to activate naïve T cells (signals 1 and 2) promoting the differentiation of newly activated T 

lymphocytes into effector cells (signal 3). (From Sabattè J. et al., Cytokine & Growth Factor Reviews 

2007, 18: 5–17) 



30 

 

Effective priming of naïve CD4
+
 T cells results in their clonal expansion and 

differentiation into cytokine-secreting effector and memory T cells. Hence, naïve CD4
+
 

T cells may differentiate into one of several lineages of effector T helper (Th) cells, 

including Th1, Th2, Th17, Th22 and T regulatory cells (Treg). The expansion of a 

specific CD4
+
 effector/Treg cell subset is largely determined by the expression of a set 

of transcription factors essential for their differentiation, mainly induced by the 

cytokines produced by mDCs during the T cell activation process, and by their pattern 

of cytokine production [143] (Figure 8). Thus, lymphotoxin-α (LTα) and IFN-γ-

producing Th1 cells require the presence of IFN-γ and IL-12 released by mDCs and the 

lineage-specifying T-box transcription factor (T-bet) for their differentiation. Th1 cells 

induce delayed type hypersensitivity (DTH) reactions that are protective against 

intracellular bacteria, fungi and protozoa, but can also be responsible for autoimmune 

disorders such as experimental autoimmune encephalomyelitis (EAE) and experimental 

autoimmune uveitis (EAU) [144]. Furthermore, in the presence of IL-2 and IL-4 

released by mDCs, naïve CD4
+
 T cells can polarize into Th2 lymphocytes that express 

the trans-acting T-cell–specific transcription factor (GATA-3) and, because of its ability 

to produce IL-4, IL-5, IL-9 and IL-13, are protective against extracellular parasites, but 

can also be responsible for allergic disorders. Likewise, in the presence of TGFβ, IL-6 

and IL-21 (in mice) or of IL-1 and IL-23 (in humans), naïve Th cells express retinoic 

acid-related orphan receptor (ROR)γt and differentiate into Th17 cells that produce IL-

17A, IL-17F, and IL-21 and are involved in the protection against extracellular bacteria 

and fungi, but can also be responsible for autoimmune disorders, such as EAE, EAU 

and collagen-induced arthritis (CIA) [144]. Recently, it has been shown that in the 

presence of TNF and IL-6, naïve Th cells can express aryl hydrocarbon receptor (AHR) 

and differentiate into IL-22-producing Th22 cells that, thanks to their production of IL-
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22 and expression of skin homing chemokine receptors (CCR4 and CCR10), have been 

hypothesized to be important in skin homeostasis and inflammation [144]. Moreover, 

some studies have also described IL-9-producing Th9 cells, and T follicular helper 

(Tfh) cells as separate lineages. However, it is still a matter of debate whether they may 

represent diversity within Th lineage, rather than separate lineages [143].  

In addition to the cytokines produced, effector T cells can be distinguished by their 

differential expression of chemokine receptors that direct them to distinct inflammatory 

environments [143,145].  

During Th cell differentiation toward one lineage, the other lineage fate is usually 

suppressed through several mechanisms. In particular, the transcription factors 

expressed in one lineage also suppress the production of cytokines of other lineages 

[143]. Despite the fact that Th cell polarization has been thought as an irreversible 

process of differentiation, current evidence describes Th cells as plastic populations that 

can be reprogrammed into other lineages in the presence of appropriate stimulation 

[143,144]. For instance, it has been observed that Th2 cells can differentiate into Th9 

cells in the presence of IL-4 and TGFβ [146] and that Th17 cells can shift to Th1 cells 

in the presence of IL-12 [147,148].  
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Figure 8. Main populations of CD4
+
 effector T cells. (From Annunziato F. & Romagnani S., Arthritis 

Research & Therapy 2009, 11: 257) 

 

Induction of immune tolerance 

In addition to their well-known role as the most powerful stimulators of adaptive 

immunity, DCs are also essential for the maintenance of immunological tolerance (both 

central and peripheral tolerance) to self-antigens. Central and peripheral tolerance act in 

a synergic way to prevent autoimmunity without inhibiting the ability of immune 

system to be activated in case of dangerous signals.  

Central tolerance is operated in the thymus by DCs and medullary epithelial cells 

through negative selection, a process where most of the T cells, which recognize self-

antigens at high affinity, are deleted at an immature stage of their development. 

However, potentially harmful self-reactive T cells can escape the wall of central 

tolerance and can promote autoimmune diseases. In order to prevent this process, 

peripheral tolerance serves as a backup mechanism to promote systemic tolerance to 

such autoreactive immune cells. In addition, it is also critical in suppressing immune 
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responses to innocuous external antigens or non-pathogenic organisms in the lung and 

digestive tract as well as at the immune privileged areas such as the brain, the anterior 

chamber of the eye, the testis, and the fetus. Breakdown of central or peripheral 

tolerance leads to autoimmune diseases such as type 1 diabetes, multiple sclerosis, 

inflammatory bowel disease, and rheumatoid arthritis [149]. 

DCs can promote peripheral tolerance by several mechanisms such as the induction of 

T-cell anergy or deletion, and the expansion of Treg. As described above, under 

homeostatic conditions, peripheral DCs typically display an immature phenotype so that 

they express only moderate levels of MHC class II and no, or very low, levels of 

costimulatory molecules. Thus, iDCs can inhibit the immune response of autoreactive T 

cells through the induction of (i) T cell anergy by presenting the antigen on their surface 

in the absence of costimulatory molecules or (ii) peripheral deletion of T cells by 

inducing their apoptosis due to excessive amount of antigen presented for extended 

periods of time. In addition, naïve T CD4
+
 cells can be induced to differentiate into 

Treg (iTreg), when DCs present antigens in the presence of cytokines such as TGF- 

and IL-10, and other factors such as retinoic acid or vitamin D3 [150].  

Furthermore, Treg arising in thymus are known as natural occurring Treg cells (nTreg) 

which are CD4
+
 CD25

+
 T cells and express the transcription factors Helios and Foxp3, 

necessary for the maintenance of their suppressive function [150]. DCs ability to induce 

and interact with Treg is critical for their tolerogenic effect. Conversely, Treg can 

promote the tolerogenic phenotype and capacity of DCs [149]. 

Several studies have been carried out to characterize phenotypical and functional 

features of tolerogenic DCs as well as the factors involved in their development. In 

particular, the maturation state of DCs is a critical determinant of their tolerogenic 

capacity. Based on their phenotypic and functional characteristics, DCs can be 
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identified at various stages of maturation, from immature through so-called “semi-

mature” to mature. Hence, generally iDCs or “semi-mature” DCs promote tolerogenic 

responses, whereas mDCs promote immune responses [149]. Moreover, a broad range 

of molecules, including microbial components, tissue antigens and apoptotic cells, 

interact with specific receptors on DCs and program them to a tolerogenic state. 

Furthermore, anti-inflammatory cytokines (e.g. IL-10 and TGF-β) and 

immunosuppressive agents (e.g. vitamin A, vitamin D3 and retinoids), can also 

condition DCs to a tolerogenic state by promoting the expression of IL-10, indoleamine 

2,3-dioxygenase (IDO) and TGF-β that are critical for the stimulation of Treg response, 

or up-modulating certain cell surface molecules such as immunoglobulin-like transcript 

3/4 (ILT3/4), programmed death ligand-1/2 (PDL1/2), ICOS-L, B7.H, CD95L that 

promote T-cell anergy or deletion [149]. 
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CHAPTER 3: AIM 

LF is now recognized as a key element in mammalian immune system for its pivotal 

role in host defence against infection and excessive inflammation. In addition to its 

well-known antimicrobial properties [62-64], LF exhibits a variety of effects on the host 

immune system, ranging from inhibition of inflammation to promotion of both innate 

and adaptive immune responses [32,54,69]. However, the mechanisms underlying LF 

immunomodulatory properties have not been fully elucidated yet and growing evidence 

indicates that the capacity of this molecule to directly interact with APCs may play a 

critical role. Several studies have demonstrated that LF contributes to the regulation of 

inflammation and immunity by modulating important aspects of APC biology both at 

the functional level, such as migration and cell activation, and at the molecular level by 

affecting expression of soluble immune mediators, such as cytokines, chemokines and 

other effector molecules [32,54,69].  

Among APCs, monocytes/Mand DCs are of critical importance for the maintenance 

of tissue homeostasis and innate response to pathogens, as well as in linking innate to 

adaptive immune response. In particular, DCs play a key role in the immune system by 

virtue of their capacity to control, on the one hand, immune activation, by inducing the 

polarization and expansion of antigen specific T lymphocytes and, on the other hand, 

tolerance, by contributing to the expansion and differentiation of T cells with regulatory 

or suppressive properties [129,130,151] .  

Although several studies have addressed the role of LF on monocytes/M, little is 

known about its activity on DCs. Accordingly, the aim of this work was to further 

define the LF immunomodulatory activity by focusing on its role in the process of DC 

generation. To reach this objective, iMD-DCs were generated in vitro by culturing 

human monocytes, purified from PBMC of healthy donors, in RPMI supplemented with 
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10% FBS containing GM-CSF and IL-4 in the presence or in the absence of bLF. Then, 

MD-DCs generated in the presence of bLF (bLF-MD-DCs) were analyzed  for their 

phenotypical (surface markers typically expressed on iDCs and tolerogenic markers) 

and functional features (expression of activation markers, release of pro-inflammatory 

cytokines/chemokines and T cell activation and polarization ability upon TLRs 

stimulation). In addition, this study focused on the characterization of molecular 

mechanisms through which bLF modulates the DC-mediated immune functions. Hence, 

we analyzed  the bLF ability to differently interact with DC precursor cells and already 

differentiated iMD-DCs by analysing, in these different cellular models, both the bLF-

induced cytokines/chemokines release (IL-6 and CCL1) and bLF internalization ability, 

concomitantly with the analysis of receptors involved in these processes. Finally, we 

investigated the role of bLF-induced cytokines/chemokines release (IL-6 and CCL1) in 

the bLF-mediated inhibition of MD-DCs activation. 

Overall, this work adds further evidence to the pivotal role of LF in the modulation of 

DCs biology, shedding light on the possible mechanisms involved in the 

immunomodulatory ability of LF.  

Most of the results discussed in this thesis have been published in [152]. 
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CHAPTER 4: MATERIALS AND METHODS 

Cell separation and culture 

Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood 

of healthy donors by Ficoll-Paque density centrifugation. CD14
+
 monocytes population 

was further purified by depleting the non-monocytic population by immunomagnetic 

bead selection (MACS monocyte isolation kit II from Miltenyi Biotec), according to the 

manufacturer‟s instructions. Immature MD-DCs were generated by culturing 

monocytes, seeded at 1×10
6
 cells/ml for 5-6 days, in RPMI 1640 medium (Life 

Technologies) supplemented with 2 mM L-glutamine, 2 mM penicillin/streptomycin 

and 10% fetal bovine serum (FBS) (Hyclone), containing GM-CSF and IL-4 (50 ng/ml 

and 500 U/ml, respectively; kindly provided by Schering-Plough, Dardilly, France) in 

the presence or in the absence of bLF (100 g/ml). Freshly isolated monocytes were 

treated with bLF in the presence of differentiating factors soon after seeding, at day 2 

and day 5 of culture, unless differently specified. In some experiments, on day 5, MD-

DCs were stimulated with LPS (10 ng/ml) or polyinosinic:polycytidylic acid (poly(I-C)) 

(20 μg/mL) for 24 hours. Cells were cultured at 37 °C, in a 5% CO2 and 95% H2O 

atmosphere.  

Reagents 

All culture reagents were purchased as endotoxin-free lots (Biowhittaker). LPS from 

Escherichia Coli (serotype EH100, Ra TLR grade, Alexis Biochemicals), and poly(I-C) 

by Sigma-Aldrich. 
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Highly purified bLF in lyophilized form was kindly provided by Morinaga Milk 

Industries Co., Ltd., (Tokyo, Japan). BLF was checked for purity, iron saturation and 

endotoxin content as previously described [84].  

Monoclonal antibodies (Abs) against TLR4 (5 g/ml; clone 15C1) and TLR2 (5g/ml; 

clone T 2.5) were kindly provided by Greg Elson. Monoclonal Abs against CD14 (5 

g/ml; clone 134620) and IgG1k isotype control Abs (5 g/ml; clone 11711) were 

purchased from R&D. Monoclonal Ab against CD36 (5 g/ml; clone FA6-152) was by 

GENETEX Inc.   

MD-DC phenotype was characterized by using the following Abs: FITC-CD1a and PE-

CD1a (clone HI149), FITC-CD14 and PE-CD14 (clone MWP9), FITC-CD40 (clone 

5C3), FITC-CD80 (clone L307.4), FITC-CD86 (clone 2331(FUN-1)), FITC-CD83 

(clone HB15e), FITC-HLA-DR (clone G46-6), FITC-HLA-ABC (clone G46-2.6), 

FITC-ILT3 (clone 293623, R&D), FITC-ILT4 (clone 287219, R&D), PE-CD274 (PD-

L1, clone MIH1), PE-CD206 MR (clone 19.2), mouse purified anti-CD209 (DC-SIGN, 

DCN46) followed by FITC-goat-anti-mouse IgG (H+L) F(ab‟)2 (PIERCE). Non-

specific binding was checked by the respective isotype Abs FITC-IgG2a (G155-178), 

FITC-IgG1 and PE-IgG1 (clone MOPC-21), FITC-IgG2a (clone 20102, R&D), purified 

mouse IgG2bk (clone 27–35). Unless differently indicated, Abs were purchased from 

BD Biosciences.  

Flow cytometric analysis 

Phenotypic analysis of MD-DCs 

The phenotypic analysis of surface differentiation and activation markers was 

performed in immature or LPS and poly(I-C) stimulated MD-DCs, generated in the 

presence or in the absence of  bLF. About 3-5 × 10
5
 cells were pre-incubated for 30 min 
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on ice with phosphate-buffered saline (PBS) containing 10% human AB serum to block 

nonspecific Ig binding. Then, cells were washed in Staining Buffer (SB), containing 

PBS, 10% FBS, 0.09% NaN3, and incubated with the appropriate Ab for additional 30 

min. After incubation, cells were washed twice in SB and fixed in PBS/4% 

paraformaldehyde (PFA). Finally, cells were acquired with FACS Calibur flow 

cytometer (BD Biosciences) and data analyzed by the FlowJo software (Tree Star, Inc.). 

Antigen uptake assay 

At day 5 of culture, MD-DCs, treated or not with bLF, were stimulated with LPS or 

poly(I-C). Twenty-four hours later, their ability for antigen capture was examined by 

flow cytometric analysis. Briefly, cells were washed twice with PBS, then 2 x 10
5
 cells 

were incubated with 10 g of FITC-labeled dextran (DXT) (Molecular Probe) for 40 

min at 37°C, or 0°C, to test unspecific binding. Cells were then fixed in PBS/4% PFA 

and analyzed by flow cytometry. 

MD-DC/T cell co-cultures and Th profile 

Allogenic CD4
+
 naïve T cells were isolated from PBMCs of healthy donors by using 

naïve CD4
+
 T cell isolation Kit II (Miltenyi Biotech) and co-cultured in RPMI 5% 

human AB pool serum with MD-DCs or bLF-MD-DCs primed with LPS (10 ng/ ml) or 

poly(I-C) (20 g/ml), at DC/T ratio of 1:10, 1x10
6
 T cells/well in 24-well plates. At day 

5, supernatants were collected for cytokine determination while cells were extensively 

washed, re-suspended in fresh medium at 1x10
6
 cell/ml and stimulated with ionomycin 

(2 g/ml) and PMA (50 ng/ml) (both from Sigma-Aldrich) for 5 h. Golgi Stop (BD 

Bioscience) was added during the last 3 h of culture following the manufacturer‟s 

instructions. After stimulation, CD4
+
 T cells were fixed, permeated using 

Cytofix/Cytoperm PlusTM (BD Bioscience) and intracellularly stained with 
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Fastimmune FITC-IFN-/PE-IL-4 cocktail (clones 25723.11 and 3010.211 respectively; 

BD Bioscience), and PE-CD154 (clone TRAP1; BD Bioscience). Cells were also 

stained with the respective isotype Abs, mouse FITC-IgG2a/PE-IgG1 (clones 639/640; 

BD Biosciences) and mouse PE-IgG1 (MOPC-21; BD Biosciences). In some 

experiments, allogenic CD4
+
 naïve T cells were primed with LPS-activated MD-DCs or 

bLF-MD-DCs at DC/T ratio of 1:10 for 7–10 days and successively re-stimulated with 

the original cryopreserved MD-DCs. Seven-to ten days after last stimulation, cells were 

processed for surface staining with FITC-CD25 (clone M-A251; BD Biosciences), then 

fixed and permeated for intracellular APC-FoxP3 (clone PCH101; eBioscience) 

staining and FACS analysis. 

T cell proliferation assay 

MD-DCs were co-cultured at different DC/T cell ratio, starting from 1:10, with 

peripheral blood lymphocytes (PBL), obtained from PBMCs depleted of CD14
+
 cells. 

After 5–10 days, cells were fixed and permeated using Cytofix/Cytoperm PlusTM (BD 

Bioscience), then stained with Ab to Ki67 and the relative isotype Ab, following the 

manufacturer‟s instructions (FITC Mouse Anti-Human Ki67 Set, BD Biosciences). 

Otherwise, in some experiments MD-DCs were co-cultured at different DC/T cell ratio, 

starting from 1:10, with peripheral blood lymphocytes (PBL), obtained from PBMCs 

depleted of CD14
+
 cells and previously stained with CFSE. Ten millions PBL were 

labelled with CFSE (Sigma-Aldrich; 5M, in 500 l final volume) in a 15 ml tube for 4 

minutes at room temperature (RT). After incubation, the reaction was stopped by the 

addition to each tube of 10 ml ice-cold RPMI without serum, then cells were washed 

three times with PBS, suspended in warm RPMI supplemented with 5% human AB 
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serum and cultured with MD-DCs at 37°C in a 5% CO2 incubator. After 5-10 days, 

cells were collected, washed with PBS and samples analyzed by flow cytometry. 

Determination of cytokine and chemokine levels 

Cytokine and chemokine levels in culture supernatants were measured by enzyme-

linked immunosorbent assay (ELISA) kits for the following cytokines: TNF, IL-12 and 

IL-10 (sensitivity 32.5 pg/ml; homemade assay, Pierce Endogen), IL-6 (sensitivity 7.8 

pg/ml; ELISA MAXTM Set, BioLegend), CCL2 and CCL1 (sensitivity 15.6 pg/ml; 

homemade assay, R&D System), IL-23 (sensitivity 31 pg/ml; eBioscience) and IL-2 

(sensitivity 7.8 pg/ml; ELISA MAXTM Set, BioLegend). 

Immunoblotting analysis 

Immunoblotting analysis of STAT3, SOCS-3 and IDO was carried out in cells 

differentiated for 6 days in the presence or in the absence of bLF. Endogenously 

produced IL-6 was neutralized by anti-human-IL-6 (5 g/ml, clone 6708.11; SIGMA) 

or anti-human-CCL1 (clone 35305; R&D System) or IgG1k isotype control (5g/ml, 

clone 11711; R&D) Abs. Cells were pre-treated at day 0, day 3 and day 6 with anti-IL-6 

or anti-CCL1 for 30 min, before bLF addition to the cultures. Six hours after the last 

bLF treatment, whole cell proteins were extracted as follow: cells were collected and 

washed three times with ice-cold PBS, then lysed in RIPA buffer (150 mM NaCl, 50 

mM Tris-Cl (pH 7.5), 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) 

containing a cocktail of protease (Roche) and phosphatase inhibitors (Phosphatase 

Inhibitor Cocktail 1 and 3; Sigma-Aldrich). The protein concentration was determined 

using the Bio-Rad protein assay (Hercules, CA) according to the manufacturer‟s 

instructions. Twenty micrograms of lysate were boiled for 4 min in Laemmli sample 
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buffer, fractionated on 8% SDS-PAGE gel, and electroblotted to nitrocellulose filter 

(Protran BA 85, Schleicher & Schuell, Keene, NH). The following Abs were used for 

the immunoblots: anti-phospho-STAT3 (Y705; Cell Signaling Technology, diluted 

1:1000), anti-STAT3 (BD Transduction Laboratories; diluted 1:2500), anti-SOCS-3 

(Santa Cruz Biotechnology; diluted 1:500), anti-IDO (Upstate; diluted 1:500) and anti-

Actin Ab-5 (BD Biosciences; diluted 1:5000) as gel loading control. Signals were 

revealed after incubation with anti-mouse or anti-rabbit Ig HRP secondary Abs 

followed by ECL detection reagent (Amersham).   

Confocal laser-scanner microscopy analysis (CLSM) 

Cells were fixed with 1% PFA for 15 min at RT, and permeabilized with Dulbecco‟s 

PBS (DPBS), containing Ca
++

 and Mg
++

, 1% BSA and 0,1% Triton X-100 (Sigma-

Aldrich Co.) for 30 min at RT. Then, cells were stained with a 1:50 dilution in DPBS/ 

0.1% BSA of FITC-conjugated polyclonal rabbit anti-hLF Ab (DakoCytomation), 

cross-reactive to bLF, for 1 h at RT. As a negative control, the primary Ab was omitted. 

Cells were then extensively washed with DPBS and stained with the nuclear fluorescent 

probe TO-PRO-3 (1 mM; Molecular Probes) for 15 min at RT. After several rinses, 

cover lips were mounted in buffered glycerol (pH 9) and sealed with nail polish. 

Immunofluorescence imaging was performed using a Leica confocal microscope (Laser 

Scanning TCS SP2) equipped with Ar/ArKr and He/Ne lasers at X 40 magnification 

under an oil-immersion lens. A series of 12 optical sections with a step size of 1 m 

through cells were acquired. Laser line was at 488 nm and 633 nm for FITC and TO-

PRO-3 excitation, respectively. The percentage of positive cells was calculated by 

analyzing at least 350 cells for each experimental sample. 
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Statistical analysis 

Statistical comparison between different experimental conditions was determined by the 

Student‟s t test (paired, two-tailed) by using SPSS software. Differences were 

considered significant when p values were < 0.05 (*), < 0.01 (**), < 0.001(***). 
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CHAPTER 5: RESULTS 

Phenotypic properties of MD-DCs generated in the presence of bLF 

The expression of a panel of surface antigens, typical of iDCs, was analyzed  in 

monocytes stimulated to differentiate into classic MD-DCs in the absence or in the 

continuous presence of bLF. As shown in Figure 9A, bLF did not interfere with 

monocyte differentiation into MD-DCs since bLF exposed cells at day 6 of culture 

expressed CD1a, CD80, CD86 and CD40, as well as MHC class I (HLA-ABC) and II 

(HLA-DR) antigens, and barely detectable levels of CD83 and CD14 consistent with 

their differentiation into immature MD-DCs (iMD-DCs). However, a modest but 

reproducible increase in the expression of CD80, CD86 and HLA-DR, and to a higher 

extent of PD-L1 and ILT3 was observed in bLF generated MD-DCs (bLF-MD-DCs) 

with respect to control iMD-DCs. Conversely, ILT4 was expressed at comparable levels 

in control and bLF-MD-DCs. Furthermore, bLF influenced the dichotomy CD1a
-

/CD1a
+
 observed in in vitro generated MD-DCs [153,154]. The percentage of CD1a

+
 

cells monitored in ten independent monocyte cultures substantially varied (n = 10; * p < 

0.05) when cells were differentiated in the presence of bLF, with a preferential 

generation of CD1a
-
 cells (mean 18 ± 6%, n = 10) with respect to control cultures 

(mean 8 ± 3%, n = 10). Interestingly, the majority of CD1a
-
 MD-DCs also expressed 

high levels of HLA-DR and CD86, and some of them were positive for the activation 

marker CD83 (Figure 9B). In keeping with their immature phenotype, bLF-MD-DCs 

expressed high levels of DC-SIGN and MR, and exhibited a high capacity to uptake 

DXT (Figure 9C). Likewise, bLF-MD-DCs did not secrete effector cytokines typical of 

activated DCs, including IL-12, TNF, IL-23, IL-10 and CCL2 (see figure 10C). 
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Interestingly, bLF-MD-DCs produced IL-6 and CCL1 that were not found in control 

cultures (Figure 9D). 

  

Figure 9. Phenotypic characterization of iMD-DCs generated in the presence of bLF. iMD-DCs were 

generated in the absence or in the continuous presence of bLF added to the culture at day 0, 2 and 5, 

concomitantly to the addition of GM-CSF and IL-4. At day 6, cells and culture supernatants were 

collected. (A) Cells were stained with the indicated Abs and analyzed  by flow cytometry. The shaded 

and black areas represent the expression of phenotypic markers in control and bLF-treated cells, 

respectively. Numbers indicate median fluorescence intensity (MFI) values of markers analyzed  on cells. 

One representative experiment out of 4 performed is shown. (B) FACS dot plots showing PE-CD1a 

versus FITC-CD86, -CD83 or -HLA-DR expression. Numbers indicate the percentage of cells included 

in each quadrant. One representative experiment out of 4 performed is shown. (C) Cells were stained with 

specific Abs to DC-SIGN, MR or FITC-conjugated DXT, and analyzed  by flow cytometry. Open 

histograms represent the background staining of isotype-matched Abs for DC-SIGN and MR, or cells 

incubated with DXT at 0° C. MFI values are shown. One representative experiment out of 4 is shown. 

(D) IL-6 and CCL1 content in day 6 supernatants from bLF-treated or control cultures analyzed  by 

ELISA. p values were calculated for IL-6 and CCL1 production in bLF-MD-DCs versus control iMD-

DCs.  
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bLF-generated MD-DCs do not undergo phenotypic and functional 

maturation following TLRs stimulation 

Next we evaluated whether bLF-MD-DCs could mature in response to TLR triggering. 

As shown in Figure 10A, up-modulation of CD80, HLA-DR and CD83, consistently 

observed in LPS stimulated control cultures, was markedly reduced in bLF-MD-DCs. 

As LFs of different origins can bind a variety of anionic biological molecules, including 

lipid A, with high affinity [32], we tested the effect of bLF on MD-DC maturation 

induced by other TLR agonists such as the TLR3 ligand poly(I-C) to exclude that the 

observed bLF-mediated inhibitory effect on DC activation was due to the capacity of 

this molecule to sequester LPS, thus neutralizing its biological activity. As shown in 

Figure 10B, poly(I-C) induced phenotypic changes were strongly reduced in bLF-MD-

DCs as compared to control cultures. These results provide evidence that inhibition of 

MD-DC maturation is not merely related to bLF capacity to bind LPS but likely relies 

on direct effects of this molecule on its target cells. In keeping with the lack of 

phenotypic changes indicative of DC maturation, bLF-MD-DCs retained a high 

capacity to uptake DXT upon activation with both LPS and poly(I-C), consistent with 

an immature phenotype (Figure 10C). As expected, the high endocytic capacity 

exhibited by control MD-DCs at the immature state was markedly down-modulated 

upon maturation induction with LPS or poly(I-C) (Figure 10C). Likewise, bLF-MD-

DCs treated with LPS and poly(I-C) failed to produce or produced remarkably less IL-

12 (n = 6; * p < 0.05 for both stimuli), TNF (n = 11; *** p < 0.001 and ** p < 0.002 for 

LPS and poly(I-C), respectively), IL-23 (n = 14; * p < 0.05 for both stimuli) and CCL2 

(n = 7; * p < 0.05 for both stimuli) than control MD-DCs stimulated under the same 

conditions (Figure 10D). In contrast, no significant differences were observed in the 

production of IL-10 that was up-modulated at a comparable extent in both control MD-
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DC and bLF-MD-DC cultures stimulated with LPS or poly(I-C) (n = 7; p = 0.298 and p 

= 0.228, respectively) (Figure 10D). These results exclude that the bLF-mediated 

inhibitory effect on cytokines/chemokines relies on hyper-production of IL-10, a 

cytokine well-known as a negative regulator of IL-12 and other cytokines [155].  

 

Figure 10. bLF-induced impairment of MD-DC maturation. iMD-DCs were generated as described in 

the legend to Figure 9. At day 5 of culture, cells were stimulated with LPS (10 ng/ml) or poly(I-C) (20 

μg/ml). Twenty-four hours later, cells and culture supernatants were collected. (A and B) Cells were 

stained with the indicated Abs and analyzed  by flow cytometry. Open and shaded areas represent 

staining with isotype Ab and indicated phenotypic markers, respectively. MFI values are reported. One 

representative experiment out of 4 is shown. (C) Control and bLF-MD-DCs were stained with DXT and 

analyzed  by flow cytometry. Open and black histograms represent staining with DXT at 0°C or 37°C, 

respectively. The percentage of positive cells and MFI values are shown. One representative experiment 

out of 4 is shown. (D) Cytokine/chemokine contents in culture supernatants. Mean ± SE of 6 to 14 

independent experiments is shown. p values were calculated comparing results from bLF-MD-DCs 

versus MD-DCs.  
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bLF generated MD-DCs exhibit an impaired capacity to induce T cell 

activation 

Cells generated in the presence of bLF were further characterized for their functional 

properties. The capacity to induce T cell activation was examined in allogenic mixed 

lymphocyte reactions (MLRs). After stimulation with TLR agonists, bLF-MD-DCs 

turned out to be weak activators of T cell proliferation, as demonstrated by the 

drastically reduced number of lymphocytes expressing Ki67, an intracellular antigen 

associated with DNA replication, with respect to control activated cells (Figure 11A). 

In keeping with these results, bLF-MD-DCs failed to prime naïve allogenic CD4
+
 T 

lymphocytes towards the expected Th1 polarization both in terms of percentage of IFN-

γ
 
expressing cells and the MFI for the IFN-γ

 
positive cells (Figure 11B). Accordingly, 

IFN-γ production was not detected in the supernatant of bLF-MD-DC/T lymphocyte co-

cultures with respect to control activated MD-DCs (data not shown). However, bLF-

mediated impairment in IFN-γ production did not favour the expression of IL-4, since 

the low frequency of IL-4 producing cells was comparable in all experimental 

conditions (Figure 11B). Likewise, no IL-10 secretion was detected in the co-culture 

medium of both bLF exposed and control cultures (n = 5; < 32.5 pg/ml for each 

experimental point). A deeper characterization of T lymphocytes in MLRs unravelled a 

very low intracellular expression of the T lymphocyte activation marker CD154, 

comparable to that observed in iMD-DCs, in CD4
+
 T cells co-cultured with bLF-MD-

DCs activated with TLR agonists with respect to T lymphocytes primed by activated 

control MD-DCs (Figure 11C). In keeping with the functional unresponsiveness of 

bLF-MD-DC primed T lymphocytes, a marked reduction in IL-2 content was found in 

LPS activated bLF-MD-DC/T lymphocyte co-culture supernatants (n = 7; * p < 0.05) 

with respect to those collected from control activated MD-DC/T lymphocyte co-
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cultures (n = 5; *** p < 0.001) (Figure 11D). To exclude the possibility that the 

hyporesponsiveness induced by bLF-MD-DCs could be due to the preferential 

expansion of Treg cells, we characterized the phenotype of expanded CD4
+
 T cells. 

However, no major differences were observed in the percentage of FoxP3
+
/CD25

high
 T 

cells in MLRs with MD-DCs generated or not in the presence of bLF (Figure 11E). 

 

Figure 11. bLF inhibition of MD-DC-mediated T cell responses. iMD-DCs were generated as described 

in the legend to Figure 9. Control or bLF-MD-DCs were stimulated with LPS or poly(I-C) for 24 h and 

then co-cultured with (A) allogenic PBL at different DC/PBL ratio (1:100 is shown) or (B-E) allogenic 

CD4
+
 naïve T cells at ratio DC/T of 1:10. (A) At day 9 of co-culture, proliferating T cells were 

intracellularly stained with Ki-67. FACS analysis was performed on lymphocyte population according to 

FSC/SSC parameters. 20.000 events were acquired per sample. Numbers indicate the percentage of 

positive cells. (B and C) At day 5 of co-culture, cells were stimulated with PMA (50 ng/ml) and 

ionomycin (1 μg/ml), then intracellularly stained with the indicated Abs. Numbers indicate the percentage 

of lymphocytes included in each quadrant. (D) Day 5 supernatants of co-culture analyzed by ELISA for 
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IL-2 content. Figure shows mean ± SE of 5 to 7 independent experiments. p values were evaluated 

comparing results from bLF-MD-DCs versus MD-DCs co-cultures. (E) CD4
+ 

naïve T cells were primed 

with control or LPS-primed MD-DCs or bLF-MD-DCs and further re-stimulated with the original MD-

DCs before staining with the indicated Abs and FACS analysis. A representative FACS profile is shown 

as dot plots of FITC-CD25 versus APC-FoxP3. The quadrant gates were set according to the negative 

isotype control Abs in the respective experimental conditions. Numbers indicating the percentage of cells 

included in each quadrant are shown. 

 

bLF  promotes the expression of tolerogenic markers in MD-DCs 

To further elucidate the mechanisms by which bLF stimulation of monocytes generates 

DCs with an impaired capacity to undergo activation and immunosuppressive potential, 

the expression of tolerogenic markers was examined in bLF-MD-DCs. As described 

above in Figure 9A, bLF-MD-DCs express a higher level of PD-L1 and ILT3 with 

respect to control iMD-DCs. The expression of PD-L1 and ILT3 have been linked with 

the negative regulation of DCs activation and with their ability to induce tolerance 

[156-158]. Furthermore, enhanced suppressor of cytokine signaling-3 (SOCS-3) 

expression in murine DCs has been reported to block the IL-12/IL-23 signaling in these 

cells and to drive them toward a tolerogenic phenotype promoting Th2 responses both 

in vitro and in vivo [159]. Likewise, IDO activity in DCs has been suggested to impair 

T cell responses by altering the microenvironment at the DC/T cell interface [160]. 

Moreover, signal transducer and activator of transcription 3 (STAT3) activation has 

been linked to the induction of DCs with a tolerogenic phenotype [161-163]. To further 

characterize the expression of tolerogenic markers in bLF-MD-DCs, cell lysates 

prepared from both control iMD-DCs and bLF-MD-DCs were analyzed for the 

presence of SOCS-3, IDO and tyrosine phosphorylated STAT3 (STAT3-pY705). As 

shown in Figure 12, while STAT3-pY705 and IDO expression was not detected in 

control iMD-DCs, both these proteins were up-modulated in bLF-MD-DCs. 

Conversely, SOCS-3 was expressed in control iMD-DCs. However, when MD-DCs 
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were generated in the presence of bLF, a clear-cut up-modulation of SOCS-3 was 

observed.  

 

Figure 12. Expression of STAT3-pY705, SOCS-3 and IDO in bLF-MD-DCs. iMD-DCs were generated 

as described in the legend to Figure 9. At day 6 of culture, cells were lysated and proteins extracted. 

Immunoblotting analysis for the indicated proteins in control and bLF-MD-DCs is shown. Samples were 

resolved in 10 % SDS-PAGE gels. One representative experiment out of 5 is shown. 

 

bLF differently interacts with DC precursor cells and differentiated iMD-

DCs  

Previous studies have demonstrated that exposure of iMD-DCs to recombinant hLF 

results in their functional activation and promotes Th1 responses [89,95]. However, in 

our study, cells were treated with bLF at different time of culture, immediately after 

monocytes isolation and every three days until sample processing, thus allowing bLF to 

exert differential effects on the two different cell targets. The achieved results suggest 

that stimulation with bLF during DC generation could suppress the development of 

functional DCs by differently interacting with differentiated iMD-DCs and their 

monocyte precursors. To explore this hypothesis, we assessed the effect of a single 

treatment with bLF of freshly isolated monocytes (day 0) or iMD-DCs (day 5) on the 

production of IL-6 and CCL1. As shown in Figure 13A, high levels of IL-6 were found 

in monocyte cultures treated with bLF (n = 13; ** p < 0.01) while this cytokine was not 
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secreted when bLF was added to iMD-DCs (n = 6; p = 0.363). IL-6 production entirely 

occurred within the first 18 h after cell seeding. In fact, when the culture medium of 

bLf-treated monocytes was replaced with fresh medium 18 h post stimulation and cells 

were cultured for additional 5 days, no IL-6 was detected in the supernatant at the end 

of culture (Figure 13B). Differently from IL-6 production, bLF induced significant 

levels of CCL1 in both cell types treated at day 0 or day 5, although CCL1 production 

was significantly higher in cultures stimulated at day 0 (n = 22; *** p < 0.0001), with 

respect to the treatment at day 5 (n = 22; * p < 0.05) (Figure 13C). Interestingly, cells 

continued to produce CCL1 even upon medium replacement 18 h post bLF treatment 

(Figure 13D), suggesting that CCL1 production could be a result of permanent changes 

induced in bLF-treated DC precursor cells. 

 

Figure 13. bLF differently interacts with DC precursor cells and differentiated iMD-DCs. (A and C) 

Cells were treated once with bLF soon after seeding (day 0) or at day 5 of culture in the presence of GM-

CSF and IL-4. Controls were left untreated (none). p values were calculated comparing results from bLF-

treated versus control cells and day 0 versus day 5 bLF-treated cells. (A) At day 6, supernatants were 

assessed for IL-6 content. The results of 13 independent experiments are shown. (C) Eighteen hours after 

bLF treatment, supernatants were assessed for CCL1 content. The results of 22 independent experiments 

are shown. (B and D) Cells were treated with bLF for 18 h, then the culture medium was replaced with 

fresh medium containing GM-CSF and IL-4, and cells cultured for additional 5 days. IL-6 and CCL1 

content in the 18 h and 5-days conditioned medium was assessed by ELISA. Mean ± SE of (B) 5 and (D) 

4 independent experiments is shown. p values were calculated comparing results from 5-days versus 18h 

conditioned medium. 
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bLF is internalized by DC precursor cells but not iMD-DCs and 

accumulates into the nucleus 

To explore the possibility that a different interaction of bLF with DC precursor cells 

and iMD-DCs underlies the distinct effects mediated by this molecule, bLF uptake and 

internalization were investigated by confocal microscopy in freshly isolated monocytes 

and iMD-DCs. Time-course experiments revealed that bLF was rapidly internalized in 

freshly isolated monocytes, and its sub-cellular distribution was dependent on the time 

point examined. As shown in Figure 14, bLF was distributed in spotted dots in the 

cytoplasm of DC precursor cells already after 10 minutes of treatment (panels A, C, D), 

accumulated in the perinuclear area after 1 h (panels E, G, H), and entered the nucleus 

at 3 h of treatment, as demonstrated by merged green and blue fluorescence (panels K 

and L). Conversely, iMD-DCs failed to internalize bLF and very few cells exhibiting 

some bLF cytoplasmic staining were detected at the later time point (panels V, X, Y).  
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Figure 14. Differential bLF internalization in DC precursor cells and iMD-DCs. CLSM images of cell-

associated bLF in freshly isolated monocytes and MD-DCs treated once with bLF soon after seeding or 

after 5 days of culture, respectively, at the indicated time-points after treatment. Images taken at level of 

the nuclear section of one representative experiment out of 3 performed are shown. Single green and blue 

fluorescences represent bLF (panels A, E, I, M, R, V) and nuclei (panels B, F, J, N, S, W), respectively. 

Panels C, G, K, O, T, X, and their respective 2 X magnification (panels D, H, L, P, U. Y) show merged 

green and blue fluorescence.  

DDCC  pprreeccuurrssoorr  cceellllss  iiMMDD--DDCCss  
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To precisely define the differentiation stage in which changes in the capability of 

individual cells to respond to bLF occur, progression of monocyte to MD-DC 

differentiation was monitored in parallel with bLF internalization and IL-6 secretion. To 

assess and quantify progression, percentage of CD14
+
 and CD1a

+
 cells, and 

CD1a/CD14 MFI ratio were used as qualitative and quantitative measure of MD-DC 

differentiation, respectively. As shown in Figure 15A, monocyte to MD-DC 

differentiation progresses through intermediate stages reflected by specific up-

modulation of CD1a and down-regulation of CD14. Day 0 monocytes were essentially 

all CD1a
- 
and CD14

+
. At day 1, and more markedly at day 2, cells began to express 

CD1a while decreasing CD14 expression. By day 3, most cells have down-regulated 

CD14 and acquired the expression of CD1a. By day 4, the majority of cells were fully 

differentiated CD1a
+
/CD14

-
 MD-DCs. Likewise, CD1a/CD14 MFI ratio steadily 

increased during differentiation and showed clustering of the numerical values at each 

stage of differentiation (Figure 15B), thus providing a reliable indicator of 

differentiation progression. According to these metrics, a full MD-DC phenotype is 

acquired between day 3 and 4 of culture in the presence of GM-CSF and IL-4. 

Concomitant analysis of bLF uptake and internalization revealed that, at day 0 and 1 of 

culture, most cells internalize bLF, which localizes into the nucleus (Figure 15C). 

Reduction in the percentage of cells internalizing bLF was already observed at day 2, 

increased at day 3 with only half of the cells positively stained for bLF, which mostly 

localized into the cytoplasm. The capacity to internalize bLF further decreased with 

differentiation progression and, at day 4 and 5 of culture, most cells did not exhibit any 

intracellular bLF. In keeping with these results, reduction in IL-6 secretion was already 

observed at day 2 of culture, while this cytokine was no longer produced in response to 

bLF in more differentiated cells at day 4 and 5 of culture (Figure 15D). These results 
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suggest an intimate relationship between differentiation progression and capacity to 

internalize bLF within the nucleus. Furthermore, bLF nuclear internalization appears to 

be an important requisite for bLF-induced IL-6 expression. 

 

Figure 15. bLF internalization during monocyte to iMD-DC differentiation progression. Monocytes 

were stimulated to differentiate into iMD-DCs in the presence of GM-CSF and IL-4. (A) Flow cytometric 

analysis showing cell-surface phenotype during MD-DC differentiation. Monocytes and iMD-DCs can be 

distinguished by their CD14 and CD1a expression profiles. Data from one representative donor out of 5 

are shown. (B) Quantification of CD1a/CD14 expression ratios in 5 independent donors. Ratios were 

calculated using MFI of CD1a/ MFI of CD14 and normalized to the day 5 ratio of each donor, which was 

set at 1.0. (C) Monocytes were exposed to bLF soon after seeding (day 0) or at day 1, 2, 3, 4 or 5 of 

culture in the presence of GM-CSF and IL-4. Three hours later, bLF internalization was assessed by 

CLSM. Figure shows the mean ± SE of bLF positive cells in 3 independent experiments. The percentage 

of positive cells was calculated by analyzing at least 350 cells for each experimental point. The nuclear or 

cytoplasmatic positivity is also indicated. p values were calculated comparing the percentage of bLF 

positive cells at day 1, 2, 3, 4, and 5 versus day 0. (D) At each time points, IL-6 produced after a 18 h 

treatment with bLF was assessed by ELISA. Mean ± SE of 3 independent experiments is shown.  
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Role of TLR2 and TLR4 and their co-receptors in bLF-induced IL-6 and 

CCL1 production 

LFs bind to a variety of cell determinants with different grade of specificity, including 

molecules involved in pathogen recognition [32,54]. Experiments were then designed to 

define the role of CD14, TLR2 and TLR4, both in bLF entry and in bLF-mediated IL-6 

production. Although blocking each of these receptors failed to affect bLF 

internalization in monocytes (data not shown), blocking CD14 (n = 7; ** p < 0.01) and 

TLR2 (n = 8; *** p < 0.001) with specific Abs strongly reduced the capacity of bLF to 

induce IL-6 production (Figure 16A). However, only a partial but significant reduction 

of IL-6 secretion was achieved when Abs against TLR4 (n = 7; * p < 0.05) were added 

to the cultures. As expected, isotype control Abs did not show any effect. According to 

these results, the effect of neutralizing Abs specific for TLR4, TLR2 and their co-

receptors CD14 and CD36 was evaluated on bLF-mediated CCL1 production in both 

freshly isolated monocytes (day 0) and iMD-DCs (day 5) culture supernatants collected 

18 h post bLF treatment. As shown in Figure 16B and C, blocking CD36 significantly 

reduced the bLF-mediated CCL1 production in day 0 (n = 12; ** p = 0.01) but not in 

day 5 treated cells (n = 14; p = 0.537). However, significant inhibition of CCL1 release 

was neither observed at day 0 nor at day 5 bLF-treated cells when TLR4 or CD14 

triggering was inhibited (Figure 16B and C). Surprisingly, neutralization of TLR2 

significantly potentiated the bLF-induced CCL1 release in day 0 treated cells (n= 12; 

*** p = 0.001) (Figure 16B), whereas chemokine production was markedly inhibited in 

iMD-DCs (n = 12; *** p = 0.001) (Figure 16C). To understand the biological meaning 

of these results, the expression of CD36, CD14, TLR2 and TLR4 was analyzed in both 

freshly isolated monocytes and iMD-DCs. According to literature [136], freshly isolated 

monocytes expressed higher levels of all markers analyzed on their surface with respect 
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to iMD-DCs (Figure 16D). However, although the very low expression of TLR2 on 

iMD-DCs, our results on CCL1 production revealed that this receptor is strongly 

involved in the release of this chemokine (Figure 16C). These results strongly suggest 

that bLF could interact with different molecular/cellular determinants, likely activating 

specific pathways in dependence of the cell differentiation stage. 

 

Figure 16. Role of TLR2, TLR4, CD14 and CD36 in bLF-induced IL-6 and CCL1 production. (A) 

Freshly isolated monocytes were pre-treated for 30 minutes with neutralizing anti-CD14, anti-TLR2, anti-

TLR4 or isotype Abs prior to bLF addition and then cultured for 6 days. Culture supernatants were 

collected and then assessed for IL-6 content by ELISA. Figure shows the mean ± SE of 4 independent 

experiments. (B) Freshly isolated monocytes or (C) iMD-DCs were pre-treated for 30 minutes with 

neutralizing anti-CD14, anti-CD36, anti-TLR2, anti-TLR4 or isotype Abs prior to bLF addition and then 

cultured for 18 h. Culture supernatants were then collected and assessed for CCL1 content by ELISA. 

Figure shows the mean ± SE of (B) 12 and (C) 14 independent experiments. (A-C) p values were 

calculated comparing the results from anti-CD14, anti-TLR2, anti-TLR4 or anti-CD36 versus isotype 

control treatment in supernatans of bLF treated cells. (D) Expression of indicated surface markers in 

freshly isolated monocytes or iMD-DCs analyzed by FACS. Mean ± SD of 2 to 11 independent 

experiment is shown.  



59 

 

Role of IL-6 in bLF-induced inhibition of MD-DC activation  

Previous studies demonstrated that IL-6 plays a major role in maintaining DCs at an 

immature state both in vivo and in vitro [164]. Importantly, STAT3 activation by IL-6 is 

required for the IL-6 mediated suppression of DC maturation in vivo [165]. 

Furthermore, STAT3 activation has been linked to the induction of DCs with a 

tolerogenic phenotype [161-163]. To address the issue of whether IL-6/STAT3 

signalling could play a role in the inhibitory effect of bLF on DC activation, cell lysates 

prepared from control iMD-DCs and bLF-MD-DCs were analyzed for the presence of 

tyrosine phosphorylated STAT3. As shown in Figure 17A and already described above 

in Figure 12, while STAT3-pY705 was not detected in control iMD-DCs, bLF-MD-

DCs exhibited high levels of the phosphorylated form. STAT3 activation strongly 

depended on IL-6 since blocking the biological activity of this cytokine with specific 

neutralizing Abs markedly reduced the levels of STAT3-pY705. In contrast, STAT3 

activation levels did not change in bLF-MD-DC cultures treated with the isotype 

control Ab (Figure 17A). Despite the fact that STAT3 activation strongly relies on IL-

6, blocking the biological activity of this cytokine did not rescue the capacity of bLF-

MD-DCs to undergo maturation as assessed by CD83 expression, TNF and IL-12 

secretion (Figure 17B). However, replacement of culture medium 18 h after bLF 

addition, thus depleting bLF-induced soluble factors and residual bLF, partially restored 

the capacity of bLF-MD-DCs to respond to LPS as assessed by restoration of LPS-

induced CD83 up-modulation, and partial rescue of TNF, but not IL-12 production 

(Figure 17C). Conversely, bLF addition to day 5 iMD-DCs did not block LPS-induced 

CD83 up-modulation while completely abrogated IL-12 and TNF secretion when the 

culture medium was not replaced. As expected, replacement of culture medium 18 h 

after bLF addition did not interfere with MD-DC capacity to up-modulate CD83 and 
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secrete TNF in response to LPS. Conversely, IL-12 production was not rescued even 

after medium replacement. Thus, bLF interaction with monocytes may affect very early 

stages of their differentiation into DCs that, at least under certain circumstances, 

translate into permanent changes of activation related parameters. These changes, 

although not apparently involving IL-6, may at least in part rely on soluble factors 

released upon bLF addition. 

 

Figure 17. Role of IL-6 in bLF-induced inhibition of MD-DC activation. (A) Immunoblotting analysis 

for the indicated proteins in both control and bLF-exposed iMD-DCs. Monocytes were plated in 

complete medium containing GM-CSF and IL-4. Soon after seeding, cells were pre-treated for 30 

minutes with neutralizing anti-IL-6 or isotype Abs or left untreated, then exposed to bLF. Treatments 

were repeated at day 3 and 6 of culture, and proteins were extracted 6 h after the last treatment. Samples 

were resolved in 10 % SDS-PAGE gel. One representative experiment out of 6 is shown. (B) Monocytes 

were cultured as indicated in panel A. At day 6 cells were stimulated or not with LPS for 24 h, then 

stained with anti-CD83 or isotype Abs while culture supernatants were assessed for cytokines content. 
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One representative experiment out of 4 is shown for CD83 expression. IL-12 and TNF secretion is shown 

as mean ± SE of 3 independent experiments. (C and D) Soon after seeding or at day 5 of culture, cells 

were treated with bLF for 18 h, and then medium was or not replaced with fresh medium (replaced 

medium and original medium, respectively). At day 5 cells were stimulated with LPS for 24 h. The 

expression of CD83 and IL-12 and TNF production in MD-DCs, cultured without or in the continuous 

presence of bLF (original medium) or exposed to bLF for 18 h (replaced medium), was assessed by 

FACS analysis and ELISA, respectively. Open and dashed areas represent CD83 expression in cells 

exposed or not to bLF, respectively. One representative experiment out of 3 performed is shown.  

 

Role of CCL1 in bLF-induced inhibition of MD-DC activation  

To further characterize the factors involved in the bLF-induced inhibition of MD-DC 

activation, we addressed the role of CCL1 released by bLF-MD-DCs. As bLF treatment 

induces a long-lasting STAT3 phosphorylation in MD-DC cultures (Figure 12) and 

CCL1 expression has been reported to be indispensable for toxin-induced RhoA 

activation of STAT3 in Hek293 cell line [166], we hypothesized that this phenomenon 

could be linked, in addition to IL-6, in some way also to CCL1 expression. However, 

exogenous CCL1 did not induce STAT3 activation in iMD-DCs (Figure 18A). 

Accordingly, neutralization of CCL1 did not abolish the bLF-mediated STAT3 

phosphorylation in bLF-MD-DCs (Figure 18A), although endogenously produced 

CCL1 was almost completely neutralized (Figure 18B). The autocrine role of CCL1 on 

MD-DCs immunostimulatory activities was further investigated in MLR experiments 

performed with bLF-MD-DCs under conditions in which the biological activity of 

CCL1 was neutralized by specific Abs. At day 6 of culture, cells were stimulated with 

LPS for 24 h and then CD83 surface expression, IL-12 production and 

immunostimulatory capacity were assessed (Figure 18C-E). As expected, unlike fully 

mature LPS-stimulated MD-DCs, bLF-MD-DCs failed to either up-modulate CD83, 

produce IL-12 or activate T cell responses. However, neutralization of bLF-induced 

CCL1 did not rescue the immunostimulatory capacity to levels comparable to control 

LPS-stimulated MD-DCs since these cells retained the typical features of LPS-
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stimulated bLF-MD-DCs. Specifically, even upon blocking the biological activity of 

CCL1, bLF-MD-DCs failed to up-modulate CD83 expression and IL-12 production and 

to induce T cells proliferation (Figure 18C-E). 

 

Figure 18. Role of CCL1 in bLF-induced inhibition of MD-DC activation . (A-E) Monocytes were 

plated in complete medium containing GM-CSF and IL-4. Soon after seeding, cells were pre-treated for 

30 minutes with neutralizing anti-CCL1 or isotype Abs or left untreated, then exposed to bLF or not. (A 

and B) Six hours after the last treatment, cells and culture supernatants were collected. (A) Cells were 

lysated and proteins extracted. Immunoblotting analysis for the indicated proteins in control and bLF-

exposed iMD-DCs. Samples were resolved in 10 % SDS-PAGE gel. One representative experiment out 

of 2 is shown. (B) CCL1 content in culture supernatants analyzed by ELISA. One representative 

experiment out of 2 is shown. (C-E) At day 6, cells were stimulated with LPS for 24 h. Then cells and 

supernatants were collected (C) Cells were stained with anti-CD83 or isotype Abs. One representative 

experiment out of 6 is shown for CD83 expression. (D) IL-12 production is shown as mean ± SD of 2 

independent experiments. (E) Cells were co-cultured with allogenic PBL, previously stained with CFSE, 

at different DC/PBL ratio (1:100 is shown). At day 5 of co-culture, proliferating T lymphocytes were 

assessed by FACS analysis. One representative experiment out of 3 is shown. 
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CHAPTER 6: DISCUSSION 

In this study, we report that human monocytes differentiated into DCs in the continuous 

presence of bLF exhibit most of the features of iDCs but, upon TLRs stimulation, do 

not acquire the phenotypic and functional properties of mDCs as assessed by impaired 

up-modulation of activation related molecules and cytokines/chemokines, and retention 

of high endocytic activity. Accordingly, bLF-MD-DCs exhibit a reduced capacity to 

promote the expansion of IFN-γ producing Th1 cells. However, bLF neither favours the 

expression of IL-4 nor modulates IL-10 production, suggesting that this molecule might 

control the extent of Th1 polarization rather than per se promoting a shift towards Th2 

responses. Phenotypic and functional characterization of T lymphocytes, primed by 

TLR agonist activated bLF-MD-DCs, reveals a less activated phenotype, as assessed by 

a reduced expression of CD154, and a markedly diminished ability to produce IFN-γ 

and IL-2, suggesting a state of anergy [167]. In keeping with this assumption, functional 

unresponsiveness of T lymphocytes has been characterized as a profound inability of 

CD4
+
 T cells to produce IL-2 in vitro [168]. Moreover, DCs generated in tolerogenic 

environments are capable to induce anergy in memory T cells and to skew cytokine 

polarization toward low IFN-γ/high IL-10 profile of naïve T cells [169]. Interestingly, 

anergy induction in memory T cells does not rely on the expansion of CD25
high

 Treg 

cells, and is partially reversed by IL-2. Conversely, the addition of exogenous IL-12 

during DC/T cell priming prevents anergy induction in memory T cells and cytokine 

polarization in naïve T cells. Accordingly, we did not detect a preferential expansion of 

CD4
+
/CD25

high
 Treg cells in T cell cultures primed by bLF-MD-DCs. 

Previous studies reported that TLRs stimulation during the period of DC generation 

interferes with and deviates DC differentiation [170-173]. In this regard, it could be 

argued that minimal amounts of LPS bound to bLF might have a role in the generation 
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of tolerogenic-like DCs we described. However, experimental evidence argues against 

this conclusion. Specifically, we observed that blocking LPS activity by polymixin B 

does not completely abrogate bLF capacity to induce IL-6 (data not shown). In addition, 

we clearly demonstrated that the maturation arrest of bLF-MD-DCs does not merely 

depend on the capacity of this molecule to sequester LPS [32,174], as similar results 

have been achieved when poly(I-C) was used. Finally, bLF-MD-DCs do not show the 

differentiation block described for the MD-DCs generated in the presence of low 

amounts of LPS [170,172]. However, our results indicate that bLF has the capacity to 

modulate the CD1a
+
/CD1a

-
 ratio since a modest but significant reduction in the number 

of CD1a
+ 

DCs has been detected in the presence of bLF. Monocytes can give rise to two 

populations of myeloid DCs differing in CD1a expression [153,154]. Interestingly, 

activated CD1a
-
 MD-DCs produce low levels of IL-12 but up-modulate IL-10 secretion, 

exhibit a scarce capability to induce IFN-γ production and naïve CD4
+
 Th1 polarization 

[153,154], and can direct differentiation of Th0/Th2 cells [175]. Although a detailed 

characterization of the functional properties of bLF-induced CD1a
-
 cells has not been 

performed, the capacity of bLF to modulate the CD1a
+
/CD1a

-
 ratio suggests a role for 

this compound in the in vivo-relevant pathway of monocyte differentiation into DCs. 

DCs have a pivotal role in both priming of adaptive immune responses and induction of 

self-tolerance. This latter function is mediated by specialized subsets of DCs, named 

tolerogenic DCs, as well as by DC activated or differentiated in the presence of specific 

biological or chemical agents [151]. They all share the ability to negatively regulate T 

cell responses, yet their phenotypes, cytokine profiles and thus their mode of action are 

divergent [151]. In this regard, it has been reported that expression of PD-L1, mainly 

described as a negative regulatory molecule, is linked with the ability of DCs to induce 

tolerance [156,157]. Likewise, the inhibitory receptor ILT3 has been shown to 
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negatively regulate DCs activation [158]. Interestingly, both molecules are up-

modulated in bLF-MD-DCs suggesting that they may play a role in the negative 

regulation of T cell function. Accordingly, bLF-MD-DCs show an enhanced expression 

of phospho-tyr-STAT3, SOCS-3 and IDO, all molecules expressed in DCs endowed 

with tolerogenic features [149,159-163].  

Among the factors described to drive the generation of tolerogenic DCs is IL-6 [164]. 

This cytokine is now considered as an important mediator of the immune response 

especially by directly acting on CD4
+
 T cells and determining their effector functions 

[164,176]. Furthermore, IL-6 promotes monocyte differentiation into tolerogenic DCs 

unable to produce TNF and IP-10, to induce allogenic T cell proliferation, and to 

express CCR7 [177]. Likewise, circulating DCs isolated from multiple myeloma 

patients exhibit an impaired capacity for T cell stimulation that is partly caused by IL-6-

mediated inhibition of DC development [178]. However, it remains an open question 

how IL-6 orchestrates all these different functions. The contribution of other factors 

will probably represent a likely explanation. Studies performed in mouse models have 

enlighten a major role for IL-6/STAT3 signalling pathway in maintaining tolerance in 

vivo [165,179]. In our study, we show that bLF-exposed monocytes transiently produce 

high amounts of IL-6 soon after treatment, and this cytokine is responsible for the 

hyper-activation of STAT3 observed in these cells. However, blocking the biological 

activity of this cytokine neither rescues LPS-induced up-modulation of CD83, TNF and 

IL-12 nor inhibits, but rather up-modulates, the expression of tolerance related 

molecules, hyper-expressed in bLF-MD-DCs, such as SOCS-3 and IDO (data not 

shown). Our results that IL-6 neutralization is not sufficient to counteract the 

tolerogenic-like phenotype of bLF-MD-DCs argue against a role of this cytokine in the 

bLF-mediated effects. However, the observation that bLF induces IL-6 secretion and 
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downstream STAT3 activation in DC precursor cells, but not in iMD-DCs that 

conversely respond to bLF by up-modulating their immunostimulatory potential 

[89,95], suggests that other not yet identified aspects of DC functional activation could 

rely on IL-6. Hence, our results suggest that the bLF-mediated inhibition of DCs 

activation may at least in part rely on soluble factors released upon bLF treatment, other 

that IL-6. Moreover, we show that, in contrast to IL-6, both DC precursor cells and 

iMD-DCs produce CCL1 upon bLF treatment, even though with differences in the 

protein amount. Indeed, this production seems to be the result of permanent changes 

induced by bLF in DC precursor cells as they continue to release CCL1 in the medium 

even after its replacement 18 h post-treatment. Unlike the majority of chemokines, 

CCL1 has been shown to have only one high-affinity mammalian receptor, CCR8, 

which is preferentially expressed in polarized Th2 cells, Treg cells, monocytes and DCs 

[180]. Although CCL1 was the first among a long series of CC chemokine to be 

discovered [181,182], CCL1-CCR8 is one of the least understood chemokine axis. In 

vivo experimental evidence indicates a skin restricted CCL1 expression, whereas in 

vitro CCL1 may be released by a variety of cells, including activated monocytes, 

lymphocytes, endothelial cells and mast cells [180]. In particular, in human monocytes 

CCL1 production seems to be finely regulated since a double signal, involving FcR 

engagement and costimulation by signals (IL-1 and LPS), is required for its optimal 

production [183]. However, a recent study showed that single TLR stimulation induces 

CCL1 production in human monocytes [184]. Accordingly, we show that bLF can 

induce per se relevant levels of CCL1 in the absence of other stimulations. CCL1 plays 

a crucial role in the regulation of the immunosuppressive functions and trafficking of 

Tregs [185,186]. However, its role in the monocyte differentiation into DCs has not 

been investigated yet. Despite recent evidence on the role of CCL1 in the activation of 
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STAT3-dependend signaling pathways in Hek293 cell line [166], we show that this 

chemokine is not involved in the bLF-mediated STAT3 activation in bLF-MD-DCs. In 

addition, the bLF-mediated inhibition of MD-DCs activation is not reversed by 

blocking the biological activity of this chemokine since it does not rescue the LPS-

mediated up-modulation of CD83 and IL-12 production in bLF-MD-DCs as well as 

their ability to induce T cell proliferation.  

Evidence indicates that different immortalized cell lines, in particular Caco-2 human 

small intestinal cell line and macrophage-like THP-1 cells, can internalize LF which 

localizes in their cytoplasm and nucleus [87,187-190]. However, LF internalization by 

primary cells has not been investigated yet. Hence, in this study we report for the first 

time that bLF is rapidly internalized by freshly isolated monocytes, but not iMD-DCs, 

and reaches the nucleus. Interestingly, an intimate relationship between differentiation 

progression and capacity of bLF to reach the nucleus was also found. The nuclear 

localization of LF suggests that this molecule may be involved in the transcriptional 

regulation of genes ultimately controlling monocyte differentiation. In this regard, co-

transfection experiments in which a LF expression vector was used together with a 

vector carrying a reporter gene linked to the GM-CSF promoter revealed that LF 

reduces the activity of the GM-CSF promoter [191]. Consistent with these results, we 

found that bLF nuclear localization correlates with bLF capacity to stimulate IL-6 

expression. The different ability of monocytes to interact with bLF with respect to iMD-

DCs may provide, at least in part, an explanation for the opposite effects, anti-

inflammatory versus immunostimulatory [89,95], observed in these cell types. 

The mechanism of LF entry is still unknown, but is thought to occur via a LFRs. LF is a 

cationic protein capable to bind, with different grade of specificity, a variety of cellular 

determinants, including bacterial components, strongly anionic molecules, CD14, and 
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PPRs including CLRs and TLR4 [32,54]. Although the relevance of these receptors in 

triggering bLF effects in human primary monocytes and MD-DCs is unknown, it is of 

interest that major differences in the expression of at least some of these receptors (e.g. 

CD14 and DC-SIGN) have been reported in monocytes versus iMD-DCs. In particular, 

CD14 and CD36 take part in receptor complexes that play a crucial role in governing 

inflammation such as TLR4 [192,193] and TLR2 [194-196] pathways. In this regard, 

our study demonstrates that although not involved in bLF uptake by monocytes, TLR2 

and TLR4 and their co-receptors CD14 and CD36, play a role in bLF-induced 

signalling leading to both IL-6 and CCL1 production. Since their involvement occurs at 

different extent depending on the differentiation stage of cells, our results strongly 

suggest that bLF could interact with different molecular/cellular determinants, possibly 

activating specific pathways in differentiation dependent manner. 

Overall these results shed light on the mechanisms underlying bLF anti-inflammatory 

activity, highlighting the importance of monocytes as a preferential target for this 

molecule, and providing further evidence for its potential therapeutic application to 

inflammatory diseases.



69 

 

CHAPTER 7: REFERENCES 

1. Metz-Boutigue MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, et al. (1984) 

Human lactotransferrin: amino acid sequence and structural comparisons with 

other transferrins. Eur J Biochem 145: 659-676. 

2. Sorensen M, Sorensen SPL (1939) The proteins in whey. C R Trav Lab Carlsberg 

23:55-9. 

3. Groves M (1960) The isolation of a red protein from milk. J Am Chem Soc 823345-

3350. 

4. Johanson BG (1960) Isolation of an iron-containing red protein from human milk. 

Acta Chem Scand 14:510-512. 

5. Montreuil J, Tonnelat J, Mullet S (1960) [Preparation and properties of 

lactosiderophilin (lactotransferrin) of human milk]. Biochim Biophys Acta 45: 

413-421. 

6. Baker EN, Baker HM (2009) A structural framework for understanding the 

multifunctional character of lactoferrin. Biochimie 91: 3-10. 

7. Baker HM, Baker EN (2012) A structural perspective on lactoferrin function. 

Biochem Cell Biol 90: 320-328. 

8. Grossmann JG, Neu M, Pantos E, Schwab FJ, Evans RW, et al. (1992) X-ray solution 

scattering reveals conformational changes upon iron uptake in lactoferrin, serum 

and ovo-transferrins. J Mol Biol 225: 811-819. 

9. Mann DM, Romm E, Migliorini M (1994 ) Delineation of the glycosaminoglycan-

binding site in the human inflammatory response protein lactoferrin. J Biol 

Chem 269(38):23661-7. 

10. van Berkel PH, Geerts ME, van Veen HA, Mericskay M, de Boer HA, et al. (1997) 

N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential 

for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. 

Biochem J  328 ( Pt 1):145-51. 

11. Sabatucci A, Vachette P, Vasilyev VB, Beltramini M, Sokolov A, et al. (2007) 

Structural characterization of the ceruloplasmin: lactoferrin complex in solution. 

J Mol Biol 371: 1038-1046. 

12. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, et al. (1992) 

Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 

1121: 130-136. 

13. Zimecki M, Kocieba M, Kruzel M (2002) Immunoregulatory activities of lactoferrin 

in the delayed type hypersensitivity in mice are mediated by a receptor with 

affinity to mannose. Immunobiology 205: 120-131. 



70 

 

14. Groot F, Geijtenbeek TB, Sanders RW, Baldwin CE, Sanchez-Hernandez M, et al. 

(2005) Lactoferrin prevents dendritic cell-mediated human immunodeficiency 

virus type 1 transmission by blocking the DC-SIGN--gp120 interaction. J Virol 

79: 3009-3015. 

15. Park JH, Park GT, Cho IH, Sim SM, Yang JM, et al. (2011) An antimicrobial 

protein, lactoferrin exists in the sweat: proteomic analysis of sweat. Exp 

Dermatol 20: 369-371. 

16. Houghton MR, Gracey M, Burke V, Bottrell C, Spargo RM (1985) Breast milk 

lactoferrin levels in relation to maternal nutritional status. J Pediatr 

Gastroenterol Nutr 4: 230-233. 

17. Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q (2009) Lactoferrin: 

structure, function and applications. Int J Antimicrob Agents 33: 301 e301-308. 

18. Baggiolini M, De Duve C, Masson PL, Heremans JF (1970) Association of 

lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med 

131: 559-570. 

19. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80: 252-

267. 

20. Masson PL, Heremans JF, Schonne E (1969) Lactoferrin, an iron-binding protein in 

neutrophilic leukocytes. J Exp Med 130: 643-658. 

21. Paesano R, Pietropaoli M, Gessani S, Valenti P (2009) The influence of lactoferrin, 

orally administered, on systemic iron homeostasis in pregnant women suffering 

of iron deficiency and iron deficiency anaemia. Biochimie 91: 44-51. 

22. Tursi A, Elisei W, Brandimarte G, Giorgetti GM, Modeo ME, et al. (2007) Effect of 

lactoferrin supplementation on the effectiveness and tolerability of a 7-day 

quadruple therapy after failure of a first attempt to cure Helicobacter pylori 

infection. Med Sci Monit 13: CR187-190. 

23. Kaito M, Iwasa M, Fujita N, Kobayashi Y, Kojima Y, et al. (2007) Effect of 

lactoferrin in patients with chronic hepatitis C: combination therapy with 

interferon and ribavirin. J Gastroenterol Hepatol 22: 1894-1897. 

24. Viani RM, Gutteberg TJ, Lathey JL, Spector SA (1999) Lactoferrin inhibits HIV-1 

replication in vitro and exhibits synergy when combined with zidovudine. Aids 

13: 1273-1274. 

25. Tsuda H, Kozu T, Iinuma G, Ohashi Y, Saito Y, et al. (2010) Cancer prevention by 

bovine lactoferrin: from animal studies to human trial. Biometals 23: 399-409. 

26. Ishikado A, Uesaki S, Suido H, Nomura Y, Sumikawa K, et al. (2010) Human trial 

of liposomal lactoferrin supplementation for periodontal disease. Biol Pharm 

Bull 33: 1758-1762. 



71 

 

27. Paesano R, Pietropaoli M, Berlutti F, Valenti P (2012) Bovine lactoferrin in 

preventing preterm delivery associated with sterile inflammation. Biochem Cell 

Biol 90: 468-475. 

28. Manzoni P, Stolfi I, Messner H, Cattani S, Laforgia N, et al. (2012) Bovine 

lactoferrin prevents invasive fungal infections in very low birth weight infants: a 

randomized controlled trial. Pediatrics 129: 116-123. 

29. Parikh PM, Vaid A, Advani SH, Digumarti R, Madhavan J, et al. (2011) 

Randomized, double-blind, placebo-controlled phase II study of single-agent 

oral talactoferrin in patients with locally advanced or metastatic non-small-cell 

lung cancer that progressed after chemotherapy. J Clin Oncol 29: 4129-4136. 

30. Giunta G, Giuffrida L, Mangano K, Fagone P, Cianci A (2012) Influence of 

lactoferrin in preventing preterm delivery: a pilot study. Mol Med Report 5: 

162-166. 

31. Mueller EA, Trapp S, Frentzel A, Kirch W, Brantl V (2011) Efficacy and 

tolerability of oral lactoferrin supplementation in mild to moderate acne 

vulgaris: an exploratory study. Curr Med Res Opin 27: 793-797. 

32. Latorre D, Berlutti F, Valenti P, Gessani S, Puddu P (2012) LF immunomodulatory 

strategies: mastering bacterial endotoxin. Biochem Cell Biol 90: 269-278. 

33. Crichton RR (1990) Proteins of iron storage and transport. Adv Protein Chem 40: 

281-363. 

34. Mead PE, Tweedie JW (1990) cDNA and protein sequence of bovine lactoferrin. 

Nucleic Acids Res 18: 7167. 

35. Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, et al. (1991) Molecular 

cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196: 

177-184. 

36. Wang CS, Chan WY, Kloer HU (1984) Comparative studies on the chemical and 

immunochemical properties of human milk, human pancreatic juice and bovine 

milk lactoferrin. Comp Biochem Physiol B 78: 575-580. 

37. Sanchez L, Peiro JM, Oria R, Castillo H, Brock JH, et al. (1994) Kinetic parameters 

for the heat denaturation of bovine lactoferrin in milk, and its effect on 

interaction with monocytes. Adv Exp Med Biol 357: 253-257. 

38. Baker EN, Anderson BF, Baker HM, Day CL, Haridas M, et al. (1994) Three-

dimensional structure of lactoferrin in various functional states. Adv Exp Med 

Biol 357: 1-12. 

39. Brines RD, Brock JH (1983) The effect of trypsin and chymotrypsin on the in vitro 

antimicrobial and iron-binding properties of lactoferrin in human milk and 

bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic 

digestion. Biochim Biophys Acta 759: 229-235. 



72 

 

40. van Veen HA, Geerts ME, van Berkel PH, Nuijens JH (2004) The role of N-linked 

glycosylation in the protection of human and bovine lactoferrin against tryptic 

proteolysis. Eur J Biochem 271: 678-684. 

41. Haridas M, Anderson BF, Baker EN (1995) Structure of human diferric lactoferrin 

refined at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr 51: 629-646. 

42. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-

dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. J Mol 

Biol 274: 222-236. 

43. Spik G, Coddeville B, Montreuil J (1988) Comparative study of the primary 

structures of sero-, lacto- and ovotransferrin glycans from different species. 

Biochimie 70: 1459-1469. 

44. Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, et al. (2010) Human 

lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while 

it interferes with the lipopolysaccharide-stimulated TLR4 signaling. Febs J 277: 

2051-2066. 

45. Gunther PS, Mikeler E, Hamprecht K, Schneider-Schaulies J, Jahn G, et al. (2011) 

CD209/DC-SIGN mediates efficient infection of monocyte-derived dendritic 

cells by clinical adenovirus 2C isolates in the presence of bovine lactoferrin. J 

Gen Virol 92: 1754-1759. 

46. Elass-Rochard E, Roseanu A, Legrand D, Trif M, Salmon V, et al. (1995) 

Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop 

region of human lactoferrin in the high-affinity binding to Escherichia coli 

055B5 lipopolysaccharide. Biochem J 312: 839-845. 

47. Kishore AR, Erdei J, Naidu SS, Falsen E, Forsgren A, et al. (1991) Specific binding 

of lactoferrin to Aeromonas hydrophila. FEMS Microbiol Lett 67: 115-119. 

48. Legrand D, Mazurier J (2010) A critical review of the roles of host lactoferrin in 

immunity. Biometals 23: 365-376. 

49. Suzuki YA, Lopez V, Lönnerdal B (2005) Mammalian lactoferrin receptors: 

structure and function. Cell Mol Life Sci 62(22):2560-75. 

50. Brock JH (2012) Lactoferrin--50 years on. Biochem Cell Biol 90: 245-251. 

51. Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, et al. (2008) Lactoferrin 

structure and functions. Adv Exp Med Biol 606: 163-194. 

52. Van Snick JL, Masson PL (1976) The binding of human lactoferrin to mouse 

peritoneal cells. J Exp Med 144(6):1568-80. 

53. Birgens HS, Hansen NE, Karle H, Kristensen LO (1983) Receptor binding of 

lactoferrin by human monocytes. Br J Haematol 54(3):383-91. 



73 

 

54. Legrand D (2012) Lactoferrin, a key molecule in immune and inflammatory 

processes. Biochem Cell Biol 90: 252-268. 

55. Pluddemann A, Neyen C, Gordon S (2007) Macrophage scavenger receptors and 

host-derived ligands. Methods 43: 207-217. 

56. Hirano K, Miki Y, Hirai Y, Sato R, Itoh T, et al. (2005) A multifunctional shuttling 

protein nucleolin is a macrophage receptor for apoptotic cells. J Biol Chem 280: 

39284-39293. 

57. Legrand D, Vigié K, Said EA, Elass E, Masson M, et al. (2004 ) Surface nucleolin 

participates in both the binding and endocytosis of lactoferrin in target cells. Eur 

J Biochem 271(2):303-17. 

58. Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, et al. (1992) Soluble CD14 

participates in the response of cells to lipopolysaccharide. J Exp Med 

176(6):1665-71. 

59. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990 ) CD14, a 

receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. 

Science 249(4975):1431-3. 

60. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M (2012) The multifunctional 

glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a 

novel macrophage lactoferrin receptor. Biochem Cell Biol 90: 329-338. 

61. Conneely OM (2001) Antiinflammatory activities of lactoferrin. J Am Coll Nutr 20: 

389S-395S; discussion 396S-397S. 

62. Jenssen H, Hancock RE (2009) Antimicrobial properties of lactoferrin. Biochimie 

91: 19-29. 

63. Valenti P, Antonini G (2005) Lactoferrin: an important host defence against 

microbial and viral attack. Cell Mol Life Sci 62(22):2576-87. 

64. Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, et al. (2011) Antiviral 

properties of lactoferrin--a natural immunity molecule. Molecules 16: 6992-

7018. 

65. Gibbons JA, Kanwar RK, Kanwar JR (2011) Lactoferrin and cancer in different 

cancer models. Front Biosci (Schol Ed) 3: 1080-1088. 

66. Paesano R, Berlutti F, Pietropaoli M, Goolsbee W, Pacifici E, et al. (2010) 

Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant 

and non-pregnant women. Int J Immunopathol Pharmacol 23: 577-587. 

67. Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, et al. (2010) 

Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron 

deficiency anemia in pregnant women. Biometals 23: 411-417. 



74 

 

68. Amini AA, Nair LS (2011) Lactoferrin: a biologically active molecule for bone 

regeneration. Curr Med Chem 18(8):1220-9. 

69. Puddu P, Valenti P, Gessani S (2009) Immunomodulatory effects of lactoferrin on 

antigen presenting cells. Biochimie 91: 11-18. 

70. Latorre D, Puddu P, Valenti P, Gessani S (2010) Reciprocal Interactions between 

Lactoferrin and Bacterial Endotoxins and Their Role in the Regulation of the 

Immune Response. Toxins 2, 54-68. 

71. Bennett RM, Kokocinski T (1978) Lactoferrin content of peripheral blood cells. Br 

J Haematol 39: 509-521. 

72. Debanne MT, Regoeczi E, Sweeney GD, Krestynski F (1985) Interaction of human 

lactoferrin with the rat liver. Am J Physiol 248: G463-469. 

73. Graham SA, Antonopoulos A, Hitchen PG, Haslam SM, Dell A, et al. (2011) 

Identification of neutrophil granule glycoproteins as Lewis(x)-containing 

ligands cleared by the scavenger receptor C-type lectin. J Biol Chem 286: 

24336-24349. 

74. Lima MF, Kierszenbaum F (1985) Lactoferrin effects on phagocytic cell function. I. 

Increased uptake and killing of an intracellular parasite by murine macrophages 

and human monocytes. J Immunol 134: 4176-4183. 

75. Lima MF, Kierszenbaum F (1987) Lactoferrin effects of phagocytic cell function. 

II. The presence of iron is required for the lactoferrin molecule to stimulate 

intracellular killing by macrophages but not to enhance the uptake of particles 

and microorganisms. J Immunol 139: 1647-1651. 

76. Wakabayashi H, Takakura N, Teraguchi S, Tamura Y (2003) Lactoferrin feeding 

augments peritoneal macrophage activities in mice intraperitoneally injected 

with inactivated Candida albicans. Microbiol Immunol 47: 37-43. 

77. Gahr M, Speer CP, Damerau B, Sawatzki G (1991) Influence of lactoferrin on the 

function of human polymorphonuclear leukocytes and monocytes. J Leukoc 

Biol 49: 427-433. 

78. Tanida T, Rao F, Hamada T, Ueta E, Osaki T (2001) Lactoferrin peptide increases 

the survival of Candida albicans-inoculated mice by upregulating neutrophil and 

macrophage functions, especially in combination with amphotericin B and 

granulocyte-macrophage colony-stimulating factor. Infect Immun 69: 3883-

3890. 

79. Wilk KM, Hwang SA, Actor JK (2007) Lactoferrin modulation of antigen-

presenting-cell response to BCG infection. Postepy Hig Med Dosw (Online) 61: 

277-282. 

80. Shinoda I, Takase M, Fukuwatari Y, Shimamura S, Koller M, et al. (1996) Effects 

of lactoferrin and lactoferricin on the release of interleukin 8 from human 

polymorphonuclear leukocytes. Biosci Biotechnol Biochem 60: 521-523. 



75 

 

81. Sorimachi K, Akimoto K, Hattori Y, Ieiri T, Niwa A (1997) Activation of 

macrophages by lactoferrin: secretion of TNF-alpha, IL-8 and NO. Biochem 

Mol Biol Int 43: 79-87. 

82. Curran CS, Demick KP, Mansfield JM (2006) Lactoferrin activates macrophages 

via TLR4-dependent and -independent signaling pathways. Cell Immunol 242: 

23-30. 

83. Actor JK, Hwang SA, Olsen M, Zimecki M, Hunter RL, Jr., et al. (2002) 

Lactoferrin immunomodulation of DTH response in mice. Int 

Immunopharmacol 2: 475-486. 

84. Puddu P, Carollo MG, Belardelli F, Valenti P, Gessani S (2007) Role of 

endogenous interferon and LPS in the immunomodulatory effects of bovine 

lactoferrin in murine peritoneal macrophages. J Leukoc Biol 82: 347-353. 

85. Choe YH, Lee SW (1999) Effect of lactoferrin on the production of tumor necrosis 

factor-alpha and nitric oxide. J Cell Biochem 76(1):30-6. 

86. Mattsby-Baltzer I, Roseanu A, Motas C, Elverfors J, Engberg I, et al. (1996) 

Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 

response in human monocytic cells. Pediatr Res 40(2):257-62. 

87. Håversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I (2002) 

Lactoferrin down-regulates the LPS-induced cytokine production in monocytic 

cells via NF-kappa B. Cell Immunol 220(2):83-95. 

88. Hwang SA, Wilk KM, Bangale YA, Kruzel ML, Actor JK (2007) Lactoferrin 

modulation of IL-12 and IL-10 response from activated murine leukocytes. Med 

Microbiol Immunol 196(3):171-80. 

89. de la Rosa G, Yang D, Tewary P, Varadhachary A, Oppenheim JJ (2008) 

Lactoferrin acts as an alarmin to promote the recruitment and activation of 

APCs and antigen-specific immune responses. J Immunol 180: 6868-6876. 

90. Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, et al. (2009) 

Apoptotic human cells inhibit migration of granulocytes via release of 

lactoferrin. J Clin Invest 119: 20-32. 

91. Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, et al. (2007 ) Dendritic cell 

subsets in health and disease. Immunol Rev 219:118-42. 

92. Cumberbatch M, Dearman RJ, Uribe-Luna S, Headon DR, Ward PP, et al. (2000) 

Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 

100(1):21-8. 

93. Cumberbatch M, Bhushan M, Dearman RJ, Kimber I, Griffiths CE (2003) IL-1beta-

induced Langerhans' cell migration and TNF-alpha production in human skin: 

regulation by lactoferrin. Clin Exp Immunol 132(2):352-9. 



76 

 

94. Griffiths CE, Cumberbatch M, Tucker SC, Dearman RJ, Andrew S, et al. (2001) 

Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell 

migration and cutaneous inflammation in humans. Br J Dermatol 144: 715-725. 

95. Spadaro M, Caorsi C, Ceruti P, Varadhachary A, Forni G, et al. (2008) Lactoferrin, 

a major defense protein of innate immunity, is a novel maturation factor for 

human dendritic cells. FASEB J 22(8):2747-57. 

96. Toebak MJ, de Rooij J, Moed H, Stoof TJ, von Blomberg BM, et al. (2008) 

Differential suppression of dendritic cell cytokine production by anti-

inflammatory drugs. Br J Dermatol 158: 225-233. 

97. Saidi H, Eslahpazir J, Carbonneil C, Carthagena L, Requena M, et al. (2006) 

Differential modulation of human lactoferrin activity against both R5 and X4-

HIV-1 adsorption on epithelial cells and dendritic cells by natural antibodies. J 

Immunol 177: 5540-5549. 

98. Crouch SP, Slater KJ, Fletcher J (1992) Regulation of cytokine release from 

mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235-240. 

99. Zhang GH, Mann DM, Tsai CM (1999) Neutralization of endotoxin in vitro and in 

vivo by a human lactoferrin-derived peptide. Infect Immun 67: 1353-1358. 

100. Berlutti F, Schippa S, Morea C, Sarli S, Perfetto B, et al. (2006) Lactoferrin 

downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial 

cells infected with invasive or noninvasive Escherichia coli strains. Biochem 

Cell Biol 84: 351-357. 

101. Yeom M, Park J, Lee B, Choi SY, Kim KS, et al. (2011) Lactoferrin inhibits the 

inflammatory and angiogenic activation of bovine aortic endothelial cells. 

Inflamm Res 60: 475-482. 

102. Tian H, Maddox IS, Ferguson LR, Shu Q (2010) Evaluation of the cytoprotective 

effects of bovine lactoferrin against intestinal toxins using cellular model 

systems. Biometals 23: 589-592. 

103. Baveye S, Elass E, Fernig DG, Blanquart C, Mazurier J, et al. (2000) Human 

lactoferrin interacts with soluble CD14 and inhibits expression of endothelial 

adhesion molecules, E-selectin and ICAM-1, induced by the CD14-

lipopolysaccharide complex. Infect Immun 68: 6519-6525. 

104. Dawes ME, Tyler JW, Marsh AE, Larson RL, Steevens BJ, et al. (2008) In vitro 

effects of lactoferrin on lipopolysaccharide-induced proliferation, gene 

expression, and prostanoid production by bovine peripheral blood mononuclear 

cells. Am J Vet Res 69: 1164-1170. 

105. Zagulski T, Lipinski P, Zagulska A, Broniek S, Jarzabek Z (1989) Lactoferrin can 

protect mice against a lethal dose of Escherichia coli in experimental infection 

in vivo. Br J Exp Pathol 70: 697-704. 



77 

 

106. Kruzel ML, Harari Y, Chen CY, Castro GA (2000) Lactoferrin protects gut 

mucosal integrity during endotoxemia induced by lipopolysaccharide in mice. 

Inflammation 24: 33-44. 

107. Lee WJ, Farmer JL, Hilty M, Kim YB (1998) The protective effects of lactoferrin 

feeding against endotoxin lethal shock in germfree piglets. Infect Immun 66: 

1421-1426. 

108. Talukder MJ, Harada E (2007) Bovine lactoferrin protects lipopolysaccharide-

induced diarrhea modulating nitric oxide and prostaglandin E2 in mice. Can J 

Physiol Pharmacol 85: 200-208. 

109. Yajima M, Yajima T, Kuwata T (2005) Intraperitoneal injection of lactoferrin 

ameliorates severe albumin extravasation and neutrophilia in LPS-induced 

inflammation in neonatal rats. Biomed Res 26: 249-255. 

110. Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, et al. (2009) 

Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells 

and in animal endotoxemia model. Innate Immun 16: 67-79. 

111. Li XJ, Liu DP, Chen HL, Pan XH, Kong QY, et al. (2012) Lactoferrin protects 

against lipopolysaccharide-induced acute lung injury in mice. Int 

Immunopharmacol 12: 460-464. 

112. Artym J, Zimecki M, Kruzel ML (2004) Effects of lactoferrin on IL-6 production 

by peritoneal and alveolar cells in cyclophosphamide-treated mice. J Chemother 

16: 187-192. 

113. Machnicki M, Zimecki M, Zagulski T (1993) Lactoferrin regulates the release of 

tumour necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol 74: 433-

439. 

114. Kruzel ML, Harari Y, Mailman D, Actor JK, Zimecki M (2002) Differential 

effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-

induced inflammatory responses in mice. Clin Exp Immunol 130: 25-31. 

115. Hayashida K, Kaneko T, Takeuchi T, Shimizu H, Ando K, et al. (2004) Oral 

administration of lactoferrin inhibits inflammation and nociception in rat 

adjuvant-induced arthritis. J Vet Med Sci 66: 149-154. 

116. Yamaguchi M, Matsuura M, Kobayashi K, Sasaki H, Yajima T, et al. (2001) 

Lactoferrin protects against development of hepatitis caused by sensitization of 

Kupffer cells by lipopolysaccharide. Clin Diagn Lab Immunol 8: 1234-1239. 

117. Mitsuhashi Y, Otsuki K, Yoda A, Shimizu Y, Saito H, et al. (2000) Effect of 

lactoferrin on lipopolysaccharide (LPS) induced preterm delivery in mice. Acta 

Obstet Gynecol Scand 79: 355-358. 

118. Sasaki Y, Otsuki K, Hasegawa A, Sawada M, Chiba H, et al. (2004) Preventive 

effect of recombinant human lactoferrin on lipopolysaccharide-induced preterm 

delivery in mice. Acta Obstet Gynecol Scand 83: 1035-1038. 



78 

 

119. Wang D, Pabst KM, Aida Y, Pabst MJ (1995) Lipopolysaccharide-inactivating 

activity of neutrophils is due to lactoferrin. J Leukoc Biol 57: 865-874. 

120. Na YJ, Han SB, Kang JS, Yoon YD, Park SK, et al. (2004) Lactoferrin works as a 

new LPS-binding protein in inflammatory activation of macrophages. Int 

Immunopharmacol 4: 1187-1199. 

121. Chodaczek G, Zimecki M, Lukasiewicz J, Lugowski C (2006) A complex of 

lactoferrin with monophosphoryl lipid A is an efficient adjuvant of the humoral 

and cellular immune response in mice. Med Microbiol Immunol 195: 207-216. 

122. Brandenburg K, Jurgens G, Muller M, Fukuoka S, Koch MH (2001) Biophysical 

characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. 

Biol Chem 382: 1215-1225. 

123. Soumelis V, Liu Y, Gilliet M (2007) Dendritic Cell Biology: Subset Heterogeneity 

and Functional Plasticity. In: Gessani S, Belardelli F, editors. The Biology of 

Dendritic Cells and HIV Infection: Springer. pp. 3:43. 

124. Scheicher C, Mehlig M, Zecher R, Reske K (1992) Dendritic cells from mouse 

bone marrow: in vitro differentiation using low doses of recombinant 

granulocyte-macrophage colony-stimulating factor. J Immunol Methods 154: 

253-264. 

125. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992 ) GM-CSF and 

TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 

360(6401):258-61. 

126. Zou GM, Tam YK (2002 ) Cytokines in the generation and maturation of dendritic 

cells: recent advances. Eur Cytokine Netw 13(2):186-99. 

127. Conti L, Gessani S (2008) GM-CSF in the generation of dendritic cells from 

human blood monocyte precursors: recent advances. Immunobiology 213(9-

10):859-70. 

128. Sallusto F, Lanzavecchia A (1994 ) Efficient presentation of soluble antigen by 

cultured human dendritic cells is maintained by granulocyte/macrophage 

colony-stimulating factor plus interleukin 4 and downregulated by tumor 

necrosis factor alpha. J Exp Med 179(4):1109-18. 

129. Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, et al. (2003) Dendritic 

cells: controllers of the immune system and a new promise for immunotherapy. 

Ann N Y Acad Sci 987: 180-187. 

130. Steinman RM (2003) Some interfaces of dendritic cell biology. Apmis 111: 675-

697. 

131. Granucci F, Zanoni I, Ricciardi-Castagnoli P (2008) Central role of dendritic cells 

in the regulation and deregulation of immune responses. Cell Mol Life Sci 65: 

1683-1697. 



79 

 

132. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and 

cytokines in human inflammatory and autoimmune diseases. Cytokine Growth 

Factor Rev 19(1):41-52. 

133. Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D SG, Ceballos A, 

Giordano M, Vermeulen M, Geffner J. (2007 ) Interplay of pathogens, cytokines 

and other stress signals in the regulation of dendritic cell function. Cytokine 

Growth Factor Rev 18(1-2):5-17. 

134. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19: 24-32. 

135. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell 

surface Toll-like receptors. Semin Immunol 19: 3-10. 

136. Reis e Sousa C (2004) Toll-like receptors and dendritic cells: for whom the bug 

tolls. Semin Immunol 16(1):27-34. 

137. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, et al. (2000) 

Immunobiology of dendritic cells. Annu Rev Immunol 18:767-811. 

138. Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev 

Immunol 7(12):929-41. 

139. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. 

Nature 392: 245-252. 

140. Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell 

subsets and their precursors. Annu Rev Immunol 26: 293-316. 

141. Benencia F, Sprague L, McGinty J, Pate M, Muccioli M (2012) Dendritic cells the 

tumor microenvironment and the challenges for an effective antitumor 

vaccination. J Biomed Biotechnol 2012: 425476. 

142. Grakoui A BS, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. (1999 ) 

The immunological synapse: a molecular machine controlling T cell activation. 

Science. 

143. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell 

populations (*). Annu Rev Immunol 28: 445-489. 

144. Annunziato F, Romagnani S (2009) Heterogeneity of human effector CD4+ T 

cells. Arthritis Res Ther 11: 257. 

145. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ (2012) Functionally 

distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector 

Th cells. Blood 119: 4430-4440. 

146. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, et al. (2008) 

Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 

cells and promotes an interleukin 9-producing subset. Nat Immunol 9: 1341-

1346. 



80 

 

147. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, et al. (2007) Phenotypic 

and functional features of human Th17 cells. J Exp Med 204: 1849-1861. 

148. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, et al. (2009) Late 

developmental plasticity in the T helper 17 lineage. Immunity 30: 92-107. 

149. Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic 

responses. Immunol Rev 241: 206-227. 

150. Morel PA, Turner MS (2011) Dendritic cells and the maintenance of self-

tolerance. Immunol Res 50: 124-129. 

151. Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue 

Antigens 77: 89-99. 

152. Puddu P, Latorre D, Carollo MG, Catizone A, Ricci G, et al. (2011) Bovine 

lactoferrin counteracts Toll-like receptor mediated activation signals in antigen 

presenting cells Plos One in press. 

153. Gogolak P, Rethi B, Szatmari I, Lanyi A, Dezso B, et al. (2007) Differentiation of 

CD1a- and CD1a+ monocyte-derived dendritic cells is biased by lipid 

environment and PPARgamma. Blood 109: 643-652. 

154. Cernadas M, Lu J, Watts G, Brenner MB (2009) CD1a expression defines an 

interleukin-12 producing population of human dendritic cells. Clin Exp 

Immunol 155: 523-533. 

155. Moore KW, O'Garra A, de Waal Malefyt R, Vieira P, Mosmann TR (1993) 

Interleukin-10. Annu Rev Immunol 11: 165-190. 

156. Okazaki T, Honjo T (2006) The PD-1-PD-L pathway in immunological tolerance. 

Trends Immunol 27: 195-201. 

157. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, et al. (2003) Blockade 

of programmed death-1 ligands on dendritic cells enhances T cell activation and 

cytokine production. J Immunol 170: 1257-1266. 

158. Vlad G, Chang CC, Colovai AI, Berloco P, Cortesini R, et al. (2009) 

Immunoglobulin-like transcript 3: A crucial regulator of dendritic cell function. 

Hum Immunol 70(5):340-4. 

159. Li Y, Chu N, Rostami A, Zhang GX (2006) Dendritic cells transduced with SOCS-

3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation 

in vitro and in vivo. J Immunol 177: 1679-1688. 

160. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, et al. (1999) 

Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp 

Med 189: 1363-1372. 



81 

 

161. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, et al. (2004) 

Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic 

cells in cancer. J Immunol 172: 464-474. 

162. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, et al. (2005) Inhibiting 

Stat3 signaling in the hematopoietic system elicits multicomponent antitumor 

immunity. Nat Med 11: 1314-1321. 

163. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, et al. (2003) A critical role 

for Stat3 signaling in immune tolerance. Immunity 19: 425-436. 

164. Frick JS, Grunebach F, Autenrieth IB (2010) Immunomodulation by semi-mature 

dendritic cells: a novel role of Toll-like receptors and interleukin-6. Int J Med 

Microbiol 300: 19-24. 

165. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, et al. (2004) IL-6 

regulates in vivo dendritic cell differentiation through STAT3 activation. J 

Immunol 173: 3844-3854. 

166. Reipschläger S, Kubatzky K, Taromi S, Burger M, Orth J, et al. (2012) Toxin-

induced RhoA activity mediates CCL1-triggered signal transducers and 

activators of transcription protein signaling. J Biol Chem 287(14):11183-94. 

167. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy 

factors, avoidance sensors, and epigenetic imprinting. J Immunol 182: 7331-

7341. 

168. Beverly B, Kang SM, Lenardo MJ, Schwartz RH (1992) Reversal of in vitro T cell 

clonal anergy by IL-2 stimulation. Int Immunol 4: 661-671. 

169. Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, et al. (2008) 

Differential regulation of naive and memory CD4+ T cells by alternatively 

activated dendritic cells. J Leukoc Biol 84: 124-133. 

170. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC (1999) 

Lipopolysaccharide can block the potential of monocytes to differentiate into 

dendritic cells. J Leukoc Biol 65: 232-240. 

171. Rotta G, Edwards EW, Sangaletti S, Bennett C, Ronzoni S, et al. (2003) 

Lipopolysaccharide or whole bacteria block the conversion of inflammatory 

monocytes into dendritic cells in vivo. J Exp Med 198: 1253-1263. 

172. Bartz H, Avalos NM, Baetz A, Heeg K, Dalpke AH (2006) Involvement of 

suppressors of cytokine signaling in toll-like receptor-mediated block of 

dendritic cell differentiation. Blood 108: 4102-4108. 

173. Xie J, Qian J, Wang S, Freeman ME, 3rd, Epstein J, et al. (2003) Novel and 

detrimental effects of lipopolysaccharide on in vitro generation of immature 

dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 

171: 4792-4800. 



82 

 

174. Puddu P, Latorre D, Valenti P, Gessani S (2010) Immunoregulatory role of 

lactoferrin-lipopolysaccharide interactions. Biometals 23: 387-397. 

175. Chang CC, Wright A, Punnonen J (2000) Monocyte-derived CD1a+ and CD1a- 

dendritic cell subsets differ in their cytokine production profiles, susceptibilities 

to transfection, and capacities to direct Th cell differentiation. J Immunol 165: 

3584-3591. 

176. Dienz O, Rincon M (2009) The effects of IL-6 on CD4 T cell responses. Clin 

Immunol 130: 27-33. 

177. Hegde S, Pahne J, Smola-Hess S (2004) Novel immunosuppressive properties of 

interleukin-6 in dendritic cells: inhibition of NF-kappaB binding activity and 

CCR7 expression. Faseb J 18: 1439-1441. 

178. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, et al. (2002) Dendritic cells 

are functionally defective in multiple myeloma: the role of interleukin-6. Blood 

100: 230-237. 

179. Lunz JG, 3rd, Specht SM, Murase N, Isse K, Demetris AJ (2007) Gut-derived 

commensal bacterial products inhibit liver dendritic cell maturation by 

stimulating hepatic interleukin-6/signal transducer and activator of transcription 

3 activity. Hepatology 46: 1946-1959. 

180. McCully ML, Moser B (2011) The human cutaneous chemokine system. Front 

Immunol 2:33. 

181. Burd PR, Freeman GJ, Wilson SD, Berman M, DeKruyff R, et al. (1987) Cloning 

and characterization of a novel T cell activation gene. J Immunol 139(9):3126-

31. 

182. Miller MD, Hata S, De Waal Malefyt R, Krangel MS (1989) A novel polypeptide 

secreted by activated human T lymphocytes. J Immunol 143(9):2907-16. 

183. Sironi M, Martinez FO, D'Ambrosio D, Gattorno M, Polentarutti N, et al. (2006) 

Differential regulation of chemokine production by Fcgamma receptor 

engagement in human monocytes: association of CCL1 with a distinct form of 

M2 monocyte activation (M2b, Type 2). J Leukoc Biol 80(2):342-9. 

184. Sabbatucci M, Purificato C, Fantuzzi L, Gessani S (2011) Toll-like receptor cross-

talk in human monocytes regulates CC-chemokine production, antigen uptake 

and immune cell recruitment. Immunobiology 216(10):1135-42. 

185. Hoelzinger DB, Smith SE, Mirza N, Dominguez AL, Manrique SZ, et al. (2010) 

Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing 

tumor immunity without affecting T effector responses. J Immunol 

184(12):6833-42. 

186. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, et al. (2001) 

Unique chemotactic response profile and specific expression of chemokine 



83 

 

receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 

194(6):847-53. 

187. Ashida K, Sasaki H, Suzuki YA, Lönnerdal B (2004) Cellular internalization of 

lactoferrin in intestinal epithelial cells. Biometals 17(3):311-5. 

188. Suzuki YA, Wong H, Ashida KY, Schryvers AB, Lönnerdal B (2008) The N1 

domain of human lactoferrin is required for internalization by caco-2 cells and 

targeting to the nucleus. Biochemistry 47(41):10915-20. 

189. Jiang R, Lopez V, Kelleher SL, Lönnerdal B (2011) Apo- and holo-lactoferrin are 

both internalized by lactoferrin receptor via clathrin-mediated endocytosis but 

differentially affect ERK-signaling and cell proliferation in Caco-2 cells. J Cell 

Physiol 226(11):3022-31. 

190. Florian P, Macovei A, Sima L, Nichita N, Mattsby-Baltzer I, et al. (2012) 

Endocytosis and trafficking of human lactoferrin in macrophage-like human 

THP-1 cells (1). Biochem Cell Biol 90(3):449-55. 

191. Penco S, Pastorino S, Bianchi-Scarra G, Garre C (1995) Lactoferrin down-

modulates the activity of the granulocyte macrophage colony-stimulating factor 

promoter in interleukin-1 beta-stimulated cells. J Biol Chem 270: 12263-12268. 

192. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a 

receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. 

Science 249: 1431-1433. 

193. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, et al. (2010) CD36 

ligands promote sterile inflammation through assembly of a Toll-like receptor 4 

and 6 heterodimer. Nat Immunol 11(2):155-61. . 

194. Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, et al. (2006) CD14 directly 

binds to triacylated lipopeptides and facilitates recognition of the lipopeptides 

by the receptor complex of Toll-like receptors 2 and 1 without binding to the 

complex. Cell Microbiol 8: 1899-1909. 

195. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, et al. (2005) CD36 is a sensor 

of diacylglycerides. Nature 433(7025):523-7. 

196. Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, et al. (2005) Response to 

Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the 

COOH-terminal cytoplasmic domain. J Cell Biol 170(3):477-85. 

 

 


