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Abstract

Doctor of Philosophy

Network Communication Privacy:

Traffic Masking against Traffic Analysis

by Alfonso Iacovazzi

An increasing number of recent experimental works have been demonstrating

the supposedly secure channels in the Internet are prone to privacy breaking

under many respects, due to traffic features leaking information on the user

activity and traffic content. As a matter of example, traffic flow classifica-

tion at application level, web page identification, language/phrase detection

in VoIP communications have all been successfully demonstrated against en-

crypted channels. In this thesis I aim at understanding if and how complex it is

to obfuscate the information leaked by traffic features, namely packet lengths,

direction, times. I define a security model that points out what the ideal target

of masking is, and then define the optimized and practically implementable

masking algorithms, yielding a trade-off between privacy and overhead/com-

plexity of the masking algorithm. Numerical results are based on measured

Internet traffic traces. Major findings are that: i) optimized full masking

achieves similar overhead values with padding only and in case fragmentation

is allowed; ii) if practical realizability is accounted for, optimized statistical

masking algorithms attain only moderately better overhead than simple fixed

pattern masking algorithms, while still leaking correlation information that

can be exploited by the adversary.

http://www.uniroma1.it/
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Chapter 1

Introduction: From Traffic

Analysis to Traffic Masking

A number of works over the last few years have given extensive experimental

evidence that even within a secure channel, a packetized flow leaks information

to an adversary through observation of features of traffic flows, e.g., the ordered

sequence of packet lengths, packet inter-arrival times, packet directions. Based

on these information that is available to an adversary even when the flow is

carried within a secure channel (e.g. SSL/TLS or SSH connections), it has been

shown that a number of approaches yields feasible algorithms to identify the

type of service or application protocol run among a given set of alternatives

(traffic classification). More generally, traffic analysis can identify different

types of user activities within a secure channel, e.g. discriminate between web

navigation versus remote management or file transfer, or even the type of

search carried out by a user of Google within a “secure” web session. Other

privacy breaking attacks based on statistical analysis of packet flow features

have been demonstrated, e.g. to profile web access, to infer language of phone

calls.
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1. Introduction: From Traffic Analysis to Traffic Masking

This communication privacy break is a positive proof that ciphering does

not conceal all relevant information of a packetized, discontinuous application

flow; hence in this Thesis I aim at describing the investigation of privacy

protection against traffic analysis I have done during my PhD. Besides being

a privacy issue, traffic analysis tools can be useful to network administrators

and operators for enforcement of security policies and traffic filtering, or to

support quality of service mechanisms. A key point for the robustness of

those “legitimate” uses of traffic analysis tools is to check how much effort

is needed to fool them. Those reasons motivate us to investigate how traffic

feature leakage can be concealed to “adversaries” exploiting traffic analysis.

We term this traffic masking.

Packet length and direction masking can exploit two basic mechanisms:

padding and fragmenting. Padding amounts to the insertion of a number of

extra bit in the packet, that can be stripped off by the recipient so that in-

formation is not corrupted, but such that the adversary measures an altered

value of packet length of the ciphered packet. Padding can come in two forms:

adding bits to a packet provided by a host or creating a fake packet (dummy

packet, that will be discarded altogether at destination). Fragmenting is an-

other form of packet length modification: from a single original packet with

payload L, n packets spring out, with payload lengths Lj , j = 1, . . . , n, such

that L = L1 + · · ·+Ln. Overhead must be added to the newly generated pack-

ets to allow correct reassembly of the original packet at destination1. Masking

of packet inter-arrival times is essentially based on insertion of dummy packets

and delaying of packets. There is a price to be paid for masking via padding

(including dummy packets), fragmentation and delaying: bytes or even entire

1As a matter of example, fragmenting IP packets entails an extra header overhead of 20
bytes for each fragment, after the first one.

2



1.1. Traffic Analysis: State of the Art

new packets are added to the original traffic flow (byte overhead), and a delay

is imposed to the original packet flow (time overhead).

As for contributions of this Thesis, after analyzing the research field of the

statistical classification for Internet traffic, we formally define the problem of

privacy against traffic classification, thus finding what the ideal traffic masking

should do. Then, we define the achievable performance bounds for a mask-

ing algorithm, by defining an optimization problem to find an ideal masking

algorithm that minimizes overhead cost. The study for finding masking tech-

niques for perfect privacy was first applied only to the packet lengths in a flow

and later extended to all features of the traffic. Following, in order to further

reduce overhead introduced by the algorithms proposed, we have relaxed the

hypothesis of ideal masking to obtain partial masking allowing the control of

information leakage carried by statistical features of the traffic. At the end,

we tackle the problem of masking packet traffic flow carried in an encrypted

channel, irrespective of the application(s) it comes from. After the theoreti-

cal studies, we report in each Section the results obtained with the masking

algorithms developed.

In the rest of this Chapter, we describe what is the state of the art in

the field of traffic analysis, what are the reasons behind the development of

masking techniques, and then we move to describe the state of the art in

privacy preserving against traffic analysis.

1.1 Traffic Analysis: State of the Art

One of the biggest concern in the Internet world is to provide perfect security

to the users, with particular attention to user privacy. The typical answer to

these privacy concerns is to simply encrypt the data going through the network

3



1. Introduction: From Traffic Analysis to Traffic Masking

in order to conceal the information from a possible attacker intercepting traf-

fic. However, this alone is not enough since several features of the encrypted

network data, such as packet sizes, timing, direction of packets, the number

of objects downloaded from a web page, the number of components of these

objects, and the number of connections, can still leak information about the

traffic.

Such side-channel information leaks have been widely studied for a decade,

in the context of secure shell (SSH) [1], video-streaming [2], voice-over-IP

(VoIP) [3], web browsing and others. Particularly, a line of research conducted

by various research groups has studied anonymity issues in encrypted web

traffic. For example, it has been shown that since each web page has a distinct

size, and usually loads some resource objects (e.g., images) of different sizes,

the attacker can fingerprint the page so that even when a user visits it through

HTTPS, the page can be re-identified [4].

Classification is the problem of identifying to which of a set of categories

a new observation belongs, on the basis of a training set of data containing

observations (or instances) whose category membership is known. The indi-

vidual observations are analyzed into a set of quantifiable properties, known

as features.

Traffic analysis and classification have been widely studied and employed in

literature; in [5] we can find an exhaustive survey on the traffic analysis prob-

lem and on the most important protocols, attacks and design issues. Among all

the attacks presented, timing attacks, communication pattern attacks, packet

counting attacks, and intersection attacks are the most used traffic analysis

attacks.

4



1.1. Traffic Analysis: State of the Art

1.1.1 Application Protocol Identification

As broadband communications widen the range of popular applications, there

is an increasing demand of fast traffic classification means according to the

services that generate data flows [6]. The specific meaning of service depends

on the context and purpose of traffic classification. In case of traffic filtering

for security or policy enforcement purposes, service can be usually identified

with application layer protocol. Another example of usage of application traffic

classification is QoS related to differentiate traffic management according to

services carried by different traffic flows. A sufficiently robust classifier could

be a useful element in implementing differentiated QoS without deploying

complex traffic engineering schemes that require cooperation with end hosts.

Currently available techniques for traffic classification are: port based anal-

ysis, deep packet inspection and statistical based system. Port analysis consists

of examining the port number of TCP/UDP headers and mapping them to

application as defined by ICANN (formerly IANA). This method is becoming

ineffective because of applications running on non-standard ports (e.g. peer-

to-peer). For this matter, traffic classification at application level is based

on the analysis of the entire packet content, header plus payload, by look-

ing for specific application protocol signature. This is so called, deep packet

inspection (DPI). There are widely available tools for such a classification ap-

proach (e.g. L7filter, BRO, Snort [7]). They can be very accurate, but when

catching up with high speed links, i.e. for backbone use (Gbps links), they

result too expensive in terms of computational power and storage resource.

Moreover DPI fails in classifying application carried by encrypted flows (i.e.

Secure VPN). This point and the increasing fraction of traffic carried by ISPs

encrypted within VPN tunnels, makes actual classification system ineffective.

In this scenario statistical approach can be a direction for effective traffic clas-

sification (see [6]).

5



1. Introduction: From Traffic Analysis to Traffic Masking

Different approaches to traffic classification have been developed, using

information available at IP layer such as packet inter-arrival times, packet

sizes, and overall amount of bytes transferred. Callado et al.[6], present a good

tutorial to approach the problem of traffic classification and point out open

research issues, as well as a comparison in terms of accuracy and completeness

of two identification methods. As for specific traffic classification approaches,

some proposals [8, 9] need complete TCP flows as input (off-line classification).

In [10] Karagiannis et al. developed a heuristic that uses social, functional

and application level behaviors of a host to identify all traffic flows originating

from it. This approach, although really innovative, is tailored onto a specific

source host.

Crotti et al. [11] use only size and inter-arrival time of first m packets to

create a statistical descriptor (a fingerprint) of an application layer protocol.

This fingerprint is then used to measure the similarity of a given flow to the

corresponding protocol.

Moore et al. [9] use a supervised machine learning algorithm, the well

known Näıve Bayes (and its generalization, Kernel Estimation) on a wide set

of characteristics (tens or hundreds), as flow duration, packets inter-arrival

time and payload size and their statistics (mean, variance...). Moreover, they

use a filtering technique to identify the best characteristics to be used with

the mentioned methods.

A number of works [8, 12, 13] rely on unsupervised machine learning tech-

niques as K-means is. McGregor et al. [8] explore the possibility to use cluster

analysis to group flows using transport layer attributes, but they do not eval-

uate the accuracy of the classification. Zander et al. [12] extend this work by

using another Expectation Maximization (EM) algorithm named Autoclass.

They also analyze the best set of attributes to use. Both these works only

test Bayesian clustering technique trained by an EM algorithm, which has a

6



1.1. Traffic Analysis: State of the Art

slow learning time. Bernaille et al. [13] use faster clustering algorithms rep-

resenting data in different spaces: K-means and Gaussian Mixture Models

(GMM) for Euclidean space and Spectral clustering in Hidden Markov Model

(HMM) based space. The only features they use are packet size and packet

direction: they demonstrate the effectiveness of these algorithms even using a

small number of packets (e.g. the first four of a TCP connection).

Hidden Markov Model theory is also used in [14]. Packets size and inter-

arrival time are used to build a model describing a given protocol. Even though

this approach can classify encrypted applications, its performance with SSH

flows is 76% detection rate and 8% false negative, which is not as good as with

other common application flows such as WWW and instant messaging.

Alshammari et al [15] attempt to classify/identify applications services

running on SSH by exploiting two supervised learning algorithms such as Ad-

aBoost and RIPPER by relying on IP packet lengths, duration of the flows

and arrival times. Results indicate detection rate up to 99% and 0.7% of false

positive by exploiting RIPPER classifier, but the classifiers work only off-line,

i.e. the entire flow must be available.

Concerning SSH encrypted applications, Dusi et al. [16] approached classi-

fication by exploiting GMM and SVM (Support Vector Machine) based tech-

niques. They achieved accuracy up to 99.2% by analyzing four encrypted

packets after SSH handshake. They collected artificial traffic traces by devel-

oping a tool based on SSH, which forwards four applications (HTTP, POP3,

POP3S and Emule), however the testbed is quite artificial and far from the

actual use of the protocol in real networks.

The flow-based classification mechanisms proposed so far cannot deal with

network-layer tunneling techniques, such as the ones provided by IPsec. The

flows are multiplexed into the same encrypted connection and there is not

a reliable way to reassembly the flows routed through the IPSec channel by

7



1. Introduction: From Traffic Analysis to Traffic Masking

observing only the encrypted traffic.

1.1.2 Webpage Fingerprinting

Beyond the classification of application classes there are other privacy leaking

that have been studied in the literature. For example there are a lot of work

showing how recognize webpages downloaded by a user. In this context an

attacker can fingerprint web pages by their side-channel characteristics, then

eavesdrop on the victim user’s encrypted traffic to identify which web pages

the user visits.

An attack demo was described in a course project report in 1998 by Cheng

et al [17]. Sun et al [4] and Danezis [18] both indicated that this type of

side-channel attack defeats the goal of anonymity channels, such as Tor, Mix-

Master and WebMixes. Sun et al’s experiment showed that 100, 000 web pages

from a wide range of different sites could be effectively fingerprinted. Besides

SSL/TLS, Bissias et al conducted a similar experiment on WPA and IPSec

[19].

Even Hintz in [20] analysed the concept of website fingerprint. When a user

visit a typical webpage, he downloads several files: the HTML file, the images

included in the page, and referenced stylesheets. For example if a user visited

CNN’s webpage at www.cnn.com, he would download 40 separate objects each

with a certain size. The set of transfer sizes for a given webpage comprises that

page’s fingerprint. Webpages with a large number of objects have fingerprints

composed of many different sizes. The more files in a fingerprint, the larger

the chance that the fingerprint will be unique. The Author also states that an

eavesdropper observing the traffic can infer the webpages visited by the client

by observing those fingerprints threatening so users’ privacy.

Liberatore et al. in [21] evaluate traffic analysis techniques that infer

the source of a webpage retrieved under the cover of an encrypted tunnel by

8
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1.1. Traffic Analysis: State of the Art

comparing observed traffic to profiles (fingerprints) of known sites created from

packet lengths, and are referred to as profiling attacks (fingerprinting attacks).

1.1.3 Information Leaks in VoIP Traffic

It is widely accepted that, due to the sensibility of private conversations, VoIP

traffic should be encrypted before transmission over the Internet. The current

focus on VoIP security has centered around efficient techniques for ensuring

confidentiality of VoIP conversations, but no efforts have been done to evaluate

how traffic analysis could threat the privacy of a conversation.

In their article, Wright et al. [22] exploit the fact that using bandwidth-

saving techniques, such as variable bit rate (VBR) coding, implies that the

size of a VoIP packet is directly determined by the type of sound its payload

encodes. In VBR mode, the encoder takes advantage of the fact that some

sounds are easier to represent than others. For example, with Speex, the coder

Authors decided to use, vowels and high-energy transients require higher bit

rates than fricative sounds like “s” or “f”. To achieve improved sound quality

and a low (average) bit rate, the encoder uses fewer bits to encode frames

which contain “easy” sounds and more bits for frames with sounds that are

harder to encode. Because the VBR encoder selects the best bit rate for each

frame, the size of a packet can be used as a predictor of the bit rate used to

encode the corresponding frame. Therefore, given only packet lengths, it is

possible to extract information about the underlying speech.

Again Wright in [3] show that an eavesdropper who has access to neither

recordings of the speaker’s voice nor even a single utterance of the target

phrase, can identify instances of the phrase with average accuracy of 50%.

In [23], White et al. showed how it is possible to derive approximate tran-

scripts of encrypted VoIP conversations by segmenting an observed packet

9
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stream into distinct subsequences representing individual phonemes and clas-

sifying those subsequences by the phonemes they encode.

The approach they pursued leverages the correlation between voiced sounds

and the size of encrypted packets. Specifically, they showed how it is possi-

ble to segment a sequence of packet sizes into subsequences corresponding

to individual phonemes and then classify these subsequences by the specific

phonemes they represent. Then authors proved the possibility of segment-

ing such a phonetic transcript on word boundaries to recover subsequences of

phonemes corresponding to individual words and map those subsequences to

words, thereby providing a hypothesized transcript of the conversation.

In their approach, first a maximum entropy model is used to segment

the sequence of packet sizes into subsequences corresponding to individual

phonemes. Then a combination of profile hidden Markov models and maxi-

mum entropy is applied to classify each subsequence of packet sizes according

to the phoneme the subsequence represents, resulting in an approximate pho-

netic transcript of the spoken audio. The hypothesized transcript is improved

by applying a trigram language model over phonemes (and phoneme types)

which captures contextual information, such as likely phoneme subsequences,

and corrects the transcript to represent the most likely sequence of phonemes

given both the classification results and the language model. Next, the re-

sulting transcript is segmented into subsequences of phonemes corresponding

to individual words using a phonetic constraint model. Finally, each sub-

sequence is matched to the appropriate English word using a phonetic edit

distance metric.
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1.2 Traffic Masking: State of The Art

As outlined in the previous Paragraph, a number of works over the last years

have given extensive experimental evidence that an encrypted packetized flow

leaks information about the user activity to an observer through the ordered

sequence of packet lengths, packet inter-arrival times, packet directions and

other detectable features. Due to the features analyzed, this communication

privacy break is a positive proof that ciphering does not conceal all relevant

information of a packetized traffic flow.

By quantizing these features (e.g., padding packets to fixed sizes), the

amount of information that is leaked can be minimized, but at the cost of

degrading the efficiency and performance of the underlying network protocols.

Certainly, one can pad all encrypted packets such that their sizes are always

equal to that of the maximum transmission unit (MTU), but for many network

protocols doing so would more than double the amount of data sent. For these

protocols, such excessive padding is simply not a satisfactory solution to the

problem.

Moreover, the performance of encrypted network protocols often takes

precedence over privacy concerns in practical applications. While it may be

possible to allow users to tune the tradeoff between efficiency and privacy to

their liking, there is often no clear meaning in terms of the levels of privacy

and performance associated with such actions. As a consequence of this bias

towards efficiency, several security-oriented network protocols have been found

to leak more information about the underlying data than originally thought.

1.2.1 Existing Masking Architectures

Some countermeasures against traffic analysis are already supported by the

main architecture of communications encryption, such as SSH, TLS and IPSec.

11
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The countermeasures used have the main purpose of concealing the loss of

information determined by the lengths of the packets exchanged.

SSH: RFC 4253 [24] specifies that padding can be of arbitrary length,

such that the total length of packet is a multiple of the cipher block size or

8, whichever is larger. There MUST be at least four bytes of padding. The

padding SHOULD consist of random bytes. The maximum amount of padding

is 255 bytes. In the basic OpenSSH implementation, the padding length will

depend on the payload and the cipher block size. So although the padding

itself is random, the final packet size will be just a step function of the payload

size.

SSL: Also the specifications of TLS protocol (versions 1.1 and 1.2) de-

scribed in RFCs 4346 and 5246, offer the possibility to add some padding in

order to alterate the packet lengths. Even here, padding that is added to force

the length of the plaintext must be an integral multiple of the block cipher’s

block length. The padding may be any length up to 255 bytes. The choice of

possible techniques for adding padding is left to the discretion of the individual

implementations. GnuTLS is one of the most famous secure communications

library implementing the SSL, TLS protocols. If properly enabled, it allows

to add a random padding with uniform distribution.

IPSec: IPSec is a standards of network level that provides various cryp-

tographic algorithms in order to provide security services. Even IPSec allows

to add a random padding with uniform distribution.

In 2007, Kiraly et al. [25, 26] have proposed a new framework based on

IPSec, which allows to integrate techniques of Traffic Flow Confidentiality

(TFC). The authors have designed a new architecture that can be considered

as a specific substrate maintaining backward compatibility with traditional

IPsec implementations. The developed architecture is structured into two main

modules: one deals with the logical control of TFC procedures and algorithms,
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while the other one performs all the functionalities for alterating the features

of the input packets. This latter module is, in turn, divided into several

components, each of which allows to:

1. queue packets before sending,

2. extract the packets from the queue according to a timing procedure,

3. manage packet lenghts with the possibility of introducing padding,

4. generate dummy packets.

The framework has been developed into the Linux kernel, fully integrated with

IPSec in order to take advantage of all features offered by it.

An interesting architecture to support communications like VoIP and In-

stant Messaging such that it can be robust against traffic analysis, was con-

ducted by Danezis et al. and is described in detail in [27]. The basic idea of

this framework is to create a social network consisting of a number of nodes,

each of them is in contact with a set of friends through a connection consid-

ered unobservable by an adversary, whilst all other connections, called bridges,

are observable. This structural hypothesis of the network can offer unobserv-

ability, i.e. an opponent will not be able to understand who is talking to

whom.

In order to fully ensure unobservability, the framework provides the op-

portunity to integrate padding and dummying techniques such as full padidng

or those described in [28]. No delaying support is provided to prevent timing

attacks.

Other works have been developed in recent years [29], to ensure unob-

servable communications by an unauthorized third party and under certain

13
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assumptions. The architectures proposed aim mainly at not allowing identi-

fication of the source and/or receiver nodes for a given flow. For this reason

problems relating to traffic analysis are often not thorough.

1.2.2 Trivial Algorithms

There are some easy countermeasure with padding mechanisms that are not

easily supported in existing encrypted network protocol standards due to the

amount of padding added [30]. In this scenario, we assume the countermeasure

will be capable of managing fragmentation and padding of the data before

calling the encryption scheme.

• Linear padding: All packet lengths are increased to the nearest multiple

of 128, or the MTU, whichever is smaller.

• Exponential padding: All packet lengths are increased to the nearest

power of two, or the MTU, whichever is smaller.

• Mice-Elephants padding: If the packet length is T ≤ 128, then the packet

is increased to 128 bytes; otherwise it is padded to the MTU.

• Pad to MTU: All packet lengths are increased to the MTU.

• Packet Random MTU padding: Let M be the MTU and ` be the input

packet length. For each packet, a value r ∈ {0, 8, 16, . . . ,M − `} is

sampled uniformly at random andthe packet length is increased by r.

1.2.3 Recent Algorithms Proposed

During the years various countermeasures have been developed. Some of them

are feature distribution-based as the work of Wright et al. [28]. They presented

two novel suggestions as improvements upon traditional per-packet padding

14



1.2. Traffic Masking: State of The Art

countermeasures: direct target sampling (DTS) and traffic morphing (TM).

On the surface, both techniques have the same objective. That is, they aug-

ment a protocol’s packets by chopping and padding such that the augmented

packets appear to come from a pre-defined target distribution (i.e., a differ-

ent web page). Ideally, DTS and TM have security benefits over traditional

per-packet padding strategies because they do not preserve the underlying

protocol’s number of packets transmitted nor packet lengths.

Direct target sampling: Given a pair of web pages A and B, where A is

the source and B is the target, we can derive a probability distribution over

their respective packet lengths, DA and DB. When a packet of length Li is

produced for web page A, we sample from the packet length distribution DB

to get a new length L′i. If L′i > Li, we pad the packet from A to length Li and

send the padded packet. Otherwise, we send L′i bytes of the original packet

and continue sampling from DB until all bytes of the original packet have been

sent. Wright et al. left unspecified morphing with respect to packet timings.

Traffic morphing: Traffic morphing operates similarly to direct target sam-

pling except that instead of sampling from the target distribution directly, we

use convex optimization methods to produce a morphing matrix that ensures

we make the source distribution look like the target while simultaneously min-

imizing overhead. Each column in the matrix is associated with one of the

packet lengths in the source distribution, and that column defines the target

distribution to sample from when that source packet length is encountered. As

an example, if we receive a source packet of length Li, we find the associated

column in the matrix and sample from its distribution to find an output length

L′i. One matrix is made for all ordered pairs of source and target web pages

(A,B). The process of padding and splitting packets occurs exactly as in the

direct target sampling case. Like the direct target sampling method, once the

source web page stops sending packets, dummy packets are sampled directly
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from DB until the L1 distance between the distribution of sent packet lengths

and DB is less than 0.3.

Again with the idea to camouflage the web page visited by a user, Luo et

al. [31] propose a new strategy to obfuscates the encrypted traffic by exploiting

the protocol features in TCP and HTTP. They developed a new framework

able to modify statistical features of an original flow by using a set of traf-

fic transformations both at the application and at the transportation layer.

For a given flow, it can be applied a transformation as combination of these

techniques: packet padding and/or fragmentation, HTTP Range, MSS negoti-

ation, advertising window, message retransmissions, HTTP pipelining, packet

delay.

Shui Yu et al.[32–34] implemented a new strategy of packet padding aiming

at offering perfect anonymity on web browsing. Their proposal comes from the

fact that users generally access a number of web pages at one web site according

to their own habits or interests. This has been confirmed by applications of

web caching and web page prefetching technologies. The proposed solution

allows to disguise the fingerprints of web sites at the server side by injecting

predicted web pages that users are going to download as cover traffic, rather

than using dummy packets as cover traffic. So Authors conclude that from a

long term viewpoint, this novel strategy wastes limited bandwidth and causes

limited delay.

Instead, Zhang at al. [35] contrast traffic analysis by means of traffic

reshaping technique. By exploiting multiple virtual MAC interfaces, an appli-

cation flow is dynamically subdivided in a set of new flows and then dispatched

among these interfaces, and different traffic features are reshaped on each vir-

tual interface to hide those of the original traffic.
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1.2.4 Open Problems

Although a significant amount of previous work has investigated the topic

of Traffic Analysis countermeasures, and specifically the case of preventing

website identification attacks, the results were largely incomparable due to

differing experimental methodology and datasets.

Furthermore, in [30] Dyer et al. show that it is still possible to classify

traffic flows after masking. They consider nine masking countermeasures ap-

plied to web pages, and adopt some machine learning algorithms (Näıve bayes,

multinomial Näıve bayes and support vector machine) to identify which of two

web pages was downloaded. Accuracy of 98% is obtained, and they conclude

that more investigation is necessary to effectively conceal the whole informa-

tion leakage.
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Chapter 2

Classification Problem

A sequence of works detail a variety of Traffic Analysis attacks, in the form

of classifiers that attempt to identify the application generate a flow over an

encrypted channel (see Chapter 1). These classifiers use supervised machine

learning algorithms, meaning they are able to train on traces that are labeled

with the destination website. Each algorithm has a training and a testing

phase. During training, the algorithm is given a set {(X1, w1), (X2, w2), . . . ,

(Xn, wn)}, where each Xi is an vector of features and wi is a label. During

testing the classification algorithm is given a vector Y and must return a label.

In our case, a vector Xi contains information about the lengths, timings, and

direction of packets in the encrypted connection containing an application

flow, and the format of a vector Xi is dependent upon the classifier. In the

remainder of this Chapter, we describe the model of the traffic flow classifier,

define which are the features usable for classification and give the maximum

success probability of the ideal flow classifier. At the end we briefly present

the machine learning used for the performance evaluation in this Thesis and

describe the dataset creation process.
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2.1 Model of a Traffic Flow Classifier

We consider a packet network where we identify two end points (hosts) running

a given application. The information flow between the two hosts is ciphered

and authenticated (message authentication). In spite of using a secure channel

for communication, still there is information leaking to an adversary observing

the information flow between the two hosts.

Any application traffic flow between an initiator entity A and the responder

entity B (e.g., client and server for the given flow, respectively) can be cast

into a sequence of N ≥ 1 message bursts1. Each burst consists of one or more

messages in the A→ B direction or in the opposite direction B → A. Bursts

in the two opposite directions alternate, starting from the initial burst sent

by the initiator A to the responder B. Figure 2.1 depicts an example of two

flows, where A and B sides are represented by vertical lines and time increases

downward.

A full description of the flow is obtained with:

• the vector K = [K1, . . . ,KN ] of the number of messages in each burst;

• message lengths in each burst, denoted as Li = [Li(1), . . . , Li(Ki)], for

i = 1, . . . , N ;

• message epochs2, denoted as Ti = [Ti(1), . . . , Ti(Ki)], for i = 1, . . . , N ;

the time origin is set as the time epoch associated to the first packet

of the entire flow, i.e., T1(1) = 0; therefore, Ti(r) represent the time

elapsed since the beginning of the flow up to the r-th message of the i-th

burst (relative timing). We will use also message gap times, defined as

∆ti(r) = Ti(r + 1)− Ti(r), for r = 1, . . . ,Ki, with Ti(Ki + 1) ≡ Ti+1(1).

1We use the generic term “message”, since the model is applicable to general traffic flows,
from web pages to IP layer flows.

2In practice, time epochs refers to time-stamps associated to packets collected by the
adversary at the traffic flow capture point within the network.

20



2.2. A General Model of an Application Flow
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Figure 2.1: Examples of message exchanges of two application flows: (a)
one way data transfer, like http; (b) alternate message sending, like most

signaling and control protocols.

In the example flows shown in Figure 2.1 the flow labeled (a) has N = 4,

with K = [1, 3, 1, 1]. For flow (b) it is N = 6 and K = [1, 1, 1, 1, 1, 1].

A more compact description is obtained by considering only burst sizes

Bi =
∑Ki

r=1 Li(r) and burst epochs Θi = Ti(1), for i = 1, . . . , N ; hence a

feature vector X = [B,Θ].

2.2 A General Model of an Application Flow

Let the feature vector associated to a flow be X. According to our definition,

a full description of the flow entails X = [K,L,T]. In general, the feature

vector can be a subset of the full description, according to adversary aims and

resources, e.g., for real time classification only the first m messages of a flow

could be considered, with m typically ranging from one up to several units.
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In case of web pages classification, more aggregate features could possibly be

used by the adversary, e.g., the amount of bytes sent per burst or even the

overall amount of bytes sent with the flow in either direction.

Each entry of X is modeled as a positive, discrete random variable3 with

a finite support [1, . . . , `] for some suitable constant `. Let Ω denote the state

space of X.

We define a privacy model, where each flow can belong to one of M classes.

An adversary can observe flow features by means of network traffic analysis

and aims at identifying the class each flow belongs to. The example we focus

on is flow classification, where the classes are applications, but results of this

Section hold in general for classification problems.

Let us consider M applications, denoted by a label A ∈ {A1, . . . ,AM}.
We let pj(x) = P(X = x|A = Aj), x ∈ Ω, j = 1, . . . ,M , be the probability

distribution function (pdf) of the feature vector, conditional on the flow be-

longing to the j-th application; we further denote with Pj = P(A = Aj) the a

priori probability that a flow belongs to application Aj .
In general, the traffic masking operation includes introducing dummy flows,

to modify the a priori probabilities Pj into new values Qj , and transforming

each flow sent through the network so that the output flow features are given

by Y = φ(X;A), thus altering the original feature pdf. The flow transfor-

mation implies message padding, fragmenting, insertion of dummy messages,

message delaying. This transformation and the relevant modification of fea-

ture values can depend in general on the application the input flow belongs

to, which must be known at the masking device. This is made explicit by

highlighting the parameter A in the mapping φ(·;A). This mapping induces a

3While K and L are natively discrete, the time values T can be made discrete by specifying
a time quantum, e.g., the time measurement resolution or a small multiple thereof.
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probability measure on Y, denoted by qj(y) = P(Y = y|A = Aj). We assume

that the state space of Y is the same as that of X, namely Ω.

As matter of example, if X reduces only to message lengths, a possible

transformation is padding, i.e., Y = X + U, U being a non negative vector,

whose characteristics depend on the application X belongs to.

We assume an eavesdropping adversary, aiming at flow classification. The

adversary can observe ciphered and masked flows (including dummy flows)

and can detect the feature vector y for each observed flow. In other words,

the adversary can collect samples y of the random variables Y. Moreover,

the adversary knows ciphering and masking algorithms used in the secure

channel, and is given knowledge of the conditional pdfs of the masked flow

features qj(·)4. The aim of the adversary is to guess the application the original

flow belongs to. This is summarized by an algorithm named TA(Y) : Ω →
{1, . . . ,M} yielding the application label for the observed masked flow feature

vector.

An overall scheme of the masking plus enciphering at sending side is shown

in Figure 2.2. The reverse operations (deciphering and de-masking) take place

at receiver side, the latter by using overhead information, e.g., to identify

dummy messages and padding. Dummy flows are added to modify the a pri-

ori pdf Pj into Qj , for j = 1, . . . ,M . Ideally, the Qj ’s should be uniform

(Qj = 1/M). Coupled with perfect masking this brings the adversary success

probability of correctly classifying observed flows to its theoretical minimum

1/M . If dummy flows are suppressed to save overhead, the a priori application

pdf can be exploited by the adversary, if known. Clearly, if one class is over-

whelmingly more probable the the others, simple guessing gives the adversary

4As a matter of example, the adversary has a database containing a set of masked flows for
each application, with metadata assessing the application that originated those flows; such
a database can be used to train a classification algorithm; this is similar to a known/chosen
plaintext eavesdropper model, depending on the way the database is constructed.
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Figure 2.2: Traffic flow masking block scheme at sending side: dummy
flows are added to modify the a priori pdf of generating applications.

a high success probability, i.e., the endpoint traffic is highly predictable.

Given the adversary model above, by full masking we mean removing any

information leakage that could be exploited by the adversary to classify ob-

served flows. With full masking, the success probability of the adversary is

minimized to 1/M . Conversely, partial masking lets some information leak by

establishing a trade-off between privacy and feasibility/complexity/overhead-

/delay of masking. We also define ideal masking an algorithm that makes use

of the knowledge of the whole feature vector of a flow to mask every message

of it, whereas practical masking refers to the subset of algorithms that can

run in real time, by processing messages of the masked flow as they arrive,

independently at the two endpoints. A practical masking algorithm can use

features of the first k messages to decide on masking of the (k + 1)-th one.

In the next Section we define the adversary classifier function TA(·) with

maximum probability of success and derive conditions on the masking trans-

formation φ(·;A) for full masking.
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2.3 Success Probability of the Ideal Flow Classifier

Application traffic flow classification can be cast into a hypothesis test prob-

lem, with simple hypotheses A = Aj . This is the classical Nyman-Pearson

test, that is known to be the optimum (Uniformly Most Powerful) test for this

kind of problem [36]. The state space Ω is partitioned into M decision regions

Di, such that the adversary sets TA(y) = i iff y ∈ Di, i = 1, . . . ,M . Then,

the probability of success of the statistical test is

Psucc =
M∑
i=1

Qi
∑
y∈Ω

P(TA(y) = i|A = Ai) =
M∑
i=1

Qi
∑
y∈Di

qi(y) (2.1)

Let us assume that there exists ȳ ∈ Di such that Qiqi(ȳ) < Qjqj(ȳ) for

some j 6= i. Then, we can replace the decision regions Di with D′i = Di \ {ȳ},
D′j = Dj

⋃
{ȳ} and D′k = Dk, k 6= i, j. The value of Psucc with these new

decision regions is

P ′succ =
M∑
i=1

Qi
∑
y∈D′i

qi(y) ≥ Psucc (2.2)

This shows that the decision algorithm TA that maximizes Psucc must

define decision regions according to Di ≡ {y : Qiqi(y) ≥ Qjqj(y) ∀j 6= i}.
With these regions, we have

Psucc =
∑
y∈Ω

max{Q1q1(y), . . . , QMqM (y)} (2.3)

The success probability can be minimized by making the decision variable

Y = φ(X,A) such that q1(y) = · · · = qM (y). With this choice the success

probability reduces to max{Q1, . . . , QM}, that is the value obtained by simple

biased guessing. If further dummy flows are added so as to obtain Qi =

1/M , then Psucc = 1/M . This value is achievable with a trivial classification
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algorithm that guesses A at random. The equalization of the probabilities Qi

can be obtained by adding dummy flows as follows. With no loss of generality,

assume P1 ≥ P2 ≥ · · · ≥ PM and5 P1 > 1/M . For each flow sent out a dummy

flow is produced with probability 1 − 1/(MP1); the dummy flow is of class i

(i.e., it has the same statistical properties of flows generated by application i)

with probability (P1 − Pi)/(MP1 − 1) for i = 2, . . . ,M .

Summing up, perfect privacy or full masking, as we name it here means

that any leakage about application is removed off the masked flow features

and entails finding a transformation of the original flow so that the output

features have a same pdf irrespective of the input application, i.e., Qi = 1/M

and q1(y) = · · · = qM (y), i = 1, . . . ,M .

2.4 Machine Learning based Classifiers

In this Section the classification techniques that have been used in this work

to evaluate information leakage before and after masking will be presented.

2.4.1 Näıve Bayes Classifier

A Näıve Bayes classifier is a simple probabilistic classifier based on applying

Bayes’ theorem with strong (Näıve) independence assumptions. A more de-

scriptive term for the underlying probability model would be “independent

feature model”. In simple terms, a Näıve Bayes classifier assumes that the

presence (or absence) of a particular feature of a class is unrelated to the

presence (or absence) of any other feature, given the class variable.

Given a training set x = (x1, . . . , xn) such that each instance xi is described

by M features {f i1, f i2, . . . , f iM} that can take numeric or discrete values.

5If P1 = 1/M , then all Pi would be equal to 1/M and there would be no need of dummy
flows.
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Assume now that there are K known classes of interest. Let C = {c1, . . . ,

cK} represent the set of all known classes. For each observed instance xi there

a known mapping C : RM → C representing the membership of instance xi

to a particular class of interest.

Bayesian statistical conclusions about the class ck of an unobserved flow

y = {f1, f2, . . . , fM} are based on probability conditional on observing the flow

y [9]. This is called the posterior probability and is denoted by p(ck|y). The

celebrated Bayes rules gives a way of calculating this value:

p(ck|y) =
p(ck)f(y|ck)∑
ck

p(ck)f(y|ck)
(2.4)

where p(ck) denotes the probability of obtaining class ck independently of the

observed data (prior distribution), f(y|ck) is the distribution function (or the

probability of y given ck ) and the denominator acts as a normalizing constant.

The goal of the supervised Bayes classification problem is to estimate

f(y|ck), k = 1, . . . ,K given some training set x. To do that, Näıve Bayes

makes certain assumptions on f(·|ck) such as independence of fm’s, leading to

f(y|ck) =
∏M
m=1 f(fm|ck), and the standard Gaussian behavior of them. The

problem is then reduced to simply estimating the parameters of the Gaussian

distribution and the prior probabilities of ck’s. All model parameters (i.e., class

priors and feature probability distributions) can be approximated with relative

frequencies from the training set. These are maximum likelihood estimates of

the probabilities.

The discussion so far has derived the independent feature model, that is,

the Näıve Bayes probability model. The Näıve Bayes classifier combines this

model with a decision rule. One common rule is to pick the hypothesis that is

most probable; this is known as the maximum a posteriori or MAP decision
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rule. The corresponding classifier is the function classify defined as follows:

classify(y) = argmax
ck

p(ck|y) = argmax
ck

p(ck)
M∏
m=1

f(fm|ck) (2.5)

2.4.2 K-Means Classifier

In the following, we describe a classification system trained by an unsupervised

(clustering) procedure. This approach has been adopted by a number of other

works (see Chapter 1) and it’s a useful benchmark and performance comparison

tool. When dealing with patterns belonging to Rn we can adopt a distance

measure, such as the Euclidean distance. Moreover, in this case we can define

the prototype of a cluster as the centroid (the mean vector) of all the patterns

in the cluster, thanks to the algebraic structure defined in Rn. Consequently,

the distance between a given pattern xi and a cluster Ck can be defined as

the Euclidean distance d(xi;µk) where µk is the centroid of the mk patterns

belonging to Ck:

µk =
1

mk

∑
xi∈Ck

xi (2.6)

One of the simplest, yet powerful, algorithms for K-clustering is the K-means.

This algorithm performs the following steps, given a set A of patterns:

1. Initialization. It consists in initializing K centroids, by randomly select-

ing K different patterns in the data set A. At this stage each cluster is

empty.

2. Main loop. For each pattern xi in A:

Compute the closest centroid:

h∗ = arg max{d(xi, µh)} (2.7)
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Assign the pattern xi to the cluster Ch∗ represented by the centroid µh∗ .

3. Centroids’ update. For each cluster, compute µk by eq. 2.6.

4. Verify stop condition. If a predefined stop condition is true then stop;

otherwise go to step 2.

Usually the stop criterion is defined as the logical OR of the two following

conditions:

• A predefined maximum number of loops (epochs) have been performed.

• The average displacements of the centroids between two successive iter-

ations does not exceed a predefined threshold:

K∑
j=1

∣∣∣∣∣∣µnewj − µoldj
∣∣∣∣∣∣ ≤ δ (2.8)

A direct way to synthesize a classification model on the basis of a training

set Str consists in partitioning the patterns in the input space (discarding

the class label information) by a clustering algorithm (in our case, by the K-

means). Successively, each cluster is labeled by the most frequent class among

its patterns. Thus, a classification model is a set of labeled clusters (centroids).

More than one cluster can be associated with the same label, i.e. a class can

be represented by more than one cluster.

Since in the K-means algorithm the number K of clusters in the final

partition must be fixed in advance before running the training procedure, K is

a critical parameter and it directly represents the structural complexity of the

classification model, i.e Σ{K}. Assuming to represent a floating point number

with four bytes, the amount of memory needed to store a classification model is

K×4×(n+1) bytes, where n is the input space dimension and assuming to code
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class labels with one byte. An unlabeled pattern x is classified by determining

the closest centroid µi (and thus the closest cluster Ci) and by labeling x with

the same class label associated with Ci. It is important to underline that,

since the initialization step of the K-means is not deterministic, in order to

compute a precise estimation of the performance of the classification model

on the test set Sts, for a given value of K the whole algorithm must be run

several times, averaging the classification errors on Sts yielded by the different

classification models obtained in each run.

Considering this classification system as the core, it is possible to derive a

version able to automatically choose the optimal structural complexity, i.e. the

number of clusters to be used in the K-means clustering procedure by adopting

the s-fold cross-validation. To this aim we can compute the previously defined

performance measures pi,j for each value of K belonging to a considered range

of reasonable values [Kmin,Kmax]; these measures can be arranged into a

matrix Π of size (Kmax −Kmin + 1)× s:

Π =


pKmin,1 pKmin,2 . . . pKmin,s

pKmin+1,1 . . . . . . . . .
...

...
. . .

...

pKmax,1 pKmax,2 . . . pKmax,s

 (2.9)

Performance of the classification model with structural complexity equal

to k is computed as the row average of Π:

π(k) =
1

s

s∑
j=1

pi,j (2.10)
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The optimal number of clusters to be used in the classification model is

determined as follows:

k∗ = arg max
Kmin≤k≤Kmax

π(k) (2.11)

We define the pi,j ’s as accuracy measures, i.e. we let

pi,j =
# of correctly classified patterns in Sts

cardinality of Sts
(2.12)

In case of i clusters and of the j-th validation experiment of the s-fold

cross-validation. Then, the model having the best generalization capability is

the one corresponding to the maximum value in the π(k) sequence.

2.4.3 Multinomial Logistic Regression

In statistics, a multinomial logit (MNL) model, also known as multinomial

logistic regression, is a regression model which generalizes logistic regression

by allowing more than two discrete outcomes. That is, it is a model that is used

to predict the probabilities of the different possible outcomes of a categorically

distributed dependent variable, given a set of independent variables.

In machine learning, when a classifier is implemented using a multinomial

logit model, it is commonly known as a maximum entropy classifier. Maximum

entropy classifiers are commonly used as alternatives to Näıve Bayes classi-

fiers because they do not assume statistical independence of the independent

variables (commonly known as features) that serve as predictors. However,

learning in such a model is slower than for a Näıve Bayes classifier, and thus

may not be appropriate given a very large number of classes to learn. But

in our case this classifier suites perfectly. In particular, learning in a Näıve

Bayes classifier is a simple matter of counting up the number of occurrences of

features and classes, while in a maximum entropy classifier the weights, which
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are typically maximized using maximum a posteriori (MAP) estimation, must

be learned using an iterative procedure.

If the multinomial logit is used to model choices, it relies on the assumption

of independence of irrelevant alternatives (IIA), which is not always desirable.

This assumption states that the odds of preferring one class over another do

not depend on the presence or absence of other “irrelevant” alternatives. For

example, the relative probabilities of taking a car or bus to work do not change

if a bicycle is added as an additional possibility. This allows the choice of K

alternatives to be modeled as a set of K-1 independent binary choices, in which

one alternative is chosen as a “pivot” and the other K-1 compared against it,

one at a time.

The idea behind the multinomial linear regression, as in many other statis-

tical classification techniques, is to construct a linear predictor function that

constructs a score from a set of weights that are linearly combined with the

explanatory variables (features) of a given observation using a dot product:

score(xi, ck) = βk · xi = β0,k + β1,kx1,i + β2,kx2,i + · · ·+ βM,kxM,i (2.13)

where xi is the vector of features to be labeled, βk is a vector of weights

(or regression coefficients) corresponding to outcome ck, and score(xi, ck) is

the score associated with assigning observation i to class ck. The predicted

outcome is the one with the highest score.

Specifically, it is assumed that we have a series of N observed data points

(x1, . . . , xN ). Each data point i consists of a set of M explanatory variables,

or features, xi = (x1,i, . . . , xM,i), and an associated categorical outcome ck,

which can take on one of K possible values, that is, there K classes.
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To arrive at the multinomial logit model, imagine, for K possible out-

comes, running K−1 independent binary logistic regression models6, in which

one outcome is chosen as a “pivot” and then the other K − 1 outcomes are

separately regressed against the pivot outcome. If we choose the outcome cK

as the pivot we have that 1− p(ck|xi) = p(cK |xi) and we can write:

ln

(
p(c1|xi)
p(cK |xi)

)
= β1 · xi

ln

(
p(c2|xi)
p(cK |xi)

)
= β2 · xi

. . .

ln

(
p(cK−1|xi)
p(cK |xi)

)
= βK−1 · xi

(2.16)

If we exponentiate both sides, and solve for the probabilities, we get:
p(c1|xi) = p(cK |xi)eβ1·xi

p(c2|xi) = p(cK |xi)eβ2·xi

. . .

p(cK−1|xi) = p(cK |xi)eβK−1·xi

(2.17)

6Binary logistic regression is a type of regression analysis used for predicting the outcome
of a binary categorical criterion variable based on one or more predictor variables. The
probabilities describing the possible outcome of a single trial are modeled, as a function of
explanatory variables, using a logistic function. Since we are in a binary environment we
have only two classes c1 with probability p(c1) and c0 with probability p(c0) = 1−p(c1). Let
p(c1|xi) be the probability of xi belonging to c1, then the model can be written as:

ln

(
p(c1|xi)

1− p(c1|xi)

)
= logit(Pi) = β1 · xi (2.14)

we can then rewrite the model in terms of in terms of the probability of the outcome occurring
as:

p(c1|xi) =
eβ1·xi

1 + eβ1·xi
(2.15)
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Using the fact that the K probabilities must sum to one, we find:

p(cK |xi) =
1

1 +
∑K−1

k=1 eβk·xi
(2.18)

We can use this to find the other probabilities:

p(c1|xi) = eβ1·xi

1+
∑K−1
k=1 eβk·xi

p(c2|xi) = eβ2·xi

1+
∑K−1
k=1 eβk·xi

. . .

p(cK−1|xi) = eβK−1·xi

1+
∑K−1
k=1 eβk·xi

(2.19)

The unknown parameters in each vector βk are typically jointly estimated

by maximum a posteriori (MAP) estimation, which is an extension of maxi-

mum likelihood using regularization of the weights to prevent pathological so-

lutions (usually a squared regularizing function, which is equivalent to placing

a zero-mean Gaussian prior distribution on the weights, but other distributions

are also possible). The solution is typically found using an iterative procedure

such as iteratively reweighted least squares (IRLS) or, more commonly these

days, a quasi-Newton method such as the L-BFGS method.

2.4.4 Random Forest

The random forest machine learner developed by Leo Breiman and Adele Cut-

ler, is a meta-learner; meaning consisting of many individual learners (trees).

The random forest uses multiple random trees classifications to votes on an

overall classification for the given set of inputs. In general in each individual

machine learner vote is given equal weight. The forest chooses the individ-

ual classification that contains the most votes. Figure 2.4 below is a visual

representation of the un-weighted random forest algorithm.
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Figure 2.3: Meta Learner

Given a dataset of samples (or instances) each consisting of a label and M

features, individual random tree machine learners are grown in the following

manner:

1. A data set called inBag is formed by sampling with replacement members

from the training set; this technique is often referred to as “bootstrap-

ping”. The number of examples in the inBag data set is equal to that of

the training data set. This new data set may contain duplicate examples

from the training set. Using the bootstrapping technique, usually one

third of the training set data is not present in the inBag. This left over

data is known as the out-of-bag data oob.

2. If there are M input variables, a number m� M is specified such that

at each node, m features are selected at random out of the M and the

best split (e.g., the attribute maximizing the Information Gain) on these

m is used to split the node. The value of m is held constant during the

forest growing.

3. Each tree is grown to the largest extent possible. There is no pruning.
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Figure 2.4: Sample with replacement

This process is repeated to develop multiple individual random tree learn-

ers. After the development of the tree, the oob examples are used to test the

individual’s trees as well as the entire forest. The average misclassification

over all trees is known as the oob error estimate. This error estimate is useful

for predicting the performance of the machine learner without involving the

test set. This information could be found useful in determining the weights of

the individual trees classification in the weighted random forest learner.

Breiman also proved that the forest error rate depends on two things:

• The correlation between any two trees in the forest. Increasing the

correlation increases the forest error rate.

• The strength of each individual tree in the forest. A tree with a low error

rate is a strong classifier. Increasing the strength of the individual trees

decreases the forest error rate.

Reducing m reduces both the correlation and the strength. Increasing it

increases both. Somewhere in between is an “optimal” range of m, which

usually is quite wide. Using the oob error rate a value of “m” in the range

can quickly be found. This is the only adjustable parameter to which random

forests is somewhat sensitive.
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2.5 Dataset Creation

To define a reliable application data set, we have used real traffic traces col-

lected at different locations, including:

• NetLab laboratory premises in the campus of “Sapienza”, University of

Rome;

• Information Engineering department at “Sapienza” University of Rome7;

• Elsag Datamat main site in Rome8;

• private homes.

This way we encompass several major kinds of Internet access points: in-

stitutional, business and domestic. All of these collected traces consist of real

traffic, generated by means of some tools in controlled conditions, so that it

is possible to build up data sets with guaranteed label metadata of collected

flows (ground truth). A reliable ground truth data set is needed to train

supervised machine learning algorithms as the ones used on this work. The

controlled traffic generation is a must specifically for collecting traces of appli-

cation flows carried within encrypted tunnels, i.e. to label each SSH flow with

a metadata specifying the service it is carrying among SCP, SFTP and HTTP.

A data set for our purposes is composed by a collection of flows, along with

metadata per flow, reporting the application layer protocol the flow belongs

to, the timestamp of its first packet (T0), the capture date and location.

7Information Engineering Department and NetLab are located in different places within
Rome and trace route tests prove that several routers are crossed between the two places

8Elsag Datamat is a company of the Finmeccanica group, www.elsagdatamat.com
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2.5.1 Application Traffic Collection

TCP applications data set is composed by HTTP, FTP-Control Session, POP3

and SSH flows. As for HTTP and FTP-Control Session (FTP-C in the fol-

lowing), we have collected traffic flows originating from clients in the NetLab

at DIET Department in the campus of University of Rome Sapienza. The

internal network is made up of a switched Ethernet with about thirty stations

configured as clients and servers. The internal network is connected to the

campus network by means of a 10 Mbps link and from there to the public In-

ternet via University backbone. Tens of users are active daily in the NetLab.

Traffic traces have been collected on the link between NetLab edge router and

the University backbone access router.

By means of automated tools mounted on machines within NetLab, thou-

sands of web pages have been downloaded in a random order, over thousands

of web sites distributed in various geographical areas (Italy, Europe, North

America, Asia). FTP sites have been addressed as well and control FTP ses-

sion established with thousands remote servers, again distributed in a wide

area. In addition two thousands POP3 flows were collected by capturing traf-

fic generated by different users of NetLab network who handled e-mails during

several work days. The artificial traffic (HTTP and FTP-C) as well as POP3

traces have been sniffed from our LAN switch by configuring a mirroring port.

We have verified that the TCP connections bottleneck was never the link con-

necting our LAN to the outside network (access link).

2.5.1.1 SSH Traces

We address different network scenarios using multiple client-server couples to

capture SSH traffic. In order to have realistic traces and technology indepen-

dent implementations of SSH (version 2) protocol, we have used computers
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Figure 2.5: Platform used to generate SSH traffic: SSH server is inside the
University campus network; clients are at University, Elsag Datamat and a

private home premise, respectively.

with heterogeneous operative systems, namely Linux and Windows. We sim-

ulate SSH connections by connecting three client computers deployed in three

different LANs to one server located in a fourth different LAN. As shown in

Figure 2.5, client LANs and SSH server have been connected to the Internet

by using different geographic links.

We have run the following SSH services: SCP, SFTP and HTTP over

SSH. SCP and SFTP are transfer file services natively available on OpenSSH

[37]. In particular we downloaded/uploaded files from clients to server using

both SCP and SFTP protocols collecting eight thousands flows. HTTP over

SSH traces have been collected downloading web pages through SSH tunnels

(one SSH tunnel for each HTTP session). This way we have collected four

thousands SSH flows carrying HTTP traffic. Throughout these experiments

we have considered flows without SSH compression feature. Besides these SSH

flows, a tool to automatically generated remote management traffic has been

developed. It aim at providing parallel connections to different SSH servers

making us able to manage several SSH sessions at the same time. This brought
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us to choice Java technology for the development of the system. SSH based

management is supported by all operative systems (such as LINUX kernel

2.6, Windows 2003/2008), but it is often used for remotely configure routers

and network devices, for example IOS CISCO can be handled by SSH remote

connection.

Each operative system is characterized by its configuration commands,

therefore an automatic procedure to remotely manage device’s console must

provide different lists od commands according to the technologies deployed

in the network. For this reason the tool provides multi-dictionary mapped

on a dedicated database. It stores all information about accounts for logging

to devices as well as appropriate commands for the different configurations.

To each command is associated a weight pointing out the relevance of the

commands itself out of the rest of the complete dictionary. The tool has been

set up with constant weight for each command. This means that tools types

every commands with the same probability.

Regarding time settings, it is possible to set what we defined as thinking

times, enabling tool to send characters every Th1 seconds and commands every

Th2 seconds. Th1 and Th2 have been set up as equally distributed variables

between 0 and 1 s and 0 and 10 s respectively. Setting times this way, put the

classification system working in the worst case, in fact it cannot take advantage

of the recognition about statistical behavior of the human behavior in thinking

and typing commands.

For traffic generation and collection of traces, the tool has run on the

platform depicted in Figure 2.6 in which several technology of Servers and

Routers have been deployed. The network is managed by several ISP domains

and devices are those commonly used in the real networks. The collection of

traces, as in the other cases has, been made though a mirroring port of the

edge switches.

40



2.5. Dataset Creation

Figure 2.6: Platform used to generate SSH remote management traffic.

2.5.1.2 Real Time Application IP Flows: VoIP

The ground truth of the real time applications has been built of artificial VoIP

traffic traces. During this phase, we realized three different platforms to get

the RTP flows9:

• clear mode VoIP;

• the Secure VoIP.

Clear mode VoIP traffic traces have been collected by realizing the network

depicted in 2.7 the tools used are:

• commercial softphone (Xlite and Ekiga) to realize call by a PC. Several

accounts have been activated to exploit the service of free VoIP calls

through the Internet.

• Traditional telephone connected to the PSTN.

• AMTEC IP Phone registered on a SIP public account.

9The signaling traffic of the protocol has not been taken into account
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Figure 2.7: Clear mode VoIP platform.

We have approached the following call cases:

• Calls between the softphones in different geographic locations of the

Internet, collecting RTP traces about the entire VoIP communication.

• Calls between the softphones and the traditional phone, collecting (in

the IP phone side of the network) RTP flows coming and going to the

PSTN network.

To make a realistic and complete analysis, calls have been run by using

all the codecs available, namely: G.729, G.726, GSM, iLBC. Codecs affect the

IP packet lengths and the arrival times. The latter highly depends on the

network conditions.

The collection of the traces have been made through the edge switch that

is very close to the local softphone used for the tests. As in the previous cases

the mirror port enabled us to gather pcap traces format.

In order to realize secure VoIP calls, we exploited the VoIP infrastructure

of Elsag Datamat. The simplified network diagram is shown in picture 2.8.
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Figure 2.8: Secure VoIP platform.

On this network the IP PBX and the IP phones are based on Amtec technol-

ogy. In particular, the company IP PBX held in the intranet site of Abbadia

San Salvatore (Siena, Italy) and IP phones are placed all over the company’s

intranet. Sites mainly are in Rome, Genoa, Naples etc. All the calls between

sites are established by the IP PBX over the company’s MPLS and Internet

networks.

On this scenario, having the control of the IP-PBX configuration as well

as some of the IP Phones located in Rome, enabled us to run secured VoIP

calls.

More in details, we were able to access only the IP phones in Rome and we

forced the communication through theses phones and outgoing calls toward

the IP PBX. Having configured the devices with secure VoIP allowed us to

get encrypted calls. SRTP traffic has been captured near of one of the two

conversation end points and the IP packets are saved in the tcpdump format.
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2.5.2 Traces Pre-processing

A key issue in setting up a useful training data set is pre-processing the col-

lected packet features. From a qualitative point of view, application related

information contained in the collected traces should be isolated from TCP

and network related effects, e.g. TCP ACK only segments or TCP control

segments (e.g. three-way handshake packets), end-to-end round trip times,

retransmissions triggered by TCP.

Hence, we remove from each flow F the following packets: i) first two

packets carrying TCP three-way handshake messages: PK0 = SY N, PK1 =

SY N − ACK ii) TCP ACK packets, i.e. those packets carrying only a TCP

level ACK and no payload data, that can be recognized because their length

is equal to LSY N ; iii) retransmitted packets, that can be recognized because

their RTX flag is set to one. An example of this first processing phase is given

in Figure 2.9.

Let LACK be the length of the TCP ACK packets (it can be found as

LACK ≡ min2≤j≤Γ−1 Lj) and T0 the time stamp of PK0, i.e. the SY N packet.

Then, the pre-processed data relevant to a given flow F = {〈dj , Lj , Tj〉.j =

0, . . . ,Γ − 1} are: PK∗j−2 = 〈dj , λj = Lj − LACK ,∆tj = Tj − T0〉 for j =

2, . . . ,Γ − 1. Packet lengths are so decreased by the TCP+IP header length

(including possibly options), so as to return the actual application related data

length. Packets turning out to have λj = 0 are discarded (they are just TCP

ACK’s). Let P denote the set of indices of pre-processed packet features with

positive length. Then the pre-processed flow is F∗ = {〈dj , λj ,∆tj〉 j ∈ P}.
After tests and analysis of results we set the target value of P ≡ |P| to strike

a convenient trade-off between high classification accuracy and an acceptable

classification delay. As our approach is intended to be used in real time, we

set a maximum value of P equal to ten. As for SSH traces, we have created

a different dataset composed of records extracted from SSH flows only. Since
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Figure 2.9: Preprocessing of a P = 3 TCP application flow.

SSH traffic has been generated in controlled way, we know exactly which service

is tunneled within each SSH connection. This is the only way we can define

a reliable ground truth for encrypted data sets. As we are indeed interested

only in those packets that carry the first few encapsulated segments of the

tunneled service, we must start collecting packets only after the SSH signaling

that triggers the opening of a new forwarding channel. This is a critical point,

due to the fact that last packets of SSH handshake phase are encrypted and

they can be confused with application data. Moreover SSH offers a wide range

of algorithms for encryption and authentication, and this complicates further

the detection of the end of SSH handshake phase.
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2.6 Performance Metrics

Efficiency can be measured by the average amount of overhead introduced by

masking:

E[OH] =

∑M
i=1

∑ωi
h=1 pi,h

[
|φ(x

(i)
h ; i)| − |x(i)

h |
]

∑M
i=1

∑ωi
h=1 pi,h|φ(x

(i)
h ; i)|

(2.20)

where |u| equals the sum of the components of u, pi,h = P(X = x
(i)
h |A = Ai)

can be estimated from the collected flow for each application and applications

have been assumed equiprobable (Pi = 1/M). By taking x
(i)
h as the packet

lengths we get the byte overhead ; when times are used, we get the time over-

head.

Information leakage against flow classification is measured as follows. Ac-

cording to Section 2.1, the adversary defines a classifier TA yielding the ap-

plication deemed to have generated the observed (masked) flow. Let ηi,j =

P(TA = Aj |A = Ai) for i, j = 1, . . . ,M and let H = [ηi,j ] be the flow clas-

sifier confusion matrix. Diagonal elements represent success probabilities of

the classifier, while off-diagonal elements are mis-classification probabilities. A

flow classifier corresponds to a discrete information channel that maps input

flows (A “symbols”) into classification decisions (TA “symbols”) and is there-

fore described by the matrix H. By assuming the a priori pdf for application

be uniform, i.e. Qj = 1/M, j = 1, . . . ,M , the average mutual information of

this “information channel” can be computed as:

I(A;TA) = log2M +
1

M

M∑
i=1

M∑
j=1

ηi,j log2

(
ηi,j
ηj

)
(2.21)

where ηj =
∑M

r=1 ηr,j . In the following we consider the normalized mean mu-

tual information Î(A;TA) = I(A;TA)/ log2M , which is just the fraction of
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the mean mutual information of the perfect classifier that a real classifier at-

tains. With this definition, Î(A;TA) = 0 in case of perfect masking, while

Î(A;TA) = 1 for the perfect classifier. We consider also the probability Psucc

that the adversary correctly classifies the flow application, that can be com-

puted as

Psucc =
1

M

M∑
j=1

ηj,j (2.22)

Computation of both last metrics requires a matrix H, hence an instance

of flow classifier which exploits the masked flow features. We use four clas-

sification algorithm (Näıve Bayes, Logistic Model Trees, Random Tree and

K-means) offered in the WEKA implementation, which is a machine learning

workbench distributed under the GNU General Public License [38]. Each ma-

chine learning was trained by feeding it with masked flows, so that it can learn

to recognize any information that possibly leaks from the set of the masked

flow features, that is to say after the application of the masking algorithm.

This is consistent with the usual security approach where the adversary is

granted knowledge of the security algorithm, i.e. the traffic masking algorithm

in our case.
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Chapter 3

Masking for Perfect Secrecy

In this Chapter we focus on masking techniques providing Perfect Secrecy.

Initially we analyze the masking of the only packet lengths, first by describing

the trivial algorithm with fixed packets length, and after we state an optimiza-

tion problem to find the full masking algorithm that minimizes the average

overhead within the set of ideal algorithms. In the second part we extend to

all the traffic features (lengths, times, and direction of packets) the algorithms

analyzed. Finally we discuss the results obtained.

3.1 Packet Length Masking

As discussed in previous Sections, packet length is the main statistical feature

leaking information about what application originates packets, even if flows

are encrypted. We refer to the general model of attack described in Section

2.1 and now we briefly resume it.

We assume a quite general setting, where we can identify origin and des-

tination secure networks (each possibly reducing to a single device), where

application endpoints are located (see Figure 3.1). In between there is an
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Figure 3.1: Scenario for the privacy attack on the packet traffic.

insecure network, where the attacker can observe all flowing packets and at-

tempt to break the privacy of the information flows carried in the insecure

network. Confidentiality of packet payload is protected by encryption, but

we concede the attacker can identify boundaries of application layer flows, i.e.

the attacker can select packets making up a single session of an (unknown)

application protocol out of the aggregated packet traffic observed on a net-

work link. Then, the attacker can apply statistical classification to identify

the specific application that has originated the flow, even though she can not

read into the packet payloads. We want to prevent this attack, specifically the

information leakage given by the packet lengths. We consider packet padding

and/or fragmentation to mask this information.

Since in this Section we are restricting the problem to only packet lengths,

the description of the flow entails X = [K,L,T] expressed in Section 2.1 can be

simplified with the relation X = [L] = [L1, . . . , LW ] where W is the maximum

number of packets of a flow.

3.1.1 Fixed Packet Length

Here we consider a practical approach to remove all information leaked by the

packet length values, namely fixed length masking. This amounts simply in

fragmenting and padding all incoming packets into packets of fixed length L0.
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3.1. Packet Length Masking

Masking algorithm with fixed length works as follows. For the r-th packet

of a flow, if Lr < L0 the algorithm adds a padding of length L0−Lr, if Lr = L0

the packet is not modified, whilst if Lr > L0 it fragments the packet into

dLrL0
e − 1 segments of length L0 plus one segment of length L∗r ≤ L0 to which

it will add a padding of length L0−L∗r . At the end of masking, the algorithm

generates n =
∑m

i=rd
Lr
L0
e ≤ mdLrL0

e packets. Practical values of maximum

packet lengths is Lmax = 1500 bytes for most widespread access networking

technology. To keep notation simple, without losing generality, Lmax ≡ `. The

number n, which is directly proportional to the amount of bytes transmitted

for each flow, can be easily exploited by the classifier in order to discover the

class that generated the flow. So fragmentation is not sufficient, it is also

necessary to mask the total number n of packets corresponding to the original

m packets taken into account.This can be done by adding dummy packets of

size L0.

Let us consider two applications A1 and A2. Let Ni be the random variable

representing the number of packets with fixed length L0 bytes corresponding

to a flow generated by application Ai, i = 1, 2. To anonymize the output

flow we can add a random number Dr of dummy packets with fixed length L0

bytes, so that N1 + D1 and N2 + D2 have the same probability distribution.

In Section 4.1.1 and [39] the following theorem is proved:

Theorem: Let πi(k) be the Probability Mass Function (PMF) of the ran-

dom variable Ni and Fi(k) the corresponding Cumulative Distribution Func-

tion (CDF), for k = 1, ..., ν and i = 1, 2. For any couple of non negative

random variables D1 and D2 such that N1 + D1 ∼ N2 + D2 ∼ P , we have

E[P ] ≥ E[P ∗] where FP ∗(k) ≡ min{F1(k), F2(k)}, k = 1, . . . , ν.

By using statistics of the probability distributions of the number of fixed

length packets Ni yielded by application Ai, it is possible to compute the

minimum number of additional dummy packets required to anonymize each
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3. Masking for Perfect Secrecy

flow by using the algorithm 1 which is detailed in Section 4.1.1.

3.1.2 Optimum Solution

Also in the following we focus on the case of two applications (M = 2) and

state an optimization problem that yields a constructive solution for a full

masking algorithm φ(·;A) that achieves minimum overhead in the set of ideal

masking algorithms. This optimal full masking algorithm serves as a term

of comparison for practical masking, while it is unfeasible to realize, both

because of computational complexity and since in principle it requires the

entire flow to be available to the masking device to decide upon each message

transformation.

Let us assume the sample space (with non null probability) of application

i be Ωi and let ωi = |Ωi| be the cardinality of Ωi, for i = 1, 2. Outcomes of Ωi

are denoted x
(i)
r , r = 1, . . . , ωi (i = 1, 2). For typical application flows, most

feature values have null or negligible probability so that ωi � |Ω|. As found in

Section 2.1, full masking entails that the output flow features have the same pdf

irrespective of the application that feeds the input of the masking device. To

construct the masking algorithm φ(·;A) we take all ordered couples (x
(1)
h ,x

(2)
k ),

with x
(1)
h ∈ Ω1 and x

(2)
k ∈ Ω2, for h = 1, . . . , ω1 and k = 1, . . . , ω2. For each

couple (x
(1)
h ,x

(2)
k ) we find the optimum masked flow with feature vector yh,k

that the flows in the couple can be mapped to by means of padding (including

insertion of dummy messages) and/or fragmentation Optimum here refers to

minimization of the overhead required to convert each of the two flows of the

couple into the masked flow yh,k. Full masking is obtained by requiring that

P(Y = yh,k|A = A1) = P(Y = yh,k|A = A2) ≡ ch,k for all h and k. Then, we

52



3.1. Packet Length Masking

have

P(Y = yh,k) = P(A = A1)P(Y = yh,k|A = A1)

+ P(A = A2)P(Y = yh,k|A = A2) = ch,k. (3.1)

Optimal full masking is obtained by finding the values of ch,k that optimize

the average cost of masking, z′ = E[D(Y) − D(X)]. Here D(·) represents a

“cost” measure associated to the flow features. Since the input flow are given,

we can reduce the target function to z = E[D(Y)] =
∑

h,k ch,kDh,k, where

Dh,k ≡ D(yh,k) and ch,k = P(Y = yh,k). Let yh,k = [λh,k] in the case of only

packet lengths masking. Then, we aim at optimizing byte overhead and we

get Dh,k = |λh,k|.
Summing up, given the costs Dh,k, the probabilities ch,k are found by

solving the following linear optimization problem (global optimization):

z =

ω1∑
h=1

ω2∑
k=1

ch,k ·Dh,k (3.2)

subject to constraints:

0 ≤ ch,k ≤ 1 ∀(h, k)

ω2∑
k=1

ch,k = p1,h, h = 1, ..., ω1

ω1∑
h=1

ch,k = p2,k, k = 1, ..., ω2

where p1,h = P(X = x
(1)
h ), h = 1, . . . , ω1 and p2,k = P(X = x

(2)
k ), k =

1, . . . , ω2.

We can relate the above optimization problem to the well-known Trans-

portation Problem [40], with the only difference that in our case we have the
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3. Masking for Perfect Secrecy

quantities to “transport” expressed as fractions of the total amount. The prob-

lem at hand is easily solved by the Simplex Method. No efficient solution are

known for M > 3.

The problem is now reduced to find a constructive way to define the flow

yh,k that minimizes Dh,k given the two input flows x
(1)
h and x

(2)
k for all values

of (h, k) (local optimization). We have set up an exhaustive search to solve

the local optimization that turns out to be feasible in case the feature vector

is in the order of a dozen components. This gives us sufficient material to

use statistical full masking as a comparison benchmark to understand basic

trade-offs.

We can summarize the ideal masking algorithm for two applications in the

following steps:

1. take as input a flow ϕ belonging to application 1, with features x
(1)
h∗ (or:

flow ψ belonging to application 2 with features x
(2)
k∗ );

2. draw a random index in the set [1, ω2] of value k∗ with probability

ch∗,k∗/p1,h∗ (or: in the set [1, ω1] of value h∗ with probability ch∗,k∗/p2,k∗);

3. transform the input flow ϕ (or: ψ) into the output masked flow ξ with

features yh∗,k∗ .

The asterisk highlights that the probabilities ch,k have been obtained by

solving the global optimization (3.2) and the table yielding the output masked

flow patterns has been filled up by solving the local optimization for any couple

of input flows (x
(1)
h ,x

(2)
k ).

3.1.3 Results

In this Section we restrict ourselves to an adversary exploiting packet lengths

of the first m packets of each flow, hence X = [L1, . . . , Lm]. The results are
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3.1. Packet Length Masking

Applications Pair Optimum full Optimum full Fixed length
masking (FAP) masking (PO) masking

HTTP - SSH 0.3191 0.3605 0.4591
HTTP - FTP-c 0.4088 0.4126 0.5328
HTTP - POP3 0.4351 0.4392 0.5629
HTTP - VoIP 0.3864 0.4126 0.5406
SSH - FTP-c 0.3008 0.3162 0.5378
SSH - POP3 0.3495 0.3715 0.5700
SSH - VoIP 0.2353 0.3546 0.5049

FTP-c - POP3 0.2094 0.2336 0.5302
FTP-c - VoIP 0.2303 0.2752 0.4891
POP3 - VoIP 0.2477 0.2477 0.4892

HTTP over SSH - SFTP 0.2090 0.2248 0.5205

Table 3.1: Average amount of overhead introduced by different packet size
masking algorithms for various couple of application flows (FAP = Fragmen-

tation And Padding; PO = Padding Only).

obtained with m = 5, which is consistent with a real time flow classification

target. Albeit restricted, this scenario is enough to highlight interesting issues.

Also, packet lengths appear to be the most powerful feature in classification

problem.

In Table 3.1 we compare the average byte overhead required by the different

masking algorithms. The numbers represent the fraction of the output bytes

due to masking overhead (Definition 2.20).

Optimum full masking as defined in Section 3.1.2 comes in two different

ways. In the first case, we apply both fragmentation and padding when con-

structing optimum output flow yh,k paired with input flows x
(1)
h and x

(2)
k (local

optimization). In the second case, only padding (including dummy packets)

is allowed. All considered approaches lead to full masking of traffic flows as

regards the packet length information. The metric to compare different ap-

proaches is therefore the average amount of overhead. As a further comparison
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Figure 3.2: Comparison between the average overhead obtained by mixing
five different couples of applications. The average overhead as defined in eq.

(2.20) is plotted as a function of the fixed masked packet length L0.

we include fixed packet length masking. In Table 3.1 unrestricted optimum

full masking is given in the first column, padding only optimum full masking in

the second column, while fixed length masking is reported in the third column.

The fixed length L0 used by the fixed length masking algorithm in Table

3.1 is chosen so as to minimize the average overhead for each masked traffic

mix. Figure 3.2 shows the average overhead as a function of packet length

L0 for three different couples of applications that are mixed (HTTP-FTP-c,

VoIP-FTP-c, SSH-POP3). There is an optimum choice of L0, since for very

small values the overhead due to fragmentation (additional IP packet headers)

is dominant, whereas for large values of L0 padding is dominant. In any case,
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3.2. All Features Masking

the average amount of overhead is quite large, never less than about 0.5, i.e.

about 50% of all bytes sent out by the traffic flow masking device are overhead

bytes.

Results in Table 3.1 point out that the amount of overhead can vary signif-

icantly depending on the applications mix. In any case, fixed length masking

roughly doubles the required overhead with respect to optimal masking, thus

showing the optimization of full masking, if possible, can bring significant

efficiency gains. An interesting outcome of results in the Table is that opti-

mum full masking constrained to use padding only does not cause a significant

increase in overhead compared to the unrestricted optimum full masking, in

which we can fragment packets. In a lot of cases, adding fragmentation im-

proves marginally the achieved fraction of overhead. This is a strong argument

advocating the use of padding only, although this is not intuitive at first. Main

reason is that full masking requires not only masking the length of each packets

of the flow but also the amount of bytes of the entire flow.

3.2 All Features Masking

Algorithms seen in the previous Section to mask only the lengths can be eas-

ily generalized to all the features in the format presented in 2.1. The two

algorithms generalized can be found in the next Subsections.

3.2.1 Fixed Pattern

A much simple approach, but supposedly far from the optimal solution, is fixed

pattern masking. Fixed pattern masking is the generalization of the algorithm

fixed length masking seen in Section 3.1.1. In general, it means that the input

flow, whatever its class, be forced to be framed into a pre-defined pattern

with features y0 = [K0,L0,T0]. Enforcement of these features is obtained
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3. Masking for Perfect Secrecy

practically as follows. Upon emission of a given burst, the sending application

entity has one or more messages. By using fragmenting, padding and delaying

those messages are sent according to the desired fixed pattern. If at any given

time, an output message must be issued while there are no input bytes to be

sent, a dummy message is emitted.

Imposing such a fixed pattern to input flows generated by whatever appli-

cation is certainly possible and it is guaranteed to raze any possible information

useful to the classification adversary and it can be applied message by message.

So fixed pattern masking is practical, full masking. The choice of the values

of the fixed pattern features y0 influences the resulting overhead and delay. In

general, the choice of y0 leading to minimal overhead is a multi-dimensional

optimization problem, given the overall mix of traffic that it is expected at

the masking device. Special cases of the fixed pattern, that simplify its imple-

mentation, are obtained by setting a fixed values for all burst sizes, message

lengths and message gap times.

3.2.2 Optimum Solution

The generalization of the optimum masking for all the features can be achieved

in a trivial way by replacing the vector of the lengths X = [L] with the complete

vector X = [K,L,T] in the optimization problem.

Here again Optimal full masking is obtained by finding the values of ch,k

that optimize the average cost of masking, z′ = E[D(Y) −D(X)]. D(·) rep-

resents a “cost” measure associated to the flow features. The target function

can be reduced to z = E[D(Y)] =
∑

h,k ch,kDh,k, where Dh,k ≡ D(yh,k) and

ch,k = P(Y = yh,k). Let yh,k = [κh,k, λh,k, τh,k]. Then, if we aim at optimizing

byte overhead we have Dh,k = |λh,k|; if we are interested in minimizing time

overhead (delay), we take Dh,k = max{τh,k}.
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3.2. All Features Masking

Given the costs Dh,k, the probabilities ch,k are found by solving the same

problem of global optimization described by the relation 3.2 in Section 3.1.2

solvable by the Simplex Method.

Exhaustive search can be applied to solve the local optimization also for

the complete set of features. Then, the ideal masking algorithm for all features

of the traffic in case of two applications, follows in an identical manner the

three steps of the algorithm 3.1.2 for only the packet lengths.

A key limitation of ideal masking algorithms is the requirement to have

the entire flow available to decide on masking, before sending out any message

to the network. This cannot work for transactional, interactive applications,

where a message burst is produced by the application entity based on previ-

ously received bursts from the remote entity.

3.2.3 Results

In this Section we report about performance of the algorithms for perfect

secrecy. In Table 3.2 we compare optimum full masking and fixed pattern

masking1. For fixed pattern, the same burst size is chosen and independently

optimized for each flow direction.

Table 3.3 reports the average overhead for a fixed pattern masking with

fixed values of the burst sizes in the two directions (client to server and server

to client). The values of the burst sizes are optimized according to the traffic

mix, as shown in the Table.

Figure 3.3 shows the average overhead as a function of burst size (equal

for all bursts, in both directions) for various application mixes. Figure 3.4

plot the average overhead as a function of the two independent values of burst

sizes that can be set in the two opposite directions. The graphs highlight that

1In Section 4.2.2 these results will be compared with those obtained with burst by burst
masking algorithms.
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Application Pair Optimum full Fixed Burst
masking Size

HTTP - SSH 0.3663 0.5059
HTTP - FTP-c 0.4104 0.5844
HTTP - POP3 0.4233 0.5951
HTTP - VoIP 0.4080 0.5571
SSH - FTP-c 0.3022 0.6082
SSH - POP3 0.3489 0.6285
SSH - VoIP 0.2936 0.5657

FTP-c - POP3 0.1869 0.5263
FTP-c - VoIP 0.2231 0.4872
POP3 - VoIP 0.2700 0.4987

HTTP over SSH - SFTP 0.2752 0.5187

Table 3.2: Average overhead introduced by full and fixed burst size mask-
ing algorithms for various application mixes.

Application Pair Opt. Burst Opt. Burst Minimum
Size A → B Size B → A Overhead

HTTP - SSH 268 1500 0.4933
HTTP - FTP-c 114 1500 0.5599
HTTP - POP3 114 1500 0.5216
HTTP - VoIP 218 1500 0.5383
SSH - FTP-c 142 168 0.6589
SSH - POP3 105 168 0.6427
SSH - VoIP 142 168 0.5904

FTP-c - POP3 120 273 0.6238
FTP-c - VoIP 200 201 0.4926
POP3 - VoIP 200 100 0.6129

Table 3.3: Optimized burst sizes in the two directions and average overhead
of fixed pattern masking.
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Figure 3.3: Fixed pattern masking average overhead of various traffic mixes
as a function of the fixed burst size.

there is a big margin of efficiency gain by properly selecting burst sizes, espe-

cially if the two dimensional optimization is used, by allowing different value

of the burst sizes in the two directions. Even after optimization, overhead

values are quite high, but interestingly they are not terribly larger than those

of locally optimized additive masking. On the other hand, with fixed pattern

masking leakage is stopped completely and implementation complexity is def-

initely lower than in the much more sophisticated additive masking, that uses

statistical information to optimize overhead.
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Figure 3.4: Fixed pattern masking: average overhead for the mix SSH-
VoIP as a function of the burst sizes in the two directions.
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Chapter 4

Partial Masking

Complete flow masking for Perfect Secrecy can imply massive overhead and/or

significant delay, as shown by quantitative examples in Sections 3.1.3 and 3.2.3.

In addiction the algorithm for optimum masking cannot work for transactional,

interactive applications, where a message burst is produced by the application

entity based on previously received bursts from the remote entity.

Next we introduce some practical, partial masking algorithms that allow to

reduce amount of overhead and delay at the cost of leaking some information

about the content of a flow. The algorithms presented in this Chapter are

practically applicable to a message/burst only based on features of previous

messages/bursts.

First, as in the previous Chapter, we analyze practical algorithms for

packet length masking (Subsection 4.1), and after we generalize the problem

to all the feature of a flow (Subsection 4.2). Neither case leads to full masking,

since at least correlations among features of different packets/bursts cannot

be fully masked.
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4. Partial Masking

4.1 Packet Length Masking

The problem of packet length masking is depth in this Section. First we de-

fine the optimum padding problem for Marginal Probability Mass Functions

(PMFs), independently applicable to the length of each packet (Subsection

4.1.1); after we extend the proposed solutions to the case in which the condi-

tional PMFs are considered instead of just marginal ones, so as to eliminate

at least for one-step dependencies (Subsection 4.1.2). In the Subsection 4.1.3

we introduce an algorithm to mask input traffic only partially, so as to knob a

trade-off between overhead and degree of masking. At the end the results are

presented (Subsection 4.1.4).

4.1.1 Additive Masking for Marginal PMFs

Let us briefly resume some notation. We consider M application layer pro-

tocols Ai for i = 1, . . . ,M . As for the packet lengths, we assume application

layer entity of each protocol can be characterized by a probability measure.

Let L
(i)
r be the random variable representing the length of the r-th packet of

a flow generated by application protocol i, r ≥ 1 and i = 1, . . . ,M . For any

random variable L we let FL(n) = P(L ≤ n) be the cumulative probability

distribution function for n ≥ 0.

We consider only packet length padding, so that lengths of packets of the

anonymized flow are given by Y
(i)
r = L

(i)
r + U

(i)
r , where the U

(i)
r ’s are non

negative random variables in general. The value of U
(i)
r can be a function of

L
(h)
j for j ≤ r and h = 1, . . . ,M , which guarantees that the padding algorithm

can be run in real time, with minimum delay of padded packets (just processing

time delay, no need to wait for following packets). This condition also enables

the padding device to be different from the source of packet flow.
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4.1. Packet Length Masking

Figure 4.1 illustrates a block diagram of the padder. Packet belonging to

different application flows enter the edge device connecting the secure network

to the public, insecure network. The padder contains tables that give the

amount of overhead to be added as a function of the incoming packet length

and the application type it belongs to. Such tables can be computed once the

probability distributions of the packet lengths of the applications to be mixed

have been estimated (see next Section). Then, they are filled and periodically

refreshed by a background process that observes incoming traffic (the two up-

per blocks in the figure, connected with the large white arrow). From analysis

of this packet stream, classification of application flows is possible (traffic is

assumed to be uncoded in the secure network) and packet length statistics can

be estimated.

To read the proper table and apply padding, the padder box must know

the application the incoming packet belongs to. This information cannot be

obtained by classification in real time, since the initial packets of a flow must

be released outside to let the application progress. So, when classification is

possible in a reliable way, a number of packets have already been released with

no padding or a padding compute without knowledge of the correct table to

be used. This difficulty can be overcome by means of a cooperating secure

network, where some tag is added to application to be mixed, so that they can

be recognized by the padder since the very first packet of each flow. A more

practical situation can be envisaged in the common case where the secure net-

work reduces to a single host device. Then, padding and background length

statistics collection can be carried out by an internal process, e.g. embedded

in the operating system. Such a process can obviously know the exact appli-

cation/service each packet flow belongs to, since they are generated within the

same device under the control of a same operating system.

The obtained padded packet is enciphered, so as to protect confidentiality
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Figure 4.1: Block scheme of padder operation in case of trusted/insecure
network edge.

of payload and prevent the attacker from removing padding (encoder box ). At

the far end, packets are deciphered, padding is stripped off and clean packets

are forwarded to the appropriate application layer endpoint.

In the following, we focus on the padder box. The aim of the padder is

to alter packet length so as to confuse a given set of pre-defined application

protocols. The key idea is to add a random amount of padding so that lengths

of output packets appear as drawn from a same Probability Mass Function

(PMF) independently of the application that has actually generated them.

Let us focus on two application protocols (M = 2) and on a specific packet

within their respective flows, say the r-th one. We drop the subscript r for

the sake of simple notation. Let an = P(L(1) = n) and bn = P(L(2) = n)

for n = Lmin, . . . , Lmax. Practical values of minimum and maximum packet

lengths are e.g. 40 bytes ≤ Lmin ≤ 56 bytes, depending on options on IP or

TCP headers, and Lmax = 1500 bytes for most widespread access networking

technology. To keep notation simple, without losing generality, we set Lmin =
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1, i.e. the minimum length quantum (e.g. one byte), and Lmax ≡ `. We let

also Fa(n) = P(L(1) ≤ n) and Fb(n) = P(L(2) ≤ n).

We aim to make packet length series belonging to the two protocols indis-

tinguishable once packets are padded. So, it must be Y (1) ∼ Y (2) ∼ Y . Let

cn = P(Y = n). We search for a Probability Mass Function (PMF) {cn}1≤n≤`
among all those satisfying the constraint that only padding be non negative,

i.e. Y (i) = L(i) + U (i) with U (i) ≥ 0, i = 1, 2. We show first the following:

Theorem: Let {an}1≤n≤` and {bn}1≤n≤` be the PMFs of lengths of packets

of two applications. Let {cn}1≤n≤` any PMF describing the padded lengths of

both applications. Then.

Fc(n) ≡
n∑
j=1

cj ≤ min {Fa(n), Fb(n)} , n = 1, . . . , `. (4.1)

Proof. Since only padding is allowed, the length of output packets is Y1 =

L(1) + U1 or Y2 = L(2) + U2, where Y1 ∼ Y2 ∼ Y . Therefore, P(Y > k) ≥
P(L(1) > k) whence P(Y ≤ k) ≤ P(L(1) ≤ k). Similarly for the other random

variable, L(2). It follows that any output packet length PMF in case of padding

must satisfy P(Y ≤ k) ≤ min{P(L(1) ≤ k),P(L(2) ≤ k)} or

k∑
j=1

cj ≤ min


k∑
j=1

aj ,
k∑
j=1

bj

 , k = 1, . . . , ` (4.2)

q.e.d.

We aim at minimizing the amount of overhead due to padding. Given the

PMFs of the padder input packet lengths, this is the same as minimizing E[Y ].

We can prove the following:

67



4. Partial Masking

Theorem: Let {an}1≤n≤` and {bn}1≤n≤` be the PMFs of lengths of packets

of two applications. Then E[Y ∗] ≤ E[Y ] for any PMF {cn}1≤n≤` of the r.v.

Y under the non negative padding constraint, with the PMF {c∗n}1≤n≤` of the

r.v. Y ∗ given by

Fc∗(n) ≡
n∑
j=1

c∗j = min {Fa(n), Fb(n)} , n = 1, . . . , `. (4.3)

Proof. First, we argue Fc∗(n) is a proper Cumulative Distribution Function

(CDF), if Fa(n) and Fb(n) are. It is non negative, monotonous non decreasing

and it attains 1 for n = `, since both Fa(n) and Fb(n) do so.

Further, we have

E[Y ∗] =
∑̀
j=1

jc∗j =
∑̀
j=1

[1− Fc∗(j)]

=
∑̀
j=1

[1−min{Fa(j), Fb(j)}]

≤
∑̀
j=1

[1− Fc(j)] = E[Y ]

where last inequality derives from eq. (4.1). q.e.d.

The PMF {cn}1≤n≤` is just the target common PMF of the packet length

at the output of the padder device to the insecure network. It is the optimum

one, i.e. the output packet length PMF with minimum mean value (hence

minimum average overhead, given the mean length of input packets) under

the constraint that only padding is applied (i.e. no packet fragmentation).

Once {cn}n=1,...,` is given, it is possible to compute the PMF of the random

overhead U , conditional on the input packet length of the i-th application,
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namely λ
(i)
h,k = P(U = h|L(i) = k) for h = 0, 1, . . . , ` − k; k = 1, . . . , ` and for

i = 1, 2. The values λ
(i)
h,k depend on the marginal PMF P(L(i) = k). As a

matter of fact, for i = 1 we have

cn = P(Y = n)

=
n∑
k=1

P
(
L(1) = k

)
P
(
L(1) + U = n|L(1) = k

)
=

n∑
k=1

akP
(
U = n− k|L(1) = k

)
=

n∑
k=1

akλ
(1)
n−k,k n = 1, . . . , `. (4.4)

The values of λ
(i)
h,k can be computed by Algorithm 1. At step k, we consider

the fraction of input packets of length k, i.e. ak: at the output we have a packet

with length n with probability
[∑n

j=1 cj −
∑k−1

j=1 aj}
]
/ak (provided this is

positive and less than 1). This is simply the probability of the output length

be not greater than n minus the probability mass of the output length PMF

already “assigned” to input packet of length less than k. Then, the conditional

probability that overhead U is no greater than n− k is
P(U ≤ n− k|L(1) = k) = min {1,max {0, zk,n}}

zk,n =
1

ak

 n∑
j=1

cj −
k−1∑
j=1

aj

 (4.5)

for k = 1, . . . , n and n = 1, . . . ` (as usual it is intended that
∑j2

j=j1
≡ 0 for

j1 > j2).

Let us assume that, for a fixed n, the smallest value of k such that Fc(n) <

Fa(k) be k∗; then it is Fc(n) ≥ Fa(k) for k = 1, . . . , k∗ − 1. Note that it is
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4. Partial Masking

Algorithm 1 PadAlg : Computation of the PMF of the padding overhead
conditional on the input packet length

1: for n← 1 to ` do
2: for k ← 1 to n do
3: z = 0
4: if ak > 0 then

5: z =
∑n
j=1 cj−

∑k−1
j=1 aj

ak
6: end if
7: γn−k,k = min {1,max {0, z}}
8: end for
9: end for

10: λ0,k = γ0,k

11: for k ← 1 to ` do
12: for h← 1 to `− k do
13: λh,k = γh,k − γh−1,k

14: end for
15: end for

1 ≤ k∗ ≤ ` and this is well defined since Fa(`) = 1 ≥ Fc(n) ∀n. Then, it is

zk,n ≥ 1, k = 1, . . . , k∗ − 1

zk∗,n =
1

ak∗

 n∑
j=1

cj −
k∗−1∑
j=1

aj

 ∈ [0, 1)

zk,n ≤ 0, k = k∗ + 1, . . . , n− 1.

Then, we have

P(Y ≤ n) =
n∑
k=1

akP(U ≤ n− k|L = k)

=
k∗−1∑
k=1

ak + ak∗zk∗,n =
n∑
j=1

cj = Fc(n)

70



4.1. Packet Length Masking

The arguments of the proofs as well as the algorithms can easily be gener-

alized to the case of M input PMFs of packet lengths that are to be confused

into a single target PMF. The key characteristic of this common PMF is

k∑
j=1

cj = min


k∑
j=1

a
(1)
j , . . . ,

k∑
j=1

a
(M)
j

 (4.6)

for k = 1, . . . , `.

4.1.2 Generalization to Conditional Packet Length PMFs

The Algorithm 1 (PadAlg) aims at computing an overhead length PMF used to

pad packets from M different application protocols, so that the marginal PMF

of the r-th packet of each application flow has a resulting length that is drawn

from a same PMF, irrespective of the specific application that generated that

packet. What we need to compute the target PMF and hence the conditional

pad overhead PMFs is knowledge of the PMF of the r-th packet emitted by

each application, i.e. a
(i)
k (r) = P(L

(i)
r = k), i = 1, . . . ,M ; k = 1, . . . , `; r ≥ 1,

where the subscript r of L
(i)
r refers to the order of occurrence of the packet

inside the flow it belongs to. According to the algorithms defined above, we

can compute a padded packet length PMF for each value of r, {cn(r)}n=1,...,`

This way we neglect correlation information. While marginal distribu-

tion of packet length is completely masked, we could expect some information

leakage still take place since subsequent packets belonging to a same flow have

correlated packet lengths. We can tackle this issue, at least for one-step de-

pendencies, by considering conditional PMFs instead of just marginal ones.

For the sake of notation, we consider two applications only, the generalization

to M being straightforward as done in eq. (4.6). Let ak(1) = P(L
(1)
1 = k) and
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4. Partial Masking

bk(1) = P(L
(2)
1 = k); let also

ãk|h(r) = P(L(1)
r = k|L(1)

r−1 = h)

b̃k|h(r) = P(L(2)
r = k|L(2)

r−1 = h)

with k, h = 1, . . . , ` and r ≥ 2. The target padded packet length PMF {cn|h(r)}
is computed by exactly the same expression as eq. (4.3), except that {ãk|h(r)}k
and {b̃k|h(r)}k are fed as input for each given value of h instead of {ak(r)}k
and {bk(r)}k. Analogously, the PMF of the random padding to be applied to a

packet of length k belonging to e.g. application 1 is computed from {ãk|h(r)}k
and {cn|h(r)}n as {λ̃j|k,h(r)}j = 1, . . . , ` − k for each given value of h and k.

Computational burden is strongly reduced by the typically high correlation

found in packet length sequences1, that imply {ãk|h(r)}k is non null only for

few values of h.

4.1.3 Tradeoff between Information Leakage and Overhead

Let us return to focus on a specific message position, say the r-th one, within

the flow sequence. We drop the index r for the sake of simple notation. Assume

we know the pdfs ak = P (L(1) = k) and bk = P (L(2) = k), for k = 1, . . . , `.

Instead of L(1) + U
(1)
L ∼ L(2) + U

(2)
L ∼ L̃, partial masking requires that c

(i)
k ≡

P(L(i) + U
(i)
L = k) (i = 1, 2) satisfy the following constraint:

∑̀
k=1

min{c(1)
k , c

(2)
k } ≥ q (4.7)

where q is a similarity measure, with q ∈ [0, 1]. Complete flow masking is

recovered for q = 1, that forces c
(1)
k = c

(2)
k , ∀k.

1This is just another face of the good capability of statistical classifiers found in the
literature, as discussed in Chapter 1
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4.1. Packet Length Masking

Algorithm 2 Partial Masking(q,a,b)

1: α = 1− q
2: {a′i}k=1,...,` = {ak}k=1,...,`

3: {b′k}k=1,...,` = {bk}k=1,...,`

4: for d← `− 1 to 0 do
5: for i← 1 to ` do
6: for j ← {i+ d, i− d} do
7: if 1 ≤ j ≤ ` then

8: m = min
{
a′i, b

′
j , α
}

9: a′i = a′i −m
10: b′j = b′j −m
11: α = α−m
12: end if
13: end for
14: end for
15: end for
16: assert

∑`
k=1 c

′
k =

∑`
k=1 b

′
k =

∑`
k=1 a

′
k = 1− α

17: {c′i} = PadAlg({a′i}, {b′i})
18: {c(1)

k } = {ak − a′k + c′k}
19: {c(2)

k } = {bk − b′k + c′k}

Our purpose is to find two pdfs {c(1)
k }1≤k≤` and {c(2)

k }1≤k≤` that satisfy

eq. (4.7) and minimize the average overhead E[OH] ≡ Q1E[U
(1)
L ] +Q2E[U

(2)
L ].

To solve this problem we have developed algorithm 2. In that algorithm,

the function PadAlg is the Algorithm 1 and outputs the pdf {γk}1≤k≤` such

that
∑k

i=1 γi = min
{∑k

i=1 αi,
∑k

i=1 βi

}
(k = 1, . . . , `), for two given pdfs

{αk}1≤k≤` and {βk}1≤k≤`.
The algorithm takes as input the two pdfs, {ak}1≤k≤` and {bk}1≤k≤`, of

the message lengths of the two applications we want to mix. Each of them

is split in two components according to ak = a′k + a′′k and bk = b′k + b′′k for

k = 1, . . . , `. The two components are such that
∑`

k=1 a
′
k =

∑`
k=1 b

′
k = q. Let
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4. Partial Masking

a new message of application 1 with length k arrive. With probability a′′k/ak

it is passed onto the enciphering algorithm as it is (no masking), while with

probability a′k/ak its length is modified according to additive masking so that

the conditional output length pdf is {c′k}/q = PadAlg({a′k}/q, {b′k}/q). This

partial masking yields an output pdf of message lengths equal to {c(1)
k } given

in line 18 of algorithm 2, as we show in the following.

If u
(1)
j (h) denotes the conditional probability that padding is h ≥ 0 bytes,

given that the input message belongs to application 1 and has length j, then

c′k/q =
∑k

j=1 u
(1)
j (k − j)a′j/q. Then, the probability of a masked message of

length k at the output of the partial masking algorithm is c
(1)
k = ak(a

′′
k/ak) +∑k

j=1 aj(a
′
j/aj)u

(1)
j (k − j) = a′′k + c′k = ak − a′k + c′k, that is just line 18 of

algorithm 2. Entirely analogous argument applies to application 2.

The choice of the density portions {a′n} and {b′n} in the rows 4-15 of

the algorithm 2 is made so that the amount |
∑`

k=1 a
′
k · k −

∑`
h=1 b

′
h · h| is

minimized. In fact the algorithm gradually constructs them in an iterative

way, by excluding the most distant density portions of the two original pdfs,

until reaching a set of probabilities with weight q. The components {a′n}1≤n≤`
and {b′n}1≤n≤` are used to feed PadAlg, whose output is the pdf {c′n}1≤n≤`.
The resulting pdfs are given in lines 18 and 19 of algorithm 2. It can be

checked that these are proper pdfs and that they satisfy eq. (4.7).

4.1.4 Results

According to the scenario defined in Figures 3.1 and 4.1, we consider a col-

lection of traces (ground truth), made up of the ordered sequence of packet

lengths of flows belonging to different applications captured and/or generated

as commented in Section 2.5.
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4.1. Packet Length Masking

No With padding
padding marginal PMFs conditional PMFs

m Î(A;TA) Î(A;TA) E[OH] Î(A;TA) E[OH]

1 0.6316 0.0020 0.1275 0.0011 0.1261
2 0.6795 0.0453 0.1034 0.0024 0.0870
3 0.9919 0.0464 0.1234 0.0027 0.1049
4 0.8698 0.2692 0.1762 0.0474 0.0854
5 0.9971 0.1481 0.3717 0.0457 0.3399

Table 4.1: Average mutual information of the classifier based on the first
m packets of the application flows: scenario with two applications (SSH,

POP3).

Four machine learning algorithms described in 2.4 (K-means, Näıve Bayes,

Logistic and Random Forest) are used in order to measure the information

leakage.

4.1.4.1 Additive Masking

The cumulative probability distribution functions (cpdfs) of the flow first

packet for the four considered applications is plotted in Figure 4.2 along with

the cpdf of the padded packets, {cn}. We are mixing applications with typi-

cally short packets (few hundred bytes) such as POP3, SSH and FTP-c, with

HTTP, whose packet lengths easily saturate to the maximum 1500 bytes. As a

consequence, it is apparent that the probability mass be concentrated around

length 100-150 and about 1400-1500. In the light of this, padding overhead is

expected to be large.

Results are shown in Tables 4.1, 4.2 and 4.3: the average mutual informa-

tion Î(A;TA) (defined in 2.6) associated to the flow classifier K-means and

the average fraction of output bytes that are padding overhead (E[OH]) are

listed as a function of the number m of packets of each flow examined by the

classifier according to the overhead definition 2.20.
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Figure 4.2: Cumulative probability distribution function of the packet
sizes for the four considered applications (A1 = HTTP ; A2 = FTP − c;
A3 = SSH; A4 = POP3) and for the packets padded according to PMF

{cn} of eq. (4.6).

No With padding
padding marginal PMFs conditional PMFs

m Î(A;TA) Î(A;TA) E[OH] Î(A;TA) E[OH]

1 0.6096 0.0005 0.3148 0.0005 0.3148
2 0.7938 0.0066 0.5100 0.0027 0.2399
3 0.8267 0.0727 0.6325 0.0710 0.4649
4 0.9093 0.1046 0.6315 0.0818 0.4466
5 0.9115 0.1255 0.6112 0.1131 0.4426

Table 4.2: Average mutual information of the classifier based on the first
m packets of the application flows: scenario with four applications (HTTP,

FTP-c, SSH, POP3).
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4.1. Packet Length Masking

No With padding
padding marginal PMFs conditional PMFs

m Î(A;TA) Î(A;TA) E[OH] Î(A;TA) E[OH]

1 0.8697 0.0001 0.1295 0.0001 0.1292
2 0.9441 0.0034 0.1570 0.0021 0.0757
3 0.9478 0.0013 0.1183 0.0010 0.0606
4 0.9943 0.0030 0.1463 0.0053 0.1062
5 0.9033 0.0254 0.2256 0.0003 0.1165

Table 4.3: Average mutual information of the classifier based on the first
m packets of the application flows: two applications tunneled inside SSH

connections (HTTP-over-SSH, SFTP).

The padding algorithm is effective in cancelling most of the information

provided by the flow classifier, which is otherwise quite successful in detecting

origin application, at least when a sufficient number of packets is considered

(e.g. m = 5). As m increases, a growing amount of information leaks through

the padder device, since correlation of the flow packet length sequence are

not masked in case of marginal padded packet length PMF or only partially

masked in case od one-step conditional padded packet length PMF.

With two application protocols to be mixed up (SSH and POP3, Table 4.1),

an almost perfect classifier (Î(A;D) = 0.99 for m = 5) is turned into a poor or

even an extremely poor tool with random padding based on marginal PMFs

(about 0.15 residual average mutual information) or on conditional PMFs (less

than 0.05 average mutual information left). Overhead increases as the scope

m of the classifier grows, reaching between 34% and 37% of the output traffic.

Similar results are found in terms of effectiveness reduction of the classifier in

case four applications are considered (HTTP, FTP-c, SSH and POP3, Table

4.2). Overhead is much larger due to the remarkable difference of typical

message lengths in HTTP and the other application: the first one tends to

exhibit packets close to the maximum 1500 bytes size, the other three protocols
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Figure 4.3: Comparison between the successful classification probabilities
before and after additive masking for the scenario HTTP and FTP-c.

typically send packets between few tens and some hundreds of bytes.

A third different numerical example gives more striking results (Table 4.3).

In this case we consider application services tunneled inside SSH connections

(so that every packet is entirely encrypted). Random padding as defined in this

work is definitely effective in killing classifier capability, e.g. an information

leakage that makes the K-means classifier almost perfect for m = 4 is largely

obfuscated with only about 11% overhead traffic at the ouput of the padding

device in case of conditional PMFs and 15% overhead with marginal PMFs.

In general, conditional PMF approach has superior performance both in terms

of anonymization effectiveness and amount of required overhead.

In the figures 4.3, 4.4 and 4.5 the probability of successful classification

Psucc (according to the relation 2.22) obtained from the four machine learning

before and after additive masking are compared.
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Figure 4.4: Comparison between the successful classification probabilities
before and after additive masking for the scenario FTP-c and VoIP.

Looking at these results we can observe all the machine learning, which

were very effective in the traffic classification, achieve a significant decreasing

in performance after additive masking. Due to lengths transformation the

Psucc’s approach the minimum value (equal to 50% in case of a scenario with

two classes).

Random Forest algorithm turns out to be the best among those used, and

it obtains the highest Psucc in all three scenarios analyzed.

4.1.4.2 Tradeoff between Information Leaks and Overhead

The graphs in Figs. 4.6 - 4.10 show the obtained results for the algorithm

described in Section 4.1.3. Figures 4.7 and 4.9 refer to Scenario 1 (SSH and

FTP-c flows), while Figs. 4.8 and 4.10 refer to Scenario 2 (HTTP over SSH

and SFTP flows, into SSH tunnels). We plot as a function of the masking
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Figure 4.5: Comparison between the successful classification probabilities
before and after masking for the scenario SSH and VoIP.

rate q the average overhead E[OH] in Figure 4.6 and Psucc in Figures 4.7 and

4.8. Figures 4.9 and 4.10 plot the trade-off between the information leakage

measured by Î(A;TA) and the average overhead. Also here four different

classification algorithm have been considered.

The interesting indication of these results is that the amount of overhead

cannot be reduced significantly with respect to full masking, if strict leakage

requirements are set (q close to 1), yet substantial reduction of overhead with

respect to full masking can be attained, if a success probability Psucc of about

0.7-0.6 is acceptable (a trivial classifier can attain Psucc = 0.5). In that case,

we can fix q = 0.8, that leads to E[OH] about halving with respect to full

masking (scenario 2). A smaller gain is obtained in case of scenario 1. As for

the trade-off between Î(A;TA) and E[OH], the smaller the average mutual

information leaked to the adversary, the larger the overhead required. The
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Figure 4.6: Average overhead as a function of the masking rate q for the
two considered scenarios.

trade-off appears to be much more favorable in case of SSH tunneled applica-

tion flows (scenario 2). Other tests with different application protocols (e.g.

VoIP) have been carried out, yielding similar behavior.

4.2 All Features Masking

In the next, we propose two new practical algorithms (Burst-by-Burst Padding

Only and Burst-by-Burst Statistical Additive) applicable to a message/burst

only based on features of previous messages/bursts.
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Figure 4.7: Probability of a successful classification as a function of the
masking rate q for the scenario SSH and FTP-c.

4.2.1 Burst by Burst Masking

The key idea we develop in this Section is to apply the optimized full masking

of Section 3.1.2 burst by burst, so that the decision on the masking flow can be

taken at each endpoint as the traffic flow runs. Given two applications, global

and local optimizations can be defined, only restricted to a sub-flow made up

of the messages belonging to a given burst, hence with a feature sub-vector

Xb = [Lb,Tb], where sub-vector size is equal to the number of messages of

the burst. The complexity of the ideal, full masking within a burst is limited,

since typical burst comprise one or few messages. The overall flow masking is

no more full, since correlations across bursts are not taken care of (masking

decision is taken burst by burst).

82



4.2. All Features Masking

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Rate of Masking (q)

P
s
u
cc

 

 

k-means
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Figure 4.8: Probability of a successful classification as a function of the
masking rate q for the scenario HTTP over SSH and SFTP.

In general, message padding, fragmentation and dummy messages can be

used. If only padding is used, we define the Burst-by-Burst Padding Only

(BbBPO) masking algorithm and minimum byte and time overhead is ob-

tained as follows for each burst. Given feature sub-vectors x
(i)
b = [l

(i)
b , t

(i)
b ]

of application i, i = 1, 2, the shortest of the two sub-vectors is padded out

with zeros. Then, the output burst feature sub-vector is yb = [λb, τb] with

λb = max{l(1)
b , l

(2)
b } and τb = max{t(1)

b , t
(2)
b }. Figure 4.11 shows an example

of message length masking with padding only for bursts of two applications.

Dark shadowed portions of messages are padding bytes.

A different practical masking algorithm can be defined by resorting to addi-

tive masking. Let V (i) denote a random variable representing a generic feature
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Figure 4.9: Trade-off between normalized mutual information and over-
head for the scenario SSH and FTP-c.

of a flow of application i (i = 1, . . . ,M). We define F
(i)
V (v) ≡ P(V (i) ≤ v).

With additive masking the masked feature Ṽ is built as Ṽ = V (i)+U (i), for i =

1, . . . ,M , with U (i) a suitable non-negative random variable such that the pdf

of Ṽ is independent of i. In Section 4.1.1 it is shown that minimum overhead

additive masking is obtained by choosing FṼ (v) = min{F (1)
V (v), . . . , F

(M)
V (v)}.

This choice minimizes E[Ṽ ], hence E[U (i)] for a given value of E[V (i)], i =

1, . . . ,M . Once FṼ (v) is computed, the pdf of the U (i)’s can be calculated;

then, given a sample v of V (i), the masking quantity is sampled from the pdf

of U (i), say u, and the masked feature value is v + u, with u ≥ 0.

The Burst-by-Burst Statistical Additive (BbBSA) masking paradigm can

be applied to the masking of a mix ofM applications, whose flows are described
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Figure 4.10: Trade-off between normalized mutual information and over-
head for the scenario HTTP over SSH and SFTP.

by the compact vector features X = [B,Θ]. As for burst number we let Ñ =

N (i)+U
(i)
N , i = 1, . . . ,M , so a flows with N (i) = n is padded out with U

(i)
N = uN

bursts, whose lengths and epochs are chosen according to the pdfs of the

corresponding features. Let ñ = n+uN be the resulting number of bursts, with

sizes B(i) = [B
(i)
1 , . . . , B

(i)
ñ ] and gap times G(i) = [Θ

(i)
2 −Θ

(i)
1 , . . . ,Θ

(i)
ñ −Θ

(i)
ñ−1]

for the i-th application. Then, each burst size and gap time is masked as

B̃j = B
(i)
j + U

(i)
B,j and G̃j = G(i) + U

(i)
G,j , j = 1, . . . , ñ. Once the sizes of bursts

of the masked flow are determined, message length and timing can be defined

according to a fixed, pre-defined scheme, independent of the input application

flow.

Additive masking as presented above is a practical algorithm, since it can
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Figure 4.11: Examples of message length masking of bursts for two appli-
cations.

be applied by each endpoint separately, burst by burst, as they arrive at the

endpoint. Knowledge of burst size and gap times statistics is required, but

the pdfs of the number of bytes to add to bursts and their delays can be

pre-computed, so that the masking device operations can be reduced to table

lookup. The device data base comprises M tables for each feature to be masked

(e.g. burst lengths). For a given feature V , the table of the i-th application

has a number of rows and columns equal to the number of possible outcomes

of the feature to be concealed. The entry (u, v) of the i-th table contains

the conditional probability P(U
(i)
V = u|V (i) = v), where UV is the additive

masking applied to V .

4.2.2 Results

In this Section we report about performance of practical algorithms described

in Subsection 4.2.1. First, we compare optimum full masking, Burst-by-

Burst Statistical Additive (BbBSA) masking, Burst-by-Burst Padding Only

(BbBPO) practical masking, and fixed pattern masking. We have considered
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Application Pair Opt. full BbBSA BbBPO Fixed Burst
masking Masking Masking Size

HTTP - SSH 0.3663 0.3704 0.4428 0.5059
HTTP - FTP-c 0.4104 0.4105 0.4358 0.5844
HTTP - POP3 0.4233 0.4324 0.4479 0.5951
HTTP - VoIP 0.4080 0.3933 0.4255 0.5571
SSH - FTP-c 0.3022 0.3564 0.3799 0.6082
SSH - POP3 0.3489 0.3808 0.3890 0.6285
SSH - VoIP 0.2936 0.3100 0.3824 0.5657

FTP-c - POP3 0.1869 0.2439 0.2710 0.5263
FTP-c - VoIP 0.2231 0.2384 0.3174 0.4872
POP3 - VoIP 0.2700 0.2793 0.3421 0.4987

HTTP over SSH - SFTP 0.2752 0.2823 0.3229 0.5187

Table 4.4: Average overhead introduced by practical and fixed burst size
masking algorithms for various application mixes (BbBSA = Burst-by-Burst

Statistical Additive; BbBPO = Burst-by-Burst Padding Only).

padding only in case of BbBPO since it gives rise to much simpler implemen-

tation than in case fragmentation is used and results in Subsection 3.1.3 point

out that the overhead penalty is marginal.

Results for the byte overhead, calculated according eq. (2.20), are shown

in Table 4.4 in case of compact feature vector [B,Θ] (burst sizes and epochs)

and by considering the first 12 bursts for each flow. Remarkably, BbBSA

masking incurs a minor penalty as for overhead with respect to optimized

full masking. It can be considered as a sort of lower bound of the practical

algorithms. Notice that it is possible that E[OH] for BbBSA be less than for

full masking, since BbBSA is a practical masking, hence it is not full masking,

i.e., it does not fulfill the requirement of removing any leakage. Much more

overhead is demanded by BbBPO masking and especially by the fixed pattern

masking, where a same size of all bursts has been set, with the best choice for

each application mix.
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Notice that only optimum full masking and fixed burst masking remove

any leakage of traffic flow features. Whereas the former is only a theoretical

benchmark and cannot be realized, the latter is quite easily implementable

and does not even require statistical data. The price to pay for this simplicity

is about doubling the overhead with respect to the optimum and also with

respect to the BbBSA masking. The appeal of the statistical practical masking

whose results are reported in the two central columns of Table 4.4 depends on

their capability of reducing leakage enough to make classification essentially

fail. Since correlations are not taken care of when masking is decided burst by

burst, we expect some information is leaked by statistical practical algorithms.

Figure 4.12 plots the mutual information Î(A;TA) leaked by BbBPO masking

for some application mixes as a function of the number of bursts NB used by

the adversary for classification. The classification algorithm is Random Forest.

It is apparent that looking at the first few bursts does not yield a significant

amount of information that can be exploited by the adversary. As the number

of inspected bursts grows in the order of ten or more, a major leakage is found.

Correspondingly probabilities of successful classification range between 0.87

and 0.92 for NB � 10.

These findings are confirmed by results in Table 4.5, that refer to BbBPO

masking applied to flows by considering up to 50 bursts. The first column

shows the values of the average overhead; time overhead in the second column

is calculated in the same way by replacing packet lengths with inter-packets

gap times. On the third column, the average packet delay introduced by the

masking device is displayed. The four columns of the Table 4.6 show the values

of Psucc obtained with the considered flow classification algorithms.

The results point out that, when we mask all flow features, burst structure,

packet lengths and timing information, we get a significant worsening of the

traffic load on the network compared with the optimal masking for packet
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Application Byte Time Average Packet
Pair Overhead Overhead Delay (ms)

HTTP - SSH 0.4363 0.4702 63.310
HTTP - FTP-c 0.4713 0.4239 32.756
HTTP - POP3 0.4408 0.4515 23.879
HTTP - VoIP 0.4523 0.4258 27.313
SSH - FTP-c 0.4210 0.4750 80.345
SSH - POP3 0.4274 0.4814 68.027
SSH - VoIP 0.4198 0.4692 72.255

FTP-c - POP3 0.3992 0.4314 35.263
FTP-c - VoIP 0.3983 0.4156 38.617
POP3 - VoIP 0.4322 0.4529 41.988

HTTP over SSH - SFTP 0.3856 0.4728 50.133

Table 4.5: Average byte and time overheads and average delay introduced
by BbBPO masking algorithm for various application mixes.

Application Näıve Logistic Random K-means
Pair Bayes Forest

HTTP - SSH 0.6576 0.5303 0.8611 0.6905
HTTP - FTP-c 0.6863 0.5235 0.8779 0.7225
HTTP - POP3 0.5472 0.5094 0.8887 0.7080
HTTP - VoIP 0.5245 0.5112 0.8520 0.6324
SSH - FTP-c 0.5350 0.5900 0.9290 0.5825
SSH - POP3 0.5735 0.7725 0.9297 0.7180
SSH - VoIP 0.6019 0.5128 0.9102 0.6854

FTP-c - POP3 0.6715 0.6445 0.8914 0.6595
FTP-c - VoIP 0.6223 0.6355 0.8922 0.5922
POP3 - VoIP 0.5560 0.6326 0.9022 0.6976

HTTP over SSH - SFTP 0.5490 0.6606 0.8649 0.5712

Table 4.6: Psucc’s for the four classification algorithms considered.
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Figure 4.12: Average mutual information leaked by BbBPO masking as
a function of the number of burst NB used in the classification for various

application mixes.

lengths only. As a matter of fact, the overhead for most cases is more than

40% of the whole output traffic, and in one case it peaks to 47%. Average

delay ranges from few tens of ms up to about 80 ms; this is not an issue for

most applications but can become critical for VoIP.

In spite of the massive overhead introduced, the key result is that there is

still enough leakage for the adversary to be able to classify flow with rather high

accuracy, even though a suitable classifier must be chosen. Since intra-burst

masking is full (and even optimal), the leakage can be ascribed to correlations

among features of different bursts, that are not removed by additive mask-

ing. These considerations are also confirmed by Figures 4.13, 4.14 and 4.15
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Figure 4.13: Comparison between the successful classification probabilities
before and after BbBPO masking for the scenario HTTP and FTP-c.
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Figure 4.14: Comparison between the successful classification probabilities
before and after BbBPO masking for the scenario FTP-c and VoIP.
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Figure 4.15: Comparison between the successful classification probabilities
before and after BbBPO masking for the mix SSH and VoIP.

which show the comparison between the information leaks before and after

the BbBPO masking. The comparison of the practical masking in Figures 4.7

and 4.8 with q = 1 with results in Table 4.6 show that additive masking can

be effective if the adversary is limited to observation of the features of a small

number of flow packets, as required to attain real time classification, but it

fails if the adversary can take the time to observe the flow at length.
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Chapter 5

Masking Irrespective of the

Application

In this Chapter we aim to approach the problem of applying masking to a

packet traffic flow carried in an encrypted channel, irrespective of the applica-

tion(s) it comes from. Information leakage is stopped by means of traffic fea-

ture reshaping, specifically packet lengths and inter-arrival times. We address

two contributions: i) it is shown that under the constraint of perfect privacy

(namely, cancelation of any information leakage), the optimum masker shapes

the protected traffic flow into a fixed length, fixed rate output packet flow;

ii) we discuss a heuristic approach to reduce the amount of overhead at the

output of the masking device by releasing some controlled information.

As for the Chapter organization, the traffic masking system is introduced

in Section 5.1. Section 5.2 is devoted to masking optimization. Numerical

examples are presented in Section 5.3, based on real traffic traces.
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5.1 Masking Packet Traffic Flows

The reference scenario that we analyze in this Chapter is slightly different from

that described in the Chapter 2.

Let us consider two endpoints, denoted with A and B, and a packet flow

exchanged between A to B. We focus on A → B direction. For ease of

language, the term packet is used to refer to data units of the traffic flow,

even if they could belong to a layer different from network one. A and B

communicate via a secure channel through an insecure network. The adversary

can capture packets at will in the insecure network and knows a priori traffic

statistics. He can carry out traffic analysis to attack user privacy as discussed

in Chapter 1.

Let Lr and Tr be the lengths of the r-packet and the time elapsing between

the (r−1)−th and the r-th packets as generated at A (r-th inter-packet time).

We denote the r-th packet arrival time at A as ta,r: then ta,r = ta,r−1 +Tr. We

assume both L’s and T ’s can be modeled as drawn from wide-sense stationary

processes, so that the for any r we have Lr ∼ L and Tr ∼ T , with L and T being

random variables with at least finite first two moments. From the discussion

above we know that the sequences {Lr}r∈Z and {Tr}r∈Z carry information

about the traffic flow content, that we refer to generically as a random variable

Φ.

The anonymity in the network can be defined after [41] by using the condi-

tional uncertainty of the flow content Φ with respect to eavesdropper’s obser-

vations, denoted with Ω (packet lengths and inter-packet times of the observed

packet flow for each direction). The degree of traffic masking is measured by

the normalized equivocation α = H(Φ|Ω)/H(Φ), where H(L) is the average

entropy of the random variable L. Perfect privacy corresponds to α = 1. In

that case, observation of Ω does not yield any additional information about Φ
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Figure 5.1: Sketch of the end-to-end connection with traffic masking: def-
inition of in and out inter-packet inter-arrival times and packet length.

than that provided by the prior probability distribution of Φ. In general, the

interpretation of α comes from Fano Inequality: equivocation provides a lower

bound to the error probability of the eavesdropper in decoding the flow side

information correctly. To cancel any information leakage we replace original

packet lengths and inter-packet times with two new sequences, drawn from

random process independent of the original ones, so that the resulting Ω has

no relationship with Φ and it is α = 1.

A general scheme of the masking device is given in Fig. 5.1. Let Yr and

Ur be sequences of packet lengths and inter-packet time intervals, chosen for

the masked traffic flow. The output packet departure times are denoted as td,r

and td,r = td,r−1 + Ur. The masking device shapes the input original traffic

flow so as to impose that the output flow r-th packet has payload length Yr

and it is sent at time td,r.

The logical block structure of the packet masking device is shown in Fig.

5.2. First, the input packet with length L is broken into N new packets of

lengths Y1, . . . , YN , whose length are drawn from the output packet length

probability distribution function fY (·), so that Y1 + · · ·+ YN−1 < L and Y1 +

· · ·+YN ≥ L. The bytes of the input packet are carried by the newly generated
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Figure 5.2: Masking device with packet length and gap times masking.

fragments. A header of length H is added to each fragment to form the output

packet. The header carries the information required to reassemble the original

packet at the other end of the secure channel. Those new packets are enqueued

in a FIFO buffer. At output departure time td,r, a packet is taken from the

data buffer and sent to the output. If the data buffer is empty, a dummy packet

is sent to the output, again with length taken from the pdf fY (·). Overhead

sources aref fragmenting, padding and dummy packets.

In the following, we optimize the choice of the pdfs of the output packet

lengths and inter-arrival times of the masking device, by minimizing overhead

for a given requirement on the average delay through the device.

5.2 Masking Device Optimization

Let us consider a masking device with output link capacity C, receiving an

input packet flow described by inter-arrival times Tr and packet lengths Lr.

The masking device shapes the traffic by emitting at the output packets with

payload lengths Yr and a header length H, within time intervals of duration Ur.

We assume the average values of all these processes are given. Let λ ≡ 1/E[T ]

and µV ≡ E[V ] for any random variable V .
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The long term average input rate of the masking device is λµL, while

the output bit rate including overhead is (H + µY )/µU . So, the long term

average fraction of overhead at the output of the masking device is η = 1 −
(λµLµU )/(H + µY ). We aim at minimizing the delay through the masking

device for a given value of η. Since the mean delay is a decreasing function

of η, this is equivalent to minimizing the overhead η for a given mean delay

constraint.

The evolution of the masking buffer can be described by the continuous

time random process defined as the buffer content at time t, Q(t). We consider

the random sequence Qn ≡ Q(t+d,n), n ≥ 0, that represents the amount of bytes

stored in the buffer immediately after the departure of the n-th output packet

with payload Yn. If we assume enough buffering space is provided so that we

can neglect overflows, the sequence Qn obeys a Lindley recursion:

Qn = max{0, Qn−1 +An − Yn}, n ≥ 1 (5.1)

where Q0 = 0 and An represents the amount of bytes arrived at the queue

during time interval (td,n−1, td,n] with td,n = td,0 + U1 + · · ·+ Un and n ≥ 1.

An explicit form of Qn can be derived as:

Qn = max

{
0, max

1≤ν≤n

{
n∑
i=ν

Ai −
n∑
i=ν

Yi

}}
(5.2)

For ease of notation, in the following we assume
∑b

i=a ≡ 0 for a > b.

Then, it follows

E[Qn] =

∫
An

fAn(a)da

∫
Yn

fYn(y)qn(a,y) dy (5.3)
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where qn(a,y) = max1≤ν≤n+1 {
∑n

i=ν ai −
∑n

i=ν yi}, fV (v) denotes the prob-

ability density function of the random variable V and An = [A1, . . . , An],

Yn = [Y1, . . . , Yn]. The random vectors An and Yn are independent by con-

struction of the masking device, to achieve perfect privacy.

The function max1≤ν≤n+1 {
∑n

i=ν ai −
∑n

i=ν yi} is convex with respect to

each of the variables yi. As a matter of fact, let cr ≡ max1≤ν≤r{
∑n

i=ν ai−∑n
i=ν,i 6=r yi} and br ≡ maxr+1≤ν≤n+1 {

∑n
i=ν ai −

∑n
i=ν yi}. Then, g(yr) ≡

max1≤ν≤n+1 {
∑n

i=ν ai −
∑n

i=ν yi} = max{br, cr − yr}. We can verify that the

function g(z) is convex: for any α ∈ [0, 1], z1 and z2 we have cr − αz1 − (1−
α)z2 = α(cr− z1) + (1−α)(cr− z2) ≤ αmax{br, cr− z1}+ (1−α) max{br, cr−
z2} = αg(z1)+(1−α)g(z2). Since it is also br ≤ αg(z1)+(1−α)g(z2). we have

g(αz1 + (1− α)z2) = max{br, cr − αz1 − (1− α)z2} ≤ αg(z1) + (1− α)g(z2).

Since the integrand in eq. (5.3) is convex with respect to each of the vari-

ables yi, i = 1, . . . , n, and the random variables Yn are i.i.d. and independent1

of An, we can apply Jensen’s inequality and deduce E[Qn] ≥ E[QDn ] where

E[QDn ] =

∫
An

max
1≤ν≤n+1

{
n∑
i=ν

ai − (n− ν + 1)µY

}
fAn(a) da (5.4)

with equality iff the random variables Yi are deterministic. E[QDn ] is the aver-

age queue length at td,n in case of deterministic pdf of the Y ’s.

The random variables Qn and QDn converge to proper random variables

Q and QD, i.e. there exists a stable, stationary limiting state of the queue as

n → ∞, if µA − µY = λµLµU − µY < 0, that is to say the average drift of

the queue in negative. Under this assumption, eq. (5.4) yields in the limit as

n→∞ the inequality E[Q] ≥ E[QD], with equality if the random variables Yi

have deterministic pdf.

1This is the key to apply Jensen’s inequality.
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This proves that the average masking device queue length is minimized by

choosing a deterministic pdf with mean Y0 ≡ µY for the output packet payload

length Y .

As for the interval lengths Ui, let us consider the workload or unfinished

work in the queue at time t, W (t). We consider the random sequence Wn ≡
W (t−a,n), n ≥ 0, that represents the amount of workload in the queue found

by the n-th arriving input packet. If Sn is the amount of work brought in the

queue by the n-th arriving packet, we can write2

Wn+1 = max{0,Wn + Sn − Tn+1} (5.5)

for n ≥ 1 and W1 = 0. Analogous to the case of Qn, eq. (5.5) can be made

explicit as

Wn+1 = max
1≤ν≤n

{
0,

n∑
i=ν

Si −
n+1∑
i=ν+1

Ti

}
(5.6)

To ease notation, let `j(L) = dL1/Y0e+ · · ·+ dLj/Y0e; so

E[Wn+1] =

∫
(Ln,Tn)

fLn,Tn(x, t)dxdt

∫
Un

fUn(ϑ)Mn dϑ

with

Mn(x, t, ϑ) = max
1≤ν≤n

0,

`n(x)∑
i=`ν−1(x)+1

ϑi −
n+1∑
i=ν+1

ti

 (5.7)

The integrand Mn is convex with respect to each ϑi, by an entirely similar

argument as in the case of eq. (5.3). By applying Jensen’s inequality, it follows

that E[Wn+1] ≥ E[WD
n+1], where WD denotes the workload in case the random

2An input packet that finds the queue empty has to wait for the next output sending
time, hence it has a nonnull wail equal to the residual time random variable associated to U ,
thabks to the independence of the times U of the queue state and input process; in that case
we should add a term E[U2]/(2E[U ]); this term is minimized too when U has a deterministic
pdf.
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variables Uj are deterministic for all j ≥ 1. If the limiting random variable for

n→∞ exists, namely if the queue is stable, the result applies to the limiting

random variable, i.e. E[W ] ≥ E[WD] with equality iff the random variable U

is deterministic with mean U0 ≡ µU .

As a result, the average delay of the masking device queue is minimized,

for a given overhead fraction η, if we choose the output shaping with constant

amounts of bytes sent out at constant times, as in circuit switching.

5.3 Numerical Results

According to the result in Section 5.2, the optimum masking device under the

constraint of perfect privacy consists of fragmenting each input packet into

fixed length fragments and sending fragments out to the link at constant rate.

Let Y0 be the length of the output fragment payload, H be the output packet

header length, U0 be the packet inter-departure time at the output of the

masking device and C the output link capacity. It must be (Y0 +H)/C ≤ U0.

For numerical examples, we assume H = 20 bytes.

In the following we detail the overhead calculation, define a “relaxed”

masking device where some information on the packet length distribution is

leaked aiming at a reduction of overhead, and then present numerical results.

5.3.1 Overhead

The average number of bytes per second entering the masking device is λE[L],

while the average number of bytes out of the buffer of the masking device

are (Y0 + H)/U0. So the average fraction of bytes of overhead is η = 1 −
λE[L]

(Y0+H)/U0
. The average fraction of overhead due to dummy packets is ηd =

1−λU0E[dL/Y0e]; the average fraction of padding and fragmentation overhead
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per packet are ηp = Y0E[dL/Y0e]−E[L]
(H+Y0)E[dL/Y0e] and ηf = H

H+Y0
respectively. It can be

checked that η = (1− ηd)(ηp + ηf ) + ηd.

The feasible range for η is

1− E[L]

E[dL/Y0e](Y0 +H)
< η ≤ 1− λE[L]

C

provided that Y0 satisfies λE[dL/Y0e](H + Y0)/C < 1. Once we fix feasible

values of η and Y0, the value of U0 is given by U0 = (H + Y0)(1− η)/(λE[L]).

5.3.2 Relaxed Masking Device

Numerical values of the mean delay and of the average overhead frac-

tion have been obtained by considering a sample IP traffic trace from the

CAIDA repository, namely the trace corresponding to the capture file equinix-

sanjose.dirA.20120119-125903.UTC.anon.pcap. C = 10 Gbps is the link ca-

pacity. The value of E[T ] = 1/λ for the considered sample trace is 1.9027 µs.

The histogram of packet lengths of the sample trace is shown in Figure 5.3.

This trace comprises 28744877 IPv4 packets (overall about 21.7 IPv4 GB)

and 1408949 IPv4 flows.

A strong concentration of most probable values can be noticed. About

40% of packets have close to maximum length, beyond 1400 bytes. More than

30% of packets are quite small, with lengths in the order of 100 bytes or less.

This suggests that a single value of output packet length Y0 can hardly strike a

good compromise, although we know that it is optimum, given the full privacy

constraint. If we accept that the fraction of “small” packets as opposed to

“long” packets can be observed at the output of the masking device, that is

to say if we give up full privacy only to leak this specific information, we can

define a dual-length masking device, where input packets are sent to one of

two queues depending on their length (see Figure 5.4). Given a threshold value
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Figure 5.3: Histogram of packet lengths for the sample IP packet trace
used in the numerical example.

Y1, if the incoming packet has length L ≤ Y1 it is queued in the upper buffer,

where the output fixed length is Y1. If instead the input packets has L > Y1, it

is sent to the lower queue, where we set the output packet fixed length to the

maximum expected input value, denoted with Y2. According to the histogram

of packet lengths in Figure 5.3. good choices for the output payload lengths

are Y1 = 100 bytes and Y2 = 1480 bytes.

Given the desired output rate Cout, the values of the emission intervals U1

and U2 of the two queues are chosen so that the average load % on the two

queues be the same, i.e., λqE[dL/Y1e]U1 = λ(1− q)U2, where q = P(L ≤ Y1).

Then, (H +Y1)/U1 + (H +Y2)/U2 = Cout and for each given value of Cout the

corresponding value of % can be calculated.
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Figure 5.4: Logical scheme of the dual buffer masking device.

5.3.3 Simulation of the Masking Device

The workload process of the masking device can be found by simulation, once

the sequences of input packet lengths and inter-arrival times are given. For the

single buffer device, given the values of Y0 and U0, we can write a recurrence for

the workload Wn soon after the n-th packet arrival. If Wn−1 − Tn is positive,

then Wn = Wn−1 − Tn + Sn, where Sn = dLn/Y0eU0. If instead Wn−1 − Tn
is negative, a time U0d(Tn −Wn−1)/U0e − (Tn −Wn−1) has to elapse before

the server can start serving the packet(s) generated by the new arrival. This

is the result of the output being rigidly clocked at one output packet per time

interval U0. Summing up, we have:

Wn = Wn−1 − Tn + U0

(⌈
max{0, Tn −Wn−1}

U0

⌉
+

⌈
Ln
Y0

⌉)
(5.8)

for n ≥ 1, initialized with W0 = 0.

Trace driven simulations of the masking device have been carried out with

the packet length and inter-arrival times extracted from the CAIDA trace

described above. The CAIDA trace is made up of carried traffic over a link,
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tb,k

tb,k+Wk

queueing

tb,k+1

ta,k+1

ta,k

tb,k+1+Wk+1

Figure 5.5: Example of correction of arrival times of packets (timestamps
as observed in the CAIDA trace) of a same application flow to account for

the effect of the masking device in the flow loop.

so that we have to account for the effect of the insertion of the masking device

buffer on packet inter-arrival times. This effect arises because of conversational

applications, where a packet in one direction triggers a response and the next

packet in that direction can only arrive after the response has been received. If

a delay element is introduced in the data path, the inter-arrival times between

consecutive packets belonging to a same application flow are affected by the

delay. Application flows are identified on the basis of the values of the IP source

address, IP destination address, source port and destination port, provided the

gap between two consecutive packets be less than Tthresh = 10 sec.

For a packet flow, let Pr the r-th packet of the flow and ta,r its original

timestamp in the measured trace (r ≥ 1). Let Wr be the delay of the r-th

packet through the masking device. Then, the arrival time of the subsequent

packet of the same flow is delayed to the corrected arrival time tb,r, to account
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Figure 5.6: Performance of masking: average overhead vs. output bit rate.

for the effect of the masking device on the traffic, that is we let tb,r+1 =

tb,r + ta,r+1 − ta,r +Wr (see Figure 5.5).

5.3.4 Performance Results

Figures 5.6 and 5.7 plot respectively the average overhead and the average

delay through the masking device as a function of the output bitrate for some

values of Y0. The general behaviour of these curves is characterized by a

monotonic trend. The overhead for each curve starts from a minimum value

between 0.3 and 0.4 and increases until reaching a value between 0.6 and 0.7.

Only for Y0 = 20 bytes we have a curve significantly higher compared to the

other ones, with overhead between 0.6 and 0.85. The smallest overhead, equal

to 0.3, is achieved by the dual buffer masking device.
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Figure 5.7: Performance of masking: average delay vs. output bit rate

The trade-off between the average delay and the overhead is shown in

Figure 5.8, for some values of Y0 and for the device with dual buffer. Samll

delays can be obtained at the price of very large overhead values. If a masking

delay up to about 20µs can be introduced, the dual buffer masking device leads

to overhead values of 0.3, i.e., 30% of the output rate is masking overhead.

This is not as bad a result, considering that privacy protection is essentially

complete, the only leaked information being the fraction of the overall input

traffic consisting of short packets.

Figures 5.9, 5.10 and 5.11 shows how the overhead is distributed among

padding, fragmentation and dummy packets for Y0 = 100, 1480 bytes and

for the dual buffer device. When Y0 = 100 bytes we can observe that the

overhead is mainly dominated by dummy packets, to which a good percentage
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Figure 5.8: Performance of masking: masking device trade-off between
average delay and average overhead.

of fragmentation overhead is added. With Y0 = 1480 bytes the amount of

overhead due to padding is very high and significantly increases the total

overhead, while no fragmentation is required. Figure 5.11 shows how the dual

buffer device allows to obtain a lower overhead by almost eliminating the

fragmentation overhead.
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Figure 5.9: Contribution of different overhead sources: Y0 = 100 bytes.
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Figure 5.10: Contribution of different overhead sources: Y0 = 1480 bytes.
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Figure 5.11: Contribution of different overhead sources: double buffer
masking device.
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Chapter 6

Final remarks and outlook

An increasing amount of networking research is focusing on traffic flow classi-

fication, since it can be useful for enforcement of security policies and traffic

filtering, or it can support quality of service mechanisms. In particular, sev-

eral methods of classification based on statistical analysis of traffic patterns

and machine-learning techniques have been proposed and analyzed. Statisti-

cal classification takes some features of the flow packets (e.g. packet lengths,

inter-arrival times, direction) and exploits these information to infer which

application or service is running those packets, among a set of possible al-

ternatives. Furthermore, based on packet features and possibly other context

informational, it is shown that other type of privacy breaking of supposedly

end-to-end secure channels exist; as matter of example web pages identifica-

tion, language/phrase detection in VoIP communication have been successfully

demonstrated against encrypted channels.

In this Thesis I aimed at investigating a complementary viewpoint, namely

protection of privacy against traffic analysis. The same study highlighted how

much effort and how complex it is to obfuscate the information leaked by traffic

features. We defined the security model pointing out what the ideal target of
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masking is, and we defined the some optimized and practically implementable

masking algorithms, yielding a trade-off between privacy and overhead/com-

plexity of the masking algorithm.

6.1 What Have We Achieved?

The first interesting finding is that Optimum Masking in Chapter 3, even if it

is not feasible for transactional, interactive applications, is useful to character-

ize the full concealment case and it offers a theoretical bound on the amount

of overhead necessary to achieve perfect secrecy. It also has shown that frag-

menting does not achieve significantly better performance than simple padding

as far as overhead-obfuscation trade-off is concerned.

Considering Practical Masking, numerical results, based on measured In-

ternet traffic traces, point out that a basic distinction must be done between

real time adversary and off line adversary, observing features of an extended

segment of the flow. In the former case, even if some information useful to the

adversary leaks when relaxing to practical masking from full masking, still it

appears that classification is essentially impaired (success probabilities of best

algorithms we could find are below 0.6 in case of two applications). This is

tied to the limited number of features used by the adversary, compelled by the

need to decide on a class of the observed masked flow in real time, as the flow

starts. Things turn out to be completely different if the adversary can take

time to classify the flow and observe its features over several bursts, in the or-

der of tens. In that case practical masking, though canceling any information

useful for classification inside each burst, cannot remove entirely correlations

across features of different bursts1. So, statistical, practical masking, even

though it minimized overhead burst by burst, still introduces a considerable

1This is similar, though much more complex, to mono-alphabetic ciphering, when attacked
by exploiting language redundancy, hence correlation.
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amount of overhead while failing to protect privacy against an off line adver-

sary. Another question concerns the amount of data requested in advance by

the masking device, in order to carry out an accurate process of obfuscation.

In fact, it requires knowledge of estimates of the probability density functions

for all used features of the considered M applications. As the duration of a

flow grows up, the amount of data required becomes very high and quite hard

to estimate reliably.

Our numerical investigation gives merit to simpler masking approaches,

that give up to global or local optimization leveraging on statistical masking

and resort instead to rigid, fixed pattern masking. While increasing overhead

with respect to statistical masking, as expected since no optimization is at-

tempted with fixed masking, yet that approach removes any information that

could be exploited by the classification adversary, preserves implementation

simplicity, and overhead price is not terribly greater than that entailed by op-

timized solutions (within a factor of 2 from the full, ideal optimized masking),

at least in cases we have experimented.

A different and potentially promising approach we had pursued in Chapter

5 is the masking irrespective of the application(s) it comes from. Given full

privacy is required, the optimum masking device shall shape the packet flow so

that fixed length packets at fixed times are sent through the insecure network.

In this context dummy packets are the major source of overhead, due to input

traffic burstiness. Mitigation of overhead can be obtained by exploiting the

input packet length pdf and let some minor information leak through the

masking device.
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Gero, Judith Kelner, Stenio F. L. Fernandes, and Djamel Fawzi Hadj

Sadok. A Survey on Internet Traffic Identification. pages 37–52, 2009.

[7] http://bro-ids.org/;http://www.snort.org.

[8] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow

Clustering Using Machine Learning Techniques. In PAM, pages 205–214,

2004.

[9] Andrew W. Moore and Denis Zuev. Internet traffic classification using

bayesian analysis techniques. In SIGMETRICS, pages 50–60, 2005.

[10] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.

BLINC: multilevel traffic classification in the dark. In SIGCOMM, pages

229–240, 2005.

[11] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli.

Traffic classification through simple statistical fingerprinting. pages 5–16,

2007.

[12] Sebastian Zander, Thuy T. T. Nguyen, and Grenville J. Armitage. Auto-

mated Traffic Classification and Application Identification using Machine

Learning. In LCN, pages 250–257, 2005.

[13] Laurent Bernaille, Renata Teixeira, and Kavé Salamatian. Early applica-
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