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Abstract

Dynamical evolution plays a key role in shaping the current properties of star clus-

ters and star cluster systems. We present the study of stellar dynamics both from

a theoretical and numerical point of view. In particular we investigate this topic

on different astrophysical scales, from the study of the orbital evolution and the

mutual interaction of GCs in the Galactic central region to the evolution of GCs in

the larger scale galactic potential.

Globular Clusters (GCs), very old and massive star clusters, are ideal objects

to explore many aspects of stellar dynamics and to investigate the dynamical and

evolutionary mechanisms of their host galaxy. Almost every surveyed galaxy of

sufficiently large mass has an associated group of GCs, i.e. a Globular Cluster

System (GCS). The first part of this Thesis is devoted to the study of the evolution of

GCSs in elliptical galaxies. Basing on the hypothesis that the GCS and stellar halo

in a galaxy were born at the same time and, so, with the same density distribution, a

logical consequence is that the presently observed difference may be due to evolution

of the GCS. Actually, in this scenario, GCSs evolve due to various mechanisms,

among which dynamical friction and tidal interaction with the galactic field are the

most important. On the other side, the collisionless stellar halo component stands

unchanged, thus the difference between the two profiles may correspond to mass

lost by the GCS to the galactic center. There the GCs merge and they contribute

to the formation/accretion of a luminous and compact central Nuclear Star Cluster

(NSC). This is known as the “merger model” for the formation of NSCs, observed

at the center of many galaxies and also in the Milky Way (MW) center.

In the second part of this work a new high performance code, NBSymple, is

presented. NBSymple is an efficient N -body integrator implemented on a hybrid

CPU+GPU platform, exploiting a double-parallelization on CPUs and on the hosted

Graphic Processing Units (GPUs). The precision is guaranteed by direct summa-

tion for force evaluation, and on the use of high order, symplectic time integration

methods. The code allows the choice between two different symplectic integrators:

a second-order algorithm (commonly known as leapfrog) and a much more accurate

(but also time consuming) sixth-order method. The effect of the external galactic

field is represented as an analytical approximation of its gravitational potential.

The code has been widely tested and benchmarked. Moreover, it has been used for

various applications (globular clusters quasi-radial orbit through a galactic massive

central object, primordial evolution of young stellar clusters, etc.).

NBSymple and another, publicly available, direct summation code, φGRAPE,

have been used to explore the the previously described merger mode for the Galactic

NSC formation. In particular, we used self consistent N -body simulations where the

Galaxy was modeled using observational data about the Milky Way, and including

the presence of the Galactic central supermassive black hole. We let decay 12 GCs
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initially located on different circular orbits at the same galactocentric distance. The

merging of clusters in the central zone of the Galaxy and its following evolution due

to two-body relaxation generates a NSC that actually resembles the one observed

at the center of the MW.

By mean of numerical simulations carried on with NBSymple, we investigated

more in detail the dynamical evolution of GCs in the MW potential with particular

attention to the formation of clumpy structures in the tidal tails that arise around

the orbiting cluster. Although various hypothesis have been proposed, the formation

process of these clumps is not yet clearly understood. Through a statistical analysis

of the orbital properties of the stars that “escape” from the cluster we aimed to

a better understanding of the on going process. Studying and comparing such

simulations with observational data we could gain to a deeper knowledge of the

shape Galactic potential and, more generally, of the Galactic dynamics.
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Introduzione

Nel 1971 l’astronomo francese Charles Messier pubblicò un catalogo di oggetti celesti

nebulosi brillanti. Il primo oggetto del catalogo, M1, era la Nebulosa del Granchio; il

secondo, M2, era un ammasso globulare, ovvero un ammasso sferico autogravitante

di centinaia di migliaia di stelle. Degli oggetti catalogati, 28 sono oggi riconosciuti

come ammassi globulari; ad oggi, un totale di 150 ammassi globulari è stato osser-

vato nella nostra Galassia. Dopo questa scoperta l’importanza dello studio degli

ammassi globulare è cresciuta in maniera significativa.

Gli Ammassi Globulari (AG) sono i soggetti principali di questa Tesi. Qui trat-

teremo la loro evoluzione su diverse scale spaziali (dalla loro interazione nei nuclei

galattici alla loro evoluzione nel campo galattico) e sotto diversi punti di vista; in

particolare utilizzeremo sia l’analisi di dati osservativi sia metodi numerici.

Questi ammassi sono sistemi stellari estremamente antichi e massicci; essi sono

oggetti ideali per l’esplorazione di molti aspetti della dinamica stellare e per inves-

tigare i meccanismi dinamici ed evolutivi della loro galassia di appartenenza. Sono

infatti sistemi dove alcuni processi dinamici fondamentali hanno avuto luogo su un

tempo scala più breve dell’età dell’Universo. A differenza delle galassie, questi am-

massi rappresentano laboratori unici per lo studio del rilassamento a due corpi, della

segregazione di massa dovuta all’equipartizione dell’energia, delle collisioni e fusioni

stellari e dei collassi centrali. Tuttavia solo recentemente, dalla maggior parte degli

studi teorici ed osservativi, è emersa la reale complessità della dinamica degli am-

massi globulari. Questi lavori hanno chiaramente mostrato la stretta interazione tra

dinamica stellare, evoluzione stellare, contenuto stellare degli ammassi e la dinamica

e le proprietà della galassia ospite (Heggie, 1992). Come mostreremo largamente,

l’evoluzione degli AG potrebbe essere collegata alle proprietà dinamiche e morfo-

logiche della regione centrale della loro galassia ospite. L’introduzione relativamente

recente di strumenti ad alta risoluzione, sia terrestri che spaziali, ha incrementato

le conoscenze riguardanti queste regioni peculiari. In particolare, le osservazioni ef-

fettuate dall’Hubble Space Telescope hanno rivelato la presenza di ammassi stellari

densi al centro di molte galassie; questi ammassi sono noti come ammassi stellari

nucleari (NSC, dall’inglese Nuclear Star Cluster). I NSC sono stati osservati in

galassie di qualsiasi tipo di Hubble, e ciò suggerisce una stretta connessione tra la

loro formazione e l’evoluzione della galassia in cui essi risiedono. Un’altra classe di

oggetti la cui presenza è stata rivelata al centro delle galassie è quella dei buchi neri

1



2 Introduzione

supermassicci (SMBH), la cui massa può essere maggiore di 109 M⊙. I SMBH sono

tipicamente osservati nelle galassie massicce (M ≥ 1010 M⊙), mentre i NSC sono

presenti in quelle meno massicce (Böker, 2010b). Sembra che i NSC obbediscano a

una relazione di scala con le proprietà della galassia ospite simile a quella seguita dai

SMBH; inoltre, la media della funzione di frequenza del rapporto tra la luminosità

del nucleo e quella della galassia, (log η) = −2.49 ± 0.09 dex (σ = 0.59 ± 0.10), è

indistinguibile da quella trovata per il rapporto di massa tra SMBH e bulge della

galassia, log(M/Mgal) = −2.61± 0.07 dex (σ = 0.45± 0.09), calcolata in 23 galassie

di tipo primordiale contenenti un SMBH (Côté et al., 2006). Questi risultati hanno

suggerito che i NSC possano essere le controparti meno massicce dei SMBH. Se

questa interpretazione fosse corretta, si dovrebbe pensare in termini di un “oggetto

centrale massiccio” sia esso un SMBH o un nucleo stellare compatto che accompa-

gna la formazione di quasi tutte le galassie di tipo antico e che contiene una frazione

media pari a ∼ 0.3% della massa totale del bulge. In alcune galassie, tra cui la Via

Lattea (VL) il NSC coesiste con il SMBH, e quindi questa affermazione non può

essere ritenuta conclusiva.

L’evoluzione dinamica degli ammassi stellari considerati come sistemi isolati è

stata studiata approfonditamente a partire da Plummer (1911), che fu il primo a

suggerire una legge analitica che rappresentasse la distribuzione di densità degli AG.

Con questo lavoro si aprì la strada agli studi di King che portarono ad una migliore

approssimazione analitica delle proprietà degli AG per mezzo dell’assunzione della

distribuzione di velocità Maxwelliana troncata alla velocità di fuga locale (King,

1963). Il ruolo del campo esterno è però importante perché accelera la dinamica

interna e il rilassamento e quindi anche la conseguente instabilità degli ammassi

debolmente legati, causandone, eventualmente, la dissoluzione. Ne consegue che,

per ottenere risultati affidabili, è necessario studiare la dinamica stellare prendendo

in considerazione l’effetto del potenziale esterno. L’evoluzione dei sistemi stellari

è dunque un problema molto complicato da affrontare, tuttavia, con buona ap-

prossimazione, la dinamica interna degli ammassi a cui siamo interessati può essere

considerata come un problema ad N -corpi, in cui le stelle sono considerate come

punti di massa. Le forze dominanti che governano il loro moto interno sono le mutue

forze gravitazionali e quelle dovute al campo mareale della galassia. Nella nostra

analisi trascureremo l’effetto della perdita di massa dovuta all’evoluzione stellare

e non considereremo l’evoluzione primordiale degli ammassi e la presenza del gas,

il cui effetto, come è noto, cessa presto durante l’evoluzione dell’ammasso, ossia

quando le stelle più massicce terminano la loro evoluzione (Aarseth and Heggie,

1998).

Il problema degli N -corpi non è però risolubile analiticamente per N > 2; dob-

biamo quindi affidarci a metodi numerici. Ad ora, numerose sono le tecniche e gli

algoritmi sviluppati. Uno dei più popolari, noto come Fokker-Plank, tratta le stelle

nell’ammasso come un gas; gli incontri gravitazionali tra le stelle sono considerati

come collisioni in un gas ideale. Questo è un approccio piuttosto approssimativo; i

metodi diretti aN -corpi sono molto più accurati e affidabili per studiare l’evoluzione
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dinamica dei sistemi stellari. Questi modelli a N -corpi sono infatti privi di assun-

zioni semplificative, al contrario di quello che accade per le altre tecniche. La loro

debolezza principale consiste nel tempo di calcolo richiesto che può essere enorme

quando un ammasso viene rappresentato con un grande numero di particelle. Mo-

tivati dal grande numero di problemi aperti nello studio della dinamica stellare (sia

puramente astrofisici che computazionali) abbiamo svolto il nostro lavoro i cui risul-

tati sono raccolti in questa Tesi, che è organizzata come segue.

• Il Capitolo 1 raccoglie alcune informazioni di base sui sistemi stellari. Par-

leremo brevemente di associazioni, “stream” stellari e ammassi aperti. Forni-

remo inoltre dettagli sugli AG e sui NSC.

• Ogni galassia osservata contiene un insieme di AG: il Sistema di Ammassi

Globulari (SAG). Nel Capitolo 2 focalizzeremo l’attenzione sul problema a

larga scala dell’evoluzione dei SAG in galassie ellittiche effettuata utilizzando

dati osservativi. I SAG evolvono principalmente a causa di due meccanismi:

l’attrito dinamico e l’interazione mareale con il campo galattico. Questi mec-

canismi causano il decadimento orbitale degli AG al centro della galassia.

Un risultato osservativo significativo è che, in molte galassie, il SAG sem-

bra essere meno concentrato, nella regione centrale della galassia di apparte-

nenza, rispetto alle stelle di alone. Una delle possibili spiegazioni di questa

differenza potrebbe essere la nascita contemporanea dei due sistemi, seguita

dall’evoluzione del profilo di densità del SAG, fino alla distribuzione attuale.

Poiché le stelle di alone costituiscono un sistema non collisionale, il loro pro-

filo rimane invariato, quindi la loro distribuzione attuale rappresenta il profilo

di densità iniziale del SAG. Con questa premessa è possibile valutare il nu-

mero degli AG decaduti orbitalmente nella regione centrale della galassia come

l’integrale della differenza tra i due profili. Per mezzo di ipotesi sulla massa

media degli ammassi decaduti è possibile dare una stima della massa persa dal

SAG. Dopo un breve riassunto dei risultati trovati in letteratura mostreremo

in dettaglio i risultati originali da noi ottenuti per un nuovo insieme di galassie

ellittiche: NGC 1400, NGC 1407, M 49, NGC 3268, NGC 3258, NGC 4374,

NGC 4406 e NGC 4636.

• Nel Capitolo 3 introdurremo il problema degli N -corpi e le sue proprietà

principali. Descriveremo anche i possibili algoritmi e le soluzioni hardware

adottate.

• In particolare, una delle possibili classi di integratori temporali usati nel pro-

blema degli N -corpi è quella costituita dai metodi simplettici. Questi metodi

sono largamente utilizzati in meccanica celeste essendo caratterizzati da una

elevata precisione. I metodi simplettici di ordine elevato sono molto affidabili

ma anche pesanti dal punto di vista computazionale. La recente introduzione
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delle schede grafiche programmabili (Graphic Processing Units, GPU) come

acceleratori di calcolo a basso costo ci ha permesso di introdurre questi metodi

in un nuovo codice a somma diretta per sistemi ad N -corpi, NBSymple, carat-

terizzato da alte prestazioni e doppiamente parallelo (sia su CPU che su GPU).

Questo codice verrà descritto nel Capitolo 4; NBSymple è stato testato su

diverse architetture e in numerosi contesti astrofisici e i risultati di questi test

saranno mostrati in questo stesso capitolo.

• Il Capitolo 5 è dedicato allo studio della formazione e dell’evoluzione dei

NSC nelle galassie ed in particolare nella VL. Dall’ipotesi descritta nel Capi-

tolo 2 segue che una grande quantità di massa può arrivare al centro di una

galassia in forma di AG orbitalmente decaduti. Questi ammassi, fondendosi,

possono formare il NSC centrale della loro galassia ospite. Questo scenario è

noto come “merger model” della formazione dei NSC. Esploreremo la possi-

bilità che un problema a larga scala sia collegato all’evoluzione su larga scala

degli AG. In particolare, verificheremo se il decadimento degli AG al centro

della galassia può dare luogo ad un sistema simile ai NSC osservati per mezzo

di simulazioni a N -corpi auto-consistenti (mai realizzate in precedenza), in

cui al centro della galassia viene considerata la presenza di un SMBH. Rivol-

geremo poi la nostra attenzione alla nostra Galassia, il cui modello è basato

sui più recenti dati osservativi sulla VL, considerando, per la prima volta, il

SMBH centrale. Seguiremo l’evoluzione dell’ammasso stellare che si forma al

centro della Galassia, intorno al SMBH, tramite la fusione di AG e confronter-

emo i risultati della simulazione con le proprietà morfologiche e cinematiche

osservate per il NSC Galattico.

• Nel nostro studio dell’evoluzione dinamica dei sistemi stellari, usando NB-

Symple, esploreremo un problema aperto dell’evoluzione degli AG in campi

mareali: la formazione ed evoluzione delle code mareali e della loro struttura

con sovradensità (“clump”). Nel Capitolo 6 riporteremo i risultati di uno

studio ancora aperto su queste code mareali, effettuato per mezzo di simu-

lazioni ad N -corpi ad alta precisione. In particolare focalizzeremo la nostra

attenzione sull’origine e l’evoluzione dei clump.

• Tracceremo infine le nostre conclusioni.

Il contenuto dei Capitoli 2, 4, 5 and 6 è basato sui seguenti articoli e contributi

a conferenze:

• Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., 2009, “Globular cluster sys-

tem erosion in elliptical galaxies”, A&A, vol. 507, p. 183;

• Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., Maschietti, D., 2011, “NB-

Symple, a double parallel, symplectic N-body code running on Graphic Pro-

cessing Units”, New Astron., vol. 16, p. 284;
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• Capuzzo-Dolcetta, R., Arca-Sedda, M., Mastrobuono-Battisti, A., Montuori,

M., Punzo, D., Spera, M., 2011, “High performance astrophysics computing”,

to appear in Proceedings of “Advances in Computational Astrophysics: meth-

ods, tools and outcomes”, ASP Conference Series, R. Capuzzo-Dolcetta, M.

Limongi and A. Tornambè eds.;

• Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., Merritt, D.,

“Dissipationless Formation and Evolution of the Milky Way Nuclear Star

Cluster”, eprint arXiv:1110.5937, submitted to ApJ;

• Capuzzo-Dolcetta, R., Antonini, F., Mastrobuono-Battisti, A., 2011, “The

Milky Way Nuclear Star Cluster”, eprint arXiv:1107.0484v1, to appear in Pro-

ceedings of “Stellar Clusters and Associations - A RIA workshop on GAIA”,

23-27 May 2011, Granada, Spain;

• Mastrobuono-Battisti, A., Capuzzo-Dolcetta, R., 2011, eprint arXiv:1109.6620,

“The Formation of the Milky Way Nuclear Cluster”, to appear in Proceedings

of “Advances in Computational Astrophysics: methods, tools and outcomes”,

ASP Conference Series, R. Capuzzo-Dolcetta, M. Limongi and A. Tornambè

eds.;

• Montuori, M., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., 2011, “Glob-

ular Cluster clumpy tidal tails”, to appear in Proceedings of “Advances in

Computational Astrophysics: methods, tools and outcomes”, ASP Confer-

ence Series, R. Capuzzo-Dolcetta, M. Limongi and A. Tornambè eds.





Introduction

In 1791 the French astronomer Charles Messier published a catalogue of bright

nebulous celestial objects. The first object of the catalogue, M1, was the Crab

Nebula; the second one, M2, was a globular cluster (GC), i.e. a self-gravitating

spherical cluster of hundred of thousands of stars. A total of 28 objects from that

catalogue are now known to be galactic GCs, but a total of about 150 GCs have

been observed in our Galaxy up to now. Since this discovery, the importance of

studying globular clusters has increased significantly.

GCs are the main characters of this Thesis; here their evolution is faced across

different spatial scales, from their interaction in the (small scale) galactic nuclei to

their evolution in the (large scale) galactic field, and from different points of view.

In particular we both analyse observational data and use numerical tools.

These clusters are old and massive star systems; they are ideal object to explore

many aspects of stellar dynamics and to investigate the dynamical and evolutionary

mechanisms of their host galaxy. They are indeed systems where many fundamental

dynamical processes have taken place on time scales shorter than the age of the

Universe. In contrast with galaxies, these clusters represent unique laboratories for

learning about two-body relaxation, mass segregation from equipartition of energy,

stellar collisions, stellar mergers, and core collapse.

Only recently, however, the actual complexity of globular cluster dynamics has

emerged from most of the observational and theoretical studies that have clearly

shown the close interplay between stellar dynamics, stellar evolution, the clusters’

stellar content and the dynamics and properties of the host galaxy (Heggie, 1992).

As we will widely show, the evolution of GCs may be directly connected to

the dynamical and morphological properties of the central region of galaxies where

the recent observations made by mean of the Hubble Space Telescope revealed the

presence of dense stellar clusters. These cluster are known as Nuclear Star Clusters

(NSCs). NSCs have been observed in galaxies belonging to every Hubble type, and

this reveals a strong correlation between their formation mechanism and the one of

their host galaxy. Another class of objects found at the center of the galaxies are

the Supermassive Black Holes (SMBHs), whose mass can exceed 109 M⊙. SMBHs

has been typically observed in massive galaxies (M ≥ 1010 M⊙), while NSCs have

been revealed in less massive galaxies (Böker, 2010b). It seems that NSCs obey to

a scale relation with the properties of the host galaxy similar to the one followed

7
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by SMBHs; moreover, the mean of the frequency function for the nucleus-to-galaxy

luminosity ratio in nucleated galaxies, (log η) = −2.49± 0.09 dex (σ = 0.59± 0.10),

is indistinguishable from that of the SMBH-to-bulge mass ratio, log(M/Mgal) =

−2.61±0.07 dex (σ = 0.45±0.09), calculated in 23 early-type galaxies with detected

SMBHs (Côté et al., 2006). These results suggested that NSCs could be the less

massive counterparts of SMBHs. If this interpretation is correct, then one should

think in terms of “central massive objects” either SMBHs or compact stellar nuclei

that accompany the formation of almost all early-type galaxies and contain a mean

fraction ∼ 0.3% of the total bulge mass. In some galaxies, including the Milky Way,

the NSC coexists with a central SMBH, thus this statement cannot be considered

definitive.

The dynamical evolution of star clusters as isolated systems has been deeply

investigated since pioneering works of Plummer (1911) who was the first to suggest

an analytical law to represent the density distribution of globular clusters. He

opened the way to the King’s work that lead to a better fit of globulars by mean of

the assumption of a Maxwellian velocity distribution truncated at the local escape

velocity (King, 1963). However, the role of the external field is important because

it accelerates the internal dynamics, speeding up relaxation and the consequent

instability of loose clusters and their possible dissolution into the stellar background.

Thus to obtain reliable results, star cluster dynamics must be studied taking into

account the effect of the external potential.

From these early studies it was apparent that the investigation of the dynam-

ical evolution of star clusters is a very complicate issue. However, at a very good

approximation, the internal dynamics of clusters to which we are interested can

be considered as an N -body problem, where stars are represented as point masses.

The dominant forces that govern the internal motions are the mutual gravitational

(point-mass) forces of the stars and the tidal field exerted by the host galaxy. In our

analysis we neglect the effect of the individual star evolution and mass loss, and we

explore the mutual gravitational interactions of the stars and the action of the tidal

field of the galaxy. We do not consider the early evolution of the clusters and the

presence of gas, whose effect is known to cease very early on during the evolution

of the cluster, i.e. by the time the most massive stars have evolved (Aarseth and

Heggie, 1998).

As well known, the N -body problem is not analytically soluble if N > 2; thus

we have to resort on numerical methods. A lot of techniques and algorithms have

been developed so far. One of the most popular is the Fokker-Plank one, which

treats a cluster of stars like a gas; the gravitational encounters between stars are

considered as collisions between particles in an ideal gas. This is a rough approach

and the direct N -body method, that we will adopt, is much more accurate and

reliable to study the dynamical evolution of stellar systems. These N -body models

are, indeed free of simplifying assumptions than are other techniques. However

their main problem is the computing time required in the calculations that can be

overwhelming when using a large number of particles to represent the cluster.
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We started our work motivated by the great number of open issues (both purely

astrophysics and computational) in the study of the dynamical evolution of stellar

systems and this Thesis, where the results obtained are collected, is organized as

follows.

• Chapter 1 provides some basic information about stellar systems. We briefly

talk about associations, stellar streams and open clusters. Then we enumerate

some more details about GCs and NSCs.

• Every observed galaxy contains a set of GCs: the Globular Cluster System

(GCS). In Chapter 2 we focus our attention on the large scale issue repre-

sented by the evolution of GCSs in elliptical galaxies. GCSs orbitally evolve

due to two main mechanisms: dynamical friction and tidal interaction with

the galactic field. These mechanisms cause the decay of CGs toward the

galactic center. A significant observational result is that, in many galaxies,

the GCS seems to be less concentrated respect to the halo stars in the central

region of their parent galaxy. One of the possible explanations of this differ-

ence is the coeval birth of both the systems, followed by the evolution of the

density profile of the GCS, up to the present distribution. Since halo stars

constitute a collisionless system, their profile remains almost unchanged and

so their distribution is representative of the initial GCS density profile. With

this premise it is possible to evaluate the number of GCs orbitally decayed

in the central region of the galaxy as the integral of the difference between

the two density profiles. By mean of hypothesis on the mean mass of decayed

GCs is possible to estimate the mass lost by the GCS. After a brief review of

the literature results we show some new results about a new set of elliptical

galaxies: NGC 1400, NGC 1407, M 49, NGC 3268, NGC 3258, NGC 4374,

NGC 4406 e NGC 4636.

• In Chapter 3 we introduce the N -body problem along with its main prop-

erties. Both the possible algorithms and the hardware solutions adopted are

described in this Chapter.

• In particular, one of the possible classes of time integrators used in theN -body

problem is the symplectic one. These methods are widely used in celestial me-

chanics and they are characterized by a high accuracy. High order symplectic

methods are very reliable but also time consuming. The recent introduc-

tion of Graphic Processing Units (GPUs) as efficient and cheap accelerators

allowed us to introduce such methods in a new high performance double par-

allel (both on CPUs and GPUs) code, NBSymple. This direct summation

code is described in Chapter 4; NBSymple has been tested on different ar-

chitectures and in several astrophysical scenarios. The results of these tests

are also shown in this Chapter.
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• Chapter 5 is devoted to the study of the formation and evolution of NSCs

in galaxies and in particular in the MW. From the hypotheses described in

Chapter 2 it follows that a great quantity of matter can reach the center of

a galaxy in form of orbitally decayed GCs. These clusters can merge and

form the central NSC of their host galaxy. This in known as the “merger

model” of the NSCs formation. Here we consider a small scale problem and

its connection to the large scale evolution of GCs. Running self-consistent

N -body simulations we try to verify if the GCs decay to the galactic center,

where for the first time we put an SMBH, give rise to a system which features

resemble those observed in NSCs. Then, we turn our attention to our Galaxy,

whose model is based on the most recent MW observational data, considering

the presence of the central Galactic SMBH. We follow the evolution of the

massive cluster, formed through the merging of GCs, around the massive

black hole and and we compare the results of the simulation with the Galactic

NSC observed morphological and kinematical properties.

• In our study of the dynamical evolution of stellar systems we also used NB-

Symple to explore an open (large scale) issue in the GCs evolution in tidal

fields: the formation and evolution of clumpy tidal tails around these systems.

In Chapter 6 we report preliminary results of this on-going study on tidal

tails by mean of high precision N-body simulations. In particular, we focus

on tail substructure (clumps) origin and evolution.

• Finally, we draw our conclusions.

The content of Chapters 2, 4, 5 and 6 is based on the following papers and

conference proceedings:

• Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., 2009, “Globular cluster sys-

tem erosion in elliptical galaxies”, A&A, vol. 507, p. 183;

• Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., Maschietti, D., 2011, “NB-

Symple, a double parallel, symplectic N-body code running on Graphic Pro-

cessing Units”, New Astron., vol. 16, p. 284;

• Capuzzo-Dolcetta, R., Arca-Sedda, M., Mastrobuono-Battisti, A., Montuori,

M., Punzo, D., Spera, M., 2011, “High performance astrophysics computing”,

to appear in Proceedings of “Advances in Computational Astrophysics: meth-

ods, tools and outcomes”, ASP Conference Series, R. Capuzzo-Dolcetta, M.

Limongi and A. Tornambè eds.;

• Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., Merritt, D.,

“Dissipationless Formation and Evolution of the Milky Way Nuclear Star

Cluster”, eprint arXiv:1110.5937, submitted to ApJ;
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• Capuzzo-Dolcetta, R., Antonini, F., Mastrobuono-Battisti, A., 2011, “The

Milky Way Nuclear Star Cluster”, eprint arXiv:1107.0484v1, to appear in Pro-

ceedings of “Stellar Clusters and Associations - A RIA workshop on GAIA”,

23-27 May 2011, Granada, Spain;

• Mastrobuono-Battisti, A., Capuzzo-Dolcetta, R., 2011, eprint arXiv:1109.6620,

“The Formation of the Milky Way Nuclear Cluster”, to appear in Proceedings

of “Advances in Computational Astrophysics: methods, tools and outcomes”,

ASP Conference Series, R. Capuzzo-Dolcetta, M. Limongi and A. Tornambè

eds.;

• Montuori, M., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., 2011, “Glob-

ular Cluster clumpy tidal tails”, to appear in Proceedings of “Advances in

Computational Astrophysics: methods, tools and outcomes”, ASP Confer-

ence Series, R. Capuzzo-Dolcetta, M. Limongi and A. Tornambè eds.





Chapter 1

A brief introduction to Stellar

Systems

A stellar system is a gravitationally bound group of stars. Stellar systems vary over

some fourteen orders of magnitude in size and mass, from binary stars to star clusters

containing 102 to 106 stars, through galaxies containing 1010 to 1012 stars, and

vast clusters containing thousands of galaxies, to superclusters, or filaments, which

contain tens of clusters and appear to be the last level of aggregation hierarchy.

The behaviour of these systems is determined by Newton’s laws of gravitation.

The study of the dynamics of stellar systems is the branch of theoretical physics

called stellar dynamics and this Thesis will deal with different aspects of this topic.

Thus it is worth to briefly resume some general aspects regarding stellar systems in

our Galaxy and in the Universe to better understand and to develop the following

Chapters.

1.1 Associations and stellar streams

In our brief survey of stellar systems, we can start from very weakly bounded stellar

systems: associations and stellar streams. An association is a widely distributed

star cluster. Observations show that associations are nearly always found enclosed

within giant molecular clouds, suggesting that they formed from this material. The

member stars are all the same ages and so they must have been born at the same

time from the same raw material. After these groupings have formed, the gas and

dust is eventually removed, and the association is left behind. On an average, the

associations contain between 10 and 100 stars, but a few candidates such as Cygnus

OB-2 contain up to ∼ 1000 members, or more. Since they are weakly bounded

they are fairly short-lived phenomena lasting on average only a few million years.

Currently, there are two basic types of association, OB or O Associations, and T

Associations with an average size of 80 pc. O or OB associations, as the name

suggests, are groups of massive hot stars with spectral types O and B that are

typically spread over an area of more than 100 pc in diameter. Their component

13
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Figure 1.1. M 45, the Pleiades.

stars are very luminous. T associations are similar in nature to OB associations

but they contain low mass, T Tauri type stars. T Tauri stars are newborn stars,

or protostars, that are still evolving and undergoing contraction. They are variable

stars with an irregular period, and are nearly always found in groups or associations,

with temperatures ranging from 3,500 to 7,000 K. Associations disperse with time

becoming no more apparent and they finally form moving groups of stars.

It is also worth to introduce a particular kind of associations: stellar streams. A

stellar stream is a group of stars that orbits a galaxy and was once a globular cluster

(see Section 1.3) or dwarf galaxy that has now been torn apart and stretched out

along its orbit by tidal forces (see Chapter 3 and Chapter 6). Recent years have

seen a tremendous advance in the quality and quantity of observational data for

substructure in the halo of our Galaxy. Of particular note is the outstanding success

of the Sloan Digital Sky Survey (SDSS, York et al. 2000), which has uncovered

large numbers of streams in the halo of the Milky Way (Odenkirchen et al., 2003;

Majewski et al., 2003; Yanny et al., 2003; Belokurov et al., 2006a, 2007; Grillmair,

2006; Grillmair and Dionatos, 2006b; Grillmair and Johnson, 2006; Grillmair, 2009;

Newberg et al., 2009).

1.2 Open clusters

The next level in the hierarchy of gravitationally bound systems are the open clus-

ters. Open clusters are loosely associated groupings of physically attracted stars,

bound together by gravity (see Figure 1.1). Gas and dust is commonly found within

these clusters, and many open clusters are surrounded with nebulosity left over from
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star birth within the cluster. Open clusters are unevenly distributed and are often

found clumped together within and around the central plane. All the stars in an

open cluster orbit around one another, and are affected by each other’s gravity.

Open clusters often have no determinable shape or structure, and are generally ir-

regular and loosely formed, as opposed to globular clusters, which are spherical in

nature and tightly packed with stars (see Section 1.3).

The stars within a cluster formed together and are mainly dwarf stars. They had

origin from the gas and dust which contracts rapidly under gravity, and fragments,

with any fragment eventually forming a star. Young clusters use up most of the

dust and gas over time, or this dust and gas can be dispersed by interactions from

other massive stars. Clusters form throughout the life of the Galaxy and, due to

their distribution, they can be used to scrutinize the galaxy on a large scale. From

observation, many open clusters appear to have two distinct regions, a nuclear one

surrounded by an extended area, called corona. The nucleus contains the most

massive bright stars, whereas the corona, which is less well understood, hosts the

fainter stars. There is an ongoing debate over whether open clusters started life

with such two regions or if they evolved this way (see Section 4.8). Regarding the

age, most open clusters are between 1 Myr and 104 Myr old. Many clusters are less

than 50 Myr old. Due to the difficulties in the definition of their edges, the size of

open clusters is not well given. Roughly, their diameters can be in the range from 1

to 25 pc. Typical clusters contain 150 to 200 M⊙, but this figure can be anywhere

from 50 to 600 M⊙.

Open clusters are short lived, as the tidal interaction with the gravitational poten-

tial of the Galaxy cause their disruption. Encounters with massive binary stars can

force out the more remote members of a cluster, and over a period of time they begin

to loosen up and drift apart. Eventually, all the member stars within a cluster are

dispersed to become part of the general stellar population. Many lone stars were

once members of such clusters and our own Sun once belonged to an open cluster.

Clusters that reside further out from the central bulge of the Galaxy appear to live

longer, so must be less affected by tidal forces from the Galaxy itself.

1.3 Globular Clusters

The usual definition of a Globular Cluster (GC) describes it as an old star cluster

(with an age larger than about 10 Gyr) found in the bulge and halo regions of

the Galaxy. GCs are very compact and almost spherical groups of old stars; they

usually contain between 105 and 106 stars, their mass can reach 106 M⊙ and their

size can vary significantly between ∼ 10 pc and ∼ 100 pc with an error due to

contours definition.

The spatial density of these clusters decreases from the center to the outskirts

and they eventually contain only a negligible quantity of gaseous material. GCs are

more stable and persistent than open clusters, although they can be conspicuously
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affected by evaporation. The gravitational interactions among stars may cause a

gravitational collapse of the cluster, which leads to an increasing density of the core

and a dilution of the surrounding halo.

A precise determination of the absolute age of the oldest galactic globular clus-

ters is still an elusive cosmological problem. According to Gratton et al. (1997)

the most likely age is of about 12.1 Gyr, but calibrations through stellar evolution

models are uncertain. Contrary to absolute ages, the relative ages of some galac-

tic globular clusters are more precisely known. They are obtained by comparison

of their color-magnitude diagrams, which display clear differences in age of about

3 Gyr (Bolte and Hogan, 1995). Chaboyer et al. (1996), on more recent age esti-

mates for 43 globular clusters, argue that their sample has a statistically significant

age spread of at least 5 Gyr.

Although most galactic globular clusters are located within 20 kpc from the

galactic centre, it is worth mentioning the existence of a few very remote galactic

clusters.

It is also worth remembering that, already in our Galaxy, globular clusters

differ strongly from one to the other, e.g., in integrated absolute magnitude and

total mass, which range from M intV = −10.1 and Mtot = 5× 106 M⊙ (Meylan et al.,

1994, 1995) for the giant galactic globular cluster ω Centauri down to M intV = −1.7

and Mtot = 103 M⊙ for the Lilliputian galactic globular cluster AM-4 (Inman and

Carney, 1987). AM-4 is located at ≃ 26 kpc from the galactic centre, and at

≃ 17 kpc above the galactic plane and cannot be considered to be an old open

cluster. The uncertainties on the above total mass estimates, perhaps as large as

10%, do not alter the fact that, in our Galaxy, the individual masses of globular

clusters range over three orders of magnitude.

It is interesting to note that, in the MW, two different populations are observed,

disk and halo GCs. Each of these two populations may contain a fraction of GCs

accreted from satellite galaxies (Forbes and Bridges, 2010), which contributed, over

time, to build the MW halo, in agreement with a ΛCDM scenario of structure

formation (Bullock and Johnston, 2005; Abadi et al., 2006; Font et al., 2006).

For example, the comparison of the spatial distribution of the tidal tails of the

Sagittarius galaxy, as deduced by N-body models, with those of halo GCs (Law

and Majewski, 2010) has suggested that a number of them (5) are almost certainly

associated with Sagittarius, and that four others are likely to be as well, thus con-

firming the early findings of Bellazzini et al. (2003). Some others halo GCs may

be probable accreted systems, (Pal 1, for example, whose relatively young ages and

chemical composition can be hardly explained with an in situ origin, see Marín-

Franch et al. (2009); Sakari et al. (2011). A number of other systems have been

shown to be distinctly younger than typical old halo globular clusters at similar

metallicities, suggesting that 25 to 50 globular clusters could have been accreted

from 7-8 different dwarf galaxies (Forbes and Bridges, 2010; Mackey and Gilmore,

2004).
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Figure 1.2. Color-magnitude diagram for the GC M 5. The horizontal branch and the

main sequence are shown. The RR Lyrae gap (RR), the red giant branch (RGB), the turn-

off of the main sequence (MSTO) and the blue stragglers are also shown. [Ashman and

Zepf 1998]

Globular clusters are observed in other galaxies of the Local Group and beyond.

The major difference with the galactic globular clusters resides in the fact that the

above definition based on the age only (larger than ∼ 10 Gyr) is no longer sufficient.

Rich stellar systems with ages smaller than the threshold are observed. Anyway,

every sufficiently massive galaxy in the Local Group has an associated group of

globular clusters, and almost every large galaxy surveyed has been found to possess

a Globular Cluster System (GCS, Harris 1991 and Chapter 2).

In the following paragraphs some of the general features of the Galactic GCs

are summarized.

1.3.1 Color-Magnitude diagram

Globular clusters, like most of the astronomical objects, are characterized by several

properties which, in some cases, are common to all of them. The Color-Magnitude

(or H-R) diagram is very useful in the description of these features as it resumes

the properties of the stars belonging to the cluster. Moreover, as opposite to open

clusters, different GCs have very similar color-magnitude diagrams. As an example,

Figure 1.2 (Ashman and Zepf, 1998) shows the H-R diagram for the Galactic GC

M 5. Here we describe the different regions characteristic of such diagrams. The

main sequence (MS) is included between the turn-off (MSTO) and the fainter mag-
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nitudes and the redder colors; the red giant branch (RGB) goes from the subgiants,

that provide a connection with the MS, to the more luminous magnitudes and the

redder colors. The horizontal branch (HB) is an almost horizontal strip of stars

located between the turn-off (MSTO) and the red giant region; the stars that pop-

ulate the horizontal branch are bluer than that belonging to the RGB and brighter

than the main sequence ones. Usually, the variable are omitted from the horizontal

branch, so this region is characterized by the presence of the so-called “RR Lyrae

gap”. The asymptotic giant branch (AGB) elongates up to the maximum luminosity

point of the giants, and the blue stragglers (BSs) that seem to be an extension of

the main sequence beyond the turn-off.

The comparison between the features of the stars observed in the globular clusters

and the theoretical models allows to study the stars found in the various branches

in terms of internal structure and evolutionary stage. Following the timeline of the

evolution of stars of growing mass we have that:

• the main sequence stars have masses up to ∼ 0.75 M⊙ and are burning hy-

drogen in their cores;

• in the subgiant and in the red giant branch the burning of hydrogen takes

place in an intermediate layer of the stars;

• stars which are at the red giant peak have masses ∼ 0.8 M⊙ and are about to

undergo the helium flash in their center. The horizontal branch stars are qui-

etly burning helium into their central nucleus and hydrogen in an intermediate

shell;

• the horizontal branch morphology in the observed globular clusters suggested

the hypothesis that the stars suffer a significative mass loss during the red giant

phase. From the horizontal branch models and from the pulsation features

of the RR Lyrae variables its possible to infer that the stars in the HB have

masses between 0.5 and 0.6 M⊙;

• the asymptotic branch stars are burning hydrogen and helium in two different

concentric layers.

At present no more stars massive enough to burn carbon into the core can be found

in GCs, and the initially most massive stars evolved in neutron stars and white

dwarfs. The probably numerous white dwarfs are very faint and so they are very

difficult to be detected. Stars with an initial mass bigger than 8 M⊙ may have been

exploded as supernovae, leaving neutron stars as remnants.

1.3.2 Dynamical and structural properties

1.3.2.1 Surface brightness profile

In GCs, a significant fraction of stars is concentrated into a small central “core” with

the remainder of the stars populating a tenuous envelope. The high stellar density
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in the central region of globular clusters is one of the properties which differentiate

them from lower-density (and lower-mass) open clusters (see Section 1.2).

The surface brightness profile of most globular clusters is well fitted by a King

model; specifically the density profile which results from the following distribution

function:

f(E) =

{
0 E > E0

K[e−β(E−E0) − 1] E < E0
(1.1)

(King, 1966; Michie, 1963), where K, β, and E0 are constants, E = (1/2)v2 + φ(r),

φ(r) is the potential, and f(E)drdv is the mass within drdv. In this model the core

radius is defined as

rc =

√
9

4πGρ0β
(1.2)

where ρ0 is the central density of the cluster. The model has a cut-off at rt, where

φ is set equal to 0, and the concentration, c, of such a distribution is defined to be:

c ≡ log10(rt/rc). (1.3)

Observationally, globular clusters are sometimes described in terms of the half-light

radius, r1/2, i.e. the radius containing half of the projected integrated light of the

cluster. Although the core radius is often numerically similar to the half-light ra-

dius, the two quantities are not identical.

King models form a sequence of models that can be specified by c. At any value

of c there is a set of models generated by different values of rc. In a lot of calcu-

lations, it is convenient to characterize the concentration through a dimensionless

parameter W0 = −βφ0, where φ0 is the value of the potential at the cluster center.

All dimensionless quantities, such as the ratio of the central to the mean density,

are determined by W0. There are other models which at various times have been

called King models in literature (see Richstone and Tremaine 1986). One of these is

an empirical fit to the observed surface brightness profiles of clusters introduced by

King (1962). As discussed in King (1966), these original empirical fits are similar

to those derived from the distribution given above. The King (1966), model substi-

tutes the earlier work, as it fits the surface brightness profiles equally well and has a

dynamical basis. Another model which is sometimes called a King model (or more

commonly, a modified Hubble profile) has the form I(r) = I0[1 + (r/rc)]
−2 (Rood

et al., 1972a), where I0 is the central surface brightness. This profile doesn’t give a

good fit to the most of the observed GCs.

All these models assume that GCs are spherical systems. Observations of the Milky

Way globular clusters have found this to be a good approximation, yielding a mean

axial ratio of 0.92 ± 0.01 (see for example White and Shawl 1987).
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1.3.2.2 Dynamical properties

The dynamics of GCs has been largely studied in the years (see for example Meylan

and Heggie 1997; Spitzer 1987; Djorgovski and Meylan 1993). In this section we

refer to the internal dynamical processes in GCs, which are mostly independent of

the external tidal field due to the host galaxy.

For many Milky Way GCs, the only available mass estimates are obtained by com-

bining an observed cluster luminosity with an assumed mean mass-to-light ratio

for the cluster stars. However, in some cases, the central line of sight velocity

dispersion, σ0, has been determined, through the measurement of the individual

velocities of a number of stars in the cluster. A dynamical mass estimate can be

obtained by combining σ0 with I0 and r1/2, defined in the previous Subsection. The

mass-to-light ratio is related to these quantities through the expression:

M

L
= η

9σ2
0

2πGI0r1/2
(1.4)

where η is a dimensionless constant. Obtaining a mass-to-light ratio in this manner

is often referred as “core fitting” and was for the first time described in detail by

Rood et al. (1972a).

For the King (1966) model, numerical studies have shown that η has a slight de-

pendence on W0, but is close to unity for all reasonable models (Richstone and

Tremaine, 1986). The mass-to-light ratio along with the integrated luminosity of a

cluster, gives an estimate of the cluster mass. This technique has the advantage to

employ readily accessible observational quantities. However there are issues raising

from the usage of the central velocity dispersion. Indeed, it assumes isotropic orbits

and a mass-to-light ratio independent of radius. These assumption are not strictly

true. The many two body encounters between stars in GCs tend to produce energy

equipartition between stars (each star has the same kinetic energy). As a result,

lower mass stars acquire higher velocities and preferentially occupy the outer re-

gions of GCs. Since low mass stars have high mass-to-light ratios, the mass to light

ratio of a cluster probably increases with growing radius.

One attempt to overcome these problems is the use of King-Michie dynamical mod-

els (Michie, 1963). These models involve lowered Maxwellian energy distributions

like the King (1966) ones but include the possibility of velocity anisotropy. To

account for the different velocity distributions of stars with different masses, multi-

component models, with different mass populations, are usually taken into account.

Instead of the King (1966) distribution, one has the energy angular momentum

distribution of the form:

fi(E, J) ∝
(
e−AiE − 1

)
e−βJ

2

, (1.5)

where the subscript i identifies the individual populations and Ai is proportional to

the mean mass of stars in the ith population. The relative number of stars in each

mass bin is determined by the mass function index.
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In order to obtain the mass to light ratio, reasonable models are necessary. Such

models must fit both the observed surface brightness profile and the radial velocities

of stars in the GC.

Some observed GCs are characterized by a power-law cusp, instead of a central core,

in the surface brightness profile. These clusters are believed to have suffered core

collapse. This dynamical process involves the migration of stars from the GC core

to the outer regions of the cluster, leading to a loss of energy from the core and

subsequent core contraction. The process is sometimes referred as gravothermal

instability. While this process will occur for an isolated cluster, studies have shown

that it is enhanced by the presence of an external field (see Chapter 6). Thus the

position of the cluster in the host galaxy is important in determining whether core

collapse has occurred at present epoch.

1.4 Nuclear Star Clusters

During the last decade, the analysis of the images obtained by the Hubble Space

Telescope (HST) has revealed the presence of compact and sometimes resolved

sources at the center of many galaxies. Basing on their structural properties and on

their spectra was possible to demonstrate the stellar nature of these sources. This

kind of objects, similar to GCs, are known as “Nuclear Star Clusters” (NSCs).

NSC will be the object of study in Chapter 5, so it is now worth introducing their

properties. They are the most massive and dense clusters found in the Universe and

they constitute the last level in the hierarchy of bound systems we want to describe.

NSCs are intriguing objects that are linked to a number of research areas: i)

they are a promising environments for the formation of massive black holes because

of their extreme stellar density, ii) they may also constitute the progenitors of at

least some halo globular clusters via NSC capture following the tidal disruption of

a satellite galaxy, and iii) their formation process is influenced by (and important

for) the central potential, which in turn governs the secular evolution of their host

galaxies.

NSCs have been found in galaxies of all Hubble types, suggesting a close link between

their formation history and the evolution of the mother galaxy. In the following

Subsection some of their main features are highlighted.

1.4.1 Nuclear star clusters along the Hubble sequence

NSCs are characterized by peculiar conditions due to their position in the bottom

of the potential well of the host galaxy.

This position is connected to various phenomena, like the presence of Active Galactic

Nuclei (AGN), the occurrence of central starbursts and central very high densities.

Scale relations between the galaxy and nucleus global structures have been discov-

ered; these suggest a strong correlation of the evolution of the NSCs with the history

of their host galaxy. As an example, left panel of Figure 1.3 shows the nearby Sd
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Figure 1.3. Left panel: Color composite image of the central region of the Sd galaxy

NGC 300. A NSC resides at the galactic center. Right panel: Radial surface brightness

profile in the I band measured in mag/arcsec2. The NC is evident as a marked overlumi-

nosity in the brightness profile, as compared to inward extrapolations (solid, dashed lines)

of the the brightness profile at large radii. [van der Marel et al. 2007]

galaxy NGC 300 as an example (van der Marel et al., 2007). This galaxy has a

NSC, which is easily identified as a separate component because of the marked

upturn in the surface brightness profile at small radii (right panel of Figure 1.3).

King model fits (see Section 1.3) to the two-dimensional images yield the effective

radius and luminosity of the NSC of NGC 300, which result to be reff = 2.9 pc and

LI = 106.2L⊙.

Observations in the last years lead to to the following picture of NSCs (Böker,

2010a):

1. NSCs are common: the fraction of galaxies with an unambiguous NSC de-

tection is 75% in late-type (Scd-Sm) spirals (Böker et al., 2002a), 50% in

earlier-type (Sa-Sc) spirals (Carollo et al., 1997), and 70% in spheroidal (E

& S0) galaxies (Côté et al., 2006). All these numbers are likely lower limits,

although for different reasons. In the latest-type disks, it is sometimes not

trivial to locate the galaxy center unambiguously so that no particular source

can be identified with it. In contrast, many early-type galaxies have very

steep surface brightness profiles (SBPs) that make it difficult to detect even

luminous clusters against this bright background.

2. NSCs are much more luminous than “normal” globular clusters (GCs). With

typical absolute I-band magnitudes between −14 and−10 (Böker et al. (2002a);

Côté et al. (2006)), they are roughly 40 times more luminous than the average

MW globular cluster (Harris, 1996a).

3. However, NSCs are as compact as MW GCs. Their half-light radius typically
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Figure 1.4. Mean projected mass density of various stellar systems inside their effective

radius re, plotted against their total mass. This is similar to a face-on view of the fun-

damental plane. NCs occupy the high end a region populated by other types of massive

stellar clusters, and are well separated from elliptical galaxies and spiral bulges. The solid

line represents a constant cluster size, i.e. re = 3 pc. [Böker 2007]

is 2− 5 pc, independent of galaxy type (Böker et al., 2004; Geha et al., 2002;

Côté et al., 2006).

4. Despite their compactness, NSCs are very massive: their typical dynamical

mass is 106 − 107 M⊙ (Walcher et al., 2005) i.e. at the extreme high end of

the GC mass function.

5. Their mass density clearly separates NSCs from compact galaxy bulges. This

is demonstrated in Figure 1.4 which compares the mass and mass density

of NSCs to that of other spheroidal stellar systems. The clear gap between

bulges/ellipticals on the one hand, and NCs on the other hand makes a direct

evolutionary connection between the two classes of objects unlikely.

6. The star formation history of NSCs is complex, as evidenced by the fact that

most NSCs have stellar populations characterized by multiple generations of

stars (Wehner and Harris 2006a; Rossa et al. 2006). While all NSCs show

evidence for an underlying old (& 1 Gyr) population of stars, most also have

a young generation with ages below 100 Myr. This strongly suggests that

NSCs experience frequent and repetitive star formation episodes (see Wehner

and Harris 2006a and Section 5.21).
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7. NSCs follow similar scaling relations with host galaxy properties as do Super-

massive Black Holes (SMBHs). SMBHs are a particular class of black holes

with masses 106 M⊙ ≤ M• ≤ 1010 M⊙. These objects are formed in the

center of spheroidal galaxies, and they have been proven to exist in almost

all galaxies. This finding has triggered a very active research area, but its

implications are still to be understood fully.

8. NSCs have been found to coexist with SMBHs in a small but steadily increas-

ing (due to improved observations) number of cases (e.g., Filippenko and Ho,

2003; González Delgado et al., 2008; Seth et al., 2008a; Kormendy and Bender,

2009). Based on a compilation of the cases of coexisting NSCs and SMBHs

with reliably estimated masses, Graham and Spitler (2009a) show that the

masses of the nuclei of the most massive ellipticals appear to be dominated

by SMBHs, with NSCs not detected in many cases. The nuclear masses of the

least massive spheroids appear to be dominated, however, by the masses of

their respective NSCs. There is a transitional zone between these two regimes,

where SMBHs and NSCs clearly coexist (see Figure 1 in Graham and Spitler,

2009a).

The formation and evolution of NSCs, with particular attention to the Milky Way

case, will be explored in Chapter 5.



Chapter 2

Globular cluster system erosion

in elliptical galaxies

Since GCs are neither intermingled with nor closely surrounded by other stars they

can be considered as isolated laboratories where it is possible to investigate many

aspects of stellar dynamics and of the evolution of stellar systems. Obviously they

are subjected to the general potential of the host galaxy, which influence decreases

with increasing galactocentric distances.

Since GCs are the oldest objects found in the Galaxy (see Section 1.3), the Globular

Cluster System (GCS), as a whole, is actually a witness of the formation epoch of its

host galaxy. Thus, investigating its structure, we can derive some information about

the dynamical and chemical features at that epoch. Observational data about GCSs

can contribute to build up reliable models of formation and evolution of galaxies;

moreover estimating the age of GCs we can obtain a minimum age of the galaxy to

which they belong, and, therefore, for the whole Universe.

We start our work dealing with a large scale problem, i.e. the the study of

the dynamical evolution of GCs due to the interaction with the potential of their

host galaxy. This problem is addressed by mean of data analysis and will be also

faced using numerical tools in Chapter 6. The work of this Chapter, much of which

has been published in an article by Capuzzo-Dolcetta and Mastrobuono-Battisti

(2009), is devoted to the analysis of the comparison of GCS and star distribution

in galaxies, dealing with 8 galaxies for which good photometric data are available

in literature such to draw reliable radial profiles. In all galaxies studied, the GCS

density profile is significantly flatter towards the galactic centre than that of the

stars. A quantitative comparative analysis of the profiles may provide insight into

both galaxy and globular cluster formation and evolution. If the observed difference

is caused by erosion of the GCS, the missing GCs in the galactic central region

may have merged around the galactic centre and formed, or at least increased in

mass, the galactic nucleus (see Chapter 5). Observational support to this are the

correlations between the galaxy integrated absolute magnitude and the number of

globular clusters lost and that between the central massive black hole mass and the

25
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total mass of globular clusters lost. The Chapter is organized as follows. In Section

2.1 the formation and evolutionary mechanisms of GCSs are resumed; in Section 2.2

we show the general method generally used to obtain the number and mass of GCs

lost. We also resume some results found in literature. In Section 2.3 we present the

improvements that we developed for the data analysis method; here we discuss the

observational data, as well as the analytical fit expressions to the density profiles.

In Section 2.4 we present the extension, to the data of this work, of the correlation

found by Capuzzo-Dolcetta and Donnarumma (2001) between the mass lost by the

GCS, the host galaxy luminosity and the mass of the galactic central massive black

hole. Finally, in Section 2.5 we summarize results. An error analysis of the methods

used is presented in Appendix A.

2.1 The formation and the evolutionary mechanisms of

GCSs

Many elliptical galaxies contain more or less populous GCSs, that are, usually, less

concentrated towards the galactic centre than the bulge-halo stars.

A huge amount of literature has been dedicated to GCSs identification in exter-

nal galaxies and study of their properties, since the seminal review by Harris and

Racine (1979) up to Harris et al. (2009).

One of the main results of such analysis is that the halo stars have a greater

central density respect to the respective GCS. Moreover, there is a general agreement

that the difference between the two radial distributions is real and not caused by

a selective bias. Different hypotheses have been advanced with the purpose of

explaining this feature. Among these, two seem the most probable:

• the first one claims for different formation ages for the systems (Scenario 1);

• in the second one the GCS and the halo stars born at the same time with the

same radial distribution and differentiate later (Scenario 2).

2.1.1 Scenario 1: different formation ages

• Model and authors

As stated above, the first hypothesis adopted to explain the difference between

the two distributions is that it reflects different formation ages of the two

systems, as suggested by Harris and Racine (1979) and Racine (1991); in

the opinion of these authors, globular clusters originated earlier, when the

density distribution was less peaked. Also Forbes et al. (1996), and Ashman

and Zepf (1998), on an observational basis, and Bekki and Forbes (2006),

on a theoretical basis, suggest that the halo-bulge and the globular cluster

components may have been formed differently and thus their profiles should

not be, initially, identical. Recent hydrodynamical simulations by Hopkins

et al. (2009) suggest, for cuspy ellipticals, that the center of these objects have
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been constructed by gaseous dissipation in mergers of gas-rich progenitors.

The pre-existing stars (and clusters) would not participate in this dissipation,

and would thus be relegated to larger radii. In this scheme, the merged system

would not have identical cluster and stellar distributions.

• Model failure

However, these hypotheses hardly explain why the stellar and GCS distribu-

tions are usually very similar in the outer galactic regions. Of course, there

are few exceptions like the two giant ellipticals NGC 4472 (M 49) and NGC

4486 (M 87) and the lenticular NGC 4374 in the Virgo cluster, which seems

to have a more radially extended distribution of GCs than that of the stellar

component, while the lenticular NGC 4406, also in Virgo and close to NGC

4374, has a steeper declining slope of the GCS radial profile than that of the

galactic stellar component. These two substantially different behaviours can

be, without contradiction, both attributed to tidal effects, in the sense that

in some galaxies an external perturber may cause a tidal stripping of outskirt

GCs causing depletion of the outer radial population with a corresponding

enrichment of the GCS of the perturbing (likely massive) galaxy. This scheme

is sketched in Elmegreen (1999) and have a support by numerical simulations

of Forte et al. (1982), and Muzzio (1987). In any case, all these bright galaxies

lie in the cluster central potential well, and their outskirts are noticeably dis-

torted, because of gravitational interactions with other Virgo Cluster galaxies

and because of material acquired during cannibalistic encounters, so they can-

not be considered as representative of the “average” elliptical.

2.1.2 Scenario 2: The coeval birth hypothesis

• Model and authors

Another explanation of the difference between the inner GCS and galactic

stellar component radial profiles is based on the, simpler, assumption of a

coeval birth of globular clusters and halo stars, with a further evolution of the

GCS radial distribution, while the collisionless halo stands almost unchanged.

The GCS evolution is caused mainly by dynamical friction, which brings mas-

sive clusters very close to galactic centre, where they are tidally disrupted by

interactions with the growing nucleus, as suggested first by Tremaine et al.

(1975) for M 31 (see Chapter 5).

• Tests and applications

This view for the galaxy nuclei formation was, later, abandoned because it

seemed that the dynamical friction time for braking GCs to be confined around

the galactic center were too long to account for a quick accretion in mass of

the central galactic regions (see for instance Fall and Rees 1977 and Lauer

and Kormendy 1986, this latter work dealing with M 87). This view has
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been shown to be erroneous, because it is based on the oversimplified assump-

tion that GCs are moving on quasi circular orbits at large distances from the

galactic center, where star density is low as, consequently, is their dynamical

friction braking on massive satellites. A more likely quite radial biased or-

bital distribution for GCs shortens significantly the dynamical friction time

scales; additionally, the efficiency of dynamical friction is enhanced in triaxial

galaxies, where box orbits are maximizing the effect of dynamical friction, as

suggested first by Ostriker (1988). Note that box orbits constitute a signifi-

cant fraction of orbits in stable triaxial galaxies; actually, the prototype of self

consistent triaxial models, that studied by Schwarzschild (1979) by mean of

his orbital superposition technique, having axial ratios 1:0.625:0.5, contains a

large fraction of box orbits, and is stable, as shown by Smith and Miller (1982).

It is the major family of box orbits which provides the density concentration

on and near the long axis of a triaxial figure and thus support its deviation

from axial symmetry (Vietri and Schwarzschild 1983). Also the tidal inter-

action with a compact nucleus is enhanced in a triaxial potential (Ostriker

et al., 1989; Capuzzo-Dolcetta and Tesseri, 1997, 1999; Capuzzo-Dolcetta and

Vicari, 2005). The combined effect of these dynamical mechanisms acts to

deplete the GCSs in the central, denser, galactic regions, leaving the outer

profile unaltered, then remaining similar to the profile of the halo stars, or,

when the galaxy interacts significantly with others in a environment, shows an

expansion towards outer regions. Under the hypothesis that the initial GCS

and halo-bulge radial distributions were the same, an accurate analysis of the

observations would allow an estimate of the number of “missing clusters” and

therefore of the mass removed from the GCSs. Actually, McLaughlin (1995),

Capuzzo-Dolcetta and Vignola (1997), Capuzzo-Dolcetta and Tesseri (1999)

and Capuzzo-Dolcetta and Donnarumma (2001), scaling the radial surface

profiles of the halo stars of a galaxy to that of its GCS, estimated the number

of missing globular clusters as the integral of the difference between the two

radial profiles (see Section 2.2). Capuzzo-Dolcetta and Vignola (1997) and

Capuzzo-Dolcetta and Tesseri (1999) suggested that the compact nuclei in

our galaxy, M 31 and M 87, as well as those in many other galaxies, could

have reasonably sucked in a lot of decayed globular clusters in the first few

Gyrs of life.

• Model failure

Two objections are often done against the evolutionary scheme. One is that

in the hypothesis of efficient dynamical friction braking, acting differentially

on clusters of different mass, one would expect a radial dependence of the

GC luminosity function, thing usually not seen. The radial dependence is not

necessarily expected because the two main external effects acting on the GCSs,

dynamical friction and tidal disruption, acts on the opposite sides of the mass
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(luminosity) function leaving the average value almost unaltered (Capuzzo-

Dolcetta and Tesseri, 1997). Another objection claims the incompatibility

about the observed, usually high, metallicities of the central galactic regions

and the, usually low, metal content of GCs. This objection relies on that the

presently observed GC population is representative of the initial one, which

in its massive (M > 106 M⊙) tail should be lost to the inner galactic zone by

strong braking. If the common mass-metallicity relation yields down to very

massive globular cluster scale, no surprise in that massive, decayed GCs were

also metal rich.

2.2 Scenario 2: the estimate of the number and mass

of globular clusters lost. Previous results

As shown in the previous Section, under the hypothesis that the flattening of the

GCS distribution in the central region, compared to the distribution of the stars

in the galactic bulge, is due to an evolution of the GCS, the number of GCs lost

to the centre of the galaxy is obtained by the simple difference of the (normalized)

density profiles integrated over the whole radial range (see McLaughlin 1995). Ob-

viously, the limitations in the magnitude range of observations of globular clusters

in the different galaxies, the difficulty in the reconstruction of both the high- and

low- luminosity tails of the actual GCLF that requires an assumption on its shape

and other sources of incompleteness or observational uncertainties negatively affect

the evaluation of the number and mass of missing clusters (see Capuzzo-Dolcetta

and Vignola 1997, Capuzzo-Dolcetta and Tesseri 1999 and Capuzzo-Dolcetta and

Donnarumma 2001). It is clear that the relevant region of number incompleteness

should be the low-mass one. As stated in McLaughlin (1995) it is seen that the

correction for number incompleteness is significant only in the low-mass tail and

slightly overestimated because it is obtained by integrating the hypothetical mass

function from zero up, while it is clear that just systems over a certain mass can be

considered globular clusters.

Incompleteness is of course a less serious problem for the mass evaluation. Indeed,

the contribution to the total mass comes mainly from high-mass clusters, which are

now observable unless they have disappeared into unobservable regions.

It’s important to stress that, throughout this Chapter, we are mainly interested in

the evaluation of the possible relative cluster population impoverishment and mass

contribution to the central region, quantities that are both fairly robust against

incompleteness corrections that will not taken into account (Capuzzo-Dolcetta and

Donnarumma, 2001).

Throughout this Chapter, the “initial” distribution of GCs, ΣGC,0(r) is assumed

to be equal in shape to the present stellar profile; consequently, it can be obtained

by a vertical translation of the stellar profile, Σs(r), to match the present GCS dis-

tribution, ΣGC(r), in the outer zone. The number of GCs lost is given by the surface
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Figure 2.1. Upper left panel: The globular cluster initial distribution (solid curve) and

the present one (dashed curve) for our Galaxy. The vertical line refers to the point r̄ where

the bulge and GCS profiles start to overlap. Upper right panel: Initial and present globular

cluster distributions in M 31. Lower panel: The initial and the present globular cluster

distributions in M 87; for comparison, the McLaughlin (1995) initial cluster distribution is

shown as thick solid line. [Capuzzo-Dolcetta and Vignola 1997]

integral of the difference between the initial and present GCs radial distributions.

An estimate of the mass removed from the GCS (Ml) can be obtained through the

number of GCs lost, Nl, and the estimate of the mean mass of the missing globular

clusters, 〈ml〉. A priori, the determination of 〈ml〉 needs the knowledge of the initial

mass spectrum of the GCS, which has suffered of an evolutionary erosion. However,

the most relevant evolutionary phenomena (tidal shocking and dynamical friction)

act on opposite sides of the initial mass function, and so we expect that the mean

value of the globular cluster mass has not changed very much in time (see Capuzzo-

Dolcetta and Tesseri 1997 and Capuzzo-Dolcetta and Donnarumma 2001). Hence,

we can assume the present mean value of the mass of globular clusters, 〈m〉, as a

good reference value for 〈ml〉.

In the following Subsections we will list the main results found in literature.
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Figure 2.2. Surface number densities for the galaxies of the selected sample analysed by

Capuzzo-Dolcetta and Tesseri (1999). Black squares represent the observed globular cluster

distribution; the solid line is its modified core model fit. Dashed and dotted lines are

de Vaucouleurs and modified core model fits to the normalized galaxy profile respectively.

[Capuzzo-Dolcetta and Tesseri 1999]

2.2.1 The Milky Way, M 31 and M 87

This method has been used to analyse several galaxies and, in particular, the Milky

Way, M 31 and M 87 (Capuzzo-Dolcetta and Vignola 1997). In these galaxies the

radial distribution of GCs, in the central region, is apparently flatter than that of

the stellar bulge of the respective host galaxy, as shown in Figure 2.1 (Capuzzo-

Dolcetta and Vignola, 1997).

• The Milky Way

Capuzzo-Dolcetta and Vignola (1997) estimated that the Milky Way lost a

numberNl = 56 of GCs, i.e. the 36% of the current number of GCs (N = 154).

The mean mass of globulars in our Galaxy is 〈m〉 = 3.3×105 M⊙; as described
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Galaxy N Ni ∆ Ml (M⊙)

Milky way 155 211 0.26 1.80 × 107

M 31 283 368 0.23 2.30 × 107

M 87 4456 8021 0.44 2.33 × 109

NGC 1379 132 512 0.74 1.50 × 108

NGC 1399 5168 9680 0.63 1.44 × 108

NGC 1404 508 1061 0.53 1.75 × 108

NGC 1427 248 487 0.49 8.86 ×107

NGC 1439 130 141 0.08 4.79 ×106 :

NGC 1700 25 39 0.36 3.66 ×106 :

NGC 4365 517 849 0.39 7.48 × 107

NGC 4494 200 297 0.33 2.98 ×107

NGC 4589 241 371 0.35 7.58 ×107

NGC 5322 175 266 0.34 6.51 ×107

NGC 5813 382 596 0.36 1.03 ×108

NGC 5982 135 260 0.48 8.86 ×107

NGC 7626 215 365 0.41 3.59 ×108

IC 1459 271 516 0.47 1.57 ×108

Table 2.1. The presently observed number of clusters (N), its initial value (Ni), its

fractional variation (∆), the mass lost in form of disappeared globulars (Ml) in the set

of galaxies analysed by Capuzzo-Dolcetta and Tesseri (1999) and Capuzzo-Dolcetta and

Tesseri (1999). [Capuzzo-Dolcetta 2002]

in Section 2.2 this value can be taken as an estimate of the mean mass of the

lost GCs, thus the total mass lost by the Milky Way GCS isMl = 1.8×107 M⊙.

• M 31

In the case of M 31 the integral of the difference between the initial and

present GCs radial distribution profile gives Nl = 85, i.e. the 30% of the

present number of globular clusters. Assuming 〈m〉 = 3.2×105 M⊙, Capuzzo-

Dolcetta and Vignola (1997) found that total mass lost by the GCS of M 31

is Ml = 2.3× 107 M⊙.

• M 87

The number of GCs lost by M 87 seems to be Nl = 3565, which is only slightly

smaller than the number of cluster currently observed in the same galaxy. The

mean mass of the GCs in M 87 is 〈m〉 = 6.6× 105 M⊙, and so this galaxy has

lost a mass equal to Ml = 2.35 × 109 M⊙. In Figure 2.1 the best fit to the

present and initial GCs distribution for the three galaxies is shown.
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2.2.2 Other 11 elliptical galaxies

There are many other galaxies whose GCS is centrally less concentrated than the

halo stars. Capuzzo-Dolcetta and Tesseri (1999) evaluated the number of clusters

lost by 11 galaxies observed by mean of the WFPC2 of the Hubble Space Telescope

(NGC 1427, NGC 1439, NGC 1700, NGC 4365, NGC 4494, NGC 4589, NGC 5322,

NGC 5813, NGC 5982, NGC 7626, IC 1459). In Figure 2.2 the dashed and dotted

lines represent respectively the de Vaucouleurs model and the core model fits to

each galaxy profile. The solid lines show the best fit to the density profiles of the

GCSs, obtained through a “modified core model”

Σ(r) =
Σ0[

1 +
(
r
rc

)2
]γ (2.1)

where γ is a free parameter. Table 2.1 lists the results of the analysis of these

galaxies.

2.2.3 The Fornax cluster: NGC 1379, NGC 1399, NGC 1404

Another contribution to the study of the GCs evolution is due to Capuzzo-Dolcetta

and Donnarumma (2001), who analysed the GCSs of three of the Fornax Cluster

galaxies, observed by mean of the WFPC2. Also for these galaxies the halo stars

results to be more concentrated in the central region respect to the GCs (see Figure

2.3).

• NGC 1379

NGC 1379 is a galaxy of type E0 and the number of clusters that disappeared

from this galaxy, obtained, as usual, assuming that the stellar profile repre-

sents the initial distribution of the GCs, is Nl = 380. Thus, NGC 1379 lost

about the 74% of the initial population of GCs. This great number of globu-

lars sunk toward the internal galactic region corresponds to a big quantity of

mass, Ml = 1.5 × 108M⊙, probably fallen toward the center of the galaxy.

• NGC 1399

NGC 1399 is a giant elliptical galaxy located at the center of the Fornax Clus-

ter, and among the galaxies studied by Capuzzo-Dolcetta and Donnarumma

(2001) is the one which has the bigger number of GCs. In this case the num-

ber of GCs lost results to be equal to 4515, i.e. to the 47% of the initial

number of clusters (N = 9680). The mass lost by the GCS of NGC 1399 is

Ml = 1.44 × 109M⊙.

• NGC 1404

NGC 1404 is a galaxy of type E1, which is located at 10 arcmin from NGC

1399. This proximity make the evaluation of the number of lost GCs quite
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Figure 2.3. Upper left panel: Surface density profile for the globular cluster system in

NGC 1379 (black dots). The solid line is the modified core-model fit for GCS. The dotted

curve is the surface brightness profile of the underlying galaxy, vertically normalized to

match the radial profile of cluster system in the outer regions. Upper right panel: the

same but for NGC 1399. Lower panel: the same for NGC 1404. [Capuzzo-Dolcetta and

Donnarumma 2001]

difficult, but this issue as been solved by Forbes et al. (1998). Initially the

galaxy was populated by 1061 GCs; at present the observed clusters are 508.

Thus NGC 1404 lost Nl = 553 GCs, i.e. the 52% of the initial sample. The

mass lost by the GCS is Ml = 1.75 × 109M⊙.

2.3 Method for Scenario 2: improvements and new re-

sults

In this Section we analyse data of 8 elliptical galaxies to obtain the number of GCs

lost in their GCS systems (see Capuzzo-Dolcetta and Mastrobuono-Battisti 2009).

The galaxies are: NGC 1400, NGC 1407, NGC 4472 (M 49), NGC 3268, NGC 3258,
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NGC 4374, NGC 4406, and NGC 4636. In all these galaxies, the GCS density profile

is significantly flatter towards the galactic centre than that of the stars. Here we

assume, in all cases but for NGC 4472, as fitting function for the GCS projected

radial distribution, ΣGC(r), a “modified core model”. The general expression of

this model is given by Equation (2.1) where Σ0, rc and γ are free parameters. The

choice of this function to fit the GCS profiles is motivated by the good agreement

found with almost all the data used for the purposes of this work, as confirmed by,

both, the local maximum deviation of the fitting formula from the observed data

and the computed χ2.

For the galaxy stellar profile, Σs(r), we rely on the fitting formulas provided by

the authors of the various papers where we got the data from, that may change case

by case, checking how good are the approximations to observed data. The choice

of taking outer radial galaxy stellar profiles from the same source paper where we

got the data for the GCS profile was done for the sake of homogeneity with GCS

profiles because the galaxy photometry was usually taken with the same instrument,

in the same photometric band and, probably, in comparable observation conditions).

Note that this was possible for the external radial profiles of NGC 1400, NGC 1407,

NGC 4374, NGC 4636, while for NGC 3258 and NGC 3268 a single law (modified

Hubble’s) was adopted over the whole radial extension. In the two remaining cases,

NGC 4406 and NGC 4472, we selected the most reliable and recent among the

various photometric profiles found in literature.

A check of the sensitivity to a different choice in galactic photometry is found in

the discussion of NGC 4636 data (Subsection 2.3.8). In order to obtain the initial

distribution of GCs, as said above, we vertically shifted the stellar distribution

toward the current GCS radial profile, in order to match both profiles in the external

region. The magnitude of the shift, d, has been determined minimizing the square

of the difference between the logarithmic values of the data in the tails of the two

distributions ∑

i

[log Σs(ri)− log ΣGC(ri)]
2 (2.2)

where ri is the galactocentric radius of the ith bin in the data. Thus the initial

distribution of the GCs is given by

log Σ0(r) = log Σs(r) + d. (2.3)

We calculate the number of missing (lost) clusters as the surface integral of the

difference between ΣGC,0(r) and ΣGC(r) over the radial range [0, rmax] of difference

of these two profiles, where rmax is defined as the radial coordinate of the inter-

section of the GCS and stellar radial profiles, that minimizes, upon vertical shift

of the stellar radial profile, the squared deviation of the GCS and stellar density

distributions over the range [0, rmax]. Consequently, the number of lost clusters is

Nl = 2π

∫ rmax

0
[ΣGC,0(r)− ΣGC(r)] rdr. (2.4)
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Galaxy Σ0 rc γ rmax R

NGC 1400 14.1 0.7 0.88 2.3 2.8

NGC 1407 17.8 1.02 0.85 2.34 7.3

NGC 3258 16.9 3.1 2.4 2.51 7.94

NGC 3268 24.4 2.6 1.9 2.51 7.94

NGC 4374 58.4 0.31 0.278 3.84 11.8

NGC 4406 26.76 3.52 1.19 5.36 24

NGC 4472 107 8.47 0 7 22

NGC 4636 77.66 0.823 0.691 4.75 6.6

Table 2.2. Col. 1: galaxy name; col. 2, 3 and 4: parameters of the modified core model fit

for all the galaxies studied; col. 5: upper limit in the integral giving the number of the lost

GCs (rmax); col. 6: upper limit of the integral performed to estimate the present number

of GCs (R). Σ0 is in arcmin−2; rc, rmax and R are in arcmin.

The present number of GCs, N , is obtained integrating ΣGC(r) over the radial

range, [0, R], covered by the observations (for the value of R we rely on the papers

where we got the GCs distribution data from). The values of N obtained with this

method are usually different from those given by the authors of the papers, but for

the purposes of this work what is important is the difference between N and Nl
and, so, it is crucial a homogeneous way to determine them.

The initial number of GCs in a galaxy is, indeed, estimated as Ni = Nl +N .

The numerical values of Nl, Ni and N are functions of the fitting parameters and

of the integration limits. These dependences and their contribution to the errors on

the final results are discussed in Appendix A.

For NGC 4374, NGC 4406 and NGC 4636 we calculated 〈m〉 using their GC lumi-

nosity functions (GCLFs) and assuming the same typical mass-to-light ratio of GCs

in our Galaxy, i.e. (M/L)V,⊙ = 1.5 for NGC 4406 and NGC 4636 or (M/L)B,⊙ = 1.9

Illingworth (1976) in the case of NGC 4374. For NGC 4636 we used also the mass

function that represents its present distribution of GCs (see Section 2.3.8). For the

remaining galaxies (NGC 1400, NGC 1407, NGC 4472, NGC 3258 and NGC 3268)

there is no better way to estimate the total mass of ‘lost’ GCs than adopting as a

‘fiducial’ reference value for their mean mass, 〈ml〉, a value, 〈mMW 〉 = 3.3×105M⊙,

which is a reliable estimate of the present mean GC mass in our Galaxy, as obtain-

able form their LF (Abraham and van den Bergh 1995).

In the following subsections the data and results for the 8 analysed galaxies are

shown.

2.3.1 NGC 1400

The surface density profile of this galaxy is given by Forbes et al. (2006) (hereafter

F06) who fitted it by mean of a power law Σs(r) ∝ r−1.88. This fitting law is reliable

outside the galactic core, i.e. for r > rb = 0.0055 arcmin (Spolaor et al. 2008). The
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Galaxy Model η rb re bn n α β γ

NGC 1400 lc 7.76 0.0055 - - - 1.88 - -

NGC 1407 lc 12.6 0.045 - - - 1.42 - -

NGC 3258 cM 4365 0.036 - - - - - 0.796

NGC 3268 cM 13490 0.044 - - - - - 0.936

NGC 4374 lc 135 0.0398 - - - 1.67 - -

NGC 4406 cS 13490 0.012 6.86 13.649 7.02 - - 0.021

NGC 4472 cS 10471 0.0323 3.47 10.635 5.503 - - 0.086

NGC 4636 lc 70.8 0.0573 - - - 1.5 - -

Table 2.3. Galactic luminosity fitting parameters. Col. 1: galaxy name; col. (2) key

identifying the galaxy light profile model (lc=linear with a flat core in the inner region,

cS=core-Sérsic, cM= modified core model); col. 3-10: parameters of the various profile

models (see Section 2.2 for details). η is in arcmin−2; rb and re are in arcmin.

luminosity profile of the galaxy for r ≤ rb is almost flat, and linked to the external

power law. We fitted the GCS distribution by a modified core model with Σ0 = 14.1

arcmin−2, rc = 0.7 arcmin and γ = 0.88. Integrating ΣGC(r) in the radial range

where GCs are observed, i.e. from rmin = 0 arcmin to R = 2.8 arcmin, we obtain

N = 73 as the present number of GC in NGC 1400. The initial GCS distribution

results to be approximated by:

ΣGC,0(r) =

{
1.37 × 105 arcmin−2 r ≤ rb
7.76r−1.88 r > rb

(2.5)

(see Figure 2.4).

Using the general method described in Section 2.2 and the estimated value rmax =

2.3 arcmin we have that the number of missing clusters in this galaxy is Nl = 183,

i.e. about 71% of the initial population of globular clusters, Ni = Nl +N = 256.

An estimate of the mass lost by the GCS is Ml = Nl 〈mMW 〉 = 6.04 × 107M⊙.

2.3.2 NGC 1407

As for NGC 1400, data for this galaxy and its GCS are taken from F06. The

luminosity profile of the galaxy stars is fitted by a power law, Σs(r) ∝ r−1.42.

This power law fit fails in the inner region where luminosity shows a core of radius

rb ≃ 0.045 arcmin (Spolaor et al. 2008). As for NGC 1400 we thus assume, for

r ≤ rb, a flat distribution matched to the external power law. The GCS modified

core model has, in this case, Σ0 = 17.8 arcmin−2, rc = 1.02 arcmin and γ = 0.85 as

better fitting parameters. The normalizing vertical translation of the stellar profile

leads to

ΣGC,0(r) =

{
1.04 × 103 arcmin−2 r ≤ rb
12.6r−1.42 r > rb

(2.6)

(see Figure 2.4).

Integrating the difference of the GCS “initial” and present radial profiles in the
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Figure 2.4. Surface number density for NGC 1400, NGC 1407, NGC 4472 (M 49) and NGC

3268. Black squares represent the observed GC distribution; the solid line is its modified

core model fit. The dashed curve is the surface brightness profile of the underlying galaxy

(a power law and a central flat core for NGC 1400 and NGC 1407, a Sérsic core model for

NGC 4472 and a modified Hubble’s law for NGC 3268), vertically normalized to match the

radial profile of the GCS in the outer regions.

galactic region where these differ, i.e. up to rmax = 2.34 arcmin (see Equation 2.4),

we obtain Nl = 84. The present number of GC obtained integrating ΣGC(r) in the

radial range covered by the observations (i.e. from 0 to R = 7.3 arcmin) is N = 314.

The GCS has therefore lost 21% of its initial population, Ni = 398.

In this case, we can evaluate the mass lost by the system as Ml = Nl 〈mMW 〉 =

2.77 × 107M⊙.

2.3.3 NGC 3258

The GCS density profile data for this galaxy are discussed by Dirsch et al. (2003).

The best modified core model fit is given by the values Σ0 = 16.9 arcmin−2, rc =

3.1 arcmin and γ = 2.4. The stellar luminosity profile, within 5 arcmin, following

Dirsch et al. (2003), is well represented by another modified core model fitting law.
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Figure 2.5. Surface number density for NGC 3258, NGC 4374, NGC 4406 and NGC 4636.

Black squares represent the observed GC distributions; the solid lines are their modified

core model fit. The dashed curves are the surface brightness profile of the underlying galaxy

(a modified Hubble’s law for NGC 3268, a power law and a central flat core for NGC 4374

and NGC 4636 and a Sérsic core model for NGC 4406), vertically normalized to match the

radial profile of the cluster system in the outer regions.

By mean of the usual procedure, the initial GCS profile is obtained:

ΣGC,0(r) =
4365

[
1 +

(
r

0.036

)2]0.796 arcmin−2. (2.7)

The present number of GCs is N = 343 (with R = 7.94 arcmin). Performing the

surface integral of the difference of the initial and present distribution in the radial

range up to rmax = 2.51 arcmin (see Equation 2.4) we have Nl = 220, corresponding

to 39% of the initial GCS population, Ni = 563.

For this galaxy, we obtained Ml = Nl 〈mMW 〉 = 7.26 × 107M⊙.
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Galaxy N Ni Nl δN ǫl Mi Ml
NGC 1400 73 256 183 0.71 0.40 8.45× 107 6.04× 107

NGC 1407 314 398 84 0.21 0.12 1.31× 108 2.77× 107

NGC 3258 343 563 220 0.39 0.16 2.47× 108 7.26× 107

NGC 3268 505 1117 612 0.55 0.12 3.69× 108 2.02× 108

NGC 4374 4655 7016 2361 0.34 0.050 2.34× 109 7.86× 108

NGC 4406 2850 4209 1359 0.32 0.23 1.25× 109 4.04× 108

NGC 4472 6514 14752 4792 0.44 0.14 4.87× 109 1.58× 109

NGC 4636 1411 2157 746 0.35 0.11 6.41× 108 2.22× 108

Table 2.4. col. (1): galaxy name; col. 2-8: the present number of GCs (N), its initial

value (Ni), the number of GCs lost (Nl), the percentage of GCs lost and the estimated

relative error on Nl (ǫl, see Appendix A), the estimate of the initial mass of the whole GCS

(Mi) and of the mass lost by each GCS (Ml). Mi and Ml are in solar masses.

2.3.4 NGC 3268

As for NGC 3268 the GC distribution of NGC 3258 is taken from Dirsch et al.

(2003).

The resulting core model fit parameters have the values: Σ0 = 24.4 arcmin−2,

rc = 2.6 arcmin and γ = 1.9. The analytical fit to the luminosity profile (within

5 arcmin) of the galaxy is, again, obtained with the same law (modified core model)

as used for the cluster density distribution (Dirsch et al. 2003). After the vertical

translation we have

ΣGC,0(r) =
13490

[
1 +

( r
0.044

)2]0.936 arcmin−2. (2.8)

Integrating ΣGC(r) from rmin = 0 arcmin to R = 7.94 arcmin we have N = 505 as

present GC number.

The number of globular clusters lost is found to be Nl = 612 (from 0 to rmax =

2.51 arcmin), that means about 55% of the initial abundance, Ni = 1117.

Also in this case, to evaluate the mean mass of lost GC in NCG 3268 we have to

assume 〈ml〉 = 〈mMW 〉, obtaining Ml = Nl 〈mMW 〉 = 2.02 × 108M⊙.

2.3.5 NGC 4374 (M 84)

Gómez and Richtler (2004) studied the GCS of this giant elliptical galaxy, using

photometry in the B and R bands, to draw its radial surface distribution.

In this case, contrarily to all the other galaxies discussed here, the profile of the

GC number density is flatter than the galaxy light (see Figure 2.5). This may be

due to tidal interaction with the nearby NGC 4406 galaxy, which shows, indeed, a

sort of depletion of the outer GC population. The best modified core model fit to

the GC data is given by Σ0 = 58.4 arcmin−2, rc = 0.31 arcmin and γ = 0.278.

The galaxy light is characterized by a central core of radius rb ≃ 0.0398 arcmin
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(Lauer et al. 2007); for r > rb, it is well fitted by the power law Σs(r) ∝ r−1.67

(Gómez and Richtler 2004). Figure 2.5 shows a clear departure of the GCS from

the stellar profile in the galactic outskirts; this is not a surprise because it occurs out

of the galactic apparent radius (∼ 3.1 arcmin, as from NASA/IPAC Extragalactic

Data base) i.e. in a region profoundly contaminated by interaction with the tidal

field of the inner, crowded Virgo cluster region.

The usual normalization leads to

ΣGC,0(r) =

{
2.94 × 104 arcmin−2 r ≤ rb
135r−1.67 r > rb,

(2.9)

as GCS initial radial profile. Integrating our core model up to R = 11.8 arcmin we

get N = 4655 as present number of GCs. The usual integration of the difference

of the initial and present GC distribution (Equation 2.4 with rmax = 3.84 arcmin)

leads to Nl = 2361. Hence NGC 4374 has lost 34% of its initial population of

globular clusters, Ni = 7016.

In the case of NGC 4374 the value of the mean mass of a GC has been evaluated

using the GCLF in the R band given by Gómez and Richtler (2004). The mean

color 〈(B −R)0〉 = 1.18 of GCs in this galaxy (Gómez and Richtler 2004) allows

us to estimate the mean B absolute magnitude and the mean luminosity of GCs in

the B band, 〈(L/LB)⊙〉 assuming m −M = 31.61 (Gómez and Richtler 2004). It

results 〈(L/LB)⊙〉 = 1.75× 105 (with MB,⊙ = 5.47, Cox 2000).

Adopting the mass to light ratio (M/L)B,⊙ = 1.9 obtained by Illingworth (1976)

for 10 galactic globular clusters, we get 〈ml〉 = 3.33 × 105M⊙ and Ml = Nl 〈ml〉 =

7.86 × 108M⊙.

2.3.6 NGC 4406 (VCC 881)

NGC 4406 is another giant elliptical in Virgo; its GCS has been studied by mean

of the Mosaic Imager on the 4m Mayall telescope at the KPNO (Rhode and Zepf

2004) in the B, V and R bands. The resulting best fit core model is characterized

by Σ0 = 26.76 arcmin−2, rc = 3.52 arcmin and γ = 1.19. The core model fit is not

satisfactorily reproducing the outer (r > 50 kpc) GCS distribution (see Figure 2.5).

Due to that NGC 4406 has a massive close companion (NGC 4374) it is possible

that its GCS is showing signs of tidal truncation either due to interaction with the

companion or the tidal field of the Virgo cluster (see Rhode and Zepf 2004).

The galaxy star luminosity distribution, according to Ferrarese et al. (2006b),

is well reproduced by a Sérsic core model (Trujillo et al. 2004), i.e. by

Σs(r) = Σb

[(
rb
r

)γ
θ(rb − r) + ebn

(
rb
re

) 1
n

θ(r − rb)e−bn
(
r
re

) 1
n

]
, (2.10)

where Σs(rb) = Σb, θ(x) is the usual Heaviside function, rb (break radius) divides the

profile into an inner (r ≤ rb) power-law region and an outer (r ≥ rb) exponential

region; re is the ‘effective’ radius and bn = 1.992n − 0.3271, with n free fitting
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Figure 2.6. GCLF for NGC 4406. The shaded histogram is the GCLF for the observed

GCs, used to evaluate the average mass of the same clusters. [Rhode and Zepf 2004]

parameter.

For NGC 4406 the parameter values are ( Ferrarese et al. 2006b): γ = 0.021,

n = 7.016, bn = 13.649, re = 411.84 arcsec (= 6.864 arcmin), rb = 0.72 arcsec

(= 0.0127 arcmin). Its vertical translation gives the initial GCS radial profile

ΣGC,0(r) = 13490

[(
0.012

r

)0.021

θ(0.012 − r) +

+ 250θ(r − 0.012)e−13.649( r
6.864 )

0.142
]
.

(2.11)

We note that in this case, unique in the sample of 8 galaxies examined in this

work, the stellar profile in the external zone is more slowly decreasing than that of

the GCS, because, probably, of GC stripping from the companion NGC 4374 and

from the external field in the dense central Virgo cluster region where NGC 4406

is.

Integrating the present distribution of GCs, from rmin = 0 arcmin to R = 24 arcmin,

we have N = 2850. The surface integral given in Equation 2.4, with rmax =

5.36 arcmin, gives the number of globular clusters lost, Nl = 1359, i.e. about 32%

of the initial GC population (Ni = 4209s).

Using the GCLF of this galaxy (see Figure 2.6) and its distance modulus m−M =

31.12 (Rhode and Zepf 2004), we evaluated the mean value of the absolute GC V

magnitude, 〈MV 〉 = −8.42 which corresponds to the mean luminosity 〈L/L⊙〉V =

1.98 × 105 (MV,⊙ = 4.82 from Cox 2000).

Assuming (M/L)V,⊙ = 1.5, we obtain 〈ml〉 = 2.97× 105M⊙. This estimate leads to

the value of the mass lost by the GCS, Ml = Nl 〈ml〉 = 4.04 × 108M⊙.
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Figure 2.7. GCLF for NGC 4636. The diamond symbols are the number of GCs in each

magnitude bin. [Kissler et al. 1994]

2.3.7 NGC 4472 (M 49)

Data for the GC distribution in this giant elliptical galaxy in Virgo are taken from

Rhode and Zepf (2001). The galaxy light is well fitted by a Sérsic core model

(Equation 2.10), whose parameters, determined by Ferrarese et al. (2006b), are:

γ = 0.086, n = 5.503, bn = 10.635, re = 208.01 arcsec (= 3.47 arcmin), rb = 1.94

arcsec (= 3.47 arcmin).

In this case the core model profile does not give a good approximation to the

observed GCS distribution. A better fit is given by one of the family of galaxy

models developed by Dehnen (1993): ΣGC = Σ0(r/rc)
−γ(1 + r/rc)

γ−4. Here we

assume γ = 0, has suggested by Côté et al. (2003). Using this law we obtained

ΣGC(r) = 107.0

(
1 +

r

8.465

)−4

(2.12)

The usual vertical translation leads to

ΣGC,0(r) = 10471

[(
0.0323

r

)0.086

θ(0.0323 − r)+

+94.7θ(r − 0.0323)e−10.635( r
3.47 )

0.18
]
.

(2.13)

The surface integral (Equation 2.4), performed with rmax = 7 arcmin, gives Nl =

4792. Integrating ΣGC(r) up to R = 22 arcmin we have that N = 6514. Hence, M

49 has lost 44% of the initial population of its GCs, Ni = 14752.

As for NGC 1400 and NGC 1407, no better estimate of 〈ml〉 is available, so we

evaluate Ml as Ml = Nl 〈mMW 〉 = 1.58 × 109M⊙.
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2.3.8 NGC 4636

The GC content of this galaxy has been studied by Kissler et al. (1994). The

modified core model fit has Σ0 = 77.66 arcmin−2, rc = 0.823 arcmin and γ = 0.691

as optimal parameter values.

The galactic light profile shows an inner flat distribution (a core with radius rb ≃
0.0573 arcmin (Lauer et al. 2007), while for r > rb the light distribution is well fitted

by the power law fit Σs(r) ∝ r−1.5 (Kissler et al. 1994).

The vertical translation of the stellar profile gives the initial GCS profile:

ΣGC,0(r) =

{
5.16 × 103 arcmin−2 r ≤ rb
70.8r−1.5 r > rb.

(2.14)

Integrating the present surface density profile of the GCS up to R = 6.6 arcmin,

we obtain N = 1411. Performing the surface integral given in Equation 2.4 (with

rmax = 4.75 arcmin), we estimate that the number of GCs disappeared is Nl = 746,

i.e. 35% of the initial population, Ni = 2157. In the case of this galaxy we obtained

two different estimates of the mass lost by the GCS, starting from data taken from

Kissler et al. (1994). The first estimate has been obtained using the GCLF (Kissler

et al. 1994, see Figure 2.7). As for NGC 4406 we calculated the mean absolute

V magnitude of GCs, 〈MV 〉 = −8.07, (given m − M = 31.2 by Kissler et al.

1994. Assuming for GCs in NGC 4636 the same M/LV ratio of galactic GCs,

(M/LV )⊙ = 1.5, the deduced mean luminosity of GCs, 〈L/L⊙〉V = 1.43 × 105,

gives 〈ml,1〉 = 2.15 × 105M⊙, and so Ml,1 = Nl 〈ml,1〉 = 1.29× 108M⊙.

Another estimate is found using the mass distribution of GCs obtained in Kissler

et al. (1994) transforming the magnitude bins of the GCLF candidates into masses

using the relation given by Mandushev et al. (1991): log(M/M⊙) = −0.46MV + 1.6

(corresponding to a mean mass to light ratio (M/L)V,⊙ ≃ 2.0). Knowing the mass

distribution we can directly calculate the mean mass of GCs, 〈ml,2〉 = 3.79×105M⊙,

and thus Ml,2 = Nl 〈ml,2〉 = 2.97 × 108M⊙.

The averages of our two estimates gives Ml = 2.22 × 108M⊙.

To give some insight into the role of taking a different photometry for the galaxy

stellar profile, we adopted for the whole radial extension of NGC 4636 the “Nuker"

stellar profile given in Lauer et al. (2007) and evaluated again the Nl value. In this

way we obtained Nl = 748 (versus the previous value of 645) with rmax = 2.2 ar-

cmin (previously 4.75 arcmin), with a 14.8% relative variation.

Tables 2.2 and 2.3 resume the parameters of the radial profile fitting functions

for the studied galaxies, while Table 2.4 resume the results in terms of the estimated

number and mass of GC lost.

Regarding the error estimates of Table 2.4 (see Appendix A), it may be worth noting

that a 1% error in rmax contributes from 1.4% (NGC 1400) up to 26% (NGC 1407)

to the total error. In the case of the greatest difference in the slope of the external

GCS and stellar profiles (NGC 4374) the contribution of a 1% indeterminacy in

rmax is for 22% of the total error.
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Galaxy MV Mbh Ml Sources

MW −20.60 3.61× 106 1.80× 107 E05, VV00, CDV97

M 31 −19.82 6.19× 107 2.30× 107 M98, CDV97

" ” 4.50× 107 ” TR02

M 87 −22.38 3.61× 109 2.33× 109 M98, CDV97

" −22.95 3.67× 109 ” KB09

NGC 1427 −20.43 1.17× 108 8.86× 107 VM99, CDT99

NGC 4365 −22.06 7.08× 108 7.48× 107 VM99, CDT99

" −23.63 3.94× 108 " KB09

NGC 4494 −20.94 4.79× 108 2.98× 107 VM99, CDT99

NGC 4589 −21.14 3.09× 108 7.58× 107 VM99, CDT99

NGC 5322 −21.90 9.77× 108 6.51× 107 VM99, CDT99

NGC 5813 −21.81 2.82× 108 1.03× 108 VM99, CDT99

NGC 5982 −21.83 7.94× 108 8.86× 107 VM99, CDT99

NGC 7626 −22.34 1.95× 109 3.59× 108 VM99, CDT99

IC 1459 −21.68 2.60× 109 1.57× 108 Fe05, VM99, CDT99

" " 2.50× 109 " TR02

NGC 1399 −21.71 5.22× 109 1.44× 108 M98, CDD01

" " 5.10× 108 " GE07

NGC 1400 −20.63 3.71× 108 6.04× 107 VM99, F06, CDM

NGC 1407 −21.86 5.55× 108 2.77× 107 Z07, F06, CDM

NGC 3258 −21.40 2.14× 108 7.26× 107 BC06, D03, CDM

NGC 3268 −22.07 4.68× 108 2.02× 108 BC06, D03, CDM

NGC 4374 −22.62 1.41× 109 7.86× 108 R98, GR04, CDM

" −23.63 8.87× 108 " KB09

NGC 4406 −22.30 1.40× 108 4.04× 108 CJ93, RZ04, CDM

" −22.69 2.29× 108 " KB09

NGC 4472 −23.10 2.63× 109 1.58× 109 M98, RZ04, CDM

" -23.24 6.10× 108 " KB09

NGC 4636 −21.70 3.63× 108 2.22× 108 VM99, KR94, CDM

" −22.10 2.06× 109 " KB09

Table 2.5. col. (1) galaxy name; col. (2), (3) and (4): the V absolute magnitudes,

the galactic central black hole masses and the mass lost by GCSs (both in solar masses),

respectively; col. (5): bibliographic reference sources for entries in col. (2), (3) and (4); the

acronyms are defined in the Bibliography. For 9 galaxies, double entries forMV and/orMbh
are available and given in the second row. When the entry was not modified a " symbol is

present.

2.4 A new result: the correlation between Ml, MV and

Mbh

At present, although the explanation of the difference between the GCS and stellar

bulge radial distributions as a result of dynamical evolution well fits with obser-

vational data and theoretical arguments, we cannot state it firmly. However, this

theory implies a correlation between the (supposed) mass lost by GCS with the
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Figure 2.8. The correlation between the GCS (logarithmic) mass lost and the central

galactic black hole mass (left panel) and integrated V magnitude of the host galaxy (right

panel) for the set of galaxies in Table 2.5. Masses are in solar masses. Black circles represent

the eight galaxies whose GCS data are discussed in this Chapter, black triangles refer to

the others. The straight lines and curves are the approximation fits discussed in Section

2.4.

mass of the galactic central Supermassive Black Hole (Mbh) and, likely, with the

host galaxy luminosity (MV ). We verified the existence of these correlations in or-

der to support this interpretation. Tab. 2.5 reports the whole set of galaxies for

which we have the estimate of MV , Mbh and Ml and the corresponding references.

Figure 2.8 shows a plot of Tab. 2.5 data. For some galaxies, two estimates of MV
and/or Mbh were available. In these cases, we took from Tab. 2.5 the entries in the

first to plot in Figure 2.8. The figure clearly indicates an increasing trend of Ml as

function of Mbh (left panel) and of MV (right panel).

In particular, the linear fit of data in the left panel is given by logMl =

a logMbh + b with a± σ(a) = 0.56± 0.14 and b± σ(b) = 3.3± 1.2, giving χ2 = 3.8.

The, alternative, exponential fit gives logMl = α exp(logMbh)+β where α±σ(α) =

(7.6 ± 2.7)× 10−5 and β ± σ(β) = 7.61 ± 0.22 and χ2 = 4.6.

For the 9 galaxies for which alternative data are available we re-evaluated the lin-

ear and exponential fit to data using the second row values in Tab. 2.5, getting

a± σ(a) = 0.51± 0.16 and b± σ(b) = 3.7± 1.3, with χ2 = 4.1 for the linear fit and

α ± σ(α) = (1.04 ± 0.30) × 10−4 and β ± σ(β) = 7.44 ± 0.22, with χ2 = 4.0. The

difference in the fit coefficients are not significant.

The least square, straight-line, fit to the whole set of data shown in the right

panel of Figure 2.8 is given by logMl = aMV + b with a ± σ(a) = −0.55 ± 0.10

and b ± σ(b) = −3.8 ± 2.2, giving χ2 = 2.6. The exponential fit on the same

data gives logMl = α exp(−MV ) + β where α ± σ(α) = (1.90 ± 0.40) × 10−10 and

β ± σ(β) = 7.54 ± 0.16 and χ2 = 3.4. As before, we evaluated again the linear
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Figure 2.9. The correlation between the logarithm of the central galactic black hole mass

(in solar masses) and the integrated V galactic magnitude (see Table 2.5).

and exponential fits using the entries in the second row of the galaxies having two

evaluations in Tab. 2.5 and get a±σ(a) = −0.48±0.08 and b±σ(b) = −2.30±1.70,

giving χ2 = 2.30, for the linear fit and α ± σ(α) = (1.01 ± 0.19) × 10−10 and

β ± σ(β) = 7.67 ± 0.11 and χ2 = 2.6, for the exponential fit.

The correlation seen in the right panel of Figure 2.8 between Ml and MV reflects,

both, an expected physical dependence on the total galactic mass of evolutionary

processes acting on GCSs and, simply, the positive correlation betweenMbh andMV
for the same set of galaxies. Actually, theMbh-MV correlation for the set of galaxies

in Tab. 2.5 has a clearly positive slope, as shown also by the least square fit in Figure

2.9. The least square fit is logMbh = aMV + b with a ± σ(a) = −0.52 ± 0.15 and

b±σ(b) = −2.6±3.2, giving χ2 = 5.2. When using the alternative entries in Tab. 2.5

the fit coefficients transform into a±σ(a) = −0.41±0.12 and b±σ(b) = −0.40±2.70,

giving χ2 = 5.5.

On the astrophysical side, Capuzzo-Dolcetta and Vignola (1997) have pointed

out how a correlation between GCS radial profiles and the parent galaxy luminosity

is expected on the basis of larger tidal disturbance when a more massive compact

central nucleus is present in the galaxy, which erodes the GC distribution peaked

to the center due to frictionally decayed massive clusters.

2.5 Summary

After a brief review about results found in literature we presented a comparative

discussion of radial distribution of the globular cluster systems and of the stars in
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a sample of eight elliptical galaxies observed by various authors. The main results

we found are listed in the following:

• GCS distributions flatten towards the centre, showing a broad core in the

profile, contrarily to the surrounding star field.

• This result agrees with many previous findings, indicating, indeed, that GCs

are usually less centrally concentrated than stars of the bulge-halo. A debate

is still open on the interpretation of this observational issue.

• The “evolutionary” interpretation is particularly appealing; it claims that, ini-

tially, the GCS and stellar profiles were similar and, later, GCS evolved to the

presently flatter distribution due to dynamical friction and tidal interactions

(Capuzzo-Dolcetta 1993).

• In this picture, the flatter central profile is due to the erosion of the inner

GCS radial profile. Many GCs are, consequently, packed in the inner galactic

region, where they influence the physics of the host galaxy.

• Many of the galaxies studied so far have massive black holes at their centers,

whose mass positively correlates with our estimates of number and mass of

GC lost. This is a strong hint to the validity of the mentioned evolutionary

scenario, together with the other evident correlation between number and

mass of GC lost and their parent galaxy luminosity.

• The evolutionary hypothesis is also supported by the positive (although sta-

tistically uncertain) correlation between the (rough) estimate of the galactic

central phase-space density and integrated magnitude.

At the light of these encouraging findings, we think that much effort should be

spent into deepening the observational tests of this astrophysical scenario.



Chapter 3

The N-body problem and the

dynamical evolution of stellar

systems

In the second part of this Thesis we will keep on dealing with the study of dynamical

evolution of stellar systems on different scales, but now using numerical tools. Thus,

at this point, it is worth introducing some concepts about stellar dynamics. The

study of systems where each particle interacts with each other is a common topic of

a large number of scientific fields (e.g. nuclear physics, molecular dynamics, stellar

dynamics, etc.). Since many astrophysical systems can be considered as systems of

point mass particles, the so called classical N -body problem is of great relevance. In

this Chapter a brief review on this subject is presented. In particular, in Section 3.1

and in Section 3.2 the N -body problem is described from an analytical point of view.

In Section 3.3 we introduce the numerical approach to the the N -body problem, its

computational issues and the possible techniques adopted in its solution. In Section

3.5 some modern hardware solutions adopted to face the problem are described.

3.1 The N-body problem

Unlike the other kinds of objects, astronomical systems are self-gravitating. This

means that, while generally mutual gravitational interactions between the compo-

nents of a system are negligible with respect to the external field, this is not the

case for the stars in a stellar system.

Thus self-gravity cannot be neglected respect to the external field, when deal-

ing with physics of astronomical objects. To study stellar dynamics we need to

consider the mutual gravitational interactions between the components of a given

stellar system and not only the effect of the external, analytically approximated,

gravitational field. As we will describe in this Chapter, this is what makes theoret-

ical astrophysics a hard field to be investigated.

49
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Much of the present understanding of the dynamics of stellar clusters and galax-

ies has emerged from numerical models of these systems. The simplest type of

model is one in which a number of particles move under the influence of their mu-

tual gravitational attraction. In these N -body models, bodies are represented by

point masses. In a system of N gravitating point-masses, the force acting on the

ith body of mass mi and position ri in a cartesian reference frame is the sum of the

individual forces, Fij, due to all the other j = 1, 2, ..., N, j 6= i bodies

Fij = G
mimj
|rj − ri|3

(rj − ri), (3.1)

such that the total force acting on i, Fi, is

Fi =
N∑

j=1,j 6=i

Fij = Gmi

N∑

j=1,j 6=i

mj
|rij |3

rij , (3.2)

where

rij = |rj − ri| =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2, (3.3)

is the module of the distance between the particles i and j. The potential function

is defined as

U(r1, r2, ..., rN ) ≡ 1

2

N∑

i=1

N∑

j=1
j 6=i

G
mimj
rij
. (3.4)

The gravitational force field is conservative, and so ∇xkU = Fxk (∇ is the usual

gradient operator acting on the potential), and in fact

∂U

∂xk
=
∂

∂xk




1

2

N∑

i=1
i6=k

G
mimk
rik

+
1

2

N∑

j=1
j 6=k

G
mkmj
rkj


 =

∂

∂xk



N∑

l=1
l 6=k

G
mlmk
rlk


 =

= −
N∑

l=1
l 6=k

G
mlmk
r2lk

∂rlk
∂xk

=
N∑

l=1
l 6=k

G
mlmk
r3lk

(xl − xk) =
N∑

l=1
l 6=k

G
mlmk
r3lk

(xl − xk) = Fxk ;

similar expressions can be easily obtained for the other components.

Clearly, the anti-symmetry condition Fij = −Fji holds, implying the linear and

angular momentum conservation laws for the isolated case (see Section 3.1.1). The

resulting system of equations of motion, subjected to given initial conditions, is





mir̈i = Fi + Fext(ri)

ri(0) = ri0
ṙi(0) = ṙi0,

(3.5)

where Fext accounts for an external force, expressed by Fext(ri) = ∇Uext(ri) if

conservative.
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The system given by Equations (3.5) can be transformed into a system of 6N first-

order scalar equations putting ṙi = vi and remembering that v̇i = 1
mi
∂U
∂ri

. Although

the theoretical formulation of the problem is very simple, its numerical resolution

presents significant difficulties.

3.1.1 The integrals of motion

A strategy to simplify the problem is to reduce the order of the system of Equations

(3.5) by mean of conserved quantities. In particular, an integral of motion is a

function I of the positions and velocities (x,v) of all the particles that is constant

along solution trajectories; thus at two generic different times we have

I [x(t1),v(t1)] = I [x(t2),v(t2)] .

The integrals which restricts the phase space available to a dynamical system are

known as isolating integrals. For an N -body system, up to 12 isolating integrals can

be found: 10 of them can be determined thanks to the Newtonian formalism and,

the others 2 were found, for the first time, by Jacobi using the so called procedure

of eliminating nodes.

• Total energy

The total energy of the system is

E = T − U =
1

2

N∑

i=1

miṙ
2
i −

1

2

N∑

i=1

N∑

j=1
j 6=i

G
mimj
rij
, (3.6)

Where T is the total kinetic energy and −U is the potential energy, as given

by Equation (3.4). If

Ė = Ṫ − U̇ = 0 . (3.7)

then the total energy of the system is constant with time and this means that

it is an integral of motion. For the kinetic energy time derivative we have that

Ṫ =
1

2

N∑

i=1

2miṙi · r̈i =
N∑

i=1

miṙi · r̈i.

Since the potential function depends on time through the positions, we may

write

U̇(x1, y1, z1, ..., xN , yN , zN ) =
N∑

i=1

(
∂U

∂xi

∂xi
∂t

+
∂U

∂yi

∂yi
∂t

+
∂U

∂zi

∂zi
∂t

)
=
N∑

i=1

∇riU ·ṙi

(3.8)

The force can be written as Fi = mir̈i = ∇iU ; substituting this expression

into Equation (3.8) we obtain

U̇ =
N∑

i=1

miṙi · r̈i = Ṫ .
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Thus, the condition given by Equation (3.7) is fulfilled, and this means that

the total energy is actually an integral of motion; its existence allows to reduce

the order of the system given by Equations (3.5) to 6N − 1.

• The total angular momentum

The total angular momentum of an N -body system is

L =
N∑

i=1

miri ∧ ṙi.

As we will show, for an isolated system, L̇ = 0 and so, the total angular

momentum is an integral of motion. For the second cardinal equation of

dynamics the time derivative of angular momentum of a system is equal to

the sum of the momenta due to both the external and internal forces

L̇ = M(ext) + M(int) =
N∑

i=1

ri ∧ F
(ext)
i +

N∑

i=1

ri ∧ F
(int)
i .

For an isolated system M(ext) = 0, so we have

L̇ =
N∑

i=1

ri ∧ Fi . (3.9)

Thanks to the equality given by Equation (3.2), we obtain

L̇ =
N∑

i=1

ri ∧
N∑

j=1
j 6=i

Fij =
N∑

i=1

N∑

j=1
j 6=i

ri ∧ Fij . (3.10)

Here we have a sum of terms ri ∧ Fij and rj ∧ Fji so, we can write

L̇ =
N∑

(i,j)=1
j 6=i

(ri ∧ Fij + rj ∧ Fji) (3.11)

obtaining a single summation on the couple of values (i, j). Taking into

account the anti-symmetry relation, we have

L̇ =
N∑

(i,j)=1
j 6=i

(ri ∧ Fij − rj ∧ Fij) =
N∑

(i,j)=1
j 6=i

G
mimj
r3ij

(ri − rj) ∧ (rj − ri) = 0 ,

where we have used the expression of the force given by Equation (3.2). There-

fore the 3 components of angular momentum L is an integral of motion and

this allows to reduce the order of the system of Equations (3.5) to 6N − 4.

• The total momentum and the center of mass

To derive another integral, let us begin to consider the equation of motion

mir̈i =
N∑

j=1
j 6=i

G
mimj
r3ij

(rj − ri) ;



3.1 The N-body problem 53

summing the right-end sides over i, we obtain

N∑

i=1

N∑

j=1
j 6=i

G
mimj
r3ij

(rj − ri) = 0;

this summation is, indeed, a sum of terms rj − ri and ri − rj which cancel

each other. At this point it is apparent that

N∑

i=1

mir̈i = 0 . (3.12)

Introducing the position of the center of mass of the system we have

rc.m. =

∑N
i=1miri∑N
i=1mi

=
1

M

N∑

i=1

miri

where M is the total mass of the system. Therefore, the relation (3.12) is

equivalent to

r̈c.m. = 0

and, integrating, we have

ṙc.m. =
1

M

N∑

i=1

miṙi=
Q

M
= constant . (3.13)

Thus, the total momentum Q is an integral of motion and it allows to reduce

the order of the system of Equations (3.5) of other 3 units (one for each

component). If we choose a new reference frame whose origin is in the center

of mass of the system, then Equation (3.13) can be written as

ṙc.m. =
Q

M
= 0

and, integrating again, we obtain

rc.m. = constant = 0

which is another integral of motion and so its existence allows to reduce the

order of the main system to 6N − 10.

3.1.2 The Virial Theorem

Another useful property of dynamical system is the one known as virial theorem.

The virial theorem was formulated by Clausius in 1870 in order to study the me-

chanical origin of heat (his work had the title “On a mechanical theorem applicable

to heat”) and, then, it was employed in other fields, including stellar dynamics. To

derive the compact expression of this theorem, we may start from the equation of
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motion of a generic particle k, belonging to an N -body system, written in terms of

the derivative of the potential

mkr̈k =
∂U

∂rk
. (3.14)

Remembering that

1

2

d2

dt2
(rk · rk) =

d

dt
(rk · ṙk) = |ṙk|2 + rk · r̈k

and using Equation (3.14) we get

1

2

d2

dt2

(
mkr

2
k

)
= mk |ṙk|2 + rk ·

∂U

∂rk
.

Summing over k and multiplying by 1
2 , we have

1

4

d2

dt2

N∑

k=1

mkr
2
k =

N∑

k=1

1

2
mk |ṙk|2 +

1

2

N∑

k=1

rk ·
∂U

∂rk
. (3.15)

The polar moment of inertia is defined as

I ≡
N∑

k=1

mkr
2
k. (3.16)

Using this equation and the definition of the total kinetic energy of the system we

have that Equation (3.15) can be rewritten as

1

4

d2I

dt2
= T +

1

2

N∑

k=1

rk ·
∂U

∂rk
. (3.17)

The so called Clausius’ virial, i.e. the last term on the right side of Equation (3.17),

can be shown in a more common form. A real function f(r), of m real variables, is

homogeneous of degree n if

f(αr) = αnf(r) (3.18)

∀α ∈ R (α 6= 0) and ∀r ∈ R
m. From Equation (3.18) it can be readily shown that

the potential function U(r1, r2, ..., rN ) is homogeneous of degree n = −1. In light

of this property, we can write

∂U(αr)

∂α
=
∂(αnU)

∂α
= nαn−1U . (3.19)

Thus, we have

∂U(αr)

∂α
=
N∑

i=1

(
∂U

∂αxi

∂αxi
∂α

+
∂U

∂αyi

∂αyi
∂α

+
∂U

∂αzi

∂αzi
∂α

)
=
N∑

i=1

(∇αriU) · ri . (3.20)

Since α is arbitrary, we can choose α = 1 and, using the equalities (3.19) and (3.20),

we obtain
N∑

i=1

∇riU · ri = −U . (3.21)
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Substituting Equation (3.21) into Equation (3.15) we get

1

2
Ï = 2T − U (3.22)

which represents the final form of the virial theorem. If the potential energy Ω = −U
is introduced, Equation (3.22) becomes

2T + Ω =
1

2
Ï

that, since E = T − U = T + Ω, can also be expressed as

E + T =
1

2
Ï . (3.23)

3.1.3 Stability and some consequences of the virial theorem

Generally, an N -body system is said to be stable, in the sense that it remains

confined to a limited region of space, only if both the following conditions are

verified:

1. |rij(t)| 6= 0 for every i 6= j and any t;

2. |rij(t)| < A for any t, where A is a positive constant.

This is only possible if the total energy of the system is E < 0. In fact, if E > 0,

through Equation (3.23) we have

1

2
Ï ≥ E

and integrating two times, we get

I(t) ≥ Et2 + İ(t0)t+ I(t0)

i.e. the moment of inertia grows quadratically with t yielding to I → ∞ when

t→∞. Thus the second condition is not fulfilled and rk →∞ at least for one value

of k. Since, in an N -body system, the energy of a single particle is not a conserved

quantity, E < 0 is a necessary, but not sufficient, condition. Thus, although the

energy of the system is negative, a particle, locally, can reach (and maintain), at

position rp, an energy Ep such that

Ep =
1

2
mpv

2
p(rp)− U(rp) > 0,

this implies that

vp(rp) >

√
2U(rp)

mp
= v(p)
e (rp)

where v
(p)
e (rp) is the escape velocity of the particle p at position rp. In this case, the

particle p escapes from the system and the condition number 2 is no longer verified.
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The virial theorem provides some information about the global behaviour of the

system. Given a quantity A(t), its average over the time interval (0, t) is given by

〈A〉t ≡
1

t

t∫

0

A(τ)dτ . (3.24)

Applying this definition to Equation (3.22) we obtain

İ(t)− İ(0)

2t
= 2 〈T 〉t − 〈U〉t .

If the system is limited in the phase space, we have that İ(t) − İ(0) is a limited

quantity and, if t→∞, we have

2 〈T 〉∞ − 〈U〉∞ = lim
t→∞

İ(t)− İ(0)

2t
= 0 .

Therefore, a limited system, after a long time, is said to be virialized if it has an

average virial ratio 〈Q〉∞ such that

〈Q〉∞ =
2 〈T 〉∞
〈U〉∞

= 1 .

Generally, when Ï > 0 it is clear that T > −E and the system, globally, tends to

expand. On the contrary, when Ï < 0 we have T < −E and the system tends to

contract. However, even if a system is initially characterized by a value Ï 6= 0, it

tends to a virialized condition, which corresponds to gravitational equilibrium, on

a time comparable to the relaxation time (see the next Section).

3.2 Time scales in N-body systems

To study properly the evolution of a stellar system it’s fundamental to know the

time scales over which it changes it’s properties. The crossing time is undoubtedly

the most intuitive time-scale relating to self-gravitational systems and is usually

defined as the time that a particle needs to cross the typical dimension (R) of the

system to which it belongs. Remembering that

v2 ∼ GM
R
∼ Gm̄N
R

with m̄ the mean mass of the N particles in the system, we have

tcr =
R

v
=
R

3
2√
Gm̄N

. (3.25)

For a system in approximate dynamical equilibrium the crossing time is alternatively

defined as

tcr =
2RV
σ
, (3.26)
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whereRV is the virial radius, obtained from the potential energy byRV = N2m̄2/2|U |,
and σ is the root mean square velocity dispersion (Aarseth, 2003). In a state of

approximate equilibrium, σ2 ≃ GNm̄/2RV , which gives

tcr ≃ 2
√

2

(
R3
V

GNm̄

)1/2

, (3.27)

or alternatively tcr = G(Nm̄)5/2/(2|E|)3/2 from E = 1
2U . Unless the total energy

is positive, any significant deviation from an overall equilibrium causes a stellar

system to adjust globally on this time-scale which is also comparable to the free-fall

time1. The close encounter distance is a useful concept in collisional dynamics. It

may be defined by the expression (Aarseth and Lecar, 1975)

Rcl = 2Gm̄/σ2, (3.28)

which takes the simple form Rcl ≃ 4RV /N at equilibrium.

A rich open star cluster may be characterized by N ≃ 104, m̄ ≃ 0.5 M⊙ and

RV ≃ 4 pc, which yields tcr ≃ 5× 106 yr. Many such clusters have ages exceeding

several Gyr, hence a typical star may traverse or orbit the central region many

times, depending on its angular momentum.

Another important time scale is the relaxation time; it is, indeed, one of the

most important parameters used to describe exhaustively the evolution of a generic

stellar system. It is defined as the time over which, as a result of collisions between

particles, a stellar system completely loses memory of its initial state. After this

time a system is said to be relaxed. A simplified evaluation of the relaxation time,

which leads to the expression

tr ≃ nRtc =
1

8

N

ln Λ
tcr =

1

8

N

ln Λ

R3/2

√
GM

(3.29)

where ln Λ is the Coulomb logarithm, can be found in Appendix B. Going beyond

this simplified derivation a more detailed analysis of the subject of relaxation time

was mainly formulated by Rosseland (1928), Ambartsumian (1985), Spitzer (1940)

and Chandrasekhar (1942). The classical expression of the relaxation time is given

by

tE =
1

16

(
3π

2

)1/2
(
NR3

GM

)1/2
1

ln(0.4N)
, (3.30)

(Chandrasekhar, 1942). For the purposes of star cluster dynamics, another defini-

tion, known as the half-mass relaxation time is perhaps more useful since it is not

sensitive to the density profile.

Following Spitzer (1987) the relaxation time at the half mass radius it is

trh = 0.138

(
Nr2h
Gm

)1/2
1

ln(γN)
, (3.31)

1The free-fall time is the characteristic time that would take a body to collapse under its own

gravitational attraction, if no other forces existed to oppose the collapse.
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where rh is the half mass radius and Λ = γN is the argument of the Coulomb

logarithm. Formally this latter factor is obtained by integrating over all impact

parameters in two-body encounters (see Appendix B), and, commonly, γ is set

equal to 0.4. From the numerical example above we then have trh ≃ 3× 108 yr for

rh ≃ 4 pc and an equal-mass system with N = 1× 104 stars of half a solar mass. In

comparison, trh ≃ 3× 1010 yr for a globular cluster with N ≃ 106 and rh ≃ 25 pc.

Equation (3.31) gives an estimate of the time for the root mean square veloc-

ity change arising from small angle deflections at the half-mass radius to become

comparable to the initial velocity dispersion. It serves as a useful reference time

for significant dynamical changes affecting the whole cluster even though there is

no corresponding numerically well-defined quantity. The assumption of approxi-

mate equilibrium with the above definition of the crossing time leads to the relation

(Spitzer, 1987)
trh
tcr
≃ N

22 ln(γN)
, (3.32)

which shows that close encounters become less important for increasing particle

number since the potential is smoother. Hence if the relaxation time for an equal-

mass system exceeds the time interval of interest by a significant factor, the use

of the collisionless approximation which neglects close encounters may be justified.

However, the approach to the collisionless regime is slow and in any case the central

relaxation time may be much shorter.

3.3 The numerical approach

After discussing the general properties of the N -body problem we shift to the study

of its solution. As well known there is no general analytic solution of the N -body

problem for N ≥ 3, so that numerical methods must be used to evaluate the mutual

forces and to solve the equations of motion.

In relatively recent times, the numerical approach to the star cluster dynamics

has greatly benefited from the huge development of computational hardware and

software tools. The study of the dynamics of a real cluster in a galaxy implies the

numerical solution of an N -body problem with N up to 106, for a time extension

up to ∼ 10 Gyr. It can be easily shown that the computational effort grows as N3,

two powers of N due to the pair-wise force interaction and another power because

larger N values slow down two-body relaxation effect and, so, slow down the “heat”

flow time. Since the sixties of last century to present, direct N -body simulations

gained a factor greater than 104: from simulations of systems with tens of stars

to simulation with few hundred thousand stars. This progress may seem not very

fast, but the explanation for this is the told ∝ N3 dependence of the computational

time on N . Note that, when dealing with high-precision simulations of N -body

systems, aimed at studying the evolution of collisional systems, algorithmic and

software developments are of difficult achievement. The most relevant technical

improvements to numerical algorithms are due, mainly, to Aarseth’s work (for an
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overview see Aarseth 2003).

In the following Subsections we will explain why the N -body problem is so difficult

to solve numerically.

3.3.1 Computational issues and possible solutions

Implementation of numerical methods is challenging due to the co-existence of prob-

lems on both small scales (i.e. close gravitational encounters) and large ones (the

newtonian pair-wise gravitational force never vanishes, so that every component of

the system, however distant, contributes to the force calculation). This “double

divergence” of the classic newtonian interaction potential has two different con-

sequences: i) close encounters correspond to an unbound force between colliding

bodies (|Fji| → ∞ when |rij | → 0) yielding to an unbound error in the relative

acceleration (ultraviolet divergence); ii) the need of the force summation over the

whole set of distinct N(N − 1)/2 pairs in the system implies an overwhelming CPU

challenge for values of N of astrophysical interest over a sufficient number of time

steps (infrared divergence), practically unaffordable even with most modern, fast

CPUs (see Section 3.3).

• A possible solution to ultraviolet divergence

The ultraviolet divergence is often cured by mean of the introduction of a “softening”

parameter, ǫ, in the interaction potential, which assumes the smoothed form

Uij = G
mj√
|rij |2 + ǫ2

. (3.33)

The corresponding total force acting on the ith particle is

Fi ≃ Gmi
N∑

j=1

mjrij
(|rij |2 + ǫ2)3/2

. (3.34)

In the latter sum the condition j 6= i is no longer needed, because, in its smoothed

form, Fii = 0 if ǫ 6= 0. Note that the introduction of the softening parameter

corresponds to substitute point masses with Plummer’s spheres (Plummer, 1911),

where the mass mi is distributed around the centre according to the density law

ρi(r) =
3mi
4πǫ3

1

(ǫ2 + r2)5/2
. (3.35)

It is relevant recalling that, in any case, the chance of close encounters is larger for

small values of N , when the “granularity”2 of the system is more significant.

• Possible solutions to infrared divergence

2Granularity is the extent to which a system is broken down into small parts, either the system

itself or its description or observation. It is the “extent” to which a larger entity is subdivided.
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The infrared divergence is faced in many different ways (simplifying the interaction

force calculation, reducing the number of times that the forces have to be evaluated,

using a more powerful computer, if available, see Section 3.4). Force computation

is a very expensive process because of the evaluation of the distance rij between

the generic i and j particle. It requires the computation of a square root which,

even on modern computers, is based on dated algorithms. The Newton-Raphson’s

method is one of the most famous among them and it is used to find the solutions

of the quadratic equation f(x) = x2 − r2ij = 0. Given a starting value x0 (the

closer to the root, the better), a better approximation of the square root is given

by x1 = x0 − f(x0)
f ′(x0) . The process can be iterated until a sufficiently accurate value

is reached:

xn+1 = xn −
f(xn)

f ′(xn)
=

1

2

(
xn +

r2ij
xn

)
.

The Newton-Raphson’s method converges quadratically and so, near a root, the

number of significant digits approximately doubles with each step. As a result,

to calculate a square root, at least 20 flops are needed. Thus, as will be better

shown in Subsection 4.2.1, the single pair force evaluation requires about 30 flops.

This means that, if we call nflops the number of flops performed in calculating the

acceleration of each particle per time step in an N -body system, we have

nflops =
30

2
N(N − 1) .

One of the fastest CPU which can be found on the market nowadays is the In-

tel Core i7-980X Processor Extreme Edition which can reach a speed of nearly

100 GFLOPs3. A globular cluster, composed of N = 106 stars, needs at least

1000 steps per crossing time to be simulated. If we wanted a full view of system

evolution, we should integrate over, at least, 5000 crossing times, so k = 5 × 106

is the total number of the steps which will be performed and f = k × nflops is the

corresponding total number of flops. Thus, assuming a complete parallelization of

the mutual forces evaluation and neglecting additional O(N) computations, we can

say, optimistically, that this processor could complete this simulation in

∆t ≃ f

S · 109
≃ 7.5 · 108s ≃ 23.8 years .

Clearly the task of following numerically the long term evolution of a large N -body

system, using a program based on direct summation of pair forces, is very far out

for the capability even of the most powerful computer.

The common line is introducing averaging (mean-field) methods, dividing the force

acting on a particle (and due to the rest of the system) into a “large” scale, slowly

varying, coarse-grain, contribution (Fls) and into a “small” scale, rapidly varying,

3In computing, FLOPs (or flops or flop/s, for floating-point operations per second) is a measure

of a computer’s performance, especially in fields of scientific calculations that make heavy use of

floating-point calculations.
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fine-grain, contribution, which is represented as a summation limited to a set of

n < N neighbouring particles, to give

Fi ≃ Gmi
n∑

j=1

mjrij
(|rij |2 + ǫ2)3/2

+ Fls(ri). (3.36)

Usually, the direct summation is performed considering an individual value of

n as that given by the number of “neighbour” stars, as those contained in a sphere

of radius such to guarantee a sufficient resolution of the granular component of the

field, while farther stars give the large scale force Fls which can be evaluated in

different ways. Most classical methods to evaluate Fls include solution of Poisson’s

equation on a grid (Hockney and Eastwood, 1988) or multipole expansion of the

potential generated by stars outside the neighbouring sphere (Barnes and Hut,

1986). Section 3.4 will give more information about this methods. Of course, setting

n = N (which means that the neighbouring sphere contains all the system particles)

makes the approximated expression above equal to the correct direct summation;

in this case Fls is contributed by an external force, only, and thus corresponds to

Fext in Equation (3.5).

Another way to reduce the computing time is to minimize the number of times

that the forces have to be evaluated. Stellar systems are characterized by differ-

ent time-scales, so, with this method, particles are advanced with just a time step

proper to the individual acceleration felt, allowing a substantial speed up without

introducing approximations. Thanks to this strategy, it is possible to take enormous

advantages in simulating systems with some binary stars which must be followed

by a time step smaller than the one required by the overall dynamics. Neverthe-

less, implementing an individual time step requires caution because a synchronous

integration must be guaranteed and, often, this implies a reduction of precision of

the integration method.

Moreover it’s possible to use faster machines (see Section 3.5). The use of a

more powerful, parallel workstation is not so obvious as it seems. In fact, the

parallelization of gravitational codes is a difficult task because gravity is such that

the force on every particle depends on the position of all the others.

3.4 Numerical methods

In the following we present a small summary of the algorithms used in the numerical

solution of the N -body problem.

3.4.1 Tree methods

Tree code method (Barnes and Hut, 1986) provides a fast, general integrator for

collisionless systems, when close encounters are not important and where the force

contributions from very distant particles does not need to be computed at very high

accuracy. In a tree code, in fact, small scale and strong interaction are typically
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softened (McMillan and Aarseth, 1993), while the potential due to groups of dis-

tant particles is approximated by multipole expansions about the group centers of

mass. The computation time for this kind of codes scales as O(N logN) but the

approximation causes errors in the force evaluation. The error on the long-range

force evaluation is controlled by only one parameter, the opening angle, which tells

whether a group of particles is distant enough to apply the approximation. In this

way it is possible to control and keep low the average error on the force, however un-

bound errors can arise for rare, but astrophysically reasonable configurations, such

as that of the classic “exploding galaxy”. Moreover the momentum conservation can

be violated due to force errors in a tree code. Typical implementations of the tree

code expand the potentials to quadrupole order and construct a tree hierarchy of

particles using a recursive binary splitting algorithm. The tree does not need to be

recomputed from scratch at every time-step, saving significant CPU time. Systems

with several hundred thousands of collisionless particles can be easily simulated on

a GFLOPs workstation for a Hubble time using this method.

3.4.2 Fast Multipole methods

A standard tree code implementation does not take into account the fact that a

group of particles causes almost the same acceleration over close and distant parti-

cles. The Fast Multipole Method (FMM, Cheng et al. 1999) uses this observation

and a multipole expansion to compute the force from a distant source cell within

a sink cell. In such a way the computational weight decreases scaling as O(N).

This scaling is not exactly correct, and a wide debate on this result is present in

literature (Dehnen, 2000). Fast multipole methods are characterized by symmetry

in treatment of sink and source cells with respect to the multipole expansion can

guarantee an exact conservation of the momentum.

3.4.3 Particle-mesh methods

Another way to speed up the force evaluation is given by the particle mesh method.

Here we have a grid over which the gravitational potential of the system is built,

starting from the density field and by solving the associated Poisson’s equation.

Particles do not interact directly between each other but only through a mean field.

Essentially, in this method, the small scale interactions are softened if they are

below the cell length. The density field is constructed using a kernel to split the

mass of the particles to the grid cells around the particle position. The simplest

choice is to assign all the mass to a single cell, but this leads to significant force

fluctuations, which can be reduced using a cloud in cell (8 points) or a triangular

shaped cloud (27 points) kernel. The Poisson equation is typically solved using a

Fast Fourier Transform, but other grid methods such as successive over-relaxation

can also be used (e.g. see Bodenheimer et al. 2007). The deriving force, defined on

the grid, is then assigned back to the particles using the same kernel employed for

the density field construction, in order to avoid spurious self forces. The complexity
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of the method is linear in the number of particles and scales as O(Ng log(Ng)) in

the number of grid cells (this latter scaling is that of the FFT method). The price

to pay is in terms of short range accuracy as the force is a poor approximation of

Newton’s law up to several grid spacing of distance.

3.4.4 Adaptive Mesh Refinement method

The dynamic range of particle-mesh codes can be increased by using an adaptive

rather than a static grid to solve the Poisson Equation. In the Adaptive Mesh

Refinement (AMR) method the grid elements are concentrated where a higher res-

olution is needed, for example around the highest density regions. One possibility

to obtain an adaptive resolution is to first construct a low-resolution solution of the

Poisson Equation and then to progressively refine regions where the local trunca-

tion error (estimated through the Richardson extrapolation) is highest. A multigrid

structure needs to take into account issues such as matching the solution at the grid

interfaces. AMR codes are well suited for cosmological simulations (e.g. see the

ENZO code, Bryan and Norman 1998).

3.4.5 Self consistent field methods

A variant over the Particle Mesh code is the expansion of the density and poten-

tial of the system in terms of a basis of orthogonal eigenfunctions. Clutton-Brock

(1972) as one of the first to apply this idea in stellar dynamics, while a modern im-

plementation is that of Hernquist and Ostriker (1992). This method guarantees at

fixed computational resources a higher accuracy than the tree code and the particle

mesh algorithms, provided that the set of basis function is appropriately selected.

This limits in practice a general application of the method, which remains however

very competitive for the study of the dynamical stability of collisionless systems

constructed from distributions functions models.

3.4.6 P3M and PM-Tree methods

In order to increase the force resolution of particle mesh codes it has been proposed

to couple a mean field description on large scales with a direct, softened, treatment

of the gravitational interactions on distances of the order of or below a few grid spac-

ing (Springel, 2005). This method is called P 3M : Particle-Particle-Particle-Mesh

and efficiently increases the dynamic range of the parent PM algorithm. However

in presence of strong clustering a large number of particles will interact directly

between each other, slowing down significantly the computation to O(N2). This

problem can be resolved by using adaptive meshes, so that the spatial resolution is

refined in regions of high density. Adaptive P 3M codes have a computational cost

which scales as O(N logN), like in a tree code. Finally another possibility is to

resort to a tree code for the short range force evaluation leading to a hybrid PM-

Tree scheme. These methods are generally extremely well suited for cosmological
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simulations, and one of the most used codes, Gadget2 (Springel, 2005), is based on

it.

3.4.6.1 Direct N-body calculations and time integration

The last class of methods we introduce are the ones we will use in our work: the

direct methods. Direct methods do not introduce approximations in the solution

of the equations of motion and thus deliver the highest accuracy at the price of

the longest computation time, of order O(N2) per timestep. The only choice is

possible to make is the one regarding the time integration. If we choose a “standard”

integration method (like, for example, an high order Runge-Kutta method, or the

simple and fast, but not so accurate, Euler’s explicit method, etc.) we will obtain,

for long time integrations, a slower or faster growth of the energy error. This error

is produced almost exclusively in close encounters where the problem becomes stiff.

A problem is said to be stiff when some of the involved quantities (like, in our case,

positions, velocities and accelerations) change their values too fast, making the

numerical solution stable only when the time integration steps are extremely small.

Introducing the softening parameter, we avoid this behavior caused by ultra-violet

divergence but this is not enough to solve the main problem. The real issue is the

integration method, in fact, standard integrators become dissipative and exhibit

incorrect long term behavior because these “classical” schemes perform, step by

step, non-canonical transformations (from (xn, yn) to (xn+1, yn+1)) yielding to a

conserved quantity different from the known expression, for example, of the total

system energy. This issue can be partially removed using symplectic integrators

which will be described in the next Section.

3.4.7 From Hamiltonian dynamics to symplectic integrators

A canonical transformation is a transformation which preserves the Hamiltonian

form of dynamics. This means that, performing a coordinate change from (u, v) to

(x, y), we will have

H(u, v) = K(x, y) = K[x(u, v), y(u, v)]

whereH and K are, respectively, the old and the new expression of the Hamiltonian

function of the system. We have to underline that an Hamiltonian system is a

dynamic system, having n degrees of freedom, defined by an Hamiltonian function

(H) which satisfies the so called canonical equations

ṗk = − ∂H

∂qk

q̇k =
∂H

∂pk
(3.37)

where qk is the kth generalized coordinate and pk is its momentum conjugate. This

system, of 2n first-order differential equations, can be written in a form, known
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as symplectic, through the matrix formalism, defining the column vectors z and

∂H/∂z, both of them having 2n components, and a 2n × 2n square matrix J such

that

zi = qi, zi+n = pi
(
∂H

∂z

)

i
=
∂H

∂qi
,

(
∂H

∂z

)

i+n
=
∂H

∂pi

J =

(
0 1

−1 0

)

where i = (1, 2, ..., n), 0 is the n× n matrix composed of vanishing elements and 1

is the n × n identity matrix. Using these new entries, we can write the system of

Equations (3.37) in a more compact form

ż = J
∂H

∂z
.

It can be shown that the necessary and sufficient condition for a transformation

(q, p) → (Q,P ) to be canonical is that the Jacobian matrix of the transformation

(Λ) is symplectic

ΛTJΛ = J (3.38)

where

Λ ≡ ∂ (Q,P )

∂ (q, p)
.

Consider, for example, the simplest and very fast integration method, known as

Euler’s explicit method. For simplicity we will refer to a one-degree-of-freedom

system and so we may write

qn+1 = qn + pndt

pn+1 = pn + f(qn; tn)dt (3.39)

where n indicates the nth integration step and f(qn; tn) = ṗn = −∂H/∂qn. From

Equation (3.39) we have

Λ =

( ∂qn+1

∂qn
∂qn+1

∂pn
∂pn+1

∂qn
∂pn+1

∂pn

)
=

(
1 dt
∂f
∂qn

dt 1

)
=

(
1 dt

∇qf(qn)dt 1

)

where it has been set ∂/∂qn = ∇q. Since this is a one dimensional problem, from

Equation (3.38) we argue that the necessary and sufficient condition for the matrix

Λ to be symplectic is that det(Λ) = 1. In our case we have

det(Λ) = 1−∇qf(qn)dt2 = 1⇒ f(qn) = constant

but, obviously, this does not happen for a generic N -body system, where f(qn; tn)

is the gravitational acceleration. So, Euler’s explicit method is not symplectic.
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It is well known that ordinary numerical methods for integrating Newtonian

equations of motions become dissipative and exhibit incorrect long term behaviour

(see, e.g., Menyuk 1984, MacKay 1990, Cartwright and Piro 1992). This is a serious

problem particularly when studying the evolution of systems over long time periods.

Here we show how this issue can be partially solved introducing symplectic methods.

Symplectic integrators can be constructed thanks to Hamiltonian splitting. It can

be verified that, if H = H1 + H2 + ... + Hk, then we may construct, at least, a

first-order symplectic method by mean of the composition of k coordinate changes.

For example, if we consider a typical Hamiltonian function given by

H(q,p) = K(p) + U(q) ,

where K can be considered the kinetic part of H and U is the potential part, the

canonical Equations (3.37) corresponding to H1 = K are

q̇ = ∇pK(p) (3.40)

ṗ = 0

while, the others are

q̇ = 0

ṗ = −∇qU(q) . (3.41)

Integrating Equations (3.41) and applying the resultant transformation to a generic

point of phase space (qn,pn) we obtain another point (q̂, p̂) such that

q̂ = qn

p̂ = pn −∇qU(qn)∆t . (3.42)

Now, integrating Equations (3.40) and applying the transformation to the point

(q̂, p̂) we obtain

qn+1 = q̂ +∇pK(pn+1)∆t (3.43)

pn+1 = p̂ .

Thus, eliminating (q̂, p̂) from Equation (3.42) and Equation (3.43) we may write

qn+1 = qn +∇pK(pn+1)∆t (3.44)

pn+1 = pn −∇qU(qn)∆t .

This is a first-order symplectic method known as Euler’s symplectic method. The

construction of higher order symplectic methods is a hard task. Standard numer-

ical integration schemes neglect relevant features of the dynamics of Hamiltonian

systems, like that the time-∆t map of phase space is symplectic, i.e. the evolution

of points in the phase space from 0 to t preserves the Poincaré invariants (Abra-

ham and Mardsen 1978). It is possible to see that a consequence is the Liouville’s
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theorem: phase-space volume is preserved. Moreover, symplecticity places much

stronger conditions on the global geometry of the dynamics in the phase space than

Liouville’s theorem; standard numerical integration schemes do not respect these

restrictions even if energy conservation is a priori implied. Consequently, reliability

of numerical integration schemes is limited to a narrow time extension above which

there is no guarantee they keep global properties implied by the Hamiltonian na-

ture of the dynamical system. Standard integration techniques are worthily used

in the analysis of short-time quantitative phenomena but not suited to investigate

properties on a long-time scale. In other words, secular variations of Hamiltonian

dynamical system parameters cannot be reliably foreseen by non-symplectic inte-

grators. In particular, the local truncation error grows secularly in non-symplectic

integrations, while it is kept bound by symplectic schemes provided the use of a

small time step (Yoshida 1990). Symplectic algorithms suffer much less indeed of the

numerical dissipation induced by round off error in standard numerical integrators,

even if also symplectic schemes are not exactly time-reversible as exact Hamiltonian

systems are. This is due to that symplectic integrators do not conserve the original

Hamiltonian but just a numerical, discrete variation of the original Hamiltonian.

This means that also symplectic integrations may have problems in following the

evolution of chaotic systems, although these problems are much smaller than with

non symplectic methods.

3.5 Hardware solutions for the direct summation method

Due to the unavoidable, hard, step of direct summation of the gravitational force

to keep the error to round-off level alone, one cannot expect order of magnitude

earning in computational time just by algorithm and software improvements. As

stated above, the fundamental bottleneck is, indeed, the evaluation of the euclidean

distance between the generic pair of stars of the system, which is an irrational op-

eration, intrinsically slow for any standard CPU. Another, time related, bottleneck

is the possible presence of binaries which must be followed by a time step order of

magnitudes less than the one required by the overall dynamics. A good analysis

of these, and others, bottlenecks in simulations of dense stellar systems is found

in Makino and Hut (1990). In this frame, it is not obvious to decide what is the

best choice between a general purpose large computational main frame and a dedi-

cated, special purpose, machine. The advantages of a parallel main frame are quite

evident: power, large storage capacity, specialized staff dedicated to maintenance.

The disadvantages are clear, too: low flexibility, difficulty in the access to a, usually,

remote site with connected complications in large data transfer. To avoid part of

these problems, and having in mind that the main bottleneck is, as said before,

the pair-wise force computation by mean of the mutual distance evaluation, at the

end of years 80’s Sugimoto, Hut and Makino started a project at Tokyo Univer-

sity to build specialized hardware for stellar dynamics calculations, the well known

GRAPE project. GRAPE boards were characterized by an efficient hardware im-
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plementation of Newtonian forces between particles in an N -body system which

are computed at a speed greatly in excess of a general purpose computer. The

board can, thus, be used as a computational booster, a gravity accelerator indeed,

in conjunction with a normal host workstation. GRAPE-1 was the first in a series

of such specialized boards working at low precision, while GRAPE-2, GRAPE-4

and GRAPE-6 use floating point arithmetics for more accurate calculation. The

most recent in these series of boards is GRAPE-6, with a peak performance of 1

TFlops. At the beginning of years 2000 the cost of a single GRAPE-6 board al-

lowed a 1 TFlops peak performance for a cost one or two order of magnitude lower

than commercial products working at same speed. The use of these boards allowed

direct simulations of systems of the size of 105 bodies, i.e. a factor of ten less than

the real number of stars in a globular cluster. The “one million body problem”,

discussed in the Heggie and Hut (2003) book was, so, very near to be numerically

approached without excessive simplifications. We will not speak here much about

the introduction and use of the Field Programmable Gate Arrays (FPGAs) ac-

celerators (see, anyway, an interesting discussion of its application to the N -body

problem in Lienhart and Männer 2002), which have the advantage to be highly

customizable, but do not have the same massive parallel execution resources and

high memory bandwidth of the last generation Graphic Processing Units (GPUs).

Another, cheaper approach to high speed computing is that through the modern

GPUs, formally dedicated to the acceleration of graphic tasks on personal comput-

ers but which are actual “supercomputers” when inserted in a host governed by

a certain number of standard processors. Graphics chips started as fixed function

graphics pipelines. Over the years, these graphics chips became increasingly pro-

grammable, which led NVIDIA to introduce the first Graphics Processing Unit. In

the 1999-2000 timeframe, computer scientists in particular, along with researchers

in fields such as medical imaging and electromagnetics started using GPUs for run-

ning general purpose computational applications. They found the excellent floating

point performance in GPUs led to a huge performance boost for a range of scientific

applications. This was the advent of the movement called GPGPU or General Pur-

pose computing on GPUs. The problem was that GPGPU required using graphics

programming languages like OpenGL and C to program the GPU. Developers had

to make their scientific applications look like graphics applications and map them

into problems that drew triangles and polygons. This limited the accessibility of

tremendous performance of GPUs for science. NVIDIA realized the potential to

bring this performance to the larger scientific community and decided to invest in

modifying the GPU to make it fully programmable for scientific applications and

added support for high-level languages like C and C++. This led to the CUDA

general purpose parallel computing architecture for the GPU. CUDA is a comput-

ing architecture developed by NVIDIA that extends C by allowing the programmer

to define C functions, called kernels, that, when called, are executed n times in

parallel by n different CUDA threads. CUDA programming language is basically

a C programming language extended with a number of keywords. CUDA threads
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System Open cluster Glob. clus., gal. nucleus Galaxy, clus. of gal.

N < 10, 000 105 ÷ 109 > 1010

Gravity Newtonian Newtonian, gen. rel. Newtonian,gen. rel.

Time scale ord. trel < tcr < t tcr << trel < t tcr << t < trel
Regime Collisional Secularly collisional Collisionless

Technique gas+direct N -body F-P,direct N -body,tree-c. tree-c.,PM,P3M

Table 3.1. Stellar systems time scales and other relevant characteristics to the types of

simulations needed.The age of the system is t. In the last row F-P means Fokker-Planck

method, tree-c. means tree-based codes, PM and P3M stand for Particle-Particle and

Particle-Particle-Particle-Mesh algorithms, respectively.

may execute on a physically separate device that operates as a coprocessor to the

host running the C program.

Regarding to specific applications for physics, it is worth cited what done by

Ageia technologies that in early 2006 launched the PhysX “physics processing unit”

(PPU), a PCI card with a custom parallel-processing chip tweaked for physics com-

putations. Game developers could use Ageia’s matching application programming

interface to offload physics simulations to the PPU, enabling not only lower CPU

utilization, but also more intensive physics simulations with many more objects.

The PhysX card itself looked like a video card, having the same structure, but was

actually thought for number crunching and for driving a display. The PhysX cus-

tom designed physics processor packed 125 million transistors into a 14 mm by 14

mm space. For various reasons, PhysX did not meet great success. In spite of this

Ageia was purchased by NVIDIA corp. in 2008 with the idea to add PhysX support

to GeForce 8-series graphics.

The scheme of GPU computing is similar to that of GRAPE: a heterogenous

computing model where the CPUs exploit a part of the application in a sequential,

or parallel, mode while the computationally-intensive part of the code runs on the

GPU. A code previously working on a multicore CPU just needs to extract its most

computationally expensive kernels and map them to the GPU. Mapping a function

to the GPU requires rewriting the function exposing its parallelisms and adding “C”

keywords to move data to and from the GPU. As primary examples of applications

of GPU computing we mention (see Owens et al. 2008) game physics, computational

biophysics, large-scale molecular dynamics, as well as astrophysics.

In the next chapter we will see more in detail how it is possible to exploit the

GPUs, describing different versions a new code apt to run on such devices and

that exploit the high reliability of direct methods coupled to symplectic integration

algorithms (see Section 3.4.7).

As a conclusion of this chapter a summary of the information on various grav-

itating aggregates are resumed in Table 3.1 (Capuzzo-Dolcetta, 2005) along with

the numerical technique apt to their numerical study.





Chapter 4

NBSymple, a double parallel,

symplectic N-body code

running on Graphic Processing

Units

To face the N -body problem and to study the dynamics of stellar systems in a more

direct and efficient way we developed an innovative, fast and reliable code. Here,

we present and discuss its characteristics and performances, both in term of com-

putational speed and precision. This code which integrates the equation of motions

of N “particles” interacting via Newtonian gravitation and moving in an external

galactic smooth field. The force evaluation on every particle is done by mean of

direct summation of the contribution of all the other system’s particles, avoiding

truncation errors (see Section 3.3). The time integration is done with second-order

and sixth-order symplectic schemes. The code, NBSymple, has been parallelized

twice, by mean of the Compute Unified Device Architecture (CUDA, see Section

3.5) to make the all-pair force evaluation as fast as possible on high-performance

Graphic Processing Units NVIDIA TESLA C1060, while the O(N) computations

are distributed on various CPUs by mean of OpenMP Application Program. The

code works both in single-precision floating point arithmetics or in double precision.

The use of single-precision allows the use of the GPU performance at best but, of

course, limits the precision of a simulation in some critical situations. We find a

good compromise in using a software reconstruction of double-precision for those

variables that are most critical for the overall precision of the code. The code is

available on the web site astrowww.phys.uniroma1.it/dolcetta/nbsymple.html

and it is widely described in Capuzzo-Dolcetta, Mastrobuono-Battisti, and Maschi-

etti (2011a).
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4.1 The N-body code

As described in the previous Chapter, the study of the dynamical evolution of stel-

lar systems in an external field, is a topic of great interest. As we have already

explained, the external field is relevant in the evolution of a self-gravitating system,

inducing tidal effects which are effective, for instance, in accelerating the two-body

processes within the system. A reliable interpretation of the structure and phe-

nomenology of stellar clusters cannot, thus, be done as if they were in isolation.

Our aim is to study the evolution of star clusters in our Galaxy as N -body systems

where an external galactic gravitational field, represented as an analytical expres-

sion, is summed to the mutual interaction among all the stars of the cluster. The

code that we wrote and that is going to be described is characterized by high preci-

sion and speed and it is able to study the evolution of gravitational N -body systems,

and can be applied to the study of systems composed by a number of objects up to

few millions, covering the astrophysical range from planetary systems (N ≤ 10) to

stellar systems of the size of open clusters and globular clusters (N ≃ 106).

For what regards precision, we approached the problem resorting to (i) direct

summation (to avoid truncation error in force evaluation), that is setting n = N in

Equation (3.36), and to (ii) the use of high order, symplectic time integration meth-

ods (see Section 3.4.7). Speed, at a reduced cost, has been attained implementing

direct summation codes on a hybrid architecture where multi core CPUs are linked

to GPUs acting as computational accelerators (see Section 3.5). The reliability is

due to the choice of simplicity in the implementation technique, like, for instance,

the use of a constant time step, δt, instead of more sophisticated techniques. It

should not be forget, indeed, that a formally correct estimate of the time integra-

tion truncation error requires constant time stepping.

In the following we resume how our code works. It generates, first, the initial con-

ditions for the N particles of the system, whose individual masses are chosen by

a given mass spectrum. For the scope of this work, which aims, mainly, at in-

vestigating the code quality and performances in different hardware and software

environments, we gave, for the sake of simplicity, all the particles the same mass

mi = m (i = 1, 2, .., N) (as mass unit we use the total mass, M , of the system, i.e.

M = Nm). For the same purpose of simplicity we give particles an initial spatially

uniform distribution within a sphere of given radius, R, that is assumed as length

unit, with velocities, also, uniformly distributed in direction and absolute values

and rescaled, in their magnitude, to reproduce a given value of the virial ratio (we

remind that the virial ratio is defined as Q = 2K/|Ω|, where K and Ω are, respec-

tively, the system kinetic and potential energies; for a stationary system, Q = 1).

Note that the further assumption G = 1 in the equations of motion implies that the

crossing time T = (GM)−1/2R3/2 is the unit of time. The forces due to the mutual

interaction among stars in the cluster (internal forces) are given by Equation (3.34)

and the external force is then added. In our tests we used a softening parameter

ǫ = 0.005(R/N1/3), where R/N1/3 is a measure of the average distance of a parti-
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cle of the N -body system to its closest neighbour. For the external force, we use

the analytic expression for the Galactic potential as given by Allen and Santillan

(1991). In this paper the authors consider the Galactic potential as given by three

components: a bulge, a disk, and a halo. The bulge and the halo have a spherical

symmetry, while the disk is axisymmetric (see Section 6.2.2 for more details). As

seen in Section 3.4.7 symplectic method are a good choice if we want to perform

high precision simulations, so we directed our attention towards these methods to

introduce theme in the code. The choice of symplectic methods is wide, for it is

possible the construction of high order integrators (Yoshida, 1991). Our code allows

the choice of two different symplectic methods. One is the simple, classic, “leapfrog”

method, which is 2nd-order accurate; the other is a more accurate 6th-order explicit

scheme whose coefficients are taken from the first column of the Table 1 (SI6A) of

Kinoshita et al. (1991), which leads to a conservation of energy for a factor fifty

better than that with the other two possible sets of coefficients. Of course, the

6th-order symplectic integrator is much slower than the leapfrog, requiring 7 evalu-

ations of force functions per time step, like, for instance, in a 6th-order Runge Kutta

method.

Its important to stress that any kind of generalization to different sets of initial

conditions and external potentials is easy done by mean of appropriate external

subroutines provided by the user.

4.2 Implementation of the code

4.2.1 Hardware and software

As we have already described and discussed, the direct evaluation of the pair-wise

forces in an N -body system is a computationally challenging task, mainly because

of the computation of the N(N − 1)/2 distinct elements of the |rij | (Euclidean dis-

tance) array. Each computation requires the evaluation of a square root, which is

an expensive task (see Section 3.3). Actually, every pair force vector, Fij, requires

between 20 and 30 floating point operations. The calculation of the three com-

ponents of the acceleration induced on the generic i particle by another generic j

particle requires the |rij | calculation, that means 3 differences, 2 sums, 4 products

and 1, heavy, square root evaluation, which implies, normally, one Newton-Raphson

iteration (in single precision) rising to two or three in double precision, see Section

3.3. The total number of operations required for the complete evaluation of the

vector acceleration of the two particles in a pair is so: 2 sums, 3 differences, 11

products plus the square root evaluation and 3 changes of sign which correspond to

the Fij = −Fji relation. To this computational load, various memory storing and

transfer are necessarily added, which do not constitute, however, a significant frac-

tion of the total time spent. All this must be done N(N − 1)/2 times at every time

step. Consequently, the time integrations of N -body systems, when extended over

a time interval large enough to have a scientific relevance, overwhelm the power
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Figure 4.1. Flowchart of our basic code

of every single CPU platform for N above few thousands (see Section 3.3.1). If

one wants to keep direct summation, without relying on approximations like, for

instance, mean-field techniques, the only possibility is resorting on parallel comput-

ing and/or dedicated machines (like GRAPE, for instance, as explained in Section

3.4).

It is out of the purposes of this work the discussion of parallelization of N -body

codes on large main frames, which is not a trivial task, due to the slow decay with

distance of the gravitational interaction. Here we deal with the problem of imple-

menting an efficient N -body integrator on a hybrid CPU+GPU platform. A typical

architecture of such machines consists of a multicore CPU based server, usually

under LINUX, connected through PCI express ports to one or more multithread

(hundreds) GPU boards acting as computational accelerators.
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Some authors have already faced the problem of implementing gravitational N -

body integrations on GPUs with different approaches (Barsdell et al., 2010; Belle-

man et al., 2008; Elsen et al., 2006; Hamada and Iitaka, 2007; Portegies Zwart et al.,

2007). Some of these earlier works were limited by the lack of double precision sup-

port in GPU hardware, while now DP is supported in NVIDIA TESLA C1060, and

will be much faster in TESLA based on the Fermi technology.

Here we explain how we get our own implementation, leading to a code, which

we call NBSymple (acronym for NBody Symplectic integrator). Various versions of

the same basic code have been realized.

The first is fully serial (NBSympleA), i.e. it runs on a single processor. This serial

version of the code constitutes the basic structure for all our other versions; this

required its optimization, by minimizing the number of floating point operations

needed to evaluate the pair interaction force and exploiting the anti-symmetry of

the force array. This code constitutes a “unit of measure” of the performances of

the various parallel versions.

In a second version of the code (NBSympleB) we implemented parallelization

with Open Multi-Processing (OpenMP, in the following also referred to as OMP)

directives of both the O(N2) pair-wise interactions and the O(N) calculations (i.e.

the time integration and evaluation of the Galactic component of the force on the

system stars) over the multicore CPU host.

OpenMP (see http://openmp.org/wp/about-openmp/) is a portable, scalable

model that allows easy C/C++ and Fortran programming on shared-memory par-

allel platforms from various vendors and from the portable computer to the large

main frame. As already said in Chapter 4, it consists of a set of compiler directives,

library routines, and environment variables that influence run-time behavior.

In the third version (NBSympleC) the all-pairs interactions (O(N2) calculations)

are demanded to the GPU (here an NVIDIA TESLA C1060), using Compute Unified

Device Architecture (CUDA, see http://www.nvidia.com/object/cuda_home.html

and Section 3.5) while all the remaining tasks are done by a single CPU.

In another (fourth) version of the program (NBSympleD) we again use CUDA to

evaluate the O(N2) portion of the code (like in NBSympleC), while the O(N) com-

putations (time integration and evaluation of the acceleration due to the Galaxy)

are parallelized sharing work between all the cores of the host (8 in our hybrid

platform), using OpenMP in the same way done in NBSympleB.

The last (fifth) implementation (NBSympleEk, k=1,2) uses CUDA on one or two

GPUs to evaluate the total force over the system stars, i.e. both the all-pairs com-

ponent and that due to the Galaxy. In NBSympleEk, the O(N) computations were

shared into an OMP part (time integration) and into a GPU part (smooth galactic

force contribution) to maximize the efficiency.

Table 4.1 summarizes the above (main) characteristics of the various versions of the

code.

The platform we used is made by a 2 Quad Core Intel Xeon 2.00GHz workstation

http://openmp.org/wp/about-openmp/
http://www.nvidia.com/object/cuda_home.html
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Version Time integ., O(N) Pair-wise, O(N2) External, O(N)

NBSympleA 1 CPU 1 CPU 1 CPU

NBSympleB 8 CPUs (OMP) 8 CPUs (OMP) 8 CPUs (OMP)

NBSympleC 1 CPU 1 GPU 1 CPU

NBSympleD 8 CPUs (OMP) 1 GPU 8 CPUs (OMP)

NBSympleE1 8 CPUs (OMP) 1 GPU 1 GPU

NBSympleE2 8 CPUs (OMP) 2 GPUs 2 GPUs

Table 4.1. Synoptic table summarizing the distribution of the main tasks (time integration,

pair-wise force evaluation, external force evaluation) of the various versions of the NBSymple

code to the CPUs and GPUs of the hybrid machine.

and two GPUs NVIDIA TESLA C1060, connected to the host via slots PCI-E 16x.

NVIDIA TESLA C1060 supports both single-precision (SP, 32-bit) and double-

precision (DP, 64-bit) floating point arithmetic. At present, each of the processing

units in the TESLA C1060 contains one DP processor alongside the 8 SP processors;

the TESLA C1060 GPU has 240 threads, meaning that 30 threads are at work when

fully exploiting DP calculations.

A basic version of the NBSymple code, along with instructions on how to use it, is

available at http://astrowww.phys.uniroma1.it/dolcetta/nbsymple.html.

4.2.2 The code structure

The N -body integration scheme consists of two main parts. In the first one, given

positions and velocities of all the N bodies, the forces between stars and those due

to the overall, smooth, Galaxy distribution are evaluated. Consequently, in the

second part, the code predicts the velocities and positions of the particles by mean

of the previously calculated accelerations (see flow-chart in Figure 4.1).

In all of the five implementations of the code the advancing in time of velocities and

positions of stars of the system is performed by the CPUs. This choice is motivated

by that time advancing is more sensitive to round-off errors and the time needed

for its computation grows only linearly with N making convenient using the double

precision representation available on the CPUs. Actually, TESLA C1060 supports

double-precision floating point arithmetics, but in this case performances decay sig-

nificantly with respect to using single precision. Another problem is due to the

bandwidth available for the data exchange between GPUs and CPUs. Performing

time integration on GPUs would require sending and receiving a huge amount of

data from GPUs to CPUs, thing that could imply a significant decay of performance.

We verified that the time required to transfer data from the CPU to the GPU

and viceversa is never negligible, even in the case of bigger N. We found this by

comparing the time required by NBSympleE1 to evaluate the acceleration of the

whole system of N bodies, by mean of data transfer from CPU to GPU, GPU

http://astrowww.phys.uniroma1.it/dolcetta/nbsymple.html
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N t1 t2
480 0.019 0.016

960 0.021 0.017

1920 0.028 0.018

3840 0.030 0.025

7680 0.036 0.027

15,360 0.055 0.023

Table 4.2. Time (in sec) spent by the original NBSympleE1 code (t1) and by the same

code performing only the data exchange to and from the GPU (t2).

computation and data transfer back to the CPU, with the time required by the

same code when the force calculation section is switched off, leaving, in this case,

only the bidirectional data transfer between the host and the device. The results

are shown in Table 4.2.

Before we invoke the kernel we copy the positions of the N particles on the

GPU’s global memory; the accelerations are calculated on the GPU device and

then sent to the CPU memory. The kernel and device functions used to evaluate

the forces are very similar to those described in Nyland et al. (2007), with some im-

portant modifications, as indicated later in this Subsection. In this latter paper the

authors introduced the notion of a “computation tile”, as a squared p× p sub-array

of the |Fij|, N × N , force array. To calculate p2 interactions we need the knowl-

edge of the positions of 2p bodies (for details see Nyland et al. 2007). These “body

descriptions” are stored in the shared memory, which has little reading latency (4

clock cycles) respect to global memory (400-600 clock cycles). To achieve optimal

reuse of data, the computation of a tile is arranged in a way that the interactions

in each row are evaluated in sequential order (updating the acceleration vector),

whilst the various rows are evaluated in parallel.

The interaction between a pair of bodies is implemented as an entirely serial compu-

tation. A tile is evaluated by p threads performing the same sequence of operations

on different data. Each thread updates the acceleration on one body as a result of

its interaction with p other bodies. They load p body descriptions from the GPU

device memory into the shared memory provided to each thread block in the CUDA

model. Each thread in the block evaluates p successive interactions. The results of

the tile calculation are the p updated accelerations.

A thread block is defined as a collection of p threads that execute some number of

tiles in sequence. In a thread block, there are N/p tiles, with p threads computing

the forces on p bodies (one thread per body). Each thread computes all the N

interactions for one body.

The kernel is invoked on a grid of thread blocks to compute the acceleration of all

the N bodies. Because there are p threads per block and one thread per body,

the number of thread blocks needed to complete all N bodies is N/p, so we have

a 1D grid of size N/p. The result is a total of N threads that perform N force
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calculations each, for a total of N2 interactions.

The number of calculations performed by the device is N2, which is redundant re-

spect to the actual number of distinct pairs in the system, N(N−1)/2. By the way,

the limitation to N(N − 1)/2 of the number of force evaluations would require a

heavier load of internal communication and synchronizations (Belleman et al. 2008),

with a resulting net performance decrease.

The dimension of the tile and the number of thread blocks depend on the number of

particles involved in the simulation. There are 30 multiprocessors on the NVIDIA

TESLA C1060, so the block dimension (p) must be such that N/p is 30 or larger

to use all the multiprocessors available. We stress that we used the general scheme

proposed by Nyland et al. (2007), adapting it to our double-parallel environment,

scaling the dimension of the block and of the grid in order to exploit the power of

GPUs as much as possible. Moreover, we introduced a new device function that al-

lows the calculation of the external forces directly on the GPUs and we modified the

kernel in order to use double precision arithmetics. Memory usage was optimized as

inNyland et al. (2007), trying to use at most shared memory, which has low latency

and so allows highest efficiency in calculations. We underline that the code is such

that it is sufficient to resize the block dimension to exploit at best the characteristics

of the specific GPUs available, according to the number of “particles” used in the

computation. In Section 4.5, we will show some benchmarks of the code, displaying

its almost perfect scalability, on a different kind of GPUs.

The entire part of the program that performs the time integration of the sys-

tem is enclosed in a parallel section, through OpenMP directives. We shared work

among all the CPUs available declaring variables in an appropriate way, and using

properly the OpenMP directives to parallelize the various ‘for-cycles ’ that perform

the time integration and the computation of the galactic contribution to the accel-

erations (both scaling as N). The copy of the data from and to the GPU and the

kernel are invoked by the master thread.

As we said above, our GPUs allow us the use of DP floating point representation.

To reduce the bandwidth needed to transfer data between CPUs and GPUs we

constructed C structures of four DP variables, emulating CUDA’s float4. As we see

in the next Section the performances of the program decrease a lot. On the other

side, using the 6th order integrator we reach a precision 7 or 8 orders of magnitude

better than that reached with single-precision arithmetics.

Finally, we say how the computation load is shared over GPUs, when more than

one is available (NBSympleEk).

Through OpenMP directives we created k threads. Each thread communicates with

one of the device and copies the positions of all the particles on its global memory.

Moreover each of the k threads, launches a kernel on one of the k available devices.

So we have k kernels, each of which calculates the accelerations for N/k particles

(in our case k = 1 or 2). After this calculation, the instanced thread copies the

results on the host and the number of threads is reset to 8 to continue the time

integration.
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t 〈|∆E
E0

|〉 〈|∆Lx
L0

|〉 〈|∆Ly
L0

|〉 〈|∆Lz
L0

|〉
0.5 2.63×10−15 2.27×10−9 2.32×10−9 1.41×10−16

1.0 6.26×10−15 4.43×10−9 3.00×10−9 9.90×10−16

1.5 2.42×10−14 4.91×10−9 2.42×10−9 1.27×10−15

2.0 2.87×10−14 6.74×10−9 1.87×10−9 1.70×10−15

2.5 2.67×10−14 1.26×10−8 5.42×10−10 1.41×10−15

3.0 2.67×10−14 2.36×10−8 2.44×10−9 1.41×10−16

3.5 2.48×10−14 3.94×10−8 7.70×10−9 2.55×10−15

4.0 3.13×10−14 5.78×10−8 1.78×10−8 7.07×10−16

4.5 2.12×10−14 7.52×10−8 3.34×10−8 1.27×10−15

5.0 2.77×10−14 8.86×10−8 5.45×10−8 5.37×10−15

Table 4.3. Relative variations in energy and angular momentum as function of time in the

time interval [0,5], which corresponds to about 1/10 orbital revolution around the galactic

center. The symplectic 6th order method is used in double-precision mode.

N 480 30,720 1,536,000

NBSympleC 5.97 409 423 SP

” 3.36 21.9 22.0 DP

NBSympleE2 11.29 797 846 SP

” 3.37 43.8 44.0 DP

Table 4.4. Performances in GFLOPs of two versions of the NBSymple code (C and E2)

with the leapfrog time integrator, using the single (SP) and double (DP) precision (last

column). Remember that NBSympleE2 exploits the power of two TESLA C1060 GPUs.

4.3 Results

4.3.1 Performances and accuracy of the codes

We tested the performances in terms of both precision and speed of our code in

its various versions. As outlined in Section 4.1, the initial conditions for the N -

body system are picked from a uniform phase-space distribution of equal mass

particles, with an initial virial ratio Q = 0.3. The particle-particle interaction

potential is softened (see Equation 3.33 and 3.34) and the system moves in the

Galaxy, represented with the Allen and Santillan (1991) model, on a quasi circular,

planar orbit at about the same galactocentric distance of the Sun.

To evaluate the quality of integration we checked the time behaviour of 4 quantities:

the total energy (E) and the three components of the angular momentum (L) vector.

The energy is a true constant of motion, while L should vary in time due to the

external field torque, L̇ = Mext, being a constant only in case of either isolated

system or system embedded in an external spherically symmetric (respect to the
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Leapfrog Sixth Order

N |∆E/E0|DP |∆E/E0|DSP |∆E/E0|DP |∆E/E0|DSP
480 3.39×10−13 6.68×10−10 3.09×10−15 1.15×10−10

960 1.57×10−10 5.93×10−11 3.20×10−15 5.10×10−11

1920 6.75×10−13 1.90×10−11 3.04×10−15 2.11×10−11

3840 8.60×10−13 1.18×10−11 8.10×10−15 1.19×10−11

7680 1.12×10−12 7.32×10−12 1.01×10−15 4.64×10−12

15360 1.18×10−12 2.73×10−13 2.83×10−15 5.12×10−12

Table 4.5. Relative errors in energy evaluated over 1000 time steps as ∆E/E0 =

[E(1000∆t)− E(0)]/E(0). The code used is NBSympleE2.

system barycenter) potential.

In our case, the MW potential being axisymmetric, only the z-component of

L should be conserved, while Lx and Ly vary. In any case, the external torque is

expected to be little due to the small cluster size, as we checked by the computation

of the total torque via direct summation,

Mext =
N∑

i=1

ri × Fext(ri) (4.1)

The energy conservation and angular momentum variation are evaluated by com-

putation of
∆E

|E(0)| =
E(t) −E(0)

|E(0)| , (4.2)

and
∆L

|L(0)| =
L(t)− L(0)

|L(0)| . (4.3)

Of course the quality of both energy and angular momentum conservation de-

pends on the code version, the best conservation performances being achieved with

the use of double-precision and 6th order symplectic integration. Table 4.3 gives

the run with time of the relative errors in the case of the symplectic 6th order time

integration with DP arithmetics, for N = 7680. In the explored time interval [0, 5],

the energy is conserved at a ∼ 3 × 10−14 level, while the z component of the an-

gular momentum is conserved up to ∼ 5 × 10−15. On the other side, the x and y

components of the angular momentum (which should not be conserved) vary in the

range [5.42 × 10−10,8.86 × 10−8].

To have a reliable evaluation of the computing times, we ran the codes up to

0.5T using a (constant) time step ∆t = 5× 10−4T , this means the code was run for

1000 cycles. This way, we have a robust average value of the time spent per cycle

by the various code versions in each task by the simple ratio of the total time to

the number (1000) of cycles.

Table 4.4 gives the computing speed in GFLOPs of the slowest and fastest versions
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Figure 4.2. The (averaged over 1000 cycles) solar time (in seconds) spent for one leap-frog

integration step in single precision mode, as a function of N . Line with empty squares:

NBSympleA code. Line with filled triangles: NBSympleB. Line with crosses: NBSympleC.

Line with filled squares: NBSympleD. Line with stars: NBSympleE with a single GPU.

Line with empty triangles: NBSympleE with two GPUs.

of NBSymple making use of GPUs (C and E2 versions, see Table 4.1). The speed

scaling from 1 to 2 GPUs is almost perfect for the largest value of N in the table.

Figure 2.5 shows the (average) time required by the various versions of

NBSymple for a single time step integration with the leapfrog method. For a system

of 480 ≤ N ≤ 1, 536, 000 particles (the largest value of N used is quite represen-

tative of the number of stars in a real, populous, globular cluster). In the case of

the fully serial code on a single PE (NBSympleA) and of the OpenMP parallel code

on the double quadcore host (NBSympleB), the test is limited to a maximum value

of N = 7680 because larger values require too long CPU times. Their computing

times show clearly the expected N2 behaviour. The ratio (version A to version B)

of their computational times indicates a speed-up about ∼ 3.6 (the best obtainable

being 8, as the number of PEs). This is about 50% of maximum speed obtainable,

not too bad if considering that we implemented our code on the Xeon multithread

system using straightforwardly standard OpenMP directives, without looking for

sophisticated implementations which were not in the scopes of this work. Using

standard OpenMP directives, indeed, is not possible to parallelize the whole inte-

gration loop but rather, it is only possible to open a parallel section at each time
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Figure 4.3. As in Figure 4.2, but for the double-precision codes. The line with filled

squares is not reported because it is almost identical to that with crosses.

step and parallelize the internal loops.

The most immediate sketch of the advantage in using the GPU is by comparing the

curve with empty squares to that with crosses, this latter referring to NBSympleC,

that is the version of the code where the O(N2) part of the code is performed by a

single TESLA C1060 GPU. The speed-up given by the GPU ranges between ∼ 15

(for N = 480) and ∼ 330 (for N = 7680). The NBSympleE code which exploits two

TESLA GPUs becomes two times faster than when using a single GPU, showing

an almost perfect efficiency when N is large enough to overcome the overhead, as

evident in Figure 4.2 for N . 104. The fastest version available (the one which uses

two TESLA GPUs and the leapfrog time integration in SP) requires one minute to

accomplish a full integration time step for N = 1, 536, 000; taking into account the

need of at least 2×103 cycles in a crossing time to have an acceptable precision, this

means about 33 hours (1.4 days) to simulate by direct summation the evolution over

one internal crossing time of a globular cluster moving in the galactic potential, and

about 211 hours (8.8 days) to follow a complete revolution of the system around

the galactic center, if the cluster is moving quasi-circularly at the Sun distance from

the centre.

Figure 4.3 reports compared performances of the versions of NBSymple in double-

precision mode. The basic, single PE, version decays in performances of a factor
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Figure 4.4. As in Figure 4.2, but for the sixth-order, double-precision codes. The line

with filled squares is not reported because it is almost identical to that with crosses.

∼ 1.5 respect to the SP mode. The ratio between time spent by the single PE

version and the OpenMP version remains similar to the SP case in Figure 2.5. Of

course, the best performances are achieved by the full GPU NBSympleE code, al-

though the performance degradation respect to the SP version is of a factor ∼ 18,

as expected due to the characteristics of the TESLA C1060 architecture.

The symplectic 6th order, double precision performances are shown in Figure 4.4.

We decided to investigate the 6th order method performances in its DP mode, only,

because the use of high order symplectic integration is done to keep high precision,

which would be lost if using SP arithmetics. The gain in precision is, of course,

paid by a significant loss in speed. At this regard, a useful indication comes from

comparing Figure 4.3 and Figure 4.4 with Figure 4.1. Considering the, fastest,

NBsympleE2, version (the one exploiting 2 GPUs) we see that the ratios between

computing times per cycle, in the most significant range covered by all the figures

(4 ≤ logN ≤ 4.5) scales by 2 factors of 10 for logN = 4 (the time required for

a time cycle by the 6th order DP code is about 10 times longer than by the 2nd

order DP code, which, in its turn, is about 10 times longer than the 2nd order SP

code) and by a factor of 20 and a factor of 12 for LogN = 4.5. The performance

degrading when using the DP instead of SP with the 2nd order leap-frog integrator

is mainly explained by the specific architecture of the TESLA C1060 GPU (1 DP
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Figure 4.5. The (averaged over 1000 cycles) solar time (in seconds) spent for a single

integration step as a function of N by the NBSympleE codes in the leapfrog, hardware

double precision mode (line with triangles) and in the leapfrog, software double precision

mode (line with circles).

processor per 8 SP processors), while the further degrading when using the 6th or-

der integrator is explained by both the 7 force evaluations per cycle needed and the

repeated transfers from the host to the GPU device memory and back (a total of

16 per particle).

4.3.2 Hardware and software double precision arithmetics

The study of N -body system evolution is, in many cases, characterized by the

requirement of high precision in the computations. This for two main reasons, that

are different for small and large values of N .

For small values of N (celestial mechanics) the high precision in the accelera-

tion calculation is required to avoid secular growth of the error over the huge time

extension (thousands of orbital periods) of the integration; for large values of N ,

when time integration is not too extended, precision is mainly required to reduce

the so called problem of cancellation of terms, i.e. the error due to difference be-

tween numbers that are very similar. This happens when evaluating the distances

of bodies in the system in an inertial reference frame, usually centered at the center

of symmetry of the external potential where the system is orbiting, in the case when
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480 30,720 1,536,000

task C D E1 C D E1 C D E1

1 23.5 36.4 81.4 58.4 89.6 94.2 98.56 99.74 99.87

2 70.3 36.0 - 38.0 9.0 - 1.31 0.18 -

3 4.5 16.8 13.8 2.7 0.9 4.4 0.10 0.06 0.10

4 1.7 10.8 4.8 0.9 0.5 1.4 0.03 0.02 0.03

Table 4.6. Time profiling (in percentage) of NBSymple in 3 of its versions (as labeled by

the capital letter) for the 4 main tasks, labeled as in Figure 4.1, for the three values of N

given in the table heading. The codes work in their 2nd order, SP modes.

R << d, where R and d are the sizes of the system and its distance to the origin

of the reference frame, respectively. The correct approach to the problem of error

reduction is via coupling a symplectic, high order, integration scheme to double or

quadruple (in the case of celestial mechanics applications) precision arithmetics. At

present, the NVIDIA TESLA C1060 GPU supports double-precision 64bit floating

point arithmetics in a limited way, because each of the processing units contains

one DP processor alongside the 8 SP processors. This means that there are only 30

DP units available if doing DP only calculations. The relevant performance degra-

dation convinced us to seek for a possible solution to join precision and speed. A

straightforward way to emulate DP with single precision arithmetic is done transfer-

ring the DP representation of every particle space coordinate to the GPU memory

where it is shared into two SP allocations, one where the most significant digits

are stored and and another for the lesser significant digits. When forces have to be

computed by the GPU, it joins the two SP memory allocations to give a good DP

emulation (14 digits instead of 16) yielding to a satisfactory round-off error in the,

delicate, evaluation of coordinate difference. Such a representation of DP is known

as ‘double-single’ precision (DSP1).

The loss in performance has been checked to be acceptable, and the implementation

is not dependent on the particular hardware used. The practical implementation of

DSP in our code was done by mean of the Sapporo library (Gaburov et al., 2009).

Figure 4.5 shows a performance comparison between the DP and DSP codes

using the leapfrog integrator. It shows the (average) time spent for integrating the

system for a single time step, as function of the number of bodies. It is evident that

the DSP precision allows to integrate a system much faster than the DP precision.

Finally, Tab. 4.5 shows the total energy conservation for the leapfrog and 6th or-

der methods in both DP and DSP after 1000 time steps, performed by NBSympleE2.

1http://crd.lbl.gov/ dhbailey/mpdist/
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task order N1 N2 N3

1 2nd 94.0 99.03 99.98

1 6th 85.5 99.14 99.98

2 2nd 5.3 0.90 1.65× 10−2

2 6th 13.1 0.80 1.63× 10−2

3 2nd 0.5 0.06 1.80× 10−3

3 6th 0.9 0.04 1.20× 10−3

4 2nd 0.2 0.02 7.00× 10−4

4 6th 0.5 0.02 6.00× 10−4

Table 4.7. Profiling for NBSympleC in its leapfrog, second order (2nd) and in its sixth

order (6th), double precision, modes. The entries are the time fractions (in percentage)

spent by the code in performing the 4 main tasks (numbered as in Figure 1 and Tab. 4.6)

for three values of the number of particles: N1 = 480, N2 = 30, 720, and N3 = 1, 536, 000.

Figure 4.6. Configurations of the N = 15, 360 simulated cluster moving on the Milky Way

symmetry plane, at various times, from t=0 to t=60. The cluster motion is counterclock-

wise.

4.3.3 Code time profiling

In order to see whether and where it is possible to work to improve code perfor-

mances, we checked the time spent by the versions of the codes that actually run

on GPUs (versions C, D and E) in their different main tasks, which are essentially
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Figure 4.7. Snapshot of the cluster on quasi-circular orbit at the time t = 29.4 (i.e. at

about half of its first revolution around the galactic centre).

defined by the flow-chart in Figure 4.1 and numbered from 1 to 4. Regarding code

optimization, we remind what said in Section 4.2.1. In the time integration, we

optimized our codes minimizing the number of floating point operations and we

took care of avoiding the use of mathematical functions and use only fundamental

operations (sums, subtractions, products).

The profiling is resumed in Tabs. 4.6 and 4.7. As expected, the pair-wise force

calculation (task 1) requires a longer time at increasing N , rising to more than

99.8% for the largest N . Only the version C of the code (the one which gives to a

single CPU the O(N) computational load) spends a relatively significant fraction

of time in other tasks than 1. Due to that version E performs both pair-wise and

external force calculations on the GPU, no distinction is possible between tasks 1

and 2, and this explains the absence of values in the task 2 row for this code version.

4.4 Some simulation tests

4.4.1 Quasi circular cluster orbits in the Milky Way

In Figs. 4.6, 4.7 and 4.8 we display some snapshots of the projections onto the x−y
coordinate plane of a cluster composed by N = 15, 360 equal mass stars moving
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Figure 4.8. Snapshot of the cluster on quasi-circular orbit at t = 84 (i.e. at about 1.4

revolutions around the galactic centre).

very close to the Milky Way plane of symmetry on a quasi circular orbit with ra-

dius ∼ 8 kpc, simulated with NBSymplE using two TESLA C1060 GPUs. Figure

4.6 shows a clear, quick development of a tidal tail in less than one orbital period

(here, one orbital period is about 60T , where T is the internal crossing time, we

adopted as time unit). Figure 4.7 is a zoom of the cluster configuration at about

half revolution around the galactic centre: note the evident barlike structure in

the inner zone. After about 1.5 revolutions around the galactic centre, the cluster

shows two extended tails along its orbit, with two clumps, one in the leading and

one in the trailing tail. These clumps have already been noted in previous high pre-

cision N -body simulations of globular clusters moving in an external field and their

explanation is attempted by Capuzzo Dolcetta et al. (2005) and Di Matteo et al.

(2005). These authors describe the overdensities as due to a local deceleration of

the stellar motion, causing an effect similar to a “motorway traffic jam” (essentially,

if we compare the stellar motion to a fluid stream, for which the continuity equa-

tion holds, along the tail an overdensity occurs whenever ∇ · v < 0, where v is the

collective stellar velocity). It is relevant noting that similar clumps have actually

actually been observed in real globular clusters, the most know example being Pal

5 (see Odenkirchen et al. 2003). A more quantitative analysis of their origin can be

found in Chapter 5.
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Figure 4.9. Snapshots of the N = 15, 360 cluster plunging on quasi-radial orbit through

the massive central object (Mbh/M = 10) at the times labeled in the various panels.

4.4.2 Quasi radial cluster-massive black hole collisions

For the sake of testing the capabilities of our code we ran some “stiff” simulations,

i.e. those of the face-on collision of a star cluster with a massive black hole located in

the Galaxy center, during its quasi radial motion in the central part of the Galaxy.

These simulations, at varying the mass ratio between the black hole (represented

as a further massive point) and the star cluster and at varying the number of stars

in the cluster have a great astrophysical interest because they deal with the process

of strong interaction with a massive central object that orbitally decayed globular

clusters may have actually suffered in their motion in the parent galaxy. Apart from

this scientific relevance, these simulations represent a serious and difficult test for

an N body code. Actually, the close interaction of a star system composed by N

point masses with a single body (the “black hole”) much heavier than the individual
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Mbh/M ∆E/E0 ∆L/L0

0.1 3.06×10−7 5.90×10−4

1 7.75×10−6 1.06×10−2

50 9.23×10−5 2.65

100 5.63×10−3 3.91

Table 4.8. Relative variations in energy and angular momentum over the time interval

[0,4], which corresponds to about 6.4 complete radial oscillation through the galactic center

of an N = 15, 360 star cluster. The ratio between the black hole mass and the cluster mass

is Mbh/M . The motion starts with cluster barycenter at (x0, y0, z0) = (10, 0, 0) with initial

velocity (ẋ0, ẏ0, ż0) = (0, 0.001vc, 0), where vc is the local circular velocity. The number of

time steps is 4× 104; the total CPU time ≃ 9.1× 104 sec.

cluster objects is hard to be followed by a numerical code because the very large

acceleration induced by the massive black hole on passing-by cluster stars may cause

an exceedingly large energy error. The energy error can, partially, be controlled by

a proper reduction of the time step which cannot be, however, reduced below a

threshold under which cumulation round-off error and CPU time get exceedingly

large. The difficulty of such simulation grows at reducing the “collision” impact

parameter b, i.e. the minimum distance between the cluster barycenter and the

black hole during the cluster oscillatory motion around the massive object. To

maximize the sharpness of collision we chose almost radial trajectories (b ≃ 0)

for the cluster moving in the inner part of the Galaxy. A summary of results of

our simulations at varying the black hole to cluster mass ratio is given in Table 4.8.

Figure 4.9 shows the motion of the cluster on the x, y plane at various times, showing

the very fast development of the cluster “arc”-like shape around the apocenter.

4.5 FERMI architecture: benchmarks and comparisons

Our code is built in order to be scalable on different GPU architectures, and to test

this scalability we run the code on a different kind of graphic cards. One of the

most recent NVIDIA cards, based on so called FERMI architecture, have 14 SMs

(up to 16) each of them containing 32 Streaming (or Scalar) Processors (SPs), for

a total of 448 CUDA cores in single precision (and 224 in double precision). After

using TESLA C1060, we tested NBSymple on our workstation previously used now

equipped with two TESLA Fermi C2050 (Spera 2010).

Since the CPUs on the machine are the same, NBSympleA and NBSympleB

should give us the same results in terms of performance, so we only tested some

of the versions of the code, and in particular NBSympleD, NBSympleE1, NBSym-

pleE2. Figure 4.10 and Figure 4.11 show the average time required by the different

versions of NBSymple to perform a single integration step, as a function of the

number of particles of the N -body system. Both single and double precision are

explored. In single precision, as it is apparent from Figure 4.10, there are no net
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Figure 4.10. Top left panel: Time spent by NBSympleD (running on one TESLA C1060),

NBSympleD (running on one TESLA C2050) and NBSympleB (running on two Intel Xeon

E5405) to execute one integration step as a function of the number of particles of the

system, in SP. Top right panel: The same for NBSympleE1 (running on one TESLA C1060

and one TESLA C2050) and NBSympleB (running on two Intel Xeon E5405). Bottom left

panel: The same for NBSympleE2 (running on 2 TESLA C1060 and 2 TESLA C2050) and

NBSympleB (running on two Intel Xeon E5405).

benefits in using a TESLA C2050 rather than a TESLA C1060. This latter can

indeed reach a maximum performance ∼ 933 GFLOPs while the C2050 has a peak

around 1030 GFLOPs. The small difference between the two cards is reflected by

a slight relative speed-up, ∼ 1.1, for large enough values of N . When N is large

NBSympleD and NBSympleE1 codes are indeed almost equal in terms of perfor-

mances (see top left and top right panels of Figure 4.10), while, for small numbers

of particles, NBSympleD offers a slight speed-up. When N is small, the time spent

to compute the accelerations due to the external field becomes indeed comparable

to that demanded to the evaluation of the mutual forces. If we assign this O(N)

computation to the GPU we lose in efficiency because these operations are not very

complex and so the slow memory access times causes a disadvantage in terms of

performances. Thus, in this case, it is better to demand the O(N) calculations to

CPUs rather than using GPUs. In Figure 4.10, if N is big enough, we can again

appreciate, the net advantages in using two GPUs coupled with a leapfrog integra-

tion in single precision. As shown in Subsection 4.3.1 for the Tesla C1060 GPUs,
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Figure 4.11. Top left panel: The same as Figure 4.10 for NBSympleE1 (running on a

TESLA C1060 and a TESLA C2050) and NBSympleB (running on two Intel Xeon E5405)

but in DP. Top right panel: The same for NBSympleE2 (running on 2 TESLA C1060 and 2

TESLA C2050) and NBSympleB (running on two Intel Xeon E5405), in DP. Bottom panel:

The same for NBSympleD, NBSympleE1, NBSympleE2 (each of them running on one or

two TESLA C2050) and NBSympleB (running on two Intel Xeon E5405) but employing

DSP.

the speed-up is ≃ 2 times respect to the one obtained using only one TESLA (see

Figure 4.10 and Figure 4.11). Nevertheless, as for TESLA C1060, when N is small,

the performance decreases significantly. We must point out another problem that

is relevant when N is very small. The section of the code which performs the time

integration of the system is enclosed in a parallel section using the OpenMP di-

rectives. When N is small, although its lower efficiency, the kernel execution (and

other CUDA operations), is much faster than the sequential opening and closing

operations of the parallel sections. Its execution time becomes negligible only when

N is large enough to ensure that the time spent to compute the kernel, and to up-

date the positions and the velocities (CPU), is greater than that required to manage

the parallel sections. This can explain the flat trend of the black curve shown in

the bottom panel of Figure 4.10 (and also in Figure 4.4). In the top right panel of

Figure 4.11 the anomalous trend for small N is even much clear. Nevertheless, in

this case, the parallelization begins to be efficient already for logN = 3.25 because

the compute capability of the CPU in double precision is greatly reduced and the
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Figure 4.12. Top left panel: Effective performance (in GFLOPs), for different values of

N, reached by NBSympleE1 in single precision. The blue bars show the results obtained

with our estimate of the number of floating point operations while the green bars represent

the results obtained using the estimate given by the CUDA programming guide. Top right

panel: The same for NBSympleE1 in double-single precision. Bottom panel: The same for

NBSympleE1 in double precision.

time spent to execute the update of positions and velocities becomes, soon, relevant,

allowing a more efficient parallelization. In the bottom panel of Figure 4.11, where

the performances of NBSymple running on one or two TESLA C2050 in DSP are

shown, there is the same anomalous trend, (red curve, NBSympleE2). Obviously,

the first red point (corresponding to N = 448) is slightly lower than the first black

point in the top right panel of Figure 4.11 and this is due to a faster memory allo-

cation and data transfer between the GPU and CPU. In double precision we have

indeed to manipulate accelerations of type double4 while in double-single precision

they are float4 variables. The same anomalous trend is negligible in the black curve

shown in the top left panel of Figure 4.11 because, in this case, with only a GPU,

some parallel regions are not opened and this allows a more efficient parallelization.

From the upper panels of Figure 4.11 the greater efficiency of Tesla C2050 in DP

respect to the Tesla C1060 is apparent. The first kind of GPUs has indeed much

more cores (224) able to work in DP than Tesla C1060 (which has only 30 cores

which work in DP). It is interesting to evaluate the performances in GFLOPs ob-

tained using TESLA C2050 instead of TESLA C1060. We refer to NBSympleE1

and NBSympleE2, in single, double-single and double precision. The number of
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Figure 4.13. Top left panel: The same as Figure 4.12 for NBSympleE2 in single precision.

Top right panel: The same for NBSympleE2 in double precision. Bottom panel: The same

for NBSympleE2 in double-single precision.

floating point operations for every mutual force calculation is the same as in the

case of the code running on TESLA C1060 and the results are shown by the blue

bars in the the histograms in Figure 4.12 and Figure 4.13. As comparison we show

the same results, but using the number of floating point operations given by the

CUDA programming guide (green bars in the same histograms). The performances

obtained running the code in single precision, using the second-order method on

a single GPU are ∼ 50% of the peak performance (both in single and double pre-

cision) of the a single TESLA C2050, as already found using TESLA C1060 (see

Section 4.3.1 and Table 4.4). This confirms the good scalability of our code and also

means that the code is well suit to exploit the computational resources of GPUs.

We must point out that the performance obtained using two TESLA C2050 (or 2

TESLA C1060) are almost doubled both in single and double precision compared

to the ones obtained with a single GPU. Due to the fact that, on a Tesla C2050,

the cores which work in DP are 224 while the one that work in SP are 448, the

performances reached in DP are approximately half of those in SP. As the value

of N increases, every thread must execute more and more operations and all the

latencies are adequately covered, allowing better performances. Thus, each thread

must read the global memory Np times and it must compute N iterations (p indicates

the number of threads per block). The time difference between these two process
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Figure 4.14. Left panel: The empty circles show the speedup as a function of the number

of GPUs. The solid line is the best fit to the data. The number of particles used is

N = 1966080. Right panel: NBSymple performance in double-single precision, for different

values of N , using 11 nodes.

can be expressed as

D = Ntint −
N

p
tmem =

N

p
(ptint − tmem) (4.4)

where tint represents the time needed to complete the computation of a single itera-

tion and tmem is the time spent to execute a single global memory access. Although

it is not a rigorous treatment, from Equation (4.4) we can deduce that, if p is con-

stant, the latencies become negligible compared to the work executed by a generic

thread, when this latter increases.

This is reflected in an increase in GFLOPs performances.

4.6 MPI implementation and benchmarks

Given the parallelizzation based on OpenMP, NBSymple can only work on hard-

wares based on shared memory architectures. This is a serious limitation if we think

to the potential of the resources made available by hybrid GPUs+CPUs clusters.

A GPU cluster is a computer cluster in which each node is equipped with one or

more GPUs, allowing very fast calculations.

To use these systems, which are based on distributed memory architectures is nec-

essary to parallelize the code by mean of MPI. The Message Passing Interface or

MPI, is a standardized and portable message-passing system for computers and it

actually constitutes the standard for the communication between different nodes of

a cluster of computers on which a parallel code, suitable for a distributed memory

system, is run. MPI is portable (being implemented for different parallel architec-

tures) and fast (MPI is optimized for every architectures).



96 4. NBSymple, a code running on GPUs

Thus we implemented a new version of NBSymple where the intercommunication

between different CPUs is no more demanded to OpenMP but to MPI (see Ca-

puzzo Dolcetta, Arca Sedda, Mastrobuono Battisti, Montuori, Punzo, and Spera

2011).

This new code was tested on JAZZ, a hybrid CPU+GPU cluster managed by

CASPUR (Consorzio i nteruniversitario per le applicazioni di supercalcolo per uni-

versità e ricerca). We tested our code with a high number of stars (up to N =

1966080), to obtain the relative speed up, defined as

Sn =
Tp(1)

Tp(n)
, (4.5)

where p is the number of processors, Tp(1) is the execution time of the sequential

algorithm and Tp(n) is the execution time of the parallel algorithm on p processors,

obtained testing the code on different numbers of nodes of the cluster. The speed

up is approximately linear; the best linear fit slope is equal to 0.98, value close

to the ideal one, i.e. 1 (see left panel of Figure 4.14). We also estimated the

code performances in GFLOPs, when using all the 11 nodes of the cluster. The

results of this benchmark is given in the right panel of Figure 4.14. It is worth to

underline that the larger is the number of stars, the better is the computational

capacity of this kind of architectures. As expected, for a small number of bodies,

the performances of GPUs decrease significantly, since the time spent in performing

memory transfers becomes comparable to that spent in calculating accelerations

between particles. As we said above, the result is that GPU-computing is worth

only for a sufficiently large number of particles.The sustained performance is more

than 11 TFlops. This is a very high value, although reached using a hybrid cluster

which is small if compared to the top supercomputers in the world.

4.7 A new code, benchmarks and tests

The fixed time step guarantees a very good conservation of energy provided the

introduction of an appropriate softening parameter in the forces expression, but

it is not actually the best choice in terms of speed performances. To accelerate

the calculation maintaining an high degree of accuracy we modified the NBSymple

code introducing different integration methods coupled with variable time steps.

The varying time step algorithm is more complicated than the constant time step

alternative (see Section 3.3). However, we developed a new direct N -body code

which supports both a Hermite 4th order and a Hermite 6th order time integrators

implemented by mean of a hierarchical block time stepping. As for NBSymple, the

external galactic potential is considered analytically and the code is again imple-

mented using MPI, OpenMP and CUDA to fully exploit the available computational

power of hybrid architectures. This version of the code allows a much better treat-

ment of the close interactions between particles of extremely different mass ratios

(for example a star and a black hole) than possible with constant time stepping, by
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Figure 4.15. Top left panel: the initial distribution of time steps, obtained by using the

generalized Aarseth’s criterion (Nitadori and Makino, 2008). Top right panel: The CPU

(blue data) and the GPU (red data) time spent in executing the evaluation step as a function

of the number of stars to be integrated. Bottom panel: It is shown the update frequency of

a specific number of stars over 0.3 time units. The red bars are for the particles integrated

by the CPU while the green one are referred to the GPU integration.

means of the the generalized Aarseth’s criterion (Nitadori and Makino, 2008). The

code has been tested on a machine composed by 2 NVIDIA TESLA C2050 GPUs

and 2 Intel Xeon X5650 CPUs. The MPI parallelization was done so that there is a

one to one correspondence between MPI processes and computational nodes while

the resources per node are fully exploited opening OpenMP forks. Specifically, the

predictor and corrector parts of the code (less expensive in terms of computational

time) are performed using the CPU while the force evaluation is performed on the

available GPUs.

4.7.1 Some tests of the code

The code has been tested running some simulations involving a star cluster located

at the center of the Galaxy where a SMBH of mass 4 × 106 M⊙ is located (see
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Chapter 5 for ore details about such kind of simulations). The star cluster has a

mass Mcl = 1.32 × 107 M⊙ and its N -body representation counts a number of

particles N ≃ 270000. The adopted softening parameter is ε = 0.01 pc and the

accuracy parameter for the 6th order Hermite integrator was set equal to η = 0.5.

As shown by the top left panel of Figure 4.15, the majority of stars share a time

step between 10−4 and 5× 10−4. Stars with much smaller time steps (∼ 10−6) are

candidates for encounters with the SMBH. One of the relevant features of this new

code is the splitting of the calculation of the pair-wise forces on the CPUs when

the particles-per-block to be updated are small in number. The top right panel of

Figure 4.15 shows the CPU and the GPU time spent executing the evaluation step

as a function of the number of stars to be integrated. It is apparent that it is crucial

to improve the performances for small number of bodies because, in this situation,

the GPU computational capability tends to saturate. This results in an almost flat

GPU best fit curve. The importance of the split-strategy is better understood if we

look at the bottom panel of Figure 4.15 which shows the time that a certain number

of particles needs to be updated over an integration time equal to 0.3 time units.

We must point out that, as the Hermite scheme requires, the update frequency is

much higher for small number of bodies even if the integration time is obviously

smaller. This constitutes a real bottleneck for such kind of simulations and the split

method contributes significantly to reduce it.

4.8 Young clusters primordial evolution with NBSym-

ple

Here we present an application of NBSymple to an open astrophysical topic: the

formation and primordial evolution of star clusters. It is widely accepted that stars

form in aggregates (Lada and Lada, 2003), at least in a wide mass range. Giant

molecular clouds (GMCs) fragment and origin a clumpy structure, where stars form

(see Chapter 1). In some cases, the protocluster may dissolve due to tidal interac-

tion with massive external objects (other molecular clouds) on a small spatial scale

or with the general galactic field, over a larger spatial scale. Stars coming from

dissolved clusters go to enrich the general field stellar population. Star clusters

are, thus, among the basic building blocks of galaxies. As a consequence, study-

ing the formation of clusters means approaching a better knowledge of both star

and galaxy formation. Unfortunately, the problem of cluster formation is not an

easy task to face. This because of the presence of a multiplicity of space-time scales,

from the microscales of the gas thermodynamics to the macro-scales of gravitational

and magnetic instabilities. The role of turbulence has also been ascertained in its

importance. Thus, even with the modern computing systems, it is still impossible

to follow the evolution of a cluster forming region over the whole dynamic range.

A theoretical insight to cluster evolution thus requires an approach which is dif-

ferent when dealing with the formation itself than with the following, embedded,
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Figure 4.16. Evolutionary sequence for cluster formation. [Bate et al. 2003]

phase and, later in time, with the “quasi-dry” system evolution, after gas removal.

The approach to cluster formation relies on self-gravitating calculations (Clarke,

2010). They are a step further the previous no-gravity, grid-based models (Lemas-

ter and Stone, 2008; Kitsionas et al., 2009) that supported the interpretation of star

formation as a cascade of energy from some large scale where it is being continu-

ously injected. Fluid-dynamics simulations of self gravitating clouds are more easily

treated with Lagrangian (particle) codes, mainly smoothed-particle-hydrodynamics

(SPH; Lucy 1977; Gingold and Monaghan 1977) than with eulerian (grid) methods,

these latter difficult to implement in absence of geometrical symmetries. We cite

Monaghan (2005) for an excellent review of SPH properties which makes it particu-

larly effective in the study of unstable gaseous systems. The main problem of SPH

is resolution, which is limited by the number of particles in the simulation, although

it can be partly cured by a variable kernel size. Low resolution makes impossible

dealing with shock fronts as well as with, e.g., Riemann solvers. Anyway, SPH is

capable of producing the pre- and post-shock values correct to any degree of accu-

racy. In SPH, artificial viscosity is needed for handling shocks, but it must be taken

under control to avoid an excessive injection of energy on microscopic scales altering

the global dynamics. In star formation, this has the consequence that the Reynolds

number is artificially increased implying the Kelvin-Helmoltz shear instabilities are

heavily diffused. In spite of these problems, various authors faced the study of star



100 4. NBSymple, a code running on GPUs

cluster formation by mean of SPH calculations. First works are Chapman et al.

(1992) and Klessen et al. (1998). Usually, models are not fully self-consistent, be-

cause the velocity field, relevant in determining the characteristics of turbulence, is

just assumed (Schmeja and Klessen, 2004; Padoan et al., 1997; Bonnell et al., 2001).

In the assumption that a “star” is forming when enough gravitationally bound gas

is accumulated within “sink particles” of specified radius (Bate et al., 1995), the

main result of hydro calculations is that stars typically form in the dense gas at the

intersection of collapsing filaments (see Figure 4.16).

There is less agreement among authors about the cluster initial mass function (IMF).

Anyway, the high mass tail of the IMF seems to be a power law with exponent −2

at 10% level of accuracy. A notable result is a flatter slope within individual clus-

ters than for the whole (cluster+field) population (Bonnell et al., 2008, 2003). The

paper by Bonnell et al. (2008) shows that the upper IMF in the simulated clusters

is best fit by truncated power laws for which the truncation mass depends on the

cluster mass. Another result worth mentioning is the mass segregation of massive

stars in very young (0.5 Myr) clusters. This segregation has been observed in some

embedded clusters (Hillenbrand and Hartmann, 1998; Lada et al., 1991) and is dif-

ficult to explain (Bonnell and Davies, 1998) as a two-body relaxation, because the

relaxation time is about 10 times longer than the age of these clusters. According to

Bonnell et al. (2001) and Beuther et al. (2007) competitive accretion preferentially

forms massive stars in the deepest part of the cluster potential well, near the center.

On another side, many young clusters have subvirial (“cold”) initial conditions and

clumpy substructure (McMillan et al., 2007; Allison et al., 2009; Moeckel and Bon-

nell, 2009; Walsh et al., 2004; André, 2002; Peretto et al., 2006; Kirk et al., 2006).

Although the most massive stars are not formed within the cluster core, they are the

first to form and the first to start accretion process and to get involved in merging

process, which could be responsible of dynamical dragging of massive stars in the

cluster core (de Grijs, 2010). Hydrodynamical results give an interesting snapshot

of the cluster embedded in filamentary gas structure. On the observational side,

Lada (2010) claims that in the Milky Way the primary mode of cluster formation

is Jeans instability (triggered by environmental effect) of massive dense cores in

GMCs. Important reference data are those indicating that in a typical GMC the

star forming cores occupy only 1% of its volume and from 1% to 10% of its mass.

Both observations and theory indicate that just a fraction of clusters resist upon

emersion from the embedded phase: the “infant mortality” is high (Kirk et al.,

2006). Chandra X ray observations (Preibisch and Feigelson, 2005) confirm that

10 Myr is a relevant time scale. There is surely a relation between X ray with the

established absence of gas clouds surrounding clusters older than 5 Myr (Leisawitz

et al., 1989). According to Clarke (2010) this means a duration of the embedded

phase between 3 and 5 Myr, giving a typical age of embedded clusters between 1

and 2 Myr. It results a birthrate from 2 to 4 Myr−1kpc−2, much greater than the

birthrate of classical open clusters in the vicinity of the Sun, estimated by Battinelli

and Capuzzo-Dolcetta (1991) 0.45 Myr−1 kpc−2. This large difference between the
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Figure 4.17. Left: time evolution of the GMC core radius. Right: time evolution of

the GMC central density; the horizontal dot-dashed red line marks the threshold for star

formation.

two birthrates is crucial in the interpretation of the post-embedded phase.

Clearly, the possibility for a cluster of emerging from the embedded state as a bound

system depends not only on the initial binding energy but also on many variables,

like star formation efficiency, the IMF, the external galactic effect and the initial

virial or subvirial state of the born cluster, as shown by Lada et al. (1984) and

Capuzzo Dolcetta and di Lisio (1994), Goodwin (2009).

With our work we tried to begin the study the cluster evolution just after the

embedded phase testing NBSymple in a rapidly varying situation.

4.8.1 The model

In our simulations, we modeled the gas environment as a Plummer’s spherical cloud

(Plummer, 1911)

ρ(r; t) =
ρ0(t)

[
1 +

(
r
rc(t)

)2
] 5

2

, (4.6)

where the central density, ρ0, and the core radius, rc are assumed to vary with time

as an oscillatory, damped, function mimicking the approach to the virial state of a

gravitationally unstable cloud on few free-fall times.

The core radius varies as

rc(t) =
α

2

cos (π)

(1 + t)
5
4

+
α

2
+ β . (4.7)

In our case we assumed α = 1 and β = 0 in such a way that rc(0) = rc,0 = 1 (see

Figure 4.17). Thus, we took the initial value of the core radius, rc,0, of the cloud as
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Figure 4.18. Snapshot of the simulated cluster after 10 crossing times. Red dots are stars

with mass equal to 2 M⊙; blue squares refer to 1 M⊙.

the length unit; the mass unit is given by the mass of gas initially contained within

rc,0, Mgas(0) = Mgas,0. G is assumed equal to 1. In such a way the unit of time is

the “initial” crossing time of the system

tcr =

√√√√ r3c,0
GMgas,0

. (4.8)

Substituting Equation (4.7) into Equation (4.6) we obtain the density as a function

of time (see Figure 4.17). The quantity ρ0(t) has to be evaluated at each time

normalizing to the total mass of gas within a certain fixed radius R > rc(t). In

this simplified approach, given this “large” scale gas dynamics, the phase transition

from gas to stars is governed by a time differential equation

Σ̇∗ = cΣng , (4.9)

saying that the time rate of conversion of gas mass into stars is proportional to a

given power n (usually n = 2, Schmidt’s Schmidt 1959) of the gas mass density,

whenever the gas density exceeds a certain threshold, defined by observations. The

oscillating and damping density evolution has a behavior such that the star forma-

tion governed by the Schmidt’s like law occurs on different episodes, corresponding



4.8 Young clusters primordial evolution with NBSymple 103

Figure 4.19. Left panel: Spatial density profile (empty circles) for the more massive stars

that forms during the first episode taken after 25 tcr. Right panel: The same for the less

massive stars, formed during the second episode. The solid line, in both cases, is the best

fitting low to the data. Radius are in units of rc,0 and densities are in units of Mgas,0/r
3
c,0.

to the phases when gas density grows over the threshold. In every episode stars are

assumed to form with the same mass (which is changing from episode to episode)

and with initial conditions inherited by the cloud: initial positions are randomly

sampled within the core radius of the Plummer’s sphere at the formation time and

the velocities are randomly taken (both in absolute value and direction) sampling

the instantaneous collapse speed of the cloud. This preliminary approach does not

account for a radiative and/or ram pressure star-gas feedback and just consider the

feedback of gas and stars through the inclusion of the gas gravitational contribution

to the force acting on stars. This modeling is, of course, of limited astrophysical

relevance but it is useful because allows an easy testing of how the N -body code

reacts to the quasi-sudden “injection” of stars in the system.

We found that in these conditions NBSymple code keeps almost unchanged its con-

servation characteristics with respect to the “dry” case. As a first application we

simulated an isolated cloud of the type described above with star formation oc-

curring in two episodes. Thus, we chose an arbitrary threshold in such a way the

oscillating density is bigger than its value in two different time intervals (see the

right panel of Figure 4.17 where the red line with dots and dashes represents the

limiting density). During these intervals the gaseous material is converted in stars

(see Figure 4.18 for a snapshot of the simulation). We gave to stars formed earlier

a mass twice larger than the stars formed in the second episode. This corresponds

to a slight mass segregation, for the first episode of star formation occurred at a

first, deeper, bounce of the gaseous cloud (smaller core radius). We evaluated the

density profile of the more massive star population (left panel of Figure 4.19) and
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of the less massive population (right panel of Figure 4.19) after 25 tcr. We fitted

the profiles using a modified core model as given by Equation (2.1). For the first

population of stars that forms we have that the best fitting law is

ρ(r, t = 25tcr) =
2.38× 102

[
1 +

( r
0.0528

)2]1.84

Mgas,0
r3c,0

(4.10)

while for the less massive group of stars that forms during the second episode we

have

ρ(r, t = 25tcr) =
1.52

[
1 +

( r
0.151

)2]1.84

Mgas,0
r3c,0

(4.11)

in units of the simulation. Being the core radius in Equation (4.10), rc,1(t = 25tcr) =

0.0528, smaller than the one in Equation (4.11), rc,2(t = 25tcr) = 0.151, and the

exponent γ the same in both cases we found that the more massive stars are more

concentrated to the center than the less massive ones; thus the “primordial ” mass

segregation (due to the initial conditions) is enhanced by 2-body encounters during

a 25 crossing times evolution. Even in this simplified scheme, this result has itself

an astrophysical interest because it constitutes a possible answer to the observed

(Hillenbrand and Hartmann, 1998; Lada et al., 1991) mass segregation in very young

clusters, younger than their 2-body relaxation time.

4.9 Tidal tails around Palomar 14

Here we present an application of NBSymple to the study of a large scale dynamical

problem: the formation of tidal tails around one of the furthest Galactic GCs,

Palomar 14. The Palomar GCs were discovered in the 1950s on the survey plates

of the first Palomar Observatory Sky Survey (POSS). Several of the Palomar GCs,

including Palomar 6, Palomar 7, Palomar 9, Palomar 10 and Palomar 11, are nearby

clusters of average size that just happen to be heavily obscured by dust in our line of

sight. Others, including Palomar 3, Palomar 4, and Palomar 14, are giant globulars

that are very far away in the extreme outer halo of the Milky Way.

In particular, Palomar 14 is characterized by a very low density and mass, and

by its remote position (∼ 71 kpc from the Galactic center, see Jordi et al. 2009).

Even if theoretical predictions tell us that the external potential is not enough

strong to significantly change the shape of a clusters at that distances Sollima et al.

(2011b) found a power-law departure from a King profile at large distances to the

center of Palomar 14 which, together with the observed elongated distribution of

stars on both sides of the cluster, forming an S-shape characteristic of mass loss, is

an signature of tidal stripping in action (see Chapter 6).

Thus these recent observations have revealed the presence of tidal tails around this

cluster. Our goal was to reproduce these tails by mean of numerical simulations

performed using NBSymple. We used the observed position and the predicted

proper motion by (Lynden-Bell and Lynden-Bell, 1995) of Palomar 14 to start
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Figure 4.20. Comparison between the observed luminosity profile (red crosses) and char-

acteristic radii (Sollima et al., 2011b) with the simulated projected density profile from an

N -body simulation of the cluster (blue solid line). The green dashed line, a Nuker profile

with a radius of 11 pc, to guide the eye, reinforces the predicted excess of stars in the tidal

tail, beyond the tidal radius.

a (single particle) backwards simulation. In such a way we obtained the initial

conditions for the center of mass of the cluster 6.5 Gyr ago. We built a GC using

typical parameters (Harris, 1996a) and sampling the N -body model by mean of

the package mkking of NEMO toolkit (see Teuben 1995). The cluster core radius

is rc = 1 pc, the tidal radius is rt = 31 pc, the central velocity dispersion is

σ = 5 km/s and W0 = 7. For the preliminary simulation we used a number of

particles N = 7680; all these particles have the same mass. This conditions can be

definitely improved.

We integrated the cluster forwards for 6.5 Gyr, using NBSymple and we analysed

the final model. Although the simulation we performed is only an initial trial the

results obtained are interesting. As we can see from Figure 4.20 the line-of-sight

projected surface density of the final model (blue solid line) is well fitted by a Nuker

law (green dashed line) with break radius ∼ 11 pc, value close to the observed core

radius of the cluster (12 pc, see Sollima et al. 2011b). We vertically shifted the

observed profile (red crosses in Figure 4.20, see Sollima et al. 2011b) in order to

match the simulated model profile. The slope of the profile external to the central

core is exactly the same in the two cases, but our profile has not a core. In the

most external region of the profile we can see an over-density; this is clearly the

signature of the presence of the tails. Such structures are evident in Figure 4.21

that shows the isodensity contours of the cluster at the end of the simulation. Even

if the cluster is very far from the Galactic center and so it is subjected to a low

tidal effect, after 6.5 Gyr it seems to be very extended and so, future observations,
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Figure 4.21. Predicted extension of the stellar stream associated with Palomar 14. The

map has been stretched to show the extension in the direction perpendicular to the proper

motion (arrow).

could detect the tails improving our knowledge about Galactic potential which is

the main responsible for the formation of such structures.

NBSymple has been also used to simulate Palomar 14 with N=61440 particles

for a shorter time interval (4 Gyr) in order to estimate its velocity dispersion in

the Newtonian case and compare this result with the one obtained with simulation

performed using the MOND code NMODY (Londrillo and Nipoti, 2009). From

the results obtained it seems that observational data well match with the Newto-

nian simulated case while they are consistent with the results obtained considering

MOND only assuming very low values of the mass-to-luminosity ratio for the cluster

(Sollima, Nipoti, Mastrobuono-Battisti, Montuori, and Capuzzo-Dolcetta, 2011).

4.10 Summary

Hybrid computational architectures composed by a standard multicore CPU host

connected to some dedicated (or specialized) hardware apt to perform specific ap-

plications at a much higher speed than the host constitute viable ways to high

performance computing in those scientific fields where it is sufficiently easy to enu-

cleate a kernel of heavy computation. Graphic Processing Units (GPUs) represent

a modern approach to the problem of providing the CPU based host of a “number

cruncher” coupling the advantages of a general purpose, quite easily programmable,

hardware to that of a high computational speed, reached mainly via its massively

parallel structure. Moreover, the purchase expenditure and the modest power con-
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sumption make CPU+GPU hybrid architecture particularly attractive at least when

dealing with problem up to a certain scale. The initial difficulties in using GPUs for

scientific applications were mainly due to the obvious necessity to make them apt

to an efficient data exchange with the hosting system and to exploit efficiently their

huge number of threads to perform numerical computations on these data. The

development of CUDA (Compute Unified Device Architecture) allowed a relatively

easy use of GPUs, whose computing performances have been recently particularly

enhanced. This framework well fits with the astrophysical topic of the evolution

of stellar systems as classic gravitational N -body systems, where the O(N2) pair-

wise interactions constitute a clear bottleneck over the O(N) time integration and

evaluation of the external force assumed given by a smooth mass distribution.

In this Chapter we attacked the problem of studying the evolution of an N

body system in presence of an external field aiming at both high precision and good

performances at least up to N of the order of few millions, like in populous globular

clusters. The main results we obtained are listed and resumed in the following.

• We chose to implement symplectic time integration up to sixth order, to ex-

ploit also the machine double precision made available by NVIDIA GPUs of

the TESLA series.

• Our code, called NBSymple, has a fast version which implements a second

order in time, single precision arithmetics; when using two TESLA C1060

GPUs, this code allows the simulation of an N = 1, 536, 000 star globular

cluster over the few internal crossing times (each crossing time requiring about

1.4 days) corresponding to an orbital period in the external field.

• The use of sixth order time integration implies a factor ∼ 8 of performance

decay, which couples with the contemporary worsening of TESLA C1060 per-

formance when exploiting its double precision. This because TESLA C 1060

has 1 DP thread over 8, so that the speed performance decays substantially

when using DP.

• A good compromise between computational velocity and precision is obtained

resorting to the ‘software’ double precision, which works at a speed ∼ 15 times

higher than DP keeping a very good energy and momentum conservation.

• The time gain in using 2 GPUs instead of 1 begins at logN ≃ 4.1, over which

the N2 scaling is clearly shown up. In the N2 regime the speed ratio between

the 2 GPUs and the 1 GPU codes is exactly 2. This suggests that having

a shared-memory system with n GPUs yields a speed n times higher than a

single GPU, provided an N large enough to overcome the overhead threshold.

• We also tested NBSymple with one or two boards of the last generation

NVIDIA Fermi technology (TESLA C2050) showed easiness of porting. (i)
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Regarding performances, they are about the same of TESLA C1060 when us-

ing SP, (ii) while they are much higher in DP, with a speed ratio about 20

when using sixth order time integration.

• The performance scaling when using two TESLA C2050 is linear, as in the

case of TESLA C1060.

• We presented new versions of the code using MPI parallelization and variable

time step. We also introduced 4th and 6th order Hermit integrators and we

benchmarked the codes obtaining significant speed-up values.

• Moreover we run the MPI-version of NBSymple on Jazz hybrid cluster, equipped

with 22 GPUs on 11 different nodes, verifying that the code performances scale

linearly with the number of GPU provided that the number of particle in the

system is big enough to exploit all the resources of each GPU.

• Given this, the aim of following the evolution of a GC over few hundred

relaxation times in an external galactic field, as well as its interaction with a

massive black hole in the inner galactic region is a reasonable aim by a hybrid

architecture with a sufficient number of Fermi TESLA GPUs.

• In the last part of the Chapter we presented some applications of NBSymple

where the code is used (i) to study the primordial evolution of young star

cluster and (ii) to study the formation of tidal tails around Pal 14, one of the

farthest Galactic GCs.

• We definitely found that NBSymple is able to handle such problems giving

reliable results, even if run on only two GPUs.



Chapter 5

Dissipationless Formation and

Evolution of the Milky Way

Nuclear Star Cluster

As stated in Chapter 2 the dynamical evolution of GCSs could have influenced the

properties of the central region of its host galaxy. In particular, in one widely dis-

cussed model for the formation of nuclear star clusters (NSCs), massive globular

clusters spiral into the center of a galaxy and merge to form the nucleus. It is now

known that at least some NSCs coexist with supermassive black holes (SMBHs,

see Chapter 1); this is the case, for instance, in the Milky Way. In this Chapter,

mainly collected in Antonini, Capuzzo-Dolcetta, Mastrobuono-Battisti, and Merritt

(2011), Mastrobuono-Battisti and Capuzzo-Dolcetta (2011) and Capuzzo-Dolcetta,

Antonini, and Mastrobuono-Battisti (2011), we keep on studying the stellar dy-

namics and star cluster evolution investigating how the presence of a SMBH at the

center of the Milky Way impacts the merger hypothesis for the formation of its

NSC. After general tests of the model we will focus our attention on the Milky Way

NSC. Starting from a model consisting of a low-density nuclear stellar disk and the

SMBH, we use large-scale N -body simulations to follow the successive inspiral and

merger of globular clusters. The clusters are started on circular orbits of radius

20 pc, and their initial masses and radii are set up in such a way as to be consistent

with the galactic tidal field at that radius. A total of 12 inspiral events are followed;

the total accumulated mass is about 1.5× 107M⊙. Each cluster is disrupted by the

SMBH at a distance of roughly 1 pc. The density profile that results after the final

inspiral event is characterized by a core of roughly this radius, and an envelope with

density that falls off ρ ∼ r−2. These properties are similar to those of the Milky

Way NSC, with the exception of the core size, which in the Milky Way is a little

smaller. But by continuing the evolution of the model after the final inspiral event,

we find that the core shrinks substantially via gravitational encounters in a time

(when scaled to the Milky Way) of 10 Gyr as the stellar distribution evolves toward

a Bahcall-Wolf cusp. We also show that the luminosity function of the Milky Way

109
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NSC is consistent with the hypothesis that 1/2 of the mass comes from old (∼ 10

Gyr) stars, brought in by globular clusters, with the other half due to continuous

star formation. We conclude that a model in which a large fraction of the mass of

the Milky Way NSC arose from infalling globular clusters is consistent with existing

observational constraints.

This Chapter is organized as follows. Section 5.1 gives a general introduction to

the faced problem and of the models involved. In Section 5.2 some general test of the

merger model are described. The details of the initial models adopted in the Milky

Way specific case are given in Section 5.4. Section 5.5 describes our simulations and

results. Section 5.6 is devoted to the study of the collisional evolution of the NSC

following its formation. The implications of our results in the contest of NSCs and

Galactic center dynamics are discussed in Section 5.7. Section 5.8 sums up.

5.1 NSCs formation models

As shown in Section 1.4, the centers of low-luminosity spheroids, MB ∼> − 18, are

often marked by the presence of compact stellar nuclei with half-light radii of a

few parsecs and luminosities that are ∼ 20 times that of a typical globular cluster

(Carollo et al., 1998; Böker et al., 2002b; Côté et al., 2006). The nearest such system

is at the center of our Galaxy (Schödel, 2011). The Milky Way NSC is close enough

that its radial and kinematical structure can be resolved (Schödel et al., 2007, 2009;

Oh et al., 2009). Its total mass is estimated at ∼ 107M⊙ (Launhardt et al., 2002;

Schödel et al., 2008) and its half-light radius is roughly 3-5 pc (Graham and Spitler,

2009b; Schödel et al., 2009; Schödel, 2011). There is a central core of radius ∼ 0.5

pc (Buchholz et al., 2009), beyond which the density falls off roughly as r−1.8 (Oh

et al., 2009).

NSCs with properties similar to those of the Milky Way have now been detected

in galaxies of all Hubble types (see Section 1.4). NSCs exhibit complex star for-

mation histories; while the bulk of the stars appear to always be old, the fraction

of young stars increases toward late-type galaxies. In galaxies beyond the Local

Group, NSCs are typically unresolved, and the only structural properties that can

be derived are half-light radii and total luminosities.

The study of NSCs has raised considerable interest because of the fairly strong

correlations between their masses and the properties (mass, velocity dispersion)

of their host galaxies (Ferrarese et al., 2006a; Wehner and Harris, 2006b). These

correlations suggest that the formation of NSCs and their host galaxies are linked

in important ways (see also Section 1.4).

Two models for the formation of NSCs have been widely discussed. In the in-

situ formation model, buildup of molecular gas near the center of a galaxy leads to

episodic star formation events. In this model, a NSC consists mostly of stars that

formed locally (Schinnerer et al., 2006, 2008). A number of mechanisms have been

discussed for bringing the gas to the center, including the magneto-rotational insta-
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bility in a differentially rotating gas disk (Milosavljević, 2004), tidal compression in

shallow density profiles (Emsellem and van de Ven, 2008) or dynamical instabilities

(Shlosman and Begelman, 1989; Bekki, 2007).

Alternatively, in the merger model, GCs sink to the center of a galaxy via dy-

namical friction and merge to form a compact stellar system (Tremaine et al., 1975;

Capuzzo-Dolcetta, 1993; Agarwal and Milosavljević, 2011). Observations of NSCs in

dwarf elliptical galaxies suggest that the majority of such nuclei might have formed

in this way (Lotz et al., 2004). Numerical simulations have also shown that the

basic properties of NSCs are consistent with a merger origin (Bekki et al., 2004;

Capuzzo-Dolcetta and Miocchi, 2008a,b; Hartmann et al., 2011).

In addition to a NSC, the Milky Way also contains a massive black hole (SMBH)

whose mass, M• ≈ 4× 106M⊙ (Ghez et al., 2008; Gillessen et al., 2009), is compa-

rable with that of the NSC. A handful of other galaxies are also known to contain

both a NSC and a SMBH (Seth et al., 2008b; Graham and Spitler, 2009b), and the

ratio of SMBH to NSC mass in these galaxies is of order unity.

A simple argument leads to a 1 pc scale as the relevant one for the merger model

for the formation of NSCs. The beginning of the disruption process of a globular

cluster due to tidal stresses from a SMBH is expected when it passes within a certain

distance of the galaxy center, limiting the density within that radius. Disruption

occurs at a distance r = rdisr from the SMBH, where

M•
4
3πr

3
disr

≈ ρ(0) ≈ 9

4πG

σ2
K

r2K
. (5.1)

Here ρ(0) is the central (core) density of the globular cluster, σK its central, one-

dimensional velocity dispersion, and rK its core radius; the second relation is the

“core-fitting formula” (King, 1966). Writing

rinfl ≡
GM•
σ2

NSC

≈ 1.3pc

(
M•

4× 106M⊙

)(
σNSC

100km s−1

)−2

(5.2)

for the gravitational influence radius of the SMBH, where σNSC is the stellar velocity

dispersion in the NSC, Equation (5.1) becomes

rdisr ≈ 2

(
σNSC

5σK

)2/3 (rinfl

rK

)1/3

rc. (5.3)

Setting rK = 0.5 pc and σK = 20 km s−1, values characteristic of the most massive

globular clusters, we find rdisr ≈ 1 pc for the Milky Way. This is roughly equal to

the radius of the core (∼ 0.5 pc) that is observed in the distribution of late-type

stars (Buchholz et al., 2009).

5.2 General tests

Before studying the Milky Way we performed some self-consistent simulations re-

ferred to a generic galaxy where a GC decays toward its center and settle there
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reaching a steady state around the SMBH of mass 5× 106 M⊙ located at the center

of the same galaxy. Our aim is to test the merger model in a generic background,

before adopting it to explain the Milky Way NSC formation.

5.2.1 The code

All the simulations presented in this Chapter were performed by using NBSymple

(for basic tests) and φGRAPE (Harfst et al., 2007), a direct-summation code opti-

mized for computer clusters incorporating the GRAPE special-purpose accelerators

(Makino and Taiji, 1998). φGRAPE implements a fourth-order Hermite integrator

with a predictor-corrector scheme and hierarchical time stepping. The accuracy

and performance of the code are set by the time-step parameter η and the smooth-

ing length ǫ. In what follows, we set η = 0.01 and ǫ = 0.02rK (10−2 pc in our

case), With this choices, energy conservation was typically ∼< 0.01% during a single

merging event. The simulations were carried out using the 32-node GRAPE cluster

at the Rochester Institute of Technology, and also on our workstations containing

TESLA C2050 graphics processing units (see Chapter 4). In the latter integrations,

φGRAPE was used with Sapporo, a CUDA library that emulates double-precision

force calculations on single precision hardware (Gaburov et al., 2009).

5.2.2 The models

In order to test the model the galaxy was modeled as a truncated Dehnen law

(Dehnen, 1993)

ρ(r) =
(3− γ)Mgal

4π

a

rγ(r + a)4−γ
sech

(
r

rcut

)
, (5.4)

where γ = 0.5, Mgal = 2.0 × 109 M⊙, a = 420 pc, rcut = 150 pc. The value of γ

corresponds to the shallowest power law density profile consistent with an isotropic

velocity distribution around a dominating point mass potential (Merritt, 2006) Only

compact and very massive GCs can spiral to the center of their host galaxy in a

time interval significantly smaller than the Hubble time (Capuzzo-Dolcetta, 1993).

Thus, for the GC, we chose a King model (King, 1966) with W0 = 8, total mass

Mtot = 5 × 106 M⊙, core radius rc = 0.5 pc, tidal radius rt = 36 pc, and a central

velocity dispersion σK = 37.7 km/s.

Therefore, the SMBH and the GC has the same mass.

We sampled the N -body representation of the galaxy given by Equation (5.4),

using single mass particle, with m∗ = 400 M⊙; the total number of particles in

the galaxy is Ngal = 359238. The King model was also sampled using particles of

mass, m∗, and obtaining a GC N -body representation composed by NGC = 12500

particles.

In the following subsections the results of two different simulations performed using

these initial conditions are presented.
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Figure 5.1. Some snapshots, taken at regular interval of time, of the simulation where the

GC is initially on a circular orbit. The red dot represents the central SMBH.

5.2.3 GC on a circular orbit

We initially put the GC at a distance of 100 pc from the galactic center on its

circular orbit. Due to dynamical friction, the cluster spirals and reaches the inner

region of the galaxy where it merges around the central SMBH (see Figure 5.1

for some snapshots of the simulation) settling on a quasi stable condition. The

decay and the merger happen in a relatively short time (∼ 52 Myr≃ 36 tcr, where

tcr is the internal crossing time of the GC) and at the end of the simulation we

obtain a central cluster which shows the same features of the observed NSCs. Its

spatial density is indeed well distinguishable from the one of the underlying galaxy.

Moreover it is well fitted by a a modified Hubble law1 (Rood et al., 1972a):

ρcl(r) =
ρ0,cl

[
1 +

(
r
r0,cl

)2
] 3

2

, (5.5)

1The core radius of the modified Hubble law is almost identical to the “core” radius of a King

profile, the King radius being the radius at which the projected density of an isothermal sphere

drops to almost half (0.5013) as oppose to half (0.5) for the core radius of the modified Hubble law

(Kissler-Patig et al., 1999; Rood et al., 1972a).
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Figure 5.2. Left panel: spatial density profile (empty circles) of the total system at the end

of the decay and of the following merger with the central SMBH in the case of an initially

circular orbit. The dashed line is the Dehnen model that best fits the density profile of the

galaxy, the solid line is the best fit on the total (NSC and galaxy) system. Right panel:

Projected density profile of the same total system. The dashed line is the best Sérsic fitting

law to the galaxy projected density profile while the solid line is the best fitting law to the

total system (see text for the details).

where ρ0,cl = 4.2×104 M⊙/pc3 and r0,cl = 1.2 pc. The spatial density profile of the

galaxy is well fitted by a Dehnen model (see Equation (5.4))

ρgal(r) =
1.7 × 1011 M⊙pc

r0.47(r + 420pc)3.53
sech

(
r

150pc

)
(5.6)

and is represented by the dashed line in the left panel of Figure 5.2; the solid line,

in the same plots, gives the sum of the fits on the NSC and on the galaxy density

profiles, thus it represents the best fit to the spatial profile of the total system

composed by the galaxy and the central super cluster. The projected profile of

the same total system is well modeled by the sum of a modified core model (see

Equation (2.1))

Σtot(R) =
1.0× 105

[
1 +

(
R

1.1pc

)2
]0.86 M⊙/pc2, (5.7)

and of a Sérsic law (Sérsic, 1963)

Σ(R) = Σ0e

[
−b
(
R
Re

) 1
n+b

]

, (5.8)

with

b = 2n− 1

3
+

0.009876

n
. (5.9)

The best fitting parameter of this law are: Σ0 = 8.4 × 102 M⊙/pc2, b = 1.33,

Re = 124.4 pc and n = 0.83 (see dashed line in right panel of Figure 5.2). As we
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Figure 5.3. Some snapshots, taken at regular interval of time, of the simulation where the

GC is initially on a radial orbit. The red dot represents the SMBH. Only the particles in

the GC are shown.

will see in the following Sections, this results corroborate the hypothesis that NSC

could have originate from the decay of globular clusters toward the center of their

host galaxy where a SMBH is located. Obviously in this scenario, more than one

GC may arrive in the central galactic center, and we will investigate this hypothesis

in Section 5.3.

5.2.4 GC on a radial orbit

In the second simulation we run, the GC is initially put on a radial orbit at an

initial distance of 100 pc. Some snapshots of the simulation are shown in Figure

5.3. We waited for the complete decay of the GC and then we took the spatial

and projected density profiles, and using the same laws adopted in the “circular”

case we obtained that for the total system the best fitting law to the spatial density

profile is given by

ρtot(r) =





8.84 × 103

[
1 +

(
r

2.6pc

)2
] 3

2

+
2.0× 1011

r0.54(r + 415pc)3.46
sech

(
r

150pc

)




M⊙
pc3

(5.10)



116 5. Dissipationless Formation and Evolution of the MW NSC

Figure 5.4. Left panel: spatial density profile (empty circles) of the total system at the

end of the decay and of the following merger with the central SMBH in the case of an

initially radial orbit. The dashed line is the Dehnen model that best fits the density profile

of the galaxy, the solid line is the best fit on the total (NSC and galaxy) system. Right

panel: Projected density profile of the same total system. The dashed line is the best Sérsic

fitting law to the galaxy projected density profile while the solid line is the best fitting law

to the total system (see text for the details).

(see left panel of Figure 5.4), while for the projected density profile we have

Σtot(R) =






4.2× 104

[
1 +

(
R

3.8pc

)2
]1.26 + 2.2 × 103

[
e
−1.58

(
R

121pc

)1.12
+1.58

]





M⊙
pc2

(5.11)

as the best fitting law (see right panel of Figure 5.4). Also in this case we obtained

a system that resembles the observed NSCs (see Section 1.4); this system shows the

same properties of the one obtained in the case of the circular orbit except for the

fact that the value of the central density is slightly smaller than in this case.

5.3 The Milky Way NSC

In the following Sections we will focus on the Milky Way case. Our initial conditions

consist of a SMBH and a diffuse stellar component that models the inner parts of the

nuclear stellar disk (Launhardt et al., 2002). The NSC is built up by the successive

inspiral of globular clusters, which we inject into the system at a radius of 20 pc.

The clusters are assigned masses and radii consistent with those of globular clusters

that were initially very massive (∼ 4 × 106M⊙) but which were tidally limited by

the Galaxy’s tidal field. As the clusters spiral is due to dynamical friction against

the stars in the disk component, they eventually come within the radius of tidal

disruption of the SMBH. We follow 12 such inspirals, resulting in the accumulation
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of ∼ 107M⊙. The NSC that results has properties that are consistent with the

observed properties of the Milky Way NSC, including a ρ ∼ r−2 density profile and

a parsec-scale core.

At the Galactic center, the relaxation time at SgrA*’s influence radius is roughly

20 − 30 Gyr, assuming Solar-mass stars (Merritt, 2010). This is too long for a

Bahcall and Wolf (1976) cusp to have formed over the Galaxy’s lifetime, consistent

with the observed lack of a cusp (Buchholz et al., 2009; Do et al., 2009; Bartko

et al., 2010). But a pre-existing core with radius smaller than the SMBH influence

radius would have shrunk appreciably over a time of 10 Gyr due to gravitational

encounters (Merritt, 2010). We investigate the effect of such evolution on our NSC

model by continuing the N -body integrations after the final infall event, for a time

that corresponds to roughly 10 Gyr after scaling to the Milky Way. The core radius

decreases by roughly a factor of two in this time, bringing it to a size that is more

consistent with the observed core size. The density profile beyond the core remains

nearly unchanged.

In the merger model the bulk of the nuclear population is predicted to be as

old (∼ 10 Gyr) as the oldest globular clusters. Accordingly, using Hubble Space

Telescope Near-Infrared Camera and Multiobject spectrometer (NICMOS) imaging

of the inner 30 pc of the Galaxy, we show that the luminosity function of the Milky

Way NSC is consistent with the hypothesis that a large fraction of its mass is in

ancient stars.

5.4 The Milky Way case: Initial conditions

In the following, we perform full N -body simulations to study the consecutive infall

and merging of a set of 12 globular clusters each starting from a galactocentric

distance of 20 pc. After the first globular cluster is disrupted, we wait for the

NSC to reach a steady state and we add to the system a second globular cluster.

This procedure was iterated until 12 clusters accumulated and merged in the inner

regions of the galaxy where we initially placed a central SMBH. Snapshots from the

simulations are given in Figure 5.5.

We begin in this section by outlining the details of the initial conditions adopted

in the simulations.

5.4.1 The Galactic Model

The nuclear bulge is distinguished from the larger Galactic bulge (effective radius

∼ 1 kpc) by its flat disk-like morphology, high stellar densities, and a history of

continuous star formation. The nuclear bulge dominates the inner 300 pc of the

Milky Way and it appears as a, distinct, massive disk-like complex of stars and

molecular clouds which is, on a large scale, symmetric with respect to the Galactic

center. It consists of an r−2 nuclear stellar cluster within the inner ∼ 30 pc, a larger

nuclear stellar disk and a nuclear molecular disk of same size (radius ∼ 200 pc and
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Figure 5.5. Snapshots from the N -body integrations, projected onto a fixed (x− y) plane

at the start of each infall event. Only particles coming originally from the infalling clusters

are displayed. The SMBH is shown as the red circle.

scale height ∼ 45 pc). The total stellar mass and luminosity of the nuclear bulge

are 1.5 × 109 M⊙ and ∼ 2.5 × 109 L⊙, respectively (Launhardt et al., 2002). The

r−2 density distribution holds only within the NSC in the central ∼ 30 pc, while, at

larger radii, the mass distribution is dominated by the nuclear stellar disk which has

essentially a flat density profile (Schödel, 2011). The initial conditions for the galaxy

in our simulations model the nuclear stellar disk and they omit the central NSC.

Accordingly, they correspond to a shallow density cusp around a SMBH, which is

included as a massive particle, M• = 4× 106M⊙, located at the origin.

We adopted a truncated power-law model for this component:

ρgx(r) = ρ̃

(
r

r̃

)−γ
sech

(
r

rcut

)
. (5.12)

where ρ̃ = 400M⊙/pc3 is the density at r = r̃ = 10pc, and the truncation function

is the same used by McMillan and Dehnen (2005), see left panel of Figure 5.6. Since

sech(x) ≈ 1 − x2

2 for x ≪ 1, the model is essentially a power law at r ≪ rcut, but

it tends exponentially to zero for r ≫ rcut. As done in the previous tests, we chose

γ = 0.5. The resulting model implies a mass density at 10 pc similar to what is

found in the Galaxy outside the NSC (∼ 400M⊙/pc3). We chose rcut = 22 pc which

gives a total mass of the (truncated) galactic model equal to 9.1× 107M⊙. In order
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Figure 5.6. Left panel: untruncated (dashed line) and truncated (solid line) initial Galaxy

density profile. Right panel: Initial GC profile.

to generate a Monte-Carlo realization of the distribution function corresponding to

the truncated density profile of Equation (5.12) we followed the method described in

Szell et al. (2005). Using Eddington’s formula, it can be shown that the cumulative

fraction of stars at radius r with velocities less than v is:

F (< v, r) = 1− 1

ρ

∫ E

0
dφ′
dρ

dφ′
× (5.13)

{
1 +

2

π

[
v/
√

2√
φ′ − E − tan−1

(
v/
√

2√
φ′ − E

)]}
,

where E = 1
2v

2 + φ(r) and φ(r) is the total gravitational potential produced by

the stars and the SMBH. Once the positions are assigned, Equation (5.13) can be

numerically solved to distribute the particles in velocity space.

A good compromise between reliability of the results and computational effort

was found by setting N = 240, 000 for the galaxy, which implies a mass of 380M⊙
for each particle in the system.

5.4.2 The Globular Cluster Model

The globular clusters were initially placed on circular orbits with orbital radii r0 =

20 pc. In order not to favor any particular direction for the inspiral, the orbital

angular momenta were selected in the following way (e.g., Gualandris and Merritt,

2009). The surface of a sphere can be tessellated by means of 12 regular pentagons,

the centers of which form a regular dodecahedron inscribed in the sphere. The

coordinates of the centers of these pentagons were identified with the tips of the 12

orbital angular momentum vectors. In this way, the inclination and longitude of

ascending node of each initial orbit were determined. The choice of circular orbits

was motivated by the well-known effect of orbital circularization due to dynamical

friction (Casertano et al., 1987; Ibata and Lewis, 1998; Hashimoto et al., 2003).
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Figure 5.7. Lagrange radii of the first cluster that arrives at the center of the galaxy. In

the left panel the Lagrangian radii are computed with respect to the center of density of

the globular cluster, while in the right panel with respect to the central SMBH. The time

for each cluster to settle in a steady state after its disruption is only few Myrs.

At a distance of 20 pc from the Galactic center, a globular cluster would already

have been subject to tidal forces from the galaxy and the SMBH, and its total mass

and radius would be less than their original values when the globular cluster was

far from the center. We assumed that the central properties of the globular clusters

were unaffected by tidal forces during the inspiral to 20 pc, and adopted values

characteristic of massive clusters: central velocity dispersion σK = 35 km s−1 and

core radius rK = 0.5 pc. If the dimensionless central (King) potential isW0 = 8, the

total mass works out to be m ≈ 4× 106 M⊙. This value of σK is roughly two times

the maximum value of ∼ 18km s−1 listed in Harris (1996b)’s compilation of Galactic

globular clusters properties, while the core radius is roughly equal to the median

value in that compilation. Our choice of such a large value for σK is justified by

the fact that only massive clusters, if they are compact enough, could have arrived

in the central regions of the Galaxy in a reasonable time without being destroyed

by Galactic tidal forces in the process (Miocchi et al. 2006 and Section 5.7.1).

We then needed to generate equilibrium models for globular clusters with these

same central properties, but with total masses and limiting (tidal) radii consis-

tent with the known tidal forces from the Galaxy model at 20 pc. This is not a

completely straightforward exercise, since the gravitational force from the globular

cluster acting on a star at the cluster’s limiting radius, rT , depends both on rT and

on the cluster mass mT within rT , and mT is a function of rT .

We proceeded in the following way. We first assumed rT ≫ rK . In this case, a

King-like model satisfies the following relation between mT and rT :

GmT ≈
1

2
σ2
KrT . (5.14)

Given this relation, the tidal radius can then be related to the Galactic potential φ



5.4 The Milky Way case: Initial conditions 121

Figure 5.8. Comparison between the projected (left panel) and spatial (right panel) density

profiles obtained with NGC = 5715 (solid line) and NGC = 57150 (dotted line).

and density ρ by (e.g., King, 1962)

rT =
1√
2
σK

[
3

r0

(
dφ

dr

)
− 4πGρ

]−1/2

. (5.15)

Using the galaxy mass distribution of Equation (5.12) and considering the presence

of the SMBH, but ignoring the truncation function, we find

dφ

dr
=

8π

5
Gρ̃r̃

(
r

r̃

) 1
2

+
GM•
r2
, (5.16)

giving a limiting radius of

rT =
1√
2
σK

[
4π

5
Gρ̃

(
r0
r̃

)−1/2

+
3GM•
r30

]−1/2

(5.17)

and a tidally-truncated mass from Equation (5.14). Adopting a distance r0 = 20 pc

we find rT ≈ 8 pc and mT ≈ 1.1 × 106 M⊙; in other words, roughly 3/4 of the

globular cluster mass would have been removed in the process of inspiralling to

20 pc.

We then equated this mT with the mass of a new King model having the same

core properties:

mT = mK ≡ ρ(0)r3Kµ(W0) ≈ 9

4πG
σ2
KrKµ(W0). (5.18)

Here µ(W0) is a function of the dimensionless central potential that is tabulated by

King (1966). Since all the quantities in Equation (5.18) are known except forW0, we

can solve for this variable, and find W0 = 5.8. The three parameters (W0, rK , σK)

then uniquely define the King model that was used to generate the initial conditions

of the globular clusters (see right panel of Figure 5.6).



122 5. Dissipationless Formation and Evolution of the MW NSC

Figure 5.9. Spatial profile of the central NSC after 3, 6, 9 and 12 mergers. The central

density grows with time. The dashed line is the fit to the NSC profile obtained at the end

of the entire simulation using the broken power law model of Equation 5.19.

As previously stated, the mass of the single particle in the galaxy was 380 M⊙.

For the particles in the clusters we choose 200M⊙, approximately one half of that

value. With this choice, the total number of particles in each globular cluster was

5, 715 with 740 particles contained within the cluster core.

5.5 N-body simulations

During each infall event, we followed the evolution of the system until the globular

cluster had reached the center of the galaxy and established an approximately steady

state. This condition was verified by studying the time evolution of the globular

cluster Lagrange radii, constructed both with respect to the center of density of the

cluster (as defined by the algorithm in Casertano and Hut (1985)), and with respect

to the central SMBH. When the Lagrange radii had reached nearly constant values,

the next globular cluster was introduced. Figure 5.7 plots the time evolution of

Lagrange radii for the first infall event. The figure shows that each merging episode

lasts approximately 107yr and that the time scale for a globular cluster to reach a

steady state following its disruption is indeed very short, of the order of Myr.

We evaluated the N -dependence of our results by simulating the first three

infalls using the same orbital initial conditions but with ten times more particles

to represent the clusters. Comparing the density profile of the NSC after the three

infalls with that obtained in the original integrations did not reveal any significant

differences between the two cases (see Figure 5.8).

In addition, we tested the alternative scenario where the 12 clusters, initially
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Figure 5.10. Spatial (right panel) and projected (left panel) density profiles at the end

of the simulation. In each panel, the empty circles give the density profile of the N -body

model, the solid lines give the best fitting model to the entire system (galaxy+NSC) and

the dashed curves give the fit to the density profile of the galaxy, see text for explanation.

located on their respective orbit, start to decay all at the same time. We stress that

this “contemporary” infall scenario, adopted in most previously published works,

would require a quite special initial state in which all the clusters start their infall

at the same radius at a given time. In reality, globular clusters will arrive at the

center at essentially random times, and the interval between these events, which is

fixed by dynamical friction time-scale (of the order Gyr), will almost certainly be

long compared with the time required for a single globular cluster to reach a steady

state following its disruption ( ∼Myr in Figure 5.7). We also notice that, as long as

the simulations respect this separation of timescales, the exact interval between the

infall events is essentially irrelevant. In this sense, the “repeated” initial conditions

are more generic. For this reason, in what follows, we will focus on this latter

scenario, but we will also briefly discuss the results from a “contemporary” infalls

simulation.

5.5.1 Results: density profiles

Figure 5.9 shows the density profile of the system after the complete merging of

3, 6, 9 and 12 clusters. We fitted the spatial density of the final system, within

10 pc around the SMBH, using the broken power law model (e.g., Saha, 1992; Zhao,

1996):

ρ(r) = ρb

(
r

rb

)−γi [
1 +

(
r

rb

)α](γi−β)/α

, (5.19)

where γi is the slope of the inner density profile, β the external slope and α is a

parameter that defines the transition strength between inner and outer power laws.

The best-fit parameters were ρb = 4.1×104M⊙/pc3, rb = 1.5pc, γi = 0.45, β = 1.90
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Figure 5.11. Left panel: empty circles represent the half mass radius of the central NSC

as a function of the total mass of the same system. The solid line represents the scaling

relation given in Equation (5.24). Right panel: the core density of the cluster versus its half

mass radius (empty circles). The solid line shows the ρc − rh relation given by Equation

(5.25).

and α = 3.73. The model corresponding to this set of parameters is given by the

dashed line in Figure 5.9.

Figure 5.10 (right panel) plots the spatial density at the end of the simulation

over a wider radial range than in Figure 5.9. We fitted the total density as a

superposition of two parametric models, one intended to represent the NSC and the

other the galaxy. For the NSC we adopted the modified Hubble law (Rood et al.,

1972b):

ρcl(r) = ρ0,cl


1 +

(
r

r0,cl

)2


− 3

2

, (5.20)

with best fitting parameters ρ0,cl = 7.46 × 104 M⊙/ pc3 and r0,cl = 1.4 pc. The

galaxy remained well-fit by the initial “truncated” power law of Equation (5.12),

when ρ̃ = 9.91 × 102 M⊙/ pc3, r̃ = 10 pc, γ = 0.69, and rcut = 16.3 pc. The right

panel of Figure 5.10 shows the projected density of the N -body model at the end

of the simulation. We again fit this profile with a two-component model. For the

NSC we used

Σcl(R) = Σ0,cl


1 +

(
R

R0,cl

)2


−ζ

, (5.21)

while the projected density profile of the galaxy was represented by a Sérsic law:

Σgx(R) = Σ0,gxexp


−b

(
R

R0,gx

) 1
n

+ b


 , (5.22)

with

b = 2n− 1

3
+

0.009876

n
. (5.23)
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Figure 5.12. Spatial profile of the central super cluster at two different times. The long

dashed line represents the Nuker best fit on.

The best-fit parameters were Σ0,cl = 2.18×105 M⊙/pc2, R0,cl = 1.99 pc and ζ = 1.03

for the NSC; Σ0,gx = 7.31 × 103 M⊙/ pc2, b = 1.68, R0,gx = 32.3 pc and n = 1.003

for the bulge.

Remarkably, our simulations result in a final density profile having nearly the

same power-law index beyond ∼ 0.5 pc as observed (Σ(r) ∼ r−1; Becklin and

Neugebauer, 1968; Haller et al., 1996). In addition, the central region (r < rb)

of our model exhibits a shallow density profile (or core) near the SMBH, also in

agreement with observations (Buchholz et al., 2009). The core radius in our model

(∼ 2 pc) is somewhat larger than the observed core, of radius ∼ 0.5 pc. In Section

5.6 we show that two-body relaxation would cause such a core to shrink over Gyr

time scales, as the density evolves toward, but does not fully reach, a collisional

steady state.

In the right panel of Figure 5.11 the half-mass radius (rh) of the NSC component

is plotted as a function of the NSC mass (Mcl) at the end of each infall. At any

time, the NSC mass is given by the sum of the accumulated globular cluster masses.

A good fit to the data is obtained by

rh = 0.45

(
Mcl
M⊙

)0.19

pc , (5.24)

represented by the solid line. The dependence of rh on Mcl is weak, due to the fact

that the size of the NSC is determined essentially by the fixed tidal field from the

SMBH.

Assuming for the growing NSC the density law of Equation (5.20), the core

density can be defined as ρc = ρ0,cl/2
3
2 and the values of ρc, obtained after the

end of each infall, can be plotted as a function of the half mass radius of the same
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Figure 5.13. Spatial (right panel) and projected (left panel) density profiles at the end of

the contemporary merging of the 12 GCs. In each panel the dashed line is the fit to the

Nuclear Bulge profile, see text for explanation.

system (bottom panel of Figure 5.11). These data are well fit by

ρc =

[
1.2× 103 + 1.1 exp

(
rh

1 pc

)]
M⊙
pc3
, (5.25)

shown as solid curve in the figure.

We also carried out a separate simulation in which all 12 clusters were placed

at the same time on their initial orbits. We analysed the spatial and projected

density profile of the system obtained at the end of this simultaneous decay and

merging. We used the same functions adopted in the previous case to fit the spatial

and projected profiles of galaxy and NSC.

In particular, in Figure 5.12 the central region of the Galaxy is shown at two

different times: the lower solid curve is the inner region spatial density profile before

the complete merging of the GCs, the upper one is the density profile at the end of

the merging process. The long dashed line represents the broken power law fit (see

Equation (5.19)) on the final profile.

The best fit parameters are ρb = 1.3× 104M⊙/pc3, rb = 2.4 pc, γi = 0.19, γ = 1.85

and α = 9.3. Also in this case we have a central super cluster with an external

slope ∼ 1.8 and a central core, but in this case the break radius is larger than in

the previous one. This is due to the fact that between a merger event and the

consecutive one the central cluster partially relaxes decreasing the core size. On the

contrary, the contemporary decay is very fast and, at the end of merger, the central

cluster shows a bigger central core.

We used the same functions adopted in the previous case to fit the spatial and

projected profiles of the Galaxy and of the super cluster.

In the left panel of Figure 5.13 the spatial profile of the total system is shown. We fit

the cluster density profile using a modified Hubble law given by Equation (refeq:mhl)

with parameters ρ0,cl = 1.62 × 104 M⊙/ pc3 and r0,cl = 3.4 pc. For the galaxy we
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used the power law density profile of Equation (5.12) with ρ̃ = 7.48× 102 M⊙/ pc3

and γ = 0.50, r̃ = 10 pc and rcut = 15.6 pc.

For the total system projected density profile, we summed the modified core

model of Equation (5.21) with Σ0,cl = 1.07 × 105 M⊙/pc2, Rc = 3.7 pc and ζ =

1.23, to a Sérsic law (Equation [5.22]) with Σ0 = 7.84 × 103 M⊙/ pc2, b = 1.65,

Re = 30.8 pc and n = 0.99. This profile is given in the right panel of Figure 5.13.

In the following we will focus on the repeated infall simulation, that, as previ-

ously pointed out, is believed to be more generic. However, it is worth noting the

similarity of the NSC in the two different cases of repeated and simultaneous decay,

both characterized by an external steep (dlnρ/dlnr ∼ −2) power law density profile

and a flat core within the SMBH influence radius (rinfl ∼ 6 pc in our model). This

homogeneity reinforces the idea that our results are robust and not very sensitive

to the particular choice made for the initial conditions. We conclude that the basic

properties of the Galactic NSC, including its mass and density profile, are the nat-

ural product of a model in which this is formed via inspiral of massive clusters into

the Galactic center and that such properties can be reproduced under a variety of

initial conditions.

5.5.2 Results: morphology of the NSC

Observationally constraining the morphology of galactic nuclei is a fundamental

step toward understanding their origin.

Unfortunately, as a consequence of the strong interstellar extinction along the

Sun-Galactic center line of sight, our knowledge of the Galactic NSC morphology

and size is very limited. Some indications are derived using kinematic modeling

of the dominant population of old (few Gyr) stars that can be well described by

a uniform, spherical model cluster exhibiting slow solid body rotation (amplitude

∼ 1.4(km s−1)/arcsec; Trippe et al. 2008; Schödel et al. 2009).

Aspherical NSCs are commonly observed in external galaxies. For instance,

in a sample of 9 edge-on nucleated late-type galaxies, Seth et al. (2006) reported

that three of these galaxies (IC 5052, NGC 4206, and NGC 4244) have NSCs with

significantly flattened isophotes and evidence for multiple structural components.

In addition, one of these galaxies (NGC 4206) showed possible indication of AGN

activity, suggesting the presence of a black hole within the core of the central cluster.

The NSC of the face-one galaxy M33, for which a SMBH is instead not detected, is

also known to be elongated along an axis parallel to the major axis of the galaxy

(Lauer et al., 1998; Matthews et al., 1999). Accordingly, nuclei in the case of

formation via clusters inspiral, are expected to be not spherical since mergers tend

to destroy spherical symmetry (e.g. Moore et al., 2004).

We quantified the model shape in our simulation by constructing isodensity con-

tours and also by the moment-of-inertia tensor (e.g., Katz, 1991; Poon and Merritt,

2004; Antonini et al., 2009), as described in what follows: the symmetry axes are
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Figure 5.14. Axial ratios of the N -body system as a function of galactocentric radius

computed after 1 (top left panel), 6 (top right panel) and 12 (bottom panel) infalls. Solid

curves correspond to the entire model (i.e., galaxy plus the NSC), while dashed curves gives

the axis ratios of NSC only. After the first infall the NSC is strongly triaxial in the inner

regions, but appears nearly oblate at the end of the simulation.

calculated as

τ1 =
√
I11/Imax , τ2 =

√
I22/Imax , τ3 =

√
I33/Imax , (5.26)

where Iii are the principal moments of the inertia tensor and Imax = max{I11, I22, I33};
particles are then enclosed within the ellipsoid x2/τ1

2 +y2/τ2
2 +z2/τ3

2 = r2. These

previous two steps were iterated until the values of the axial ratios had a percentage

change of less than 10−3. Finally, we define a > b > c letting c/a = min{τ1, τ2, τ3}
and b/a the intermediate value. We also define the triaxiality via the parameter

T ≡
(
a2 − b2

)
/
(
a2 − c2

)
. Oblate and prolate galaxies have T = 0 and 1, respec-

tively. The value T = 0.5 corresponds to the maximally “triaxiality” case.

The results are summarized in Figure 5.14 which displays the axial ratios of the

NSC as a function of radius and at different times. The model morphology evolves

from an initially strong triaxiality (after the first infall) into a more oblate quasi-

axisymmetric shape. In particular, notice that the morphological structure of the
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Figure 5.15. Contours of the projected density of the NSC after 1 (upper-left panel), 4

(upper-right panel), 8 (lower-left panel) and 12 (lower-right panel) infalls. As more stellar

clusters accumulate to the center, the NSC becomes rounder. However, Its shape, at the

end of the simulation (lower-right panel), is still very aspherical, especially in the innermost

regions.

final product (right panel) is very similar to that after the 6th infall event (middle

panel). This shows that the NSC is transformed into a nearly oblate system (T . 0.2

at r < 20 pc) after few infalls (∼ 4), but its shape remains essentially unchanged

from that point on. In the outer regions (& 20 pc), the system remained instead

nearly spherical for the entire course of the simulation.

The shape evolution of the model is more qualitatively illustrated in Figure 5.15

where the contours of the projected density of the NSC are displayed at different

times. The morphological transition from a triaxial configuration into a rounder

(nearly-oblate) shape can be clearly seen in the figure.

Based on this analysis, a NSC that forms via repeated cluster inspiral will most

likely exhibit a nearly oblate shape with T ∼ 0.3. We note, however, that this

result must somewhat depend on the orbital parameters of the progenitor globular
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Figure 5.16. Radial (σr) and tangential (σt) velocity dispersion profiles as a function

of distance from the central SMBH (upper-left panel). Map of the principal axes of the

2D velocity ellipses of stars in the NSC on the x-y plane(upper-right panel). Anisotropy

parameter β of the merging product plotted as a function of radius (lower-left panel). The

anisotropy parameter evaluated at 10 and 20 pc versus time (lower-right panel). All profiles

refer to the end of the 12th globular cluster inspiral.

clusters, as a more prolate shape is expected to occur for almost radial mergers

(Preto et al., 2011). In addition, two-body relaxation by particle-particle interaction

will produce a secular drift of our model towards spherical symmetry (Section 5.6,

Theis and Spurzem 1999).

5.5.3 Results: kinematics

The formation mechanism of a NSC strongly influences its kinematical properties.

Studying the dynamics of the Galactic center evolved late-type CO absorption

line star cluster, Trippe et al. (2008) showed that the 3D stellar velocity distribution

is approximately Maxwellian, suggesting relaxation of the old stellar component of

the NSC. Fitting the observed velocity dispersion and the rotation curve of the NSC,
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these authors found that the NSC is well modeled by a spherical density profile.

Schödel et al. (2009) investigated the proper motion of more than 6000 old-type

stars within 1 pc of SgrA*. Moreover, they analysed the radial and tangential mean

velocity of their star sample in circular shells around SgrA*. Schödel et al. (2009)

found evidence for rotation of the NSC parallel to the Galactic plane. This could

suggest that the formation mechanism of the NSC may include the accretion of gas

and/or star clusters from the Galactic disk (see Seth et al., 2008c). In particular,

it is relevant for our results to mention their Figure 6 where radial and tangential

velocity dispersion in circular radial bins are plotted versus the distance from the

central SMBH. The result is that the NSC is nearly isotropic with only a small bias

toward tangential motion within the radial range 1 arcsec − 10 arcsec. However,

global rotation could mimic isotropy for an anisotropic NSC. Future observations

are needed to solve this issue.

In Figure 5.16 we study the velocity dispersion of the stars in the NSC at the

end of the 12th merger (for the same analysis repeated after about a relaxation time

see Section 5.6). The upper-left panel of the figure shows the radial (solid line with

empty circles) and tangential (dotted line with filled triangles) velocity dispersion

as a function of galactocentric radius. We find that:

• for r < 0.3 pc the system is quite isotropic;

• for 0.3 < r < 20 pc the tangential velocity profile is systematically above the

radial velocity dispersion curve;

• for r & 20 pc the system is isotropic. A small degree of radial anisotropy

characterizes the model outside ∼ 60 pc.

In the upper right panel of Figure 5.16 we show a local measure of the velocity

dispersion along radial and tangential directions. We partitioned the x − y plane

in boxes and evaluated the aforementioned dispersions in each of them. The length

of the plotted axes is proportional to the corresponding value of dispersion. As

apparent, the system shows a tangential anisotropy whose value decreases with

radius.

The lower panels of Figure 5.16 show the anisotropy parameter

β = 1− σ
2
t (r)

2σ2
r (r)
, (5.27)

as a function of the radial distance from the SMBH (lower left panel) and as a

function of time at two different distances, 10 pc and 20 pc, from the center (lower

right panel). In the radial range between 0.3− 40 pc, β is negative and the system

is tangentially anisotropic. The anisotropy grows with the number of infalls and, as

just said, is bigger in the inner region (see bottom right panel of Figure 5.16). This

is consistent with the results obtained studying the shape an the axial ratios of the

system (see Section 5.5.2).
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Figure 5.17. Post-merger evolution of the N -body model. Left panel shows the density

profile at four times: t = (0.12, 0.24, 0.36, 0.48, 0.6) in units of the relaxation time at the

influence radius; line thickness increases with time. The dashed (blue) curve shows a fit

of the density to the broken power-law model of Equation (5.19) at t ≈ 0.36 tr,infl, i.e.,

∼ 10 Gyr when scaled to the Milky Way. Right panel plots the break (core) radius as a

function of time. The solid line is the best-fit exponential, Equation (5.29).

5.6 Collisional evolution of the Nuclear Star Cluster

The simulations of globular cluster inspiral described above took place in a short

enough span of time that two-body relaxation effects could be ignored. The local

relaxation time (see Section 3.2) can be defined as (Spitzer, 1987)

tr =
0.33σ3

G2ρm⋆ ln Λ
(5.28)

where m⋆ is the stellar mass, ρ is the mass density and σ is the one-dimensional ve-

locity dispersion. Near the influence radius of a SMBH, the Coulomb logarithm can

be approximated as ln Λ = ln(rinflσ
2/2Gm∗). The relaxation time at the influence

radius of Sgr A∗, rinfl = 2− 3 pc, is tr,infl ∼ 20− 30 Gyr, assuming a stellar mass of

1M⊙ (Merritt, 2010). This is roughly 2× 105 times the period of a circular orbit at

rinfl. In our N -body simulations, the relaxation time is shorter (compared with the

crossing time) by a factor of approximately 200, the mass of a single cluster particle

in solar masses; in other words, it is roughly 103 times the crossing time at rinfl.

In the absence of large-scale changes to the gravitational potential, an N -body

model like ours continues to evolve due to gravitational encounters. The evolution

that occurs should mimic the evolution that would take place in the real system, of

much larger N , if the unit of time is taken to be the relaxation time (e.g. Aarseth

and Heggie, 1998).

In the Milky Way, the relaxation time is short enough that significant evolution

of the stellar distribution near the SMBH would take place over the age of the galaxy.
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Figure 5.18. Evolution of the model axis ratios (left panel) and triaxiality parameter

(right panel), as functions of radius, in the post-merger phase. Times are the same as in

Figure 5.17; line thickness increases with time.

The distribution of late-type stars in the Milky Way NSC exhibits a nearly flat core

of radius ∼ 0.5 pc (Buchholz et al., 2009). In a time of 10 Gyr, such a core would

shrink, as the stellar density evolved toward the Bahcall-Wolf (1976) ρ ∼ r−7/4

form inside ∼ 0.2rinfl. Since the density profile beyond the core is observed to have

roughly this slope (Oh et al., 2009), such evolution would tend to preserve the outer

slope while gradually reducing the size of the core. A core of initial radius 1 − 2

pc is expected to reach a size of ∼ 0.5 pc, the size of the observed core, after ∼ 10

Gyr (Merritt, 2010). These arguments motivated us to continue the integration of

our N -body models after the final inspiral event. Figure 5.17 shows the density

profile of the NSC at different times during its post-merger evolution. At the end

of this integration, i.e. after ∼ 0.6 tr,infl, the distribution shows an inner core of size

∼ 0.2 pc, substantially reduced from its initial value of ∼ 1.5 pc. The right panel

of Figure 5.17 plots the evolution of the break radius, rb, of the best fitting broken

power law profile as a function of time. The value of the break radius can be used

as an approximate estimate of the model core radius. The time dependence of the

core radius is well described by an exponential:

rb(t) = 1.57e
−t

0.25tr,infl pc. (5.29)

As expected, the slope of the density profile outside the core remains nearly un-

changed during this evolution, ρ ≃ r−1.8.

A core radius of ∼ 0.5 pc is reached after a time of ∼ 0.25tr,infl. Scaled to the

Milky Way, this time would be 5− 8 Gyr.

Of course, in the real galaxy, it is likely that cluster inspiral would occur more

or less continuously over the lifetime of the galaxy. Our separation of the evolution

into an inspiral phase, followed by a relaxation phase, is artificial in this sense.



134 5. Dissipationless Formation and Evolution of the MW NSC

Figure 5.19. Evolution of the anisotropy parameter β during the post-merger phase.

Times shown are the same as in Figure 5.17.

Nevertheless it is reasonable to draw the conclusion that the size of the core resulting

from the combined effects of cluster inspiral and relaxation would be somewhat

smaller than the ∼ 1.5 pc that we found above, and therefore, closer to the observed

core size of ∼ 0.5 pc.

Figure 5.18 shows the morphological evolution of the NSC during the relaxation

phase: the radial dependence of the axis ratios (left panel) and the triaxiality pa-

rameter (right panel). There is essentially no evolution in the intermediate axis

ratio. However, in the innermost regions of the model, the shortest axis length sig-

nificantly increases with time. Two-body relaxation results in an evolution toward

quasi-spherical symmetry, but at the end of the simulation the model has not yet

reached this final state, still exhibiting some non-negligible triaxiality. The final

model is nearly oblate with 0.3 . T . 0.1.

Figure 5.19 illustrates the evolution of the velocity anisotropy profile, β(r), dur-

ing the post-merger phase. Relaxation tends to drive the velocity distribution to-

ward isotropy, causing β to increase toward zero. After 0.4tr,infl, i.e., ∼ 10 Gyr, there

remains only a small bias toward tangential motions, β ∼ −0.1, r ∼< 10 pc. The final

anisotropy profile is consistent with measurements of the Galactic center (Schödel

et al., 2009; Merritt, 2010). In the radial range 1 arcsec − 10 arcsec, the late-type

stars are observed to have a mean projected anisotropy of 1−〈σ2
T /σ

2
R〉 = −0.1240.098

−1.05

with σR and σT the radial and tangential velocity dispersions in the plane of the

sky.
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Figure 5.20. The time evolution of the distance to the galactic center of a massive (solid

lines for 106M⊙, dashed lines for 4 × 106 M⊙) test object in the case of radial orbits and

initially circular orbits, for γ = 1/2 (left panel) and γ = 1(right panel).

5.7 Discussion

5.7.1 Massive Globular Cluster Orbital Decay in the Milky Way

The study of dynamical friction decay of massive globular clusters in galaxies has

been extensively investigated by many authors in different schemes and approxi-

mations (as one body problem with Chandrasekhar’s like frictional term or, more

recently, with N-body simulations) and in different galactic environments (spheri-

cal, axisymmetric and triaxial galaxies). The general conclusion is that dynamical

friction is actually a relevant orbital decay mechanism, not only for most massive

clusters but also for intermediate mass GCs, provided their orbit are radially biased.

This decay effect is enhanced in triaxial galaxies, where box orbits are common and

allow GCs on such orbits to approach closely the galactic center where dynamical

friction is maximized in its effect (see Section 2.1). Another indication of the impor-

tance of dynamical friction is that it may influence (Capuzzo-Dolcetta and Tesseri

1997, 1999; Capuzzo-Dolcetta and Mastrobuono-Battisti 2009 and Chapter 2) the

large scale distribution of the GC system in elliptical galaxies which, as shown by

many authors (e.g. Lauer and Kormendy 1986; Capuzzo-Dolcetta and Tesseri 1997,

1999; Capuzzo-Dolcetta and Mastrobuono-Battisti 2009 and Chapter 2), is flatter

than that of galaxy stars (Lauer and Kormendy, 1986; Harris, 1986).

In order to give a quantitative indication of the time required for a massive body

to fall to the Milky Way center we numerically integrated the equations of motion of

a test particle in a fixed potential including the contribution of dynamical friction:

r̈ = −∇φ+ adf , (5.30)

where the frictional deceleration is usually expressed by mean of the so called
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local approximation form of the classic (Chandrasekhar, 1943) impact integral:

adf ,loc ≈ −4πG2Mρ(r)F (< v, r) lnΛ
v

v3
. (5.31)

Here ρ(r) is the mass density of background stars, F (< v, r) is the fraction of stars

that, locally, are slower than the infalling cluster and lnΛ is the usual Coulomb’s

logarithm.

Clearly, the local approximation fails in central, cuspy regions of galaxies, be-

cause the role of collision at intermediate and large impact parameters is weighted

with the local (about central) density which is unbound, implying a substantial

overestimate of the actual dynamical friction. Actually, the real dynamical friction

during the passage of a massive objects through the galactic center is given, in

spherical symmetry, by the integral

adf = − 8πm

M +m

∫ bmax

bmin

∫

vm

f(b,vm)× vM − vm

1 + b2|vm−vM |4

G2(M+m)2

|vM − vm| bd3vmdb, (5.32)

where f(b,vm) is the distribution function of background stars of mass m and

b is the impact parameter. The integral in Equation (5.32) is reasonably easily

performed numerically, although with the care due to its double singularity in phase

space. Arca-Sedda and Capuzzo-Dolcetta (2011) show that a good expression for

the dynamical friction deceleration, valid in cases of cuspy galaxies on a large scale

around singularity is obtainable as an averaged interpolation between the central

value of Equation 5.32 impact integral and the local approximation:

adf = p(r)adf,cen + [1− p(r)]adf,loc, (5.33)

where the interpolation function 0 ≤ p(r) ≤ 1 is such that p(0) = 1. It has been

shown that a good interpolation is p(r) = e−r/rC where rC is the distance over that

local dynamical friction tends to diverge (rC ∼ 0.1).

For the background stellar distribution we adopted a density model given by the

sum of three components, nuclear bulge (NB), bulge (B) and halo (H):

ρ(r) = ρNB(r) + ρB(r) + ρH(r) =
(3− γ)MNBbNB

4πrγ(r + bNB)4−γ

+
3b2BMB

4π
(
r2 + b2B

)5/2 +
b3HρH
r(r + bH)2

,
(5.34)

where MNB = 2.40 × 109 M⊙, bNB = 0.5 kpc, MB = 1.32 × 1010 M⊙, bB =

0.39 kpc are the mass and length scales of the Dehnen’s γ = 1/2 model (Dehnen,

1993) for the nuclear bulge and of the Plummer’s model for the bulge (Plummer,

1911), while ρH and bH are the central density and length scales of the halo, modeled

as a Navarro, Frenk and White profile (Navarro et al., 1996). These values are giving

a good fit to the observed properties of the Milky Way at intermediate-large scales
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(Allen and Santillan, 1991; Dehnen, 1993). Figure 5.20 plots the orbital evolution

of the distance to the Galactic center of GCs with two different values of the mass

(assumed constant along the evolution) and starting on initially circular orbits of

radius 1 kpc as well as on radial orbits of same energy. These plots show that all

GCs more massive than 106 M⊙ decay in the innermost galactic region in less than 3

Gyr, the dynamical friction decay time ranging between the shortest (most massive

GC on radial orbit in the γ = 1 model) time ≃ 3 × 107 yr and the longest (less

massive GC on circular orbit in the γ = 1/2 model) time ≃ 2.1 × 109 yr, in any

case much shorter than the Hubble time. Clearly, all other orbits of same energy

but eccentricity different from 0 (circular orbits) or ∞ (radial orbits) have sinking

times within the range defined by radial and circular orbits.

We stress that the calculations presented in Figure 5.20 give likely a conservative

upper limit to the decay times for various reasons. Some of these are: i) the presence

of gas in the central regions could dramatically decrease the sinking time of a stellar

cluster; ii) the background stellar distribution is assumed to be spherical, while in

a, more realistic, triaxial distribution the decay time could be significantly reduced

(Pesce et al., 1992).

This basic calculation suggests therefore that a significant fraction of the most

massive globular clusters in the Galactic bulge population would have had enough

time to spiral in by now.

5.7.2 Star Formation History of the Milky Way Nuclear Cluster

The NSC at the center of the Milky Way appears to have undergone continuous star

formation over the last 10 Gyr (e.g., Serabyn and Morris, 1996). The evidence that

a large fraction of the Galactic center mass was formed in situ at an approximately

constant rate over the last 10 Gyr has been extensively used in the past to argue

against the merger model for the Milky Way NSC.

In this section, we compare the observed luminosity function (LF) of the stellar

populations at the Galactic center with synthetic LFs obtained for different star

formation scenarios. Our analysis suggests the possibility that about 1/2 of the

Milky Way nuclear population consists of ∼ 10 Gyr old stars brought in by infalling

globular clusters, while the remaining mass is due to continuous star formation.

Dereddened LFs of the observed populations were generated by Hubble Space

Telescope NICMOS data taken from Figer et al. (2004). The fields are all within

the central 30 pc of the Galactic center; their exact locations are given in Table 1 and

shown in Figure 1 of that paper. Data are complete at the 50% level at mF205W =

19.3, averaged over all fields. The details of the technique used to generate both

model and observed LFs are also described in Figer et al. (2004) and are summarized

in what follows.

The LFs of the Galactic center populations are constructed under the assumption

that each star has the intrinsic colors of a red giant and by subtracting reddening

values for each star corresponding to its color in H −K or mF160W −mF205W.
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Figure 5.21. Left panels display different star formation scenarios in which, from top

to bottom: the entire mass is build up by ancient (∼ 10 Gyr old) stars, that we assume

to be brought into the Galactic center by infalling globular clusters; half of the mass is

contributed by (∼ 10 Gyr) old stars and half due to continuous star formation; at the mass

contributed by continuous star formation and globular clusters we add stars formed during

a starburst episode occurred at ∼ 1 Gyr; all the mass is contributed by continuous star

formation. Right panels compare the observed LF of the Galactic center (light lines) with

the LFs (heavy lines) resulting from the different star formation scenarios assuming Solar

metallicity and canonical mass loss-rates in the Geneva models. Note that the data are

much more than 50% incomplete for the faintest few bins. The models have not been scaled

for mass, but rather have been rescaled along the vertical axis to mach the number counts

in the K = 11.0 bin. The star formation histories corresponding to the three bottom set

of panels are essentially indistinguishable from each other and they all reproduce quite well

the observed LF.

Geneva isochrones are used to model the LFs corresponding to different star for-

mation histories. The Geneva stellar evolutionary models are described in Schaller

et al. (1992), Schaerer et al. (1993a,b), Charbonnel et al. (1993) and Meynet et al.

(1994). We adopted a mass spectrum of stars with a Salpeter (Salpeter, 1955) power

law index (i.e., dN/dm = m−1.35) and upper and lower mass cutoff of 120 M⊙ and

0.1 M⊙ respectively. The Geneva models are used to convert theses masses to the

absolute magnitudes in the V band that are subsequently transformed in the K

band through a lookup table that relates color index to magnitude. We then sum

over the histogram to produce the LF of each star formation event and sum the

individual LFs to derive the LF for a given star formation scenario.

Figure 5.21 displays the results of this study for various star formation histories,
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with the model counts modified by the observed completeness fractions from Figer

et al. (1999). From the top to the bottom panels, the plots correspond to star

formation models in which: i) the entire mass is build up by ancient (∼ 10 Gyr

old) stars, possibly brought into the Galactic center by infalling globular clusters;

ii) the mass model is composed by ancient globular clusters stars plus stars formed

via continuous star formation; iii) some (∼ 1/3) of the mass is formed during a

starburst at ∼ 1 Gyr (e.g., Sjouwerman et al., 1999), while the remainder is due to

continuous star formation and to an ancient burst at 10 Gyr; iv) the entire mass is

formed through continuous star formation over the last 10 Gyr.

The counts at faint magnitudes (K0 > 15) are controlled by ancient star for-

mation, while the counts at the bright end (K0 < 8) are controlled by the extent

of recent star formation activity. The brightness of the red clump (at K0 ∼ 12) is

related instead to the extent of intermediate age star formation activity.

The figure shows that the ancient burst model, corresponding to a NSC com-

posed of only ancient stars, fails at reproducing the observed LF. This model over-

estimates the counts at faint magnitudes and it does not reproduce the number of

counts seen in the bright end. Our analysis rules out the possibility that the nu-

clear population consists entirely of ancient stars. On the other hand, star formation

models in which ancient bursts are accompanied by continuous star formation at

other times, produce a LF essentially indistinguishable from that obtained when

the mass is entirely due to continuous star formation. All these latter models fit

quite well number counts and shape of the observed LF. We conclude that the ob-

served Galactic center LF is consistent with a star formation history in which a

large fraction of the mass consists of ancient (∼ 10 Gyr) stars.

5.7.3 Mass-radius relation

In Figure 5.22 the mean half-mass radius is plotted against total mass for nuclei

(filled circles) globular clusters (open circles) and ultra compact dwarfs (UCDs, star

symbols). We overplot the track followed by the NSC in our simulation during the

infall events (purple-continue curve) and during relaxation (continue-blue line). The

structural properties of the NSC formed in our simulations (blue-filled circle) are in

good agreement with those of real NSCs.

From the figure we can see that the faintest nuclei have roughly the same mass

as a typical globular cluster. The size distributions for the nuclei and globular

clusters also overlap, although the clusters in the Galaxy have half-mass radii of 3 pc,

irrespective of mass, while the nuclei follow a relation of the form rh ∝
√
M . Fainter

than a few million solar masses, the nuclei and globular clusters have comparable

sizes (Haşegan et al., 2005).

We now consider the merger model for nucleus formation in the absence of a

SMBH. In this case one can derive a simple recursive relation between the mass

and radius of the NSC during its formation. The radius of the nucleus increases

with increasing total mass, or light, as globular clusters merge. After the merger,



140 5. Dissipationless Formation and Evolution of the MW NSC

Figure 5.22. The measured mean half-mass radius (or effective radius) plotted against

total mass for nuclei (filled circles), globular clusters (empty circles) and UCDs (stars sym-

bols). Data points are from Forbes et al. (2008) and Côté et al. (2006). Blue dot-dashed

curves show the predicted scaling in the merger model without SMBH for two different

choices for the mass of merged clusters (see text for details). The red-open circle repre-

sents the initial globular cluster model in the N -body simulation. Purple and continue-blue

curves are the evolutionary track of the NSC during its formation and during relaxation

respectively. The filled blue circle represents the final product of our simulation.

its final energy, Ef , equals the energy of the nucleus before the merger, Ei, plus the

energy brought in by the globular cluster. This energy has two components: the

internal energy or binding energy Eb, and the orbital energy just before the merger,

Eo. From conservation of energy:

Ef = Ei + Eo + Eb . (5.35)

Just before the merger, the orbital energy is Eo = αGmMi/2Rii, where Mi and Ri
are the mass and radius of the nucleus, respectively, m is the mass of the globular

cluster, and α is a constant of order unity (Hausman and Ostriker, 1978) that

depends on the radius of the capture orbit - the radius at which the dominant

influence on the trajectory of a globular cluster first comes from the nucleus. After

the merger, the nucleus reaches a state of dynamical equilibrium quickly; the virial

theorem implies Ef = −GM2
f . The equations above permit expressing the mass,

energy, and radius of the nucleus recursively as

Mj+1 = (j + 1)M1, (5.36)

jEj+1 = (j + α)Ej + jE1, (5.37)

(j + 1)2R−1
j+1 = j (j + α)R−1

j +R−1
1 , j = 1, 2, 3, ... (5.38)

where the subscript 1 denotes the initial nucleus, and, by assumption, M1 = m. At

the time when a nucleus consists of few merged globular clusters, its mass and that of



5.8 Summary 141

the next infalling globular cluster are comparable. In this case, Equations (5.36,5.38)

imply R ∝M0.5. However, after many mergers, M ≫ m, and the relation steepens

to R ∝ M . For α = 1.2 and 5(25)100 mergers, Equations (5.36,5.38) imply R ≈
2(5)10 and R ∝ Mp, p = 0.5(0.6)0.7. The typical half-mass radius of a globular

cluster is about 3 pc (Jordán et al., 2005) so for a nucleus assembled from 25 mergers,

R ∼ 15 pc. This is in reasonable agreement with the measured sizes for the brighter

nuclei. For α = 1.2, the expected scaling between rh and mass is shown by the

blue dot-dashed curves in Figure 5.22. We show the predicted behavior for two

assumptions for the mass, m, of the clusters which merge to form the nucleus: 105

and 106 M⊙. At least for m = 106 M⊙, the agreement with the rh-mass relation

for real nuclei is remarkably good.

5.8 Summary

We have used initially large-scale N -body simulations to test the merger model in a

generic galactic environment and then, always by means of such kind of simulations,

we focussed our attention on the formation of the Milky Way nuclear star cluster

(NSC). Our initial conditions consisted of a massive black hole (SMBH) at the

center of a nearly homogeneous N -body system representing the nuclear stellar

disk. Globular clusters were then added to this system, starting from circular orbits

of radius 20 pc. The clusters were tidally limited by the external field to have a

mass of ∼ 1.1 × 106 M⊙ at the start. Infall was driven by dynamical friction, due

to the stellar disk, and later also to the accumulated mass from the previously-

merged clusters. The clusters were fully disrupted by the SMBH at a radius of

approximately one parsec. After 12 inspiral events, the accumulated mass of the

NSC was about 1.5× 107M⊙, comparable with the actual mass.

The principle results of our study are summarized below.

1 The stellar system resulting from the consecutive mergers has a density that

falls off as ∼ r−2, and a core of radius ∼ 1 pc. These properties are similar to

those observed in the Milky Way NSC.

2 The morphology of the NSC evolved during the course of the infalls, from an

early, strongly triaxial shape toward a more oblate/axisymmetric shape near

the end of the merger process. Kinematically, the final system is characterized

by a mild tangential anisotropy within the inner 30 pc and a low degree of

rotation.

3 In order to investigate the effect of gravitational encounters on the evolution

of the NSC, we continued the N -body integrations after the final inspiral was

complete. The core that had been created by the SMBH was observed to

shrink by roughly a factor of two in 10 Gyr as the stellar density evolved

toward a Bahcall-Wolf cusp. This final core size is essentially identical to the

size of the core observed at the center of the Milky Way. The density profile
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outside the core remained nearly unchanged during this evolution. Gravita-

tional encounters also caused the NSC to evolve toward spherical symmetry

in configuration and velocity space.

4 The merger model implies that a large fraction of the stars in the NSC are

old. We confronted this prediction with the observed luminosity function

(LF) of the Milky Way NSC. Using stellar population models, we showed that

the observed LF is consistent with a star formation history in which a large

fraction (about 1/2) of the mass consists of old ( ∼ 10 Gyr) stars and the

remainder from continuous star formation.



Chapter 6

Tidal tails and clumpy

structures around Globular

Clusters

We continued our study of stellar dynamics dealing with the evolutionary mecha-

nisms now dealing with the evolution of GCs in the large scale galactic potential.

Globular clusters are the oldest systems found in the Galaxy and they witnessed

the Galactic formation epoch (see Chapter 1).

Due to both internal and external dynamical mechanisms GCs lose stars and dis-

solve with time. The internal two body relaxation mechanism makes stars grad-

ually leave the clusters in a time-scale of a few hundred relaxation times (Binney

and Tremaine, 1987). Relaxation through encounters pushes the velocity distri-

bution toward a Maxwellian form and hence places a fraction of the stars on the

high-velocity tail beyond the escape velocity (also see Chapter 3). These stars are

then removed from the system that evaporates, and at the same time the energet-

ics cause the core of the system to contract (Johnstone, 1993). The approach to

equipartition implies that more massive stars sink toward the center of the cluster,

while lighter stars move outward (see Section 1.3). Core collapse can be halted by

the presence of hard binaries, which, acting as energy sources, heat the central core

by three-body encounters (Hénon, 1961; Ostriker, 1985). Internal processes can be

enhanced by the perturbation coming from the external galactic field. In particular

the external influence may accelerate the dissolution of a GC (Spitzer and Thuan,

1972). While orbiting the host galaxy, a GC experiences a slowly varying external

potential, which has little effect on its structure, except when crossing the disc or

bulge of the galaxy. On the crossing event the GC potential is rapidly changed,

shrinking the tidal radius in a time-scale shorter than the cluster dynamical time,

rapidly turning bound stars into unbound ones. This creates a preferential way of

escape along the line of action of the tidal forces. Stars that leave through the inside

of the GC orbit will leap forward in the cluster path and stars on the outside will

lag behind in the orbit. Before the final dissolution of the globular cluster, the stars

143
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escaped form the tidal tails around the clusters. Since the velocity dispersion of the

stars in the cluster is much less than the orbital velocity of the cluster, the stars

that become loose follow approximately the same orbit. Before the final dissolution

of the globular cluster, the stars escaped form the tidal tails around the clusters.

In fact stars that leave through the inside of the GC orbit will leap forward in the

cluster path and stars on the outside will lag behind in the orbit. We may think

of each unbound star as a test particle for the gravitational potential of the MW.

Thus, by finding which orbit solution that best fits the observed tail distribution,

we may infer the best model for the MW potential (Koposov et al., 2010).

In this Chapter we report the results of an on-going study on tidal tails by mean of

high precision N-body simulations. We focused on tail substructure (clumps) origin

and evolution.

6.1 Searching for tidal tails in the sky and in simula-

tions: a brief review

The search for tidal tails around GCs started with the Grillmair et al. (1995) work

where, analysing the spatial distribution of stars in a dozen of Galactic GC, the

authors found that the observed density profiles deviate from the prediction of a

best-fit King model at the outermost radii and extend beyond the conventional

limiting radius set by this model. Although in this work and in other ones (see

for example Leon et al. 2000) the authors observationally found distinct star count

overdensities, the observational technique errors cause a certain degree of uncer-

tainties in the locations and shapes of putative tidal tails (Law et al., 2003; Sollima

et al., 2011b). However the tidal tails of three clusters have been detected with

high statistical significance: Palomar 5 (Yanny et al., 2003; Grillmair and Dionatos,

2006a), NGC 5466 (Belokurov et al., 2006b) and NGC 2298 (Balbinot et al., 2011).

In particular, the orientation of the detected tails in NGC 5466 is also in good

agreement with its orbit as derived from proper-motion data. On the contrary of

previous works, focused on nearby objects, Sollima et al. (2011b) concentrated their

attention on Palomar 14, one of the furthest GCs in the Milky Way. As described

in Section 4.9, in this work, the authors show the evidences for the presence of tidal

tails around Palomar 14, despite its low mass and density and its big distance from

the Galactic center.

One of the first numerical investigations of the role played by a galactic tidal field

on spherical stellar systems was that of Keenan and Innanen (1975), who studied

the effect of realistic, time-varying tidal fields on the stellar orbits in a star cluster.

They numerically integrated the equations of motion of three bodies in models of

spherically symmetric clusters, which, in turn, move in eccentric orbits in the field

of a model galaxy. One of the main conclusions of this work was that star clusters

rotating in a retrograde sense are more stable in a tidal field than clusters with

either direct rotation or no rotation.
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More recent works on weak tidal encounters based on a Fokker-Planck approach

(Oh and Lin, 1992; Lee and Goodman, 1995) and self-consistent N -body techniques

(Grillmair, 1998) confirmed that the interaction with an external tidal field, com-

bined with two-body relaxation in the core of the cluster and following replenish-

ment of stars near the tidal radius, causes a flow of stars away from the cluster. The

stripped stars remain in the vicinity of the cluster for several orbital periods, either

migrating ahead of the cluster or falling behind, giving rise to a slow growth of the

tidal tails. The effects of a realistic galactic tidal field (including both bulge, halo,

and disk) on GCs were investigated few years later by Combes et al. (1999). In this

work, the authors found that: (i) the stars escaped from the system go to populate

two giant tidal tails along the cluster orbit; (ii)these tails present substructures, or

clumps, attributed to strong shocks suffered by the cluster and are preferentially

formed by low-mass stars. Yim and Lee (2002) performed N -body simulations of

GCs orbiting in a two-component galaxy model (with bulge and halo but no disk),

using the direct-summation NBODY6 code (Aarseth, 1999) and focusing their at-

tention, in particular, to the correlation between tidal tail direction (described by

means of a “position angle”, defined as the angle between the direction of the tail

and the galactic center direction) and the cluster orbit. They found that, on circular

orbits, tidal tails maintain an almost constant position angle (60◦), while GCs on

noncircular orbits show a variation of the position angle, according to orbital path

and phase. The position angle increases when the cluster heads for perigalacticon.

On the other hand, it tends to decrease when the cluster heads for apogalacticon.

Finally, some authors also investigated the dynamical evolution of some globular

clusters in the tidal field of the Galaxy. In this context Dehnen et al. (2004) mod-

eled the disruption of the globular cluster Palomar 5 by galactic tides. Palomar

5 is remarkable not only for its extended and massive tidal tails, but also for its

very low mass and velocity dispersion (Capuzzo Dolcetta et al., 2005). In order

to understand these extreme properties, they performed many simulations aimed

at reproducing the Pal 5 evolution along its orbit across the Milky Way. They

explained the very large size of Palomar 5 as the result of an expansion following

the heating induced by the last strong disk shock about 150 Myr ago. The clumpy

substructures detected in the tidal tails of Palomar 5 are not reproduced in their

simulations, so they argued that these overdensities were probably caused by in-

teraction with Galactic substructures, such as giant molecular clouds, spiral arms,

and dark matter clumps, which were not considered in their modeling. These sim-

ulations also predict the destruction of Palomar 5 at its next disk crossing in about

110 Myr, suggesting that many more similar systems once populated the inner parts

of the Milky Way but have been transformed into debris streams by the Galactic

tidal field. In this context, it may be interesting to mention recent numerical work

devoted to the study of smaller size systems (open clusters) in the MW tidal field

(Chumak and Rastorguev, 2006), which confirms the results (already known in the

case of the external part of GC tidal tails) regarding the alignment of stars of the

tidal stream around a common orbit in the external field (Grillmair, 1998; Combes
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Bulge MB 1.41 × 1010M⊙
bB 387.3 pc

Disk MD 8.56 × 1010M⊙
aD 5317.8 pc

bD 250.00 pc

Halo MH 10.7 × 1010M⊙
aH 12000 pc

Table 6.1. Parameters for the Galactic model (Allen and Santillan, 1991)

et al., 1999; Capuzzo Dolcetta et al., 2005). A wider study, focused on the dy-

namics of globular clusters in external tidal fields and more in particular on the

morphology and orientation of the tidal tails was performed by Capuzzo Dolcetta

et al. (2005); Miocchi et al. (2006); Montuori et al. (2007). The study identified

unambiguously the substructure of the tails, i.e. the presence of two clumps in the

two tidal tails emanating from the cluster. The authors analysed the kinematics

of these clumps showed the latter corresponding to minima of the average velocity

of particles. Following these early studies, more developed analyses for the ex-

planation of the structure formation and morphology of tidal tails were proposed

by Küpper et al. (2008); Just et al. (2009); Küpper et al. (2010). The theory of

tidal tails is based on the two-body equations in an external, analytical, potential

and is complemented by several N-body simulations to evaluate the relevance of all

the factors present in a realistic model (galaxy and cluster) with respect to the two

body idealization. The authors found that, in this approximation, the particles that

evaporate from the cluster follow an epicyclic motion. The interesting conclusion

is that such simplest description seems to account for the main features of the tail

formation. Prompted by such theoretical results and our previous ones we started

a deeper analysis of the process by mean of extensive N -body simulations.

6.2 Models and methods

Here we present one of the simulations carried on to study the formation of clumpy

tidal tails around a cluster which initial conditions are based on the observational

data regarding Palomar 5. In order to simplify the analysis the cluster was put on

a circular orbit and embedded in a fixed external potential representing the MW

one.

6.2.1 Numerical methods

All the simulations were performed by means of NBSymple run on the 2 TESLA

C1060 contained in the workstation described in Chapter 4.

The (fixed) time step was set equal to 1.5×103 yr (i.e. 4×10−5tcr, where, as usual,

tcr stands for the internal crossing time of the GC). The system was integrated for
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Figure 6.1. Snapshots of the simulation related to the second orbital period of the cluster

around the center of the Galaxy.

about 4 Gyr. We set ε = 0.004 pc, after verifying that this value is significantly

smaller than the mean first neighbour distance between particles in the cluster.

We chose the second order leapfrog method to perform the time integration of

the particles trajectories; this choice is justified by computational time limitations

and was done after testing that the same cluster, evolved in isolation, with the

same parameters, is well simulated as the energy is conserved at a good level in

the same time interval. The relative error in every simulation is indeed less than

∆E/E0 = 10−7 at the end of the integration both in the isolated and not isolated

case.

6.2.2 The Galactic model

The Galaxy is represented by the Allen and Santillan (1991) potential. It consists

of a three-component system: a spherical central bulge and a flattened disk, both

of Miyamoto and Nagai (1975) form, plus a massive spherical halo (see Section

4.1). The gravitational potential is time-independent, axisymmetric, and given in

an analytical form that is continuous together with its spatial derivatives. Choosing

a reference frame where the (x; y)-plane coincides with the MW equatorial plane,

the three components of the potential have, in cylindrical coordinates, the form
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Figure 6.2. Isodensity contours of the GC after one orbit around the Galaxy. The tidal

tails with the characteristic S-shape and two clumps (one in each tail) are apparent.
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where square brackets indicate the difference of the function evaluated at the 100 kpc

and the generic r =
√
R2 + z2 extremes. The parameters in the formulas above are

listed in Table 6.1. At the center of the Galaxy a SMBH of mass 4.0 × 106 M⊙ is

located and considered as a fixed particle, giving rise to a Keplerian potential.

6.2.3 Globular cluster model

For the globular cluster we chose a model representative of the Milky Way GC

Palomar 5 (Küpper et al., 2010). The GC was initially put on a circular orbit with

radius RG = 8.5 kpc; its circular velocity is ∼ 220 km/s. As we said previously,
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Figure 6.3. The average density ρ of particles (dashed line) and the average velocity v

(solid line) vs curvilinear coordinate along the orbit s. The averages are computed in bin

of fixed length of 0.034 pc. The error bars are the corresponding root mean square of v in

each bin.

this cluster has been widely studied and observed through years and this eventually

allows to compare the simulations results with the observational data. Palomar 5

is ∼ 10 Gyr old and we planned to simulate its evolution during the last 4 Gyr, i.e.

for ∼ 15 orbits around the Galactic center. The choice of Palomar 5 is justified by

the fact that it is the only GC with prominent tidal tails in which substructures

have been clearly identified (Odenkirchen et al., 2003). The mass of the GC is set

equal to 20, 000 M⊙ and it is modeled using a Plummer sphere

ρ(r) =
3Mrs

4π (r2 + r2s)
5/2
, (6.4)

using the NEMO package mkplummer, see Teuben (1995). The chosen Plummer

profile has an half mass radius to the tidal radius ratio equal to rh/rt = 0.2 for a

circular orbit. The mass within a radius r in a Plummer model is given by

M(r) =Mcl
r3

(r2 + r2s)
3
2

, (6.5)

where Mcl is the total mass of the cluster, and rs is the Plummer radius, a scale

parameter which sets the size of the cluster core. The scale radius (that we need as

an input of the mkplummer routine) and the half mass radius are connect through

the relation

rs = (4
1
3 − 1)

1
2 rh. (6.6)

Following Dehnen et al. (2004) we have

rtid ≃
(
GM

v2c
R2
G

) 1
3

, (6.7)
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Figure 6.4. v is plotted with the relative difference ∆(s) = (v − vmin)/(vmax − vmin)

averaged over particles contained in ≈ 0.25 kpc bins in s. ∆ gives an indication of the

average position of the corresponding particles on their orbit (near apocenter ∆ = 0, near

pericenter ∆ = 1).

where RG is the galactocentric distance of the cluster and M is its mass. In our

case we have rt = 50.5 pc, thus rh = 10.1 pc and rs = 7.74 pc.

The system was then represented by a number of particles N = 30720. This

number is obviously lower than the number of stars in the real cluster, and this

choice is obviously due to computational limitations. All the particles has the same

mass, properly rescaled to give a total mass equal to the total mass of the cluster,

so we neglected the mass segregation effects.

6.3 Results

According with previous works, we observe the formation of the tidal tails emanating

from the GC. In Figure 6.2 we report the isodensity contours of the GC. Tails with

characteristic S-shape as well as clumps are well apparent. The figure refers to

the situation after an orbital period. We perform a statistical analysis of some

kinematical features of the clumps after having identified the escapers.

• Escapers identification

Escapers are identified as particles with positive energy and distance greater than

2rh from the GC center. We checked that such escapers never become bounded

again (in the simulation time).

• Orbital path of escapers

The particles escape from the cluster and perform orbits very similar to the circular

one made by the cluster barycenter (e ≈ 10−3). They indeed escape from the system
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with a speed close to the circular velocity of the GC and at a radius only slightly

different from its galactocentric radius, and thus they will move on orbits with very

small eccentricities.

• Basic statistical analysis of clumps

In Figure 6.3 we show the average density ρ of particles and the average velocity

v vs s (curvilinear coordinate along the orbit) at a given time t (i.e. a snapshot of

the GC at time t). For v we show also the corresponding root mean square. Both

the density ρ and the average velocity v vary with s, even if the variation for v is

tiny while the corresponding r.m.s is quite large.

• Correlations

The clumps are formed by escapers which have a velocity correlated with the

density in the trailing tail and anti-correlated with the density in the leading

tail.

• Orbital positions

In order to understand if clumps are formed by escapers at a particular

position of their orbits, we plot in Figure 6.4 the difference ∆ = (〈v〉 −
vmin)/(vmax − vmin). 〈v〉 is the average of v in a group of bins. vmax, vmin
are the maximum and minimum values of 〈v〉 versus time, corresponding to

pericenter and apocenter of an average orbit of the escapers. ∆ is simply the

fractional distance of an averaged v from his minimum value. If a group of

escapers is at time t on average near apocenters of their orbits, ∆ = 0; if

near pericenters of their orbits, ∆ = 1. Figure 6.4 shows that the clumps

are located where the escapers are on average at apsides of their orbits. The

clump in the leading tail is formed by escapers which are on average at the

apocenters of their orbits, while the clump in the trailing tail is composed by

those at the pericenters of their orbits.

From this results it is quite apparent that the clumps seems to be caused by the or-

bital properties of the escapers instead of their kinematical properties as previously

stated in the literature. This study deserves further analysis in order to provide a

definitive explanation to the on-going processes.





Conclusions

The study of star cluster dynamics has a long history and significant progress has

been made in understanding the physics driving their dynamical evolution. Many

fundamental problems, however, are still open and new observations continuously

present us with new challenges and questions. As clusters evolve, their structural

properties and stellar content are modified by evolutionary processes. Clusters in

different galaxies and at different galactocentric distances have different dynamical

histories.

After a brief discussion of the properties of Globular Clusters and Nuclear Star

Clusters we turn our attention to different topics and problems, facing open ques-

tions about the evolution of stellar systems on different spatial scales, using obser-

vational data and numerical methods.

Here we briefly resume the main results that we achieved. Globular Cluster Sys-

tems in galaxies are less concentrated to the center than the halo and bulge stars

of the host galaxy. This difference has not yet received a definitive explanation,

but a number of works (e.g., Capuzzo-Dolcetta 1993; Capuzzo-Dolcetta and Don-

narumma 2001; Capuzzo-Dolcetta and Tesseri 1997) suggested the hypothesis that

these systems were born at the same time with the same initial radial profiles, and,

afterward, the GCS evolved due to dynamical friction and tidal interaction with

the galactic field, while the collisionless stellar halo remained almost unchanged. In

this scenario the initial radial profile of the GCS would have been the same of the

present density profile of the halo stars, in the same host galaxy. Starting from this

hypothesis it has been possible to evaluate the number of GCs lost to the galactic

center as the integral of the difference between the two profiles. The results found

in the literature have been extended analysing eight new elliptical galaxies (NGC

1400, NGC 1407, NGC 4472, NGC 3268, NGC 3258, NGC 4374, NGC 4406, NGC

4636). We evaluated the mass lost by the GCSs of these galaxies. In this way we

found that such systems, during their evolution, may have lost a quantity of mass

between ∼ 21% and ∼ 71% of the initial value. The mass lost by the GCS arrives

at the galactic center influencing the local dynamics where, it is often found an

SMBH and/or a Nuclear Star Cluster. The connection between the orbital evolu-

tion of GCs and the formation of the galactic central SMBH is supported by the

positive correlation we found between the mass lost by the GCS and the mass of the

central SMBH. This positive trend is expected considering that the more massive
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the SMBH is the more it accretes mass during its evolution, increasing the rate at

which GCs decay to the center (Capuzzo-Dolcetta and Tesseri, 1999).

Stellar clusters like GCs can be considered as “dry” N -body systems, and so

their dynamics can be studied using N -body methods. A number of methods have

been devised in recent years for the numerical simulation of stellar systems. Here

we presented a new high-performance and reliable code, NBSymple. Ordinary nu-

merical methods for integrating Newtonian equations of motions are dissipative

and exhibit incorrect long term behaviour. This is a serious problem when fac-

ing N -body problems, particularly when studying their long term evolution. One

possibility is using symplectic integrators. Symplectic integrators are numerical in-

tegration schemes for Hamiltonian systems, which describe the exact time evolution

of a slightly perturbed Hamiltonian system respect to the original one. Thus they

possess the perturbed Hamiltonian as a conserved quantity and this guarantees the

absence of any secular change in the error of the total energy. If the integrator is

not symplectic, the error on the total energy grows secularly, in general. Thus we

introduced the possibility to choose between two different symplectic methods in

NBSymple: a leapfrog second order and a sixth order method. We set up 5 versions

of the code:

• NBSympleA: fully serial code running on a single processor;

• NBSympleB: single-parallel code which uses Open Multi-Processing (OpenMP)

directives, for both the O(N2) pairwise interactions and the O(N) calculations

(i.e. the time integration and evaluation of the Galactic component of the force

on the system stars) over all the processors available;

• NBSympleC: single-parallel code, where the O(N2) all-pairs interactions cal-

culations are demanded to a single GPU, using CUDA while all the remaining

tasks are done by a single CPU;

• NBSympleD: double-parallel code, which again uses CUDA to evaluate the

O(N2) portion of the code (as NBSympleC), while the O(N) computations is

parallelized sharing work between all the cores of the host, using OpenMP, as

NBSympleB;

• NBSympleE: double-parallel code that uses CUDA on one or more GPUs to

evaluate the total force over the system stars, i.e. both the all-pairs component

and that due to the Galaxy. Only the time integration is demanded to all the

CPUs.

We benchmarked the various versions of the code and we found that, using

GPU as accelerators, we can obtain a significative speed up (up to 3 orders of

magnitude in single precision) respect to the serial version. We also presented a

very new version of NBSymple developed using MPI instead of OpenMP; this code

was tested on a large CPU+GPU cluster and showed an almost perfect scaling. We
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tested NBSymple in various applications and we demonstrated its versatility, speed

and reliability.

Then we started using numerical methods to face practical astrophysical prob-

lems. As said above, Nuclear Star Clusters are observed at the center of many

galaxies. In particular, in the Milky Way’s center, the Nuclear Star Cluster coexists

with a central supermassive black hole. The origin of these clusters is still unknown

and can be connected to the evolution of GCs. A possible formation mechanism is

indeed the decay of globular clusters and their subsequent merging in the center of

the galaxy. Various authors investigated this scenario, known as “merger model”, see

for example Tremaine et al. (1975); Capuzzo-Dolcetta (1993); Capuzzo-Dolcetta and

Miocchi (2008a,b). In particular Capuzzo-Dolcetta and Miocchi (2008a,b) found,

through self-consistent simulations, that the merging of a number of GCs can give

rise to a star cluster similar to the observed NSCs. They reached this conclusion

analysing the density profile and the velocity dispersion of the simulated NSC and

comparing these data with the observations. In all these works the presence of a

central SMBH was neglected and the simulations were not finalized to a specific

study of the MW. Our work covers this lack through self-consistent simulations

whose initial conditions are set up basing on recent data for the MW (Launhardt

et al., 2002), including the presence of its central SMBH. The merging of GCs pro-

duces a system which rapidly settles on a quasi-steady state, slowly evolving due to

internal relaxation which, in its turn, is affected by the presence of the SMBH. The

central and almost flat core characterizing the density profile of the merger product

is maintained for a time long enough to justify the core actually observed in the

MW NSC. Our results are also supported by that the external slope of the density

profile of the NSC remains quite unaltered after the end of the merger events and

its value, ∼ −1.8, is in optimal agreement with the one inferred from the observa-

tions of the Galactic NSC. Moreover, we observe a drift toward velocity isotropy

although keeping a slight degree of tangential anisotropy; this peculiarity was found

in the observational data and already seen in previous numerical study by Capuzzo

Dolcetta et al. (2001). As a conclusion, the process of consecutive infalls and merg-

ing in the inner region of the MW of a number of the order of 10 massive globular

clusters could give an explanation of the observed features of the NSC observed in

our Galaxy around the Sgr A∗ massive black hole.

In the last part of this Thesis we faced more directly the dynamical evolution of

GCs in the Galactic field by mean of numerical simulations carried out using NB-

Symple. During their orbit around the Galactic center GCs lose stars, which form

the tidal tails, along a direction resulting from the composition of the direction to-

wards the galactic center and the cluster velocity around the galaxy, thus leading to

the peculiar S-shape found in the outermost region of the cluster (Capuzzo Dolcetta

et al., 2005). Once formed, tidal tails are elongated such to remain parallel to the

cluster orbit, with a trailing tail that lies slightly inside the orbit and a leading tail

slightly outside it. Capuzzo Dolcetta et al. (2005) found that tails are excellent

tracers of the cluster orbit near the pericenter, while, at the apocenter, they tend
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to deviate from the orbital path.

Tidal tails have a clumpy structure which cannot be associated with an episodic

mass loss or tidal shocks with galactic compact sub-structures, since stars are lost

from the cluster continuously. These clumps are not bound, self-gravitating, sys-

tems, and their formation mechanism is not yet completely known. We modeled a

GC using the observed properties of the Galactic GC Palomar 5 and we run some

simulations of this cluster on a circular orbit around the Galactic center. The anal-

ysis of our simulations showed a correlation among the average velocity and density

of escapers. In particular, the clump in the leading tail corresponds to a minimum

average velocity and the one in the trailing tail to a maximum average velocity of

the escapers along the orbit. Moreover, our preliminary results, suggest that the

clumps are located where the escapers are on average at apsides of their orbits. The

clump in the leading tail is formed by escapers which are on average at the apocen-

ters of their orbits, while the clump in the trailing tail is composed by those at the

pericenters. This study deserves further analysis to achieve a better knowledge of

the mechanisms involved; moreover the comparison of these simulations with obser-

vations could provide more information on the shape of the Galactic potential and

on the Galactic dynamics as a whole.
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Lo studio della dinamica dei sistemi stellari ha una lunga storia e molti sono stati i

progressi compiuti nella comprensione della fisica che ne guida l’evoluzione dinam-

ica. Moti problemi fondamentali sono però ancora aperti e le osservazioni continuano

a proporci nuove sfide e nuove domande. Quando un ammasso evolve le sue propri-

età strutturali e il suo contenuto stellare vengono modificati dai processi evolutivi.

Ammassi in galassie diverse e posti a varie distanze dal centro galattico hanno storie

dinamiche differenti. Una migliore conoscenza degli effetti dell’evoluzione dinamica

è un passo fondamentale nel nostro tentativo di fare luce sulla relazione tra le attuali

proprietà degli ammassi

Dopo una breve discussione delle proprietà degli AG e dei NSC abbiamo diretto

la nostra attenzione a diversi problemi e argomenti, affrontando questioni aperte

sull’evoluzione dei sistemi stellari su diverse scale spaziali ed utilizzando sia l’analisi

di dati osservativi, sia metodi numerici. Qui riassumiamo i principali risultati ot-

tenuti in questo lavoro.

I Sistemi di Ammassi Globulari (SAG) nelle galassie osservate risultano essere

meno concentrati al centro della galassia rispetto alle stelle di alone e e di bulge.

Questa differenza non ha ancora ottenuto una spiegazione definitiva, ma diversi

lavori (si vedano ad esempio Capuzzo-Dolcetta 1993; Capuzzo-Dolcetta and Don-

narumma 2001; Capuzzo-Dolcetta and Tesseri 1997) hanno suggerito l’ipotesi che

questi sistemi siano nati allo stesso tempo con lo stesso profilo radiale iniziale, e che,

successivamente il SAG sia evoluto a causa dell’attrito dinamico e dell’interazione

con il campo mareale, mentre la componente stellare non collisionale sia rimasta

invariata. In questo scenario il profilo radiale iniziale del SAG è dato dall’attuale

profilo di densità delle stelle di alone, nella stessa galassia. A partire da questa

ipotesi è possibile valutare il numero di AG persi verso il centro della galassia come

l’integrale della differenza tra i due profili. Il nostro lavoro è consistito nell’ampliare

i risultati trovati in letteratura analizzando 8 nuove galassie ellittiche (NGC 1400,

NGC 1407, NGC 4472, NGC 3268, NGC 3258, NGC 4374, NGC 4406, NGC 4636).

Abbiamo inoltre valutato la massa persa dai SAG di queste galassie. In questo

modo abbiamo trovato che tali sistemi, durante la loro evoluzione, potrebbero aver

perso una quantità di massa tra il ∼ 21% e il ∼ 71% del valore iniziale. La massa

persa dal SAG arriva al centro della galassia, dove è spesso presente un SMBH e/o

un NSC, influenzando la dinamica locale. La connessione tra l’evoluzione orbitale
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degli AG e la formazione del SMBH centrale è supportato dalla correlazione posi-

tiva trovata tra la massa persa dal SAG e la massa del SMBH. Questo andamento

è ciò che ci si aspetta considerando che più il SMBH è massiccio piú esso accresce

massa durante la sua evoluzione, aumentando il tasso con cui gli AG decadono

al centro (Capuzzo-Dolcetta and Tesseri, 1999). Ammassi stellari come gli AG

possono essere considerati come sistemi a N -corpi privi di gas, e quindi la loro di-

namica può essere studiata impiegando metodi a N -corpi. Recentemente, un certo

numero di metodi sono stati sviluppati per simulare numericamente l’evoluzione

dei sistemi stellari. In questa Tesi abbiamo presentato un nuovo codice ad alte

prestazioni e affidabilità, NBSymple. I metodi numerici ordinari per l’integrazione

delle equazioni del moto sono dissipativi e presentano un comportamento non cor-

retto a lungo termine. Questo è un problema grave quando si affronta il problema

degli N -corpi, in particolare quando si studia la loro evoluzione a lungo termine.

Una possibilità è quella di utilizzare integratori simplettici. Gli integratori simplet-

tici sono schemi di integrazione numerica per sistemi Hamiltoniani, che descrivono

l’evoluzione esatta di un sistema Hamiltoniano solo leggermente perturbato rispetto

all’originale e che, dunque, possiedono l’Hamiltoniana perturbata come una quantità

conservata. Questo garantisce l’assenza di qualsiasi cambiamento secolare nell’errore

del totale sull’energia. Se l’integratore non è simplettico, l’errore sull’energia totale,

generalmente, cresce in modo secolare. Abbiamo quindi introdotto in NBSymple

la possibilità di scegliere tra due diversi metodi simplettici: un metodo del secondo

ordine detto “leapfrog” e un metodo del sesto ordine. Abbiamo quindi realizzato 5

versioni del codice:

• NBSympleA: è la versione completamente seriale del codice che viene eseguito

su un singolo processore;

• NBSympleB: è un codice a singola parellelizzazione su CPU, che utilizza le di-

rettive Open Multi-Processing (OpenMP), sia per il calcolo delle interazioni a

coppie (che scalano come N2) e sia per i calcoli di ordine N (cioè l’integrazione

temporale e la valutazione della componente galattica della forza sulle stelle);

• NBSympleC: qui si sfrutta la parellizzazione solo su GPU, demandando le in-

terazioni a coppie ad una singola GPU, tramite CUDA mentre tutte le attività

rimanenti sono svolte da una singola CPU;

• NBSympleD: è un codice doppiamente parallelo, che utilizza ancora una volta

CUDA per valutare la porzione di codice di ordine O(N2) (come NBSympleC),

mentre i calcoli di ordine O(N) sono suddivisi tra le CPU a disposizione

tramite OpenMP, come NBSympleB;

• NBSympleE: questo codice utilizza codice CUDA su una o due GPU per val-

utare la forza totale che agisce sul sistema stellare, vale a dire sia le interazioni

a coppie sia la forza dovuta al potenziale galattico. Solo l’integrazione tem-

porale è svolta da tutte le CPU a disposizione.
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Abbiamo testato le varie versioni del codice trovando che l’utilizzo delle GPU

permette un guadagno significativo in velocità di calcolo (fino a 3 ordini di grandezza

in singola precisione) rispetto alla versione seriale. Abbiamo inoltre presentato una

nuova versione di NBSymple in cui OpenMP è stato sostituito da direttive MPI:

questo codice è stato testato su un cluster di CPU+GPU mostrando uno scala-

mento quasi perfetto. NBSymple è stato testato in varie applicazioni dimostrando

versatilità, velocità e affidabilità.

Successivamente abbiamo utilizzato i metodi numerici per affrontare questioni

aperte della dinamica stellare. Come affermato in precedenza, i NSC sono osservati

al centro di molte galassie. In particolare, nel centro della Via Lattea, il NSC coesiste

con un SMBH. L’origine di questi sistemi stellari è ancora sconosciuta ma potrebbe

essere collegata all’evoluzione degli AG. Un possibile meccanismo di formazione,

infatti, è proprio il decadimento degli ammassi globulari e la loro successiva fusione

nel centro della galassia. Vari autori hanno indagato questo scenario, noto come

“merger model” (si vedano per esempioTremaine et al. (1975); Capuzzo-Dolcetta

(1993); Capuzzo-Dolcetta and Miocchi (2008a,b). In particolare Capuzzo-Dolcetta

and Miocchi (2008a,b), attraverso simulazioni auto-consistenti, hanno trovato che la

fusione di GC può dar luogo ad un ammasso stellare simile ai NSC osservati. Questi

autori sono giunti a tale conclusione analizzando il profilo di densità e la dispersione

velocità del NSC simulato e confrontando questi risultati con le osservazioni. In tutti

questi lavori si è trascurata la presenza di un SMBH centrale e le simulazioni non

sono mai state finalizzate ad uno studio specifico della Via Lattea.

Il nostro lavoro ha coperto questa mancanza attraverso simulazioni auto-consistenti

le cui condizioni iniziali sono impostate basandosi su dati recenti riguardanti la VL

(Launhardt et al., 2002), includendo la presenza dei suoi SMBH centrale. La fu-

sione di AG produce un sistema che si attesta rapidamente su uno stato quasi

stazionario, e che evolve lentamente a causa del rilassamento interno che, a sua

volta, è influenzato dalla presenza del SMBH. Il nucleo centrale a densità circa

costante che caratterizza il prodotto della fusione viene mantenuto per un tempo

abbastanza lungo da giustificare il suo analogo effettivamente osservato nel NSC

della VL. I nostri risultati sono anche supportati dalla pendenza esterna del profilo

di densità del NSC che rimane quasi invariata dopo la fine degli eventi di fusione e

il cui valore, ∼ −1.8, è in ottimo accordo con quello dedotto dalle osservazioni del

NSC galattico. Inoltre il NSC simulato evolve verso l’isotropia delle velocità pur

mantenendo un leggero grado di anisotropia tangenziale; questa peculiarità è stata

trovata nei dati osservativi ed era stata già notata in precedenti studi numerici da

Capuzzo Dolcetta et al. (2001). In conclusione, il decadimento consecutivo e la fu-

sione, nella regione interna della Via Lattea, di un numero dell’ordine di 10 ammassi

globulari massicci potrebbe spiegare le caratteristiche osservate del NSC che, nella

nostra Galassia circonda il SMBH Sgr A∗.

Nell’ultima parte di questa Tesi abbiamo affrontato piú direttamente l’evoluzione
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dinamica degli AG nel campo galattico per mezzo di simulazioni numeriche effet-

tuate con NBSymple. Durante la loro orbita intorno al centro galattico l’AG perde

stelle, che vanno a formare le code mareali, lungo una direzione che deriva dalla

composizione della direzione del centro galattico e la velocità orbitale dell’ammasso,

determinando in tal modo la peculiare forma a S, osservata nella regione piú esterna

dell’ammasso (Capuzzo Dolcetta et al., 2005). Una volta formate, le code mareali

si distendono rimanendo parallele all’orbita dell’ammasso, con la coda che precede

l’ammasso che viene a trovarsi leggermente all’interno della sua orbita e la coda che

segue l’ammasso che si sviluppa leggermente al di fuori della stessa orbita. Capuzzo

Dolcetta et al. (2005) hanno dimostrato che le code tracciano in modo eccellente

l’orbita dell’ammasso vicino al pericentro, mentre, all’apocentro, tendono a deviare

dall’orbita stessa. Le code mareali hanno una struttura con sovradensità (clump)

che non può essere associata a una perdita di massa episodica o a shock mareali

dovuti alle sotto-strutture compatte della galassia, dal momento che le stelle sono

perse dal cluster in modo continuo. Queste sovradensità non sono sistemi legati

o auto-gravitanti, e il loro meccanismo di formazione non è ancora completamente

noto. Abbiamo dunque modellato un GC utilizzando le proprietà osservate dell’AG

Galattico Palomar 5 e effettuando alcune simulazioni di questo cluster su un orbita

circolare intorno al centro Galattico.

L’analisi delle nostre simulazioni ha mostrato una correlazione tra la velocità

media e la densità delle stelle che vengono perse dall’ammasso stesso. In parti-

colare, il clump nella coda che precede l’ammasso corrisponde alla velocità media

minima (e quello nella coda che segue alla velocità media massima) delle particelle

lungo l’orbita. Inoltre, i nostri risultati preliminari, suggeriscono che le sovradensità

si trovino dove le stelle che fuggono sono in media nei punti estremi delle loro orbite.

Il clump nella coda che precede l’ammasso è formato da particelle che sono in media

all’apocentro delle loro orbite, mentre il clump nella coda che segue l’ammasso è

composto da particelle che sono in media al loro pericentro. Questo studio sarà

oggetto ulteriori analisi che permetteranno di ottenere una migliore conoscenza dei

meccanismi coinvolti; in particolare il confronto tra queste simulazioni e i dati os-

servativi potrebbe fornire ulteriori informazioni sulla forma del potenziale Galattico

e sulla dinamica Galattica nel suo complesso.



Appendix A

The formal error on the

estimates of number of lost

Globular Clusters

Here we describe how we evaluated the errors, ǫl, given in Table 2.4. As explained

in Section 2.2, the number of GCs lost in the galaxies of the sample has been eval-

uated as the integral of the difference between the (estimated) initial and present

GCS radial distributions over the radial range [rmin, rmax] where the two profiles

differ. The absolute errors on Nl (∆Nl) are given by the sum of the error on Ni
(∆Ni) and the error on N (∆N), yielding the relative error ǫl = ∆Nl

Nl
of Table 2.4.

We may estimate ∆N and ∆Ni as follows.

i) estimate of ∆N

For all the galaxies, except for NGC 4472, the number N(rmin, rmax) is given

by

N(rmin, rmax) = 2πΣ0
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which is a function of the parameters Σ0, rc, γ, rmin and rmax whose indeter-

mination is
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where:
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∂N
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)2
]γ dr =

π(r2 + r2c )

(1− γ)
[
1 +

(
r
rc

)2
]γ

∣∣∣∣∣∣∣∣

rmax

rmin

, (A.3)

∂N

∂rc
=

∫ rmax

rmin

4πΣ0γr
3

r3c

[
1 +

(
r
rc

)2
](1+γ)

dr =

= − 2πΣ0(r2c + γr2)

rc(γ − 1)

[
1 +

(
r
rc

)2
]γ

∣∣∣∣∣∣∣∣

rmax

rmin

,

(A.4)

∂N

∂γ
= −2πΣ0

∫ rmax

rmin

r

[
1 +

(
r

rc

)2
]−γ

ln

[
1 +

(
r

rc

)2
]
dr =

=
πΣ0(r2 + r2c )

{
1 + (γ − 1) ln

[
1 +

(
r
rc

)2
]}

(γ − 1)2

[
1 +

(
r
rc

)2
]γ

∣∣∣∣∣∣∣∣

rmax

rmin

,

(A.5)

∂N

∂rmin
= −2πΣ0

rmin[
1 +

(
rmin
rc

)2
]γ , (A.6)

(we set rmin = 0.1 arcmin).

∂N

∂rmax
= 2πΣ0

rmax[
1 +

(
rmax
rc

)2
]γ . (A.7)

For NGC 4472 we have that:

N(rmin, rmax) = 2πΣ0

∫ rmax

rmin

(
rc
r

)γ r
[
1 + r

rc

]4−γ dr =

= 2πΣ0(rcr)
2
(
rc + r

r

)γ (3− γ)rc + r

(6− 5γ + γ2)(rc + r)3

∣∣∣∣
rmax

rmin

.

(A.8)

This is a function of the parameters Σ0, rc, rmin and rmax whose indetermination

is:

∆N =

∣∣∣∣
∂N

∂Σ0

∣∣∣∣∆Σ0 +

∣∣∣∣
∂N

∂rc

∣∣∣∣∆rc+
∣∣∣∣
∂N

∂γ

∣∣∣∣∆γ+

∣∣∣∣
∂N

∂rmin

∣∣∣∣∆rmin+

∣∣∣∣
∂N

∂rmax

∣∣∣∣∆rmax (A.9)

where:
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∂N

∂Σ0
= 2π

∫ rmax

rmin

(
rc
r

)γ r
[
1 + r

rc

]4−γ dr =

= 2π(rcr)
2
(
rc + r

r

)γ (3− γ)rc + r

(6− 5γ + γ2)(rc + r)3

∣∣∣∣
rmax

rmin

.

(A.10)

∂N

∂rc
= 2πΣ0

∫ rmax

rmin

[
(γ − 4)r2

r2c

(
rc
r

)γ (
1 +
r

rc

)γ−5

+

+γ

(
rc
r

)γ−1 (
1 +
r

rc

)γ−4
]
dr =

=
2πΣ0rcr

2

(6− 5γ + γ2)(rc + r)4

(
rc + r

r

)γ
×

×
[
2r2(γ − 1)− 2rcr(γ

2 − 5γ + 4)− γr2c (γ − 3)
]∣∣∣
rmax

rmin
,

(A.11)

∂N

∂γ
= 2πΣ0

∫ rmax

rmin

(
rc
r

)γ
r

(
1 +
r

rc

)γ−4

ln

(
1 +
rc
r

)
dr =

=
2πΣ0(rcr)

2

(6− 5γ + γ2)2(rc + r)3

(
rc + r

r

)γ {
rc(9− 6γ + γ2)+

+ r(5− 2γ)− (6− 5γ + γ2)[(γ − 3)rc − r] ln

(
1 +
rc
r

)}∣∣∣∣
rmax

rmin

,

(A.12)

∂N

∂rmin
= −2πΣ0

(
rc
rmin

)γ rmin[
1 + rmin

rc

]4−γ , (A.13)

∂N

∂rmax
= 2πΣ0

(
rc
rmax

)γ rmax[
1 + rmax

rc

]4−γ . (A.14)

The fitting parameters used to calculate ∆N are summarized in Tab. 2.2.

ii) estimate of ∆Ni

The fitting formulas to the initial distribution of GCs change for the various

galaxies studied.

For NGC 1400, NGC 1407, NGC 4374, NGC 4636 we have (see Section 2.3.1, 2.3.2,

2.3.5, 2.3.8 and Tab. 2.3 for the meaning and the values of the parameters)

Ni(rmin, rmax) = 2πηr−αb

∫ rb

rmin

rdr + 2πη

∫ rmax

rb

r1−αdr =

= πηr−αb r
2
∣∣∣
rb

rmin
+ 2πη

r2−α

2− α

∣∣∣∣∣

rmax

rb

.
(A.15)
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In Equation A.15, η represents the parameter obtained by the vertical shifting of

the luminosity profile.

The error ∆Ni is thus given by:

∆Ni =

∣∣∣∣
∂Ni
∂η

∣∣∣∣∆η+
∣∣∣∣
∂Ni
∂rb

∣∣∣∣∆rb+
∣∣∣∣
∂Ni
∂α

∣∣∣∣∆α+

∣∣∣∣
∂Ni
∂rmin

∣∣∣∣∆rmin+

∣∣∣∣
∂Ni
∂rmax

∣∣∣∣∆rmax (A.16)

where:

∂Ni
∂η

= 2πr−αb

∫ rb

rmin

rdr + 2π

∫ rmax

rb

r1−αdr =

= πr−αb r
2
∣∣∣
rb

rmin
+ 2π

r2−α

2− α

∣∣∣∣∣

rmax

rb

,

(A.17)

∂Ni
∂rb

= −2πηαr−1−α
b

∫ rb

rmin

rdr = −πηr−1−α
b r2

∣∣∣
rb

rmin
, (A.18)

∂Ni
∂α

= −2πηr−αb

∫ rb

rmin

r ln(rb)dr − 2πη

∫ rmax

rb

r1−α ln(r)dr =

= −2πr−αb r
2 ln(rb)

∣∣∣
rb

rmin
+

2πηr2−α {1 + [α − 2] ln(r)}
(γ − 2)2

∣∣∣∣∣

rmax

rb

,

(A.19)

Also in this case we assumed rmin = 0.1 arcmin. For all the galaxies analysed,

rmin > rb and rmax > rb; so we have

∂Ni
∂rmin

= −2πηr1−αmin , (A.20)

∂Ni
∂rmax

= 2πηr1−αmax. (A.21)

For M 49 and NGC 4406 (Section 2.3.7 and Section 2.3.6) we have

Ni(rmin, rmax) = 2πη

∫ rmax

rmin

r

{(
rb
r

)γ
θ(rb − r) + e

bn

[(
rb
re

) 1
n−
(
r
re

) 1
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]

θ(r − rb)



 dr =
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2− γ r
2
(
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)γ∣∣∣∣
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rmin

+ 2πη

∫ rmax

rb

re
bn
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(
r
re

) 1
n

]

dr

(A.22)

where bn = 1.992n − 0.3271. The second row of the previous expression is

justified by the fact that, both for M 49 and NGC 4406, rb > rmin. Thus the error

on Nl

∆Ni =

∣∣∣∣
∂Ni
∂η

∣∣∣∣∆η +

∣∣∣∣
∂Ni
∂bn

∣∣∣∣∆bn +
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∂Ni
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∣∣∣∣∆rb +
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∂Ni
∂γ

∣∣∣∣∆γ+

+
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∂Ni
∂re

∣∣∣∣∆re +
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∂Ni
∂n

∣∣∣∣∆n+

∣∣∣∣
∂Ni
∂rmin

∣∣∣∣∆rmin +

∣∣∣∣
∂Ni
∂rmax

∣∣∣∣∆rmax
(A.23)
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where ∆bn =
∣∣∣∂bn∂n

∣∣∣∆n, is evaluated by the following expressions of the individual

error contribution:

∂Ni
∂η

= 2π
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(A.24)
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∂Ni
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Remembering that, for both NGC 4472 and NGC 4406, rmin > rb and rmax > rb
we can estimate the following contributions

∂Ni
∂rmin

= −2πηrmin exp

{
bn

[(
rb
re

) 1
n

−
(
rmin
re

) 1
n

]}
, (A.30)

∂Ni
∂rmax

= 2πηrmax exp

{
bn

[(
rb
re

) 1
n

−
(
rmax
re

) 1
n

]}
. (A.31)

See Tab. 2.3 for the values of the parameters used in the Equation A.22- Equation

A.31.
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Last, for NGC 3268 and NGC 3258 (see Section 2.3.4, Section 2.3.3 and Tab.

2.3 for the values of the parameters) we have the same equations obtained for the

present profile of all the galaxies, except NGC 4472 (see Equation A.1-A.7). All

the integrals from Equation A.22 to Equation A.29 must be calculated numerically

using the values of the parameters given in Table 2.3.

The results listed in Table 2.2 are obtained assuming an error of 1% on each

independent parameter used. Just in the case of NGC 4472, where we assumed

γ = 0 (Côté et al., 2003), we could not consider a value for ∆γ as obtained by a

fixed percentual variation and, thus, we adopted ∆γ = 0.01.



Appendix B

A simplified derivation of the

relaxation time

To derive an expression of the relaxation time, we can consider a test particle of

mass m, moving toward a system composed of N particles of mass M (field stars),

from position r̃→∞ with velocity v parallel to the x-axis. As we can see in Figure

(B.1), the impact parameter, respect to a generic field star is b. Each close encounter

perturbs the velocity of the test particle by a quantity δv⊥ parallel to the y axis.

Since the field stars are assumed to be distributed uniformly, the mean value 〈∆v⊥〉,
is zero. Thus, to derive the relaxation time we set

〈
∆v2⊥

〉

v2
≃ 1 ,

in such a way we require that the generic test particle completely loses memory of its

initial trajectory. The module of the perpendicular force, F⊥, (i.e. the component

along the y-axis), acting on the mass m, can be expressed as

F⊥ = G
mM

r2
cos θ . (B.1)

Assuming that the perturbation to the velocity is small (i.e. δv⊥/v ≪ 1), we can

write

cos θ ≃ b
r
r2 ≃ x2 + b2 x = vt

and, substituting this expression into Equation (B.1), we get

F⊥ = G
mMb

(v2t2 + b2)
3
2

= G
mM

b2
[(
vt
b

)2
+ 1

] 3
2

= m
d

dt
v⊥ (B.2)

where, in the last passage we used the Newton’s second law of motion. Integrating

the relation (B.2) with respect to time, we have

δv⊥ =
GM

b2

+∞∫

−∞

[(
vt

b

)2

+ 1

]− 3
2

dt = 2
GM

bv
.
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Figure B.1. A simple scheme of a two-body collision with impact parameter b.

The average number of collisions δnb, with an impact parameter between b and

b + δb, suffered by a particle that crosses a system with a typical dimension equal

to R is

δnb = P (b,R) ·N

where the probability of the single close, P (b,R), is equal to the ratio between the

geometric cross section of the collision and the geometric cross section of the system.

Therefore

δnb =
2πbdb

πR2
N =

2bN

R2
db

and the mean quadratic variation of v⊥, due to the collisions δnb, can be expressed

as 〈
∆v2⊥

〉

b
= δnbδv

2
⊥ =

8G2M2N

v2R2
d log b . (B.3)

Integrating Equation (B.3) over all possible values of b we get
〈
∆v2⊥

〉
. We take he

typical dimension of the system, R, as the maximum value of the impact parameter

(bM ). To give a correct estimate of the minimum value of the same quantity, bm,

avoiding logarithmic divergence, we use the distance of minimum approach between

the two particle involved in the collision, r0 (see figure (B.1). The total energy must

be conserved, thus
1

2
µv2 =

1

2
µv20 −G

mM

r0
(B.4)

where v0 is the velocity at the minimum distance, and µ = mM
m+M is the reduced

mass of the system. From (B.4) we can obtain

1

2
µv20 −G

mM

r0
> 0⇒ r0 >

2G(M +m)

v2
v2

0

v2

≃ 2G(M +m)

v2
= bm

where we have used the approximation of small perturbation (
v20
v2 ≃ 1). In light of

this, we can integrate Equation (B.3) between bm and bM obtaining

〈
∆v2⊥

〉
=

8G2M2N

v2R2
log Λ (B.5)
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where the quantity log Λ = log bMbm has been introduced and, often, it is called

Coulomb logarithm. Dividing (B.5) by v2 we get

〈
∆v2⊥

〉

v2
=

8G2M2N

v4R2
log Λ . (B.6)

From (3.22) we can evaluate the typical velocity of a particle in an N -body system,

provided that this system is in a stationary state. We have

2T − U =Mtotv
2
typical − α

GM2
tot

R
= 0⇒ v2typical = α

GMtot
R

= α
GMN

R
(B.7)

where α is constant such that α . 1 and Mtot = MN is the total mass of the

system. Putting α = 1 and substituting into (B.6), we obtain

〈
∆v2⊥

〉

v2
=

8

N
log Λ .

Before relaxation, a particle will pass through the system a number of times nR
which can be derived from the condition

〈
∆v2⊥

〉

v2
nR ≃ 1⇒ nR ≃

1

8

N

log Λ

so, finally, we obtain

tr ≃ nRtc =
1

8

N

log Λ
tc (B.8)

where tc is the crossing time given by Equation (3.25) and, generally, log Λ is re-

placed by logN because

log Λ = log
Rv2

2G(M +m)
≃ log

N

2
≃ logN

where we have used the expression of the typical velocity given by Equation (B.7)

and we have considered M ≫ m and logN ≫ log 2.





Appendix C

The distribution of the

Globular Clusters orbits

In this appendix we briefly resume how we obtained the different circular orbits of

our GCs.

The surface of a sphere can be uniquely tessellated by means of 12 regular pentagons,

the centers of which form a regular dodecahedron inscribed in the sphere. Following

Gualandris and Merritt (2009) we used the centers of these pentagons to identify

the vectors parallel to our GCs angular momentum vectors.

To rotate the positions and velocities of the original N -body model of the cluster

we used the inclination i and longitude of ascending node Ω of the centers of the

pentagons given in Table C.1.

The positions (as well as the velocities) in the rotated reference frame (x′, y′, z′)

can be obtained using the following equations, where (x, y, z) are the coordinates

in the original frame

x′ = λx1
x+ λx2

y + λx3
z

y′ = λy1x+ λy2y + λy3z

z′ = λz1x+ λz2y + λz3z

(C.1)

where

λx1
= cos Ω cosω − sin Ω cos i sinω

λx2
= sin Ω cosω + cos Ω cos i sinω

λx3
= sin i sinω,

(C.2)

λy1 = − cos Ω sinω − sin Ω cos i cosω

λy2 = − sin Ω sinω + cos Ω cos i cosω

λy3 = sin i cosω

(C.3)

and
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n i Ω

1 0 148.28

2 31.72 90

3 328.28 90

4 0 31.72

5 180 31.72

6 270 58.28

7 180 148.28

8 90 121.72

9 90 58.28

10 270 121.72

11 148.28 90

12 211.72 90

Table C.1. The inclination i and longitude of ascending node Ω.

λz1 = sin i sin Ω

λz2 = sin Ω cosω + cos Ω cos− sin i cos Ω.

λz3 = cos i.

(C.4)

The value of ω ∈ [0, 2π], that is needed to evaluate the rotated position and

velocities, was picked randomly for each orbit.
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